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ABSTRACT OF THE DISSERTATION 
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Assistant Professor Patrick Jay, Chairperson 

 

While a clear heritable risk has been observed for congenital heart disease, there is 

considerable variation in penetrance and presentation likely due to multiple genetic and 

environmental risk factors. To identify causative factors and interactions responsible for variability 

in heart development, greater than 4,200 hearts from Nkx2-5 heterozygous knockout mice have 

been collected and examined. Nkx2-5+/- mice in the inbred strain background C57Bl/6 frequently 

have atrial and ventricular septal defects. The incidences are substantially reduced in the Nkx2-5+/- 

progeny of first-generation (F1) outcrosses to the strains FVB/N or A/J. Defects recur in the 

second generation (F2) of the F1xF1 intercross or backcrosses to the parental strains. All 3 strains 

carry susceptibility alleles at different loci for atrial and ventricular septal defects. Relative to the 

other 2 strains, A/J carries polymorphisms that confer greater susceptibility to atrial septal defect 

(ASD) and atrioventricular septal defects and C57Bl/6 to muscular ventricular septal defects 

(VSD). Genome wide linkage analysis was conducted on 306  mice from the FVB/n F2 intercross 

and 80 mice from the A/J F2 intercross diagnosed with VSD to map main effect and interacting 

loci that correlate with risk. Additionally the possibility of environmental interactions was 

explored in this analysis by including maternal and paternal age and litter size as terms in the 
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models tested. Significantly linked genomic regions were identified from the FVB/n population on 

chromosomes 6, 8 and 10 implicating genes in these positions as important candidates for VSD 

risk. Linkage analysis on the A/J cross identified both shared and unique modifiers from the 

FVB/N cross scan. Maternal age was found to significantly correlate with VSD risk in FVB/N 

crosses but not A/J providing evidence for strain specific susceptibility to a non-heritable risk 

factor. The findings in this study implicate modifier genes as major factors in cardiac 

developmental pathways by buffering against genetic and environmental insults in the majority 

while directing the manifestation of disease in a few. Characterization of the genetic architecture of 

congenital heart disease in a mouse model will provide a deeper understanding of its multifactorial 

nature and possibly lead to novel strategies for prognosis and prevention. 
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Chapter 1: Introduction and Background Review 

Literature Review 

Congenital Heart disease (CHD) is a complex disease occurring with an incidence 

of 1 in 100 live births and it is the leading cause of defect-related death among newborns 

in the United States 1,2. Surveys from diverse locales and periods showed a remarkably 

consistent ~0.5% incidence of significant congenital heart disease in newborns. The 

distribution of defects assumes a regular pattern with ventricular septal defects (VSDs) 

being the most common, followed by atrial septal defects (ASDs) and atrioventricular 

canal defects (AVCs) 3. It is suspected that this complex of diseases is caused by 

disruptions at various points along the cardiac developmental pathway resulting in a 

malformed heart. With a strong recurrence in 1st degree relatives, there is a clear genetic 

component to congenital heart disease risk, but its study is complicated by genetic 

heterogeneity as well as variable penetrance and expressivity 4,5.  Even when individuals 

are carrying a common genetic risk factor there is considerable variability in phenotypic 

outcome6. As early as 1968 Nora et al described congenital heart disease as having a 

multifactorial model of inheritance; or the result of multiple genetic and environmental 

factors and interactions7.  

The most important advances in this field have come from the discovery of 

human disease causing mutations in cardiac transcription factor genes such as Tbx5, 

GATA4 and Nkx2-58-10. But, studies exemplifying syndromes with highly penetrant heart 

defects have resulted in an emphasis on monogenic causes that highlight the outdated 

genetic determinism paradigm where one gene is linked to one phenotype. The vast 
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majority of congenital heart disease occurs sporadically and is not due to obvious 

mutations in major genes 1,3. Studies addressing sporadic incidences have identified 

numerous candidate loci that show correlation with cardiac malformations but 

mechanistic explanations remain incomplete 1,11. There lacks a framework that relates the 

known major genes and candidate loci to each other in the context of functional 

developmental pathways. A coherent model would require a better understanding of the 

underlying variability including genes with smaller effects on the cardiac regulatory 

pathway and potential environmental risk factors that may interact with them.    

