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Chapter 1

Introduction

1.1 Motivation

Massive amounts of information and data are passed on the public networks of the

world. To protect their networks, network administrators analyze as much of this

information as is possible. Data needs to be processed in real-time to avoid building

a backlog of accumulated data. Currently, when administrators try to process large

volumes of data, they are overwhelmed by the sheer volume of information.

To enable processing of large volumes of data, we implemented a system – the

hardware-accelerated processor for the Automated Front End (AFE). This automated

system performs a triage of the data to avoid the classic problem of data falling on

the floor.

Data is classified and presented with a score that indicates proximity to a topic of

interest. The Analyst is the final consumer of the data derived from the system. How

well the triage is filtered is a matter of engineering. Finding too much data overwhelms

an analyst and causes the system to be quickly labeled as unusable. Finding too little

data is also unsatisfactory because important information is overlooked.

The AFE system is a hardware implementation of a Machine Learning technique.

Classification of data is performed at high speed by using a Field Programmable Gate

Array (FPGA) on the Field Programmable Port Extender (FPX) [19, 20] platform.

The system processes and annotates data at gigabit rates.
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While developing the project, many hardware and software design considerations

factored into the configuration of the AFE system. The hardware was implemented

as a set of modules using multiple FPX platforms that communicate through a stock

of boards. Partitioning and verification of each stage of data flow were necessary for

the successful integration of the system.

Software systems were used during system development to test, verify, and implement

parts of the AFE system. Software simulation used the same data format standards

as did the hardware. A tool set was developed to run batches of jobs through the

system. Through the use of standard interfaces for the components of the AFE

system, multiple developers were able to build upon and integrate components into

the system.

1.2 Thesis Outline

This thesis begins with a brief history of classification techniques and the issues that

are possible in a hardware implementation of an algorithm. Next, a description of the

platform that is used to implement the AFE system, the Field Programmable Port

Extender (FPX), is provided. Next, a description of the hardware design considera-

tions and their affect on the algorithms for classification is provided. An experiment

is conducted to show well the system can classify newsgroup articles into topics. The

experiment investigates how trade offs in the parameters of the system affect accuracy

and throughput. An appendix details file formats used for hardware and software are

described in detail. Another appendix provides a description of the software devel-

oped for simulating the system. Specifically, appendix A contains the information

on the XML file formats used in the system, while appendix B describes how the

software was used to emulate the functioning of the AFE.
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Chapter 2

Semantic Processing

2.1 Background on Classification Techniques with

Supervised Learning

The study of supervised learning has evolved over many years. The goal in this field

of study is to learn a topic from a training set and to be able to use the knowledge

to classify new items. This problem falls into the category of a Machine Learning

supervised learning technique. Examples of the techniques include: Latent Semantic

Indexing (LSI) [10], Information Theory [27], NGrams [9, 26], and Bayesian Reasoning

[21].

2.1.1 Latent Semantic Indexing

Latent Semantic Indexing (LSI) was introduced by Deerwester et. al. in [10]. The

paper introduced a new method of doing text classification and Information Retrieval.

The technique uses vectors to represent a concept. A concept is determined by a set

of documents. In order to retrieve the concept vector, the statistics of words in

documents of the concept are arranged into a matrix:

A = [aij]

where aij is the frequency of term i in the document j. From the document matrix,

Singular Value Decomposition [10], SVD, is used to generate n-dimensional concept
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vectors that represent the k orthogonal dimensional dispersion of the data in the

matrix. The method is useful in reducing the dimensionality of the problem. By

determining the closest angle between the unknown, A, and concept vectors, Ci, we

classify the unknown documents.

maxi(cos(θi)) = maxi(
|A·Ci|
|A||Ci|)

2.1.2 Information Theory

Techniques of Information Theory [27] incorporate extensive use of probabilistic anal-

ysis. One of the techniques is the use of Information Theoretic Co-clustering [11]. The

idea is to determine the probability distribution of words across concepts. With this

information, when an unknown document needs to be classified, each word can be

scored against the learned probability distribution.

The major benefit of the Co-clustering idea comes from dimensionality reduction.

Rather than tracking every possible word that could appear in documents; a reduction

in the size of the array is performed. There are many methods possible for reducing

the number of words: stemming, dropping stop words, dropping the exceptionally

infrequent words, and clustering. Co-clustering clusters the probability distributions

for words. If the desired output is to have 500 word groups, then all words in the

training set are grouped into 500 groups. The centroid of each group then gives the

score for each concept when a word from that group is seen. K-Means [12] can be

used as the clustering algorithm. Concepts can be developed from the training set of

documents.

2.1.3 n-grams

A model of text mining that uses statistical inference is the method introduced by

Damashek and Shaner [9, 26] that utilizes n-grams. The idea behind the n-grams is

the use of strings of n characters to match content in text. In the AFE project, an

additional circuit uses a tetra-gram method to identify the language and character

set of a document [16].
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Portions of words can be nearly as indicative of concepts than whole words. Certainly

this is true when identifying languages.

The n-grams method is to take a sentence like:

Foundations of NLP

and divide the sequence into a quantized pieces. For tetra-grams, the result of tok-

enizing would be:

‘Foun’, ‘ound’, ‘unda’, ‘ndat’,

‘dati’, ‘atio’, ‘tion’, ‘ions’,

‘ons ’, ‘ns o’, ‘s of’, ‘ of ’,

‘of N’, ‘f NL’, ‘ NLP’

Each character string is counted and a probability is derived such as:

P (Ci|gj)

where C is a set of concepts and g is the set of n-grams. For each ngram, a distribution

over all concepts is derived:

P (gj) =
∑n

i=1 P (gij)

where there are n concepts. When putting n-grams into practice, a document is parsed

into its n-grams and the probabilities are used to determine the categorizations.

The n-grams model is exceptionally accurate at identifying languages with very little

training information. Languages are different in word sets and character sets. The

most identifiable portions of words are the beginning and end of words. In languages,

these n-grams become very powerful identifiers.
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2.1.4 Statistical Reasoning on Words and Word Positions

The methods that are possible with statistical inference are numerous. Beyond the

n-grams method, statistical reasoning can take on many possible incarnations.

Bag of Words

Counting the occurrence of words is what is called the “Bag of Words” (BOW) [2]

technique. All words are counted from a labeled training set to determine the prob-

abilities of each word in relation to the topics being used for training. The sentence

“The boat sailed through the water to port.” has several words that indicate the

sentence relates to marine topics. Because contextual relationships are eliminated, a

sentence like “Let’s blow by the bridge” is very close in interpretation to “Let’s blow

up the bridge.” The two sentences differ by one word each, “by” and “up.” Both

statements are slang while only one is threatening. Using the bag of words method

makes the assumption that concepts are defined by a set of words. When thinking

of a concept such as “bridge,” it is possible to think of all the words that might get

associated with the term. For example, words that might show up in documents that

are talking about the concept “bridge” are words like “bridging,” “suspension,” and

“toll.”

Contextual Relations

The above example does not take into account the relation of words such as “The

Bridge” might refer to a night club or a restaurant. So, extending words around the

term “bridge” can cause confusion as well as be completely wrong in certain circum-

stances. “Bridging the Gap” could just as easily be a usage that is not considered.

Therefore, contextual relations can be important. The probability of the word “driv-

ing” in relation to the word “bridge” would definitely be of greater occurrence than

“painting.” The latter term would not be inconceivable but “driving” would occur in

greater frequency.
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Many methods incorporate these relations. Only considering words that are in the

same sentence as a metric is suitable for Spam classifications; however, considering

the entire document as a contextual relation would be better suited for the entire

concept classification system.

2.1.5 Methods Suited for High Speed Classification - The

One Look Paradigm

Classification at Internet backbone link speeds requires significant processing power.

The One Look Paradigm dictates that data is looked at only essentially once. This is

limiting in the context of concept classification from packets as they pass on networks.

The One Look Paradigm can operate on data passed through a pipeline. A hardware

accelerator was developed to analyze, count, and score the words in the documents

passing over a network.

Consider the problem of attempting to process the payloads on a gigabit link. Sub-

tracting all the data needed for protocol headers and connection negotiation, the

amount of data that can be passed in a single second is approximately half of that

measured data on the link. This is the amount of data available to be moved in

the payloads of the packets and is the data of interest. Usually, data is passed in

EMail, Web pages, and text messaging. Each of these methods uses a protocol to

preserve the structure of the data but does not provide meaning in the analysis of

payloads. Within HTML, a large portion of the data is used for formatting and could

be stripped using a Context Free Language parser [5]. Thus, the amount of data

that is interesting to process is only a fraction of actual traffic that moves across a

network.

Still, the amount of stored data which needs to be processed quickly adds up. In

on-line terms, a complete document would be a complete flow of traffic. Flows can

be continuous over time, generating megabytes to gigabytes of data.

The study of how a limited number of relationship could be analyzed is proposed

for future work on this project. In addition, clever engineering of the system could

maximize the amount of useful data that could be stored.
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With a few twists that will be explained in later chapters of this document, the bag of

words technique is what has been implemented in hardware. This is a good first step

in the analysis of concepts at high speeds from on-line deep packet analysis. Also,

this limitation in complexity fits in the One Look Paradigm because every stage of

the method can be put into a computational pipeline. Feature extraction, feature

counting, and finally scoring would be the stages for any text classification system.

These are the exact stages in the AFE pipeline.

