




Figure 9. Fixed-carbon starvation selectively suppresses proteaphagy and promotes the formation of PSG-like structures in Arabidopsis. (A)

Measurement of proteaphagy upon nitrogen and/or fixed-carbon starvation in 5 day-old Arabidopsis seedlings by monitoring the release of free GFP

from the CP and RP subunits PAG1-GFP or RPN5a-GFP, respectively. PAG1:PAG1-GFP pag1-1 and RPN5a:RPN5a-GFP rpn5a-2 seedlings were switched

from growth in the light on nutrient-rich (+N +C) medium to either growth in the light on medium lacking nitrogen (–N), or growth in the dark on media

lacking either carbon alone (–C) or both nitrogen and carbon (–N –C). Total protein extracts prepared from seedlings harvested at the indicated times

were assayed for GFP release by immunoblot analysis with anti-GFP antibodies. Open and closed arrowheads locate the GFP fusion and free GFP,

respectively. Immunodetection of histone H3 was used to confirm near equal protein loading. Rates of bulk autophagy were measured by the release of

GFP from GFP-ATG8a in the same manner as above (right panel). (B) Quantification of the free GFP/GFP fusion ratios of the PAG1-GFP, RPN5a-GFP

and GFP-ATG8a reporters upon switching from +N +C medium to –N, –C, or –N –C media. Levels of the GFP fusion and free GFP were determined by

densitometric scans of the immunoblots shown in panel (A). Each data point represents the mean (±SD) of three independent biological replicates. (C)

Proteasomes accumulate in autophagic bodies within the vacuole upon nitrogen starvation, but not fixed-carbon starvation. Five-day-old seedlings

expressing PAG1-GFP, RPN5a-GFP or GFP-ATG8a were grown on +N +C medium and then switched to –N or –C media and treated with 1 mM ConA

Figure 9 continued on next page
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Discussion
Given the critical roles for the UPS and autophagy in cell regulation, maintaining amino acid supply,

and mitigating the toxic effects of aggregation-prone proteins, it is unsurprising that these pathways

are highly regulated (Collins and Goldberg, 2017; Dikic, 2017). The activity and abundance of the

proteasome in particular are tightly controlled by a variety of mechanisms, including the autophagic

clearance of inactive or excess particles (Marshall et al., 2015; Marshall et al., 2016; Marshall and

Vierstra, 2015; Waite et al., 2016; Cohen-Kaplan et al., 2016; Nemec et al., 2017). In this study,

we further investigated starvation-induced proteaphagy in yeast and Arabidopsis and surprisingly

found that, while proteasomes are rapidly eliminated during nitrogen starvation, they remain stable

in response to carbon starvation, even though bulk autophagy is up-regulated. Instead, mature pro-

teasomes exit the nucleus and accumulate in cytoplasmic PSGs, the formation of which has previ-

ously been reported to protect yeast cells against stress and confer fitness during aging

(van Deventer et al., 2015). Although the appearance of PSGs in quiescent yeast cells has long

been known (Laporte et al., 2008), their function(s) have remained obscure.

Here, we demonstrated an inverse relationship between PSG accumulation and proteaphagy,

where promoting PSG assembly protects proteasomes from autophagy, while blocking delivery into

PSGs encourages their degradation. During the PSG assembly process, the CP and RP appear to

separately coalesce, such that they accumulate in PSGs even in the absence of the other sub-particle.

An array of cell fitness studies in turn demonstrated that a failure to store proteasomes in PSGs

directs them to proteaphagy, which substantially delays the resumption of growth when carbon-

starved yeast cells are re-fed. The response can even been seen in cells starved for nitrogen and

treated with 2-DG, which supresses ATP levels, indicating that PSGs are not solely assembled in the

absence of carbon but are more generally tied to the energy status of yeast cells (this study;

Gu et al., 2017). Taken together, we propose that entry into PSGs shields proteasomes from protea-

phagic breakdown, and instead creates a reservoir of stored proteasomes that can be rapidly re-

mobilized upon the resumption of cell growth and/or when proteolytic demand rises. While we can-

not exclude the remote possibility that PSGs also have alternative functions, and/or that the ability

of the various factors studied here to protect proteasomes from autophagy arises from processes

unrelated to PSGs, the sum of our results strongly converges to this conclusion. Presumably, the abil-

ity to rapidly restore proteasome capacity avoids the need to re-build the proteasome pool de

novo, which would be essential for the proper regulation of cell division and other growth-promoting

processes. The inverse relationship between PSGs and proteaphagy, and the requirement of Blm10/

PA200 for CP aggregation, were also demonstrated in Arabidopsis, indicating that PSGs represent a

conserved mechanism for proteasome protection.

We confirmed the involvement of several factors previously reported to influence PSG formation,

including the NatB N-terminal acetylation complex, the C-terminus of the proteasomal DUB Rpn11,

the proteasome capping factor Blm10/PA200, intracellular pH, and energy levels (Peters et al.,

2013; Saunier et al., 2013; Weberruss et al., 2013; van Deventer et al., 2015). How these seem-

ingly unlinked factors work together to condense proteasomes into PSGs remains largely unknown.

Figure 9 continued

for 16 hr before imaging of the root lower elongation zone by confocal fluorescence microscopy. Scale bar, 10 mm. (D) Proteasomes assemble into large

cytoplasmic PSG-like structures upon fixed-carbon starvation, instead of the smaller vacuolar puncta seen upon nitrogen starvation. Five-day-old

seedlings expressing PAG1-GFP, RPN5a-GFP or GFP-ATG8a were grown, treated and imaged as in panel C, but focusing on cells closer to the root tip.

Scale bar, 2 mm. (E) The PSG-like structures that form upon fixed-carbon starvation are not decorated with ATG8a. Roots from 5-day-old seedlings

expressing PAG1-GFP and mCherry-ATG8a were grown, treated and imaged as in panel C. Shown are the GFP, mCherry and merged fluorescence

channels. Scale bar, 5 mm. (F) The accumulation of PSG-like structures upon fixed-carbon starvation is rapidly reversible upon replenishment of the

carbon source. Roots from 5 day-old seedlings expressing PAG1-GFP were grown on +N +C medium, switched to –C medium for 16 hr, and then

returned to +N +C medium for the indicated times before imaging as in panel C. Scale bar, 10 mm. In panels C, D, E and F: N, nucleus; V, vacuole; P,

PSG.