 One potential approach to a better understanding of congenital heart disease is 

dissecting the evolutionary basis for the heart’s inherent complexity. Heart development 

occurs early in gestation with the first heart beats occurring 21-23 days into human 

embryonic development and the completion of the four chambers and outflow tract at 7 

weeks 12. The developmental sequence is replicated in birds and mammals and is 

governed by a highly conserved gene regulatory pathway. The first heart began as a 

simple tube with contractile functions in our distant aquatic ancestors, however millions 

of years of gene duplication and co-option of additional genetic networks have resulted in 

multiple chambers, valves, inflow and outflow tracks and a conduction system as seen in 

mammals. A series of transcription factors have been identified as playing a major role in 

morphogenesis but there still lacks a comprehensive model of upstream regulators and 

downstream activators to complete our understanding 13. Multiple genetic factors 

affecting CHD makes sense as this is a vital and complex system that has been evolving 

for many millions of years. The polygenic risk of CHD may provide a clue to how the 

heart survives and remains a relatively robust organ system. Perhaps there is considerable 
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variation in small effect genes so that if a major genetic or environmental disruption to 

the system occurs, there will be a whole host of options for the system to evolve from14. 

It seems that this system would develop out of millions of years of stabilizing selection to 

maintain an organ that is robust to change. This presents an important problem in 

understanding points of failure in development underlying the epidemiology of 

congenital heart defects because different modifiers may direct disease in different 

populations. 

 NKX2-5 Cardiac Transcription Factor  

Nkx2-5 is an ancient and well characterized gene that encodes for an NK2-type 

homeodomain cardiac transcription factor important in heart development. The NK2 

homeobox is an ancient regulator of cardiac muscle cell lineages and has been reported to 

be co-expressed with MEF2, a central muscle gene regulator existing in Cniderians which 

lack a heart but contain the myoepithelial cells thought to be similar to the evolutionary 

precursors of myocytes 15.  The Nkx2-5 gene is well conserved because its integral role in 

heart development is ubiquitous across animal species. Homozygous Nkx2-5 knockout 

mice form an underdeveloped heart that is non-functional and therefore 100% embryonic 

lethal.  Developing embryos show a heart tube that is only partially looped and has a 

bulbous atrium and ventricle, a wide, regurgitant atrioventricular canal, and a stenotic 

outflow tract. The embryo dies at E9.5 16,17. However in heterozygous knockout mice, 

animals normally survive to birth but their risk increases for a wide array of heart defects 

and thus, implicates other genetic and environmental elements as being important in heart 

development.  
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In human babies, mutations within have been linked to AV block, atrial and 

ventricular septal defects, tetralogy of Fallot, Ebstein’s anomaly and other tricuspid valve 

abnormalities 18. While it is understood that Nkx2-5 is one of a series of highly conserved 

transcription factors that make up a core set of regulators in heart development13, the 

variation in congenital heart disease cannot be attributed to the heterogeneity of the many 

mutations described in these core genes alone. Nkx2-5 disruption has resulted in an 

increased risk for a variety of different cardiac malformations among individuals within 

the same pedigree indicating that a specific Nkx2-5 mutation does not condemn a person 

to a specific defect 10.  

 

Mouse Model for Human Disease 

The mouse serves as an excellent model for congenital heart disease because the 

human NKX2-5 haploinsufficient pleiotropy described above can be mimicked in inbred 

strains using heterozygous knockouts. These mice show an elevated risk for a variety of 

heart malformations and despite being in a more controlled environment than their human 

counterparts, mice show proportionately similar incidences of the different types of heart 

defects with VSDs being the most common followed by ASDs and then atrioventricular 

canal defects. Mating, living environment and diet can be controlled, and by choosing 

markers polymorphic between strains, there is no ambiguity of allelic ancestry so that 

outcrosses are 100% informative at each marker in linkage analysis. Different inbred 

strains can provide simple homogeneous models for the effects of variable genetic 

backgrounds seen in different individual human subjects. Human allelic background and 
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diversity can thus be modeled in mice in the context of genetic risk for human disease 

19,20.  Strain-dependent variability of cardiac defects has been described in major heart 

genes such as Hey2, Tbx1 and Tbx5 21-23. This observation implies that while these genes 

have been identified as causative factors of human disease, genetic background plays an 

important role in directing the CHD phenotype. It is suspected that innate polymorphisms 

within modifier loci for the core genes mentioned are fixed in inbred lines resulting in 

strain specific variability. These loci can potentially affect alternative sub-networks of 

morphogenesis resulting in a propensity towards defects unique to the line.  

