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Abstract

In Chapter 1, we introduce three varieties of reproducing systems—Bessel

systems, frames, and Riesz bases—within the Hilbert space context and

prove a number of elementary results, including qualitative characterizations

of each and several results regarding the combination and partitioning of

reproducing systems.

In Chapter 2, we characterize when the integer lattice translations of a

countable collection of square integrable functions forms a Bessel system, a

frame, and a Riesz basis.

In Chapter 3, we introduce composite wavelet systems and generalize sev-

eral well-known classical wavelet system results—including those regarding

pointwise values of the Fourier transform of the wavelet and scaling func-

tion and those regarding dependencies on the multiresolution analysis defin-

ing properties—to the composite case. Two corollaries of these results are

the nonexistence of composite scaling multifunctions of Haar-type, when the

composite dilation group is infinite, and the nonexistence of classical mul-

tiwavelets, when the dilation matrix is integral and has determinant 1 in
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absolute value.

There is a well-known connection, via the Fourier transform, between

smoothness and integral polynomial decay. In Chapter 4, we prove several

generalized versions of this result in which smoothness and integral polyno-

mial decay are replaced with Hölder continuity and fractional polynomial

decay; logarithmic continuity and logarithmic decay; iterated Hölder conti-

nuity and multivariable fractional polynomial decay.

In Chapter 5, we prove the nonexistence of shearlet-like scaling multifunc-

tions that satisfy a minimal amount of decay and either a minimal amount

of regularity or one of two “finite type” conditions.

In Chapter 6, we indicate a number of interesting questions that arise

from the reproducing system characterizations of Chapter 2 and the scaling

multifunction nonexistence results of Chapters 3 and 5.
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Notation

∙ We represent elements of the time domain, ℝn, by column vectors x

and elements of the frequency domain, ℝ̂n, by row vectors �.

∙ ℤ̂n denotes the collection of all 1× n row vectors with integer entries.

∙ ℕ and ℤ+ denote the collections {p ∈ ℤ : p ≥ 0} and {p ∈ ℤ : p ≥ 1},

respectively.

∙ We define the Fourier transform ℱ : L2(ℝn) −→ L2(ℝ̂n) for f ∈

L1(ℝn) ∩ L2(ℝn) by

ℱf(�) = f̂(�) =

∫
ℝn
f(x)e−2�{�x dx.

∙ A measurable function f : ℝn −→ ℂ is said to be ℤn-periodic if for

each k ∈ ℤn we have that

f(x+ k) = f(x)

for almost every (a.e.) x; ℤ̂n-periodic functions are defined similarly.
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∙ For 1 ≤ p <∞, we define Lp(Tn) to be the collection of all ℤn-periodic

functions satisfying ∫
[0,1]n
∣f(x)∣p dx <∞.

∙ We define L∞(Tn) to be the collection of all ℤn-periodic functions that

are essentially bounded.

∙ For f ∈ L2(ℝn) and y ∈ ℝn, we define the translation operator Ty :

L2(ℝn) −→ L2(ℝn) by

Tyf(x) = f(x− y).

∙ For f ∈ L2(ℝn) and c ∈ GLn(ℝ), we define the dilation operator

Dc : L2(ℝn) −→ L2(ℝn) by

Dcf(x) = ∣ det c∣−1/2f(c−1x).

∙ C(ℝn) denotes the collection of all continuous functions f : ℝn −→ ℂ.

∙ C0(ℝn) denotes the collection of all functions in C(ℝn) that vanish at

infinity.

∙ For each positive integer p, Cp(ℝn) denotes the collection of all func-

tions in C(ℝn) whose partial derivatives up to order p exist and are

continuous.
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∙ C∞(ℝn) denotes the collection of all functions that belong to Cp(ℝn),

for each positive integer p.

∙ The Schwartz class of ℝn, denoted by S(ℝn), consists of all functions

that belong to C∞(ℝn) and that, together with all their derivatives,

vanish at ∞ faster than any power of ∥x∥.

∙ The spaces Lp(T̂n), C(ℝ̂n), C0(ℝ̂n), Cp(ℝ̂n), and S(ℝ̂n) are defined

similarly.

7



Chapter 1

Reproducing Systems in

Hilbert Spaces

This chapter contains the definitions and results regarding reproducing sys-

tems within the general Hilbert space context that will be needed in subse-

quent chapters. Section 1 includes some basic facts regarding unconditional

convergence of sums in Banach spaces. In section 2, we introduce three va-

rieties of Hilbert space reproducing systems—Bessel systems, frames, and

Riesz bases—and prove several elementary results. In particular, we obtain

illuminating qualitative characterizations of each of the three. In section 3,

we offer several results regarding the circumstances under which, first, two

reproducing systems of a certain type can be combined to form a reproduc-

ing system of the same type, and, second, a subcollection of a reproducing

system of a certain type forms a reproducing system of the same type. In
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particular, we obtain interesting results regarding the circumstances under

which two frames (Riesz bases) may be combined to form a new frame (Riesz

basis).

We enumerate definitions, theorems, etc. as indicated by the following

example: Definition 1.2 refers to the second definition in the first chapter.

1.1 Unconditional Convergence of Sums in

Banach Spaces

In this section, we define unconditional convergence of sums and other rel-

evant Banach space terminology and prove several elementary facts there-

about. We have the following definition:

Definition 1.1. Suppose that X is a Banach space, that I is a nonempty

countable indexing set, and that {xi : i ∈ I} ⊂ X .

(i) We say that
∑

i∈I xi converges unconditionally to x ∈ X if for every

� > 0 there corresponds a finite subset F = F (�) of I such that for any

finite subset F ′ of I satisfying F ′ ⊃ F we have

∥∥∥∑
i∈F ′

xi − x
∥∥∥ ≤ �.

(ii) We say that
∑

i∈I xi is unconditionally Cauchy if for every � > 0 there

corresponds a finite subset F = F (�) of I such that for any finite subsets

9



F ′, F ′′ of I satisfying F ′, F ′′ ⊃ F we have

∥∥∥∑
i∈F ′

xi −
∑
i∈F ′′

xi

∥∥∥ ≤ �.

If X and Y are Banach spaces, we define ℬ(X ,Y) to be the collection of

all bounded linear operators mapping X into Y . We write ℬ(X ) in place of

ℬ(X ,X ). For Λ ∈ ℬ(X ,Y), we denote the operator norm of Λ by ∥Λ∥; that

is,

∥Λ∥ = sup{∥Λx∥ : x ∈ X , ∥x∥ = 1}.

Let X , I, and {xi : i ∈ I} be as in Definition 1.1. We make the following

observations:

(i) If
∑

i∈I xi converges unconditionally to x ∈ X , then for any collection

{Ip}∞p=1 of finite subsets of I satisfying I1 ⊂ I2 ⊂ I3 ⊂ . . . and
∪∞
p=1 Ip =

I we have

lim
p→∞

∑
i∈Ip

xi = x.

In particular, x is unique.

(ii) Since X is complete, it follows that
∑

i∈I xi is unconditionally Cauchy

if and only if
∑

i∈I xi converges unconditionally.

(iii)
∑

i∈I xi is unconditionally Cauchy if and only if for every � > 0 there

corresponds a finite subset F = F (�) of I such that for any finite subset

10



F ′ of I satisfying F ′ ∩ F = ∅ we have

∥∥∥∑
i∈F ′

xi

∥∥∥ ≤ �.

(iv) Suppose that Y is a Banach space and that Λ ∈ ℬ(X ,Y). If
∑

i∈I xi

converges unconditionally to x ∈ X , then
∑

i∈I Λxi converges uncondi-

tionally to Λx.

We have the following lemma, which validates certain rearrangements of

unconditionally convergent sums.

Lemma 1.1. Let X , I, and {xi : i ∈ I} be as in Definition 1.1. Assume

that
∑

i∈I xi converges unconditionally to x ∈ X .

(i) If J is a nonempty subset of I, then
∑

j∈J xj converges unconditionally.

(ii) If {I1, I2, I3, . . . , IN} is a finite collection of nonempty disjoint subsets

of I for which I =
∪N
p=1 Ip, then for each p,

∑
i∈Ip xi converges uncon-

ditionally, and we have
N∑
p=1

∑
i∈Ip

xi = x.

(iii) If {I1, I2, I3, . . . } is a collection of nonempty disjoint subsets of I for

which I =
∪∞
p=1 Ip, then for each p,

∑
i∈Ip xi converges unconditionally,

and
∑∞

p=1

∑
i∈Ip xi converges unconditionally to x.

(iv) If I1 and I2 are countable indexing sets and if I = I1×I2, then for each

11



i1 ∈ I1,
∑

i2∈I2 x(i1,i2) converges unconditionally, and

∑
i1∈I1

∑
i2∈I2

x(i1,i2)

converges unconditionally to x.

Proof. Part (i) is easily verified. The proof of part (ii) is similar to (but

easier than) the proof of part (iii); part (iv) follows from parts (ii) and (iii).

We therefore only prove part (iii).

Suppose that {I1, I2, I3, . . . } is a collection of nonempty disjoint subsets

of I for which I =
∪∞
p=1 Ip. It follows from part (i) of this lemma that for each

p,
∑

i∈Ip xi converges unconditionally to some element yp ∈ X . Let � > 0 and

choose a finite subset F of I for which ∥
∑

i∈F ′ xi − x∥ ≤ �/2, for all finite

subsets F ′ of I satisfying F ′ ⊃ F . Choose N for which F ⊂
∪N
p=1 Ip. Fix a

finite subset P of ℤ+ satisfying P ⊃ {1, . . . , N}. For each q ∈ ℤ+ choose a

collection {F q
p : p ∈ P} of finite subsets satisfying

(i) F q
p ⊂ Ip, for all p ∈ P ;

(ii) F ⊂
∪
p∈P F

q
p , for all q = 1, 2, 3, . . . ;

(iii) F 1
p ⊂ F 2

p ⊂ F 3
p ⊂ . . . , for all p ∈ P ;

(iv)
∪∞
q=1 F

q
p = Ip, for all p ∈ P .
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For q ∈ ℤ+, we have

∥
∑
p∈P

yp − x∥ = ∥
∑
p∈P

yp −
∑
p∈P

∑
i∈F qp

xi +
∑
p∈P

∑
i∈F qp

xi − x∥

≤ ∥
∑
p∈P

yp −
∑
p∈P

∑
i∈F qp

xi∥+ ∥
∑
p∈P

∑
i∈F qp

xi − x∥

≤ ∥
∑
p∈P

yp −
∑
p∈P

∑
i∈F qp

xi∥+ �/2,

where we have used that F is a subset of the disjoint union
∪
p∈P F

q
p . Using

that

lim
q→∞
∥
∑
p∈P

yp −
∑
p∈P

∑
i∈F qp

xi∥ = ∥
∑
p∈P

yp −
∑
p∈P

lim
q→∞

∑
i∈F qp

xi∥

= ∥
∑
p∈P

yp −
∑
p∈P

yp∥

= 0,

it follows that ∥
∑

p∈P yp−x∥ ≤ �, which completes the proof of part (iii).
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1.2 Elementary Properties of Reproducing Sys-

tems

If ℋ is a Hilbert space and if {fi : i ∈ I} is an orthonormal (ON) basis for

ℋ, then it is well-known that

f =
∑
i∈I

⟨f, fi⟩fi (1.1)

is valid for each f ∈ ℋ. In the sequel, we shall be very interested in collections

{fi : i ∈ I} ⊂ ℋ that are not necessarily ON bases but nevertheless satisfy a

reconstruction property similar to (1.1). We have the following definition:

Definition 1.2. Suppose that ℋ is a Hilbert space, that I is a countable

indexing set, that {fi : i ∈ I} ⊂ ℋ, and that C and D are constants satisfying

0 < C ≤ D <∞.

(i) {fi : i ∈ I} is said to be a Bessel system with constant D if

∑
i∈I

∣⟨f, fi⟩∣2 ≤ D∥f∥2,

for all f ∈ ℋ;

(ii) {fi : i ∈ I} is said to be a frame for ℋ with constants C ≤ D if

C∥f∥2 ≤
∑
i∈I

∣⟨f, fi⟩∣2 ≤ D∥f∥2,
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for all f ∈ ℋ;

(iii) {fi : i ∈ I} is said to be a Riesz basis for ℋ with constants C ≤ D if

its linear span is dense in ℋ and if for each finite subset F of I and

each collection {�i : i ∈ F} ⊂ ℂ we have

C
∑
i∈F

∣�i∣2 ≤ ∥
∑
i∈F

�ifi∥2 ≤ D
∑
i∈F

∣�i∣2.

A frame with constants 1 ≤ 1 is said to be a Parseval frame. Clearly, a

Riesz basis with constants 1 ≤ 1 is an ON basis. Bessel systems, frames, and

Riesz bases will be referred to, in general, as reproducing systems.

In this section, we prove a number of basic results regarding Bessel sys-

tems, frames, and Riesz bases and the relationship between the three. In

particular, we obtain interesting characterizations of the Bessel, frame, and

Riesz basis properties.

1.2.1 The Bessel Property

This section includes a result clarifying the relationship between the Bessel

and Riesz basis properties (Proposition 1.1) and an interesting characteriza-

tion of the Bessel property (Proposition 1.2).
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Some Preliminary Results

We have the following easy result regarding Riesz bases, which is needed in

the proof of Proposition 1.1:

Lemma 1.2. Suppose that ℋ is a Hilbert space, that I is a countable indexing

set, that {fi : i ∈ I} ⊂ ℋ, and that 0 < C ≤ D <∞.

(i) If ∥∥∥∑
i∈F

�ifi

∥∥∥2 ≤ D
∑
i∈F

∣�i∣2,

for all finite subsets F of I and all {�i : i ∈ I} ⊂ ℂ, then for each

{�i}i∈I ∈ l2(I) the sum
∑

i∈I �ifi converges unconditionally and we

have ∥∥∥∑
i∈I

�ifi

∥∥∥2 ≤ D
∑
i∈I

∣�i∣2.

(ii) If {fi : i ∈ I} is a Riesz basis for ℋ with constants C ≤ D, then for

each {�i}i∈I ∈ l2(I) the sum
∑

i∈I �ifi converges unconditionally and

we have

C
∑
i∈I

∣�i∣2 ≤
∥∥∥∑
i∈I

�ifi

∥∥∥2 ≤ D
∑
i∈I

∣�i∣2.

Moreover, for each f ∈ ℋ there exists a unique sequence {�i}i∈I ∈ l2(I)

such that f =
∑

i∈I �ifi.

We need the following two results in the proof of Proposition 1.2. The

first is the Closed Graph Theorem (see, for instance, section 12 of chapter 3

of [1]). The second is a rather interesting general measure-theoretic result.
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Theorem 1.1 (The Closed Graph Theorem). Suppose that X and Y are

Banach spaces and that Λ : X −→ Y is a linear transformation that satisfies

the following condition:

Whenever xn → x in X and Λxn → y in Y, then Λ(x) = y.

Then Λ is bounded.

Let (X,�) be a measure space. Recall that X is said to be �-finite if there

exists a sequence {Xl}∞l=1 of measurable subsets of X satisfying �(Xl) < ∞

(for all l) and X = ∪∞l=1Xl. Suppose that f : X −→ ℂ is a measurable

function. For 1 ≤ p <∞, we define

∥f∥p =

⎧⎨⎩
(∫

X
∣f ∣p
)1/p

, if
∫
X
∣f ∣p <∞;

∞, otherwise.

and we define

∥f∥∞ = sup{� ≥ 0 : �({x ∈ X : ∣f(x)∣ ≥ �}) > 0}.

When context makes the index p clear, we write ∥f∥ in place of ∥f∥p. For

1 ≤ p ≤ ∞, Lp(X) will denote the Banach space of all measurable functions

f : X −→ ℂ satisfying ∥f∥p <∞. We have the following result:

Lemma 1.3. Let (X,�) be a measure space and let p and q satisfy 1 ≤

p, q ≤ ∞ and 1
p

+ 1
q

= 1. Assume that f : X −→ ℂ is a measurable function

satisfying ∥f∥p =∞.
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(i) If p = 1, then there exists a function g ∈ Lq(X) = L∞(X) such that

f(x)g(x) ≥ 0 (for almost every (a.e.) x) and
∫
X
fg =∞.

(ii) If X is �-finite and if 1 < p ≤ ∞, then there exists g ∈ Lq(X) such

that f(x)g(x) ≥ 0 (for a.e. x) and
∫
X
fg =∞.

(iii) If the hypothesis “X is �-finite” is omitted from the statement of (ii),

then the assertion can fail for each 1 < p ≤ ∞.

Proof. If p = 1, it is easy to see that the function g : X −→ ℂ defined by

g(x) =

⎧⎨⎩
f(x)
∣f(x)∣ , if f(x) ∕= 0;

0, if f(x) = 0.

belongs to L∞(X) and satisfies f(x)g(x) = ∣f(x)∣ ≥ 0 (a.e. x) and

∫
X

fg =

∫
X

∣f ∣ =∞.

This proves (i).

To prove (ii), suppose that X is �-finite and that 1 < p ≤ ∞. If p =∞,

making use of the �-finite property ofX, choose a sequence {Xl}∞l=1 of disjoint

measurable subsets of X satisfying

(i) 0 < �(Xl) <∞, for all l;

(ii) ∣f(x)∣ ≥ l2, for a.e. x ∈ Xl.
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It is straightforward to verify that the function g : X −→ ℂ defined by

g(x) =

⎧⎨⎩
1
l2

1
�(Xl)

f(x)
∣f(x)∣ , if x ∈ Xl, for some l;

0, otherwise.

belongs to L1(X) and satisfies the desired result.

Now suppose that 1 < p <∞. Making use of the �-finite property of X,

choose a sequence {Xl}∞l=1 of disjoint measurable subsets of X such that for

each l the following is satisfied:

(i) �(Xl) <∞;

(ii) f(x) ∕= 0, for a.e. x ∈ Xl;

(iii) f is bounded on Xl;

(iv)
∫
Xl
∣f ∣p ≥ 1.

Define the function g : X −→ ℂ by

g(x) =

⎧⎨⎩
1
l
1
�l
f(x)∣f(x)∣p−2, if x ∈ Xl, for some l;

0, otherwise.

where

�l =

(∫
Xl

∣f(x)∣(p−1)q
)1/q

=

(∫
Xl

∣f(x)∣p
)1/q

,

the latter equality holding since (p− 1)q = p. Clearly, f(x)g(x) ≥ 0, for a.e.
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x. First note that

∫
X

∣g(x)∣q =
∞∑
l=1

1

lq
1

�ql

∫
Xl

∣f(x)∣(p−1)q =
∞∑
l=1

1

lq
<∞,

since 1 < q <∞, implying that g ∈ Lq(X). Second, note that

∫
X

f(x)g(x) =
∞∑
l=1

1

l�l

∫
Xl

∣f(x)∣p

=
∞∑
l=1

1

l

(∫
Xl

∣f(x)∣p
)1−1/q

≥
∞∑
l=1

1

l
=∞,

proving part (ii).

We now prove part (iii). For l ∈ ℤ+, write Yl = {0, 1} and consider

the infinite product Y =
∏∞

l=1 Yl. For each l, let �l : Y −→ Yl denote

projection onto the ltℎ coordinate. Let S denote the collection of all subsets

of Y . Consider the measure space (Y,S, �), where � is defined for E ∈ S by

�(E) =∞ if �lx = 1, for some x ∈ E and some l and �(E) = 0 otherwise.

If g : Y −→ ℂ is any function (note that g is necessarily measurable),

it is easy to see that
∫
Y
∣g∣ < ∞ if and only if g(x) = 0, for almost every

x. Thus, for q ∈ [1,∞), it follows that the space Lq(Y ) consists solely of

the zero function. Therefore, to prove (iii), it suffices to exhibit a function

f : Y −→ ℂ such that ∥f∥p =∞, for all 1 < p ≤ ∞. This is simple to do:
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For each l, let xl ∈ Y be the element satisfying

�l′xl =

⎧⎨⎩
1, if l′ = l;

0, otherwise.

and consider the function f : Y −→ ℂ defined by

f(x) =

⎧⎨⎩
l, if x = xl, l = 1, 2, 3, . . . ;

0, otherwise.

It is clear that f satisfies the desired property.

The Bessel and Riesz Basis Properties

If ℋ is a Hilbert space and if {fi : i ∈ I} forms a frame for ℋ with constants

C ≤ D, then {fi : i ∈ I} clearly is a Bessel system with constant D. Below

is the analog of this result for Riesz bases.

Proposition 1.1. Suppose that ℋ is a Hilbert space, that I is a countable

indexing set, that {fi : i ∈ I} ⊂ ℋ, and that 0 < D <∞. Then, {fi : i ∈ I}

is Bessel with constant D if and only if

∥∥∥∑
i∈F

�ifi

∥∥∥2 ≤ D
∑
i∈F

∣�i∣2, (1.2)

for all finite subsets F of I and all {�i : i ∈ I} ⊂ ℂ.

Proof. If {fi : i ∈ I} is Bessel with constant D, then (1.3) shows that (1.2)
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is satisfied for all finite subsets F of I and all {�i : i ∈ I} ⊂ ℂ.

Suppose now that (1.2) is satisfied for all finite subsets F of I and all {�i :

i ∈ I} ⊂ ℂ. Let f ∈ ℋ. Using part (i) of Lemma 1.2 and Proposition 1.2,

we see that
∑

i∈I ∣⟨f, fi⟩∣2 <∞. Using again part (i) of Lemma 1.2 we have

∑
i∈I

∣⟨f, fi⟩∣2 =
∑
i∈I

⟨f, fi⟩⟨f, fi⟩

= ⟨f,
∑
i∈I

⟨f, fi⟩fi⟩

≤ ∥f∥
∥∥∥∑
i∈I

⟨f, fi⟩fi
∥∥∥

≤ ∥f∥D1/2
(∑

i∈I

∣⟨f, fi⟩∣2
)1/2

,

implying that ∑
i∈I

∣⟨f, fi⟩∣2 ≤ D∥f∥2.

This verifies that {fi : i ∈ I} is Bessel with constant D and thus completes

the proof.

A Characterization of the Bessel Property

We have the following interesting characterization of the Bessel property:

Proposition 1.2. Suppose that ℋ is a Hilbert space, that I is a countable

indexing set, and that {fi : i ∈ I} ⊂ ℋ. Then the following are equivalent:

(i) {fi : i ∈ I} is a Bessel system;
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(ii)
∑

i∈I �ifi converges unconditionally, for each {�i}i∈I ∈ l2(I);

(iii)
∑

i∈I ∣⟨f, fi⟩∣2 <∞, for all f ∈ ℋ.

We note that the equivalence of (i) and (ii) in the above proposition

provide the following qualitative characterization of the Bessel property:

The Bessel property is the weakest condition that can be imposed on a count-

able collection {fi : i ∈ I} in a Hilbert space ℋ which ensures that
∑

i∈I �ifi

converges unconditionally, for each {�i}i∈I ∈ l2(I).

We now prove Proposition 1.2.

Proof of Proposition 1.2. Suppose first that {fi : i ∈ I} is a Bessel system

with constant D and that {�i}i∈I ∈ l2(I). If F is any finite subset of I, we

use the Schwarz inequality and obtain

∥∥∥∑
i∈F

�ifi

∥∥∥ = sup
∥f∥≤1

∣∣∣⟨∑
i∈F

�ifi, f⟩
∣∣∣

≤ sup
∥f∥≤1

∑
i∈F

∣�i∣∣⟨fi, f⟩∣

≤ sup
∥f∥≤1

(∑
i∈F

∣�i∣2
)1/2(∑

i∈F

∣⟨fi, f⟩∣2
)1/2

(1.3)

≤ sup
∥f∥≤1

(∑
i∈F

∣�i∣2
)1/2

D1/2∥f∥

≤ D1/2
(∑
i∈F

∣�i∣2
)1/2

,

from which it follows easily that
∑

i∈I �ifi converges unconditionally, verify-

ing that property (i) implies property (ii).
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Suppose next that property (ii) holds and let f ∈ ℋ. For any {�i}i∈I ∈

l2(I), using that
∑

i∈I �ifi converges unconditionally, that g 7→ ⟨g, f⟩ is a

continuous linear functional on ℋ, and hence that

⟨
∑
i∈I

�ifi, f⟩ =
∑
i∈I

�i⟨fi, f⟩,

it follows that
∑

i∈I �i⟨fi, f⟩ converges unconditionally. By the contrapositive

of part (ii) of Lemma 1.3, it follows that
∑

i∈I ∣⟨f, fi⟩∣2 < ∞. This verifies

that property (ii) implies property (iii).

Finally, suppose that property (iii) holds. We may then define the linear

map Λ : ℋ −→ l2(I) by Λ(f) = {⟨f, fi⟩}i∈I . It follows immediately from the

Closed Graph Theorem that Λ is bounded. We thus have

∑
i∈I

∣⟨f, fi⟩∣2 = ∥Λf∥2 ≤ ∥Λ∥2∥f∥2,

implying that {fi : i ∈ I} is Bessel with constant ∥Λ∥2. This verifies that

property (iii) implies property (i) and thus completes the proof.

1.2.2 The Frame Property

In this subsection, we introduce the dual frame concept and prove an inter-

esting result regarding the frame property (Proposition 1.3). As a corollary

of these, we obtain an interesting qualitative characterization of the frame

property.
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Some Necessary Tools

We will need the following two results in the proof of Proposition 1.3. The

first is the Open Mapping Theorem (see, for instance, section 12 of chapter

3 of [1]) and the second is an easy corollary thereof.

Theorem 1.2 (The Open Mapping Theorem). If X and Y are Banach spaces

and if Λ ∈ ℬ(X ,Y) is surjective, then Λ is open.

Lemma 1.4. Suppose that X and Y are Banach spaces and that Λ : X −→ Y

is linear and open. Then there exists C = C(Λ) > 0 such that for each y ∈ Y

we can find x ∈ X satisfying

C∥x∥2 ≤ ∥y∥2 and Λx = y.

Dual Frames

We now introduce the dual frame concept. Suppose thatℋ is a Hilbert space,

that I is a countable indexing set, and that {fi : i ∈ I} forms a frame for ℋ

with constants C ≤ D. A Bessel system {gi : i ∈ I} ⊂ ℋ is said to be a dual

frame to {fi : i ∈ I} if, for all f ∈ ℋ, we have

f =
∑
i∈I

⟨f, gi⟩fi.

Note that, by Proposition 1.2, the convergence of the above sum is necessarily

unconditional. We make the following comments regarding dual frames:
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(i) If {gi : i ∈ I} ⊂ ℋ is a dual frame to {fi : i ∈ I}, then {gi : i ∈ I}

also forms a frame for ℋ with lower frame constant D−1. The upper

frame constant of {gi : i ∈ I} must be ≥ C−1 (provided C is optimal)

but need not equal C−1.

(ii) If {gi : i ∈ I} ⊂ ℋ is a dual frame to {fi : i ∈ I}, then {fi : i ∈ I} is a

dual frame to {gi : i ∈ I}.

(iii) The Bessel assumption in the dual frame defintion is not redundant.

More precisely, for every Hilbert space ℍ, we can find a frame {gi : i ∈

I} for ℍ, and a non-Bessel collection {ℎi : i ∈ I} ⊂ ℋ such that, for

each f ∈ ℍ, we have

f =
∑
i∈I

⟨f, ℎi⟩gi,

where the above sum converges unconditionally.

Dual frames, in fact, always exist. We sketch the canonical construction;

for the omitted details, see section 1 of chapter 8 of [6]. Consider S ∈ ℬ(ℋ)

defined by

Sf =
∑
i∈I

⟨f, fi⟩fi.

It can be shown that S is invertible. For each i ∈ I, define f̃i = S−1fi. The

collection {f̃i : i ∈ I} enjoys the following properties:

(i) {f̃i : i ∈ I} is a dual frame to {fi : i ∈ I};

(ii) {f̃i : i ∈ I} forms a frame for ℋ with constants C−1 ≤ D−1;
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(iii) if {fi : i ∈ I} forms a Parseval frame for ℋ, then f̃i = fi, for all i.

To distinguish {f̃i : i ∈ I} from other dual frames of {fi : i ∈ I}, we call the

former the canonical dual frame of {fi : i ∈ I}.

A Characterization of the Frame Property

We have the following result:

Proposition 1.3. Suppose that ℋ is a Hilbert space, that I is a countable

indexing set, that {fi : i ∈ I} ⊂ ℋ is Bessel with constant D, and that C > 0.

If for each f ∈ ℋ we can find a sequence {�i}i∈I ∈ l2(I) satisfying

f =
∑
i∈I

�ifi,

then {fi : i ∈ I} forms a frame for ℋ. Moreover, if the sequence {�i}i∈I can

always be chosen to satisfy

C
∑
i∈I

∣�i∣2 ≤ ∥f∥2,

then {fi : i ∈ I} has frame constants C ≤ D.

We note that the above discussion on dual frames and Propositions 1.2

and 1.3 imply the following qualitative characterization of the frame property:

The frame property is the weakest condition that can be imposed on a count-
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able collection {fi : i ∈ I} in a Hilbert space ℋ which ensures that

∑
i∈I

�ifi (1.4)

converges unconditionally in ℋ, for all {�i}i∈I ∈ l2(I) and that each f ∈ ℋ

can be written in the form (1.4), for some {�i}i∈I ∈ l2(I).

We now prove Proposition 1.3.

Proof of Proposition 1.3. Using Proposition 1.2 and that {fi : i ∈ I} is

Bessel, we may define the linear map Λ : l2(I) −→ ℋ by

Λ{�i}i∈I =
∑
i∈I

�ifi.

By assumption, Λ is onto, and it follows from part (i) of Lemma 1.2 and

Proposition 1.1 that Λ is bounded. Applying the Open Mapping Theorem

and Lemma 1.4, we see that the following condition is satisfied:

There exists C > 0 such that for every f ∈ ℋ we can find a sequence

{�i}i∈I ∈ l2(I) satisfying

C
∑
i∈I

∣�i∣2 ≤ ∥f∥2 and f =
∑
i∈I

�ifi.

We now show that this condition implies that {fi : i ∈ I} forms a frame

for ℋ with frame constants C ≤ D. Let f ∈ ℋ be nonzero and write

f =
∑

i∈I �ifi where {�i}i∈I ∈ l2(I) satisfies C
∑

i∈I ∣�i∣2 ≤ ∥f∥2. By the
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Schwarz inequality, we have

∑
i∈I

∣⟨f, fi⟩∣2 ≥
∣∣∣∑
i∈I

⟨f, fi⟩�i
∣∣∣,

for all {�i}i∈I ∈ l2(I) satisfying
∑

i∈I ∣�i∣2 ≤
∑

i∈I ∣⟨f, fi⟩∣2. By substituting

{�i}i∈I ∈ l2(I) defined by

�i =
(
∑

j∈I ∣⟨f, fj⟩∣2)1/2

(
∑

j∈I ∣�j∣2)1/2
�i

into this inequality and using Proposition 1.2, we obtain

∑
i∈I

∣⟨f, fi⟩∣2 ≥
∑
i∈I

⟨f, fi⟩�i =
(
∑

j∈I ∣⟨f, fj⟩∣2)1/2

(
∑

j∈I ∣�j∣2)1/2
∑
i∈I

⟨f, fi⟩�i

=
(
∑

j∈I ∣⟨f, fj⟩∣2)1/2

(
∑

j∈I ∣�j∣2)1/2
⟨f,
∑
i∈I

�ifi⟩

=
(
∑

j∈I ∣⟨f, fj⟩∣2)1/2

(
∑

j∈I ∣�j∣2)1/2
∥f∥2

≥
(
∑

j∈I ∣⟨f, fj⟩∣2)1/2

( 1
C
∥f∥2)1/2

∥f∥2

= C1/2
(∑

i∈I

∣⟨f, fi⟩∣2
)1/2
∥f∥.

Since f ∕= 0 and since the linear span of {fi : i ∈ I} is dense in ℋ, it follows

that
∑

i∈I ∣⟨f, fi⟩∣2 ∕= 0. We thus conclude that

C∥f∥2 ≤
∑
i∈I

∣⟨f, fi⟩∣2.
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Since {fi : i ∈ I} clearly has upper frame constant D, this completes the

proof.

1.2.3 The Riesz Basis Property

In this subsection, we characterize the Riesz basis property (Proposition 1.4).

We require the following definition in the formulation of Proposition 1.4:

Definition 1.3. Suppose that ℋ is a Hilbert space and that I is a countable

indexing set. A Bessel system {fi : i ∈ I} ⊂ ℋ is said to be l2-linearly

independent if the following condition holds:

If {�i}i∈I ∈ l2(I) and if
∑

i∈I �ifi = 0, then �i = 0, for all i.