2.2 Hardware Semantic Processing

Although FPGAs can be used to process data at high speeds, certain considerations

must be taken into account. For example, floating point computation is possible but

it is costly in terms of hardware circuit resource usage. One floating point multiplier

is 4 times the size of an integer multiplier. This would not be a major problem if only

one multiplier is used. However, in semantic processing, a large number of features

are needed to represent a document. Therefore, a large number of multipliers are

needed to implement the complete processing system.

2.2.1 Feature Extraction - The Base Word Circuit

Feature extraction is performed by a circuit called the Base Word Circuit. Features

in semantic processing are words. The extraction process of words is discussed in

greater depth in the appendix section of the Base Word Circuit. Basically, the circuit

will produce a list of features it has found and it passes them down the pipeline.

2.2.2 Feature Counting - The Count Circuit

The feature counting function is performed by the Count circuit. The Count circuit

receives a list of extracted features and increments the appropriate counters for the

document. The circuit accumulates statistics of words that appear in the document

by tracking the counts for each flow. The hardware uses integers to track the counts.



9

As one of the design considerations of the AFE system, 2 KBytes is reserved for each

vector. This has been translated into a 4000 feature vector with 4 bit counters. So,

each feature can count to a saturating value of 15 (0xf). When a document is finished

counting, the vector is passed down the pipeline.

2.2.3 Scoring - The Score Circuit

A function that determines how closely a document matches a concept is called the

Score circuit. Scores are computed as a dot product computation between a doc-

ument’s representation generated by the count circuit and known concepts. The

concepts are represented with the same number of feature dimensions and either 4-

bit or 8-bit integer counters. With 4000 dimensions either 2KB or 4KB are used

to represent a concept. The Score Circuit computes a dot product of the document

against all the loaded concepts. When the computation is complete, the results are

passed out of the system.

2.2.4 Hardware Design Configuration

Because the AFE system represents documents with 4000 dimensional vectors, a

mechanism was needed to map words to a feature in the range of 4000. The mapping

is represented by a Word Mapping Table (WMT). In the Base Word Circuit, words

have a minimum word length of 3 characters and are truncated at 16 characters. Each

dimension of a document has a 4-bit counter that saturates at 15 (0xf). Concepts

can be represented with up to 15 vectors with 8-bit counters or up to 30 vectors with

4-bit counters. A set of concept vectors are referred to as a Score Table (ST) in the

AFE lexicon.

These values provide constraints on the algorithm used to develop a WMT and ST.

The experiment section, chapter 4, of this document will explore how the precision

of the system is affected by altering these design constraints. If documents can be

represented with less data, then it may be possible to increase the throughput or

concept capacity of the system.
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Chapter 3

Processing Platform: Field

Programmable Port Extender

(FPX)

3.1 The FPX Platform

The Field Programmable Port Extender (FPX) was developed by members of the Re-

configurable Networking Group within the Reconfigurable Network Group at Wash-

ington University in St. Louis [17].

The FPX platform was designed with a combination of hardware suitable for pro-

cessing data in high speed networks. Network connectivity for the device is through

the Network Interface Device (NID). A Xilinx XCV600E FPGA is used to route data

between network devices and receives commands over the network. One type of com-

mand which is sent over the network is used to reprogram the larger Xilinx XCV2000E

FPGA device on the FPX platform called the Reprogrammable Application Device

(RAD). Circuits can be designed in VHDL or other hardware description languages,

compiled for the RAD, then downloaded to the FPX platform. Two banks of Static

Random Access Memory (SRAM) are connected to the RAD along with off chip

Synchronous Dynamic Random Access Memory (SDRAM). One gigabyte of space is

available in the SDRAM.

The FPX can process data in hardware at Gigabit link rates. The FPX platform

was designed to be used in high speed networks and therefore it is exceptionally well
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Figure 3.1: The FPX

suited for the task of network deep packet analysis. The FPX platform can process

at rates that far surpass conventional computing devices. It can be configured to do

many different types of tasks. For the purposes of the system, it is configured to

analyze the semantic content in TCP/IP flows.

3.1.1 Configuration of the AFE Hardware

The configuration of the hardware-accelerated AFE system is a stack of 5 FPX cards

as shown in figure 3.1. Data is received by the stack from a Line Card (LC). Two

types of cards are supported: OC48 and Gigabit Ethernet. OC48 LC is shown in the

configuration of figure 3.2. Next, four FPX cards are stacked to process the payloads

of packets. Each stage of the circuit is implemented with an individual FPX card.

The cards are connected together with their network interfaces directly connected to

the FPX above it. A fifth FPX card (called the NID PT) appears on the right-hand

side of the stack which reports the output in UDP packets which are sent to a server

which catches the results from hardware [13, 18].
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The processing stages of the AFE system are broken down into basic functions. First,

the TCP Circuit extracts payloads from network traffic. Second, the Base Word Cir-

cuit analysis payloads by tokenizing streams into acceptable byte sequences and pass-

ing them through a dimensionality reduction system called the Word Mapping Table

(WMT). Third, values are passed to the Count Circuit which builds a representation

of the the document into an array. Finally, the Score Circuit computes a dot product

with preloaded concepts represented by arrays of values. The output of the score

circuit is passed to the final NID.

Figure 3.2: Card Stack Configuration of AFE

3.2 Processing Stages

3.2.1 Network Payload Extraction - The TCP Circuit

The first stage of content processing is the extraction of network traffic payloads.

This is provided by the TCP Circuit [25]. The TCP Circuit tracks flow information

including source and destination IP values, source and destination ports, and sequence

number tracking.
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Important aspects of the TCP circuit affect the amount of content being processed.

Sequence number tracking insures that retransmitted data is not reprocessed. Off-

chip memory is used to store the context of a TCP flow, source IP, destination IP,

source port, destination port and sequence number. A hash of the addresses and port

fields generate a FlowID. The FlowID is a 20 bit value. The TCP circuit can be made

to accept only data with sequential tracking numbers. This means that if the circuit

sees a data flow that is intended to have a sequence of A B C D, but the circuit sees

A C D B, the B packet will be accepted in the system but its payload will be ignored

because it is out of sequence. While this can cause some loss of data, it does not

cause much. Schuehler [23] has shown that a very small number of packets appear in

most network flows out of sequence.

Next, within TCP, a completed flow is signified by a FIN (finish) or RST (reset)

packet. When a FIN or RST packet is seen for a flow, all subsequent traffic that

matches the stored flow information will be ignored by the circuit until a new SYN

is transmitted.

Information about the flow being processed is made available to downstream FPGA

circuits in the stack of FPX cards. The source and destination IP addresses and ports

are made available along with a segment of 4 bytes. Every clock tick of the system

provides a new set of bytes for analysis. This functionality provides a stream of data

for the next circuit in the processing pipeline.

3.2.2 Feature Extraction - Word Building and The Base Word

Circuit

The Base Word Circuit tracks flow information while building acceptable byte strings.

Byte strings are derived from word building engines. Currently, there are two basic

word building engines which differ by how they process characters as single-byte and

two-byte. The single-byte engines are for processing character sets like ASCII [4],

Windows Code Pages [7], and ISO character sets [29]. The two-byte engines are

specifically for UTF-16 code pages [15]. To build a word, the character sequence

must be a series of acceptable characters. For the single byte engine, the minimum

length of a word is 3 bytes. For the two byte engine, 6 bytes are needed. Character
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sequences without spaces can be longer then 16 characters, but anything past 16 is

discarded.

It is possible that words span two packets. For the word “river”, one packet could end

with “riv” and the next packet for the flow could start with “er.” The word “river”

will be correctly parsed because the Base Word Circuit preserves the context of the

flow. In general, the last 16 bytes of the payload are stored in memory by using the

FlowID as a memory locator. When a packet from an established flow arrives, the

BWC will look at the stored data and continue tokenizing.

When a word is extracted, the byte string is hashed to produce a 20-bit value with

a range of one million entries. This value points to a memory location that has a

value stored. The stored value then contains a value in the range of 0 to 4000. This

dimensionality reduction method is performed by the Word Mapping Table (WMT).

The BWC creates lists of the values produced by using the WMT and passes them

down the AFE pipeline.

3.2.3 Count Array Construction - The Count Circuit

The Count Circuit tracks flow information while building the count arrays. The

FlowID is used as a memory location for the storage of a flow’s count array. Just like

the BWC, context of flows are preserved. A document vector is built from a flow that

spans over many packets. When a flow is complete, the document vector is passed

down the AFE pipeline.

3.2.4 Scoring Concepts - The Score Circuit

The Score Circuit is the only circuit that does not need to keep track of flow context.

Data is received by the Score circuit only on completion of a flow. When the count

array is received by the circuit, it is scored against all the loaded concept vectors by

computing a dot product between the document vector and each of the stored vectors

that represent a concept. A score is determined for the count array against all the
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concept vectors. The scored results are then reported by the system in within a UDP

packet.

3.3 Post Processing

The reporting module (NID-PT) outputs UDP data-grams that summarize the con-

tent of the flow. The scores are interpreted to determine the correct classification of

the flow. At minimum, interpreting the results just requires finding the largest score.