In this study we have crossed Nkx2-5+/- C57Bl/6 mice with wild type FVB/n and 

A/J to form an F1 hybrid generation which was then intercrossed to create two F2 

generations in which each mouse has a unique combination of alleles from the parental 

lines. By outcrossing isogenic mice, the overall proportion of genomic heterozygosity can 

be experimentally varied. In general, genetic hybrids show an increased fitness when 

compared to their 99% homogeneous isogenic parents, a phenomenon called heterosis or 

hybrid vigor 24. Heterosis has primarily been studied in the context of agriculture; 

particularly to investigate the origins of quantitative traits that affect biomass and fertility 

in plants and livestock 25. However it has implications in human disease as well since the 

source of vigor or lowered risk could be the result of evolutionarily beneficial diversity at 

loci that have yet to be discovered. By elucidating the genetic differences among 

individuals that direct them towards or away from a specific defect, a more complete 

model of heart developmental pathways can be established.    
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BACKGROUND DATA 

 Homozygous Nkx2-5 knockout mice form an underdeveloped heart that is non-

functional and therefore 100% embryonic lethal. Nkx2-5+/-

 

 C57Bl/6 isogenic mice are 

born with ASDs and/or VSDs ~55% of the time, but when these mice are outcrossed to 

FVB/n mice their offspring show a dramatic drop in incidence (~4%). The reduction in 

heart defects in the hybrid generation implicates genetic heterozygosity elsewhere in the 

genome as a major effecter on heart development.  

Nkx2-5+/- F1 hybrid show decreased disease incidence 

To generate the F2 animals, Nkx2-5+/- C57Bl/6 males are crossed to FVB/N 

females to generate the F1 hybrid mice.  The F1 generation is genotyped through PCR for 

Nkx2-5+/- knockout and then F1 animals are intercrossed to generate F2 progeny. F2 

neonates are collected within hours of birth to prevent cannibalization and in order to 

keep track of population genotype frequencies.  The neonates are euthanized, dissected 

and genotyped for Nkx2-5. The mouse torso sections are fixed in 10% neutral buffered 

formalin for 2 nights and then transferred to 70% EtOH.  The fixed hearts are dissected 

out, paraffin-embedded and serially sectioned completely in the frontal plane at 6 μm 

thickness.  The cardiac tissue is stained with hemotoxylin and eosin for examination 

under a 5x microscope objective.  Diagnoses of heart defects are independently validated 

for each heart. 
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Figure 1. Breeding strategy. 

Serial sectioned hearts from wild-type and Nkx2-5+/- neonatal pups in the isogenic 

C57Bl/6 background revealed a 17% incidence of ventricular septal defect and a 17% 

incidence of atrial septal defect (Fig. 2) which is significantly different (P > 0.01) from 

the 49 wild-type hearts diagnosed; all of which showed normal heart morphology.   
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Figure 2. The most common defects observed in hearts with Congenital Heart Disease. 

Sectioning and diagnosis of 52 WT and 57 Nkx2-5+/- F1 C57Bl/6-FVB/n newborn 

hearts showed a significant reduction is defects will all WT being structurally normal and 

one ASD and a small VSD detected in Nkx2-5+/- neonate hearts (Table 1). The reduction 

of ASD and VSD incidences in Nkx2-5+/- F1 progeny compared to isogenic Nkx2-5+/- 

C57Bl/6 mice was found to be significant (P > 0.01) for this outcross.  

Because different inbred strains are likely fixed for their own distinct 

combinations of polymorphisms which can result in strain specific effects on defect 

incidence and presentation 26 another outcross was performed using the WT A/J mice. In 

the C57Bl/6-A/J outcross, no VSDs were observed in hybrid WT or Nkx2-5+/- hearts 

resulting in a significant reduction of VSD incidence compared to parental Nkx2-5+/- 
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mice. Interestingly, ASD incidence was found not to be significantly affected by 

hybridization since 4 ASDs were diagnosed out of the 49 F1 C57Bl/6-A/J Nkx2-5+/- mice 

examined. While more complex mechanisms may underlie this finding, it is likely that 

one or more ASD susceptibility loci are not polymorphic between C57Bl/6 and A/J and 

thus risk reduction through increased heterozygosity is not observed as in the C57Bl/6-

FVB/n hybrids. Another explanation may be the presence of dominant A/J 

polymorphism(s) conferring susceptibility in the heterozygous state as well. The F1 

generational loss of VSDs in the presence of Nkx2-5+/- denotes a recovery from 

inbreeding depression and/or the introduction of hybrid vigor. This change in defect 

incidence through a reduction of homozygosity is indicative of a reliance of the cardiac 

phenotype on genetic variation outside of the Nkx2-5 locus. 

 

F2 intercross show a recovery of defects  

Given the observation that F1 hybrids showed a risk reduction for CHD in the 

presence of Nkx2-5+/-, it was predicted that subsequent backcrosses to parental strains 

and intercrosses would increase the incidence of CHD since the F2 crosses would result 

in a proportion of loci reverting back to homozygosity. If recessive CHD susceptibility 

loci reestablish a homozygous state, disease risk should be recovered.     