We have the following result:

Proposition 1.4. Suppose that ℋ is a Hilbert space, that I is a countable

indexing set, that {fi : i ∈ I} ⊂ ℋ, and that 0 < C ≤ D < ∞. Then

{fi : i ∈ I} is a Riesz basis for ℋ with constants C ≤ D if and only if it is

a frame for ℋ with constants C ≤ D and is l2-linearly independent.

We note that Proposition 1.4 and the qualitative characterization of the

frame property (following the statement of Proposition 1.3) imply the fol-

lowing qualitative characterization of the Riesz basis property:

The Riesz basis property is the weakest condition that can be imposed on a
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countable collection {fi : i ∈ I} in a Hilbert space ℋ which ensures that

∑
i∈I

�ifi (1.5)

converges unconditionally in ℋ, for all {�i}i∈I ∈ l2(I) and that each f ∈ ℋ

can be written in the form (1.5), for a unique {�i}i∈I ∈ l2(I).

We now prove Proposition 1.4.

Proof of Proposition 1.4. Suppose that {fi : i ∈ I} is a Riesz basis for ℋ

with constants C ≤ D. It then follows from Proposition 1.1 that {fi : i ∈ I}

is Bessel with constant D. Thus, part (ii) of Lemma 1.2 and Proposition 1.3

together imply that {fi : i ∈ I} is a frame for ℋ with constants C ≤ D.

Moreover, using again part (ii) of Lemma 1.2, we see that {fi : i ∈ I} must

be l2-linearly independent.

Conversely, suppose that {fi : i ∈ I} is a frame for ℋ with constants

C ≤ D and is l2-linearly independent. It is clear that the linear span of

{fi : i ∈ I} is dense in ℋ. For, if f ∈ ℋ is orthogonal to the collection

{fi : i ∈ I}, then it follows that

∥f∥2 ≤ 1

C

∑
i∈I

∣⟨f, fi⟩∣2 = 0,

implying that f = 0. Let {f̃i : i ∈ I} be the canonical dual frame to {fi : i ∈

I} (see the discussion immediately following the proof of Propositon 1.1).

Consider {�i}i∈I ∈ l2(I) and f =
∑

i∈I �ifi ∈ ℋ. Using the dual frame
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property, we may also write

f =
∑
i∈I

⟨f, f̃i⟩fi.

The l2-linear independence of {fi : i ∈ I} implies that ⟨f, f̃i⟩ = �i, for all i.

Using that {f̃i : i ∈ I} has frame constants 1
D
≤ 1

C
, we obtain

∑
i∈I

∣�i∣2 =
∑
i∈I

∣⟨f, f̃i⟩∣2 ≤
1

C
∥f∥2 =

1

C

∥∥∥∑
i∈I

�ifi

∥∥∥2
and ∑

i∈I

∣�i∣2 =
∑
i∈I

∣⟨f, f̃i⟩∣2 ≥
1

D
∥f∥2 =

1

D

∥∥∥∑
i∈I

�ifi

∥∥∥2,
verifying that {fi : i ∈ I} is a Riesz basis for ℋ with constants C ≤ D. This

completes the proof.

1.3 New Reproducing Systems from Old

In this section, we offer several results regarding the circumstances under

which, first, two reproducing systems of a certain type can be combined to

form a reproducing system of the same type, and, second, a subcollection of

a reproducing system of a certain type forms a reproducing system of the

same type.
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1.3.1 Combining Reproducing Systems

Suppose that ℋ is a Hilbert space, that I and J are countable indexing sets,

and that {fi : i ∈ I} and {gj : j ∈ I} are subsets of ℋ. The following two

statements are quite clear:

(i) If {fi : i ∈ I} and {gj : j ∈ J} are Bessel systems with respective

constants D1 and D2, then {fi, gj : i ∈ I, j ∈ J} is a Bessel system

with constant D1 +D2.

(ii) Assume that {fi : i ∈ I} and {gj : j ∈ J} form ON bases for their

respective closed spans V and W . Then {fi, gj : i ∈ I, j ∈ J} forms an

ON basis for its closed span if and only if V ⊥ W .

The corresponding statements for frames (Theorem 1.4) and Riesz bases

(Corollary 1.1), which we prove in this subsection, turn out to be very inter-

esting and suprisingly somewhat difficult.

Some Preliminary Results

We need the following two results in the proof of Theorem 1.4. The first,

the Inverse Mapping Theorem, is an easy corollary of the Open Mapping

Theorem. The second is a result on weak convergence in Hilbert spaces. For

its proof, see section 4 of chapter 5 of [1].

Theorem 1.3 (The Inverse Mapping Theorem). If X and Y are Banach

spaces and if Λ ∈ ℬ(X ,Y) is bijective, then Λ−1 ∈ ℬ(Y ,X ).

33



Lemma 1.5. Suppose that ℋ is a Hilbert space and that {xp}∞p=1 is a sequence

in ℋ. If the sequence {⟨xp, y⟩}∞p=1 converges for each y ∈ ℋ, then there exists

x ∈ ℋ such that ⟨xp, y⟩ → ⟨x, y⟩, for each y ∈ ℋ.

Combining Frames

We have the following result regarding the circumstances under which two

frames can be combined to form a new frame:

Theorem 1.4. Suppose that ℋ is a Hilbert space and that V and W are

closed subspaces of ℋ for which V + W is dense in ℋ. Then the following

properties are equivalent:

(i) V +W is closed; that is, V +W = ℋ.

(ii) There is some � = �(V,W ) > 0 such that for all x ∈ ℋ we have

�∥x∥2 ≤ ∥PV x∥2 + ∥PWx∥2,

where PV and PW denote the orthogonal projections of ℋ onto V and

W , respectively.

(iii) Let I and J be countable indexing sets. Whenever the collections {fi :

i ∈ I} and {gj : j ∈ J} form frames for V and W , respectively, then

the collection {fi, gj : i ∈ I, j ∈ J} forms a frame for ℋ.

(iv) Let I and J be countable indexing sets. There exists a frame {fi : i ∈ I}
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for V and a frame {gj : i ∈ J} for W such that the collection {fi, gj :

i ∈ I, j ∈ J} forms a frame for ℋ.

Proof. We first show that (i) implies (ii). Suppose that (i) holds. Define

addition and scalar multiplication on V ×W componentwise, and for (v, w) ∈

V ×W , define ∥(v, w)∥ =
√
∥v∥2 + ∥w∥2. It is straightforward to verify that,

with these operations, V ×W is a Banach space.

Consider the subspace Z of V ×W given by Z = {(PV x, PWx) : x ∈ ℋ}.

We claim that Z is closed. To see this, let {(PV xp, PWxp)}∞p=1 be a sequence

in Z that converges to some point (y1, y2) ∈ V ×W . By assumption, if y ∈ ℋ,

we may write y = v + w, for some v ∈ V and w ∈ W . We then have

⟨xp, y⟩ = ⟨xp, v⟩+ ⟨xp, w⟩

= ⟨PV xp, v⟩+ ⟨PWxp, w⟩

→ ⟨y1, v⟩+ ⟨y2, w⟩,

as p → ∞. By Lemma 1.5, there is some x ∈ ℋ such that ⟨xp, y⟩ → ⟨x, y⟩,

for each y ∈ ℋ. Using that PV is self-adjoint, for any y ∈ ℋ we have

⟨y1, y⟩ = lim
p→∞
⟨PV xp, y⟩ = lim

p→∞
⟨xp, PV y⟩ = ⟨x, PV y⟩ = ⟨PV x, y⟩,

from which it follows that PV x = y1. A similar argument shows that PWx =

y2. It follows that Z is closed and thus a Banach space in its own right.

Consider the map Λ : ℋ −→ Z defined by Λx = (PV x, PWx), which is

35



easily seen to be a surjective element of ℬ(ℋ, Z). For x ∈ ℋ, write x = v+w,

where v ∈ V and w ∈ W . If Λx = 0, then x is orthogonal to both V and W

and we find

∥x∥2 = ⟨x, x⟩ = ⟨x, v⟩+ ⟨x,w⟩ = 0 + 0 = 0,

implying that x = 0 and hence that Λ is injective. It thus follows from

Theorem 1.3 that Λ−1 is bounded. Therefore, for every x ∈ ℋ, we have

∥x∥ = ∥Λ−1Λx∥ ≤ ∥Λ−1∥∥Λx∥ = ∥Λ−1∥
√
∥PV x∥2 + ∥PWx∥2,

which verifies that (ii) is satisfied with � = ∥Λ−1∥−2.

We next show that (ii) implies (iii). To do this, suppose (ii) holds for some

� > 0 and let I and J be countable indexing sets. Assume that {fi : i ∈ I}

and {gj : i ∈ J} form frames for V and W , respectively, with respective

frame constants C1 ≤ D1 and C2 ≤ D2. Write C = min{C1, C2} and let

f ∈ ℋ. We then have

∑
i∈I

∣⟨f, fi⟩∣2 +
∑
j∈J

∣⟨f, gi⟩∣2 =
∑
i∈I

∣⟨PV f, fi⟩∣2 +
∑
j∈J

∣⟨PWf, gi⟩∣2

≥ C1∥PV f∥2 + C2∥PWf∥2

≥ C(∥PV f∥2 + ∥PWf∥2)

≥ C�∥f∥2.

Since {fi, gj : i ∈ I, j ∈ J} is clearly Bessel with constant D1 +D2, it follows
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that {fi, gj : i ∈ I, j ∈ J} forms a frame for ℋ.

To see that property (iii) implies property (iv), simply choose ON bases

(and, in particular, frames) {fi : i ∈ I} and {gj : i ∈ J} for V and W ,

respectively. If property (iii) holds, then the collection {fi, gj : i ∈ I, j ∈ J}

forms a frame for ℋ.

Lastly, we show that (iv) implies (i). Suppose that (iv) holds. That is, let

I and J be countable indexing sets and assume that {fi : i ∈ I} is a frame

for V , that {gj : i ∈ J} is a frame for W , and that {fi, gj : i ∈ I, j ∈ J}

is a frame for ℋ. If f ∈ ℋ, using part (ii) of Lemma 1.1 and the dual

frame to {fi, gj : i ∈ I, j ∈ J}, it follows that we can find two sequences

{�i}i∈I ∈ l2(I) and {�j}j∈J ∈ l2(J) such that

f =
∑
i∈I

�ifi +
∑
j∈J

�jgj,

where each sum converges unconditionally, implying that f ∈ V + W . This

shows that (i) is satisfied and thus completes the proof.

Combining Riesz Bases

We have the following corollary of Theorem 1.4 which reveals the circum-

stances under which two Riesz bases can be combined to form a new Riesz

basis:

Corollary 1.1. Suppose that ℋ is a Hilbert space, that V and W are closed

subspaces of ℋ, and that I and J are countable indexing sets. Assume that
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{fi : i ∈ I} and {gj : j ∈ J} form Riesz bases for V and W , respectively.

Then the collection

{fi, gj : i ∈ I, j ∈ J}

forms a Riesz basis for its closed span if and only if V + W is closed and

V ∩W = {0}.

Proof. First note that, by Proposition 1.4, both {fi : i ∈ I} and {gj : j ∈ J}

form frames for V and W , respectively, and both {fi : i ∈ I} and {gj : j ∈ J}

are l2-linearly independent.

Now, suppose that {fi, gj : i ∈ I, j ∈ J} forms a Riesz basis for its closed

span. Then, by Proposition 1.4, {fi, gj : i ∈ I, j ∈ J} forms a frame for its

closed span and is l2-linearly independent. Thus, by Theorem 1.4 and the

discussion in the preceding paragraph, it follows that V + W is closed. If

f ∈ V ∩W , we can find sequences {�i}i∈I ∈ l2(I) and {�j}j∈J ∈ l2(J) for

which

f =
∑
i∈I

�ifi =
∑
j∈J

�jgj,

implying that ∑
i∈I

�ifi −
∑
j∈J

�jgj = 0.

Since {fi, gj : i ∈ I, j ∈ J} is l2-linearly independent, it follows that �i =

�j = 0, for all i and j. In particular, f = 0; this shows that V ∩W = 0.

Conversely, suppose that V + W is closed and that V ∩ W = {0}. In

conjunction with Theorem 1.4 and the first paragraph of this proof, the
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former implies that {fi, gj : i ∈ I, j ∈ J} forms a frame for its closed span.

Assume that {�i}i∈I ∈ l2(I) and {�j}j∈J ∈ l2(J) satisfy

∑
i∈I

�ifi +
∑
j∈J

�jgj = 0.

Then, ∑
i∈I

�ifi = −
∑
j∈J

�jgj ∈ V ∩W,

implying (since V ∩W = {0}) that

∑
i∈I

�ifi = −
∑
j∈J

�jgj = 0.

Since both {fi : i ∈ I} and {gj : j ∈ J} are l2-linearly independent, this

implies that �i = �j = 0, for all i and j. It follows that {fi, gj : i ∈ I, j ∈ J} is

l2-linearly independent. Therefore, by Proposition 1.4, {fi, gj : i ∈ I, j ∈ J}

forms a Riesz basis for its closed span.

An Example

In Section 2.3, we give an example of two functions ',  in the Schwartz class

of ℝ that satisfy the following:

(i) {Tk' : k ∈ ℤ} and {Tk : k ∈ ℤ} both form ON bases for their

respective closed spans V and W ;

(ii) V ∩W = {0};
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(iii) {Tk', Tk : k ∈ ℤ} does not form a frame for its closed span.

In conjunction with Theorem 1.4 and Corollary 1.1, we see that V +W cannot

be closed.

1.3.2 Separating Reproducing Systems

Suppose that ℋ is a Hilbert space, that I and J are countable indexing sets,

and that {fi : i ∈ I} and {gj : j ∈ J} are subsets of ℋ. The following

assertions are all straightforward to verify:

(i) If {fi, gj : i ∈ I, j ∈ J} is Bessel with constant D, then {fi : i ∈ I} is

Bessel with constant D.

(ii) If {fi, gj : i ∈ I, j ∈ J} is an ON basis for ℋ, then {fi : i ∈ I} forms

an ON basis for its closed span.

(iii) If {fi, gj : i ∈ I, j ∈ J} is a Riesz basis for ℋ with constants C ≤ D,

then {fi : i ∈ I} is a Riesz basis for its closed span with constants

C ≤ D.

Below is an analogous statement for frames, which is not quite so clear.

Proposition 1.5. Suppose that ℋ is a Hilbert space, that I and J are count-

able indexing sets, and that {fi : i ∈ I} and {gj : j ∈ J} are subsets of ℋ.

Let V and W denote the closed linear spans of {fi : i ∈ I} and {gj : j ∈ J},

respectively. If {fi, gj : i ∈ I, j ∈ J} is a frame for ℋ with constants C ≤ D

and if V ∩W = {0}, then {fi : i ∈ I} is a frame for V with constants C ≤ D.
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Proof of Proposition 1.5. Suppose that {fi, gj : i ∈ I, j ∈ J} is a frame for ℋ

with constants C ≤ D and that V ∩W = {0}. Clearly, {fi : i ∈ I} is Bessel

with constant D. Let {f̃i, g̃j : i ∈ I, j ∈ J} be the canonical dual frame to

{fi, gj : i ∈ I, j ∈ J} and let f ∈ V . Then we may write

f =
∑
i∈I

⟨f, f̃i⟩fi +
∑
j∈J

⟨f, g̃j⟩gj,

or

f −
∑
i∈I

⟨f, f̃i⟩fi =
∑
j∈J

⟨f, g̃j⟩gj,

implying that f −
∑

i∈I⟨f, f̃i⟩fi ∈ V ∩W and hence that f =
∑

i∈I⟨f, f̃i⟩fi.

Moreover, since {f̃i, g̃j : i ∈ I, j ∈ J} has upper frame constant 1
C

, we have

that ∑
i∈I

∣⟨f, f̃i⟩∣2 ≤
∑
i∈I

∣⟨f, f̃i⟩∣2 +
∑
i∈J

∣⟨f, g̃j⟩∣2 ≤
1

C
∥f∥2.

It thus follows from Proposition 1.3 that {fi : i ∈ I} is a frame for V with

constants C ≤ D.

An Example

In Section 2.3, we give an example of two functions ' and  in the Schwartz

class of ℝ which satisfy the following:

(i) {Tk', Tk : k ∈ ℤ} forms a Parseval frame for its closed span;

(ii) Neither {Tk' : k ∈ ℤ} nor {Tk : k ∈ ℤ} forms a frame for its closed

span;
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(iii) Denoting the closed spans of {Tk' : k ∈ ℤ} and {Tk : k ∈ ℤ} by V

and W , respectively, we have V ∩W⊥ ∕= {0} ∕= W ∩ V ⊥.

In particular, we see that the assumption that V ∩W = {0} (or, at least,

some additional assumption) in Proposition 1.5 is necessary.
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Chapter 2

Shift Invariant Spaces

A shift invariant (SI) space is a closed subspace V of L2(ℝn) that satisfies

TkV ⊂ V , for all k ∈ ℤn. Such spaces play an important role in many areas

of mathematics, particularly in the theory and applications of wavelets. In

section 1, we introduce the bracket product, an extremely useful tool in the

study of SI spaces. Clearly, a very natural choice of reproducing system for

an SI space V is one of the form

{Tk'i : k ∈ ℤn, i ∈ I}, (2.1)

where {'i : i ∈ I} ⊂ V and I is a countable indexing set. If ∣I∣ = 1 (∣I∣

denotes the cardinality of I), we say that (2.1) is singly generated; other-

wise, we say that (2.1) is multiply generated. When ∣I∣ = 1, it is well-known

that essentially every reproducing property of (2.1) is characterized rela-
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tively simply in terms of the bracket product. In section 2, we show that

several reproducing properties of (2.1) (for any countable indexing set I) are

characterized in terms of operator inequalities involving matrices of bracket

products. These are the main results of this chapter. In section 3, we use

the above mentioned characterizations to give two interesting examples of SI

spaces.

2.1 The Bracket Product

As mentioned above, a very useful concept in studying SI spaces is the bracket

product. In this section, we define the bracket product and prove several

elementary results.

Let f, g ∈ L2(ℝ̂n). The bracket product of f and g, denoted by [f, g], is

defined as follows: For any cube C of side length 1 we have

∫
C

∑
k∈ℤ̂n

∣f(� + k)∣2 =
∑
k∈ℤ̂n

∫
C

∣f(� + k)∣2

=
∑
k∈ℤ̂n

∫
C+k

∣f(�)∣2

=

∫
ℝ̂n
∣f(�)∣2

<∞,
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implying, in particular, that

∑
k∈ℤ̂n

∣f(� + k)∣2 <∞,

for a.e. �. Using the Schwarz inequality and the result of the above compu-

tation, for a.e. � we have

∑
k∈ℤ̂n

∣f(� + k)g(� + k)∣ ≤
( ∑
k∈ℤ̂n

∣f(� + k)∣2
)1/2( ∑

k∈ℤ̂n

∣g(� + k)∣2
)1/2

<∞,

implying that
∑

k∈ℤ̂n f(� + k)g(� + k) converges absolutely. For such �, de-

note its value by [f, g](�), thereby defining the function [f, g] a.e. From the

above computations, it is clear that [f, g] ∈ L1(Tn). We have the following

basic result:

Lemma 2.1. Let f, g, ℎ ∈ L2(ℝn) and let {'i : i ∈ I} ⊂ L2(ℝn), where I is

a countable indexing set. Denote the closed linear span of the collection

{Tk'i : k ∈ ℤn, i ∈ I} by V .

(i) If {�k}k∈ℤn ∈ l2(ℤn) and if {Tkf : k ∈ ℤn} is Bessel, then

( ∑
k∈ℤn

�kTkf
)ˆ

= mf̂,

where m ∈ L2(T̂n) is given by m(�) =
∑

k∈ℤn �ke
−2�{�k.

(ii) If the collections {Tkf : k ∈ ℤn} and {Tkg : k ∈ ℤn} are both Bessel,
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then [ℎ̂, f̂ ] ∈ L2(T̂n) and

( ∑
k∈ℤn
⟨ℎ, Tkf⟩Tkg

)ˆ
= [ℎ̂, f̂ ]ĝ.

(iii) {Tkf : k ∈ ℤn} ⊥ {Tkg : k ∈ ℤn} if and only if [f̂ , ĝ](�) = 0, for a.e. �.

(iv) If {Tk'i : k ∈ ℤn, i ∈ I} is Bessel with constant D, then

∑
i∈I

∥∥[f̂ , '̂i]
∥∥2 ≤ D∥f∥2.

(v) If {Tk'i : k ∈ ℤn, i ∈ I} is a Bessel system and if {mi : i ∈ I} ⊂ L2(T̂n)

satisfies
∑

i∈I ∥mi∥2 <∞, then
∑

i∈I mi'̂i converges unconditionally in

V̂ .

(vi) Suppose {Tk'i : k ∈ ℤn, i ∈ I} forms a frame for V with canonical dual

frame {T̃k'i : k ∈ ℤn, i ∈ I}. Then for each k ∈ ℤn and i ∈ I we have

T̃k'i = Tk'̃i.

(vii) Suppose {Tk'i : k ∈ ℤn, i ∈ I} forms a frame for V with dual frame

{Tk i : k ∈ ℤn, i ∈ I} and let f ∈ V . Then

f̂ =
∑
i∈I

[f̂ ,  ̂i]'̂i,

with unconditional convergence in V̂ .

Proof. To prove (i) suppose that the collection {Tkf : k ∈ ℤn} is Bessel and
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that {�k}k∈ℤn ∈ l2(ℤn). Define m ∈ L2(Tn) by m(�) =
∑

k∈ℤn �ke
−2�{�k.

Using Proposition 1.2, we obtain

( ∑
k∈ℤn

�kTkf
)ˆ

=
∑
k∈ℤn

�kT̂kf

=
∑
k∈ℤn

�ke
−2�{⋅kf̂

=
( ∑
k∈ℤn

�ke
−2�{⋅k

)
f̂

= mf̂,

which proves (i).

To prove (ii), suppose that the collections {Tkf : k ∈ ℤn} and {Tkg : k ∈

ℤn} are both Bessel. We have

∫
[0,1]n

[ℎ̂, f̂ ](�)e2�{�k d� =

∫
[0,1]n

∑
l∈ℤ̂n

ℎ̂(� + l)f̂(� + l)e2�{�k d�

=
∑
l∈ℤ̂n

∫
[0,1]n

ℎ̂(� + l)f̂(� + l)e2�{�k d�

=
∑
l∈ℤ̂n

∫
[0,1]n+l

ℎ̂(�)f̂(�)e2�{�k d�

=

∫
ℝ̂n
ℎ̂(�)f̂(�)e2�{�k d�

=

∫
ℝ̂n
ℎ̂(�)T̂kf(�) d�

= ⟨ℎ̂, T̂kf⟩

= ⟨ℎ, Tkf⟩,
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where the switch in summation in the second equality is easily verified. Thus,

since
∑

k∈ℤn ∣⟨ℎ, Tkf⟩∣2 <∞, we have

[ℎ̂, f̂ ] =
∑
k∈ℤ̂n

⟨ℎ, Tkf⟩e−2�{⋅k ∈ L2(T̂n);

(ii) now follows from (i).

To prove (iii), first note that {Tkf : k ∈ ℤn} ⊥ {Tkg : k ∈ ℤn} if and only

if ⟨f, Tkg⟩ = 0, for all k ∈ ℤn. By the calculation in the proof of part (ii) of

this lemma, we know that

∫
[0,1]n

[f̂ , ĝ](�)e2�{�k d� = ⟨f, Tkg⟩; (2.2)

(iii) now follows.

To prove (iv), suppose that {Tk'i : k ∈ ℤn, i ∈ I} is Bessel with constant

D. It follows from (2.2) that

∑
i∈I

∥∥[f̂ , '̂i]
∥∥2 =

∑
i∈I

∑
k∈ℤn
∣⟨f, Tk'i⟩∣2 ≤ D∥f∥2.

To prove (v), suppose that {Tk'i : k ∈ ℤn, i ∈ I} forms a Bessel system

and that {mi : i ∈ I} ⊂ L2(T̂n) satisfies
∑

i∈I ∥mi∥2 <∞. For each i, write

mi(�) =
∑

k∈ℤ̂n �
i
ke
−2�{�k. Since

∑
i∈I

∑
k∈ℤ̂n

∣�ik∣2 =
∑
i∈I

∥mi∥2 <∞,
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it follows that ∑
i∈I,k∈ℤ̂n

�ikTk'i

converges unconditionally in V . Thus, using part (iv) of Lemma 1.1 and part

(i) of this lemma, we have

( ∑
i∈I,k∈ℤ̂n

�ikTk'i

)ˆ
=
(∑

i∈I

∑
k∈ℤ̂n

�ikTk'i

)ˆ
=
∑
i∈I

( ∑
k∈ℤ̂n

�ikTk'i

)ˆ
=
∑
i∈I

mi'̂i,

from which (v) follows.

To prove (vi), suppose {Tk'i : k ∈ ℤn, i ∈ I} forms a frame for V with

canonical dual frame {T̃k'i : k ∈ ℤn, i ∈ I}; that is, with S : V −→ V

defined by

Sf =
∑

i∈I,k∈ℤn
⟨f, Tk'i⟩Tk'i,
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we have T̃k'i = S−1Tk'i. For l ∈ ℤn and f ∈ V we have

TlST−lf = Tl

( ∑
i∈I,k∈ℤn

⟨T−lf, Tk'i⟩Tk'i
)

= Tl

( ∑
i∈I,k∈ℤn

⟨f, Tl+k'i⟩Tk'i
)

=
∑

i∈I,k∈ℤn
⟨f, Tl+k'i⟩Tl+k'i

= Sf,

from which it follows that for each i ∈ I and k ∈ ℤn we have T̃k'i = Tk'̃i.

To prove (vii), suppose {Tk'i : k ∈ ℤn, i ∈ I} forms a frame for V

with dual frame {Tk i : k ∈ ℤn, i ∈ I} and let f ∈ V . Using the dual

frame reconstruction property, of part (ii) of this lemma, and part (iv) of

Lemma 1.1 we obtain

f̂ =
( ∑
i∈I,k∈ℤn

⟨f, Tk i⟩Tk'i
)ˆ

=
(∑

i∈I

∑
k∈ℤn
⟨f, Tk i⟩Tk'i

)ˆ
=
∑
i∈I

( ∑
k∈ℤn
⟨f, Tk i⟩Tk'i

)ˆ
=
∑
i∈I

[f̂ ,  ̂i]'̂i.
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2.2 Characterizations of Reproducing Systems

As mentioned above, essentially every reproducing property of the collec-

tion (2.1) (with ∣I∣ = 1) is characterized in terms of the bracket product.

The following theorem (see [5]) lists four such characterizations:

Theorem 2.1. Let ' ∈ L2(ℝn). Denote the closed span of the collection

{Tk' : k ∈ ℤn} by V .

(i) f ∈ V if and only if f̂ = m'̂, for some measurable function m :

[0, 1]n −→ ℂ satisfying

∫
[0,1]n
∣m(�)∣2['̂, '̂](�) d� <∞.

(ii) {Tk' : k ∈ ℤn} forms a Bessel system with constant D if and only if

['̂, '̂](�) ≤ D, for a.e. �.

(iii) {Tk' : k ∈ ℤn} forms a frame for V with constants C ≤ D if and only

if for a.e. � either

['̂, '̂](�) = 0 or C ≤ ['̂, '̂](�) ≤ D.

(iv) {Tk' : k ∈ ℤn} forms a Riesz basis for V with constants C ≤ D if and

only if C ≤ ['̂, '̂](�) ≤ D, for a.e. �.

The three main results of this chapter (Theorems 2.4, 2.5, and 2.6) gen-

eralize parts (ii), (iii), and (iv) of Theorem 2.1 in a very interesting manner
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to collections of the form (2.1), where I is a general countable indexing set.

We state and prove these results in subsection 2.2.2.

2.2.1 Some Necessary Tools

In this subsection, we develop the various tools necessary in the proofs of

Theorems 2.4, 2.5, and 2.6.

A Density Result

The proof of the following lemma is very similar to the proof of Lemma 1.10

in chapter 7 of [6]. We include it here for the sake of completeness.

Lemma 2.2. Suppose that ℋ is a Hilbert space, that I is a countable indexing

set, that {fi : i ∈ I} ⊂ ℋ, and that 0 < C ≤ D <∞.

(i) If ∑
i∈I

∣⟨f, fi⟩∣2 ≤ D∥f∥2, (2.3)

for all f in some dense subset of ℋ, then {fi : i ∈ I} is Bessel with

constant D.

(ii) If

C∥f∥2 ≤
∑
i∈I

∣⟨f, fi⟩∣2 ≤ D∥f∥2, (2.4)

for all f in some dense subset of ℋ, then {fi : i ∈ I} is a frame for ℋ

with constants C ≤ D.
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Proof. To prove (i), suppose that inequality (2.3) is satisfied for all elements

in some dense subset D of ℋ and let f ∈ ℋ. Choose a sequence {gp}∞p=1 in

D converging to f . Using the Bessel property within D, for any finite subset

F of I we obtain

∑
i∈F

∣⟨f, fi⟩∣2 = lim
p→∞

∑
i∈F

∣⟨gp, fi⟩∣2 ≤ lim
p→∞

D∥gp∥2 = D∥f∥2,

from which it follows that
∑

i∈I ∣⟨f, fi⟩∣2 ≤ D∥f∥2. This proves (i).

To prove (ii), suppose that inequality (2.4) is satisfied for all elements in

some dense subset D of ℋ. It follows from part (i) that {fi : i ∈ I} is Bessel

with constant D. Let f ∈ ℋ and let � > 0. Choose g ∈ D satisfying

∥g − f∥ ≤ C1/2

D1/2
� ≤ �.

Using the frame property within D, the Bessel property within ℋ, and
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Minkowski’s inequality in l2(I), we obtain

∥f∥ − 2� ≤ ∥g∥ − �

≤ ∥g∥ − D1/2

C1/2
∥g − f∥

≤ 1

C1/2

(∑
i∈I

∣⟨g, fi⟩∣2
)1/2
− D1/2

C1/2

1

D1/2

(∑
i∈I

∣⟨g − f, fi⟩∣2
)1/2

=
1

C1/2

(∑
i∈I

∣⟨g, fi⟩∣2
)1/2
− 1

C1/2

(∑
i∈I

∣⟨g − f, fi⟩∣2
)1/2

≤ 1

C1/2

(∑
i∈I

∣⟨f, fi⟩∣2
)1/2

,

implying that C∥f∥2 ≤
∑

i∈I ∣⟨f, fi⟩∣2. Part (ii) now follows.

Positive Operators on a Hilbert Space

Theorems 2.4, 2.5, and 2.6 will be formulated in terms of operator inequali-

ties. If ℋ is a Hilbert space and if S, T ∈ ℬ(ℋ), we say that T is positive if

⟨Tx, x⟩ ≥ 0, for all x ∈ ℋ (note that some authors call such a T “positive

semidefinite”). In this case, we write 0 ≤ T . We write S ≤ T if T − S is

positive.

We have the following two results. For a proof of the first, see chapter 12

(page 314) of [10].

Theorem 2.2. If ℋ is a Hilbert space and if T ∈ ℬ(ℋ) is positive, then

there exists a unique positive S ∈ ℬ(ℋ) satisfying S2 = T .
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Lemma 2.3. Let ℋ be a Hilbert space and assume that T ∈ ℬ(ℋ) is positive.

Then the following are equivalent:

(i) ∥T∥ ≤ D;

(ii) T ≤ D;

(iii) T 2 ≤ DT .

Proof. If ∥T∥ ≤ D, then making use of the Schwarz inequality we obtain

⟨Tx, x⟩ ≤ ∥Tx∥∥x∥ ≤ D∥x∥2 = D⟨x, x⟩,

for all x ∈ ℋ. Thus, T ≤ D, verifiying that (i) implies (ii).

If T ≤ D, in conjunction with Theorem 2.2, let S ∈ ℬ(ℋ) be the unique

positive square root of T . Using that positive operators are self-adjoint, we

obtain

⟨T 2x, x⟩ = ⟨S4x, x⟩ = ⟨S3x, Sx⟩

= ⟨TSx, Sx⟩

≤ D⟨Sx, Sx⟩ = D⟨S2x, x⟩ = D⟨Tx, x⟩,

for all x ∈ ℋ. Thus, T 2 ≤ DT , verifying that (ii) implies (iii).