DOI: https://doi.org/10.7554/eLife.34532.029

The following source data is available for figure 9:

Source data 1. Source data for Figure 9B.

DOI: https://doi.org/10.7554/eLife.34532.030
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A number of yeast proteasome subunits are acetylated (Hirano et al., 2016), with modification of

Pre1 (b4), Rpt3 and Rpn11 being specifically ascribed to NatB (Kimura et al., 2000; Kimura et al.,

2003), although the functions of these modifications are not known. Likewise, while the deubiquity-

lating activity of Rpn11 is well positioned at the entrance to the substrate channel in the 26S com-

plex to impact ubiquitin recycling (Collins and Goldberg, 2017), the function(s) of the C-terminal

amino acids mutated in the rpn11-m5 allele remain(s) unclear.

Figure 10. The formation of PSG-like structures in Arabidopsis upon fixed-carbon starvation requires the Blm10 ortholog PA200 and is independent of

autophagy. (A) Elimination of PA200 accelerates proteaphagy of the CP, but not the RP, in response to fixed-carbon starvation. PAG1:PAG1-GFP pag1-

1 and RPN5a:RPN5a-GFP rpn5a-2 seedlings with or without the pa200-2 or pa200-3 mutations were switched from growth in the light on nutrient-rich

(+N +C) medium to either growth in the light on medium lacking nitrogen (–N), or growth in the dark on media lacking either carbon alone (–C) or both

nitrogen and carbon (–N –C). Total protein extracts prepared from seedlings harvested at the indicated times were assayed for GFP release by

immunoblot analysis with anti-GFP antibodies. Open and closed arrowheads indicate the GFP fusion and free GFP, respectively. Immunodetection of

histone H3 was used to confirm near equal protein loading. (B) Quantification of the free GFP/GFP fusion ratios of the PAG1-GFP and RPN5a-GFP

reporters in wild-type (WT), pa200-2 or pa200-3 seedlings upon switching to –C medium. Levels of the GFP fusion and free GFP were determined by

densitometric scans of the immunoblots shown in panel (A). Each data point represents the mean (±SD) of three independent biological replicates. (C)

PAG1-GFP fails to coalesce into cytoplasmic PSG-like structures upon fixed-carbon starvation in the absence of PA200, and instead appears in vacuolar

autophagic bodies. Five-day-old PAG1:PAG1-GFP pag1-1 seedlings with or without the pa200-2 or pa200-3 mutations were grown on +N +C medium

and then transferred to –C medium containing 1 mM ConA and subjected to darkness for 16 hr. Cells were imaged by confocal fluorescence

microscopy. Scale bar, 2 mm. (D) The cytoplasmic PSG-like structures containing PAG1-GFP form independently of autophagy. PAG1:PAG1-GFP pag1-1

seedlings with or without the atg7-2 mutation were grown on +N +C medium and then transferred to –N or –C media (in the light or dark, respectively)

containing 1 mM ConA for 16 hr. Cells were imaged by confocal fluorescence microscopy as in panel (C). Scale bar, 10 mm. In panels C and D: N,

nucleus; V, vacuole; P, PSG.

DOI: https://doi.org/10.7554/eLife.34532.031

The following source data and figure supplement are available for figure 10:

Source data 1. Source data for Figure 10B.

DOI: https://doi.org/10.7554/eLife.34532.033

Figure supplement 1. Cytosolic PSG-like structures form in Arabidopsis in the absence of concanamycin A (ConA) treatment.

DOI: https://doi.org/10.7554/eLife.34532.032
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The precise role of Blm10/PA200 also remains enigmatic, with various reports proposing that it

helps assemble and stabilize the stacked CP barrel prior to RP docking (Schmidt et al., 2005;

Sadre-Bazzaz et al., 2010; Dange et al., 2011). However, Dblm10 strains also display numerous

pleiotropic phenotypes associated with genome instability and DNA repair, including reduced cell

viability and susceptibility to DNA damaging agents (Schmidt et al., 2005). Besides promoting entry

of the CP in PSGs, Blm10 bound to PSG-localized CPs could promote the rapid nuclear resorption of

the CP or singly capped proteasomes upon restoration of cell growth, based on its ability to facili-

tate their nuclear import (Weberruss et al., 2013). It is also conceivable the Blm10 prevents inadver-

tent proteolysis by the CP after Blm10-CP particles coalesce into PSGs by covering the substrate

entry pore of the CP (Schmidt et al., 2005; Sadre-Bazzaz et al., 2010). Regardless of its activities,

we found that Blm10 also becomes a target of autophagy upon nitrogen starvation, presumably

because of its association with the CP.

In addition, we identified an unanticipated role for Spg5 in delivery of the yeast RP into PSGs. In

contrast to the absolute requirement of Blm10 for CP delivery, Spg5 was not essential for the RP,

but its absence substantially delayed PSG entry. Spg5 was previous shown to bind free RPs and to

be important for cell viability during stationary phase (Hanna et al., 2012), likely by safeguarding

proteasomes. How Spg5 promotes delivery of RPs into PSGs is unknown. At least with respect to

carbon-starved cells, we did not find Spg5 bound to proteasomes by mass spectrometry of purified

preparations, nor did we detect consistent co-localization of Spg5 with PSGs by confocal fluores-

cence microscopy, implying that, unlike Blm10, Spg5 does not follow proteasomes (or at least the

RP) into these granules. Given the possibility that orthologs of Spg5 exist beyond yeast (like Blm10),

we search for relatives in other eukaryotes by amino acid sequence similarity; while weak sequence

homologs were found in other fungi, they were absent in plants and metazoans, suggesting either

that Spg5 is a fungi-specific factor, or that the Spg5 sequence has evolved considerably.

Ubp3 was previously shown to be important for proteaphagy upon nitrogen starvation

(Waite et al., 2016). We confirmed this observation and also showed that Upb3 is critical upon car-

bon starvation once the transport of proteasomes (or just the CP) into PSGs is blocked. Collectively,

these data add proteaphagy to the reported roles for Ubp3 during ribophagy in response to nitro-

gen starvation (Kraft et al., 2008) and in negatively regulating mitophagy (Müller et al., 2015).

Ubp3 activity is also required for the efficient formation of stress granules and processing bodies in

response to heat stress, sodium azide treatment, or entry into stationary phase (Nostramo et al.,

2016), but not for PSG assembly (this study), implying that this DUB is differentially required for the

formation of various cytoplasmic puncta.