Mice from the Nkx2-5+/- C57Bl/6-FVB/n and C57Bl/6-A/J F1 hybrid generations 

were backcrossed to C57Bl/6 and separately intercrossed (C57Bl/6-FVB/n F1 x  

C57Bl/6-FVB/n F1, C57Bl/6-A/J F1  x C57Bl/6-A/J F1) to form F2 populations from 

which hearts were collected, sectioned and diagnosed.      
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Ventricular septal defects in the F2 C57Bl/6-FVB/n population remained 

significantly higher (P = 0.0053) in Nkx2-5+/- mice than in the WT mice (Fig. 3). Nkx2-

5+/- atrial septal defect incidence did not reach significance compared to WT F2 progeny 

(P = 0.1199) however, this is likely due to ASDs being more rare and thus lowering the 

number of affected animals so that stochastic events have more influence. Intercross 

progeny showed a recovery of defects with a VSD incidence of 15.1% and an ASD 

incidence of 6.0% out of the 974 Nkx2-5+/- pups collected and diagnosed. VSD incidence 

was significantly increased (P = 0.0004) from the previous F1 hybrid generation. Since 

the status of the Nkx2-5 heterozygous genotype remained constant, an increase in defects 

from the F1 to F2 generations supports the existence of one or more genomic loci that 

modify the Nkx2-5+/- risk for heart defects.         

F2 A/J intercross VSD incidence was significantly elevated from the previous F1 

generation resulting in 10.8% having VSDs out of 465 diagnosed hearts (P = 0.0089). 

The 6.7% ASD incidence observed was not appreciably different than the F1 incidence 

lending support to the hypothesis that ASD susceptibility loci may not be polymorphic 

between C57Bl/6 and A/J or that there are dominant A/J risk allele(s) that confer similar 

risk in Aa and AA form. C57Bl/6 backcross mice showed a modest increase in VSD 

incidence of 10.9% while the ASD incidence of 7.9% was consistent with the 

corresponding intercross data as it was not dissimilar from the F1 generation. F2 A/J 

Nkx2-5 heterozygous mice showed significantly higher incidences for VSDs and ASDs 

than their WT counterparts (P = 0.0001 and P = 0.0012 respectively).   
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Conclusion 

 It is the goal of this study to characterize the genetic variation that is typical of 

congenital heart disease. An inbred C57Bl/6 mouse that has a heterozygous knockout for 

the cardiac transcription factor Nkx2-5 will serve as a model for risk. Controlled breeding 

to other inbred strains will allow for genetic variability to be re-introduced so that we 

may study its effects on the phenotype. Through observation, segregation, linkage and 

correlation analyses, this model will be systematically tested to determine the effects of 

yet unknown sources of genetic variation. The new information gathered from this study 

can then be applied to our current understanding of the heart developmental pathway so 

that a more accurate model of congenital heart disease may then be applied to improve 

standard of care for the afflicted population.   
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Chapter 2: Heterogeneity of Genetic Modifiers Ensures Normal Cardiac Development  

Published in Circulation, March 2010 

Abstract 

Mutations of the transcription factor Nkx2-5 cause pleiotropic heart defects with 

incomplete penetrance. This variability suggests that additional factors can affect or 

prevent the mutant phenotype. We assess here the role of genetic modifiers and their 

interactions. Heterozygous Nkx2-5 knockout mice in the inbred strain background 

C57Bl/6 frequently have atrial and ventricular septal defects. The incidences are 

substantially reduced in the Nkx2-5+/- progeny of first-generation (F1) outcrosses to the 

strains FVB/N or A/J. Defects recur in the second generation (F2) of the F1xF1 intercross 

or backcrosses to the parental strains. Analysis of greater than 3000 Nkx2-5+/- hearts from 

5 F2 crosses demonstrates the profound influence of genetic modifiers on disease 

presentation. On the basis of their incidences and coincidences, anatomically distinct 

malformations have shared and unique modifiers. All 3 strains carry susceptibility alleles 

at different loci for atrial and ventricular septal defects. Relative to the other 2 strains, A/J 

carries polymorphisms that confer greater susceptibility to atrial septal defect and 

atrioventricular septal defects and C57Bl/6 to muscular ventricular septal defects. 