Additional post-processing can be performed to determine the most likely topic or

topics of the flow. The method of processing the results is dependent on the meth-

ods used in training the WMT and ST. Later discussion in this document shows the

importance of post processing.
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Chapter 4

Parameter Manipulation

Experiment

The choice of parameters of the hardware affect how the system processes data. One

factor is the minimum and maximum size of acceptable character sequences. Other

factors include the size of dimensionality and precision of feature representation of

document and concept vectors. Sensitivity analysis of these parameters provides

insight to determine the performance characteristics and accuracy for variations of

the system. If a system with a smaller configuration can be shown to perform the

same task with similar metrics to the original, then it is possible to implement the

system by using less hardware resources. Alternatively, if larger numbers of features

and topics need to be extracted, more hardware could be required.

4.1 Parameters

4.1.1 Minimum Word Length

In normal operation, word lengths have a minimum of 3 characters and a maximum

of 16. In the experiment, all words are still truncated to 16 characters. However, for

this analysis, minimum word lengths are varied from 2 to 8 characters.
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4.1.2 Count Bit Resolution

Another parameter considered was the bit resolution of the bins in the document

count arrays. The value is nominally 4 bits, allowing for a range of 0 to 15 in each

bin. The values were allowed to change such that the values were 4 bit (≤ 15), 3 bit

(≤ 7), 2 bit (≤ 3), and 1 bit (≤ 1) resolution.

4.1.3 Score Bit Resolution

The next parameter considered was the bit resolution of the score table. The bins in

the score table have an option of 8 bits (≤ 255) or 4 bits (≤ 15). The experiment

utilized both possible values of resolution.

4.1.4 Dimensionality - Number of Features

The final parameter considered was the number of features, the number of bins in the

representation of the documents and concept vectors. In the first inception of the AFE

system, 4000 dimensions were available for features. The parameter manipulation

experiment uses dimensions of 4000, 3000, 2000, 1000, 500, and 250.

4.1.5 Parameter Variation

The parameters of the AFE system were varied as follows: there were a total of

7 values varied in the size of minimum word length, 4 values varied in count bin

resolution, 2 values varied in score table bin resolution, and 6 values varied for feature

set number, for a total of (7 × 4 × 2 × 6) 336 combinations. In order to get a

valid set of results from a specific combination of the parameters, 30 individual runs

were constructed. With 30 runs per configuration, the total number of experimental

runs is 10,080. Also, the parameter manipulation experiment uses both the Mutual

Information (MI) and Heuristic algorithms [13, 18] for developing the WMTs and

STs. Therefore, there were 20,160 total runs of the simulated system.
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4.2 Corpus Profile

The corpus used in the experiment is from a number of Usenet news groups [14]. The

profile of the corpus is described in Table 4.1. The documents are divided in half for

all groups except the “chaff” group. The “chaff” group was used as an interference

group. The group is meant to represent valid data that is not of interest to the other

topics. In this experiment, a subset of articles in the group are used in training so that

documents that fall into the classification can be identified. By assumption, when

large amounts of data are processed, the ratio of interesting items to uninteresting

items will be small. Training on elements that are not desired will provide an attractor

class for undesired items, thus, reducing the rate of false positives. Table 4.1 shows

the labels and number of documents used for training and testing.

Table 4.1: Corpus

newsgroup label training testing total
sci.archeology.moderated archeology 70 70 140
alt.sports.baseball.stl cardinals baseball 32 34 66
rec.equestrian equestrian 41 42 83
misc.consumers.frugal living frugal 16 18 34
soc.libraries.talk libraries 16 18 34
sci.logic logic 31 31 62
rec.martial arts.moderated martial arts 28 30 58
comp.ai.neural nets neural nets 23 26 49
comp.programming.threads programming 47 48 95
humanities.music.wagner wagner 29 32 61
misc.writing.moderated writing 37 38 75
talk.origins chaff 368 10402 10770

Total: 738 10789 11527

An experiment was performed to test the precision of the AFE system while manip-

ulating the parameters of the simulated hardware. When increasing the minimum

word length, the number of words derived from the training set of documents de-

crease. When the minimum word length is too short, many words are rejected. This

distribution of word lengths is shown in figure 4.1.
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Figure 4.1: Word Sizes for Corpus

Table 4.2 shows the number of words in all documents for each concept. A breakdown

of the number of words in each concept by word size based on the training set of

documents is shown in the Table 4.3. The values shown are the average values for all

30 sets of randomly selected training documents.

Table 4.2: Number of Words in All Documents per Concept

Number of Words of Each Length
Topic 2 3 4 5 6 7 8 ≥ 9 Total
archeology 141 366 661 860 927 926 790 1642 6313
baseball 139 286 390 426 441 381 240 433 2736
equestrian 121 227 539 577 537 494 349 516 3360
frugal 65 151 306 317 275 230 151 258 1753
libraries 129 221 359 407 408 400 335 621 2880
logic 105 189 275 332 341 348 264 594 2448
martial arts 203 553 898 1115 1277 1264 1090 2144 8544
neural nets 110 206 298 353 355 403 276 673 2674
programming 138 277 386 414 398 405 311 643 2972
wagner 104 242 501 648 682 705 624 1247 4753
writing 104 200 366 450 431 419 321 567 2858
chaff 944 5206 7683 8655 10274 8576 8438 40241 90017
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Table 4.3: Average Number Words in Training Documents per Concept

Average Number of Words of Each Length
Topic 2 3 4 5 6 7 8 ≥ 9
archeology 107.7 262.1 477.4 583.8 605.1 594.6 492.9 121.9
baseball 108.7 216.3 314.2 317.5 322.6 276.1 167.2 37.3
equestrian 82.8 165.8 392.2 387.6 352.4 307.1 208.7 37.0
frugal 47.2 105.3 208.2 198.1 165.1 131.7 88.0 18.3
libraries 91.7 151.6 243.9 256.3 240.4 241.9 194.9 43.1
logic 76.2 141.3 209.5 243.1 242.6 246.5 177.8 49.2
martial arts 146.6 377.1 660.2 804.7 902.2 878.9 742.9 176.2
neural nets 77.1 144.5 216.4 237.8 229.7 255.0 168.4 50.9
programming 97.5 196.2 288.1 287.5 273.0 274.8 198.0 49.0
wagner 76.2 169.5 350.4 426.0 429.1 436.5 365.9 87.0
writing 70.9 142.9 265.8 300.0 277.4 262.1 190.7 41.1
chaff 478.6 1083.4 1443.9 1641.7 1859.2 1794.0 1632.6 588.2

4.3 Performance

Performance of the classification system will be defined by the use of the metrics

precision and recall. For a given class, precision is defined as the number of documents

correctly retrieved in that class divided by the total number of documents retrieved

in the class, whether correctly assigned to the class or not.

C = set of documents for a single class

D = number of documents ∈ C retrieved

F = number of documents 6∈ C retrieved

D + F = total number of documents in the classification

Precision of C = D
D+F

For a given class, recall is defined as the ratio of the number of documents correctly

retrieved in that class, divided by the total number of documents that could have

been correctly retrieved in the class.
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C = class of documents

D = number of documents ∈ C retrieved

E = number of documents ∈ C not retrieved

D + E = Total number of documents in C

Recall of C = D
D+E

4.4 Setting Thresholds for Evaluation

The algorithms used in this experiment have different evaluation metrics. Each metric

is specific to the chosen method of supervised learning.

4.4.1 cos(θ) for MI

The MI algorithm is evaluated with a metric of cos(θ) that is defined as:

cos(θ)ij =
|Di·Cj |
|Di||Cj |

where Di is a document vector from the set of all documents and Cj is a concept

vector in the set of all concepts. When evaluating a document vector against a set

of concept vectors, the document is assigned to the concept class that achieves the

highest score.

class{Di} = maxj{cos(θ)ij}

Simply selecting the maximum of the calculation is not sufficient. With this classi-

fication metric, all documents in the setting will be classified into a group. This is

called “gun to the head” classification, mixing strong reasons for classification with

weak. A threshold can be used to control the trade off between high recall with low

precision, and low recall with high precision.
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4.4.2 Thresholds of cos(θ)

The determination of the thresholds is part of the learning phase of the MI algorithm

because they are hard to estimate apriori. The threshold is set by finding the lowest

cos(θ) value of the correct classifications of the current class. That value will serve as

the minimum score for allowing a document to be classified in the group. Therefore,

even if a document scores best with a certain class, the score must be at or above the

threshold for the class, otherwise the document is rejected.

4.5 Order Statistics for Heuristic Algorithm

The Heuristic algorithm determines classification by simply determining the highest

score from the dot product of a document vector against a set of concept vectors.

class{Di} = maxj|Di · Cj|

Where Di is a document vector and Cj is a concept vector. The difference between this

and the MI method is the lack of normalization with respect to either the concept

vector or the document vector. This method forces classification of all documents

unless thresholding is used.

4.5.1 Thresholds of Order Statistics

The method to determine a threshold for the Heuristic algorithm is to determine a

magnitude of significance between the greatest score and the second greatest score.

This value was determined in training. Once again, the correct classification with the

least value is used for this metric.

thresholdj = mini{ maxij

2ndmaxij
}

Documents are not classified (rejected) when the classification score does not meet

the magnitude significance threshold.
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This method of selecting thresholds maximizes recall at the expense of precision. A

more thorough analysis would study various points in the precision/recall trade off.

4.6 Results

In the analysis of the experiment, thresholds for the individual runs were determined

for each run from the method described above. A confusion matrix was calculated for

both the training data and the test data. Table 4.4, for example, shows the confusion

matrix for run 4 of the MI algorithm with the parameter setting of: minimum word

length = 5, count bit resolution = 2, score table resolution = 8, and dimensionality

= 3000. Table 4.5 shows the confusion matrix for the testing of that run.