If T 2 ≤ DT , then for all x ∈ ℋ we have

∥Tx∥2 = ⟨Tx, Tx⟩ = ⟨T 2x, x⟩ ≤ D⟨Tx, x⟩ ≤ D∥Tx∥∥x∥,
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implying that ∥Tx∥ ≤ D∥x∥ and hence that ∥T∥ ≤ D. This verfies that (iii)

implies (i) and thus completes the proof.

Two Lemmas

The proofs of Theorems 2.4, 2.5, and 2.6 all involve similar techniques. To

avoid repetition, we have isolated the common arguments into Lemmas 2.4

and 2.5 below.

We require the Lebesgue Differentiation Theorem (see chapter 8 of [11])

in the proof of Lemma 2.4. A measurable function f : ℝ̂n −→ ℂ is said to

be locally integrable if ∫
K

∣f(�)∣ d� <∞,

for all compact subsets K of ℝ̂n. If � ∈ ℝ̂n, a sequence {Ep}∞p=1 of Borel

subsets of ℝ̂n is said to shrink nicely to � if there exists an � > 0 and a

sequence {rp}∞p=1 of positive numbers satisfying the following:

(i) rp → 0, as p→∞;

(ii) Ep ⊂ B(�, rp) = {� ∈ ℝ̂n : ∥� − �∥ < rp}, for all p;

(iii) ∣Ep∣ ≥ �∣B(�, rp)∣, for all p, where ∣ ⋅ ∣ denotes Lebesgue measure.

We have the following result:

Theorem 2.3 (The Lebesgue Differentiation Theorem). Suppose that the

function f : ℝ̂n −→ ℂ is locally integrable. Define the Lebesgue set, Lf , of f
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to be the collection of all � ∈ ℝ̂n such that

lim
p→∞

1

∣Ep∣

∫
Ep

∣f(�)− f(�)∣ d� = 0,

for all sequences {Ep}∞p=1 shrinking nicely to �. Then a.e. � belongs to Lf .

Note that if f : ℝ̂n −→ ℂ is locally integrable and if � ∈ Lf , then in

particular we have

lim
p→∞

1

∣Ep∣

∫
Ep

f(�) d� = f(�),

for all sequences {Ep}∞p=1 shrinking nicely to �. We now state and prove

Lemmas 2.4 and 2.5.

Lemma 2.4. Suppose that {'i : i ∈ I} is a collection of functions in L2(ℝn),

where either I = {1, . . . , N} for some N ∈ ℤ+ or I = ℤ+. Let V denote the

closed linear span of the collection {Tk'i : k ∈ ℤn, i ∈ I}. For � ∈ ℝ̂n, let

P (�) denote the (bi-finite or bi-infinite) matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎝

['̂1, '̂1](�) ['̂2, '̂1](�) ['̂3, '̂1](�) . . .

['̂1, '̂2](�) ['̂2, '̂2](�) ['̂3, '̂2](�) . . .

['̂1, '̂3](�) ['̂2, '̂3](�) ['̂3, '̂3](�) . . .

...
...

...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Then, we can find a subset E of ℝ̂n of full measure such that for each � ∈ E

every entry of P (�) is a well-defined complex number and the following are

satisfied:
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For any M ∈ I and any ℎ ∈ l2(I) of the form

ℎ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ℎ1
...

ℎM

0

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

we can find a sequence of functions {fp}∞p=1 in V that satisfies the following:

(i) for each p, f̂p is of the form
∑M

j=1m
p
j '̂j, where mp

j ∈ L∞(T̂n), for all

p and j;

(ii) limp→∞ ∥fp∥2 = ⟨P (�)ℎ, ℎ⟩;

(iii) if, for each p and j, we write mp
j =

∑
k∈ℤn �

p
jke
−2�{⋅k, then

M∑
j=1

∑
k∈ℤn
∣�pjk∣

2 = ⟨ℎ, ℎ⟩.

Moreover, if for each i′ ∈ I we have
∫
[0,1]n

∑
i∈I ∣['̂i, '̂i′ ](�)∣2 < ∞, then

every entry of P (�)2 is a well-defined complex number and we have

(iv) limp→∞
∑

i∈I
∑

k∈ℤn ∣⟨fp, Tk'i⟩∣2 = ⟨P 2(�)ℎ, ℎ⟩.

Proof. In conjunction with part (i) of Theorem 2.1, first consider f ∈ V of

the form f̂ =
∑M

j=1mj'̂j, where M ∈ I and mj ∈ L∞(Tn), for each j. Define
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m : ℝ̂n −→ l2(I) by

m(�) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1(�)

...

mM(�)

0

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let C ⊂ ℝ̂n be any cube of side length 1. First note that

∥f∥2 = ∥f̂∥2 =

∫
ℝ̂n

∣∣∣ M∑
j=1

mj(�)'̂j(�)
∣∣∣2 d�

=

∫
ℝ̂n

M∑
j,j′=1

mj(�)mj′(�)'̂j(�)'̂j′(�) d�

=
∑
l∈ℤn

∫
C+l

M∑
j,j′=1

mj(�)mj′(�)'̂j(�)'̂j′(�) d� (2.5)

=
∑
l∈ℤn

∫
C

M∑
j,j′=1

mj(�)mj′(�)'̂j(� + l)'̂j′(� + l) d�

=

∫
C

M∑
j,j′=1

mj(�)mj′(�)['̂j, '̂j′ ](�) d�,

where the switch in order of summation in the final equality is easily verified.
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Also note that for all i and k we have

⟨f, Tk'i⟩ = ⟨f̂ , e−2�{⋅k'̂i⟩

= ⟨
M∑
j=1

mj'̂j, e
−2�{⋅k'̂i⟩

=

∫
ℝ̂n

M∑
j=1

mj(�)'̂j(�)'̂i(�)e
2�{�k d�

=
∑
l∈ℤ̂n

∫
C+l

M∑
j=1

mj(�)'̂j(�)'̂i(�)e
2�{�k d� (2.6)

=
∑
l∈ℤ̂n

∫
C

M∑
j=1

mj(�)'̂j(� + l)'̂i(� + l)e2�{�k d�

=

∫
C

M∑
j=1

mj(�)
∑
l∈ℤ̂n

'̂j(� + l)'̂i(� + l)e2�{�k d�

=

∫
C

( M∑
j=1

mj(�)['̂j, '̂i](�)
)
e2�{�k d�.

Using (2.6) and that the collection {e2�{⋅k : k ∈ ℤ} forms an ON basis for
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L2(C), we have

∑
k∈ℤn
∣⟨f, Tk'i⟩∣2 =

∑
k∈ℤn

∣∣∣∣ ∫
C

( M∑
j=1

mj(�)['̂j, '̂i](�)
)
e2�{�k d�

∣∣∣∣2

=

∫
C

∣∣∣ M∑
j=1

mj(�)['̂j, '̂i](�)
∣∣∣2

=

∫
C

M∑
j,j′=1

mj(�)mj′(�)['̂j, '̂i](�)['̂j′ , '̂i](�) (2.7)

=

∫
C

M∑
j,j′=1

mj(�)mj′(�)['̂j, '̂i](�)['̂i, '̂j′ ](�),

where the above quantity may be infinite. However, if for all i′ ∈ I we have∫
[0,1]n

∑
i∈I ∣['̂i, '̂i′ ](�)∣2 <∞, then clearly we also have

∫
C

∑
i∈I

∣['̂i, '̂i′ ](�)∣2 <∞,

for all i′, and it follows that

∑
i∈I

∑
k∈ℤn
∣⟨f, Tk'i⟩∣2

=
∑
i∈I

∫
C

M∑
j,j′=1

mj(�)mj′(�)['̂j, '̂i](�)['̂i, '̂j′ ](�) d� (2.8)

=

∫
C

M∑
j,j′=1

mj(�)mj′(�)
∑
i∈I

['̂j, '̂i](�)['̂i, '̂j′ ](�) d�,

where the last equality is easily verified.

In conjunction with the Lebesgue Differentiation Theorem, choose a meas-
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urable subset E of ℝ̂n that satisfies the following:

(i) E has full measure;

(ii)
∑

k∈ℤ̂n ∣'̂i(� + k)∣2 <∞, for all � in E and all i ∈ I;

(iii) E is contained in the Lebesgue set of the functions ['̂i, '̂i′ ](�), for all

i, i′ ∈ I.

Fix � ∈ E, M ∈ I, and ℎ ∈ l2(I) of the form

ℎ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ℎ1
...

ℎM

0

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.9)

Note that every entry of P (�) is a well-defined complex number. Let {Fp}∞p=1

be a sequence of measurable sets each contained in some cube C of side length

1 that shrink nicely to �. Denote the periodic extension of ∣Fp∣−1/2�Fp to ℝ̂n

by mp, where �Fp denotes the characteristic function of Fp. For each p, define

the collection

{mp
1, . . . ,m

p
M} ⊂ L2(T̂n)

by mp
q = ℎqm

p and define fp ∈ V by

f̂p =
M∑
j=1

mp
j '̂j.
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Clearly the sequence {fp}∞p=1 satisfies property (i) in the statement of this

lemma.

Using equality (2.5), for each p we obtain

∥fp∥2 =

∫
C

M∑
j,j′=1

mp
j(�)m

p
j′(�)['̂j, '̂j′ ](�) d�

=
M∑

j,j′=1

ℎjℎj′
1

∣Fp∣

∫
Fp

['̂j, '̂j′ ](�) d�.

Letting p→∞ in the above equality, we obtain

lim
p→∞
∥fp∥2 =

M∑
j,j′=1

ℎjℎj′ ['̂j, '̂j
′ ](�) = ⟨P (�)ℎ, ℎ⟩,

where the last equality is easily seen to be true. This verifies property (ii) in

the statement of this lemma.

To verify property (iii) in the statement of this lemma, for each p and j

write

mp
j =

∑
k∈ℤn

�pjke
−2�{⋅k.

63



We then have

M∑
j=1

∑
k∈ℤn
∣�pjk∣

2 =
M∑
j=1

∥mp
j∥2

=
M∑
j=1

∫
C

∣mp
j(�)∣2 d� (2.10)

=
M∑
j=1

1

∣Fp∣

∫
Fp

∣ℎj∣2 d� =
M∑
j=1

∣ℎj∣2 = ⟨ℎ, ℎ⟩.

Now, suppose that for all i′ ∈ I we have

∫
[0,1]n

∑
i∈I

∣['i, 'i′ ](�)∣2 <∞.

It follows that we may assume that E satisfies the two additional properties:

(iv)
∑

i∈I ∣['i, 'i′ ](�)∣2 <∞, for all � ∈ E and all i′ ∈ I;

(v) E lies within the Lebesgue set of the functions

∑
i∈I

['i′ , 'i](�)['i, 'i′′ ](�),

for all i′, i′′ ∈ I.

It is then clear that every entry of P (�)2 is a well-defined complex number.
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Using (2.8), for each p we have

∑
i∈I

∑
k∈ℤn
∣⟨fp, Tk'i⟩∣2 =

∫
C

M∑
j,j′=1

mp
j(�)m

p
j′(�)

∑
i∈I

['̂j, '̂i](�)['̂i, '̂j′ ](�) d�

=
M∑

j,j′=1

ℎjℎj′
1

∣Fp∣

∫
Fp

∑
i∈I

['̂j, '̂i](�)['̂i, '̂j′ ](�) d�.

Letting p→∞ in the above equality, we obtain

lim
p→∞

∑
i∈I

∑
k∈ℤn
∣⟨fp, Tk'i⟩∣2 =

M∑
j,j′=1

ℎjℎj′
∑
i∈I

['̂j, '̂i](�)['̂i, '̂j′ ](�) d�

= ⟨P 2(�)ℎ, ℎ⟩,

where, again, the last equality is straightforward to verify. This verifies

property (iv) in the statement of this lemma and thus completes the proof.

Lemma 2.5. Let I, {'i : i ∈ I}, V , and P be as in Lemma 2.4 and let M ,

f , {mj : j = 1, . . . ,M}, and m be defined as in the beginning of the proof of

Lemma 2.4. For each j, write

mj =
∑
k∈ℤn

�jke
−2�{⋅k.

Then,

(i) ∥f∥2 =
∫
[0,1]n
⟨P (�)m(�),m(�)⟩ d�;

(ii)
∑M

j=1

∑
k∈ℤn ∣�jk∣2 =

∫
[0,1]n
⟨m(�),m(�)⟩ d�;
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(iii) if, for all i′ ∈ I, we have
∫
[0,1]n

∑
i∈I ∣['̂i, '̂i′ ](�)∣2 < ∞, then every

entry of P 2 belongs to L1(Tn) and we have

∑
i∈I

∑
k∈ℤn

∣∣⟨f, Tk'i⟩∣∣2 =

∫
[0,1]n
⟨P 2(�)m(�),m(�)⟩ d�.

Proof. Using (2.5) with C = [0, 1]n, we obtain

∥f∥2 =

∫
[0,1]n

M∑
j,j′=1

mj(�)mj′(�)['̂j, '̂j′ ](�) d�

=

∫
[0,1]n
⟨P (�)m(�),m(�)⟩ d�,

where the last equality is easily seen to be true. This proves part (i).

To prove part (ii), note

M∑
j=1

∑
k∈ℤn
∣�jk∣2 =

M∑
j=1

∥mj∥2

=
M∑
j=1

∫
[0,1]n
∣mj(�)∣2 d�

=

∫
[0,1]n

M∑
j=1

∣mj(�)∣2 d� =

∫
[0,1]n
⟨m(�),m(�)⟩ d�.

To prove part (iii), suppose that for all i′ ∈ I we have

∫
[0,1]n

∑
i∈I

∣['i, 'i′ ](�)∣2 <∞.
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It then follows that for each j and j′ the function

∑
i∈I

['̂j, '̂i](�)['̂i, '̂j′ ](�)

belongs to L1(Tn); these are the entries of P 2. Using (2.8), we obtain

∑
i∈I

∑
k∈ℤn

∣∣⟨f, Tk'i⟩∣∣2 =

∫
[0,1]n

M∑
j,j′=1

mj(�)mj′(�)
∑
i∈I

['̂j, '̂i](�)['̂i, '̂j′ ](�) d�

=

∫
[0,1]n
⟨P 2(�)m(�),m(�)⟩ d�,

where the last equality is straigtforward to verify.

2.2.2 Main Results

The following three theorems—which generalize parts (ii), (iii), and (iv) of

Theorem 2.1 to collections of the form (2.1), where I is a general countable

indexing set—are the main results of this chapter. Although we only prove

these results for indexing sets I of form I = {1, . . . , N} for some N ∈ ℤ+ or

I = ℤ+, it should be clear that the analogous results for the general countable

indexing set I follow from this special case.

Theorem 2.4. Let I, {'i : i ∈ I}, V , and P be as in Lemma 2.4. If the

collection {Tk'i : k ∈ ℤn, i ∈ I} is a Bessel system with constant D, then for

almost every �, P (�) belongs to ℬ(l2(I)), is positive, and satisfies each of the

following conditions:
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(i) ∥P (�)∥ ≤ D;

(ii) P (�) ≤ D;

(iii) P (�)2 ≤ DP (�).

Conversely, if, for almost every �, P (�) belongs to ℬ(l2(I)) and satisfies one

of the of the above three conditions, then {Tk'i : k ∈ ℤn, i ∈ I} is a Bessel

system with constant D.

Proof of Theorem 2.4. Suppose that the collection {Tk'i : k ∈ ℤn, i ∈ I} is

a Bessel system with constant D. For i′ ∈ I, by letting f = 'i′ in (2.7) (with

C = [0, 1]n) and using the Bessel property we obtain

∫
[0,1]n

∑
i∈I

∣∣['̂i′ , '̂i](�)∣∣2 d� =
∑
i∈I

∫
[0,1]n

∣∣['̂i′ , '̂i](�)∣∣2 d�
=
∑
i∈I

∑
k∈ℤn

∣∣⟨'i′ , Tk'i⟩∣∣2 (2.11)

≤ D∥'i′∥2 <∞.

Choose E as in Lemma 2.4. Fix � ∈ E, M ∈ I, and let ℎ ∈ l2(I) be as

in (2.9). Choose a sequence of functions {fp}∞p=1 as in Lemma 2.4. Using

properties (ii) and (iv) of the same lemma and the Bessel property yields

⟨P 2(�)ℎ, ℎ⟩ = lim
p→∞

∑
i∈I

∑
k∈ℤn
∣⟨fp, Tk'i⟩∣2

≤ lim
p→∞

D∥fp∥2 = D⟨P (�)ℎ, ℎ⟩.
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Although we do not yet know that P (�) ∈ ℬ(l2(I)), it is clear that

P (�)ℎ ∈ l2(I) and that the relation

⟨P (�)ℎ, P (�)ℎ⟩ = ⟨P 2(�)ℎ, ℎ⟩

is valid (since P (�) is “self-adjoint”). We thus have

∥P (�)ℎ∥2 = ⟨P (�)ℎ, P (�)ℎ⟩

= ⟨P 2(�)ℎ, ℎ⟩ (2.12)

≤ D⟨P (�)ℎ, ℎ⟩ ≤ D∥P (�)ℎ∥∥ℎ∥,

implying that ∥P (�)ℎ∥ ≤ D∥ℎ∥. Since ℎ of form (2.9) constitute a dense

subspace of l2(I) it follows that P (�) ∈ ℬ(l2(I)) and that ∥P (�)∥ ≤ D.

Using again that ℎ of form (2.9) constitute a dense subspace of l2(I), that

the inner product is bi-continuous, and that

⟨P (�)ℎ, ℎ⟩ = lim
p→∞
∥fp∥ ≥ 0,

it follows that P (�) is positive. In conjunction with Lemma 2.3, this com-

pletes the proof of the forward implication.

We now prove the converse. Suppose that for almost every �, P (�) be-

longs to ℬ(l2(I)) and satisfies one of the three properties in the statement

of this proposition. Using Lemma 2.4 (particularly, property (ii)), that ℎ of

form (2.9) constitute a dense subspace of l2(I), and that the inner product
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is bi-continuous it follows that P (�) is positive almost everywhere. It then

follows from Lemma 2.3 that for almost every �, P (�) belongs to ℬ(l2(I))

and satisfies all three properties in the statement of this proposition. In

particular, we have that ∥P (�)∥ ≤ D and hence that

∑
i∈ℤ+

∣∣['̂j, '̂i](�)∣∣2 = ∥P (�)ej∥2 ≤ D2∥ej∥2 = D2,

for almost every � and for all j ∈ I, where ej is the jtℎ canonical basis vector

of l2(I).

Let M , f , {mj : j = 1, . . . ,M}, and m be defined as in the beginning

of the proof of Lemma 2.4. Making use of Lemma 2.5 (particularly parts (i)

and (iii)), we obtain

∑
i∈I

∑
k∈ℤn
∣⟨f, Tk'i⟩∣2 =

∫
[0,1]n
⟨P 2(�)m(�),m(�)⟩ d�

≤ D

∫
[0,1]n
⟨P (�)m(�),m(�)⟩ d�

= D∥f∥2.

It thus follows from part (i) of Lemma 2.2 that {Tk'i : k ∈ ℤn, i ∈ I} is

Bessel with constant D. This completes the proof.

Theorem 2.5. Let I, {'i : i ∈ I}, V , and P be as in Lemma 2.4. The

collection {Tk'i : k ∈ ℤn, i ∈ I} forms a frame for V with constants C ≤ D
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if and only if for almost every �, P (�) belongs to ℬ(l2(I)) and satisfies

CP (�) ≤ P (�)2 ≤ DP (�).

Proof of Theorem 2.5. Suppose that {Tk'i : k ∈ ℤn, i ∈ I} forms a frame for

V with constants C ≤ D. Then {Tk'i : k ∈ ℤn, i ∈ I} is clearly Bessel with

constant D. Using (2.11), we see that

∫
[0,1]n

∑
i∈I

∣∣['̂i′ , '̂i](�)∣∣2 d� <∞,
for all i′. Choose E as in Lemma 2.4. It follows from the proof of Theorem 2.4

that, for every � ∈ E, P (�) belongs to ℬ(l2(I)) and satisfies P (�)2 ≤ DP (�).

Fix � ∈ E, M ∈ I, and ℎ ∈ l2(I) as in (2.9), and choose a sequence of

functions {fp}∞p=1 as in Lemma 2.4. Using parts (ii) and (iv) of the same

lemma and the frame property, we obtain

⟨P 2(�)ℎ, ℎ⟩ = lim
p→∞

∑
i∈I

∑
k∈ℤn

∣∣⟨fp, Tk'i⟩∣∣2
≥ lim

p→∞
C∥fp∥2 = C⟨P (�)ℎ, ℎ⟩.

Using that P (�) ∈ ℬ(l2(I)), that ℎ of form (2.9) constitute a dense subspace

of l2(I), and that the inner product is bi-continuous, it follows that CP (�) ≤

P (�)2. This completes the proof of the forward implication.

To prove the reverse implication, suppose that, for almost every �, P (�)
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belongs to ℬ(l2(I)) and satisfies

CP (�) ≤ P (�)2 ≤ DP (�).

By Theorem 2.4, it follows that {Tk'i : k ∈ ℤn, i ∈ I} is Bessel with constant

D. Using (2.11), we see that

∫
[0,1]n

∑
i∈I

∣['̂i′ , '̂i](�)∣2 d� <∞,

for all i′. Let M , f , {mj : j = 1, . . . ,M}, and m be as defined in the

beginning of the proof of Lemma 2.4. Using parts (i) and (iii) of Lemma 2.5,

we obtain

∑
i∈I

∑
k∈ℤn
∣⟨f, Tk'i⟩∣2 =

∫
[0,1]n
⟨P 2(�)m(�),m(�)⟩ d�

≥ C

∫
[0,1]n
⟨P (�)m(�),m(�)⟩ d�

= C∥f∥2.

It thus follows from Lemma 2.2 that {Tk'i : k ∈ ℤn, i ∈ I} forms a frame for

V with constants C ≤ D. This completes the proof.

Theorem 2.6. Let I, {'i : i ∈ I}, V , and P be as in Lemma 2.4. The

collection {Tk'i : k ∈ ℤn, i ∈ ℤ+} forms a Riesz basis for V with constants
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C ≤ D if and only if for almost every �, P (�) belongs to ℬ(l2(I)) and satisfies

C ≤ P (�) ≤ D.

Proof of Theorem 2.6. Suppose that {Tk'i : k ∈ ℤn, i ∈ I} forms a Riesz

basis for V with constants C ≤ D. It then follows from Theorem 1.4 that

{Tk'i : k ∈ ℤn, i ∈ I} is Bessel with constant D. Using (2.11), we see that

∫
[0,1]n

∑
i∈I

∣∣['̂i′ , '̂i](�)∣∣2 d� <∞,
for all i′. Choose E as in Lemma 2.4. It follows from the proof of Theorem 2.4

that, for every � ∈ E, P (�) belongs to ℬ(l2(I)) and satisfies P (�) ≤ D. Fix

� ∈ E, M ∈ I, and ℎ ∈ l2(I) of form (2.9). Let the sequence {fp}∞p=1 and

the collections

{mp
j : j = 1, . . . ,M}∞p=1 and {�pjk : j = 1, . . . ,M, k ∈ ℤn}∞p=1

be as in the statement of Lemma 2.4. Using Lemmas 1.1, 1.2, and 2.1, it

follows that

fp =
∑

j∈ℳ,k∈ℤn
�pjkTk'j,

with unconditional convergence, whereℳ = {1, . . . ,M}. Using again Lemma 2.4

73



and Lemma 1.2, we obtain

⟨P (�)ℎ, ℎ⟩ = lim
p→∞
∥fp∥2

= lim
p→∞

∥∥∥ ∑
j∈ℳ,k∈ℤn

�pjkTk'j

∥∥∥2
≥ lim

p→∞
C

M∑
j=1

∑
k∈ℤn
∣�pjk∣

2 = C⟨ℎ, ℎ⟩.

Using that P (�) ∈ ℬ(l2(I)), that ℎ of form (2.9) constitute a dense subspace

of l2(I), and that the inner product is bi-continuous it follows that C ≤ P (�).

This completes the proof of the forward implication.

To prove the reverse implication, suppose that, for almost every �, P (�)

belongs to ℬ(l2(I)) and satisfies

C ≤ P (�) ≤ D.

It then follows from Theorem 2.4 that {Tk'i : k ∈ ℤn, i ∈ I} is Bessel with

constant D. Proposition 1.1 thus implies that

∥∥∥ ∑
i∈I,k∈K

�ikTk'i

∥∥∥2 ≤ D
∑
i∈F

∑
k∈K

∣�ik∣2,

for all finite subsets F of I and K of ℤn and all {�i : i ∈ I} ⊂ ℂ. Let M ,

f , {mj : j = 1, . . . ,M}, and m be as defined in the beginning of the proof of

Lemma 2.4 and let

{�jk : j = 1, . . . ,M, k ∈ ℤn}
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be as in the statement of Lemma 2.5. Using Lemmas 1.1 and 2.1 and Propo-

sition 1.2, it follows that

f =
∑

j∈ℳ,k∈ℤn
�jkTk'j,

with unconditional convergence, where ℳ = {1, . . . ,M}. Using parts (i)

and (ii) of Lemma 2.5, we obtain

C
M∑
j=1

∑
k∈ℤn
∣�jk∣2 =

∫
[0,1]n

C⟨m(�),m(�)⟩ d�

≤
∫
[0,1]n
⟨P (�)m(�),m(�)⟩ d�

= ∥f∥2

=
∥∥∥ ∑
j∈ℳ,k∈ℤn

�jkTk'j

∥∥∥2.
It follows that {Tk'i : k ∈ ℤn, i ∈ I} is a Riesz basis for V with constants

C ≤ D. This completes the proof.

If we “deperiodize” the result of Theorem 2.4, we obtain the following

corollary, which we will use in the next chapter:

Corollary 2.1. Let I, {'i : i ∈ I}, V , and P be as in Lemma 2.4. Suppose
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that {Tk'i : k ∈ ℤn, i ∈ I} is Bessel with constant D. For � ∈ ℝ̂n, define

Φ̂(�) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

'̂1(�)

'̂2(�)

'̂3(�)

...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Then, for almost every �, the collection {Φ̂(�+k) : k ∈ ℤ̂n} is Bessel in l2(I)

with constant D. That is, for almost every �, we have

∑
k∈ℤ̂n

∣∣∣ ∞∑
i=1

xi'̂i(� + k)
∣∣∣2 ≤ D

∞∑
i=1

∣xi∣2,

for all {xi}∞i=1 ∈ l2(I).

Proof. Let M ∈ I and define x ∈ l2(I) by

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
...

xM

0

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Using Theorem 2.4, we obtain

∑
k∈ℤ̂n

∣⟨Φ̂(� + k), x⟩∣2 =
∑
k∈ℤ̂n

∣∣∣ M∑
i=1

xi'̂i(� + k)
∣∣∣2

=
∑
k∈ℤ̂n

M∑
i,i′=1

xixi′'̂i(� + k)'̂i′(� + k)

=
M∑

i,i′=1

xixi′
∑
k∈ℤ̂n

'̂i(� + k)'̂i′(� + k)

=
M∑

i,i′=1

xixi′ ['̂i, '̂i′ ](�)

= ⟨P (�)x, x⟩ ≤ D∥x∥2,

for a.e. �. The desired result now follows from Lemma 2.2.

2.3 Two Examples

We now utilize Theorems 2.5 and 2.6 to give the two examples that were

promised after Corollary 1.1 and 1.5.

Example 2.1.

Our first example is that of two functions ',  : ℝ −→ ℂ that belong to the

Schwartz class of ℝ and satisfy the following:

(i) {Tk' : k ∈ ℤ} and {Tk : k ∈ ℤ} both form orthonormal bases for

their respective closed spans, V and W ;
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(ii) V ∩W = {0};

(iii) {Tk', Tk : k ∈ ℤ} does not form a frame for its closed span.

It is interesting to compare this example with the results of Theorem 1.4 and

Corollary 1.1. In particular, we see that V +W cannot be closed.

Choose real valued functions �, � ∈ C(ℝ) satisfying the following:

(i) � is supported on [0, 3];

(ii) ∣�(�)∣2 + ∣�(� + 1)∣2 + ∣�(� + 2)∣2 = 1, for all � ∈ [0, 1];

(iii) �(�) > 0, for all � ∈ (2, 3);

(iv) � is supported on [0, 2];

(v) ∣�(�)∣2 + ∣�(� + 1)∣2 = 1, for all � ∈ [0, 1];

(vi) �(1) = �(1) = 1.

Define ' and  in L2(ℝ) by '̂ = � and  ̂ = �. For � ∈ [0, 1], simple

calculations show that

(i) ['̂, '̂](�) = 1;

(ii) [ ̂,  ̂](�) = 1;

(iii) ['̂,  ̂](�) = �(�)�(�) + �(� + 1)�(� + 1).

By Theorem 2.1, we see that {Tk' : k ∈ ℤ} and {Tk : k ∈ ℤ} both form

orthonormal bases for their respective closed spans, which we’ll denote by V

and W .
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If f ∈ V ∩W , then by part (i) of Theorem 2.1 there exist measurable

1-periodic functions s and t such that f̂ = s'̂ = t ̂. For � ∈ (2, 3), we have

s(�)�(�) = s(�)'̂(�) = t(�) ̂(�) = t(�)�(�) = 0,

implying that s(�) = 0 (since �(�) ∕= 0). It follows that s (and hence f) is 0

almost everywhere. We conclude that V ∩W = {0}.

For � ∈ [0, 1], write


(�) = ['̂,  ̂](�) = �(�)�(�) + �(� + 1)�(� + 1).

Using the notation of Theorem 2.4, we have that

P (�) =

⎛⎜⎝['̂, '̂](�) [ ̂, '̂](�)

['̂,  ̂](�) [ ̂,  ̂](�)

⎞⎟⎠ =

⎛⎜⎝ 1 
(�)


(�) 1

⎞⎟⎠ ,

and hence that

P 2(�) =

⎛⎜⎝
2(�) + 1 2
(�)

2
(�) 
2(�) + 1

⎞⎟⎠ .

For � ∈ [0, 1], one calculates that

〈
P (�)

⎛⎜⎝ 1

−1

⎞⎟⎠ ,

⎛⎜⎝ 1

−1

⎞⎟⎠〉 = 2(1− 
(�)) (2.13)
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and 〈
P 2(�)

⎛⎜⎝ 1

−1

⎞⎟⎠ ,

⎛⎜⎝ 1

−1

⎞⎟⎠〉 = 2(1− 
(�))2. (2.14)

Using the properties of � and � and the Schwarz inequality, for � ∈ (0, 1) we

have


(�)2 ≤ (∣�(�)∣2 + ∣�(� + 1)∣2)(∣�(�)∣2 + ∣�(� + 1)∣2)

= ∣�(�)∣2 + ∣�(� + 1)∣2 (2.15)

= 1− ∣�(� + 2)∣2 < 1.

Since 
 ∈ C([0, 1]) and 
(0) = 1, it now follows from (2.13), (2.14), (2.15),

and Theorem 2.5 that the collection {Tk', Tk : k ∈ ℤ} cannot form a frame

for its closed span.

Finally, note that if we choose � and � to be in C∞(ℝ), then ' and  

belong to the Schwartz class.

Example 2.2.

Our second example is that of two functions ',  : ℝ −→ ℂ that belong to

the Schwartz class of ℝ and satisfy the following:

(i) {Tk', Tk : k ∈ ℤ} forms a Parseval frame for its closed span;

(ii) Neither {Tk' : k ∈ ℤ} nor {Tk : k ∈ ℤ} forms a frame for its closed

span;
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(iii) Denoting the closed linear spans of {Tk' : k ∈ ℤ} and {Tk : k ∈ ℤ}

by V and W , respectively, we have

V ∩W⊥ ∕= {0} ∕= W ∩ V ⊥.

It is interesting to compare this example with the result of Proposition 1.5.

Choose � ∈ C(ℝ) satisfying the following:

(i) � is supported on [0, 2];

(ii) �(�) > 0, for all � ∈ (0, 2);

(iii) ∣�(�)∣2 + ∣�(� + 1)∣2 = 1, for all � ∈ [0, 1].

Also, choose m1,m2 ∈ L2(T) ∩ C(ℝ) satisfying the following:

(i) m1(�) = 0, for all � ∈ [1/5, 2/5];

(ii) m2(�) = 0, for all � ∈ [3/5, 4/5];

(iii) ∣m1(�)∣2 + ∣m2(�)∣2 = 1, for all � ∈ [0, 1].