While complementation studies confirmed that the catalytic activity of Ubp3 and its interaction

with its co-factor Bre5 are important for proteaphagy, the identity of its target(s) remains unknown.

Based on the observations that: (i) proteasomes are ubiquitylated (Besche et al., 2014; Kim et al.,

2013; Marshall et al., 2015; Marshall et al., 2016); (ii) Ubp3 interacts directly with proteasomes

(Fehlker et al., 2003; Mao and Smerdon, 2010); and (iii) free ubiquitin has been detected in PSGs

and promotes their appearance (Gu et al., 2017), it is possible that direct deubiquitylation of one or

more proteasome subunit(s) is essential for PSG condensation. However, immunoblotting of protea-

somes purified before and during nitrogen and carbon starvation did not detect changes in overall

ubiquitylation of the particle (data not shown), as has been seen upon proteasome inactivation

(Marshall et al., 2015; Marshall et al., 2016). Alternatively, it is possible that deubiquitylation of a

hypothetical autophagy receptor permits binding to proteasomes and/or Atg8 upon starvation.

Clearly, the involvement of proteasome ubiquitylation in IPOD-mediated proteaphagy of inactive

proteasomes, and of Ubp3 in supressing starvation-induced proteaphagy, places ubiquitin as a criti-

cal effector of proteasome dynamics, as well as being essential for proteasome substrate recruitment

(Collins and Goldberg, 2017; Dikic, 2017; Gu et al., 2017). Further quantitative analysis of the

ubiquitylation landscape of cells subjected to starvation in the presence and absence of Ubp3 will

likely be required to differentiate the above possibilities.

How PSGs assemble and are able to shield proteasomes from proteaphagy is unclear. Organisms

in natural environments frequently encounter nutrient excess, nutrient deprivation, and rapid shifts

between these two extremes, with growth under carbon stress in particular known to trigger the

rapid re-organization of the cytoplasm and other compartments to promote cell survival (Lee et al.,

2016; Saarikangas and Barral, 2016; Kaganovich, 2017). Included is the appearance of large,

highly dynamic, membrane-less inclusions that can selectively partition individual proteins,
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biochemical pathways or cytotoxic protein aggregates away from the cellular milieu

(Narayanaswamy et al., 2009; O’Connell et al., 2014; Petrovska et al., 2014; Shah et al., 2014;

Suresh et al., 2015; Franzmann et al., 2018). Besides PSGs, examples include hundreds of yeast

proteins that condense into so-called stress granules during heat stress, mRNA and associated RNA-

binding proteins that assemble into ribonucleoprotein granules under osmotic stress, and IPODs

that concentrate amyloidogenic protein aggregates. As with PSGs, some of these inclusions are

thought to serve protective roles (Saarikangas and Barral, 2016; Kaganovich, 2017; Mateju et al.,

2017; Franzmann et al., 2018). Furthermore, these inclusions, like PSGs, coalesce rapidly and are

often reversible, with possible driving forces being changes in cytoplasmic fluidity, intrinsic physico-

chemical properties and folding of the protein(s), changes in the surrounding environment such as

the influences of pH seen for PSGs (Peters et al., 2013; this report), and extrinsic factors such as

chaperones and/or post-translational modifications (Kaganovich, 2017).

Condensation is thought to involve phase separation phenomena often caused by reduced pro-

tein solubility. In a manner highly reminiscent of PSGs, phase separation was recently reported for

the yeast translation termination factor Sup35 upon nutrient starvation in response to changes in

intracellular ATP levels and pH, with this accretion helping resumption of cell growth upon exit from

starvation (Franzmann et al., 2018). Why carbon starvation, but not nitrogen starvation, induces

these re-arrangements remains unexplored; for PSGs, this might be caused by alterations in intracel-

lular pH and ATP levels seen upon carbon starvation but not nitrogen starvation

(Narayanaswamy et al., 2009; Munder et al., 2016). Similarly, how these condensates are able to

evade the autophagic machinery, which is certainly capable of handling large protein aggregates

and insoluble deposits, remains unclear, although their unique biophysical properties might be

important (Holehouse and Pappu, 2018). PSGs form independently of the PAS that initiates autoph-

agy, additionally implying a spatial separation between PSGs and sites of autophagy initiation (Fig-

ure 1—figure supplement 2C).

It is also unclear how proteasomes exit the nucleus prior to PSG formation. A recent study found

that nuclear proteasomes likely dissociate into their CP and RP sub-complexes prior to export in

response to nitrogen starvation, and identified a role for the exportin Crm1 in this relocation, which

was blocked in the temperature-sensitive xpo1-1 mutant (Nemec et al., 2017). Proteasomes then

seemed to transiently associate with cytosolic IPODs, before forming mature PSGs as separate

puncta (Peters et al., 2016). We previously showed that inactive proteasomes are triaged into

IPODs in an Hsp42-dependent manner prior to Cue5-mediated proteaphagy (Marshall et al., 2015),

but our finding that PSGs can form even in the absence of Hsp42 implies that the pathway that

forms PSGs is different.

In conclusion, we identify here an evolutionarily conserved function of PSGs in shielding protea-

somes from autophagic degradation during nutrient deprivation and/or entry into quiescence that

promotes cell survival when growth conditions improve. An intriguing possibility is that similarly pro-

tective aggregation takes place for a variety of other intracellular protein complexes during nutri-

tional and environmental stress. Given the ease with which PSG (and proteasome-containing IPOD)

assembly can be manipulated through growth conditions, inhibitors, and mutations, proteasome

dynamics could provide an excellent paradigm to define the processes underpinning biomolecular

condensate formation during stress.