Segregation analyses reveal that at least 2 loci influence membranous ventricular septal 

defect susceptibility, whereas at least 2 loci and at least 1 epistatic interaction affect 

muscular ventricular and atrial septal defects. Alleles of modifier genes can either buffer 

perturbations on cardiac development or direct the manifestation of a defect. In a 

genetically heterogeneous population, the predominant effect of modifier genes is health. 
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Introduction 

Significant progress has been made toward defining genetic etiologies in 

congenital heart disease.1,2 Current knowledge of the few dozen genes implicated in 

cardiac development does not explain, however, the basis of common epidemiologic and 

clinical observations.  The incidence of heart defects in newborns is 0.5-1%, making it a 

leading cause of death in children.  Still, the vast majority is born with a normal heart.  

Selection against fetuses that have cardiac defects does not cause the prevalence of the 

norm.3,4  Insults on the embryonic heart may be rare or weak, or mechanisms may have 

evolved to ensure the robustness of development.  Direct evidence for either hypothesis is 

minimal, but the latter can better explain the breadth of observations related to 

incomplete penetrance and phenotypic variability.5,6 

Although family studies led to the discovery of mutations of prototypical cardiac 

developmental genes such as TBX5, NKX2-5, and GATA4 7-10, most cases of congenital 

heart disease have no identified cause or association.  Such sporadic cases may be due to 

an unknown teratogen, spontaneous mutation or inconsistent expression of an inherited 

etiology.  The last possibility is supported by the increased incidence of congenital heart 

disease in subsequent first-degree relatives, 2-11%, compared to the general 

population.11-13  Some normal relatives of sporadic patients must somehow escape the 

manifestation of a genetic mutation.  Furthermore, among the affected relatives the 

cardiac phenotypes are usually dissimilar and of wide-ranging severity.11,13  Modifying 

factors likely influence the incomplete penetrance and phenotypic variability associated 

with the expression of a causative mutation.  In a family, the activity of modifiers in 
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pathways involved in the development of an affected cardiac structure could determine 

whether a particular relative develops a heart defect, its type and severity.  The unknown 

factors could be genetic, environmental or entirely stochastic.  Of these, genetic modifiers 

are most amenable to investigation in a laboratory where environmental factors can be 

controlled between experimental groups. 

Small studies have demonstrated the effect of the background strain on cardiac 

phenotypes related to embryonic viability and myocardial, valvar, or ventricular septal 

morphology in Tbx5, Gata4 and Hey2 mutations.14-16  The extent to which genetic 

modifiers contribute to incomplete penetrance and phenotypic variability as observed in 

humans might only be appreciated, however, in a much larger study.  In this regard, the 

diverse anatomic phenotypes described in association with NKX2-5 mutation offer a 

foothold into the genetic modifiers that influence the susceptibility of developmental 

pathways.  NKX2-5 mutations were first reported in families with highly penetrant ASDs 

and atrioventricular block, but not every member of these and subsequent families who 

carried a mutation had an ASD or even a cardiac malformation.  Among affected persons 

the various defects seem neither related to each other by any known developmental 

pathway nor correlated with NKX2-5 genotype.9,17,18  Thus, while mutations of NKX2-5 

or other cardiac transcription factors like TBX5 and GATA4 undoubtedly cause heart 

defects, modifying factors could have effects on phenotype as great as the causative 

mutation. 

As the first step toward the elucidation of these factors, we examined the effect of 

genetic background variation on the incidence of specific heart defects in heterozygous 
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Nkx2-5 knockout animals in the inbred mouse strain C57Bl/6 and in crosses to the strains 

FVB/N and A/J.  The survey of thousands of Nkx2-5+/- animals reveals the important role 

that genetic modifiers play in buffering cardiac developmental pathways against a major 

perturbation in a population while directing the manifestation of disease in a few.  The 

results intertwine the genetic basis of health and congenital heart disease, providing a 

conceptual framework to understand common clinical observations. 
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Methods 

Mouse Strains and Crosses 

Nkx2-5+/- animals were backcrossed to C57Bl/6 for 10-13 generations.  The 

knockout allele was generated and genotyped as described.19  Nkx2-5+/- C57Bl/6 males 

were crossed to FVB/N or A/J females to generate F1 progeny.  C57Bl/6 and FVB/N 

animals were obtained from Charles River Laboratories, and A/J from the Jackson 

Laboratory.  Nkx2-5+/- F1 animals were intercrossed or backcrossed to the parental strains 

C57Bl/6 or FVB/N to generate F2 progeny.  The backcross to A/J was not performed.  

Animals were housed under standard conditions in the same room and fed the same 

chow.  The experiments were approved by the animal studies committee at Washington 

University School of Medicine. 