Define ' and  in L2(ℝ) by '̂ = m1� and  ̂ = m2�. For � ∈ [0, 1], simple

calculations show that

(i) ['̂, '̂](�) = ∣m1(�)∣2;

(ii) [ ̂,  ̂](�) = ∣m2(�)∣2;

(iii) ['̂,  ̂](�) = m1(�)m2(�).
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Using the notation of Theorem 2.4, we have

P (�) =

⎛⎜⎝['̂, '̂](�) [ ̂, '̂](�)

['̂,  ̂](�) [ ̂,  ̂](�)

⎞⎟⎠ =

⎛⎜⎝ ∣m1(�)∣2 m1(�)m2(�)

m1(�)m2(�) ∣m2(�)∣2

⎞⎟⎠ .

By performing a simple computation and using property (iii) of m1 and m2,

it follows easily that P (�)2 = P (�), for all �. It thus follows by Theorem 2.5

that {Tk', Tk : k ∈ ℤ} forms a Parseval frame for its closed span.

Since m1 and m2 are continuous, it follows from part (iii) of Theorem 2.1

that neither {Tk' : k ∈ ℤ} nor {Tk : k ∈ ℤ} forms a frame for its closed

span.

Denote the closed span of {Tk' : k ∈ ℤ} by V and the closed span of

{Tk : k ∈ ℤ} by W . Define the function s ∈ L∞(T) to be the periodic

extension of

s(�) =

⎧⎨⎩
m1(�)
�(�)

, if � ∈ [3/5, 4/5];

0, if � ∈ [0, 3/5) ∪ (4/5, 1].

to ℝ. By part (i) of Theorem 2.1, s'̂ ∈ V and for � ∈ [3/5, 4/5] we have

s(�)'̂(�) =
m1(�)

�(�)
'̂(�) =

m1(�)

�(�)
m1(�)�(�) = ∣m1(�)∣2 = 1.

Note also that the support of s'̂ is contained in [3/5, 4/5] ∪ [8/5, 9/5]. Ap-

pealing again to part (i) of Theorem 2.1, we see that if f ∈ W , then

f = t ̂ = tm2�
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for some measurable 1-periodic function t, and therefore f must vanish almost

everywhere on [3/5, 4/5] ∪ [8/5, 9/5]. We thus conclude that s'̂ ∈ V ∩W⊥.

This shows that V ∩W⊥ ∕= {0}. A similar argument shows that W ∩ V ⊥ ∕=

{0}.

Finally, note that if we choose �, m1, and m2 to be in C∞(ℝ), then ' and

 belong to the Schwartz class.
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Chapter 3

Classical and Composite

Wavelet Systems

Wavelets, MRAs, and scaling functions will play a prominent role in this and

subsequent chapters. In general terms, if C is a countable subset of GLn(ℝ),

then a countable collection

{ l : l ∈ L} ⊂ L2(ℝn)

is said to be a wavelet if

{DcTk l : c ∈ C, k ∈ ℤn, l ∈ L}

forms a reproducing system (e.g., frame, Riesz basis, etc.) for L2(ℝn).

In section 1, we introduce both classical and composite wavelet systems
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and give several examples. In section 2, we generalize to composite wavelet

systems several well-known classical wavelet system results regarding point-

wise values of the Fourier transform of the wavelet and scaling function. An

interesting corollary of these results will be the nonexistence of aB-scaling

multifunctions of Haar-type when B is infinite. It is widely known that

dependencies exist among the defining properties of a 2-MRA. In section

3, we show that these dependencies are retained in the defining properties

of an aB-MRA. An interesting corollary of these dependency results is the

nonexistence of a-multiwavelets, for all a ∈ S̃Ln(ℤ).

3.1 Definitions and Examples

In this section, we introduce and define 2-wavelet systems, a-wavelet systems,

and composite wavelet systems and give examples of each.

3.1.1 2-Wavelet Systems

We begin this subsection by defining 2-wavelets and 2-MRAs. We then dis-

cuss the relationship between the two and give a sketch of their use in appli-

cations.

Definition 3.1. A function  ∈ L2(ℝ) is said to be a 2-wavelet if the col-

lection

{Dj
2Tk : j, k ∈ ℤ}
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forms an ON basis for L2(ℝ). Note that

Dj
2Tk (x) = 2−j/2 (2−jx− k).

A very important concept that is intimately related to 2-wavelets is the

following:

Definition 3.2. A sequence {Vj}j∈ℤ of closed subspaces of L2(ℝ) is said to

be a 2-multiresolution analysis (2-MRA) if the following conditions hold:

(i) Vj ⊂ Vj+1, for all j;

(ii) Vj = D−j2 V0, for all j;

(iii)
∩
j∈ℤ Vj = {0};

(iv)
∪
j∈ℤ Vj = L2(ℝ);

(v) There is a function ' ∈ V0 such that the collection

{Tk' : k ∈ ℤ}

forms an ON basis for V0.

In this case, we say that ' is a 2-scaling function for the given MRA.

The Relationship Between 2-Wavelets and 2-MRAs

We give a brief description of the relationship between 2-wavelets and 2-

MRAs. Suppose that {Vj}j∈ℤ is a 2-MRA with scaling function '. Since
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1/2'(⋅/2) ∈ V0, we may write

1

2
'(x/2) =

∑
k∈ℤ

�k'(x+ k), (3.1)

with unconditional convergence in L2(ℝ), where

�k =
1

2

∫
ℝ
'(x/2)'(x+ k) dx. (3.2)

Applying the Fourier transform to both sides of the above equality, we obtain

'̂(2�) = m0(�)'̂(�),

where m0 ∈ L2(T) (the so-called low pass filter) is given by

m0(�) =
∑
k∈ℤ

�ke
2�{�k. (3.3)

Define W0 = V ⊥0 ∩ V1, and, for each j ∕= 0, define Wj = D−j2 W0. It follows

easily from the 2-MRA properties that

⊕
j∈ℤ

Wj = L2(ℝ). (3.4)

It is simple to obtain (from ') a function  ∈ W0 such that

{Tk : k ∈ ℤ} forms an ON basis for W0. (3.5)
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For instance, it can be shown that the function  ∈ L2(ℝ) defined by

 ̂(2�) = e2�{�m0(� + 1/2)'̂(�), (3.6)

for a.e. � or, equivalently,

1

2
 (x/2) =

∑
k∈ℤ

(−1)k+1�1−k'(x+ k), (3.7)

for a.e. x satisfies (3.5) (see section 2 of chapter 2 of [6]). It is immediate

from (3.4) and (3.5) that the collection

{Dj
2Tk : j, k ∈ ℤ}

forms an ON basis for L2(ℝ); i.e., that  is a 2-wavelet. In general, when a

2-wavelet  arises from a 2-MRA {Vj}j∈ℤ with scaling function ' in this fash-

ion, we say that  , {Vj}j∈ℤ, and ' are associated, and we call the collection

 , {Vj}j∈ℤ, ' a 2-MRA wavelet system. We have the following example:

Example 3.1.

Define ' = �[0,1] and  = �[0,1/2]−�[1/2,1]. It is straightforward to verify that

' is a 2-scaling function for an MRA and that  is an associated wavelet.

This simplest and most well-known of 2-MRA wavelet systems is called the

Haar system;  and ' are called the Haar wavelet and Haar scaling function,

respectively.
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Applications of 2-MRA Wavelet Systems

2-MRA wavelet systems have been used very successfully in a variety of

applications. This success is due, in large part, to the plentiful existence of

compactly supported and smooth 2-scaling functions. Specifically, we have

the following remarkable result, due to I. Daubechies:

Theorem 3.1. For each p ∈ ℤ+, there exists a 2-scaling function ' that is

compactly supported and belongs to Cp(ℝ).

In the following two paragraphs we give a rough sketch of how 2-MRA wavelet

systems are often used in applications and indicate why the compact support

and smoothness of the scaling function play an important role.

Suppose that {Vj}j∈ℤ is a 2-MRA with scaling function ' and associated

wavelet  given by (3.7). As above, define W0 = V ⊥0 ∩ V1, and, for each

j ∕= 0, define Wj = D−j2 W0. Suppose that f ∈ L2(ℝ) is a “signal” we wish

to store in compressed form. Choose J ∈ ℤ+ large enough so that f ≈ fJ ,

where fJ is the orthogonal projection of f onto VJ . Since V1 = W0 ⊕ V0 and

since the operator D2 is unitary, it follows that Vj = Wj−1 ⊕ Vj−1, for each

j. We thus have

VJ = WJ−1 ⊕ VJ−1 = WJ−1 ⊕WJ−2 ⊕ VJ−2

= . . .

= WJ−1 ⊕WJ−2 ⊕ ⋅ ⋅ ⋅ ⊕W0 ⊕ V0.
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We thus may write

f ≈ fJ = gJ−1 + gJ−2 + ⋅ ⋅ ⋅+ g0 + f0, (3.8)

where f0 ∈ V0 and, for each j, the function gj ∈ Wj can be thought of

as the component of fJ (or the approximate component of f) at the jtℎ

scale. At first sight, it seems that we have gone in the opposite direction

of compressing f—we have replaced the approximation fJ with the sum of

J + 1 functions. However, it is often the case that many of the functions

gj are small enough (either in whole or part) so that if they are discarded

(either wholly or partially) from (3.8), the resulting sum (which contains

significantly less data than fJ) still remains a very good approximation to f .

This abbreviated sum is then stored.

The above outlined scheme of using the 2-MRA wavelet system {Vj}j∈ℤ,

', and  to decompose the signal f into different scales, discarding the

scales at which f is small (either partially or wholly), and then storing what

remains can be a very effective method for compressing data. However, for

this process to be efficiently implemented, it is almost always necessary that

the 2-scaling function ' satisfies a certain amount of decay and regularity.

For decay, it is usually very desirable that ' be compactly supported. In this

case, it is clear that the sequence {�k}k∈ℤ given by (3.2) is finitely supported,

implying that both (3.1) and (3.7) are finite sums, a crucial property. For

regularity, it is usually desirable that ' satisfies some degree of smoothness
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or, more generally, Hölder continuity.

3.1.2 a-Wavelet Systems

The above concepts (2-wavelet, 2-MRA, 2-scaling function, etc.) all extend

very naturally to higher dimensions. Essentially, the operators

{Dj
2 : j ∈ ℤ} and {Tk : k ∈ ℤ}

are replaced with the operators

{Dj
a : j ∈ ℤ} and {Tk : k ∈ ℤn}, (3.9)

where a belongs to GLn(ℤ) and is usually taken to be expanding. More

precisely, we have the following two definitions:

Definition 3.3. Let a ∈ GLn(ℤ) and let L ∈ ℤ+. We say that

{ l : l = 1, . . . , L} ⊂ L2(ℝn)

is an a-multiwavelet if the collection

{Dj
aTk l : j ∈ ℤ, k ∈ ℤn, l = 1, . . . , L}

forms an ON basis for L2(ℝn).
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Definition 3.4. Let a ∈ GLn(ℤ). A sequence {Vj}j∈ℤ of closed subspaces of

L2(ℝn) is said to be an a-multiresolution analysis (a-MRA) if the following

conditions hold:

(i) Vj ⊂ Vj+1, for all j;

(ii) Vj = D−ja V0, for all j;

(iii)
∩
j∈ℤ Vj = {0};

(iv)
∪
j∈ℤ Vj = L2(ℝn);

(v) There is a function ' ∈ V0 such that

{Tk' : k ∈ ℤn}

forms an ON basis for V0.

In this case, we say that the fucntion ' is an a-scaling function for the given

MRA.

The relationship between a-multiwavelets and a-MRAs, the concept of

a low pass filter, the meaning of an associated a-wavelet, a-MRA, and a-

scaling function, the use of a-MRA multiwavelet systems in applications,

and the importance of compact support and smoothness are all similar to

their analogs in the 2-wavelet case.
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3.1.3 Composite Wavelet Systems

As indicated above, 2-MRA wavelet systems have been used very successfully

in a variety of applications. Given how naturally one-dimensional 2-wavelet

concepts extend to higher dimensional a-wavelet concepts, one would expect

a-MRA wavelet systems to also be very useful in applications. In many

instances, this is very much the case. However, there are some important

applications where a-wavelet systems do not perform as well as would be

expected. This deficiency arises from the fact that the geometry of ℝn (n ≥ 2)

is considerably more complex than the geometry of ℝ. In particular, in

dimensions two and higher, there is a nontrivial directional component that

is simply not captured by the operators (3.9) employed by a-wavelet systems.

In an attempt to create higher-dimensional wavelet systems with direc-

tional sensitivity, the composite wavelet systems were introduced in [3]. Com-

posite wavelet systems, in addition to employing the operators in (3.9), use

operators of the form {Db : b ∈ B}, where B is a countable subset of

S̃Ln(ℝ) = {c ∈ GLn(ℝ) : ∣ det c∣ = 1}.

The following two definitions are adapted from [3]:

Definition 3.5. Let a ∈ GLn(ℝ), let B be a countable subset of S̃Ln(ℝ),

and let L be a countable indexing set. We say that { l : l ∈ L} ⊂ L2(ℝn) is

an aB-multiwavelet (or composite multiwavelet if we do not wish to specify
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a and B) if the collection

{Dj
aDbTk l : j ∈ ℤ, b ∈ B, k ∈ ℤn, l ∈ L}

forms a frame for L2(ℝn). Note that

Dj
aDbTk l(x) = ∣ det a∣−j/2 l(b−1a−jx− k).

Definition 3.6. Let a and B be as in Definition 3.5 and let I be a countable

indexing set. A sequence {Vj}j∈ℤ of closed subspaces of L2(ℝn) is said to be an

aB-multiresolution analysis (aB-MRA or composite MRA) if the following

conditions hold:

(i) Vj ⊂ Vj+1, for all j;

(ii) Vj = D−ja V0, for all j;

(iii)
∩
j∈ℤ Vj = {0};

(iv)
∪
j∈ℤ Vj = L2(ℝn);

(v) There is a collection {'i : i ∈ I} ⊂ V0 such that

{DbTk'i : b ∈ B, k ∈ ℤn, i ∈ I}

forms a frame for V0.
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In this case, we say that the collection {'i : i ∈ I} is an aB-scaling multi-

function (or composite scaling multifunction) for the given MRA.

We will refer to a-wavelet systems (in particular, 2-wavelet systems) as

classical wavelet systems. Although we will make no formal definitions, the

meaning of a Parseval/Riesz/ON aB-multiwavelet/aB-scaling multifunction

should be clear. Also, as before, the relationship between aB-multiwavelets

and aB-MRAs, the concept of a low pass filter, the meaning of an associated

aB-multiwavelet, aB-MRA, and aB-scaling multifunction, the use of aB-

MRA multiwavelet systems in applications, and the importance of compact

support and smoothness are all similar to their analogs in the 2-wavelet case.

Two Examples

In Definitions 3.5 and 3.6, the set B may either be finite or infinite. We offer

the following two examples of aB-MRA wavelet systems to illustrate each

situation:

Example 3.2.

The following example is borrowed from [7] and is a higher dimensional com-

posite analog of the Haar wavelet system of Example 1. Let a be the quincunx

matrix

a =

⎛⎜⎝1 −1

1 1

⎞⎟⎠
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and let B be the group of symmetries of the square

⎧⎨⎩±
⎛⎜⎝1 0

0 1

⎞⎟⎠ ,±

⎛⎜⎝0 1

1 0

⎞⎟⎠ ,±

⎛⎜⎝0 −1

1 0

⎞⎟⎠ ,±

⎛⎜⎝−1 0

0 1

⎞⎟⎠
⎫⎬⎭ .

Let T1, T2 ⊂ ℝ2 be the triangles with vertices

⎛⎜⎝0

0

⎞⎟⎠ ,

⎛⎜⎝1/4

1/4

⎞⎟⎠ ,

⎛⎜⎝1/2

0

⎞⎟⎠ and

⎛⎜⎝1/2

0

⎞⎟⎠ ,

⎛⎜⎝1/4

1/4

⎞⎟⎠ ,

⎛⎜⎝1/2

1/2

⎞⎟⎠ .

Define

' = 2
√

2(�T1 + �T2) and  = 2
√

2(�T1 − �T2).

Although we will verify none of the details, it is not hard to show that '

is an ON aB-scaling function and that  is an associated ON aB-wavelet

(see [7]).

Example 3.3.

The following example (and notation) is borrowed from [3]. Let a be the

matrix

a =

⎛⎜⎝2 0

0 1

⎞⎟⎠

96



and let B be the so-called shear group

⎧⎨⎩
⎛⎜⎝1 l

0 1

⎞⎟⎠ : l ∈ ℤ

⎫⎬⎭ .

Define the sets I+0 , I
+
1 , I

+
2 , I

+
3 ⊂ ℝ̂2 by

I+0 = {(�1, �2) ∈ ℝ̂2 : 0 ≤ �1 ≤ 1, 0 ≤ �2 ≤ �1},

I+1 = {(�1, �2) ∈ ℝ̂2 : 1 ≤ �1 ≤ 2, 0 ≤ �2 ≤ 1/2},

I+2 = {(�1, �2) ∈ ℝ̂2 : 1 ≤ �1 ≤ 2, 1/2 ≤ �2 ≤ 1},

I+3 = {(�1, �2) ∈ ℝ̂2 : 1 ≤ �1 ≤ 2, 1 ≤ �2 ≤ �1}.

For l = 0, 1, 2, 3, define I−l = −I+l and Il = I+l ∪ I
−
l . Define the functions

',  1,  2,  3 ∈ L2(ℝ2) by

'̂ = �I0 and  ̂l = �Il .

Although we will verify none of the details, it is not hard to see that ' is

an ON aB-scaling function and that { 1,  2,  3} is an associated ON aB-

multiwavelet (see [3]).
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3.2 Pointwise Values of the Fourier Trans-

form

There are several well-known results regarding the value at integers of the

Fourier transform of a 2-wavelet and 2-scaling function. In this section, we

generalize these results to composite wavelet systems. A very interesting

corollary will be the nonexistence of aB-scaling multifunctions of Haar-type,

for all countably infinite B ⊂ S̃Ln(ℝ) and all a ∈ GLn(ℝ).

3.2.1 Preliminary Results

Before we state and prove the above mentioned results, we need the results

of this subsection. The following lemma, which we require in the proof of

Theorem 3.2 below, is an easy consequence of part (iii) of Theorem 2.1.

Lemma 3.1. Suppose that E is a measurable subset of ℝ̂n. The collection

{e2�{⋅k : k ∈ ℤn} forms a Parseval frame for L2(E) if and only if ∣E ∩ (E +

k)∣ = 0, for all k ∈ ℤ̂n ∖ {0}.

We note that the below result is very similar to Proposition 4.1 of [4].

Theorem 3.2. Let C be a countable subset of GLn(ℝ) and let I be a countable

indexing set. If the collection

{DcTk'i : c ∈ C, k ∈ ℤn, i ∈ I} ⊂ L2(ℝn)
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forms a Bessel system with constant D, then

∑
c∈C

∑
i∈I

∣'̂i(�c)∣2 ≤ D,

for a.e. �.

Proof of Theorem 3.2. Let ℱ be any finite subset of C and let E be any

measurable subset of ℝ̂n satisfying

∣(Ec+ k) ∩ Ec∣ = 0, for all k ∈ ℤ̂n ∖ {0} and all c ∈ ℱ . (3.10)

Define � ∈ L2(ℝn) by �̂ = �E. A calculation shows that

(DcTk'i) (̂�) = ∣ det c∣1/2'̂i(�c)e−2�{�ck. (3.11)

For c ∈ ℱ , using a change of variable, we obtain

⟨DcTk'i, �⟩ = ⟨(DcTk'i)ˆ, �̂⟩
= ∣ det c∣1/2

∫
E

'̂i(�c)e
−2�{�ck d� (3.12)

= ∣ det c∣−1/2
∫
Ec

'̂i(�)e
−2�{�k d�.

Using the above equality, Lemma 3.1, and another change of variable gives
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us

∑
k∈ℤn

∣∣⟨DcTk'i, �⟩
∣∣2 = ∣ det c∣−1

∑
k∈ℤn

∣∣∣∣ ∫
Ec

'̂i(�)e
−2�{�k d�

∣∣∣∣2
= ∣ det c∣−1

∫
Ec

∣'̂i(�)∣2 d� (3.13)

=

∫
E

∣'̂i(�c)∣2 d�.

Using the above equality and the Bessel property, we have

∫
E

∑
c∈ℱ

∑
i∈I

∣'̂i(�c)∣2 d� =
∑
c∈ℱ

∑
i∈I

∫
E

∣'̂i(�c)∣2 d�

=
∑
c∈ℱ

∑
i∈I

∑
k∈ℤn

∣∣⟨DcTk'i, �⟩
∣∣2

≤
∑
c∈C

∑
i∈I

∑
k∈ℤn

∣∣⟨DcTk'i, �⟩
∣∣2

≤ D∥�∥2 = D∣E∣.

Letting E range over all measurable subsets satisfying (3.10), it follows easily

from the above equality that

∑
c∈ℱ

∑
i∈I

∣'̂i(�c)∣2 ≤ D,

for a.e. �. Since ℱ was an arbitrary finite subset of C, it follows that

∑
c∈C

∑
i∈I

∣'̂i(�c)∣2 ≤ D,
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for a.e. �.

If we assume some continuity of the functions {'̂i : i ∈ I}, we obtain the

following corollary of Theorem 3.2:

Corollary 3.1. Let C and I be defined as in Theorem 3.2, let � ∈ ℝ̂n, and

let ∣C∣ denote the cardinality of C. Assume that

{DcTk'i : c ∈ C, k ∈ ℤn, i ∈ I} ⊂ L2(ℝn)

forms a Bessel system with constant D.

(i) If ∣'̂i∣ is continuous at �c, for all i and all c, then

∑
c∈C

∑
i∈I

∣'̂i(�c)∣2 ≤ D.

(ii) If � is fixed by C (i.e., �c = �, for all c) and if ∣'̂i∣ is continuous at �,

for each i, then ∑
i∈I

∣'̂i(�)∣2 ≤ D

∣C∣
,

if ∣C∣ <∞, and '̂i(�) = 0, for all i, if ∣C∣ =∞.

(iii) If ∣'̂i∣ is continuous at 0, for each i, then

∑
i∈I

∣'̂i(0)∣2 ≤ D

∣C∣
,

if ∣C∣ <∞, and '̂i(0) = 0, for all i, if ∣C∣ =∞.

101



Proof. Since parts (ii) and (iii) follow from part (i), we shall only prove the

latter. Suppose that ∣'̂i∣ is continuous at �c, for all i and all c. Let ℱ be any

finite subset of C and let F be any finite subset of I. It then follows that the

function

� 7→
∑
c∈ℱ

∑
i∈F

∣'̂i(�c)∣2

is continuous at �. In conjunction with Theorem 3.2, choose a sequence

{�p}∞p=1 converging to � which satisfies

∑
c∈C

∑
i∈I

∣'̂i(�pc)∣2 ≤ D,

and thus, in particular,

∑
c∈ℱ

∑
i∈F

∣'̂i(�pc)∣2 ≤ D,

for each p. Using the above inequality, we obtain

∑
c∈ℱ

∑
i∈F

∣'̂i(�c)∣2 = lim
p→∞

∑
c∈ℱ

∑
i∈F

∣'̂i(�pc)∣2 ≤ D.

Since ℱ and F were arbitrary finite subsets of C and I, respectively, the

desired conclusion now follows.
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3.2.2 The Fourier Transform at Zero

In this subsection, we generalize to the case of composite wavelets two well-

known results regarding the value of the Fourier transform of a 2-wavelet and

2-scaling function at zero.

The Wavelet

If  is a 2-wavelet and if ∣ ̂∣ is continuous at 0, then it is well-known that

 ̂(0) = 0. The below Corollary, which is an immediate consequence of Corol-

lary 3.1, generalizes this result to aB-multiwavelets.

Corollary 3.2. Let a ∈ GLn(ℝ), let B be a countable subset of S̃Ln(ℝ), and

let L be a countable indexing set. If { l : l ∈ L} is an aB-multiwavelet and

if ∣∣{ajb : j ∈ ℤ, b ∈ B}
∣∣ =∞

(in partciular, if ∣ det a∣ ∕= 1), then  ̂l(0) = 0, for each l such that ∣ ̂l∣ is

continuous at 0.

The Scaling Function

If ' is a 2-scaling function and if ∣'̂∣ is continuous at 0, then it is well-known

that ∣'̂(0)∣ = 1. Corollary 3.3 below, which is an immediate consequence of

Corollary 3.1, partially extends this result to aB-scaling multifunctions:

Corollary 3.3. Let a ∈ GLn(ℝ), let B be a countable subset of S̃Ln(ℝ), and

let I be a countable indexing set. Suppose that {'i : i ∈ I} is an aB-scaling
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multifunction with upper frame constant D.

(i) If ∣B∣ <∞ and if ∣'̂i∣ is continuous at 0 (for each i), then

∑
i∈I

∣'̂i(0)∣2 ≤ D

∣B∣
. (3.14)

(ii) If B is infinite, then '̂i(0) = 0, for each i such that ∣'̂i∣ is continuous

at 0.

Part (ii) above is somewhat surprising considering the intimate relation-

ship, in the 2-wavelet case, between the nonzero value of ∣'̂∣ at 0 and the

density (property (iv) of Definition 3.2) of the associated MRA system. When

B is finite, part (i) above only partially generalizes the above quoted 2-scaling

function result to aB-scaling functions. If we strengthen our assumptions on

the matrix a, we can complete the generalization by obtaining a nontriv-

ial lower estimate to the sum in (3.14). In the formulation of this result

(Theorem 3.3 below), we will require the following terminology:

If c ∈ GLn(ℝ) and � ∈ ℂ, � is said to be a left eigenvalue of c if there

is some z ∈ ℂn with z ∕= 0 such that cz = �z; right eigenvalues are defined

similarly. A matrix c ∈ GLn(ℝ) is said to be left expanding if ∣�∣ > 1, for

all left eigenvalues � of c; right expanding is defined similarly. The following

result is taken from [4].

Lemma 3.2. A matrix c ∈ GLn(ℝ) is left expanding if and only if there exist

constants k and 
 with 0 < k ≤ 1 < 
 < ∞ such that for all j ∈ ℕ and all
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x ∈ ℝn we have

∥cjx∥ ≥ k
j∥x∥

or, equivalently,

∥c−jx∥ ≤ k−1
−j∥x∥.

It is clear that an analogous characterization holds for matrices that are

right expanding. Using these two results, it follows easily that a matrix

c ∈ GLn(ℝ) is left expanding if and only if it is right expanding. When

c ∈ GLn(ℝ) satisfies either (and hence both) of these conditions we will

simply say that c is expanding. We have the following result:

Theorem 3.3. Let a ∈ GLn(ℝ) be expanding, let B be a finite subset of

S̃Ln(ℝ), and let I be a finite indexing set. Let {Vj}j∈ℤ be a sequence of closed

subspaces of L2(ℝn) and let {'i : i ∈ I} be a subset of L2(ℝn). Suppose that

∙ the sequence {Vj}j∈ℤ and the collection {'i : i ∈ I} satisfy properties

(i), (ii), (iv), and (v) in the definition of an aB-MRA, where (v) is

satisfied with frame constants C ≤ D;

∙ ∣'̂i∣ is continuous at 0, for each i.

Then

C

∣B∣
≤
∑
i∈I

∣'̂i(0)∣2 ≤ D

∣B∣
.
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Proof. It follows from part (iii) of Corollary 3.1 that

∑
i∈I

∣'̂i(0)∣2 ≤ D

∣B∣
.

We proceed as in the proof of Theorem 3.2. Let E be any bounded measurable

subset of ℝ̂n with ∣E∣ = 1 and define � ∈ L2(ℝn) by �̂ = �E. Using the

computations (3.11) and (3.12), for all b, k, and i and all j ≥ 0, we have

⟨D−ja DbTk'i, �⟩ = ∣ det a∣j/2
∫
Ea−jb

'̂i(�)e
−2�{�k d�.

Since a is expanding and since B is finite, it follows from Lemma 3.2 that,

for large enough j, we have Ea−jb ⊂ [−1/2, 1/2]n, for all b. Thus, using

Lemma 3.1 and the computation (3.13), we obtain

∑
k∈ℤn

∣∣⟨D−ja DbTk'i, �⟩
∣∣2 = ∣ det a∣j

∫
Ea−jb

∣'̂i(�)∣2 d�, (3.15)

for all b and i, when j is large enough. For these j, let Pj denote the

orthogonal projection of L2(ℝn) onto Vj. Since

{DbTk'i : b ∈ B, k ∈ ℤn, i ∈ I}

forms a frame for V0 with constants C ≤ D and since the operator Da is
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unitary, it follows that

{D−ja DbTk'i : b ∈ B, k ∈ ℤn, i ∈ I}

forms a frame for Vj with constants C ≤ D. Thus, using (3.15), we have

C∥Pj�∥2 ≤
∑
b∈B

∑
i∈I

∑
k∈ℤn

∣∣⟨D−ja DbTk'i, Pj�⟩
∣∣2

=
∑
b∈B

∑
i∈I

∑
k∈ℤn

∣∣⟨D−ja DbTk'i, �⟩
∣∣2

=
∑
b∈B

∑
i∈I

∣ det a∣j
∫
Ea−jb

∣'̂i(�)∣2 d�

=
∑
b∈B

∑
i∈I

1

∣Ea−jb∣

∫
Ea−jb

∣'̂i(�)∣2 d�,

for all large enough j. Using properties (i), (ii), and (iv) in the aB-MRA

definition, the continuity of each ∣'̂i∣ at 0, and that a is expanding, we obtain

C = C∥�∥2 = lim
j→∞

C∥Pj�∥2

≤ lim
j→∞

∑
b∈B

∑
i∈I

1

∣Ea−jb∣

∫
Ea−jb

∣'̂i(�)∣2 d�

=
∑
b∈B

∑
i∈I

lim
j→∞

1

∣Ea−jb∣

∫
Ea−jb

∣'̂i(�)∣2 d�

=
∑
b∈B

∑
i∈I

∣'̂i(0)∣2 = ∣B∣
∑
i∈I

∣'̂i(0)∣2.

This completes the proof.
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3.2.3 The Fourier Transform at Nonzero Integers

In this subsection, we generalize to the case of composite wavelets two well-

known results regarding the value of the Fourier transform of a 2-wavelet and

2-scaling function at nonzero integers.

The Scaling Function

If ' is a 2-scaling function and if '̂ satisfies certain regularity assumptions,

then it follows that '̂(k) = 0, for all k ∈ ℤ ∖ {0}. The below proposition

extends this result to aB scaling functions, when B is finite.

Proposition 3.1. Let a ∈ GLn(ℝ) be expanding and let B be a finite subset

of

S̃Ln(ℤ) = {c ∈ GLn(ℤ) : ∣ det c∣ = 1}.

Suppose that ' is an aB-scaling function (with frame constants C ≤ D) such

that '̂ is continuous at each k ∈ ℤ̂n. Then

∑
k∈ℤ̂n∖{0}

∣∣∣∑
b∈B

'̂(kb)
∣∣∣2 ≤ (D − C)∣B∣.

In particular, if C = D, then
∑

b∈B '̂(kb) = 0 for all k ∈ ℤ̂n ∖ {0}.

Proof. Since B ⊂ S̃Ln(ℤ), the collection

{DbTk' : b ∈ B, k ∈ ℤn}
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may be written as

{TkDb' : b ∈ B, k ∈ ℤn}.

Since this collection is, in particular, Bessel with constant D, it follows from

Corollary 2.1 that

∑
k∈ℤ̂n

∣∣∣∑
b∈B

'̂((� + k)b)
∣∣∣2 =

∑
k∈ℤ̂n

∣∣∣∑
b∈B

1 ⋅ '̂((� + k)b)
∣∣∣2

≤ D
∑
b∈B

12 = D∣B∣,

for a.e. �. Since '̂ is continuous at each k ∈ ℤ̂n, it follows easily that

∑
k∈ℤ̂n

∣∣∣∑
b∈B

'̂(kb)
∣∣∣2 =

∑
k∈ℤ̂n

∣∣∣∑
b∈B

'̂((0 + k)b)
∣∣∣2 ≤ D∣B∣.

Using this and Theorem 3.3, we obtain

∑
k∈ℤ̂n∖{0}

∣∣∣∑
b∈B

'̂(kb)
∣∣∣2 =

∑
k∈ℤ̂n

∣∣∣∑
b∈B

'̂(kb)
∣∣∣2 − ∣∣∣∑

b∈B

'̂(0b)
∣∣∣2

=
∑
k∈ℤ̂n

∣∣∣∑
b∈B

'̂(kb)
∣∣∣2 − ∣B∣2∣'̂(0)∣2

≤ D∣B∣ − ∣B∣2 C
∣B∣

= (D − C)∣B∣,

which completes the proof.