Materials and Methods

Key resources table

Reagent type
or resource Designation Source or reference Identifiers Additional information

Strain
(Saccharomyces
cerevisiae)

Wild-type strains
(BY4741; BY4742;
SEY6210; SUB62;
W303-1B)

Other See additional
information

Provided by Daniel Finley (Harvard
Medical School), Audrey P. Gasch
(University of Wisconsin) and Mark
Hochstrasser (Yale University);
allS. cerevisiae strains are listed
in Supplementary file 1-Table S1

Continued on next page
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Continued

Reagent type
or resource Designation Source or reference Identifiers Additional information

Strain (Arabidopsis
thaliana)

Wild type ecotype
Columbia-0 (Col-0)

Arabidopsis Biological
Resource Center (ABRC)

CS60000 N/A

Genetic reagent
(S. cerevisiae)

Yeast GFP clone collection
strains (PRE10-GFP;
RPN5-GFP; BLM10-GFP)

Thermo Fisher Scientific;
PMID 14562095

See additional
information

All S. cerevisiae strains are listed in
Supplementary file 1-Table S1

Genetic reagent
(S. cerevisiae)

Yeast gene knockout
collection strains
(multiple)

GE Healthcare;
PMID 10436161

See additional
information

All S. cerevisiae strains are listed in
Supplementary file 1-Table S1

Genetic reagent
(S. cerevisiae)

GFP-ATG8;
GFP-APE1;OM45-GFP;
PEX14-GFP;RPL25-GFP

PMID 15138258;
PMID 25042851

YTS187; KL095;
KL099; KL282;
KL285

Provided by Stefan Jentsch (Max
Planck Institut für Biochemie) and
Daniel J. Klionsky (University of
Michigan); all S. cerevisiae strains are
listed in Supplementary file 1-Table S1

Genetic reagent
(S. cerevisiae)

PHO8D60 PMID 7741731 TN124 Provided by Daniel J. Klionsky (University
of Michigan); all S. cerevisiae strains are
listed in Supplementary file 1-Table S1

Genetic reagent
(S. cerevisiae)

rpn11-m1; rpn11-m5 PMID 18172023;
PMID 19773362;
PMID 23936414

N/A Provided by Agnès Delahodde (Université
Paris-Sud); all S. cerevisiae strains are
listed in Supplementary file 1-Table S1

Genetic reagent
(S. cerevisiae)

PRE1-TEV-ProA;
RPN11-TEV-ProA

PMID: 12408819 SDL133;
SDL135

Provided by Daniel Finley (Harvard Medical
School); allS. cerevisiae strains are listed in
Supplementary file 1-Table S1

Genetic reagent
(A. thaliana)

atg7-2 GABI-Kat, Universität
Bielefeld;
PMID 20136727

GABI_655_B06 N/A

Genetic reagent
(A. thaliana)

pa200-2; pa200-3 ABRC; PMID 20516081 SALK_095870;
SALK_070184

N/A

Genetic reagent
(A. thaliana)

PAG1:PAG1-GFP pag1-1 PMID 26004230 SALK_114864
forpag1-1

N/A

Genetic reagent
(A. thaliana)

RPN5a:RPN5a-GFP rpn5a-2 PMID 26004230 SALK_010840
forrpn5a-2

N/A

Genetic reagent
(A. thaliana)

35S:GFP-ATG8a PMID 16040659 N/A N/A

Genetic reagent
(A. thaliana)

UBQ10:mCherry-ATG8a PMID 21984698 N/A N/A

Genes (A. thaliana and
S. cerevisiae)

See additional
information

Saccharomyces Genome
Database or the Arabidopsis
Information Resource

See additional
information

All gene accession numbers are listed in
Supplementary file 1-Table S2

Antibody Anti-FLAG (mouse
monoclonal)

Sigma-Aldrich F3165,
RRID:AB_259529

1:10,000

Antibody Anti-GFP (mixture of
mouse monoclonals)

Sigma-Aldrich 11814460001,
RRID:AB_390913

1:5000

Antibody Anti-H3 (rabbit
polyclonal)

Abcam AB1791,
RRID:AB_302613

1:3000

Antibody Anti-HA (mouse
monoclonal)

Covance MMS-101R,
RRID:AB_2314672

1:5000

Antibody Anti-mCherry (mouse
monoclonal)

Abcam AB125096,
RRID:AB_11133266

1:1000

Antibody Anti-Pre4 (rabbit polyclonal) Other N/A 1:1,000; provided by Daniel Finley
(Harvard Medical School)

Antibody Anti-Rpn5 (rabbit polyclonal) PMID 19252082 N/A 1:3000

Antibody Anti-Rpn8 (rabbit polyclonal) Other N/A 1:1,000; provided by Daniel Finley
(Harvard Medical School)

Antibody Anti-Rpt1 (rabbit polyclonal) Other N/A 1:1,000; provided by Daniel Finley
(Harvard Medical School)

Continued on next page
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Continued

Reagent type
or resource Designation Source or reference Identifiers Additional information

Antibody Goat anti-mouse
HRP conjugate

Sercare 074–1806,
RRID:AB_2307348

1:10,000

Antibody Goat anti-rabbit
HRP conjugate

Sercare 074–1506,
RRID:AB_2721169

1:10,000

Recombinant
DNA reagent

pAG424GPD-ccdB;
pAG424GPD-ccdB-HA

Addgene; PMID 17583893 14152; 14248 Provided by Susan Lindquist
(Whitehead Institute for
Biomedical Research) via Addgene

Recombinant
DNA reagent

RNQ1-mCherry PMID 18756251 pESC::GAL1-
RNQ1-mCherry

Provided by Shay Ben-Aroya
(Bar-Ilan University)

Recombinant
DNA reagent

mCherry-BLM10 This paper pAG424::GPD1-
mCherry-BLM10

The mCherry-BLM10 coding
sequence (CDS) cloned
into pAG424GPD-ccdB

Recombinant
DNA reagent

mCherry-SPG5 This paper pAG424::GPD1-
mCherry-SPG5

The mCherry-SPG5 CDS cloned
into pAG424GPD-ccdB

Recombinant
DNA reagent

RPN11-FLAG This paper pAG424::GPD1-
RPN11-FLAG

The RPN11-FLAG CDS cloned
into pAG424GPD-ccdB

Recombinant
DNA reagent

BRE5-HA This paper pAG424::GPD1-
BRE5-HA

The BRE5 CDS cloned
into pAG424GPD-ccdB-HA

Recombinant
DNA reagent

NAT3-HA and
derivatives

This paper pAG424::GPD1-NAT3-
HA and derivatives

The NAT3 CDS (and derivatives) cloned
into pAG424GPD-ccdB-HA

Recombinant
DNA reagent

UBP3-HA and
derivatives

This paper pAG424::GPD1-UBP3-
HA and derivatives

The UBP3 CDS (and derivatives) cloned
into pAG424GPD-ccdB-HA

Sequence-based
reagent

See additional
information

Integrated DNA
Technologies

See additional
information

All oligonucleotide primer sequences are
listed in Supplementary file 1-Table S3

Recombinant
protein

6His-TEV protease Other N/A Provided by E. Sethe Burgie
(Washington University in St. Louis)

