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Abstract

Limit crossing is a methodology in which modified versions of a prob-
lem are solved and compared, yielding useful information about the original
problem [6, 7]. Pruning rules that are used to exclude portions of search
trees are excellent examples of the limit-crossing technique. In our previous
work, we examined limit crossing for optimization problems. In this paper,
we extend this methodology to decision problems. We demonstrate the use
of limit crossing in our design of a tool for identifying K-SAT backbones.
This tool is guaranteed to identify all of the backbone variables by solving
at most n + 1 formulae, where n is the total number of variables. While
previous 3-SAT backbone research was limited to 25 variables [12] and 28
variables [9], we have computed backbones for 200 variables. In addition
to being useful for identifying backbones, this code can be used directly to
solve a special class of QBF problems. The code for this backbone identifier
is publicly available [5].

1 Introduction
In [6, 7] the term limit crossing is used to refer to a general methodology that
appears in a variety of guises. In essence, limit crossing is a technique in which
modified versions of a problem are solved and compared, yielding useful informa-
tion about the original problem. A prevalent instantiation of this procedure is the
pruning method used to remove entire subtrees within a given search tree. In [7],
limit crossing is examined for NP-hard combinatorial optimization problems. In
[6], limit crossing is extended to general optimization problems with applications
for counting problems. In this paper, we broaden the scope of limit crossing to
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2 LIMIT CROSSING FOR DECISION PROBLEMS 2

include decision problems. We find that only a single modified version of a prob-
lem needs to be solved, and its Boolean solution is compared with the two possible
Boolean solutions of the original decision problem. This extension of limit cross-
ing is detailed in the next section.

In section 3, we introduce a tool that utilizes decision-problem limit crossing.
The decision problem of interest here is K-SAT, the NP-complete problem of de-
termining whether a conjunctive set of disjunctive clauses, each with at most K

Boolean variables, is satisfiable. Our tool identifies the backbone of K-SAT for-
mulae. (A variable is part of the backbone if and only if its assignment is frozen
for all valid models [9].) Moreover, we demonstrate how this tool can be used to
solve a special class of Quantified Boolean Formulae (QBF). QBFs are similar to
K-SAT as they are propositional formulae, however, QBFs allow the use of uni-
versal and existential quantifiers. We show experimental results on the backbone
sizes of different random 3-SAT problem instances with various clause-to-variable
ratios and problem sizes ranging up to 200 variables.

2 Limit Crossing for Decision Problems
In [6, 7], we discussed limit crossing for optimization problems. Within that realm,
limit crossing is achieved by solving two modified versions of the original problem
and comparing their solutions. We now illustrate this concept using a simple search
strategy for optimally solving Max-SAT.

Max-SAT is the optimization version of K-SAT. Given n variables and m

clauses containing disjunctions of variables or their negations (literals), an opti-
mal solution for Max-SAT is an assignment of true or false to each variable
such that the maximum number of clauses have a value of true. This maximiza-
tion problem can be converted to a minimization problem, in which the number of
unsatisfied clauses is minimized.

One way to solve this problem is to find an approximate solution and record
the number of unsatisfied clauses, uub. uub is a upper bound on the number of
unsatisfied clauses in the optimal solution. Next, we construct a binary search tree
in which a variable is selected at each internal node. Consider an arbitrary node i

and its associated variable, vi. One of node i’s children adds the constraint that the
variable vi is true and the other child requires that vi is false. The children also
inherit all of the assignments of their parent. For node i, the number of clauses,
ui, that are unsatisfied due to the assignments is a lower bound on the number
of unsatisfied clauses for all of node i’s descendants. If, at any time, ui ≥ uub,
then node i and all of its descendants cannot lead to a better solution than the
approximate solution, therefore, it can be pruned.
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In this example, the first modified problem that we solve is the relaxation of
the minimization requirement, yielding a simple upper bound of uub. Assigning
values to variables is also an upper-bounding modification, as it cannot lead to
less clauses being unsatisfied than the number that are unsatisfied in the optimal
solution. However, counting the number of unsatisfied clauses entailed by the as-
signments associated with a given node is clearly a lower-bounding modification
of the original problem. So our second modified problem is a doubly-modified
problem with upper-bounding and lower-bounding components. We compare the
solutions of these two modified problems at each node in the search tree. When the
solution of the doubly-modified problem equals or exceeds the value of the simple
upper bound, we can conclude that the upper-bounding component of the doubly-
modified problem cannot lead to a better solution than our simple upper bound.
That is, the assignments associated with that node are of no use.