It is natural to wonder if a version of Proposition 3.1 holds for a-scaling
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multifunctions. For instance, if a ∈ GLn(ℝ) is expanding, if I is a finite

indexing set, and if {'i : i ∈ I} is an ON a-scaling multifunction such that,

for each i, '̂i is continuous at each k ∈ ℤ̂n, does it then follow that

∑
i∈I

'̂i(k) = 0,

for all k ∈ ℤ̂n ∖ {0}? The answer to this question is “no”. To see why,

assume that the answer is “yes” and that {'i : i ∈ I} is such an ON a-

scaling multifunction. Then,

{�i'i : i ∈ I} (3.16)

is also such an ON a-scaling function, for any collection {�i : i ∈ I} ⊂ ℂ

satisfying ∣�i∣ = 1, for all i. Applying the assumed result to appropriate

collections of the form (3.16), it follows that

'̂i(k) = 0, for all k ∈ ℤ̂n ∖ {0} and all i. (3.17)

Thus, to obtain a contradiction, it suffices to exhibit an ON a-scaling multi-

function of the above sort that does not satisfy (3.17). It will be clear from

the discussion of section 3.2.5 that the aB-scaling function of Example 3.2 is

an example of such an a-scaling multifunction.
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The Wavelet

If  is a 2-MRA wavelet with associated 2-scaling function ' and if  ̂ and '̂

satisfy certain regularity assumptions, then it follows that  ̂(2k) = 0, for all

k ∈ ℤ. The corollary below extends this result to aB-multiwavelets, when B

is finite.

Corollary 3.4. Let a ∈ GLn(ℝ) be expanding, let B be a finite subgroup of

S̃Ln(ℤ), and let L be a countable indexing set. Suppose that {Vj}j∈ℤ is an

aB-MRA with Parseval frame scaling function ' such that '̂ is continuous

at each k ∈ ℤ̂n. Suppose that { l : l ∈ L} is an associated aB-multiwavelet.

If, for fixed l, we have that

(i)  ̂l is continuous at ka, for all k ∈ ℤ̂n, and

(ii) [ ̂l(⋅a), '̂(⋅b)] is continuous at 0, for all b,

then ∑
b∈B

 ̂l(kba) = 0,

for all k ∈ ℤ̂n. In particular, if a normalizes B (i.e., if aBa−1 ⊂ B), then

∑
b∈B

 ̂l(kb) = 0,

for all k ∈ ℤ̂na.

Proof. Since the second assertion follows from the first, we shall only prove

the latter. Assume that we have fixed an l such that conditions (i) and (ii)
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in the statement of this corollary hold. First note that by Corollary 3.2, we

have ∑
b∈B

 ̂l(0ba) = ∣B∣ ̂l(0) = 0.

Since Da l ∈ V0, using part (vi) of Lemma 2.1, it follows that

∣ det a∣1/2 ̂l(�a) = D̂a l(�)

=
∑
b∈B

[D̂a l, D̂b'](�)D̂b'(�)

= ∣ det a∣1/2
∑
b∈B

[ ̂l(⋅a), '̂(⋅b)](�)'̂(�b),

for a.e. �. By the various continuity assumptions, it follows that the above

equality must hold for all k ∈ ℤ̂n. Thus, using Proposition 3.1 and that B is

a group, for any k ∈ ℤ̂n ∖ {0} we have

∑
b∈B

 ̂l(kba) =
∑
b∈B

∑
b′∈B

[ ̂l(⋅a), '̂(⋅b′)](kb)'̂(kbb′)

=
∑
b∈B

∑
b′∈B

[ ̂l(⋅a), '̂(⋅b′)](0)'̂(kbb′)

=
∑
b′∈B

[ ̂l(⋅a), '̂(⋅b′)](0)
∑
b∈B

'̂(kbb′) = 0.

This completes the proof.
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3.2.4 The Nonexistence of aB-Scaling Multifunctions

of Haar-Type When B is Infinite

We have the following interesting corollary of Corollary 3.1:

Corollary 3.5. Let C be a countably infinite subset of GLn(ℝ).

(i) If ' is a nonzero element of L1(ℝn) ∩ L2(ℝn) that satisfies '(x) ≥ 0,

for a.e. x, then the collection {DcTk' : c ∈ C, k ∈ ℤn} cannot form a

Bessel system.

(ii) If E is a measurable subset of ℝn with finite positive measure, then the

collection {DcTk�E : c ∈ C, k ∈ ℤn} cannot form a Bessel system.

Proof. Since part (ii) follows from part (i), we only prove the latter. Suppose

that ' belongs to L1(ℝn) ∩ L2(ℝn) and satisfies '(x) ≥ 0, for a.e. x, and

assume that the collection {DcTk' : c ∈ C, k ∈ ℤn} is a Bessel system. Since

' ∈ L1(ℝn), '̂ is continuous. Thus, using part (iii) of Corollary 3.1, we have

0 = '̂(0) =

∫
ℝn
'(x) dx.

Since ' is nonnegative, the above equality implies that '(x) = 0, for a.e. x.

This completes the proof.

The scaling functions of Examples 3.1 and 3.2 are clearly related. We

formalize this relation with the following definition:
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Definition 3.7. Let a, B, and I be as in Corollary 3.2. We say an aB-

scaling multifunction

{'i : i ∈ I} ⊂ L2(ℝn)

is of Haar-type if, for each i, 'i is of the form �i�Ei, for some �i > 0 and

some measurable subset Ei of ℝn.

Example 3.2 shows that aB scaling functions of Haar-type exist when B

is nontrivial and finite. When B is infinite, however, we have the following

striking result, which is an immediate consequence of Corollary 3.5.

Corollary 3.6. Let a and B be as in Corollary 3.2 and let I be a countable

indexing set; assume that ∣B∣ =∞.

(i) There does not exist an aB-scaling multifunction {'i : i ∈ I} such that,

for each i, 'i ∈ L1(ℝn) ∩ L2(ℝn) and 'i(x) ≥ 0, for a.e. x.

(ii) There does not exist an aB-scaling multifunction of Haar-type.

Define

a =

⎛⎜⎝2 0

0 1

⎞⎟⎠ and B =

⎧⎨⎩
⎛⎜⎝1 l

0 1

⎞⎟⎠ : l ∈ ℤ

⎫⎬⎭ .

Recall that, in Example 3.3, an aB-scaling function ' of minimally supported

frequency (MSF) type is constructed; that is, '̂ = �E, for some measurable

subset E of ℝ̂2. It is interesting to compare this example with part (ii) of

Corollary 3.6 (which implies that no aB-scaling multifunctions of Haar-type

exist).
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3.2.5 An Example

We now verify some of the results of this section within the context of a

specific example. Let a, B, T1, T2, ', and  be as in Example 3.2. Note that

a is expanding and that a normalizes B. Using that ∣T1∣ = ∣T2∣ = 1/16, we

obtain

 ̂(0) =

∫
ℝ2

 (x) dx = 2
√

2

(∫
T1

1 dx−
∫
T2

1 dx

)
= 2
√

2(∣T1∣ − ∣T2∣) = 0

and

'̂(0) =

∫
ℝ2

'(x) dx = 2
√

2

(∫
T1

1 dx+

∫
T2

1 dx

)
= 2
√

2(∣T1∣+ ∣T2∣)

=
2
√

2

8
=

1√
8

=
1√
∣B∣

,

verifying Corollary 3.2 and Theorem 3.3. We now examine the results of

Proposition 3.1 and Corollary 3.4 in this context. Calculations show that

'̂(�1, �2) =

⎧⎨⎩
√
2(1−e−�{�2 )

2�2�22
+

√
2

2�{�2
, if �1 = 0, �2 ∕= 0;

√
2(e−�{�1−1)

2�2�21
+ −

√
2e−�{�1
2�{�1

, if �1 ∕= 0, �2 = 0.
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and that

 ̂(�1, �2) =

⎧⎨⎩
√
2(3−4e−�{�2/2+e−�{�2 )

2�2�22
+

√
2

2�{�2
, if �1 = 0, �2 ∕= 0;

√
2(4e−�{�1/2−3e−�{�1−1)

2�2�21
+ −

√
2e−�{�1
2�{�1

, if �1 ∕= 0, �2 = 0.

We have

∑
b∈B

'̂((1, 0)b) =2'̂((1, 0)) + 2'̂((−1, 0)) + 2'̂((0, 1)) + 2'̂((0,−1))

=2
(
−
√

2

�2
+

√
2

2�{

)
+ 2
(
−
√

2

�2
−
√

2

2�{

)
+ 2
(√2

�2
+

√
2

2�{

)
+ 2
(√2

�2
−
√

2

2�{

)
=0,

which is in accordance with Proposition 3.1 and completes the discussion

began after its proof. Note that

(2, 0) = (0, 1)a2 ∈ ℤ̂2a.
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We have

∑
b∈B

 ̂((2, 0)b) =2 ̂((2, 0)) + 2 ̂((−2, 0)) + 2 ̂((0, 2)) + 2 ̂((0,−2))

=2
(
−
√

2

�2
−
√

2

4�{

)
+ 2
(
−
√

2

�2
+

√
2

4�{

)
+ 2
(√2

�2
+

√
2

4�{

)
+ 2
(√2

�2
−
√

2

4�{

)
=0,

which is in accordance with the last assertion made in Corollary 3.4.

3.3 Dependencies in the MRA Definition

Suppose that {Vj}j∈ℤ is a collection of closed subspaces of L2(ℝ) and that

' ∈ L2(ℝ). The following dependencies in the the 2-MRA definition (Defi-

nition 3.2) are well-known:

(I) If {Vj}j∈ℤ and ' satisfy properties (i), (ii), and (v) in the 2-MRA

definition, then ∩
j∈ℤ

Vj = {0}.

(II) If {Vj}j∈ℤ and ' satisfy properties (i), (ii), and (v) in the 2-MRA

definition and if ∣'̂∣ is continuous and nonzero at 0, then

∪
j∈ℤ

Vj = L2(ℝ).
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Theorems 3.4 and 3.5 below extend these results to aB-MRAs. A very in-

teresting corollary of Theorem 3.4 is the nonexistence of a-multiwavelets, for

all a ∈ S̃Ln(ℤ).

3.3.1 Dependency I

Before we state and prove Theorem 3.4 (which extends dependency I to aB-

MRAs) we need the following definition and lemma:

Definition 3.8. Let a ∈ GLn(ℤ) and let B be a subset of S̃Ln(ℤ). We

say the pair (a,B) is admissible if there exists a countable collection ℰ of

measurable subsets of ℝ̂n satisfying the following:

(i)
∪
{E ∈ ℰ} = ℝn (in measure);

(ii) ∣Eajb1 ∩ Eajb2∣ = 0, for all j ∈ ℤ+, all b1 ∕= b2 in B, and all E ∈ ℰ;

(iii) for each fixed E ∈ ℰ and positive r and �, we have

∣∣∣( ∪
b∈B

Eajb
)
∩ {� ∈ ℝ̂n : ∥�∥ ≤ r}

∣∣∣ ≤ �,

for some j.

We make the following observations regarding admissibility:

(i) The assumption “a normalizes B” significantly simplifies the admis-

sibility criterion: If a ∈ GLn(ℤ), if B is a subset of S̃Ln(ℤ), and if
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a normalizes B, then (a,B) is admissible if there exists a countable

collection ℰ of measurable subsets of ℝ̂n satisfying the following:

(a)
∪
{E ∈ ℰ} = ℝn (in measure);

(b) ∣Eb1 ∩ Eb2∣ = 0, for all b1 ∕= b2 in B and all E ∈ ℰ ;

(c) for each fixed E ∈ ℰ and positive r and �, we have

∣∣∣( ∪
b∈B

Eb
)
aj ∩ {� ∈ ℝ̂n : ∥�∥ ≤ r}

∣∣∣ ≤ �,

for some j.

(ii) If a ∈ GLn(ℤ) is expanding, if B is a finite subset of S̃Ln(ℤ), and if a

normalizes B, then (a,B) is admissible.

(iii) If

a =

⎛⎜⎝2 0

0 1

⎞⎟⎠ and B =

⎧⎨⎩
⎛⎜⎝1 l

0 1

⎞⎟⎠ : l ∈ ℤ

⎫⎬⎭ ,

then (a,B) is admissible.

(iv) Let b ∈ S̃Ln(ℤ) and write B = {bj : j ∈ ℤ}. Writing b in its Jordan

canonical form and using that

{(e2�{l�1 , . . . , e2�{l�m) : l ∈ ℤ}

is uniformly distributed (and, in particular, topologically dense) in the
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set

{(z1, . . . , zm) ∈ ℂ̂m : ∣z1∣ = ⋅ ⋅ ⋅ = ∣zm∣ = 1}

(when 1, �1, . . . , �m are rationally independent), one can show that

(a,B) is admissible, for any expanding matrix a ∈ GLn(ℤ) that nor-

malizes B. In particular, (a,B) is admissible, where a ∈ GLn(ℤ) is the

diagonal matrix with all diagonal entries equal to 2.

(v) If B is the group

SL2(ℤ) = {b ∈ GL2(ℤ) : det b = 1},

then (a,B) is not admissible for any a ∈ GL2(ℤ). This follows from

the fact that for (�1, �2) ∈ ℝ̂2 with �2 ∕= 0 and �1/�2 /∈ ℚ, 0 is in the

closure of the orbit {�b : b ∈ B}.

The proof of the following lemma is straightforward and is omitted:

Lemma 3.3. If c ∈ GLn(ℤ) and if g ∈ L1(Tn), then

∫
[0,1]nc

g(�) d� = ∣ det c∣
∫
[0,1]n

g(�) d�.

We have the following result, which extends Dependency I to aB-MRAs:

Theorem 3.4. Let a ∈ GLn(ℤ), let B be a subset of S̃Ln(ℤ), and let I be a
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finite indexing set. Suppose that (a,B) is admissible. If the collection

{DbTk'i : b ∈ B, k ∈ ℤn, i ∈ I} ⊂ L2(ℝn)

forms a frame for its closed linear span V , then

∩
j∈ℤ+

Dj
aV = {0}.

Proof of Theorem 3.4. In order to obtain a contradiction, suppose that

{DbTk'i : b ∈ B, k ∈ ℤn, i ∈ I} ⊂ L2(ℝn)

forms a frame for its closed linear span V with constants C ≤ D and that

there exists f ∈
∩
j∈ℤ+ Dj

aV with ∥f∥ = 1. Fix j ∈ ℤ+. Since D−ja f ∈ V , it

follows from parts (iv) and (vi) of Lemma 2.1 that

∣ det a∣−j/2f̂(�a−j) = D̂−ja f(�) =
∑

i∈I,b∈B

mj
ib(�)'̂i(�b),

with unconditional convergence in L2(ℝn), where the collection

{mj
ib(�) : i ∈ I, b ∈ B} ⊂ L2(T̂n)

satisfies ∑
i∈I

∑
b∈B

∥mj
ib∥

2 ≤ C−1∥f∥2 = C−1.
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Using both the Schwarz inequality and that convergent sequences in L2(ℝn)

contain subsequences that converge pointwise a.e., it follows that

∣f̂(�a−j)∣ ≤ ∣ det a∣j/2
( ∑
i∈I,b∈B

∣mj
ib(�)∣

2
)1/2( ∑

i∈I,b∈B

∣'̂i(�b)∣2
)1/2

,

for a.e. �.

Choose ℰ as in Definition 3.8. We may refine ℰ so that for each E ∈ ℰ ,

E is contained in some cube K of the form K = [0, 1]n + k, for some k ∈ ℤ̂n.

Fix such an E ∈ ℰ and a cube K with E ⊂ K. Using a change of variable,

the Schwarz inequality, and Lemma 3.3, we obtain

∫
E

∣f̂(�)∣ d� = ∣ det a∣−j
∫
Eaj
∣f̂(�a−j)∣ d�

≤ ∣ det a∣−j/2
∫
Eaj

( ∑
i∈I,b∈B

∣mj
ib(�)∣

2
)1/2( ∑

i∈I,b∈B

∣'̂i(�b)∣2
)1/2

d�

≤ ∣ det a∣−j/2
(∫

Eaj

∑
i∈I,b∈B

∣mj
ib(�)∣

2

)1/2(∫
Eaj

∑
i∈I,b∈B

∣'̂i(�b)∣2 d�
)1/2

≤
(
∣ det a∣−j

∫
Kaj

∑
i∈I,b∈B

∣mj
ib(�)∣

2

)1/2(∫
Eaj

∑
i∈I,b∈B

∣'̂i(�b)∣2 d�
)1/2

=

(∫
K

∑
i∈I,b∈B

∣mj
ib(�)∣

2

)1/2(∫
Eaj

∑
i∈I,b∈B

∣'̂i(�b)∣2 d�
)1/2

≤ C−1/2
(∫

Eaj

∑
i∈I,b∈B

∣'̂i(�b)∣2 d�
)1/2

.
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Using a change of variable and admissibility property (ii), we obtain

∫
Eaj

∑
i∈I,b∈B

∣'̂i(�b)∣2 d� =
∑
b∈B

∫
Eaj

∑
i∈I

∣'̂i(�b)∣2 d�

=
∑
b∈B

∫
Eajb

∑
i∈I

∣'̂i(�)∣2 d�

=

∫
∪
b∈B Ea

jb

∑
i∈I

∣'̂i(�)∣2 d�.

Varying j and using admissibility property (iii), it follows from the above

two calculations that ∫
E

∣f̂(�)∣ d� = 0.

By admissibility property (i), it follows that f̂(�) = 0, for a.e. �, a contra-

diction. This completes the proof.

We make the following comments regarding Theorem 3.4:

(i) If a ∈ GLn(ℤ) is expanding, if B is a finite subset of S̃Ln(ℤ), and if

I is a finite indexing set, then we may omit the assumption “(a,B) is

admissible” from the statement of Theorem 3.4, since, in this case, the

collection

{DbTk'i : b ∈ B, k ∈ ℤn, i ∈ I} ⊂ L2(ℝn)

can be rewritten as

{TkDb'i : b ∈ B, k ∈ ℤn, i ∈ I}.
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(ii) It follows from the existence of Gabor systems that the assumption “I

is finite” in the statement of Theorem 3.4 is necessary.

We have the following interesting corollary of Theorem 3.4:

Corollary 3.7. Let B be a subset of S̃Ln(ℤ), let I be a finite indexing set,

and let

{'i : i ∈ I} ⊂ L2(ℝn).

If there exists a matrix a ∈ GLn(ℤ) for which (a,B) is admissible, then the

collection

{DbTk'i : b ∈ B, k ∈ ℤn, i ∈ I}

cannot form a frame for L2(ℝn).

Using comment (iv) following Definition 3.8 and the above corollary, we

obtain the following very interesting result regarding the nonexistence of

certain a-multiwavelets:

Corollary 3.8. There does not exist an a-multiwavelet { 1, . . . ,  L} (L ∈

ℤ+) for any a ∈ S̃Ln(ℤ).

3.3.2 Dependency II

We have the following result, which extends Dependency II to aB-MRAs:

Theorem 3.5. Let a ∈ GLn(ℤ) be expanding, let B be a subset of S̃Ln(ℤ),

and let I be a countable indexing set. Let {Vj}j∈ℤ be a sequence of closed
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subspaces of L2(ℝn) and let

{'i : i ∈ I} ⊂ L2(ℝn).

Suppose that {Vj}j∈ℤ and {'i : i ∈ I} satisfy properties (i), (ii), and (v) in

the the aB-MRA definition. If there exists a measurable set E such that

(i)
∑

i∈I ∣'̂i(�)∣2 > 0, for all � ∈ E and

(ii)
∪
j∈ℤ
∪
b∈B Eb

−1aj = ℝ̂n (in measure),

then
∪
j∈ℤ Vj = L2(ℝn). In particular, if, for some i, ∣'̂i∣ is continuous and

nonzero at 0, then
∪
j∈ℤ Vj = L2(ℝn).

Proof. Write V =
∪
j∈ℤ Vj. We claim that V is translation invariant, i.e.,

that TyV ⊂ V , for all y ∈ ℝn. If f ∈ V , p ∈ ℤ+, and l ∈ ℤn, it follows that

we may write f in the form

f =
∑

b∈B,k∈ℤn,i∈I

�bkiD
−j
a DbTk'i,

with unconditional convergence in L2(ℝn), for some j ≥ p and some sequence

{�bki} ∈ l2(B × ℤn × I). Thus,

Ta−plf =
∑

b∈B,k∈ℤn,i∈I

�bkiTa−plD
−j
a DbTk'i

=
∑

b∈B,k∈ℤn,i∈I

�bkiD
−j
a DbTb−1aj−pl+k'i ∈ Vj ⊂ V,
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since b−1aj−pl ∈ ℤn. We have shown that Ta−plV ⊂ V . Since Ta−pl is unitary,

it follows that Ta−plV ⊂ V . Since a is expanding, it follows from Lemma 3.2

that the collection

D = {a−pl : p ∈ ℤ+, l ∈ ℤn}

is dense in ℝn. Now, if f ∈ V and y ∈ ℝn, choose a sequence {yq}∞q=1 in

D converging to y. The above argument implies that Tyqf ∈ V , for each q.

Since Tyqf → Tyf in L2(ℝn), it follows that Tyf ∈ V .

To show that V = L2(ℝn), let g ∈ V ⊥. For any f ∈ V , the function

f̂ ĝ belongs to L1(ℝ̂n). For y ∈ ℝn, using the Plancherel theorem and the

translation invariance of V , we calculate

(f̂ ĝ)∨(y) =

∫
ℝ̂n
f̂(�)ĝ(�)e2�{�y d�

= ⟨e2�{⋅yf̂ , ĝ⟩

= ⟨T̂−yf, ĝ⟩

= ⟨T−yf, g⟩ = 0.

It follows that f̂(�)ĝ(�) = 0, for a.e. �. For each i, j, and b, setting f =

Dj
aDb'i, we see that

'̂i(�a
jb)g(�) = 0,

for a.e. �. By assumptions (i) and (ii) in the statement of this proposition,

it follows that g(�) = 0, for a.e. �. This completes the proof.
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Chapter 4

Decay, Regularity, and the

Fourier Transform

For p = 1, . . . , n, xp and �p denote the ptℎ coordinate functions in ℝn and

ℝ̂n, respectively. We write ∂p in place of ∂
∂xp

(or ∂
∂�p

). The results of the

following lemma are well-known (see, for instance, Theorem 8.22 of [2]):

Lemma 4.1. We have the following:

(i) If f ∈ L1(ℝn), then f̂ ∈ C0(ℝ̂n).

(ii) If f, xpf ∈ L1(ℝn), then, for all �, ∂pf̂(�) exists and is given by

∂pf̂(�) = (−2�{xpf) (̂�).

In particular, ∂pf̂ ∈ C0(ℝ̂n).
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(iii) If f ∈ L1(ℝn) ∩ C0(ℝn) and ∂pf ∈ L1(ℝn) ∩ C(ℝn), then

(∂pf) (̂�) = 2�{�pf̂(�),

for all �. In particular, �pf̂ ∈ C0(ℝ̂n).

In this chapter, we state and prove several generalized versions of Lemma 4.1

in which smoothness and integral polynomial decay are replaced with Hölder

continuity and fractional polynomial decay (section 1); logarithmic continuity

and logarithmic decay (section 2); iterated Hölder continuity and multivari-

able fractional polynomial decay (section 3). These results will be needed in

the following chapter.

4.1 Hölder Continuity and Fractional Poly-

nomial Decay

In this section, we state and prove an analog of Lemma 4.1 in which smooth-

ness and integral polynomial decay are replaced with Hölder continuity and

fractional polynomial decay. We have the following definition:

Definition 4.1. Let e1, . . . , en and ê1, . . . , ên be the canonical basis vectors of

ℝn and ℝ̂n, respectively. Let f : ℝn −→ ℂ be measurable and let 0 < � ≤ 1.

(i) f is said to be Hölder continuous in the direction ep with exponent � if

128



f ∈ L∞(ℝn) and if there exists 0 ≤M <∞ such that

∥f(x+ tep)− f(x)∥∞
∣t∣�

≤M, (4.1)

for all t ∕= 0.

(ii) f is said to be locally Hölder continuous in the direction ep with ex-

ponent � if there exists 0 ≤ M < ∞ such that (4.1) holds for all

0 < ∣t∣ ≤ 1. Note that we are not requiring that f ∈ L∞(ℝn).

(iii) f is said to be strongly Hölder continuous in the direction ep with ex-

ponent � if f ∈ L∞(ℝn) and if

∥f(x+ tep)− f(x)∥∞
∣t∣�

≤M(t), (4.2)

for all t ∕= 0, where the function M is bounded and satisfies M(t)→ 0,

as t→ 0.

(iv) f is said to be strongly locally Hölder continuous in the direction ep

with exponent � if (4.2) holds for all 0 < ∣t∣ ≤ 1, where the function

M is bounded and satisfies M(t) → 0, as t → 0. Again, note that we

are not requiring that f ∈ L∞(ℝn).

(v) f is said to be L1-Hölder continuous in the direction ep with exponent
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� if f ∈ L1(ℝn) and if there exists 0 ≤M <∞ such that

∫
ℝn

∣f(x+ tep)− f(x)∣
∣t∣�

dx ≤M,

for all t ∕= 0.

Let f : ℝn −→ ℂ be measurable and let 0 < � ≤ 1. We make the

following comments regarding Definition 4.1:

(i) If f is (locally) Hölder continuous in the direction ep with exponent �,

then f is strongly (locally) Hölder continuous in the direction ep with

exponent �, for all 0 < � < �.

(ii) If f is everywhere defined, if ∂pf(x) exists for all x, and if there exists

0 ≤ M < ∞ such that ∣∂pf(x)∣ ≤ M (for all x), then f is locally

Hölder continuous in the direction ep with exponent 1. If, in addition,

f ∈ L∞(ℝn), then f is Hölder continuous in the direction ep with

exponent 1.

(iii) If f is L1-Hölder continuous in the direction ep with exponent �, then

f is L1-Hölder continuous in the direction ep with exponent �, for all

0 < � < �.

(iv) If f ∈ L1(ℝn) is everywhere defined, if ∂pf(x) exists for all x, and if

∂pf ∈ L1(ℝn)∩C(ℝn), then f is L1-Hölder continuous in the direction

ep with exponent 1.
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(v) (local) Hölder continuity, strong (local) Hölder continuity, and L1-

Hölder continuity are defined similarly for functions f : ℝ̂n −→ ℂ;

the analogs of properties (i) through (iv) above hold in this context as

well.

We have the following version of Lemma 4.1:

Lemma 4.2. Let f : ℝn −→ ℂ be measurable and let 0 < � ≤ 1.

(i) If ∣xp∣�f ∈ L1(ℝn), then there exists 0 ≤M <∞ such that

∫
ℝn

∣e−2�{txp − 1∣
∣t∣�

∣f(x)∣ dx ≤M, (4.3)

for all t ∕= 0. If, in addition, � < 1, then the left hand side of (4.3)

approaches 0 as t→ 0.

(ii) If f, ∣xp∣�f ∈ L1(ℝn), then f̂ is Hölder continuous in the direction êp

with exponent �. If, in addition, � < 1, then f̂ is strongly Hölder

continuous in the direction êp with exponent �.

(iii) If f ∈ L1(ℝn), then for � = (�1, . . . , �n) with �p ∕= 0 we have

∣�p∣�∣f̂(�)∣ ≤M�
p (f)

(
1

2�p

)
,

where, for t ∕= 0,

M�
p (f)(t) =

∫
ℝn

∣f(x+ tep)− f(x)∣
∣t∣�

dx.
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(iv) If f is L1-Hölder continuous in the direction ep with exponent �, then

f̂ , ∣�p∣�f̂ ∈ L∞(ℝn).

Proof. To prove (i), suppose that ∣xp∣�f ∈ L1(ℝn). Using that ∣eix−1∣ ≤ ∣x∣,

it follows easily that ∣eix− 1∣ ≤ 2∣x∣�, for all x ∈ ℝ. Thus, for a.e. x we have

∣e−2�{txp − 1∣
∣t∣�

∣f(x)∣ ≤ 2∣2�{txp∣�

∣t∣�
∣f(x)∣ = 2�+1��∣xp∣�∣f(x)∣ (4.4)

for all t ∕= 0, which implies (4.3). If � < 1, then for a.e. x we have

∣e−2�{txp − 1∣
∣t∣�

∣f(x)∣ = ∣t∣1−� ∣e
−2�{txp − 1∣
∣t∣

∣f(x)∣

≤ ∣t∣1−�2�∣t∣∣xp∣
∣t∣

∣f(x)∣ (4.5)

= ∣t∣1−�2�∣xp∣∣f(x)∣

→ 0,

as t→ 0. Using (4.4), (4.5), and the Dominated Convergence Theorem (see

Theorem 2.24 of [2]), we obtain

∫
ℝn

∣e−2�{txp − 1∣
∣t∣�

∣f(x)∣ dx→ 0,

as t→ 0. This proves (i).

To prove (ii), suppose that f, ∣xp∣�f ∈ L1(ℝn). It follows from part (i) of
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Lemma 4.1 that f̂ ∈ L∞(ℝ̂n). Since

f̂(� + têp)− f̂(�)

∣t∣�
=

(
e−2�{txp − 1

∣t∣�
f(x)

)ˆ
(�),

it follows that

∣f̂(� + têp)− f̂(�)∣
∣t∣�

≤
∫
ℝn

∣e−2�{txp − 1∣
∣t∣�

∣f(x)∣ dx,

for all � and all t ∕= 0; (ii) now follows from (i).

To prove (iii), suppose that f ∈ L1(ℝn). Since

e2�{t�p − 1

∣t∣�
f̂(�) =

(
f(x+ tep)− f(x)

∣t∣�

)
(̂�),

it follows that

∣e2�{t�p − 1∣
∣t∣�

∣f̂(�)∣ ≤
∫
ℝn

∣f(x+ tep)− f(x)∣
∣t∣�

dx,

for all � and all t ∕= 0. Denote the right hand side of the above inequality by

M�
p (f)(t). For � = (�1, . . . , �n) with �p ∕= 0, substituting t = (2�p)

−1 into the

above inequality yields

2�+1∣�p∣�∣f̂(�)∣ = ∣e
2�{(2�p)−1�p − 1∣
∣(2�p)−1∣�

∣f̂(�)∣ ≤M�
p (f)

(
1

2�p

)
,

which proves (iii).

Part (iv) follows immediately from part (iii) of this lemma and part (i)

133



of Lemma 4.1.

4.2 Logarithmic Continuity and Logarithmic

Decay

In this section, we state and prove an analog of Lemma 4.1 (Lemma 4.4) in

which smoothness and integral polynomial decay are replaced with logarith-

mic continuity and logarithmic decay. We have the following definition:

Definition 4.2. Let f : ℝn −→ ℂ be measurable and let � > 0.

(i) f is said to be logarithmically continuous in the direction ep with expo-

nent � if f ∈ L∞(ℝn) and if there exists 0 ≤M <∞ such that

∣∣ log ∣t∣
∣∣�∥∥f(x+ tep)− f(x)

∥∥
∞ ≤M,

for all 0 < ∣t∣ < 1.

(ii) f is said to be strongly logarithmically continuous in the direction ep

with exponent � if f ∈ L∞(ℝn) and if

∣∣ log ∣t∣
∣∣�∥∥f(x+ tep)− f(x)

∥∥
∞ ≤M(t),

for all 0 < ∣t∣ < 1, where the function M is bounded and satisfies

M(t)→ 0, as t→ 0.
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(iii) f is said to be L1-logarithmically continuous in the direction ep with

exponent � if f ∈ L1(ℝn) and if there exists 0 ≤M <∞ such that

∫
ℝn

∣∣ log ∣t∣
∣∣�∣∣f(x+ tep)− f(x)

∣∣ dx ≤M,

for all 0 < ∣t∣ < 1.

Let f : ℝn −→ ℂ be measurable. We make the following comments

regarding Definition 4.2:

(i) Let � > 0. If f is logarithmically continuous (L1-logarithmically con-

tinuous) in the direction ep with exponent �, then f is strongly loga-

rithmically continuous (L1-logarithmically continuous) in the direction

ep with exponent �, for all 0 < � < �.

(ii) Let 0 < � ≤ 1. If f is Hölder continuous (L1-Hölder continuous) in the

direction ep with exponent �, then f is strongly logarithmically contin-

uous (L1-logarithmically continuous) in the direction ep with exponent

�, for all 0 < � <∞.