Commercial
assay or kit

LightCycler 480 SYBR
Green I Master Mix

Roche Diagnostics 04707516001 N/A

Commercial
assay or kit

Pierce BCA protein
assay kit

Thermo Fisher Scientific 23225 N/A

Commercial
assay or kit

SuperSignal West Pico
Plus Chemiluminescent
Substrate

Thermo Fisher Scientific 34578 N/A

Chemical compound 2-deoxyglucose Sigma-Aldrich D8375 N/A

Chemical compound Canavanine sulphate salt Sigma-Aldrich C9758 N/A

Chemical compound Carbonyl-cyanide-3-
chlorophenylhydrazone

Sigma-Aldrich C2759 N/A

Chemical compound Concanamycin A Santa Cruz Biotechnology SC-202111A N/A

Chemical compound LFP GenScript; PMID 16337593 See additional
information

Custom synthesis

Chemical compound MG132 Selleckchem S2619 N/A

Chemical compound N-succinyl-LLVY-7-amido-
4-methylcoumarin

Sigma-Aldrich S6510 N/A

Chemical compound p-fluorophenylalanine Sigma-Aldrich F5251 N/A

Chemical compound p-nitrophenol Sigma-Aldrich 1048 N/A

Chemical compound p-nitrophenyl phosphate
disodium salt hexahydrate

Sigma-Aldrich N4645 N/A

Software Adobe Illustrator CC;
Adobe Photoshop CC

Adobe Systems N/A N/A

Software Nikon Elements
Imaging Software

Nikon N/A N/A

Software Total Lab Quant Non-linear Dynamics N/A N/A

Continued on next page
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Continued

Reagent type
or resource Designation Source or reference Identifiers Additional information

Other Immobilon-P PVDF
Transfer Membrane

EMD Millipore IPVH00010 N/A

Other Murashige and Skoog
basal salt micronutrient
solution

Sigma-Aldrich M0529 N/A

Other Nickel-nitrilotriacetic
acid-agarose beads

Qiagen 30230 N/A

Other Protease inhibitor
cocktail

Sigma-Aldrich P9599 N/A

Other Rabbit whole molecule
IgG antigen affinity gel

MP Biomedicals 0855961 N/A

Other Yeast nitrogen base without
amino acids and
ammonium sulphate

Sigma-Aldrich Y1251 N/A

Yeast strains and manipulations
Unless otherwise stated, all manipulations were performed according to standard yeast protocols

(Dunham et al., 2015; Marshall et al., 2016). Details of all strains used in this study are given in

Supplementary file 1-Table S1, and all relevant Saccharomyces Genome Database identifiers are

given in Supplementary file 1-Table S2. Cells expressing PRE10-GFP, RPN5-GFP or BLM10-GFP in

the BY4741 background (Brachmann et al., 1998) were obtained from the yeast GFP clone collec-

tion (Thermo Fisher Scientific, Waltham, MA) and cultured in synthetic complete medium lacking his-

tidine. All deletion strains in the BY4742 background (Brachmann et al., 1998) were obtained from

the yeast gene knockout collection (GE Healthcare, Chicago, IL) and cultured in YPDA medium con-

taining 200 mg/ml Geneticin, except for the Derg6 deletion, which was instead grown in YPDA

medium containing 200 mg/ml hygromycin B (Marshall et al., 2016). The rpn11-m1 mutation is a

frame-shift at position 276 that results in expression of a truncated protein replacing the last C-ter-

minal 31 amino acids with nine non-native residues (Rinaldi et al., 2008). The rpn11-m5 mutation is

an intragenic suppressor of rpn11-m1 that restored the end of the open-reading frame downstream

of residue 282, but still maintained seven amino acid changes compared to the wild type sequence

(Rinaldi et al., 2008; Saunier et al., 2013). Crosses between haploid strains of opposite mating

types were selected for on appropriate synthetic dropout media plus antibiotics, with subsequent

sporulation and asci dissection performed as previously described (Marshall et al., 2016). The iden-

tities of the resulting haploid strains were confirmed by PCR genotyping and confocal fluorescence

microscopy (see below). All oligonucleotide primers used in this study are listed in

Supplementary file 1-Table S3.

For time-course experiments, 15 ml liquid cultures in YPGA medium (YPDA medium but contain-

ing 2% glycerol instead of 2% glucose [Adachi et al., 2017]) were grown overnight at 30˚C with vig-

orous shaking, diluted to an OD600 of 0.1 in 15 ml, then grown for an additional 2 to 3 hr until an

OD600 of approximately 0.5 was reached. Cell aliquots corresponding to 1.5 OD600 units were taken

at the indicated times, pelleted by centrifugation at 5000 x g for 1 min, washed once in sterile dis-

tilled H2O, pelleted again, and immediately frozen in liquid nitrogen. For nitrogen starvation, cul-

tures were grown and diluted in YPGA medium as above and, once an OD600 of approximately 0.5

was reached, cells were pelleted by centrifugation at 1000 x g for 2 min, washed twice in sterile dis-

tilled H2O, re-suspended in synthetic dropout medium lacking nitrogen (0.17% yeast nitrogen base

without amino acids and ammonium sulphate (Sigma-Aldrich, St. Louis, MO), 2% glycerol), then incu-

bated at 30˚C as above. For carbon starvation, cultures were grown as above, followed by re-sus-

pension in YPGA medium lacking glycerol (Adachi et al., 2017). Where indicated, cells were also

pre-treated for 6 hr with 5 mM 2-deoxyglucose and 2 mM NaN3 prior to the starvation period, or

the medium was adjusted to pH 3.0 (with Na2HPO4/citric acid) or pH 9.0 (with NaOH) instead of the

usual pH 6.0, in which case cells were simultaneously treated with 100 mM CCCP (Orij et al., 2009).