Table 4.4: MI Confusion Matrix for run 4 training of: mwl=5, count=2, stable=8,
dim=3000
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70 0 0 0 0 0 0 0 0 0 0 0 0 100
0 32 0 0 0 0 0 0 0 0 0 0 0 100
0 0 41 0 0 0 0 0 0 0 0 0 0 100
0 0 0 16 0 0 0 0 0 0 0 0 0 100
0 0 0 0 16 0 0 0 0 0 0 0 0 100
0 0 0 0 0 31 0 0 0 0 0 0 0 100
0 0 0 0 0 0 28 0 0 0 0 0 0 100
0 0 0 0 0 0 0 23 0 0 0 0 0 100
0 0 0 0 0 0 0 0 47 0 0 0 0 100
0 0 0 0 0 0 0 0 0 29 0 0 0 100
0 0 0 0 0 0 0 0 0 0 37 0 0 100
0 0 0 0 0 0 0 0 0 0 0 368 0 100
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100 100 100 100 100 100 100 100 100 100 100 100
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Table 4.5: MI Confusion Matrix for run 4 testing of: mwl=5, count=2, stable=8,
dim=3000
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17 0 0 0 0 0 0 0 0 0 0 0 51 25.00
0 18 0 0 0 0 0 0 0 0 0 0 14 56.25
0 0 11 0 0 0 0 0 0 0 0 0 29 27.50
0 0 0 0 0 0 0 0 0 0 0 2 14 0.00
0 0 0 0 0 0 0 0 0 0 0 5 11 0.00
0 0 0 0 0 14 0 0 0 0 0 2 13 48.28
0 0 0 0 0 0 15 0 0 0 0 2 11 53.57
0 0 0 0 0 0 0 7 0 0 0 3 14 29.17
0 0 0 0 0 0 0 0 37 0 0 0 9 80.43
0 0 0 0 0 0 0 0 0 9 0 4 17 30.00
0 0 0 0 0 0 0 0 0 0 13 2 21 36.11
1 0 0 0 0 1 2 0 0 0 0 9389 1007 90.28

p
recision

94 100 100 0 0 93 88 100 100 100 100 99

4.6.1 Averaging Runs

The last column of table 4.4 and of table 4.5 shows the recall for documents in each

class. The last row shows the precision. In order to determine how the algorithm

performed, the averages of the precision and recall values were computed and listed

in the table. An average is computed evenly per class, irrespective of the size of the

class. The average recall for the test set in the table 4.5 is 39.72%. The average

precision of the test set in the table 4.5 above is 81.32%. For the Heuristic algorithm,

this run had an average recall value of 34.74% and an average precision of 79.37%.

Once the average of each individual run is calculated, the average over the 30 runs is

calculated with a 95% confidence interval. A confidence interval is calculated:

95% confidence interval = 1.96 · σm
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where

σm = σ√
N

is the standard error of the mean.

An example of the plot for a dimensionality of 3000 is shown in graph 4.2 and 4.3

Figure 4.2: MI Algorithm: Precision for Dimensionality of 3000 and Score Table
Resolution of 4

All the graphs for the runs are available on-line at: http://bb3.arl.wustl.edu/∼andrew/test8/.

4.6.2 Analysis of Results

When viewing all the graphs of the run, it is possible to determine where the di-

mensionality have a substantial effect on the performance of the algorithms. When

combining the results for all dimensions in graphs 4.4 and 4.5, the inverse relationship

between precision and recall can be seen most clearly in plots of the Heuristic runs.

However, viewing the results from the MI runs does not show such a great separation

of results.
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Figure 4.3: Heuristic Algorithm: Precision for Dimensionality of 3000 and Score
Table Resolution of 4

Figure 4.4: Heuristic Test Precision for 1 bit Count and 4 bit Score

Minimum Word Length

Consistently, a trend can be observed in all graphs that shows that as the minimum

word length increases, the precision decreases. Conversely, recall goes up as the

minimum word length increases. However, the values in the range of 2, 3, 4, and 5
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Figure 4.5: Heuristic Test Recall for 1 bit Count and 4 bit Score

Figure 4.6: MI Test Precision for 1 bit Count and 4 bit Score

seem exceptionally close to each other in all configurations. Both the MI and Heuristic

algorithms parallel each each other when considering only a change in the minimum

word length. There is an incentive to limit confusing or nonsense words as well as to

make the system do less work. The AFE system looks at bytes in chunks of 4 per

clock cycle. A worst case scenario with a minimum word length of 2 would have 4
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Figure 4.7: MI Test Recall for 1 bit Count and 4 bit Score

words for every 3 clock cycles. Therefore, it is possible to produce more than one word

on a clock cycle. This may be possible to handle in a circuit, but if the system does

not need to be overtaxed when there is no need for it should to be. With a minimum

word length of 3, words could be produced as often as every clock cycle. Although it

is currently possible for the count circuit to handle this load, as the system currently

does, but with the goal of making the system faster, the creation of base words is a

detriment to speed. A small minimum word length forces multiple clock cycles to be

used in order to produce a word, timing in the circuit can be more predictable. If 3

is the choice of minimum word length, then the circuit must be designed to handle

a new word every clock cycle. If a minimum word length of 4 or 5 is chosen, fewer

words need to be counted. It is also the case that most short words are stop words

that should be ignored for semantic analysis. Therefore, selecting a minimum word

length of 4 has an added advantage.

There are other motivations for using larger minimum word lengths. It is not desirable

to retrieve acceptable strings from binary files text. The AFE Base Word Circuit does

not use a dictionary to confirm that words fall into a dictionary. So, words like “ZKT”

are treated the same as words like “YES” if they happen to hash to the same base

word table entry. It happens that the byte values of “ZKT” translate to the hex

values “0x5A 0x4B 0x54” which in terms of an RGB mapping of an image is a dark
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purple color. It is also possible that these nonsense words can produce the same base

word as a word like “RIVER” with a hash collision. Reducing noise is one of the

benefits of increasing minimum word length.

Number of Features

The separation that is seen when changing dimensions in the Heuristic algorithm re-

mains when count bit and score bit resolutions are increased. The confusion matrices

for the Heuristic algorithm show that the precision is low because of a large amount of

the chaff which were misclassified. This is especially noticeable when the parameters

of the system are set so that there are 500 or 250 bins for features. The Recall for

those runs is high. However, if the goal of the system is to present data with high

precision, limiting the number of features for the Heuristic algorithm becomes an

issue. This is even more evident looking at the precision of the Heuristic algorithm

when the number of features drops from 2000 to 1000. The runs with 4000, 3000,

and 2000 feature results are close for all other parameter manipulations. But, 2000

features appears to be the lower end of the number of features necessary to maintain-

ing high precision. Using less than 2000 features significantly degrades the Heuristic

algorithm.

Results for the MI algorithm show that the change in the number of features is not

a as much of an issue for the performance of the algorithm. The results show that

the MI is not much affected when the number of features was reduced to 2000. The

reason is that for the categories and training data used in these experiments, the MI

algorithm rarely uses more than 1500 features.

Count Bit Resolution

Results from running the Heuristic algorithm show only minimal differences in pre-

cision occur when the count bit resolution changes. This effect can be observed in

Figures 4.8 and 4.9. The MI algorithm does show some difference as a result of

changes to the count bit resolution. Figures 4.10 and 4.11 show how changes have a
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greater affect on the performance of the system. Consistently in the MI algorithm, 2

bit count resolution shows to works a little better on average than the other values.

Figure 4.8: Heuristic Test Precision for Dimensionality 2000 and 4 bit Score

Figure 4.9: Heuristic Test Precision for Dimensionality 2000 and 8 bit Score
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Figure 4.10: MI Test Precision for Dimensionality 2000 and 4 bit Score

Figure 4.11: MI Test Precision for Dimensionality 2000 and 8 bit Score

Significance of Parameter Adjustment

An experiment was run to find a set of parameters that requires fewer resources while

not losing precision. In this experiment with 12 newsgroups, the choice of minimum
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word length of 4, 2000 features, 2 bit count bit resolution, and 4 bit score bit reso-

lution will not lessen the precision of the system. When using the MI algorithm the

average precision of the original configuration is 89.25% with a standard deviation

of 29.22. The proposed setting has a precision of 93.53% with 30.80 standard de-

viation. The proposed setting has a higher average precision with a slightly higher

standard deviation. It would appear that the changes did not degrade performance,

but rather improve it. However, looking at the results from the Heuristic algorithm,

the original setting yielded an average precision of 91.29% with a standard deviation

of 28.16. This is in contrast to the proposed setting that had an average precision of

81.80% with a standard deviation of 27.79. For the Heuristic algorithm, the change

in settings appears to be detrimental to precision.