(iii) Logarithmic continuity, strong logarithmic continuity, and L1-logarithmic

continuity are defined similarly for functions f : ℝ̂n −→ ℂ, and the

analogous versions of properties (i) and (ii) above hold in this context

as well.

We need the following result in the proof of Lemma 4.4:
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Lemma 4.3. We have the following:

(i) If � > 0, then there exists 0 < M ′ = M ′(�) <∞ such that

t� log(1/t) ≤M ′ log(x+ 2)

x�
, (4.6)

for all x, t ∈ ℝ satisfying x > 0 and 0 < t ≤ min{1, x−1}.

(ii) If � > 0, then there exists 0 < M = M(�) <∞ such that

∣∣eitx − 1
∣∣ ≤M

(
log(∣x∣+ 2)∣∣ log ∣t∣

∣∣
)�

,

for all x, t ∈ ℝ satisfying 0 < ∣t∣ < 1.

Proof. To prove part (i), let � > 0 and choose M ′ ∈ [1,∞) satisfying

e−1�−1 ≤M ′ log(x+ 2)

x�
, (4.7)

for all 0 < x ≤ e�
−1

. Consider f ∈ C[0, 1] ∩ C∞(0, 1) defined by

f(t) =

⎧⎨⎩
t� log(1/t), if 0 < t ≤ 1;

0, if t = 0.

For 0 < t < 1, a calculation shows that

f ′(t) = t�−1(� log(1/t)− 1).
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Using the mean value theorem (see Theorem 5.10 of [12]), it follows from the

above equality that f is increasing on [0, e−�
−1

] and decreasing on [e−�
−1
, 1].

Let x, t ∈ ℝ be such that x > 0 and 0 < t ≤ min{1, x−1}. If x−1 ≥ e−�
−1

,

then x ≤ e�
−1

and using (4.7) we obtain

t� log(1/t) = f(t) ≤ f(e−�
−1

) = e−1�−1 ≤M ′ log(x+ 2)

x�
.

If x−1 ≤ e−�
−1

, then

t� log(1/t) = f(t) ≤ f(x−1) = x−� log(x) ≤M ′ log(x+ 2)

x�
.

This proves (i).

To prove (ii), let � > 0. Choose M ′ = M ′(�−1) as guaranteed by part (i)

of this lemma and set M = max{2,M ′}. Rearranging (4.6), we obtain

tx ≤M

(
log(x+ 2)

log(1/t)

)�
, (4.8)

for all x, t ∈ ℝ satisfying x > 0 and 0 < t ≤ min{1, x−1}.

Let x, t ∈ ℝ be such that 0 < ∣t∣ < 1. We may assume that x ∕= 0. If

∣xt∣ ≥ 1, then log(∣x∣) + log(∣t∣) = log(∣xt∣) ≥ 0, implying that

log(∣x∣+ 2) ≥ log(∣x∣) ≥ − log(∣t∣) =
∣∣ log ∣t∣

∣∣.
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We thus obtain

∣eitx − 1∣ ≤ ∣eitx∣+ ∣1∣ = 2 ≤M

(
log(∣x∣+ 2)

∣ log ∣t∣∣

)�
.

If ∣xt∣ ≤ 1, then we may substitute ∣t∣ and ∣x∣ into (4.8) to obtain

∣eitx − 1∣ ≤ ∣t∣∣x∣ ≤M

(
log(∣x∣+ 2)

log(1/∣t∣)

)�
= M

(
log(∣x∣+ 2)∣∣ log ∣t∣

∣∣
)�

.

This proves (ii).

We have the following version of Lemma 4.1:

Lemma 4.4. Let f : ℝn −→ ℂ be measurable and let � > 0.

(i) If f,
(

log(∣xp∣+ 1)
)�
f ∈ L1(ℝn), then f̂ is strongly logarithmically con-

tinuous in the direction êp with exponent �.

(ii) If f is L1-logarithmically continuous in the direction ep with exponent

�, then f̂ ,
(

log(∣xp∣+ 1)
)�
f̂ ∈ L∞(ℝn).

Proof of Lemma 4.4. To prove (i), suppose that f,
(

log(∣xp∣+1)
)�
f ∈ L1(ℝn).

It follows from part (i) of Lemma 4.1 that f̂ ∈ L∞(ℝ̂n). Choose M(�)

and M(� + 1) as guaranteed by part (ii) of Lemma 4.3 and set M =

max{M(�),M(� + 1)}. Since

∣∣ log ∣t∣
∣∣�(f̂(� + têp)− f̂(�)

)
=
(∣∣ log ∣t∣

∣∣�(e−2�{txp − 1
)
f(x)

)ˆ(�),
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it follows that

∣∣ log ∣t∣
∣∣�∣∣f̂(� + têp)− f̂(�)

∣∣ ≤ ∫
ℝn

∣∣ log ∣t∣
∣∣�∣∣e−2�{txp − 1

∣∣∣∣f(x)
∣∣ dx, (4.9)

for all � and all 0 < ∣t∣ < 1. Using part (ii) of Lemma 4.3, for a.e. x we

obtain

∣∣ log ∣t∣
∣∣�∣∣e−2�{txp − 1

∣∣∣∣f(x)
∣∣ ≤ ∣∣ log ∣t∣

∣∣�M (
log(2�∣xp∣+ 2)∣∣ log ∣t∣

∣∣
)� ∣∣f(x)

∣∣
= M

(
log(2�∣xp∣+ 2)

)�∣∣f(x)
∣∣, (4.10)

for all 0 < ∣t∣ < 1. Moreover, it follows easily from our assumptions that the

right hand side of the above inequality belongs to L1(ℝn). Using again part

(ii) of Lemma 4.3, for a.e. x we have

∣∣ log ∣t∣
∣∣�∣∣e−2�{txp − 1

∣∣∣∣f(x)
∣∣

≤
∣∣ log ∣t∣

∣∣�M (
log(2�∣xp∣+ 2)∣∣ log ∣t∣

∣∣
)�+1 ∣∣f(x)

∣∣
= M

(
log(2�∣xp∣+ 2)

)�+1∣∣ log ∣t∣
∣∣ ∣∣f(x)

∣∣→ 0,

as t → 0. Using (4.9), (4.10), the above calculation, and the Dominated

Convergence Theorem, it follows that f̂ is strongly logarithmically continuous

in the direction êp with exponent �.

To prove (ii), suppose that f is L1-logarithmically continuous in the di-
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rection ep with exponent �. It follows from part (i) of Lemma 4.1 that

f̂ ∈ L∞(ℝ̂n). Choose M as in part (iii) of Definition 4.2. Since

∣∣ log ∣t∣
∣∣�(e2�{t�p − 1

)
f̂(�) =

(∣∣ log ∣t∣
∣∣�(f(x+ tep)− f(x)

))
(̂�),

it follows that

∣∣ log ∣t∣
∣∣�∣∣e2�{t�p − 1

∣∣∣∣f̂(�)
∣∣ ≤ ∫

ℝn

∣∣ log ∣t∣
∣∣�∣∣f(x+ tep)− f(x)

∣∣ dx ≤M

for all � and all 0 < ∣t∣ < 1. For � = (�1, . . . , �n) with ∣�p∣ ≥ 1, substituting

t = (2�p)
−1 into the above inequality yields

(
log(∣�p∣+ 1)

)�∣∣f̂(�)
∣∣ ≤ ( log(∣�p∣+ ∣�p∣)

)�∣∣f̂(�)
∣∣

≤ 2
(

log(2∣�p∣)
)�∣∣f̂(�)

∣∣
= 2
∣∣∣ log

∣∣(2�p)−1∣∣∣∣∣�∣∣f̂(�)
∣∣

=
∣∣∣ log

∣∣(2�p)−1∣∣∣∣∣�∣∣e2�{(2�p)−1�p − 1
∣∣∣∣f̂(�)

∣∣
≤M.

It follows that
(

log(∣xp∣+ 1)
)�
f̂ ∈ L∞(ℝn). This proves (ii).
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4.3 Iterated Hölder Continuity and Multivari-

able Fractional Polynomial Decay

In this section, we state and prove an analog of Lemma 4.1 in which smooth-

ness and integral polynomial decay are replaced with iterated Hölder conti-

nuity and multivariable fractional polynomial decay.

Let f : ℝn −→ ℂ be measurable and let y ∈ ℝn. Define Δyf : ℝn −→ ℂ

by

Δyf(x) = f(x+ y)− f(x).

For i ∈ {1, . . . , n} and t ∈ ℝ, write Δi(t) = Δtei . Note that Δy belongs to

ℬ
(
Lp(ℝn)

)
(p = 1,∞). We make the following observations:

(i) If z ∈ ℝn, then ΔyΔzf = ΔzΔyf . More generally, if y1, . . . , ym ∈ ℝn,

the operators Δy1 , . . . ,Δym may be applied to f in any order with the

same result.

Let m ∈ ℤ+ and let i1, . . . , im ∈ {1, . . . , n}.

(ii) Let 0 < �j ≤ �j ≤ 1 (j = 1, . . . ,m) and let p ∈ {1,∞}. Suppose

that ∥f∥p < ∞ and that there exists a constant K ′ such that for all

k = 1, . . . ,m and all j1 < ⋅ ⋅ ⋅ < jk belonging to {1, . . . ,m} we have

∥Δij1
(tj1) . . .Δijk

(tjk)f∥p ≤ K ′∣tj1∣�j1 . . . ∣tjk ∣�jk ,
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for all tj1 , . . . , tjk ∈ ℝ. Then

∥Δi1(t1) . . .Δim(tm)f∥p ≤ K1(t1) . . . Km(tm)∣t1∣�1 . . . ∣tm∣�m ,

for all t1, . . . , tm ∈ ℝ, where, for each j, the function Kj is bounded

and, if �j < �j, satisfies Kj(t)→ 0 as t→ 0.

Let 0 < � ≤ 1 and assume m ≥ 2. Suppose that f is everywhere defined and

that ∂ij . . . ∂imf(x) exists for all x (for each j = 2, . . . ,m).

(iii) If there exists a constant K ′ such that

∣Δi1(t1)∂i2 . . . ∂imf(x)∣ ≤ K ′∣t1∣�,

for all t1 ∈ ℝ and all x, then there is a constant K such that

∣Δi1(t1) . . .Δim(tm)f(x)∣ ≤ K∣t1∣�∣t2∣ . . . ∣tm∣,

for all x and all t1, . . . , tm ∈ ℝ. In particular,

∥Δi1(t1) . . .Δim(tm)f∥∞ ≤ K∣t1∣�∣t2∣ . . . ∣tm∣,

for all t1, . . . , tm ∈ ℝ.

(iv) If ∂ij . . . ∂imf is continuous (for each j = 2, . . . ,m) and if there exists
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a constant K ′ such that

∥Δi1(t1)∂i2 . . . ∂imf∥1 ≤ K ′∣t1∣�,

for all t1 ∈ ℝ, then there is a constant K such that

∥Δi1(t1) . . .Δim(tm)f∥1 ≤ K∣t1∣�∣t2∣ . . . ∣tm∣,

for all t1, . . . , tm ∈ ℝ.

(v) For � ∈ ℝ̂n, the operator Δ� is defined similarly, and the analogs of

properties (i) through (iv) above hold in this situation as well.

If f ∈ L1(ℝn) + L2(ℝn), write f = f1 + f2 with fp ∈ Lp(ℝn) (p = 1, 2)

and define f̂ = f̂1 + f̂2. It is simple to check that this definition results in

a well-defined extension of the Fourier transform to L1(ℝn) + L2(ℝn). We

have the following version of Lemma 4.1 (and extension of Lemma 4.2):

Lemma 4.5. Let f ∈ L1(ℝn) + L2(ℝn), let i1, . . . , im ∈ {1, . . . , n}, and let

�1, . . . , �m ∈ (0, 1].

(i) If ∣xi1∣�1 . . . ∣xim∣�mf ∈ L1(ℝn), then

∥Δi1(t1) . . .Δim(tm)f̂∥∞ ≤ K(t1, . . . , tm)∣t1∣�1 . . . ∣tm∣�m ,

for all t1, . . . , tm ∈ ℝ, where the function K is bounded and, for each j
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such that �j < 1, satisfies

sup{K(t1, . . . , tm) : t1, . . . , tj−1, tj+1, . . . , tm ∈ ℝ} → 0,

as tj → 0.

(ii) If there exists a constant K such that

∥Δi1(t1) . . .Δim(tm)f∥1 ≤ K∣t1∣�1 . . . ∣tm∣�m

for all t1, . . . , tm ∈ ℝ, then ∣�i1∣�1 . . . ∣�im∣�m f̂ ∈ L∞(ℝ̂n).

Proof. If g : ℝn −→ ℂ and ℎ : ℝ̂n −→ ℂ are measurable and if y ∈ ℝn and

� ∈ ℝ̂n, define M�g : ℝn −→ ℂ by

M�g(x) =
(
e−2�{�x − 1

)
f(x);

Myℎ : ℝ̂n −→ ℂ is defined similarly. If g ∈ L1(ℝn) + L2(ℝn), it is straight-

forward to verify that

Δ�ĝ = (M�g)ˆ and (Δyg)ˆ= M−yĝ,

where, for g′, ℎ′ ∈ C0(ℝ̂n)+L2(ℝ̂n), we write g′ = ℎ′ if and only if g′(�) = ℎ′(�)

for a.e. �. If y1, . . . , ym ∈ ℝn and �1, . . . , �m ∈ ℝ̂n, it follows that

Δ�1 . . .Δ�m ĝ = (M�1 . . .M�mg)ˆ (4.11)
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and that

(Δy1 . . .Δymg)ˆ= M−y1 . . .M−ym ĝ. (4.12)

We now prove (i). Define the function K by

K(t1, . . . , tm) =

∫
ℝn

∣e−2�{t1xi1 − 1∣ . . . ∣e−2�{tmxim − 1∣
∣t1∣�1 . . . ∣tm∣�m

∣f(x)∣ dx

if t1, . . . , tm ∈ ℝ ∖ {0} and K(t1, . . . , tm) = 0 otherwise. If t1, . . . , tm ∈ ℝ,

using (4.11) and that

∣ĝ(�)∣ ≤
∫
ℝn
∣g(x)∣ dx, (4.13)

for all g ∈ L1(ℝn) + L2(ℝn) and a.e. �, we obtain

∣Δi1(t1) . . .Δim(tm)f̂(�)∣ = ∣Δt1êi1
. . .Δtmêim

f̂(�)∣

=
∣∣(Mt1êi1

. . .Mtmêim
f
)

(̂�)
∣∣

≤
∫
ℝn

∣∣Mt1êi1
. . .Mtmêim

f(x)
∣∣ dx

=

∫
ℝn
∣e−2�{t1xi1 − 1∣ . . . ∣e−2�{tmxim − 1∣∣f(x)∣ dx

= K(t1, . . . , tm)∣t1∣�1 . . . ∣tm∣�m ,

for a.e. �, and thus

∥Δi1(t1) . . .Δim(tm)f̂∥∞ ≤ K(t1, . . . , tm)∣t1∣�1 . . . ∣tm∣�m .

145



If t1, . . . , tm ∈ ℝ ∖ {0} and j ∈ {1, . . . ,m}, using that

∣eix − 1∣ ≤ 2∣x∣� (4.14)

(for all � ∈ (0, 1] and all x ∈ ℝ) we obtain

( m∏
k=1

∣e−2�{tkxik − 1∣
∣tk∣�k

)
∣f(x)∣ =

(∏
k ∕=j

∣e−2�{tkxik − 1∣
∣tk∣�k

) ∣e−2�{tjxij − 1∣
∣tj∣�j

∣f(x)∣

≤
(∏
k ∕=j

2∣2�tkxik ∣�k
∣tk∣�k

) ∣e−2�{tjxij − 1∣
∣tj∣�j

∣f(x)∣

=
(∏
k ∕=j

2∣2�xik ∣�k
) ∣e−2�{tjxij − 1∣

∣tj∣�j
∣f(x)∣ (4.15)

≤
(∏
k ∕=j

2∣2�xik ∣�k
)2∣2�tjxij ∣�j

∣tj∣�j
∣f(x)∣

= 2m(2�)�1+⋅⋅⋅+�m ∣xi1∣�1 . . . ∣xim∣�m∣f(x)∣,

for a.e. x.

If t1, . . . , tm ∈ ℝ ∖ {0}, using (4.15) we obtain

K(t1, . . . , tm) =

∫
ℝn

∣e−2�{t1xi1 − 1∣ . . . ∣e−2�{tmxim − 1∣
∣t1∣�1 . . . ∣tm∣�m

∣f(x)∣ dx

≤ 2m(2�)�1+⋅⋅⋅+�m
∫
ℝn
∣xi1∣�1 . . . ∣xim ∣�m ∣f(x)∣ <∞.

It follows that K is bounded.
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If �j < 1 and t1, . . . , tm ∈ ℝ ∖ {0}, using (4.15) we obtain

K(t1, . . . , tm) =

∫
ℝn

∣e−2�{t1xi1 − 1∣ . . . ∣e−2�{tmxim − 1∣
∣t1∣�1 . . . ∣tm∣�m

∣f(x)∣ dx

≤
∫
ℝn

(∏
k ∕=j

2∣2�xik ∣�k
) ∣e−2�{tjxij − 1∣

∣tj∣�j
∣f(x)∣ dx.

The above inequality implies that

sup{K(t1, . . . , tm) : t1, . . . , tj−1, tj+1, . . . , tm ∈ ℝ}

≤
∫
ℝn

(∏
k ∕=j

2∣2�xik ∣�k
) ∣e−2�{tjxij − 1∣

∣tj∣�j
∣f(x)∣ dx,

for each tj ∕= 0. Using (4.14), (4.15), and the Dominated Convergence The-

orem, it follows that the right hand side of the above inequality approaches

0 as tj → 0. This proves (i).

We now prove (ii). Choose � > 0 such that

∣e2�{x − 1∣ ≥ �, (4.16)

for all 1/3 ≤ ∣x∣ ≤ 2/3.

Fix t1, . . . , tm ∈ ℝ∖{0} such that tj = tk if ij = ik. Using (4.12) and (4.13)
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we obtain

∣e2�{t1�i1 − 1∣ . . . ∣e2�{tm�im − 1∣∣f̂(�)∣

= ∣M−t1ei1 . . .M−tmeim f̂(�)∣

=
∣∣(Δt1ei1

. . .Δtmeim
f) (̂�)

∣∣ (4.17)

≤ ∥Δt1ei1
. . .Δtmeim

f∥1

= ∥Δi1(t1) . . .Δim(tm)f∥1 ≤ K∣t1∣�1 . . . ∣tm∣�m ,

for a.e. �. Let E(t1, . . . , tm) denote the collection of all � ∈ ℝ̂n satis-

fying 1/3 ≤ ∣tj�ij ∣ ≤ 2/3 (for all j). Using (4.16) and (4.17), for a.e.

� ∈ E(t1, . . . , tm) we obtain

�m∣f̂(�)∣ ≤ ∣e2�{t1�i1 − 1∣ . . . ∣e2�{tm�im − 1∣∣f̂(�)∣

≤ K∣t1∣�1 . . . ∣tm∣�m

≤ K

(
2

3∣�i1∣

)�1

. . .

(
2

3∣�im ∣

)�m
,

or, equivalently,

∣�i1∣�1 . . . ∣�im∣�m∣f̂(�)∣ ≤ K

�m

(
2

3

)�1+⋅⋅⋅+�m
.

Since ℝ̂n can be obtained (up to a set of measure zero) as an appropriate

countable union of the sets E(t1, . . . , tm), it follows from the above inequality
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that ∥∥∣�i1∣�1 . . . ∣�im∣�m f̂
∥∥
∞ ≤

K

�m

(
2

3

)�1+⋅⋅⋅+�m
.

This proves (ii).

Of course, one can also study the Lp-boundedness properties (p = 1,∞)

of the operators Δi1(t1) . . .Δim(tm) in terms of products of the form

1∣∣ log ∣t1∣
∣∣�1

. . .
1∣∣ log ∣tm∣
∣∣�m ,

where i1, . . . , im ∈ {1, . . . , n}, 0 < ∣t1∣, . . . , ∣tm∣ < 1, and

0 < �1, . . . , �m <∞.

Comments (i) and (ii) following Definition 4.2, Lemma 4.4, etc. can all be

formulated within this more general context. However, we do not require

these results and therefore do not state or prove them formally.
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Chapter 5

The Nonexistence of Shearlet

Scaling Multifunctions

Let

a =

⎛⎜⎝2 0

0 1

⎞⎟⎠ and B =

⎧⎨⎩
⎛⎜⎝1 l

0 1

⎞⎟⎠ : l ∈ ℤ

⎫⎬⎭ .

B is said to be a shear group (due to its action on ℝ2 (or ℝ̂2)). We call an aB-

multiwavelet, an aB-MRA, and an aB-scaling multifunction a multishearlet,

a shearlet MRA, and a shearlet scaling multifunction, respectively. There are

numerous results indicating that shearlet systems (and their variants) have

the potential for great success in multi-dimensional applications: Continuous

variants of shearlet systems have been shown to be very effective (indeed,

to outperform the continuous variants of classical wavelet systems) in edge

analysis. Discrete variants of shearlet systems are known to be essentially

150



optimal at representing a certain subclass of L2(ℝ2) (see section 5 of [8] for

these and other results).

As in the case of classical wavelet systems, a very useful tool for developing

fast algorithmic implementations of a multishearlet { 1, . . . ,  L} would be an

associated shearlet MRA {Vj : j ∈ ℤ} along with an associated “suitable”

shearlet scaling multifunction {'1, . . . , 'I} (i.e., one that satisfies a certain

amount of decay, regularity, and/or other desirable properties).

In section 1 of this chapter, we prove results regarding the nonexistence

of shearlet scaling multifunctions that satisfy a minimal amount of decay

and regularity. In section 2, we prove results regarding the nonexistence of

shearlet scaling multifunctions that satisfy a minimal amount of decay and

one of two “finite type” conditions. Combining the results of this chapter

with those of Corollary 3.6 (which implies the nonexistence of shearlet scaling

multifunctions of Haar-type), it will follow that essentially no “suitable”

shearlet scaling multifunctions exist.

5.1 Nonexistence Results Regarding Decay and

Regularity

The two main results of this section (Theorem 5.1 and Corollary 5.1) regard

the nonexistence of a large collection of shearlet-like aB-scaling multifunc-

tions that satisfy a minimal amount of decay and regularity.
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5.1.1 Some Preliminary Results

Before we state and prove Theorem 5.1 and Corollary 5.1, we need the two

lemmas and proposition contained in this subsection.

Lemma 5.1. Let �, �, 
 ∈ ℝ with � > 1 and � ∕= 0. Then

∞∑
l=−∞

1

(1 + ∣
 + l�∣)�
≤ 2

∞∑
l=0

1

(1 + l∣�∣)�
.

Proof. We may assume that 
 lies between 0 and �. Using this assumption,

it follows that

∣l�∣ ≤ ∣
∣+ ∣l�∣ = ∣
 + l�∣,

for l = 0, 1, 2, . . . and that

∣l�∣ = −l∣�∣ ≤ −l∣�∣+ ∣�∣ − ∣
∣

= −(l − 1)∣�∣ − ∣
∣

= ∣(l − 1)�∣ − ∣
∣ = ∣
 + (l − 1)�∣,
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for l = . . . ,−2,−1, 0. We thus obtain

∞∑
l=−∞

1

(1 + ∣
 + l�∣)�
=

−1∑
l=−∞

1

(1 + ∣
 + l�∣)�
+
∞∑
l=0

1

(1 + ∣
 + l�∣)�

=
0∑

l=−∞

1

(1 + ∣
 + (l − 1)�∣)�
+
∞∑
l=0

1

(1 + ∣
 + l�∣)�

≤
0∑

l=−∞

1

(1 + ∣l�∣)�
+
∞∑
l=0

1

(1 + ∣l�∣)�

= 2
∞∑
l=0

1

(1 + l∣�∣)�
.

The below proposition is the major ingredient in the proof of Theorem 5.1.

Proposition 5.1. Let z > 0, let B0 be an infinite subset of

B =

⎧⎨⎩b(l) =

⎛⎜⎝1 lz

0 1

⎞⎟⎠ : l ∈ ℤ

⎫⎬⎭ ,

and let ' ∈ L2(ℝ2). Suppose that

(i) the collection {DbTk' : b ∈ B0, k ∈ ℤ2} forms a Bessel system;

(ii) ∣'̂∣ is continuous;

(iii) there exists � > 1/2 such that ∣'̂∣ and ∣�2∣�∣'̂∣ are strongly locally Hölder

continuous in the direction ê1 with exponent 1/2.
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Then, for (�1, �2) with 0 < ∣�1∣ ≤ min{1, (2z)−1} we have

∑
b∈B

∣'̂((�1, �2)b)∣2 ≤M(�1),

where the function M is bounded, measurable, and satisfies M(t) → 0, as

t→ 0.

Proof. Note that

(�1, �2)b(l) = (�1, �2 + lz�1),

for each l and each (�1, �2). In particular, B0 fixes the �2-axis. Thus, using

assumptions (i) and (ii) and Corollary 3.1, we see that '̂(0, �2) = 0, for all

�2. Hence, using assumptions (ii) and (iii), we obtain

∣'̂(�1, �2)∣ ≤M1(�1)∣�1∣1/2 and ∣�2∣�∣'̂(�1, �2)∣ ≤M2(�1)∣�1∣1/2, (5.1)

for all (�1, �2) with ∣�1∣ ≤ 1, where, for p = 1, 2, the function Mp is bounded,

measurable, and satisfies Mp(t) → 0, as t → 0. Using (5.1) and that there

exists a constant K such that

(1 + x)� ≤ K(1 + x�),

for all x ≥ 0, it follows that

∣'̂(�1, �2)∣ ≤
M(�1)∣�1∣1/2

(1 + ∣�2∣)�
, (5.2)
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for all (�1, �2) with ∣�1∣ ≤ 1, where the function M is bounded, measurable,

and satisfies M(t)→ 0, as t→ 0.

Fix (�1, �2) with 0 < ∣�1∣ ≤ min{1, (2z)−1}. Using (5.2) and Lemma 5.1,

we obtain

∑
b∈B

∣'̂((�1, �2)b)∣2 =
∞∑

l=−∞

∣'̂((�1, �2)b(l))∣2

=
∞∑

l=−∞

∣'̂((�1, �2 + lz�1))∣2

≤
∞∑

l=−∞

M(�1)
2∣�1∣

(1 + ∣�2 + lz�1∣)2�
(5.3)

= M(�1)
2∣�1∣

∞∑
l=−∞

1

(1 + ∣�2 + lz�1∣)2�

≤ 2M(�1)
2∣�1∣

∞∑
l=0

1

(1 + lz∣�1∣)2�
.

Using integral estimation and a change of variable, we obtain

∞∑
l=0

1

(1 + lz∣�1∣)2�
≤
∫ ∞
−1

dx

(1 + xz∣�1∣)2�

=
1

z∣�1∣

∫ ∞
1−z∣�1∣

dx

x2�
(5.4)

≤ 1

z∣�1∣

∫ ∞
1/2

dx

x2�
=

1

z∣�1∣
22�−1

2�− 1
.

Combining (5.3) and (5.4) gives the desired result.

We need the following lemma in the proof of Corollary 5.1:

Lemma 5.2. Let ' ∈ L2(ℝ2) and consider the following properties:
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(i) ∂2'(x) exists for all x, ∂2' ∈ C(ℝ2), and ', ∣x1∣�', ∣x1∣�∂2' ∈ L1(ℝ2),

for some 1/2 ≤ � ≤ 1.

(ii) ' ∈ L1(ℝ2) and ∣x1∣�' is L1-Hölder continuous in the direction e2 with

exponent �, for some 1/2 < �, � ≤ 1.

(iii) ' is compactly supported and Hölder continuous in the direction e2 with

exponent �, for some 1/2 < � ≤ 1.

(iv) '̂ is continuous and there exists 1/2 < � ≤ 1 such that '̂ and ∣�2∣�'̂

are strongly locally Hölder continuous in the direction ê1 with exponent

1/2.

Each of properties (i), (ii), and (iii) imply property (iv).

Proof. Since (iii) implies (ii), we need only verify that (i) implies (iv) and

that (ii) implies (iv).

If ' ∈ L1(ℝ2) and if 1/2 ≤ � ≤ 1 and 1/2 < � ≤ 1, then using the

notation and result of part (iii) of Lemma 4.2 yields

∣∣∣�2∣�'̂(� + tê1)− ∣�2∣�'̂(�)
∣∣

∣t∣�
= ∣�2∣�

∣'̂(� + tê1)− '̂(�)∣
∣t∣�

= ∣�2∣�
∣∣∣∣(e−2�{tx1 − 1

∣t∣�
'(x)

)ˆ
(�)

∣∣∣∣ (5.5)

≤M�
2

(
e−2�{tx1 − 1

∣t∣�
'(x)

)(
1

2�2

)
,

for all � = (�1, �2) with �2 ∕= 0 and all t ∕= 0. For s ∕= 0, a simple calculation
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shows that

M�
2

⎛⎜⎝e−2�{tx1 − 1

∣t∣�
'

⎛⎜⎝x1
x2

⎞⎟⎠
⎞⎟⎠ (s)

=

∫ ∞
−∞

∫ ∞
−∞

∣e−2�{tx1 − 1∣
∣t∣�

1

∣s∣�

∣∣∣∣∣∣∣'
⎛⎜⎝ x1

x2 + s

⎞⎟⎠− '
⎛⎜⎝x1
x2

⎞⎟⎠
∣∣∣∣∣∣∣ dx1dx2. (5.6)

Suppose that ' satisfies property (i), for some 1/2 ≤ � ≤ 1. It follows

from part (i) of Lemma 4.1 and part (ii) of Lemma 4.2 that '̂ is both continu-

ous and strongly locally Hölder continuous in the direction e1 with exponent

1/2. Using the continuity of ∂2' and the Fundamental Theorem of Calculus,

for s > 0 and fixed x1, x2 we obtain

∣∣∣∣∣∣∣'
⎛⎜⎝ x1

x2 + s

⎞⎟⎠− '
⎛⎜⎝x1
x2

⎞⎟⎠
∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫ x2+s

x2

∂2'

⎛⎜⎝x1
r

⎞⎟⎠ dr

∣∣∣∣∣∣∣
≤
∫ x2+s

x2

∣∣∣∣∣∣∣∂2'
⎛⎜⎝x1
r

⎞⎟⎠
∣∣∣∣∣∣∣ dr (5.7)

=

∫ ∞
−∞

�

⎛⎜⎝ r

x2

⎞⎟⎠
∣∣∣∣∣∣∣∂2'

⎛⎜⎝x1
r

⎞⎟⎠
∣∣∣∣∣∣∣ dr,

where

�

⎛⎜⎝ r

x2

⎞⎟⎠ =

⎧⎨⎩
1, if x2 ≤ r ≤ x2 + s;

0, otherwise.
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Using (5.7) and Fubini’s theorem, for s > 0 we obtain

∫ ∞
−∞

∫ ∞
−∞

∣e−2�{tx1 − 1∣
∣t∣�

1

s

∣∣∣∣∣∣∣'
⎛⎜⎝ x1

x2 + s

⎞⎟⎠− '
⎛⎜⎝x1
x2

⎞⎟⎠
∣∣∣∣∣∣∣ dx1dx2

≤
∫ ∞
−∞

∫ ∞
−∞

∣e−2�{tx1 − 1∣
∣t∣�

1

s

∫ ∞
−∞

�

⎛⎜⎝ r

x2

⎞⎟⎠
∣∣∣∣∣∣∣∂2'

⎛⎜⎝x1
r

⎞⎟⎠
∣∣∣∣∣∣∣ drdx1dx2

=

∫ ∞
−∞

∫ ∞
−∞

∣e−2�{tx1 − 1∣
∣t∣�

∣∣∣∣∣∣∣∂2'
⎛⎜⎝x1
r

⎞⎟⎠
∣∣∣∣∣∣∣ dx1dr

1

s

∫ ∞
−∞

�

⎛⎜⎝ r

x2

⎞⎟⎠ dx2

=

∫ ∞
−∞

∫ ∞
−∞

∣e−2�{tx1 − 1∣
∣t∣�

∣∣∣∣∣∣∣∂2'
⎛⎜⎝x1
r

⎞⎟⎠
∣∣∣∣∣∣∣ dx1dr

1

s

∫ r

r−s
1 dx2

=

∫ ∞
−∞

∫ ∞
−∞

∣e−2�{tx1 − 1∣
∣t∣�

∣∣∣∣∣∣∣∂2'
⎛⎜⎝x1
r

⎞⎟⎠
∣∣∣∣∣∣∣ dx1dr.