For yeast growth assays, cells were grown and treated as above, except a culture volume of 50

ml was used (Figure 8—figure supplement 1A). Following a 24 hr starvation period, cultures were
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diluted to an OD600 of 0.2 in 50 ml YPGA medium, and growth resumption was monitored in the

presence or absence of 5 mM canavanine or 25 mM p-fluorophenylalanine (Sigma-Aldrich) by mea-

surement of OD600 values, or by growth of cells on solid synthetic complete medium. Susceptibility

to canavanine or p-fluorophenylalanine was determined by normalizing the OD600 value of each

strain in the presence of the analog to its growth in the absence of the analog. For growth on solid

medium, cells were re-suspended in liquid synthetic complete medium to an OD600 of 1.0, subjected

to a series of 5-fold dilutions, and 5 ml of each dilution was spotted onto media containing or lacking

5 mM canavanine or 25 mM p-fluorophenylalanine. Cells were then grown for 36 hr at 30˚C.
For treatment with MG132 ((N-benzyloxycarbonyl)-leucinyl-leucinyl-leucinal; Selleckchem, Hous-

ton, TX; Kisselev and Goldberg, 2001), cells containing the Derg6 deletion were grown in YPGA

medium as above and treated with 80 mM MG132 for the indicated times. For the experiment moni-

toring pexophagy, cells expressing the PEX14-GFP reporter were grown overnight in YPGA medium,

then diluted to an OD600 of 0.1 in 15 ml SGD medium (0.67% yeast nitrogen base, 3% glycerol, 0.1%

glucose) and grown for an additional 12 hr. 1.5 ml of 10X YP medium (10% yeast extract, 20%

bacto-peptone) was then added, resulting in final concentrations of 1% yeast extract and 2% bacto-

peptone, and the cells were grown for an additional 4 hr. Cultures were then diluted into 15 ml YTO

medium (0.67% yeast nitrogen base, 0.1% Tween-20, 0.1% oleic acid) to an OD600 of 0.2 and grown

overnight to induce peroxisome proliferation (Hutchins et al., 1999). Cells were then subjected to

nitrogen or carbon starvation as described above. All other types of selective autophagy were moni-

tored in YPGA medium only.

Plasmid constructions and genetic complementation
Genetic complementation with the BRE5, NAT3, RPN11, SPG5, and UBP3 genes used coding

sequences amplified from BY4741 cDNA generated at appropriate growth stages, as described

below (see Quantitative real-time PCR). The oligonucleotides used for amplification of RPN11

included sequence encoding a C-terminal FLAG tag. Resulting PCR products were recombined first

into pDONR221 via the Gateway BP clonase II reaction (Thermo Fisher Scientific), and then into the

pAG424GPD-ccdB or pAG424GPD-ccdB-HA vectors (provided by Susan Lindquist (Whitehead Insti-

tute for Biomedical Research, Massachusetts Institute of Technology)) via the Gateway LR clonase II

reaction (Thermo Fisher Scientific). Previously described point mutations that abolish Nat3 catalytic

activity (C97A; Polevoda et al., 2003), Ubp3 catalytic activity (C469A; Cohen et al., 2003) or Ubp3

binding to its co-factor Bre5 (L208A F209A V210A N211A; Li et al., 2005) were introduced by the

QuikChange method (Agilent Genomics, Santa Clara, CA). The construct encoding mCherry-SPG5

was generated by overlapping fusion PCR, using the mCherry coding region from the pESC::GAL1-

RNQ1-mCherry plasmid as the template. The mCherry-BLM10 construct was generated by sequen-

tial Gibson assembly of 10 overlapping PCR fragments (Gibson et al., 2009). All resulting plasmids

were transformed into the indicated yeast strains using the lithium acetate method and subsequently

grown in synthetic complete medium lacking tryptophan, in addition to other selective amino acids.

Immunological techniques
Total protein extracts from yeast were obtained by re-suspending harvested cells in 500 ml of yeast

extraction buffer (0.2 N NaOH, 1% 2-mercaptoethanol), followed by precipitation of proteins with

50 ml of 50% trichloroacetic acid. Proteins collected by centrifugation at 16,000 x g for 5 min at 4˚C
were washed once with 1 ml of ice-cold acetone, re-suspended into 150 ml SDS-PAGE sample buffer

(80 mM Tris-HCl (pH 6.8), 10% glycerol, 4% SDS, 4% 2-mercaptoethanol, 0.002% bromophenol

blue), and heated at 95˚C for 5 min. Total protein extracts from Arabidopsis were obtained by grind-

ing frozen seedling tissue in 3 volumes of plant extraction buffer (50 mM Tris-HCl (pH 7.5), 150 mM

NaCl, 2 mM dithiothreitol (DTT), 1 mM phenylmethylsulphonyl fluoride (PMSF), 50 mM MG132, 1X

protease inhibitor cocktail (Sigma-Aldrich)), followed by removal of insoluble debris by centrifuga-

tion. The supernatant was then made 1X with SDS-PAGE sample buffer (from a 5X concentrate) and

also heated to 95˚C for 5 min. SDS-PAGE gels were then prepared and stained for protein with silver

nitrate as previously described (Marshall et al., 2017). Alternatively, gels were subjected to immuno-

blot analysis, where proteins were electrophoretically transferred onto Immobilon-P membrane

(EMD Millipore, Burlington, MA) at 80 mA for 16 hr, blocked with a 10% non-fat dry milk solution in

PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4), then probed with specific
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antibodies diluted in PBS containing 1% milk. See the Key Resources Table for full details of specific

primary and secondary antibodies used. The anti-Rpn5 antibodies were raised against the Arabidop-

sis protein (Book et al., 2009), which has 30% identity and 37% similarity to the yeast version. All

blots were developed using the SuperSignal West Pico Plus Chemiluminescent Substrate (Thermo

Fisher Scientific). Densitometric quantification of blots was performed using TotalLab Quant software

(Non-linear Dynamics; Newcastle-on-Tyne, UK), with at least three different exposures used to

ensure the exposure level was within the linear range of the film.

Pho8D60 activity assays
The Pho8D60 activity assays were performed essentially as previously described (Noda and Klion-

sky, 2008), with minor modifications. Strain TN124 was grown in a 250 ml culture, subjected to

nitrogen and/or carbon starvation or growth at different pH, and aliquots corresponding to 5.0

OD600 units were sampled at the indicated times. Cell pellets were re-suspended in 500 ml lysis

buffer (20 mM PIPES-KOH (pH 8.5), 50 mM KCl, 100 mM potassium acetate, 10 mM MgSO4, 10 mM

ZnSO4, 0.5% Triton X-100, supplemented with 1 mM PMSF immediately before use), and lysed by

vigorous vortexing in the presence of ~200 ml acid-washed glass beads for a total of 5 min at 4˚C (10

rounds of vortexing for 30 s, followed by resting on ice for 30 s). Remaining non-lysed cells and insol-

uble debris were pelleted by centrifugation at 16,000 x g for 5 min at 4˚C, and the supernatant was

collected for subsequent analysis. Equal amounts of total protein (20 mg, as determined by Pierce