To test the significance of the results, a Paired T test is used. The results from the

two settings provide a distribution of results and the test indicates the amount of

difference between the two results. The evaluation takes the form:

Paired T Test Statistic = D̄
Sd/

√
n

where D̄ is the average of the differences at each data point. Sd is the standard

deviation of the differences and n is the number of data points (30). The results from

the Heuristic algorithm are compared for the original and proposed settings. The D̄

value is 9.50 and the Sd value is 6.11 which results in the value of 8.51. The P value

for t0.0005 is 3.646 which shows that there is a statistical difference when changing the

settings of the AFE. Applying the same T test to the MI results show D̄ is -4.28 and

Sd is 5.82. This results in a value of -4.03, which indicates a significant difference in

the results of the system. For the MI algorithm, the performance increases and for

Heuristic it decreases. Doing the T test between the results of the two algorithms

shows that there is no difference between the two algorithms with the original settings

of the system. The T test at the original settings has a value of 1.90 which does not

beat the criteria of 3.646. In comparing the performance of both algorithms with the

proposed settings, the T test has a value of 10.84. It is clear that the MI algorithm

is more effective at the new settings.
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4.7 Conclusion

The conclusions from performing sensitivity analysis for the experiment with 12 news-

groups indicates that the MI algorithm can slightly improve precision by using a

minimum word length of 4, 2000 features, 2 bit count resolution, and 4 bit score

resolution. With the new setting, the performance of the base word circuit increases

because it can process 1.25 words per clock cycle rather than 1 word per clock cycle.

The space required in hardware to store a document vector has been cut by 75%. The

original settings required 4000 by 4-bits which is 2000 bytes. The proposed settings

require 2000 by 2-bits which is 500 bytes. This results in the saving of substantial

space in the Count circuit. Because of the shortened data size, the communication

between Count and Score will take 75% less data to transfer a document.
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Chapter 5

5.1 Conclusion

Through this thesis, a framework was developed to determine the optimal parameters

for representation of flows for classification. The representation of a flow affects the

area in the FPGA and computational processing time. Finding optimal parameters for

the AFE system means that precision in classification is maintained while maximizing

the high performance.

The experiment performed within this thesis shows that for 12 newsgroups, the

amount of area needed to represent flows can be reduced by 75% without loss of

precision. The ideas set forth for the parameter experiment can be utilized to obtain

settings for many types of data.

If the system maintains the same area for text representation, it is possible to use

the remaining area other ways. Since the AFE system makes use of a pipeline for

processing, other types of processing circuits could be inserted into the pipeline.

Image annotation, for example, can make use of the remaining area. The extra

information could be utilized to store metadata and other information about a flow

and could assist in the classification.

5.2 Future Work

The AFE system is highly configurable. Many other algorithms could be used to

build word mapping table and a score table. Neural Networks and Support Vector

Machine techniques, for example, could be utilized during the training process. The
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effect reducing the amount of training data could be explored to determine how well

the algorithms can learn with less labeled input data. Previous work has shown that

the heuristic learning algorithm described in [13] will out perform the MI learning

algorithm described in [13] as the amount of training data decreases. More exhaus-

tive study is needed to determine what amount of training data is adequate for the

algorithms used in the system.

5.2.1 Sensitivity of Many Concepts

Another sensitivity study could be performed to determine how well the AFE system

performs as the number of topics increases. The AFE hardware could be upgraded

to use more FPGA resources to handle more concepts. Some configurations may

fit within the available space of the FPGA devices while other configurations would

benefit from larger devices, like the Xilinx Vertex 4. Analysis of results may depend

on the type of data targeted. If language ID is the focus, the number of features

needed is less than for identification of concepts.

5.2.2 Contextual Relations for Words

The current AFE system extracts features as a Bag of Words (BOW). Perhaps there

is a better way of interpreting the text. Rather than basing the concept of a document

only on the words that appear, contextual relations of sentences could be utilized.

This type of analysis would require parsing of the text to find the start and end of

sentences. One example would be to track of words and their X closest neighbors

because there is likely to be a relationship between these nearby words. Consider

a sentence like “I am crossing the river on the bridge.” It is possible to process

all the relations produced by the word “crossing” in relation to concept Ci in P (Ci |
crossing, I), P (Ci | crossing, am), P (Ci | crossing, the), and P (Ci | crossing, river),

but this method requires knowledge of the probabilities of words in relation to other

words. The amount of data that must be stored can be reduced by elimination of

stop words such as “the”, “and”, and “for”. Stemming could be utilized so that a
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plural word like “Trucks” could be shortened to “Truck”. These methods require

substantial prior knowledge about the language that appear in the document.

Limiting the set of words does not eliminate the large number of relations that would

need to be stored. An average America adult has a lexicon of approximately 5000

words. With stemming and elimination of stop words, the lexicon may be reduced

to 2000 important words. If only the relations between pairs of important words is

maintained, the amount of storage required to represent all pairs would be about

4,000,000 items (2000× 2000).

The number of items increases when pronouns are incorporated into the relationships.

The use of very specific word pairs or phrases could help to limit the number of terms

needed for classification. Phrases like “london bridge” or “car bomb” are important

to identify a specific topic whereas other phrases like “jump over” are not significant.

The system could be enhanced to take into account significant word pairs and word

phrases. If the sequence is determined to be important or is specifically a target, the

AFE system could be configured to parse for key phrases.
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Appendix A

File Formats for Simulation,

Learning, and Verification

Simulation of the AFE functioning system is accomplished by a series of programs

written in ANSI C [22]. The implementation allows for testing and verification of

the working AFE system. In order to verify that the circuit is working correctly,

the input and the output of the circuits can be compared to the input and output

of hardware. The format chosen for structuring the data is XML [3]. Beyond the

testing and verification of hardware, XML is used to frame data in other portions of

the working system. These range from configuring experiments to showing results of

new concept discovery.

A.1 Hardware Configuration File Formats

Data files delivered to the hardware are for configuration of the two reconfigurable

circuits. The Base Word circuit uses a file called the Word Mapping Table (WMT ),

and the Score circuit uses a file called the Score Table (ST ).

A.1.1 Word Mapping Table

The Word Mapping Table, (WMT ) represents the mapping of byte strings hashed to

20-bit values to array positions for a 4000 dimension document vector. The WMT has
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a legacy name of Squeeze Table. The legacy name is present in the tags of the WMT

XML file. Frequently, the file created for an experiment is called squeezetable.xml.

Table A.1 shows the format of the WMT. Each tag in the WMT XML serves a pur-

pose. Table A.2 describes each of the elements of the WMT XML file.

Table A.1: XML format for Word Mapping Table

<SqueezeFile>
<MetaData File Type=”Squeeze Table” Version=”1.1”/>
<SqueezeTable>

<bucket num=”00000”> f3c </bucket>
<bucket num=”00001”> f3d </bucket>
...
<bucket num=”0003c”> 83b </bucket><!–1 discontinued –>
<bucket num=”424f0”> 16c </bucket><!–3 pro invaded incident –>
...
<bucket num=”fffff”> f87 </bucket>

</SqueezeTable>
</SqueezeFile>

Table A.2: WMT Tag Description

SqueezeFile - Designating the file as a WMT

MetaData - XML header information

File Type - The type of XML file.

Version - Version of WMT

SqueezeTable - Section for WMT data.

bucket - Shows the mapping of hash value to array position (lowercase hex)

num - hash output value (20-bits in lowercase hex)
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A.1.2 Score Table

The Score Table, ST, is the second file used for both hardware and software configu-

ration. The file represents the number of concept vectors and concept vector formats

for the score circuit. The legacy name of the ST is a Load Score Document. Table

A.3 shows the format of the ST document. Each tag in the ST XML file is described

in Table A.4. For the programs that are written for the AFE system, the important

aspects become the numbits tag and the number of count arrays specified.

Table A.3: XML format for ST

<loadscore>
<MetaData File Type=”loadscore” numbits=”8” version=”1.1” />
<countarray num=”0” norm=”312.381177” bias=”0” threshold=”0.039150”>

01 30 12 34 50 ab 43 29 fa .....
a1 32 .....

</countarray>
<countarray num=”1”>

01 30 12 34 50 ab 43 29 fa .....
</countarray>

.....
<countarray num=”14”>

01 30 12 34 50 ab 43 29 fa .....
</countarray>

</loadscore>

The numbits tag designates if the hardware is to be configured with 15 count arrays

that have 8-bit precision for the 4000 elements of the arrays, or 30 count arrays with

4-bit precision. The countarray data is represented with 4000 elements in lowercase

hexadecimal format where each value is separated by a space or new line. The human

readable format of the document will have a limited number of values on a single line.

It is necessary to designate all the countarray data elements for hardware. The
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Table A.4: ST Tag Description

loadscore - Opening tag for the ST document

MetaData - XML header information

File Type - The type of XML file.

numbits - Score circuit precision value (8 or 4 are valid)

version - Version of ST

countarray - Count array data

num - The count array number

norm - normalization factor

bias - biasing value

threshold - threshold for acceptance

hardware must have all its elements loaded in order to work properly. Software will

fill in zero values where countarray is not specified.

In Table A.3, the norm, bias, and threshold attributes are stated in the count array

num=0. These values are not used in hardware but are needed in the post processing

evaluation of the scoring of flows.

A.2 Simulated Hardware Output File Formats

AFE has three circuits: Base Word, Count, and Score. Each circuit needs simulated

output representation for hardware verification and testing. Each of the circuits is

designated in separate XML file formats.
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A.2.1 Baseword Circuit Output Representation

The output of the base word circuit contains the flow information of the flow being

analyzed and a list of values derived from the hashing of valid byte strings from pay-

load of the flow. These values are the output from the transformation done through

the WMT. The XML format for the simulated base word circuit output is in Table

A.5.