Diagnosis of congenital heart defects 

Neonatal pups were collected each morning within hours of birth to prevent 

cannibalization of animals that have serious congenital heart defects.  The pups were 

euthanized.  The thorax was fixed in 10% neutral buffered formalin overnight and then 

transferred to 70% ethanol.  Fixed hearts were dissected, embedded in paraffin, and 

entirely sectioned in the frontal plane at 6 µm thickness.  Each heart was inspected under 

a 5x microscope objective by at least two individuals.  Defects were diagnosed by the 

appearance of the septae, valves, or blood in consecutive sections.  Genomic DNA was 

isolated from every animal by phenol-chloroform extraction. 

Statistical analyses 
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To compare the genotypic distribution in a particular strain or cross to the 

expected Mendelian ratio, all the pups from consecutive litters were counted up to at least 

100 animals.  Statistically significant deviation was defined in a χ2-test by P < 0.05. 

The incidence of specific types of heart defects in crosses were compared by a 

two-tailed Fisher’s exact test.  The co-incidence of heart defects in the same mouse was 

evaluated by comparison to the expected incidence, as determined by the product of their 

separate incidences, using a χ2-test. 

Correlation of muscular and membranous VSD incidence with the average 

number of C57Bl/6 alleles per locus as expected from the Mendelian distribution in the 

F2 crosses was evaluated by Pearson’s product-moment correlation followed by a two-

tailed t-test with significance defined by P < 0.05. 

Segregation models were analysed by comparison of their predictions and 

observed incidences by a χ2-test. The models and derivation of equations are detailed in 

the Supplemental Materials.
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Results 

Newborn Nkx2-5+/- animals in the C57Bl/6 background have a high incidence of ASD 

and VSD 

 Human NKX2-5 mutations cause congenital heart defects, some of which are 

lethal if untreated in the newborn period.  While such serious defects in Nkx2-5+/- mice 

have not been described, we observed that ~17% of Nkx2-5+/- pups in the C57Bl/6 

background were missing at 2-3 weeks of age when they were weaned from their 

mothers.  The attrition of Nkx2-5+/- animals occurs after birth because newborn pups were 

obtained at the expected Mendelian ratio (Table 2.1).  We therefore examined newborn 

hearts that were collected within hours of birth.  A high incidence of ASD of the 

secundum type was found in Nkx2-5+/- but not wild-type hearts (Figures 2.1, 2.2).  A 

secundum ASD was diagnosed by an insufficiency in covering the fossa ovale due to a 

deficiency in its rim or of the septum primum.  Hearts in which a potentially small ASD 

could not be distinguished from a patent foramen ovale were considered normal.  The 

ASD incidence is greater than the ~20% previously reported by two different groups for 

adult Nkx2-5+/- animals in the C57Bl/6 background possibly because of spontaneous 

closure or postnatal death.20-22  VSDs of the membranous and muscular types were also 

found in Nkx2-5+/- but not wild-type hearts (Figures 2.1, 2.2).  VSDs were not previously 

reported in adult animals possibly because of spontaneous closure or death from 

pulmonary overcirculation in the newborn period, as seen in mouse mutants that have a 

persistent patent ductus arteriosus.23 
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 Previous investigators have detected aortic stenosis by Doppler echocardiography 

in live animals and bicuspid aortic valves by gross examination of adult Nkx2-5+/- 

animals.21  Given that we examined histologic sections, minor valvular abnormalities that 

might cause regurgitation or stenosis are difficult to assess.  Abnormal blood flow 

patterns have also been described by fetal echocardiography in association with severe 

lesions like truncus arteriosus.24  Severe defects and ones not easily detected by 

echocardiography like small VSDs because of physiologically elevated right-sided 

pressures in the fetus and newborn are easily recognized because of the greater spatial 

resolution of microscopy. 

Nkx2-5+/- animals in hybrid strain backgrounds generally have normal cardiac anatomy 

Nkx2-5+/- animals in the C57Bl/6 background were outcrossed to the FVB/N 

strain.  The F1 progeny, which are C57Bl/6 X FVB/N hybrids, showed the expected 

Mendelian ratio of Nkx2-5+/- pups at weaning (Table 2.1).  The absence of neonatal lethal 

defects was confirmed by direct inspection.  Only one small VSD and 6 ASDs were 

found among 80 Nkx2-5+/- F1 newborn mouse hearts.  All 52 wild-type hearts were 

normal.  The incidence of either septal defect in the Nkx2-5+/- C57Bl/6 X FVB/N F1 

hybrids is significantly lower compared to the C57Bl/6 background (Figure 2.2). 