BCA protein assay kit) were then assayed for alkaline phosphatase activity. Protein samples in a vol-

ume of 100 ml were mixed with 400 ml of pre-warmed assay buffer (250 mM Tris-HCl (pH 8.5), 10

mM MgSO4, 10 mM ZnSO4, 1% Triton X-100) containing 1.5 mM p-nitrophenyl phosphate (Sigma-

Aldrich) and incubated for 10 min at 37˚C. Reactions were stopped by addition of 500 ml of 1 M gly-

cine-KOH (pH 11.0), and the absorbance of p-nitrophenol at 400 nm was measured using a Smart-

Spec 3000 UV/Vis spectrophotometer (Bio-Rad, Hercules, CA). Following subtraction of the

appropriate enzyme and substrate only controls, specific alkaline phosphatase activity was calculated

from a p-nitrophenol standard curve. Three technical replicates were performed for each sample,

and the data from three independent biological replicates was averaged and normalized to the

activity observed at the 0 hr time point.

Confocal fluorescence microscopy
Yeast cells were visualized by confocal laser scanning microscopy using a Nikon A1 microscope with

a 100X oil objective (numerical aperture 1.46). Excitation was at 488 or 543 nm, and emission was

collected from 500 to 530 nm or 565 to 615 nm, for GFP and mCherry, respectively. To prevent cell

movement, all cover slips were first washed with 1 M NaOH, rinsed with sterile distilled H2O, and

coated with a 2 mg/ml solution of concanavalin A (in H2O) for 10 min. The slips were then air-dried,

rinsed with sterile distilled H2O, left to dry again, and stored at room temperature for up to 2

months before use. To avoid auto-fluorescence from the YPGA medium, cells were first pelleted by

centrifugation at 1000 x g for 1 min, and then re-suspended in synthetic complete medium lacking

appropriate nutrients prior to imaging. For imaging of Arabidopsis roots, seedlings of the indicated

genotypes were grown in 5 ml liquid GM medium (3.2 g/l Gamborg’s B5 basal salts with minimal

organics, 1% (w/v) sucrose, 0.05% (w/v) MES (pH 5.7)) at 21˚C to 23˚C under continuous white light

for 5 days with gentle shaking (90 rpm), before being transferred to fresh medium containing or lack-

ing 1 mM concanamycin A (Santa Cruz Biotechnology, Dallas, TX) and being subjected to either nitro-

gen and/or fixed-carbon starvation as previously described (Thompson et al., 2005; Marshall et al.,

2015). Root cells within the lower elongation zone were then visualized as above, using 20X or 40X

oil objectives (numerical apertures 0.75 and 1.30, respectively). All confocal images were scanned in

single-track mode, except for the co-localisation studies, when GFP and mCherry signals were

instead detected simultaneously in multi-track mode. Images were processed using Adobe Photo-

shop CC, before conversion to TIFF files for use in the Figures. Within each Figure, all images were

captured using identical microscope settings.

Quantitative real-time PCR
Yeast cell cultures (15 ml) grown in YPGA medium were subjected to nitrogen and/or carbon starva-

tion as described above, harvested, and 2 � 107 cells were digested for 1 hr at 30˚C with 100 U of
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lyticase in 100 ml Y1 buffer (1 M sorbitol, 100 mM EDTA, 0.1% (v/v) b-mercaptoethanol (pH 7.4)).

Quantitative real-time PCR was performed exactly as previously described (Marshall et al., 2016)

using a LightCycler 480 in combination with SYBR Green I master mix (Roche Diagnostics; Basel,

Switzerland) and transcript-specific primers (see Supplementary file 1-Table S3). Relative transcript

abundance was determined by the comparative threshold cycle method (Pfaffl, 2001), using the

ALG9 and TFC1 reference genes as internal controls (Teste et al., 2009; Llanos et al., 2015). All

data were normalized to non-starved wild-type cells.

Proteasome affinity purifications
26S holo-proteasomes or the CP or RP sub-complexes were affinity purified essentially as previously

described (Leggett et al., 2005), with minor modifications. Yeast strains in which the Pre1 or Rpn11

subunits had been genetically replaced by variants tagged with Protein A were grown overnight at

30˚C in 50 ml YPGA medium, diluted in 500 ml YPGA medium to an OD600 of 0.1, grown for a fur-

ther 2 to 3 hr until an OD600 of approximately 0.5 was reached, then subjected to nitrogen or carbon

starvation for the indicated times. Cells were then pelleted by centrifugation at 4000 x g for 20 min

at 4˚C, washed once in sterile distilled H2O, pelleted again, and immediately frozen in liquid nitro-

gen until use. Frozen cell pellets were ground to a fine powder at liquid nitrogen temperatures for

15 min each, rehydrated with 1 vol of proteasome lysis buffer (50 mM Tris-HCl (pH 7.5), 5 mM

MgCl2, 1 mM EDTA, 10% (v/v) glycerol, with 2 mM ATP, 2 mM PMSF, 10 mM 2-chloroiodoaceta-

mide, 10 mM N-ethylmaleimide, 10 mM sodium metabisulphite, 1 mM benzamidine, 10 mg/ml pep-

statin A, 1 mg/ml antipain and 1X protease inhibitor cocktail (Sigma-Aldrich) added immediately

before use), and proteins were extracted on ice for 20 min. Extracts were filtered through two layers

of Miracloth (Calbiochem, San Diego, CA), and clarified at 30,000 x g for 20 min at 4˚C. Equal vol-
umes of supernatant were then incubated with gentle rotation for 2 hr at 4˚C with 100 ml of rabbit

whole molecule IgG antigen affinity gel (MP Biomedicals, Santa Ana, CA) pre-equilibrated in lysis

buffer.