Table A.5: XML format for Base Word Circuit Output

<bwout>
<MetaData File Type=”BaseWord Output” version=”1.1” />
<header new ff=”1”

end ff=”0”
num bw=”8”
flowId=”05592”
sIp=”128.252.2.5”
dIp=”55.13.94.224”
sPort=”128”
dPort=”55” />

<basewordList>
a50
538
...
93e
0cd

</basewordList>
</bwout>

Each of the values in the file are described in Table A.6. In simulation, the full flow

is reported in an XML file and the list of base words from the flow is listed in the

basewordList data.

The items in the list can be the hash 20-bit values for each valid byte string the hard-

ware detected. The file format of Table A.5 serves the request with the replacement

of the data in the basewordList region. The values go from the values derived from

a WMT to the raw hash values.
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Table A.6: Base Word Circuit Output Tag Description

bwout - Designates the file as a base word circuit output file

MetaData - XML header information

File Type - The type of XML file.

version - Version of the file

header - Header information for the flow is described here

new ff - New flow designator

end ff - End of flow designator

num bw - Number of base words in this message

flowID - Hardware flow identification number

sIp - Source IP address of the flow

dIp - Destination IP address of the flow

sPort - Source port

dPort - Destination port

basewordList - List of base words from the circuit

A.2.2 Count Circuit Output and Representation

The output of the count circuit contains the complete count array for a flow. The

output is in Table A.7 and the description of the fields for the XML file is in Table

A.8. The values of the count array are in lowercase hexadecimal format. The flow

information contained in the header field is the same information contained in the

Base Word Circuit.
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Table A.7: XML format for Count Circuit Output

<cout>
<MetaData File Type=”Count Output” version=”1.1”/>
<header flowId=”05592”

sIp=”128.252.2.5”
dIp=”55.13.94.224”
sPort=”128”
dPort=”55”
num bw=”119” />

<countarray>
0 1 3 0 1 2 3 4 5 0 a b 4 3 2 9 f .....
9 3 e b 0 .....

</countarray>
</cout>

A.2.3 Score Circuit Output and Representation

The output of the score circuit from a simulation is detailed in Tables A.9 and A.10.

The count array for the flow represented by the file is the same count array that

appears in the count output file for the same flow. The AFE system has the capability

of sending the count array out with the scoring of the flow. For that case, the count

arrays are included in the simulated outputs.
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Table A.8: Count Circuit Output Tag Description

cout - Designates the file as a count circuit output file

MetaData - XML header information

File Type - The type of XML file.

version - Version of the file

header - Header information for the flow is described here

new ff - New flow designator

end ff - End of flow designator

num bw - Number of base words in this message

flowID - Hardware flow identification number

sIp - Source IP address of the flow

dIp - Destination IP address of the flow

sPort - Source port

dPort - Destination port

countarray - Data that designates the count array

A.3 Software Learning and Reporting File Formats

Beyond the workings of the AFE hardware, other types of files are used to designate

configurations for the learning algorithms that produce the WMT and ST. These

extra files also aid in identifying the performance of the system.

A.3.1 Config.xml

The config.xml file defines the configuration for an experiment. The file is best un-

derstood by breaking it down into the important sections. First is the header section.
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Table A.9: XML format for Base Word Circuit Output

<sout>
<MetaData File Type=”Score Output” version=”1.1” />
<header flowId=”05592”

sIp=”128.252.2.5”
dIp=”55.13.94.224”
sPort=”128”
dPort=”55”
num bw=”119” />

<scores s0=”10430”
s1=”40045”
s2=”18181”
...
s14=”48181”
ss=”268455”
sum=”9383” />

<countarray>
0 1 3 0 1 2 3 4 5 0 a b 4 3 2 9 f .....
a 2 0 .....

</countarray>
</sout>
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Table A.10: Count Circuit Output Tag Description

cout - Designates the file as a count circuit output file

MetaData - XML header information

File Type - The type of XML file.

version - Version of the file

header - Header information for the flow is described here

new ff - New flow designator

end ff - End of flow designator

num bw - Number of base words in this message

flowID - Hardware flow identification number

sIp - Source IP address of the flow

dIp - Destination IP address of the flow

sPort - Source port

dPort - Destination port

scores - Score circuit output values section

s0 .. s14 or s29 - Scores of the count array against the concept vector

ss - Sum of the squares of elements in the count array

sum - Sum of all elements in the count array

countarray - Data that designates the count array

Header

The header section shown in Tables A.11 and A.12 are standard XML format.
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Table A.11: Config.xml Header Format

<?xml version=”1.0” encoding=”utf-8” standalone=”yes”?>
<ConfigFile>
<MetaData File Type=”Config” version=”2.0” />

Table A.12: Config.xml Header Description

header - basic XML versing and encoding information

ConfigFile - name of the file signifying a config.xml

MetaData - more XML information

File Type - type of file this is

version - which version of config.xml

Runtime Configuration

The information in the Run section contains the data for identifying the location of

files for this experiment. The Tables A.13 and A.14 show the format. Within this

section, the values of the ScoreTablePrecision are values from 1 to 8. Any value

in the range is acceptable for a software run, however, the hardware will only accept

values of 8 or 4. Also, CountTablePrecision has a range of 1 to 4, however, the

hardware is fixed at values of 4.

Classification Algorithm

The ClassAlgorithm section describes the algorithm used in classification of the data.

Tables A.15 and A.16 describes the section. The data in the section is dependent on

the algorithm used to create the WMT and ST. These values are important in the

preprocessing and post processing procedures.
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Table A.13: Config.xml Run section format

<Run>
<Name>May 2005 FI - Test 1 (fast cocl)</Name>
<CorpusDir>../data/</CorpusDir>
<BaseDir>base</BaseDir>
<CountDir>count</CountDir>
<ScoreDir>score</ScoreDir>
<ClusterDir>clusters</ClusterDir>
<ResultDir>results</ResultDir>
<ScoreTable>support/scoretable.xml</ScoreTable>
<SqueezeTable>support/squeezetable.xml</SqueezeTable>
<ScoreTablePrecision>8</ScoreTablePrecision>
<CountTablePrecision>4</CountTablePrecision>

</Run>

Clustering Algorithm

Clustering information is described Tables A.17 and A.18. This section defines how

the post process is to proceed. The algorithm and its definitions are to be designated

within these tags.

Word Mapping Table Algorithm

The WordMappingTable section of the config.xml is described in Tables A.19 and

A.20. This section is important for the designation of what algoritm is to be used

in making the WMT. Within the Params tag, vendor specific information is desig-

nated. Various tags might appear. The ClassFile tag that is shown is specific to the

MI/HNC/FI COCL algrithm implementation.
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Table A.14: Config.xml Run Section Description

Run - Opening tag for the section

Name - This is the name of the experiment.

CorpusDir - The directory of the files for training and validating.

BaseDir - The directory for the output of simulated base circuit.

CountDir - The directory for the output of simulated count circuit.

ScoreDir - The directory for the output of simulated score circuit.

ClusterDir - The directory for clustering output files.

ResultDir - The directory for the postprocessing information.

ScoreTable - Location of the Score Table file.

SqueezeTable - Location of the WMT.

ScoreTablePrecision - ST precision value

CountTablePrecision - Count array precision value

Table A.15: Config.xml ClassAlgorithm section

<ClassAlgorithm>
<Vendor>HNC</Vendor>
<Alg>Cosine</Alg>
<Rejection>RATIO</Rejection>

</ClassAlgorithm>

Concept Training

The Concepts section of the config.xml is described in A.21 and A.22. The values

designated here specify what concepts will be trained into the WMT and ST. The

concept vectors developed for the classification system are designated within this

section.
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Table A.16: Config.xml ClassAlgorithm Section Description

Vendor - The vendor’s software used for the run. Acceptable values are HNC and
WashU.

Alg - The algorithm used for classification. Acceptable values are Cosine and Dot-
Product.

Rejection - The rejection method used in classification. Acceptable values are RA-
TIO and DELTA.

Confusion Matrix for Post Processing

The Confus section of the config.xml is shown in A.23 and A.24. This is to designate

the structure and labeling of the confusion matrix in the post processing of data.

File Designation

The final three sections of the config.xml are in Tables A.25 and A.26. These sections

designate the files to be used for training, validation, and testing. The values in the

language and encoding tags are dependent on the files designated. The idea of the

three sections is to use a corpus for training and testing the system. Files for training

are designated in the TrainFiles and ValidateFiles sections. The validation files

are available for evaluating how the algorithms were trained with all the files available

in the training section. The TestFiles are for testing the performance of the overall

Table A.17: Config.xml ClusterAlgorithm section

<ClusterAlgorithm>
<Vendor>WashU</Vendor>
<Alg>K-Means</Alg>
<Params></Params>

</ClusterAlgorithm>
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Table A.18: Config.xml ClusterAlgorithm Section Description

ClusterAlgorithm - The tag for the section.

Vendor - The vendor who wrote the code used in clustering.

Alg - The algorithm used for the clustering.

Params - Specific parameter information for the clustering.

system. It is possible to have concepts designated in the label that are not specified

in the Concepts section of the config.xml.

Table A.19: Config.xml WordMappingTable Section

<WordMappingTable>
<Vendor>HNC</Vendor>
<Alg>COCL</Alg>
<Params><ClassFile>classes.txt</ClassFile></Params>
</WordMappingTable>
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Table A.20: Config.xml WordMappingTable Section Description

Vendor - The vendor who provided the code. Acceptable values are HNC and
WashU.