Nkx2-5+/- animals from the C57Bl/6 X A/J F1 hybrid cross similarly showed the 

expected Mendelian distribution of genotypes at weaning (Table 2.1).  Direct inspection 

confirmed a reduced incidence of heart defects compared to the C57Bl/6 background, 

none of which was expected to be lethal.  No VSDs and only 4 ASDs were found among 
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54 C57Bl/6 X A/J F1 Nkx2-5+/- newborn hearts.  All 48 wild-type hearts were normal 

(Figure 2.2). 

 

The C57Bl/6 X FVB/N F2 crosses reveal ASD and VSD susceptibility alleles in both 

strains 

The C57Bl/6 X FVB/N F1 hybrid data suggest that C57Bl/6 carries one or more 

recessive alleles of modifier genes that increase susceptibility to heart defects in the 

presence of Nkx2-5 mutation.  The data do not exclude the possibility of recessive 

susceptibility alleles from FVB/N at other loci.  To investigate these possibilities, Nkx2-

5+/- F1 animals were backcrossed to C57Bl/6 and FVB/N or intercrossed to generate F2 

progeny.  Newborn F2 pups showed the expected Mendelian distribution of genotypes, 

which indicates the absence of selection against defects that could cause prenatal demise 

(Table 2.1). 

VSD and ASD were more common in the Nkx2-5+/- animals from each of the 

C57Bl/6 X FVB/N F2 crosses than from the F1 but less common than in C57Bl/6 (P < 

0.001 for comparisons to both the F1 and C57Bl/6).  A VSD was present in 12-16% of 

the Nkx2-5+/- F2 hearts, and an ASD in 4-7% (Figure 2.3).  These results indicate that at 

least two loci affect VSD and ASD susceptibility in the presence of Nkx2-5 mutation.  

C57Bl/6 and FVB/N carry recessive, susceptibility alleles at different loci, given the 

increased incidence in the parental backcrosses compared to the F1.  The Nkx2-5+/- F2 

may have a lower incidence of particular defects compared to C57Bl/6 either because 
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FVB/N susceptibility genotypes have smaller effects or because interactions between 

C57Bl/6 and FVB/N alleles reduce risk. 

The C57Bl/6 X A/J F2 crosses reveal A/J susceptibility alleles for ASD and 

atrioventricular septal defects 

Similar to the C57Bl/6 X FVB/N F2 results, the Nkx2-5+/- F2 progeny from the 

C57Bl/6 X A/J intercross and C57Bl/6 backcross showed an incidence of VSD and ASD 

greater than the F1 and less than C57Bl/6 (P < 0.001 for each of the comparisons; Figure 

2.3).  The backcross to A/J was not performed.  Comparing the C57Bl/6 X A/J to the 

C57Bl/6 X FVB/N F2 crosses revealed two significant differences. 

First, ASDs occurred at a higher frequency in the C57Bl/6 X A/J F2 intercross 

than in the C57Bl/6 X FVB/N (P < 0.001).  There was a similar trend between the F2 

backcrosses to C57Bl/6, which was not significant possibly because of the smaller 

sample sizes (P < 0.1).  A/J may carry polymorphisms that confer greater susceptibility 

specifically to ASDs in the presence of Nkx2-5 mutation.  The A/J polymorphisms do not 

increase susceptibility to septal defects in general because the VSD incidence was not 

different between the two intercrosses. 

Second, atrioventricular septal defects (AVSD) occur at a low but significant 

incidence in the Nkx2-5+/- C57Bl/6 X A/J F2 intercross (Figures 2.3 and 2.4).  Nkx2-5 

mutation causes the defect because none of 238 wild-type littermates from the same cross 

had an AVSD (P < 0.05).  An A/J polymorphism enhances susceptibility because the 

defect is much rarer in the C57Bl/6 X FVB/N F2 intercross (P < 0.001).  The A/J 
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polymorphism appears dominant with low penetrance because one AVSD was found 

among 121 Nkx2-5+/- hearts from the backcross to C57BL/6. 

Double-outlet right ventricle occurs rarely in Nkx2-5+/- F2 animals 

Double-outlet right ventricle (DORV), in which both great arteries arise from the 

right ventricle and the aortic and mitral valves are separated by a muscular conus, has 

been reported in association with human NKX2-5 mutation.  Two Nkx2-5+/- F2 animals 

were found to have DORV, one each from among 1552 C57Bl/6 X FVB/N and 1104 

C57Bl/6 X A/J intercross hearts examined (Figure 2.4).  The rarity of DORV precludes 

conclusions about the role of modifier genes in its pathogenesis.  We note, though, that 

defects associated with human NKX2-5 mutation that are more common than DORV in 

the general population like hypoplastic left heart syndrome have not been found in any 

Nkx2-5+/- mouse.17,18,25  Such defects may have not been found either because the sample 

size remains too small or because the inbred strains examined do not carry the relevant 

susceptibility alleles. 