As detailed in [6], there are many variants of limit crossing. A simple lower
bound could be compared with a doubly-modified problem, and some of the upper-
and/or lower-bounding modifications could be exact. However, when we con-
sider decision problems, upper-bounding and lower-bounding modifications have
no meaning. While optimization problems have numerical optimal solutions, deci-
sion problems have Boolean solutions. Nevertheless, as seen in previous work as
well as the tool presented in this paper, the general concept of limit crossing is of
great value in this domain.

For optimization problems, we require a simple upper bound or a simple lower
bound in order to make comparisons. In the domain of decision problems, we
do not need these numerical comparisons. For this reason, decision-problem limit
crossing requires finding the Boolean solution of only one modified problem and
comparing it with the two possible solutions of the original problem.

Two useful categories of decision-problem modifications are: tightening mod-
ifications and relaxing modifications. We define a tightened decision problem as
one that can only take on the value of the original decision problem or false and
a relaxed decision problem as one that can only take on the value of the original
problem or true.

To illustrate limit crossing for decision problems, we consider K-SAT, the de-
cision variant of Max-SAT. We can tighten a K-SAT instance by adding clauses, re-
moving literals from existing clauses, and/or assigning values to variables. We can
relax instances by disregarding clauses, adding literals to existing clauses, and/or
allowing variables to assume both values.

If the solution of a tightened problem is true, we can conclude that the orig-
inal problem is also true. Likewise, if a relaxed problem is false, the original
problem must also be false.

We can also gather useful information for the other cases. For example, if
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a tightened problem is false, we can conclude that if the original problem is
true, then the tightening modifications are invalid. This is the concept used for
pruning in the Davis-Putnam algorithm for solving K-SAT problems. In this algo-
rithm, a search tree that is similar to the tree in the Max-SAT example, is explored.
Whenever the assignments associated with a node yield an unsatisfiable clause, the
node is pruned. The assignments are a tightening modification, therefore they must
be invalid if the original problem is true.

Pruning is an excellent example of limit crossing via tightening. Relaxations
have also been utilized in previous work. For instance, clauses are sometimes
disregarded and subformulae are solved (for example [1, 2]).

In the next section, we utilize limit crossing in our design of a backbone iden-
tifier for K-SAT.

3 Applications
In this section, we first describe our algorithm for identifying K-SAT backbones.
Then we demonstrate how our backbone algorithm can be used to solve a special
class of QBF problems. We close this section with backbone data that we have
computed using this algorithm.

3.1 Identifying K-SAT backbones
Random K-SAT problems have been shown to exhibit characteristic easy-hard-
easy phase transitions [4, 8]. That is, the typical-case behavior of the difficulty in
solving K-SAT instances is dependent on α, the ratio of the number of clauses m to
the number of variables n. Below a critical ratio αc(K), almost all of the randomly
generated formulae are satisfiable and finding a satisfying assignment is relatively
easy. Problems with ratios that are greater than αc(K) are almost all unsatisfiable
and it is relatively easy to determine this unsatisfiability. However, for ratios that
are near αc(K), it is relatively difficult to solve K-SAT instances.

The order parameter of these phase transitions is the size of the backbone [9].
In the region very close to αc(K), the backbone fraction increases from zero to one
very abruptly.

Previous Max-SAT backbone research was limited to 25 variables [12] and
K-SAT backbone research was limited to 28 variables [9], due to the computa-
tional demands of exhaustively enumerating all satisfied models. In this section,
we present a limit-crossing K-SAT backbone identifier that requires solving n + 1
formulae at most. For this reason, our algorithm is beneficial when there are a
large number of satisfied models and enumerating all of them is computationally
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demanding. (This algorithm could be modified slightly and used to find Max-SAT
backbones, in which case it would require finding n + 1 solutions.)

The algorithm is simple. First, a given formula is solved to yield a satisfiable
assignment of the variables. Then, each variable is considered, one at a time. If
the value of the variable is true in the initial solution, then it is set to false or
vice-versa. If the solution of this tightened problem is false, then we know that
the tightening modification is invalid and the variable must be part of the backbone.
If the tightened problem is satisfiable, we know that the variable is not part of the
backbone, as we have another valid model that does not assign the same value to
the variable as the initial solution. Using this new model, we can further check to
see if other variables appear with different assignments and delete them from the
list of candidate backbone variables. Thus we need to solve at most n+1 formulae.