Alg - The algorithm used. Acceptable values are COCL and Order.

Params - This is specific information for the software. As in the above example, the
class file for COCL is described.

Table A.21: Config.xml Concepts Section

<Concepts>
<concept num=”0”><label>arabic-marriage</label></concept>
<concept num=”1”><label>english-marriage</label></concept>
<concept num=”2”><label>spanish-marriage</label></concept>
<concept num=”3”><label>turkish-marriage</label></concept>
...

</Concepts>

Table A.22: Config.xml Concepts Section Description

Concepts - the tag for the section

concept - designation of a new concept

num - the concept vector number to be created

label - the name of the concept

A.3.2 Base Word Table

It is often beneficial to track the words that formulate the mappings in the WMT.

This formulation is specified in an XML file called the Base Word Table (BWT ).

The format and description of the BWT is shown in A.27 and A.28. The data shows

the mapping of words to the count array positions of the ST and the data flows

processed by the AFE system. It is possible to have a very large number of valid
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Table A.23: Config.xml Confus Section

<Confus>
<Columns>
<column><label>astrology</label></column>
<column><label>cars</label></column>
...
</Columns>
<Rows>
<row><label>astrology</label></row>
<row><label>cars</label></row>
...
</Rows>

</Confus>

Table A.24: Config.xml Confus Section Description

Confus - tag for the overall Confus section

Columns - tag for the Columns section of Confus

column - designates a column item

label - the label of the column or row

Rows - tag for the Rows section

row - designates a row item

strings in each word designation. This file is useful for learning, conceptualization,

and visualization. The values in the word values can become complex when multiple

character set encodings are designated for training purposes. The encoding field

may not satisfy all the character sets used in the creation of the mappings.
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Table A.25: Config.xml Test, Train, and Validate Section

<TrainFiles>
<file><name>filename1</name><label>conceptX</label>

<language>english</language><encoding>utf-16BE</encoding>
<type>Signal</type></file>

<file><name>filename2</name><label>conceptY</label>
<language>english</language><encoding>utf-16BE</encoding>
<type>Signal</type></file>

...
</TrainFiles>

<ValidateFiles>
<file><name>filename10</name><label>conceptX</label>

<language>english</language><encoding>utf-16BE</encoding>
<type>Signal</type></file>

<file><name>filename11</name><label>conceptY</label>
<language>english</language><encoding>utf-16BE</encoding>
<type>Signal</type></file>

...
</ValidateFiles>

<TestFiles>
<file><name>filename20</name><label>conceptX</label>

<language>english</language><encoding>utf-16BE</encoding>
<type>Signal</type></file>

<file><name>filename21</name><label>conceptY</label>
<language>english</language><encoding>utf-16BE</encoding>
<type>Signal</type></file>

...
</TestFiles>

A.3.3 Cluster Output

Concept discovery is done as a post process by clustering the output of the system.

The format of the clustering output is shown in Tables A.29 and A.30. The format has

room for highly specific information for any algorithm used. It is allowed that specific

algorithm information can be put into the file. Usually, before the cluster section,
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Table A.26: Config.xml Test, Train, and Validate Section Description

TrainFiles - tag for training files section

ValidateFiles - tag for validating files section

TestFiles - tag for test file section

file - For a single file, its attributes are described within.

name - The name of the file.

label - The concept that the file is associated.

language - The language of the file.

encoding - The encoding of the file.

type - The type of file for the experiment. Acceptable values are Signal and Inter-
ference.

information is added to specify run time values for the algorithm used to create the

output. For instance, <GlobalStatistics>, <MutualInformation>, <ElapsedTime>

are all acceptable. The parameters section of the file will have information deter-

mined from the program that created the clustering and is specific to the individual

cluster. Tags such as <level>, <numChildren>, and <isLeaf> are all acceptable.

The file designations are associated with a corpora used. The files used in cluster-

ing have be processed by the AFE system. Next, the countarray of the individual

cluster section is represented in hexadecimal values of 8-bit precision. The idea of

making the countarray available is so that the AFE system can be populated with

the output shown in the Cluster Output file. The file is meant for a general descrip-

tion of clustering and attempts to handle both hierarchical and flat partitioning. The

subcluster section is used to start a new cluster section.
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Table A.27: Base Word Table XML format

<?xml version=”1.0” encoding=”utf-8”?>
<BaseWordFile>

<MetaData File Type=”BaseWord Table” Version=”1.2” />
<BasewordTable>

<bucket>
<num>000</num>
<wordlist>

<word>’55</word>
<word>22RUBIA</word>
<word>236</word>
...
<word>the</word>

</wordlist>
</bucket>
...

</BasewordTable>
</BaseWordFile>

Table A.28: Base Word Table Description

header - basic XML versing and encoding information

BaseWordFile - Designates the file as a base word table file

MetaData - more XML header information

File Type - The type of XML file.

version - Version of the file

BaseWordTable - Tag for the data section

bucket - Shows the mapping of the array value to words

num - designates the array value

wordlist - designates the list of words

word - a word in the bucket
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Table A.29: Cluster XML format

<?xml version=”1.0” encoding=”utf-8” standalone=”yes”?>
<ClusterOutput>

<MetaData FileType=”Cluster Output” Version=”1.1” />
<cluster>

<filenames>
<file>talk.origins-113327 015</file>
<file>talk.origins-138768 015</file>

</filenames>
<parameters>

<type>fixed</type>
<countarray>

18 17 00 00 00 1c ...
</countarray>

</parameters>
<subcluster>

<cluster>
...

</subcluster>
</cluster>

</ClusterOutput>
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Table A.30: Cluster XML Description

header - basic XML versing and encoding information

ClusterOutput - Designates the file as a cluster file

MetaData - more XML header information

File Type - The type of XML file.

version - Version of the file

cluster - a single cluster’s data

filenames - section for listing files in the cluster

file - a single file name

parameters - cluster’s specific information

countarray - representation of the count array
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Appendix B

Software for System Simulation for

Learning Algorithms

The functioning of the AFE system is simulated in a series of programs. Each program

produces files in the XML formats described in Appendix A. Without the simulation,

the process of testing the circuits would be exceedingly more difficult. The Base Word

Circuit is simulated in the program simBaseOutput.c. The Count Circuit is simulated

in the program simCountOutput.c. And finally, the Score Circuit is simulated in the

program simScoreOutput.c. The programs are executed in a sequence that follows

the path of the hardware.

B.1 Programming Language Choice

The C Programming Language [22] is the choice for simulating the AFE system.

Any language would have worked. However, C provides an inherent ability to get

to the actual memory locations of data very easily. In simplest terms, C is the

management of memory with some calculations. It is very fast and integral in the

linux operating system. These features of C are very important in the simulation

process. The FPGA is a system of manipulating bytes and bits in memory locations

and gate arrays. Simulating this system requires the ability to do the hardware data

manipulations in software. The bit operators of C, (>>, <<, &, |, ˆ), allow for the

same type of bit manipulations that occur in hardware.
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B.2 Simulation of the Base Word Circuit

(simBaseOutput)

The first program in the sequence of simulation is the program to simulate the Base

Word Circuit and it is called simBaseOutput. The program can work in a number of

ways. First, it can read a directory full of files and produce the appropriate outputs.

It can also be called to process a single text file. The program, to work like hardware,

requires a WMT. However, the program can be called to output the raw 20-bit values

instead of the values of the WMT. All instances of input will produce output in the

XML Base Word output format.

B.2.1 Word Length and Word Parsing Engines

The Base Word Circuit of the AFE system identifies words by identifying acceptable

byte sequences. Essentially, a word is a series of bytes that are identified to be

acceptable in a given sequence. This is a very important distinction. Acceptance of

byte sequences is slightly different than tokenization. The tokenization of words is

acheived by knowing the tokens and segmenting sequences of bytes at those known

tokens. Building words from acceptable byte sequences is done by allowing sequences

to build as long as the bytes adhere to a specific acceptable value and sequence.

In the AFE system, sequences of 3 to 16 characters constitute an acceptable word.

Sequences that extend past 16 characters are truncated to 16. For example:

antidisestablishmentarianism ⇒ antidisestablish

Depending on the language, a character can be a single byte or two bytes. The AFE

system reads different languages. Multiple encodings of character sets and multi byte

encodings are supported.
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Single Byte Word Parsing Engine

When building words with single byte characters [4, 7], the method requires making

sure each byte fits an acceptable criteria. AFE tries to work with encodings used

commonly on the Internet by configuring the tokenizing engines in ASCII with some

Extended ASCII, and a combination of Windows Code Pages. Like hardware, many

engines can be building words concurrently. As seen in the Figure mutual exclusion

does not totally exist. Also, in Figure multiple encodings are accommodated by

allowing overlap in the acceptable bytes. In practice, these acceptable ranges are

configurable within the programming of the hardware and software. The values shown

are tailored for a configuration suitable for testing purposes.

Multibyte UTF16 Engine

The multibyte encoding of UTF16 [15] requires at least 2 bytes and can extend to 4

bytes. However, with the focus of AFE, only 2 byte characters are needed. UTF16 2

byte encoding is defined as:

byte 1 ≡ code page designator

byte 2 ≡ character on code page

Individual multibyte tokenizing engines run on the hardware concurrently with all

other tokenizing engines. Each engine is looking for sequences of characters from

individual code pages. On the Internet, Big Endian encoding is used. For example,

an engine looking for sequences in code page 06, Arabic, will need to see every other

byte equal 06. Further, the second byte must adhere to a designated range acceptable

for Arabic characters.