Using the above inequality and a change of variable, it follows that

∫ ∞
−∞

∫ ∞
−∞

∣e−2�{tx1 − 1∣
∣t∣�

1

∣s∣

∣∣∣∣∣∣∣'
⎛⎜⎝ x1

x2 + s

⎞⎟⎠− '
⎛⎜⎝x1
x2

⎞⎟⎠
∣∣∣∣∣∣∣ dx1dx2

≤
∫ ∞
−∞

∫ ∞
−∞

∣e−2�{tx1 − 1∣
∣t∣�

∣∣∣∣∣∣∣∂2'
⎛⎜⎝x1
x2

⎞⎟⎠
∣∣∣∣∣∣∣ dx1dx2, (5.8)

for all s ∕= 0. Using (5.5) and (5.6) with � = 1, (5.8), and part (i) of

Lemma 4.2, it follows that ∣�2∣'̂ is strongly locally Hölder continuous in the

direction ê1 with exponent 1/2. This shows that (i) implies (iv).
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Suppose that (ii) is satisfied, for some 1/2 < �, � ≤ 1. Again, it follows

from part (i) of Lemma 4.1 and part (ii) of Lemma 4.2 that '̂ is continuous

and strongly locally Hölder continuous in the direction e1 with exponent 1/2.

Recall that ∣eix − 1∣ ≤ 2∣x∣�, for all x ∈ ℝ. Using this, we obtain

∫ ∞
−∞

∫ ∞
−∞

∣e−2�{tx1 − 1∣
∣t∣�

1

∣s∣�

∣∣∣∣∣∣∣'
⎛⎜⎝ x1

x2 + s

⎞⎟⎠− '
⎛⎜⎝x1
x2

⎞⎟⎠
∣∣∣∣∣∣∣ dx1dx2

≤
∫ ∞
−∞

∫ ∞
−∞

2∣2�tx1∣�

∣t∣�
1

∣s∣�

∣∣∣∣∣∣∣'
⎛⎜⎝ x1

x2 + s

⎞⎟⎠− '
⎛⎜⎝x1
x2

⎞⎟⎠
∣∣∣∣∣∣∣ dx1dx2

= 2�+1��
∫ ∞
−∞

∫ ∞
−∞

1

∣s∣�

∣∣∣∣∣∣∣∣x1∣�'
⎛⎜⎝ x1

x2 + s

⎞⎟⎠− ∣x1∣�'
⎛⎜⎝x1
x2

⎞⎟⎠
∣∣∣∣∣∣∣ dx1dx2.

Combining the above inequality with (5.5) and (5.6), it follows that ∣�2∣�'̂

is strongly locally Hölder continuous in the direction ê1 with exponent 1/2.

This shows that (ii) implies (iv).

5.1.2 Main Results

This subsection contains the two main results of the current section—results

regarding the nonexistence of certain aB-scaling multifunctions. It turns out

that the only aB-MRA properties necessary in the proofs of Theorem 5.1 and

Corollary 5.1 are properties (i), (ii), and (v). The first of our main results,

Theorem 5.1, involves only these three aB-MRA properties and certain decay

and regularity assumptions. Corollary 5.1, the second of our main results,
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translates Theorem 5.1 into a statement regarding the nonexistence of a large

collection of shearlet-like aB-scaling multifunctions which satisfy a minimal

amount of decay and regularity.

Theorem 5.1. Let a ∈ GL2(ℝ), let z > 0, and let B0 be an infinite subset

of

B =

⎧⎨⎩b(l) =

⎛⎜⎝1 lz

0 1

⎞⎟⎠ : l ∈ ℤ

⎫⎬⎭ .

Suppose that

(i) a−j

⎛⎜⎝1

0

⎞⎟⎠→
⎛⎜⎝0

0

⎞⎟⎠, as j →∞;

(ii) there exists � > 0 such that ∥kb−1aj∥ ≥ �, for all k ∈ ℤ̂2 ∖ {0}, all

b ∈ B0, and all j ≥ 0.

Let V be a nonzero closed subspace of L2(ℝ2), let I ∈ ℤ+, and let {'1, . . . , 'I} ⊂

L2(ℝ2). Suppose that

(iii) DaV ⊂ V ;

(iv) {DbTk'i : b ∈ B0, k ∈ ℤ2, i = 1, . . . , I} forms a frame for V .

Then, the functions '1, . . . , 'I cannot satisfy the following:

(v) ∣'̂i∣ is continuous, for each i;

(vi) there exists � > 1/2 such that ∣'̂i∣ and ∣�2∣�∣'̂i∣ are strongly locally

Hölder continuous in the direction ê1 with exponent 1/2, for each i.
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We make the following comments regarding the hypotheses of Theo-

rem 5.1:

(i) Note that (ii) is automatically satisfied if a ∈ GL2(ℤ) and z ∈ ℤ+.

(ii) It is easy to see that both (i) and (ii) are satisfied for any a ∈ GL2(ℝ)

of the form ⎛⎜⎝a1 a2

0 a3

⎞⎟⎠ ,

where ∣a1∣ > 1 and ∣a3∣ ≥ 1.

(iii) As will be evident from the proof, the assertion of Theorem 5.1 remains

true if (v) and (vi) are only assumed to be satisfied on the �2-axis.

(iv) In general terms, (vi) assumes a certain amount of regularity in the

ê1 direction and a certain amount of decay in the ê2 direction. There

are several other versions of (vi) resembling this general form for which

the assertion of Theorem 5.1 remains true. However, the (vi) we have

chosen is most convenient for our purposes.

We now prove Theorem 5.1.

Proof of Theorem 5.1. To obtain a contradiction, suppose that the functions

'1, . . . , 'I satisfy (v) and (vi) in the statement of Theorem 5.1 and assume

that (iv) in the same statement is satisfied with frame constants C ≤ D.

It follows from assumption (ii) in the statement of Theorem 5.1 that there

exists a bounded measurable subset E of ℝ̂2 satisfying

161



(i) (E + kb−1aj) ∩ E = ∅, for all k ∈ ℤ̂2 ∖ {0}, all b ∈ B0, and all j ≥ 0;

(ii) ⟨'̂i, �E⟩ ∕= 0, for some i.

Define � ∈ L2(ℝ2) by �̂ = �E. For j ∈ ℤ+, write Vj = D−ja V , and note, since

the operator Da is unitary, the collection

{D−ja DbTk'i : b ∈ B0, k ∈ ℤ2, i = 1, . . . , I}

forms a frame for Vj with constants C ≤ D. Let P denote the orthogonal

projection of L2(ℝ2) onto V , and, for each j, let Pj denote the orthogonal

projection of L2(ℝ2) onto Vj. Using property (ii) of E, assumption (iii) in the

statement of Theorem 5.1, the Plancherel theorem, and a change of variable,
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we obtain

0 < ∥P�∥2 ≤ ∥Pj�∥2

≤ C−1
I∑
i=1

∑
b∈B0

∑
k∈ℤ2

∣⟨D−ja DbTk'i, Pj�⟩∣2

= C−1
I∑
i=1

∑
b∈B0

∑
k∈ℤ2

∣⟨D−ja DbTk'i, �⟩∣2

= C−1
I∑
i=1

∑
b∈B0

∑
k∈ℤ2

∣⟨(D−ja DbTk'i)ˆ, �̂ ⟩∣2 (5.9)

= C−1
I∑
i=1

∑
b∈B0

∑
k∈ℤ2

∣∣∣∣ ∫
E

(D−ja DbTk'i) (̂�) d�

∣∣∣∣2

= C−1∣ det a∣−j
I∑
i=1

∑
b∈B0

∑
k∈ℤ2

∣∣∣∣ ∫
E

'̂i(�a
−jb)e−2�{�a

−jbk d�

∣∣∣∣2

= C−1∣ det a∣j
I∑
i=1

∑
b∈B0

∑
k∈ℤ2

∣∣∣∣ ∫
Ea−jb

'̂i(�)e
−2�{�k d�

∣∣∣∣2.
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Using Lemma 3.1 and property (i) of E, we obtain

∣ det a∣j
I∑
i=1

∑
b∈B0

∑
k∈ℤ2

∣∣∣∣ ∫
Ea−jb

'̂i(�)e
−2�{�k d�

∣∣∣∣2

= ∣ det a∣j
I∑
i=1

∑
b∈B0

∫
Ea−jb

∣'̂i(�)∣2 d�

= ∣ det a∣j
I∑
i=1

∑
b∈B0

∫
Ea−j
∣'̂i(�b)∣2 d� (5.10)

≤ ∣ det a∣j
I∑
i=1

∑
b∈B

∫
Ea−j
∣'̂i(�b)∣2 d�

= ∣E∣
I∑
i=1

1

∣Ea−j∣

∫
Ea−j

∑
b∈B

∣'̂i(�b)∣2 d�.

Note that, for each i, 'i satisfies the hypotheses of Proposition 5.1. Thus,

for each i and for all (�1, �2) with 0 < ∣�1∣ ≤ min{1, (2z)−1} we have

∑
b∈B

∣'̂i((�1, �2)b)∣2 ≤Mi(�1), (5.11)

where the function Mi is bounded, measurable, and satisfies Mi(t) → 0, as

t → 0. If (�1, �2) ∈ Ea−j, then (�1, �2) = �a−j, for some � ∈ E. Using

assumption (i) in the statement of Theorem 5.1 and that E is bounded, we

obtain

∣�1∣ =

∣∣∣∣∣∣∣�a−j
⎛⎜⎝1

0

⎞⎟⎠
∣∣∣∣∣∣∣ ≤ ∥�∥

∥∥∥∥∥∥∥a−j
⎛⎜⎝1

0

⎞⎟⎠
∥∥∥∥∥∥∥ ≤ K

∥∥∥∥∥∥∥a−j
⎛⎜⎝1

0

⎞⎟⎠
∥∥∥∥∥∥∥→ 0, (5.12)
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as j → ∞, where the constant K is independent of (�1, �2). By (5.12), the

inequalities of (5.11) are valid a.e. in Ea−j, when j is large enough. For

these j, using (5.11) and (5.12) yields

I∑
i=1

1

∣Ea−j∣

∫
Ea−j

∑
b∈B

∣'̂i((�1, �2)b)∣2 d�

≤
I∑
i=1

1

∣Ea−j∣

∫
Ea−j

Mi(�1) d� (5.13)

≤
I∑
i=1

sup
(�1,�2)∈Ea−j

Mi(�1)→ 0,

as j → ∞. Combining (5.9), (5.10), and (5.13) obtains the desired contra-

diction. This completes the proof.

The below corollary, which follows immediately from Theorem 5.1 and

Lemma 5.2, is the second of the two main results of this section.

Corollary 5.1. Let z > 0, let a ∈ GL2(ℝ), let I ∈ ℤ+, and let B0 be an

infinite subset of ⎧⎨⎩
⎛⎜⎝1 lz

0 1

⎞⎟⎠ : l ∈ ℤ

⎫⎬⎭ .

Suppose that a and B0 satisfy properties (i) and (ii) in the statement of Theo-

rem 5.1. Then there does not exist an aB0-scaling multifunction {'1, . . . , 'I} ⊂

L2(ℝ2) such that, for each i, ONE of the following is satisfied:

(i) ∂2'i(x) exists for all x, ∂2'i ∈ C(ℝ2), and 'i, ∣x1∣�'i, ∣x1∣�∂2'i ∈

L1(ℝ2), for some 1/2 ≤ � ≤ 1.
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(ii) 'i ∈ L1(ℝ2) and ∣x1∣�'i is L1-Hölder continuous in the direction e2

with exponent �, for some 1/2 < �, � ≤ 1.

(iii) 'i is compactly supported and Hölder continuous in the direction e2

with exponent �, for some 1/2 < � ≤ 1.

We make the following comments regarding Theorem 5.1 and Corol-

lary 5.1:

(i) Let

a =

⎛⎜⎝2 0

0 1

⎞⎟⎠ and B =

⎧⎨⎩
⎛⎜⎝1 l

0 1

⎞⎟⎠ : l ∈ ℤ

⎫⎬⎭ .

Choose 0 ∕= � ∈ C∞(ℝ̂2) that is compactly supported in

{(�1, �2) ∈ ℝ̂2 : �1 ≤ �2 ≤ 0} ∪ {(�1, �2) ∈ ℝ̂2 : 0 ≤ �2 ≤ �1}

and satisfies [�, �](�) = 1, for all �. Define ' in the Schwartz class of

ℝ2 by '̂ = �. It follows easily from part (iii) of Lemma 2.1 and part

(iv) of Theorem 2.1 that

{DbTk' : b ∈ B, k ∈ ℤ2}

forms an ON basis for its closed span V . It is interesting to compare

this example with the result of Theorem 5.1; in particular, we cannot

have DaV ⊂ V .
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(ii) Let a and B be as in (i) above. In section 5 of [3], a Parseval aB-wavelet

 is constructed that belongs to the Schwartz class of ℝ2. However,

by Corollary 5.1,  cannot be associated with an aB-MRA whose aB-

scaling multifunction {'1, . . . , 'I} is such that, for each i, 'i satisfies

ONE of (i), (ii), and (iii) in the statement of Corollary 5.1. In partic-

ular, the functions '1, . . . , 'I certainly cannot belong to the Schwartz

class of ℝ2.

5.2 Nonexistence Results Regarding Decay and

Finite Type Conditions

Let a ∈ GLn(ℝ) and let B be an infinite subgroup of S̃Ln(ℤ). Assume that

{Vj : j ∈ ℤ} is an aB-MRA with ON aB-scaling multifunction {'1, . . . , 'I}

(I ∈ ℤ+). Let i′ ∈ {1, . . . , I}. By properties (i) and (ii) in the aB-MRA

definition, we have Da'i′ ∈ V0. Using aB-MRA property (v) and part (iii)

of Lemma 1.1, we may write

Da'i′ =
I∑
i=1

∑
b∈B

∑
k∈ℤn
⟨Da'i′ , DbTk'i⟩DbTk'i, (5.14)

where each sum converges unconditionally in V0. In developing fast algorith-

mic implementations of the aB-MRA system {Vj : j ∈ ℤ} (and its associated

aB-multiwavelet), it is very desirable that the sum (5.14) be finite. If each

of '1, . . . , 'I are compactly supported, then, for each i ∈ I and b ∈ B, it
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follows that the collection {⟨Da'i′ , DbTk'i⟩ : k ∈ ℤn} is finite. However, to

ensure that, for each i, the collection

{⟨Da'i′ , DbTk'i⟩ : b ∈ B, k ∈ ℤn}

is finite, we must also assume the existence of a finite subset F of B such

that, for each j′, Da'j′ belongs to the closed span of

{DbTk'j : b ∈ F, k ∈ ℤn, j = 1, . . . , I}. (5.15)

In summary, to ensure that (5.14) is finite, we have assumed, in particular,

the following two properties of the above aB-MRA system and its aB-scaling

multifunction:

(i) {'1, . . . , 'I} is an ON aB-scaling multifunction; more generally, there

exists some “separation” amongst the elements

{DbTk'i : b ∈ b, k ∈ ℤn, i = 1, . . . , I};

(ii) there exists a finite subset F of B such that, for each j′, Da'j′ belongs

to the closed span of (5.15).

Properties (i) and (ii) above will form the basis for the more general finite

type 1 and finite type 2 conditions (Definitions 5.1 and 5.2). The three main

results of this section (Theorems 5.2 and 5.3 and Corollary 5.2) regard the
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nonexistence of a large collection of shearlet-like aB-scaling multifunctions

which satisfy a minimal amount of decay and either the finite type 1 or the

finite type 2 condition.

5.2.1 Finite Type Conditions

In this subsection, we introduce the two finite type conditions that will be

used in the statements of the main results of this section. Below is the

defintion of the first.

Definition 5.1. Let a ∈ GLn(ℝ) and let B be an infinite subgroup of S̃Ln(ℤ).

Assume that {'1, . . . , 'I} (I ∈ ℤ+) is an aB-scaling multifunction. We say

that {'1, . . . , 'I} is of finite type 1 if there exists a finite subset F of B such

that the following are satisfied:

(i) for each i, Da'i is in the closed linear span of the collection

{DbTk'i′ : b ∈ F, k ∈ ℤn, i′ = 1, . . . , I};

(ii) there exists a dual frame to

{DbTk'i : b ∈ B, k ∈ ℤn, i = 1, . . . , I}

of the form

{DbTk i : b ∈ B, k ∈ ℤn, i = 1, . . . , I}
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such that 'i ⊥ DbTk i′, for all b ∈ B ∖ F , all k ∈ ℤn, and all i, i′ =

1, . . . , I.

Let a and B be as in Definition 5.1 and let {'1, . . . , 'I} ⊂ L2(ℝn) (I ∈

ℤ+). We make the following comments regarding the above definition:

(i) Suppose that {'1, . . . , 'I} is an aB-scaling multifunction of finite type

1 and let { 1, . . . ,  I} and F be as in Definition 5.1. If each of the func-

tions '1, . . . , 'I ,  1, . . . ,  I are compactly supported, then {'1, . . . , 'I}

has finite refinement equations. That is, there exists a finite subset Z

of ℤn such that, for each i′, there exists a collection

{�i′ibk : i = 1, . . . , I, b ∈ F 2, k ∈ Z} ⊂ ℂ

such that

Da'i′ =
I∑
i=1

∑
b∈F 2

∑
k∈Z

�i
′

ibkDbTk'i.

(ii) If

{DbTk'i : b ∈ B, k ∈ ℤn, i = 1, . . . , I}

forms a frame for its closed span, then its canonical dual frame

{(DbTk'i)
∼ : b ∈ B, k ∈ ℤn, i = 1, . . . , I}

automatically satisfies the first part of condition (ii) of Definition 5.1;
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that is,

(DbTk'i)
∼ = DbTk('i)

∼,

for all b, k, and i.

(iii) If

{DbTk'i : b ∈ B, k ∈ ℤn, i = 1, . . . , I} (5.16)

forms a Parseval frame for its closed span, then it is canonically dual

to itself. Thus, condition (ii) of Definition 5.1 is satisfied if there exists

a finite subset F of B such that 'i ⊥ DbTk'i′ , for all b ∈ B ∖ F , all

k ∈ ℤn, and all i, i′ = 1, . . . , I.

(iv) If (5.16) forms a Riesz basis for its closed span, then condition (ii) in

Definition 5.1 is satisfied with F = {I}.

Below is the definition of the second finite type condition.

Definition 5.2. Let a ∈ GL2(ℝ), let z ∈ ℤ+, and let

B =

⎧⎨⎩b(l) =

⎛⎜⎝1 lz

0 1

⎞⎟⎠ : l ∈ ℤ

⎫⎬⎭ .

Assume that {'1, . . . , 'I} (I ∈ ℤ+) is an aB-scaling multifunction. We say

that {'1, . . . , 'I} is of finite type 2 if there exists a sequence L1 < L2 < L3 <

. . . of positive integers such that the following are satisfied:
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(i) for each i, Da'i is in the closed linear span of the collection

{Db(l)Tk'i′ : ∣l∣ ≤ L1, k ∈ ℤ2, i′ = 1, . . . , I};

(ii) there exists 0 < C ≤ D <∞ such that, for each j ∈ ℤ+, the collection

{Db(l)Tk'i : ∣l∣ ≤ Lj, k ∈ ℤ2, i = 1, . . . , I}

forms a frame for its closed span with constants C ≤ D.

Let a and B be as in Definition 5.2 and assume that {'1, . . . , 'I} is an

aB-scaling multifunction satisfying condition (i) in the same definition, for

some L1 ∈ ℤ+. It follows from Proposition 1.5 (and the comments preceding

it) that {'1, . . . , 'I} is of finite filter type 2 if EITHER of the following hold:

(i) The collection

{DbTk'i : b ∈ B, k ∈ ℤ2, i = 1, . . . , I}

forms a Riesz basis for its closed span.

(ii) There exists a sequence L2 < L3 < L4 < . . . of positive integers such

that, for each j, the intersection of the closed spans of

{Db(l)Tk'i : ∣l∣ ≤ Lj, k ∈ ℤ2, i = 1, . . . , I}
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and

{Db(l)Tk'i : ∣l∣ ≥ Lj + 1, k ∈ ℤ2, i = 1, . . . , I}

is the zero subspace.

Definitions 5.1 and 5.2 are very similar. In fact, Corollary 5.2 will im-

ply that the two definitions are trivially equivalent when a and B are as in

Lemma 5.3 below and each element of the aB-scaling multifunction {'1, . . . , 'I}

satisfies a small amount of fractional polynomial decay. However, when con-

sidered within the more general context of collections of the form

{Tk'i : k ∈ ℤn, i ∈ ℤ+},

it is not hard to see that condition (ii) in Definition 5.1 and condition (ii) in

Definition 5.2 are independent.

5.2.2 Preliminary Results

This subsection contains the various lemmas that will be needed in the proofs

of Theorems 5.2 and 5.3 and Corollary 5.2.

The above mentioned three results will be formulated in the following

generality with respect to a and B: We will consider groups B of the form

⎧⎨⎩
⎛⎜⎝1 lz

0 1

⎞⎟⎠ : l ∈ ℤ

⎫⎬⎭ ,
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where z ∈ ℤ+, and we will consider matrices a ∈ GL2(ℤ) that normalize B

(i.e., aBa−1 ⊂ B) and that satisfy

a−j

⎛⎜⎝1

0

⎞⎟⎠→
⎛⎜⎝0

0

⎞⎟⎠ ,

as j →∞. The following easy lemma characterizes the structure of such a:

Lemma 5.3. Let a ∈ GL2(ℤ), let z ∈ ℤ+, and let

B =

⎧⎨⎩b(l) =

⎛⎜⎝1 lz

0 1

⎞⎟⎠ : l ∈ ℤ

⎫⎬⎭ .

Consider the following conditions:

(i) a normalizes B;

(ii) a−j

⎛⎜⎝1

0

⎞⎟⎠→
⎛⎜⎝0

0

⎞⎟⎠, as j →∞.

Then a satisfies (i) and (ii) above if and only if

a =

⎛⎜⎝p r

0 q

⎞⎟⎠ ,

for some p, q, r ∈ ℤ satisfying ∣p∣ > 1, ∣q∣ ≥ 1, and q ∣ p (i.e., q divides p).

For the remainder of this subsection, the notation a, z, B, p, q, and r will

be as defined in Lemma 5.3 (in particular, we are assuming that (i) and (ii)
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in the said lemma hold).

Note that b(l)b(l′) = b(l+ l′) and that ab(l)a−1 = b(pq−1l). For M, j ∈ ℤ+

and any finite subset E of B, write

B(M) = {b(l) : ∣l∣ ≤M}

and

Ej = {aj−1bj−1a−(j−1)aj−2bj−2a−(j−2) . . . ab1a−1b0 : bj−1, . . . , b0 ∈ E}.

We require the following three lemmas in the proofs of Theorems 5.2 and 5.3:

Lemma 5.4. For each M, j ∈ ℤ+ we have

B(M)j ⊂

⎧⎨⎩
B(M ∣pq−1∣j), if ∣p∣ > ∣q∣;

B(Mj), if ∣p∣ = ∣q∣.

Proof of Lemma 5.4. Fix M, j ∈ ℤ+ and let b ∈ B(M)j. We may then write

b = aj−1b(lj−1)a
−(j−1)aj−2b(lj−2)a

−(j−2) . . . ab(l1)a
−1b(l0),
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where ∣lp∣ ≤M , for each p. We have

b = aj−1b(lj−1)a
−(j−1)aj−2b(lj−2)a

−(j−2) . . . ab(l1)a
−1b(l0)

= b
(
(pq−1)j−1lj−1

)
b
(
(pq−1)j−2lj−2

)
. . . b

(
pq−1l1

)
b
(
l0
)

= b
(
(pq−1)j−1lj−1 + (pq−1)j−2lj−2 + ⋅ ⋅ ⋅+ pq−1l1 + l0

)
and

∣∣(pq−1)j−1lj−1 + (pq−1)j−2lj−2 + ⋅ ⋅ ⋅+ pq−1l1 + l0
∣∣

≤
∣∣(pq−1)j−1lj−1∣∣+

∣∣(pq−1)j−2lj−2∣∣+ ⋅ ⋅ ⋅+
∣∣pq−1l1∣∣+

∣∣l0∣∣
≤M

(
∣pq−1∣j−1 + ∣pq−1∣j−2 + ⋅ ⋅ ⋅+ ∣pq−1∣+ 1

)
≤

⎧⎨⎩
M ∣pq−1∣j, if ∣pq−1∣ > 1;

Mj, if ∣pq−1∣ = 1.

where the last inequality is easily verified.

Lemma 5.5. Let E be a finite subset of B and let {'1, . . . , 'I} ⊂ L2(ℝ2)

(I ∈ ℤ+). Suppose that, for each i, we have

'̂i(�a) =
I∑

i′=1

∑
b∈E

mi
i′b(�)'̂i′(�b), (5.17)

for a.e. �, where

{mi
i′b : i′ = 1, . . . , I, b ∈ E} ⊂ L∞(T2).
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Then, for each i and each j ∈ ℤ+, Dj
a'i is in the closed linear span of

{DbTk'i′ : b ∈ Ej, k ∈ ℤ2, i′ = 1, . . . , I}.

Proof of Lemma 5.5. We will show that, for each i and each j ∈ ℤ+, there

exists a collection

{mij
i′b : i′ = 1, . . . , I, b ∈ Ej} ⊂ L∞(T2)

such that

'̂i(�a
j) =

I∑
i′=1

∑
b∈Ej

mij
i′b(�)'̂i′(�b), (5.18)

for a.e. �. In conjunction with part (i) of Theorem 2.1, this will prove the

claim.

We proceed by induction on j. The case when j = 1 follows by assump-

tion. Fix j ∈ ℤ+ and suppose that, for each i, there exists a collection

{mij
i′b : i′ = 1, . . . , I, b ∈ Ej} ⊂ L∞(T2)
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such that (5.18) is satisfied. For fixed i, using (5.18) and (5.17) we obtain

'̂i(�a
j+1) = '̂i(�aa

j)

=
I∑

i′=1

∑
b∈Ej

mij
i′b(�a)'̂i′(�ab)

=
I∑

i′=1

∑
b∈Ej

mij
i′b(�a)'̂i′(�aba

−1a) (5.19)

=
I∑

i′=1

∑
b∈Ej

mij
i′b(�a)

I∑
i′′=1

∑
b′∈E

mi′

i′′b′(�aba
−1)'̂i′′(�aba

−1b′),

for a.e. �. Since b ∈ Ej and b′ ∈ E implies that aba−1b′ ∈ Ej+1 and since all

of the functions mij
i′b(�a) and mi′

i′′b′(�aba
−1) belong to L∞(T2), it follows that

the final quantity in (5.19) may be written as

I∑
i′=1

∑
b∈Ej+1

m
i(j+1)
i′b (�)'̂i′(�b),

for a suitable collection

{mi(j+1)
i′b : i′ = 1, . . . , I, b ∈ Ej+1} ⊂ L∞(T2).

This completes the induction and proves the lemma.

Lemma 5.6. Let E ⊂ ℝ̂2 be bounded and measurable and let {Mj}∞j=1 be a

sequence of positive integers. Assume that

{DbTk'i : b ∈ B, k ∈ ℤ2, i = 1, . . . , I} (5.20)
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is a Bessel system in L2(ℝ2) (I ∈ ℤ+).

(i) Suppose that ∣p∣ > ∣q∣ and that, for each i, ∣'̂i∣ is continuous and

strongly locally Hölder continuous in the direction ê1 with exponent �,

where

� =
1

2

(
1− log ∣q∣

log ∣p∣

)
.

Suppose also that there exists a constant K ′ such that Mj ≤ K ′∣pq−1∣j,

for all j ∈ ℤ+. Then

∣ det a∣j
∫
Ea−j

I∑
i=1

∑
b∈B(Mj)

∣'̂i(�b)∣2 d� → 0,

as j →∞.

(ii) Suppose that ∣p∣ = ∣q∣ and that, for each i, ∣'̂i∣ is continuous and

strongly logarithmically continuous in the direction ê1 with exponent

1/2. Suppose also that there exists a constant K ′ such that Mj ≤ K ′j,

for all j ∈ ℤ+. Then

∣ det a∣j
∫
Ea−j

I∑
i=1

∑
b∈B(Mj)

∣'̂i(�b)∣2 d� → 0,

as j →∞.

Proof of Lemma 5.6. If j ∈ ℤ+ and � ∈ Ea−j, then � = �a−j for some � ∈ E

and we have

∣�e1∣ = ∣�a−je1∣ ≤ ∥�∥∥a−je1∥ ≤ K∣p∣−j, (5.21)
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where K > 0 depends only on E.

To prove (i), suppose that ∣p∣ > ∣q∣ and that, for each i, ∣'̂i∣ is continuous

and strongly locally Hölder continuous in the direction ê1 with exponent �,

where

� =
1

2

(
1− log ∣q∣

log ∣p∣

)
.

Suppose also that there exists a constant K ′ such that Mj ≤ K ′∣pq−1∣j, for

all j ∈ ℤ+. Using part (ii) of Corollary 3.1 and that (5.20) is Bessel, it follows

that there exists a bounded increasing function M : [0,∞) −→ [0,∞) such

that
I∑
i=1

∣'̂i(�)∣2 ≤M(∣�e1∣)∣�e1∣2�, (5.22)

for all � with 0 < ∣�e1∣ ≤ 1, where M(t)→ 0 as t→ 0. If 0 < ∣�e1∣ ≤ 1 and

j ∈ ℤ+, then using (5.22), that B fixes e1, and that ∣B(M)∣ ≤ 3M (M ∈ ℤ+),

we obtain

∑
b∈B(Mj)

I∑
i=1

∣'̂i(�b)∣2 ≤
∑

b∈B(Mj)

M(∣�be1∣)∣�be1∣2�

=
∑

b∈B(Mj)

M(∣�e1∣)∣�e1∣2�

= ∣B(Mj)∣M(∣�e1∣)∣�e1∣2� (5.23)

≤ 3MjM(∣�e1∣)∣�e1∣2�

≤ 3K ′∣pq−1∣jM(∣�e1∣)∣�e1∣2�.

By (5.21), (5.23) is valid a.e. in Ea−j for large enough j. For these j,
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using (5.23), (5.21), and the definition of � we obtain

∣ det a∣j
∫
Ea−j

I∑
i=1

∑
b∈B(Mj)

∣'̂i(�b)∣2 d�

≤ ∣E∣ 1

∣Ea−j∣

∫
Ea−j

3K ′∣pq−1∣jM(∣�e1∣)∣�e1∣2� d�

≤ 3∣E∣K ′∣pq−1∣j sup
�∈Ea−j

M(∣�e1∣)∣�e1∣2�

≤ 3∣E∣K ′∣pq−1∣jM(K∣p∣−j)(K∣p∣−j)2�

= 3∣E∣K ′K2�M(K∣p∣−j)
(
∣p∣
∣p∣2�∣q∣

)j
= 3∣E∣K ′K2�M(K∣p∣−j)→ 0,

as j →∞.

To prove (ii), suppose that ∣p∣ = ∣q∣ and that, for each i, ∣'̂i∣ is continuous

and strongly logarithmically continuous in the direction ê1 with exponent

1/2. Suppose also that there exists a constant K ′ such that Mj ≤ K ′j, for

all j ∈ ℤ+. We proceed as in the proof of (i). Using part (ii) of Corollary 3.1

and that (5.20) is Bessel, it follows that there exists a bounded increasing

function M : [0,∞) −→ [0,∞) such that

I∑
i=1

∣'̂i(�)∣2 ≤
M(∣�e1∣)∣∣ log ∣�e1∣

∣∣ , (5.24)

for all � with 0 < ∣�e1∣ < 1, where M(t) → 0 as t → 0. If 0 < ∣�e1∣ < 1 and

j ∈ ℤ+, then using (5.24), that B fixes e1, and that ∣B(M)∣ ≤ 3M (M ∈ ℤ+),
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we obtain

∑
b∈B(Mj)

I∑
i=1

∣'̂i(�b)∣2 ≤
∑

b∈B(Mj)

M(∣�be1∣)∣∣ log ∣�be1∣
∣∣

=
∑

b∈B(Mj)

M(∣�e1∣)∣∣ log ∣�e1∣
∣∣ (5.25)

= ∣B(Mj)∣
M(∣�e1∣)∣∣ log ∣�e1∣

∣∣
≤ 3Mj

M(∣�e1∣)∣∣ log ∣�e1∣
∣∣ ≤ 3K ′j

M(∣�e1∣)∣∣ log ∣�e1∣
∣∣ .