Although many counting/enumeration problems of this sort are #P, this algo-
rithm proves that counting/enumerating K-SAT backbone variables is NP-complete.

3.2 Application for a special class of QBF problems
Quantified Boolean Formulae (QBF) extends K-SAT by allowing the use of quan-
tifiers. A QBF has the form:

Q1x1 · · ·QnxnE(X), X = {x1, . . . , xn} (1)

where each Qi is either an existential quantifier ∃, or a universal quantifier ∀, each
xi is a Boolean variable, and E is a propositional formula. We only consider QBFs
in which the propositional formula E (without any quantifiers) has at least one
satisfiable assignment. QBF is a prototypical problem for the PSPACE complexity
class [3].

A special QBF class has the following form:

∀xi∃XjE(X), xi ∈ X,Xj ⊆ X,X = {x1, . . . , xn}. (2)

This class is of interest as

∀xi∃XjE(X) ⇔ xi 6∈ BE , xi ∈ X,Xj ⊆ X,X = {x1, . . . , xn} (3)

where BE is the set of backbone variables of E. It is clear that if this QBF is true
for all values of xi, then xi is not a backbone variable. Furthermore, if xi is not
part of the backbone, then there must exist at least one valid model of E in which
xi is false, and at least one in which it is true.

Equivalence (3) allows us to use our backbone identifier to solve QBFs that
have the form of (2).
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Figure 1: Average 3-SAT backbone fractions as a function of the ratio of clauses
to variables, α. The vertical line marks α = 4.26 ≈ αc(3). The 95% confidence
interval is shown by bars. (a) 50 variables. (b) 100 variables.

3.3 Experimental results on K-SAT backbone
We implemented our backbone finder in C++. For solving the formulae, we used
zChaff [11], the award-winning publicly-available K-SAT solver that was devel-
oped at Princeton. We added the backbone-finding code on top of zChaff. Our
backbone-finder code will be made available [5].

Using this backbone identifier, we computed backbones for random 3-SAT for-
mulae. We constructed the formulae by randomly selecting three variables per
clause, such that no variable appears twice within a single clause. We then negated
variables with a probability of 0.5. We varied α, the ratio of the number of clauses
to the number of variables, and computed the fraction of variables that are part
of the backbone. Each data point in the following graphs represents the mean or
median of 1,000 satisfiable trials. Finally, the data presented here was computed in
a short period of time. The final version of this paper will contain more extensive
results for 3-SAT, as well as backbones for 4-SAT, 5-SAT, and 6-SAT.

4 Conclusions
In Pearl’s book Heuristics: Intelligent Search Strategies for Computer Problem
Solving [10], he discusses automatically generating admissible and consistent heuris-
tic functions by systematically relaxing constraints entailed by a given problem. He
points out that this approach can lead to identifying heuristics that might otherwise
be overlooked by pure “discovery”. To illustrate this point, he cites such an occur-
rence for heuristic functions for the 8-Puzzle problem.
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Figure 2: Average 3-SAT backbone fractions as a function of the ratio of clauses
to variables, α. The vertical line marks α = 4.26 ≈ αc(3). The 95% confidence
interval is shown by bars. (a) 150 variables. (b) 200 variables.

Limit crossing is an intuitive concept and is the basis of many “discoveries” in
previous work. However, by developing a more systematic approach for utilizing
this concept, we may be able to devise algorithms that may have otherwise been
overlooked. For example, the K-SAT backbone identifier presented in this paper
is an obvious idea when approached with a limit-crossing point of view, however,
it has been previously overlooked, resulting is severe limitations for empirical K-
SAT backbone research.

Although the intuitive concept has been around for a period of time, a gener-
alized model of this technique has not. In this, and our previous work, we have
attempted to build such a model and identify potential modifications of problems
that may be of use. At the same time, we have developed limit-crossing algorithms
that proven to be effective, especially for difficult problems. For our future work,
we plan to continue exploiting this powerful methodology.
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Figure 3: (a) Average values for 50, 100, 150, and 200 variables. (b) Median values
for 50, 100, 150, and 200 variables.
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