B.2.2 Hash Function in Simulation

When sequences are found by tokenizing, software incorporates a hash function to

obtain a 20-bit number. The software hash is functionally the same as hardware. The
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functioning of the hash is quite simple. The hash is described in Table B.1

Table B.1: Hash Function Description

1 Initialize 20 bits to zeros
2 Read 4 characters into buffer (assuming 2 bytes per character)
3 For the low byte of each character, take the low 5 bits and

pack them into a 20 bit variable and XOR with the output 20 bits
4 Rotate the output 20 bit value by 1 bit to the right.

Continue until the input has been hashed.

Hashing Example

For instance, it will be easier to understand the hash function with the following

example for the word TUNNELING.

First the sequence of characters must be prepared for hashing. So, single byte se-

quences are turned into multibyte sequences. The high byte will be 0x0. Therefor:

‘T’ ‘U’ ‘N’ ‘N’ ‘E’ ‘L’ ‘I’ ‘N’ ‘G’ ⇒ ‘0x0’ ‘T’ ‘0x0’ ‘U’ ...

In hexadecimal: “0054 0055 004E 004E 0045 004C 0049 004E 0047”

Now the sequence is ready to be hashed. Now the output value is initialized to

zero:

out← 0 in bits: 0000 0000 0000 0000 0000

The first 4 characters are considered now: “0054 0055 004E 004E”

The low 5 bits of the characters are taken to build a 20 bit value:

“0054 0055 004E 004E” is in bits:

00000000 01010100 00000000 01010101 00000000 01001110 00000000 01001110

Taking the low 5 bits to form a 20 bit number would result in:

10100 10101 01110 01110
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Now we XOR the output value with the value we just derived and get:

out ← 1010 0101 0101 1100 1110

There are more bytes to consider so we do a 1 byte right rotate and now we have:

out ← 0101 0010 1010 1110 0111

Now we take the next 4 characters:

0045 004C 0049 004E is in bits:

00000000 01000101 00000000 01001100 00000000 01001001 00000000 01001110

Taking the low 5 bits:

00101 01100 01001 01110

The new low 5 bit value now gets XORed with the out value:

out ← 0101 0010 1010 1110 0111 ⊗ 0010 1011 0001 0010 1110

out is now: 0111 1001 1011 1100 1001

There is still a single character left to process so we need to do a 1 bit right ro-

tate on the out value:

out is now: 1011 1100 1101 1110 0100

Continuing on, we need to build a 20 bit value from the remaining characters. Since

there are less then 4 characters left, zeros will be filled in for the absent values:

0047 0000 0000 0000 is in bits:

00000000 01000111 00000000 00000000 00000000 00000000 00000000 00000000

The resulting 20 bit number from the low 5 bits is:

00111 00000 00000 00000

We now XOR this value with the current out value:

out ← 1011 1100 1101 1110 0100 ⊗ 0011 1000 0000 0000 0000
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out is now: 1000 0100 1101 1110 0100

One last right rotate of out: 0100 0010 0110 1111 0010

We now have the output of the hash: (in hex) 0x426F2

B.2.3 Output of Simulated Base Word Circuit (BWC)

In order to simulate the BWC correctly, the workings of the TCP circuit [25] must be

considered. The design of the BWC incorporates the signals made available by the

TCP processor. The inner workings of the BWC cannot be separated from the TCP

circuit. This fact makes it impossible to fabricate the input to the BWC. All data

must be passed into the BWC via the TCP processor. Therefore, when simulating

the BWC, aspects of the TCP processor must be considered.

All processing of data in the TCP circuit is done on a per flow basis. TCP com-

munication, such as the retrieval of a web page, is actually considered as two TCP

flows and may occur over many packets. A TCP flow has a source IP, destination

IP, a source port, and a destination port. These values are used to calculate a 19-bit

Hash value called the FlowID. This value points to space for 524288 individual flow

representations. Flows are represented as source IP, destination IP, source port, des-

tination port, and sequence number. The 19bit value is used to point to a memory

location for the flow information. If there exists no previous data in the memory

location, the TCP sets its NEWFLOW OUT APPL signal and stores the informa-

tion. Also, since the NEWFLOW OUT APPL signal is set, the BWC processes the

payload of the packet. The BWC processes data on a per packet basis with some

context tracking. The BWC keeps track of partially completed words by storing in

memory the context of the word tokenizing engines.

Next, if the packet being processed from the TCP circuit is part of a flow, the sequence

numbers are analyzed. If the sequence number coming in is earlier that what is stored

the packet is passed to the BWC for processing. If the sequence number is not correct,

but it is increasing, the packet will be analyzed by the BWC. The BWC will reinstate

the tokenizing engines information from stored memory and continue processing data.
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The BWC processing of data will continue as though the packets were in the correct

order.

Hash collisions for TCP flows are possible and do happen. If a flow has been hashed

to a memory location, a new flow could “crush” old flow information by hashing

to the same memory location. This causes the NEWFLOW OUT APPL signal to

be set and makes the BWC ignore old information. The BWC will not send any

information about the previous flow to the count circuit. Therefore, it is possible to

have multiple outputs of the BWC for a flow that may never have an end of flow. The

other possibility is for “thrashing” where two flows continually crush each other until

one, or both end. Notice that the XML file format accommodates the actions of new

flows by use of the “new ff” attribute and the end of flow signal is accommodated by

the “end ff” attribute.

The BWC passes information on to the Count Circuit via cells. The information con-

tained in the cells is the same information that gets written to a file in the BaseWord

XML format A.5. Files are produced in the order that they are processed. The data

in the files is a list of base word values. The base word values are determined by use

of a WMT.

B.2.4 Usage of simBaseOutput Version 1.0

The basic usage of the simBaseOutput program requires a WMT (option “-s”), a

source directory containing a corpus (option “-r”), and a output directory (option

“-o”). A basic usage is:

simBaseOutput -s wmt.xml -r /corpus/dir/ -o /output/dir/

All the options for the program are shown in Table B.2.

The simBaseOutput program has special features for aiding in the testing of hardware.

The MI/HNC/FI coclustering algorithm requires that the raw hash values (20-bit)

values be made available for each file instead of the output of a WMT. MI/HNC uses

the raw values to train its algorithm to produce a WMT. The 20-bit values are put
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Table B.2: Usage Options for simBaseOutput

Usage: simBaseOutput -<flag> <param> -<flag><param> ...
-r <directory to read from>
-o <directory to write to>
-s <squeeze file to use>
-f <use only this one file>
-w “will not use a squeeze table”
-len <length of words: ≥ are ok
-v “will produce vebose output”
-a “will use only ascii and utf16-00”

in the XML output instead of the values produced from a WMT. The use of the “-w”

flag will make the program ignore the need for a WMT.

Another special feature is the use of the “-f” flag. This condition will process only

a single file. A WMT can be used with the option or the raw hash output can be

achieved with the “-w” flag.

Since the programs written for the project are for testing purposes as well as ver-

ification, the minimum size of words can be adjusted. The “-len” flag will accept

values in the range of 2 to 15. The default of the simBaseOutput program, and of

the hardware, is to process sequences in the range of 3 to 16 characters. Chapter 4 in

this thesis is the manipulation of the minimum word length parameter of the system.

B.3 Simulation of the Count Circuit

(simCountOutput)

The program for simulating the count circuit is called simCountOutput. This program

represents the processing of the second circuit in the AFE system. The BWC output

is the input to the Count Circuit. In the simulation, the output of the BWC is a

series of files representing the processing of individual packets. XML files from the

output of simBaseOutput are processed into XML count output files. The list of base
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words in the base output XML files are counted into the 4000 dimension document

array. The options for the simCountOutput program are shown in Table B.4.

Table B.3: Usage of simCountOutput

Usage: simCountOutput -<flag><param> -<flag><param>...
-r <directory to read from>
-o <directory to write to>
-f <use only this one file>
-sat <value to saturate counts: 15, 7, 3, or 1
-v “will produce vebose output”

The basic usage of the program requires a source directory (option “-r”) and an output

directory (option “-o”). For example:

simCountOutput -r /baseoutput/xml/dir -o /output/dir

A single file can be processed with the “-f” option like above. The simCountOutput

program has the ability to alter the precision of values in the count arrays. The “-sat”

option can change the number of bits available for each bucket. This is important in

evaluating the performance of the hardware and software by limiting the precision of

representation of buckets.

B.4 Simulation of Score Circuit

(simScoreOutput)

The final stage of the hardware pipeline is the Score Circuit. The simulation program

for the Score Circuit is simScoreOutput. The program requires a scoretable.xml file

(option “-s”). Like the other above programs, a directory of count XML files needs

to be specified (option “-r”) along with a directory for the output (option “-o”). For

example:
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simScoreOutput -s scoretable.xml -r /countoutput/xml/dir -o /output/dir

The options for simScoreOutput is shown in Table B.4. A single file can be processed

instead of a complete directory fill of files by using the “-f” option. However, when a

single file is processed, a score table needs to be specified.

Table B.4: Usage of simScoreOutput

Usage: simScoreOutput -<flag><param>-<flag><param>...
-r <directory to read from>
-o <directory to write to>
-s <score file to use>
-f <use only this one file>
-v “will produce vebose output”
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