If j ∈ ℤ+ is large enough so that K∣p∣−j < 1, then (5.21) implies that (5.25)

is valid a.e. in Ea−j. For these j, using (5.25) and (5.21), we obtain

∣ det a∣j
∫
Ea−j

I∑
i=1

∑
b∈B(Mj)

∣'̂i(�b)∣2 d�

≤ ∣E∣ 1

∣Ea−j∣

∫
Ea−j

3K ′j
M(∣�e1∣)∣∣ log ∣�e1∣

∣∣ d�
≤ 3∣E∣K ′j sup

�∈Ea−j

M(∣�e1∣)∣∣ log ∣�e1∣
∣∣

≤ 3∣E∣K ′j M(K∣p∣−j)∣∣ log(K∣p∣−j)
∣∣

= 3∣E∣K ′M(K∣p∣−j) j

j log ∣p∣ − logK
→ 0,

as j →∞, where the third inequality and final equality follow from K∣p∣−j <

1.
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5.2.3 Main Results

This subsection contains the three main results of the current section—results

regarding the nonexistence of certain aB-scaling multifunctions. Similar to

before, the only aB-MRA properties necessary in the proofs of Theorems 5.2

and 5.3 and Corollary 5.2 are properties (i), (ii), and (v). The first two of

our main results involve only these three aB-MRA properties, certain decay

assumptions, and either the finite type 1 (Theorem 5.2) or the finite type

2 (Theorem 5.3) condition. Corollary 5.1, the third of our main results,

translates Theorems 5.2 and 5.3 into a statement regarding the nonexistence

of a large collection of shearlet-like aB-scaling multifunctions which satisfy

a minimal amount of decay and either the finite type 1 or the finite type 2

condition.

Theorem 5.2. Let z ∈ ℤ+, let

B =

⎧⎨⎩b(l) =

⎛⎜⎝1 lz

0 1

⎞⎟⎠ : l ∈ ℤ

⎫⎬⎭ ,

and let

a =

⎛⎜⎝p r

0 q

⎞⎟⎠ ,

for some p, q, r ∈ ℤ satisfying ∣p∣ > 1, ∣q∣ ≥ 1, and q ∣ p. Let {0} ∕=

{'1, . . . , 'I} ⊂ L2(ℝ2) (I ∈ ℤ+). Suppose that there exists a finite subset F

of B such that the following conditions are satisfied:
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(i) for each i, Da'i is in the closed linear span of

{DbTk'i′ : b ∈ F, k ∈ ℤ2, i′ = 1, . . . , I};

(ii) the collection

{DbTk'i : b ∈ B, k ∈ ℤ2, i = 1, . . . , I} (5.26)

forms a frame for its closed linear span;

(iii) there exists a dual frame to (5.26) of the form

{DbTk i : b ∈ B, k ∈ ℤ2, i = 1, . . . , I} (5.27)

such that 'i ⊥ DbTk i′, for all b ∈ B ∖ F , all k ∈ ℤ2, and all i, i′ =

1, . . . , I.

Then we have the following:

(iv) If ∣p∣ > ∣q∣, the functions '1, . . . , 'I cannot be such that, for each i, ∣'̂i∣

is continuous and strongly locally Hölder continuous in the direction ê1

with exponent �, where

� =
1

2

(
1− log ∣q∣

log ∣p∣

)
.

(v) If ∣p∣ = ∣q∣, the functions '1, . . . , 'I cannot be such that, for each i, ∣'̂i∣
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is continuous and strongly logarithmically continuous in the direction

ê1 with exponent 1/2.

Theorem 5.3. Let B and a be as in the statement of Theorem 5.2. Let

{0} ∕= {'1, . . . , 'I} ⊂ L2(ℝ2) (I ∈ ℤ+). Suppose that there exists 0 < C ≤

D <∞ and a sequence L1 < L2 < L3 < . . . of positive integers such that the

following are satisfied:

(i) for each i, Da'i is in the closed span of the collection

{Db(l)Tk'i′ : ∣l∣ ≤ L1, k ∈ ℤ2, i′ = 1, . . . , I}; (5.28)

(ii) for each j ∈ ℤ+, the collection

{Db(l)Tk'i : ∣l∣ ≤ Lj, k ∈ ℤ2, i = 1, . . . , I}

forms a frame for its closed span with constants C ≤ D.

Then we have the following:

(iii) If ∣p∣ > ∣q∣, the functions '1, . . . , 'I cannot be such that, for each i, ∣'̂i∣

is continuous and strongly locally Hölder continuous in the direction ê1

with exponent �, where

� =
1

2

(
1− log ∣q∣

log ∣p∣

)
.
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(iv) If ∣p∣ = ∣q∣, the functions '1, . . . , 'I cannot be such that, for each i, ∣'̂i∣

is continuous and strongly logarithmically continuous in the direction

ê1 with exponent 1/2.

We make the following comments regarding the statements of Theo-

rems 5.2 and 5.3:

(i) Using the notation of Theorems 5.2 and 5.3, note the interesting man-

ner in which the regularity of the functions '1, . . . , 'I depends on the

matrix entries p and q: roughly speaking, the closer ∣q∣ gets to ∣p∣, the

less regularity the functions '1, . . . , 'I can attain in the direction ê1.

(ii) As will be evident from its proof, the statement of Theorem 5.2 can

be strengthened in the following fashion: under the assumptions of

Theorem 5.2, condition (iv) or (v) (whichever is relevant) cannot be

satisfied on the �2-axis. A similar remark can be made regarding the

statement of Theorem 5.3.

We now prove Theorems 5.2 and 5.3.

Proof of Theorem 5.2. For M ∈ ℤ+, let V (M) and W (M) denote the closed

spans of

{Db(l)Tk'i : ∣l∣ ≤M,k ∈ ℤ2, i = 1, . . . , I}

and

{Db(l)Tk'i : ∣l∣ ≥M,k ∈ ℤ2, i = 1, . . . , I},

respectively. Choose L ∈ ℤ+ such that F ⊂ B(L).
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Claim 5.1. For each M ∈ ℤ+, we have V (M) ⊥ W (M + L+ 1).

Proof of Claim 5.1. Suppose that ∣l∣ ≤ M , that ∣l′∣ ≥ M + L + 1, that

k, k′ ∈ ℤ2, and that i, i′ ∈ {1, . . . , I}. Then

⟨Db(l)Tk'i, Db(l′)Tk′ i′⟩ = ⟨'i, T−1k D−1b(l)Db(l′)Tk′ i′⟩

= ⟨'i, Db(l′−l)Tk′−b(l−l′)k i′⟩

= 0,

where the last equality holds since, as a consequence of

∣l − l′∣ ≥ ∣l′∣ − ∣l∣ ≥M + L+ 1−N = L+ 1,

we have b(l′ − l) /∈ F . The claim now follows.

Let 0 < C ≤ D < ∞ denote the frame constants of both of (5.26)

and (5.27).

Claim 5.2. Let M ∈ ℤ+ and let f ∈ L2(ℝ2). Suppose that [f̂ , f̂ ] ∈ L∞(T2)

and that f ∈ V (M). Then

f̂(�) =
I∑
i=1

∑
b∈B(M+L)

mib(�)'̂i(�b),

for a.e. �, where the collection {mib : 1 ≤ i ≤ I, b ∈ B(M + L)} belongs to
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L∞(T2) and satisfies

I∑
i=1

∑
b∈B(M+L)

∥mib∥22 ≤ D∥f∥2.

Proof of Claim 5.2. We may write the collection (5.26) and its dual frame (5.27)

as

{TkDb'i : b ∈ B, k ∈ ℤ2, i = 1, . . . , I}

and

{TkDb i : b ∈ B, k ∈ ℤ2, i = 1, . . . , I}.

Using conditions (ii) and (iii) of this theorem and part (vii) of Lemma 2.1,

we may write

f̂ =
∑

1≤i≤I,b∈B

[f̂ ,  ̂i(⋅b)]'̂i(⋅b), (5.29)

with unconditional convergence in L2(ℝ2). Using part (ii) of Theorem 2.1, it

follows that

∣∣[f̂ ,  ̂i(⋅b)](�)∣∣ =
∣∣∣ ∑
k∈ℤ̂2

f̂(� + k) ̂i
(
(� + k)b

)∣∣∣
≤
(∑
k∈ℤ̂2

∣f̂(� + k)∣2
)1/2(∑

k∈ℤ̂2

∣ ̂i
(
(� + k)b

)
∣2
)1/2

(5.30)

= [f̂ , f̂ ](�)1/2[ ̂i(⋅b),  ̂i(⋅b)](�)1/2

≤ [f̂ , f̂ ](�)1/2D1/2,
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for a.e. � and all b and i. Part (iv) of Lemma 2.1 implies that

∑
1≤i≤I,b∈B

∥∥[f̂ ,  ̂i(⋅b)]
∥∥2
2
≤ D∥f∥2. (5.31)

Using Claim 5.1 and part (iii) of Lemma 2.1, it follows that

[f̂ ,  ̂i(⋅b(l))](�) = 0,

for a.e. �, all ∣l∣ ≥M + L+ 1, and all i = 1, . . . , I. Thus, by (5.29), we have

f̂(�) =
I∑
i=1

∑
b∈B(M+L)

[f̂ ,  ̂i(⋅b)](�)'̂i(�b), (5.32)

for a.e. �. The claim now follows from (5.30), (5.31), and (5.32).

Using condition (ii) in the statement of this theorem and part (ii) of

Theorem 2.1, it follows easily that

[(Dj
a'i)ˆ, (Dj

a'i)ˆ](�) ≤ ∣ det a∣jD, (5.33)

for a.e. � (for each j ∈ ℤ+ and each i). Using the above inequality (with

j = 1), that Da'i ∈ V (L) (for all i), Claim 5.2, and Lemma 5.5, it follows

that Dj
a'i belongs to the closed span of

{DbTk'i′ : b ∈ B(2L)j, k ∈ ℤ2, i′ = 1, . . . , I}
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(for each j ∈ ℤ+ and each i). Consequently, Lemma 5.4 implies that Dj
a'i ∈

V (Lj), where

Lj =

⎧⎨⎩
2L∣pq−1∣j, if ∣p∣ > ∣q∣;

2Lj, if ∣p∣ = ∣q∣.

(for each j ∈ ℤ+ and each i). Note that the sequence {Lj} defined here bears

no relation to the sequence of the same name that appears in the statement

of Theorem 5.3. Using (5.33), Claim 5.2, and that Lj + L ≤ 2Lj, we may

write

∣ det a∣j/2'̂i(�aj) = (Dj
a'i) (̂�) =

I∑
i′=1

∑
b∈B(2Lj)

mij
i′b(�)'̂i′(�b), (5.34)

for a.e. �, where the collection {mij
i′b : 1 ≤ i′ ≤ I, b ∈ B(2Lj)} belongs to

L∞(T2) and satisfies

I∑
i′=1

∑
b∈B(2Lj)

∥mij
i′b∥

2
2 ≤ D∥Dj

a'i∥2 = D∥'i∥2, (5.35)

(for each j ∈ ℤ+ and each i).

Since {'1, . . . , 'I} ∕= {0}, there is an index i and a measurable bounded

subset E of ℝ̂2 which satisfies ∣E ∩ (E + k)∣ = 0 (for all k ∈ ℤ̂2 ∖ {0}) such

that ∫
E

∣'̂i(�)∣ d� > 0.

Using a change of variable, (5.34), and two applications of the Schwarz in-
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equality, we obtain

0 <

∫
E

∣'̂i(�)∣ d� = ∣ det a∣j
∫
Ea−j
∣'̂i(�aj)∣ d�

= ∣ det a∣j/2
∫
Ea−j

∣∣∣ I∑
i′=1

∑
b∈B(2Lj)

mij
i′b(�)'̂i′(�b)

∣∣∣ d�
≤ ∣ det a∣j/2

∫
Ea−j

( I∑
i′=1

∑
b∈B(2Lj)

∣mij
i′b(�)∣

2
)1/2

( I∑
i′=1

∑
b∈B(2Lj)

∣'̂i′(�b)∣2
)1/2

d�

≤ ∣ det a∣j/2
(∫

Ea−j

I∑
i′=1

∑
b∈B(2Lj)

∣mij
i′b(�)∣

2 d�

)1/2

(5.36)

(∫
Ea−j

I∑
i′=1

∑
b∈B(2Lj)

∣'̂i′(�b)∣2 d�
)1/2

=

(∫
Ea−j

I∑
i′=1

∑
b∈B(2Lj)

∣mij
i′b(�)∣

2 d�

)1/2

(
∣ det a∣j

∫
Ea−j

I∑
i′=1

∑
b∈B(2Lj)

∣'̂i′(�b)∣2 d�
)1/2

,

for each j ∈ ℤ+. Using (5.35), we obtain

∫
Ea−j

I∑
i′=1

∑
b∈B(2Lj)

∣mij
i′b(�)∣

2 d� ≤
∫
[0,1]2

I∑
i′=1

∑
b∈B(2Lj)

∣mij
i′b(�)∣

2 d�

=
I∑

i′=1

∑
b∈B(2Lj)

∥mij
i′b∥

2
2 (5.37)

≤ D∥'i∥2,
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for each j ∈ ℤ+, where the first inequality follows easily from choice of E.

We claim that the proof now follows: if either condition (iv) or condi-

tion (v) in the statement of this theorem fails, it would then follow from

Lemma 5.6 and (5.37) that the right hand side of (5.36) goes to 0 as j →∞,

a contradiction.

Proof of Theorem 5.3. For M ∈ ℤ+, let V (M) and W (M) denote the closed

spans of

{Db(l)Tk'i : ∣l∣ ≤M,k ∈ ℤ2, i = 1, . . . , I}

and

{Db(l)Tk'i : ∣l∣ ≥M,k ∈ ℤ2, i = 1, . . . , I},

respectively.

By condition (ii) in the statement of this theorem (with j = 1), the

collection (5.28), which we may write as

{TkDb'i : b ∈ B(L1), k ∈ ℤ2, i = 1, . . . , I}, (5.38)

forms a frame for its closed span with constants C ≤ D. By comment

(i) following Definition 5.1, the canonical dual frame to (5.38) (which has

constants D−1 ≤ C−1) may be written as

{TkDb'̃i : b ∈ B(L1), k ∈ ℤ2, i = 1, . . . , I}.
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Using condition (i) in the statement of this theorem and part (vii) of Lemma 2.1,

we may write

∣ det a∣1/2'̂i(�a) = (Da'i) (̂�)

=
I∑

i′=1

∑
b∈B(L1)

[(Da'i) ,̂ ˆ̃'i′(⋅b)](�)'̂i′(�b), (5.39)

for a.e. � and for each i. Using the Schwarz inequality and part (ii) of

Theorem 2.1, we obtain

∣∣[(Da'i) ,̂ ˆ̃'i′(⋅b)](�)∣∣ = ∣ det a∣1/2
∣∣∣ ∑
k∈ℤ̂2

'̂i((� + k)a)ˆ̃'i′((� + k)b)
∣∣∣

≤ ∣ det a∣1/2
(∑
k∈ℤ̂2

∣'̂i((� + k)a)∣2
)1/2(∑

k∈ℤ̂2

∣ˆ̃'i′((� + k)b)∣2
)1/2

= ∣ det a∣1/2
(∑
k∈ℤ̂2

∣'̂i(�a+ ka)∣2
)1/2

[ˆ̃'i′(⋅b), ˆ̃'i′(⋅b)](�)1/2
≤ ∣ det a∣1/2

(∑
k∈ℤ̂2

∣'̂i(�a+ k)∣2
)1/2

C−1/2 (5.40)

= ∣ det a∣1/2['̂i, '̂i](�a)1/2C−1/2

≤ ∣ det a∣1/2D1/2C−1/2,

for a.e � and for each i. Using (5.39), (5.40), and Lemma 5.5, it follows that

Dj
a'i belongs to the closed span of

{DbTk'i′ : b ∈ B(L1)
j, k ∈ ℤ2, i′ = 1, . . . , I}
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(for each j ∈ ℤ+ and each i). Consequently, Lemma 5.4 implies that Dj
a'i ∈

V (Mj), where

Mj =

⎧⎨⎩
L1∣pq−1∣j, if ∣p∣ > ∣q∣;

L1j, if ∣p∣ = ∣q∣.

(for each j ∈ ℤ+ and each i). Choose a sequence j1 ≤ j2 ≤ j3 ≤ . . . of

positive integers such that

Mjs ≤ Ls ≤Mjs+1, (5.41)

for all large enough s ∈ ℤ+.

Since {'1, . . . , 'I} ∕= {0}, there is an index i and a measurable bounded

subset E of ℝ̂2 which satisfies ∣E∩(E+k)∣ = 0 (for all k ∈ ℤ̂2∖{0}) such that

⟨'̂i, �E⟩ ∕= 0. Define � ∈ L2(ℝ2) by �̂ = �E. Using the Plancherel theorem,

a change of variable, Lemma 3.1, and choice of E we obtain

∑
k∈ℤ2

∣⟨D−ja DbTk'i′ , �⟩∣2 =
∑
k∈ℤ2

∣⟨(D−ja DbTk'i′)ˆ, �̂ ⟩∣2
=
∑
k∈ℤ2

∣∣∣∣ ∫
E

(D−ja DbTk'i′) (̂�) d�

∣∣∣∣2 (5.42)

=
∑
k∈ℤ2

∣∣∣∣∣ det a∣−j/2
∫
E

'̂i′(�a
−jb)e−2�{�a

−jbk d�

∣∣∣∣2
= ∣ det a∣j

∑
k∈ℤ2

∣∣∣∣ ∫
Ea−j

'̂i′(�b)e
−2�{�bk d�

∣∣∣∣2
= ∣ det a∣j

∫
Ea−j
∣'̂i′(�b)∣2 d�,
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for all b, i′, and j ∈ ℤ+.

Let V denote the closed subspace {�'i : � ∈ ℂ}, and let P : L2(ℝ2) −→

V be the orthogonal projection of L2(ℝ2) onto V . For j,M ∈ ℤ+, let

P (j,M) : L2(ℝ2) −→ D−ja V (M)

be the orthogonal projection of L2(ℝ2) onto D−ja V (M). Using (5.41), (5.42),

that V ⊂ D−jsa V (Mjs), and that

{D−jsa DbTk'i′ : b ∈ B(Ls), k ∈ ℤ2, i′ = 1, . . . , I}

forms a frame for D−jsa V (Ls) with constants C ≤ D (for all s ∈ ℤ+), we

obtain

0 < ∥P�∥2 ≤ ∥P (js,Mjs)�∥2

≤ ∥P (js, Ls)�∥2

≤ C−1
I∑

i′=1

∑
b∈B(Ls)

∑
k∈ℤ2

∣⟨D−jsa DbTk'i′ , P (js, Ls)�⟩∣2 (5.43)

= C−1
I∑

i′=1

∑
b∈B(Ls)

∑
k∈ℤ2

∣⟨D−jsa DbTk'i′ , �⟩∣2

= C−1∣ det a∣js
∫
Ea−js

I∑
i′=1

∑
b∈B(Ls)

∣'̂i′(�b)∣2 d�,

for all large enough s.

We claim that the proof now follows: First note that condition (ii) in the
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statement of this theorem easily implies that

{DbTk'i : b ∈ B, k ∈ ℤ2, i = 1, . . . , I}

is a Bessel system. Thus, if either condition (iii) or condition (iv) in the state-

ment of this theorem fails, it would then follow from (5.41) and Lemma 5.6

that the right hand side of (5.43) goes to 0 as s→∞, a contradiction.

The below corollary, which follows immediately from Theorems 5.2 and 5.3

and Lemmas 4.2 and 4.4, is the third main result of this section.

Corollary 5.2. Let B and a be as in the statement of Theorem 5.2.

(i) If ∣p∣ > ∣q∣, then there does not exist an aB-scaling multifunction

{'1, . . . , 'I} (I ∈ ℤ+) of finite filter type 1 or 2 such that, for each

i, we have 'i, ∣x1∣�'i ∈ L1(ℝ2), where

� =
1

2

(
1− log ∣q∣

log ∣p∣

)
.

(ii) If ∣p∣ = ∣q∣, then there does not exist an aB-scaling multifunction

{'1, . . . , 'I} (I ∈ ℤ+) of finite filter type 1 or 2 such that, for each

i, we have

'i,
(

log(∣x1∣+ 1)
)1/2

'i ∈ L1(ℝ2).

In any case, there does not exist an aB-scaling multifunction {'1, . . . , 'I}

(I ∈ ℤ+) of finite filter type 1 or 2 such that, for each i, 'i is compactly
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supported.

We make the following comment in connection with Corollary 5.2: Let

a =

⎛⎜⎝2 0

0 1

⎞⎟⎠ ,

let

B =

⎧⎨⎩b(l) =

⎛⎜⎝1 l

0 1

⎞⎟⎠ : l ∈ ℤ

⎫⎬⎭ ,

and let '̂ = �I , where I = I+ ∪ I−, I− = −I+, and

I+ = {(�1, �2) ∈ ℝ̂2 : 0 ≤ �1 ≤ 1, 0 ≤ �2 ≤ �1}.

As observed in Example 3.3, ' is an ON aB scaling function. It is straight-

forward to verify that

'̂(�a) = m(�)'̂(�) +m(�)'̂
(
�b(−1)

)
,

for a.e. �, where m ∈ L2(T2) is the ℤ̂2-periodic extension to ℝ̂2 of �[0,1/2]×[0,1].

It follows easily that ' is of finite filter type 1 and 2. In accordance with

Corollary 5.2, note that ' /∈ L1(ℝ2) (by the discontinuity of '̂).
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Chapter 6

Final Comments

In this chapter, we indicate a number of interesting questions that arise

from the reproducing system characterizations of Chapter 2 and the scaling

multifunction nonexistence results of Chapters 3 and 5.

6.1 Regarding the Reproducing System Char-

acterizations of Chapter 2

Recall that a shift invariant (SI) space is a closed subspace V of L2(ℝn) that

satisfies TkV ⊂ V , for all k ∈ ℤn. Such spaces play an important role in

many areas of mathematics, particularly in wavelet theory. Clearly, a very

natural choice of reproducing system for a SI space V is one of the form

{Tk'i : k ∈ ℤn, i ∈ I}, (6.1)
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where {'i : i ∈ I} ⊂ V and I is a countable indexing set.

When I = {1}, essentially every reproducing property of (6.1)—ortho-

normality, Riesz basis, frame, minimality, l2-linear independence, Bessel,

Schauder basis (n = 1), etc.—is characterized relatively simply in terms of

the bracket product ['̂1, '̂1] (see [5] and [9]). In Chapter 2, we characterize

when (6.1) (with I a general countable indexing set) forms a Bessel system, a

frame, and a Riesz basis. These characterizations involve operator inequali-

ties of matrices whose entries are the bracket products ['̂i, '̂j] (i, j ∈ I). It is

very likely that the methods used to prove the results of Chapter 2 can also

be used to characterize the other above mentioned reproducing properties

(minimality, l2-linear independence, Schauder basis (n = 1), etc.) of (6.1)

when I is a general countable indexing set.

6.2 Regarding the Scaling Multifunction Nonex-

istence Results of Chapters 3 and 5

In this section, we indicate several interesting questions that arise from the

nonexistence results of Chapter 3 (regarding aB-scaling multifunctions of

Haar-type when B is infinite) and the nonexistence results of Chapter 5 (re-

garding shearlet-like scaling multifunctions satisfying certain desirable prop-

erties).
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6.2.1 What Shearlet Scaling Multifunctions Can Ex-

ist?

Let

a =

⎛⎜⎝2 0

0 1

⎞⎟⎠
and let

B =

⎧⎨⎩
⎛⎜⎝1 l

0 1

⎞⎟⎠ : l ∈ ℤ

⎫⎬⎭ .

Recall that B is said to be a shear group and that an aB-multiwavelet, an

aB-MRA, and an aB-scaling multifunction are said to be a multishearlet, a

shearlet MRA, and a shearlet scaling multifunction, respectively.

Corollaries 3.6, 5.1, and 5.2 imply that there does not exist a shearlet scal-

ing multifunction {'1, . . . , 'I} (I ∈ ℤ+) that satisfies ANY of the following

properties:

(i) {'1, . . . , 'I} is of Haar-type;

(ii) 'i is compactly supported and Hölder continuous in the direction e2

with exponent �, for some 1/2 < � ≤ 1 (for each i);

(iii) 'i is compactly supported (for each i) and {'1, . . . , 'I} is of finite type

1 or 2.

In contrast to the above nonexistence results, following Corollary 5.2, an

example of a MSF ON shearlet scaling function ' that is of finite filter type
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1 and 2 is given. However, although ' ∈ C∞(ℝ2), it has very slow decay

(' /∈ L1(ℝ2)). ' is essentially the only shearlet scaling multifunction in

existence.

Given the relatively large gap between the above existence and nonex-

istence results, an obvious question is: What is the maximum amount of

decay and regularity that the elements of a shearlet scaling multifunction

can attain? For example, does there exist a shearlet scaling multifunction

{'1, . . . , 'I} such that, for each i,

∙ 'i belongs to L1(ℝ2)?

∙ 'i is compactly supported?

∙ 'i is compactly supported and exhibits a certain amount of regularity?

Or, on the other hand, can the nonexistence results of Corollaries 5.1 and 5.2

be substantially strengthened?

6.2.2 The Nonexistence of Shearlet-Like Scaling Mul-

tifunctions in Higher Dimensions

It is natural to wonder whether Corollaries 5.1 and 5.2 have higher dimen-

sional analogs. In general, a matrix b ∈ SLn(ℝ) is said to be shear if

(b − In)2 = 0, where In is the n × n identity matrix. Given a countable

shear group B ⊂ SLn(ℝ) (i.e., a matrix group consisting of shear matrices)
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and a matrix a ∈ GLn(ℝ), one can ask how much decay, regularity, and/or

other desirable properties an aB-scaling multifunction can exhibit.

The author is currently considering this question for a very large class of

countable shear groups B ⊂ SLn(ℝ) and matrices a ∈ GLn(ℝ). The answer

depends very interestingly on the structure of B. For example, consider the

following shear groups and matrices:

B1 =

⎧⎨⎩

⎛⎜⎜⎜⎜⎝
1 l1 l2

0 1 0

0 0 1

⎞⎟⎟⎟⎟⎠ : l1, l2 ∈ ℤ

⎫⎬⎭ B2 =

⎧⎨⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 l1 l2 l3

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
: l1, l2, l3 ∈ ℤ

⎫⎬⎭
and

a1 =

⎛⎜⎜⎜⎜⎝
2 0 0

0 1 0

0 0 1

⎞⎟⎟⎟⎟⎠ a2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The results of Corollaries 5.1 and 5.2 carry over to a2B2-scaling multifunc-

tions. For instance, there does not exist an a2B2-scaling multifunction {'1, . . . , 'I}

such that 'i is compactly supported (for each i) and EITHER of the following

is satisfied:

(i) 'i ∈ C3(ℝ4) (for each i);

(ii) {'1, . . . , 'I} is of finite type 1.
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However, the arguments of Corollaries 5.1 and 5.2 fail (for a good reason)

when applied to a1B1-scaling multifunctions.

An obvious question, therefore, is: How much decay, regularity, and/or

other desirable properties can a1B1-scaling multifunctions exhibit? In partic-

ular, does there exist a Parseval a1B1-scaling multifunction that is compactly

supported and of finite type 1? Such an a1B1-scaling multifunction would

most likely be very useful in applications. In any case, an answer to this

question would help foster a much greater understanding of aB-scaling mul-

tifunctions, when B is a shear group and, more generally, when B is infinite.

6.2.3 The Nonexistence of aB-Scaling Multifunctions

for Non-Shear B

aB-scaling multifunctions of Haar-type are clearly the simplest variety of

aB-scaling multifunctions. In general, their existence (for a particular a and

B) can be taken as evidence in favor of the existence of other aB-scaling mul-

tifunctions that, in addition to being compactly supported, also satisfy some

degree of regularity. Moreover, if aB-scaling multifunctions of Haar-type can

be constructed (for a particular a and B), their method of construction can

often provide some insight as to how smoother compactly supported aB-

scaling multifunctions may be constructed. Therefore, the nonexistence of

aB-scaling multifunctions of Haar type, for all countably infiniteB ⊂ S̃Ln(ℝ)

and all a ∈ GLn(ℝ) (Corollary 3.6), can be seen as strong evidence against
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the existence of other varieties of aB-scaling multifunctions (in paricular,

those satisfying certain amounts of decay, regularity, and/or other desirable

properties), at least for certain countably infinite B ⊂ S̃Ln(ℝ). In confirma-

tion of this, Corollaries 5.1 and 5.2 imply the nonexistence of a large class of

shearlet-like aB-scaling multifunctions that satisfy a certain amount of decay

and either some regularity or one of two finite type conditions.

A natural question to ask, then, is: Do versions of Corollaries 5.1 and 5.2

exist for, say, other subgroups B of SL2(ℤ) that are not shear groups? For

example, define the matrix

b =

⎛⎜⎝3 −1

1 0

⎞⎟⎠ ∈ SL2(ℤ).

Note that b has eigenvalues

�1 =
3 +
√

5

2
and �2 =

3−
√

5

2
,

where �1 > 1 > �2 > 0; in particular, b is not shear. Define the infinite

group B = {bj : j ∈ ℤ}. How much decay, regularity, and/or other desirable

properties can aB-scaling multifunctions exhibit (where a is some matrix be-

longing to, say, GL2(ℤ))? In paricular, does there exist a Parseval aB-scaling

multifunction that is compactly supported and of finite type 1? Such an aB-

scaling multifunction would most likely have many useful applications, and,

in any case, an answer to this question would help us to better understand
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composite scaling multifunctions when the composite group is infinite.

6.2.4 A New aB-MRA Definition When B is Infinite

Classical wavelet systems utilize operators of the form

{Dj
a : j ∈ ℤ} and {Tk : k ∈ ℤn}, (6.2)

where a ∈ GLn(ℝ). In dimensions two and higher, there are several im-

portant applications in which the relative geometric simplicity of classical

wavelet systems limits their usefulness. In response to this deficiency, the

more geometricly diverse aB-wavelet systems (or composite wavelet sys-

tems) were introduced in [3]. Composite wavelet systems, in addition to

the operators in (6.2), employ operators of the form {Db : b ∈ B}, where

B is a countable subset of S̃Ln(ℝ). Taking the composite wavelet definition

for granted, the aB-MRA and aB-scaling multifunction defintions follow in

a natural and almost obvious manner from the classical MRA and scaling

function definitions, particularly when B ⊂ S̃Ln(ℤ).

When B is finite, aB-wavelet and aB-MRA systems retain many of the

fundamental characteristics of classical wavelet systems. Haar-type systems,

for instance, continue to exist: In Example 3.2, a compactly supported ON

aB-wavelet  and associated compactly supported ON aB-scaling function

' of Haar-type are constructed, where a is the quincunx matrix and B is the

group of symmetries of the unit square.
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When B is infinite, the aB-wavelet definition seems to be well-made,

particularly in the case of shearlet systems: As discussed at the beginning

of Chapter 5, shearlet systems and their variants have been shown to excel

(indeed, to outperform classical wavelet systems) in several important appli-

cations. Additionally, very well-behaved shearlet systems exist: In section

5 of [3], a Parseval shearlet  is constructed that belongs to the Schwartz

class of ℝ2. However, it is evident from Corollaries 3.6, 5.1, and 5.2 that

the aB-MRA definition has serious limitations: aB-scaling multifunctions

of Haar-type do not exist, for any countably infinite B ⊂ S̃Ln(ℝ) and any

a ∈ GLn(ℝ). Moreover, essentially no useful shearlet scaling multifunctions

exist.

The above paragraph seems to indicate that, despite its naturality, the

aB-MRA and aB-scaling multifunction defintions (when B is infinite) are

incorrectly formulated. A natural question, therefore, is:

Do there exist alternative aB-MRA and aB-scaling multifunction defintions

(when B is infinite) that, while retaining much of the useful structure of the

current definitions, allow the existence of desirable aB-scaling multifunctions—

in particular, aB-scaling multifunctions of Haar-type and shearlet scaling

multifunctions that satisfy substantial amounts of decay, regularity, and/or

finite type conditions?

If yes, such concepts would undoubtedly be very useful in developing fast al-

gorithmic implementations of aB-wavlelet systems and, in particular, shear-

let systems. In either case, an answer to the above question would greatly
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enhance our understanding of aB-wavelet and aB-MRA systems when B is

infinite.
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