Samples were then applied to a 12 ml Polyprep chromatography column (Bio-Rad), and the col-

lected beads were washed three times with 2 ml of proteasome wash buffer (50 mM Tris-HCl (pH

7.5), 50 mM NaCl, 5 mM MgCl2, 1 mM EDTA, 2 mM ATP, 10% (v/v) glycerol), and twice with 1 ml of

tobacco etch virus (TEV) protease buffer (50 mM Tris-HCl (pH 7.5), 5 mM MgCl2, 1 mM EDTA, 2 mM

ATP, 1 mM DTT, 10% (v/v) glycerol). Bound proteins were eluted by incubating the beads for 1 hr at

30˚C with 300 ml of TEV protease buffer containing 20 ng/ml recombinant 6His-TEV, then collecting

the flow through from the column. The remaining 6His-TEV was removed by addition of 50 ml nickel-

nitrilotriacetic acid (Ni-NTA)-agarose beads (Qiagen, Germantown, MD), which were pre-equili-

brated in TEV protease buffer containing 40 mM imidazole (resulting in a final concentration of 10

mM), and incubating for 1 hr at 4˚C with gentle rotation. The beads were pelleted by centrifugation

at 5000 x g for 1 min at 4˚C, and the supernatant containing purified 26S proteasomes was removed

and analyzed by SDS-PAGE followed by silver staining or immunoblotting, as described above.

Proteasome activity assays
To assay 26S proteasome activity, wild-type or rpn5DC cells were grown in a 50 ml culture, subjected

to nitrogen and/or carbon starvation treatment as described above, and cell aliquots corresponding

to 5.0 OD600 units were sampled at the indicated times. Frozen cell pellets were ground to a fine

powder at liquid nitrogen temperatures for 5 min each, rehydrated with 1 vol of activity assay lysis

buffer (50 mM Tris-HCl (pH 7.5), 5 mM MgCl2, 1 mM EDTA, 10% (v/v) glycerol), filtered through two

layers of Miracloth (Calbiochem) and clarified at 30,000 � g for 20 min at 4˚C. Supernatants were

then made 10% (w/v) in PEG 8000 and incubated for 30 min at 4˚C with moderate stirring. The

resulting precipitate was collected by centrifugation at 12,000 � g for 15 min at 4˚C and re-sus-

pended in 500 ml of lysis buffer. The total protein concentration of each sample was determined by

Pierce BCA protein assay kit (Thermo Fisher Scientific), and equal amounts of protein (10 mg) from

each sample were assayed for proteasome activity in the presence or absence of 80 mM MG132. Pro-

tein samples in a volume of 20 ml were incubated for 20 min at 37˚C in 1 ml of assay buffer (50 mM

Tris-HCl (pH 7.0), 2 mM MgCl2, with 1 mM ATP and 2 mM 2-mercaptoethanol added immediately

before use) containing 100 mM of the fluorogenic substrates N-succinyl-leucyl-leucyl-valyl-tyrosyl-7-

amino-4-methylcoumarin (Suc-LLVY-amc; Sigma-Aldrich) or (7-methoxycoumarin-4-yl)-acetyl-alanyl-
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lysyl-valyl-tyrosyl-prolyl-tyrosyl-prolyl-methionyl-glutamyl-(2,4-dinitrophenyl-(2,3-diaminopropionic

acid))-amide (Mca-AKVYPYPME-Dpa(Dnp)-amide, also known as LFP; GenScript, Piscataway, NJ;

Smith et al., 2005). Reactions were quenched by the addition of 1 ml of 80 mM sodium acetate (pH

4.3), and the resulting fluorescence was monitored using a TKO 100 fluorometer (Hoefer Scientific

Instruments, Holliston, MA), with an excitation wavelength of 365 nm and an emission wavelength of

460 nm.

Arabidopsis materials and growth conditions
Unless otherwise noted, A. thaliana seeds (ecotype Columbia-0) were vapor-phase sterilized, strati-

fied at 4˚C for 3 to 4 days, and germinated on solid GM medium (3.2 g/l Gamborg’s B5 basal salts

with minimal organics, 1% (w/v) sucrose, 0.05% (w/v) MES (pH 5.7), 0.7% (w/v) agar) at 21˚C to 23˚C
under a long-day photoperiod (16 hr light (75 to 100 mmol/m2/sec)/8 hr darkness). When required,

after 2 to 3 weeks the seedlings were transferred onto soil (mixed in a 1:1 ratio with organic Coco

Coir planting mixture, then supplemented before use with 2 g/l Peters 20-20-20 fertilizer, 80 mg/l

Ca(NO3)2 and 80 mg/l MgSO4) and again grown at 21˚C to 23˚C under a long-day photoperiod until

completion of their lifecycle. The pa200-2, pa200-3 and atg7-2 T-DNA insertion mutants

(SALK_095870, SALK_070184 and GABI_655_B06, respectively), and the 35S:GFP-ATG8a, PAG1:

PAG1-GFP pag1-1 and RPN5a:RPN5a-GFP rpn5a-2 reporter lines, were as previously described

(Thompson et al., 2005; Chung et al., 2010; Book et al., 2010; Marshall et al., 2015). The T-DNA

insertion mutants were confirmed by genomic PCR using 5’ and 3’ gene-specific primers (LP and RP,

respectively) in conjunction with appropriate T-DNA left border-specific primers (BP). All oligonucle-

otide primers used in this study are listed in Supplementary file 1-Table S3. The PAG1-GFP and

RPN5a-GFP reporters were introgressed into the pa200-2 and pa200-3 mutants by standard

crossing.

For chemical or starvation treatments, seedlings were grown in liquid GM medium at 21˚C to

23˚C under continuous light with gentle shaking (90 rpm), with the medium replenished every 3 days

where required. To stabilize autophagic bodies in the vacuole, fresh medium was supplemented

with 1 mM ConA for 16 hr. For nitrogen starvation, seedlings were transferred to MS medium lacking

nitrogen (MS basal salt micronutrient solution (Sigma-Aldrich) supplemented with 3 mM CaCl2, 1.5

mM MgSO4, 1.5 mM KH2PO4, 5 mM KCl, 1% (w/v) sucrose, 0.05% (w/v) MES (pH 5.7)) for the indi-

cated times. For fixed-carbon starvation, the seedlings were transferred to liquid GM medium lack-

ing sucrose, and incubated in the dark (to prevent carbon fixation by photosynthesis), while

simultaneous nitrogen and fixed carbon starvation utilised MS medium lacking nitrogen and sucrose

together with incubation in the dark. For all starvation treatments, control and treated seedlings

were washed three times in appropriate medium prior to commencing starvation and, following

treatment, all tissue was harvested, immediately frozen in liquid nitrogen and stored at �80˚C until

use.

Statistical analyses
All datasets were statistically analyzed using one-way analysis of variance (ANOVA), followed by

Tukey’s post-hoc tests to identify significantly different data points. At least three biological repli-

cates were performed in all cases, unless otherwise indicated in the Figure Legend.
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