Genotypes at multiple modifier loci determine the VSD phenotype 

Membranous and muscular VSDs are found in Nkx2-5+/- hearts, but muscular 

VSDs are more common in the C57Bl/6 background (P < 0.0005; Figure 2.5).  Which 

type of VSD develops appears to be determined by the cumulative effect of susceptibility 

genotypes at multiple modifier loci for either defect.  We compared the incidence of each 

VSD type to the fraction of the C57Bl/6 genome in the genetically heterogeneous F2 

crosses, as expected from a Mendelian distribution (Figure 2.5).  There was a strong, 

positive correlation for muscular VSD (r = 0.91, P < 0.04) and a negative correlation for 
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membranous VSD (r = -0.97, P < 0.006).  Thus, C57Bl/6, FVB/N and A/J all carry 

recessive, susceptibility alleles at multiple loci for either VSD phenotype, but in the 

mixed strain backgrounds the additive effect of the C57Bl/6 susceptibility genotypes is 

less or greater than the other two strains for membranous and muscular VSD, 

respectively.  Additional epistatic effects between loci may also influence the incidence 

of specific congenital heart defects, as shown by segregation analyses below. 

ASD and VSD co-occur more frequently than expected by chance in Nkx2-5+/- hearts of 

mixed genetic background 

Polymorphic modifier genes clearly influence the development of specific types 

of defects in Nkx2-5 mutation.  To test the hypothesis that the same polymorphism could 

increase susceptibility to two different defects, the incidence of hearts having both 

defects was compared to the product of the individual defect incidences in the population, 

i.e., the chance or null hypothesis.  VSD and ASD co-occur more often than expected by 

chance in the C57Bl/6 X FVB/N intercross and the C57Bl/6 X A/J intercross and 

backcross to C57Bl/6 (Figure 2.6A).  In the two F2 intercrosses where the sample sizes 

are large, ASD co-occurred with either muscular or membranous VSD more often than 

expected (Figure 2.6B).  On the other hand, muscular and membranous VSD did not co-

occur more often than expected.  The co-occurrence of AVSD with other heart defects 

was not evaluated because of its low incidence.  Therefore, some modifiers may increase 

the susceptibility to several types of heart defects in the presence of Nkx2-5 mutation 

whereas others may affect the development of just one. 

Segregation analysis of the genetic architecture of common septal defects 
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 To characterize the genetic architecture of modifiers that influence ASD and VSD 

susceptibility in Nkx2-5+/- animals, we examine two segregation models.  The models 

focus on the C57Bl/6 X FVB/N crosses because data from F2 backcrosses to both 

parental strains are available.  How well the predictions of a model fit the observed data 

set lower bounds on the number of modifiers and interactions that are involved in the 

pathogenesis of particular defects. 

The first model, M1, postulates two loci A and B that do not interact.  C57Bl/6 

and FVB/N carry the recessive, susceptibility alleles of A and B, respectively.  The 

effects of susceptibility genotypes at A and B are estimated from the incidences in the 

C57Bl/6 strain and the F2 backcross to FVB/N.  The expected incidences in the F2 

intercross and C57Bl/6 backcross are then calculated from the model.  Inclusion in the 

model of additional loci does not alter its predictions because the total effect of 

susceptibility alleles from one strain reduces to a single term.  The predictions deviate 

significantly from the observed incidences of ASD and muscular VSD (P < 0.0001) but 

approximate the membranous VSD incidences (P = 0.14.  Figure 2.7A-C).  Therefore, at 

least two loci affect all three defect types. 

Model M2 permits interaction between two modifier loci.  In the simplest case, 

C57Bl/6 carries the recessive susceptibility alleles at two modifier loci A and B, which 

interact synergistically.  FVB/N carries the recessive susceptibility allele at a third locus 

C.  If the effect of A or B alone is negligible compared to their interaction, then the 

incidence of the defect in C57Bl/6 provides an estimate of the epistatic effect.  Based on 

this model, the incidences attributed to the epistatic effect and locus C, as estimated from 
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the F2 FVB/N backcross, match the observed incidences of muscular VSD in the F2 

intercross and C57Bl/6 backcross (Figure 2.7A). 

M2 underestimates the incidences of membranous VSD in the F2 intercross and 

C57Bl/6 backcross (P < 0.0001, Figure 2.7B).  M2 may not model the genetic 

architecture of membranous VSD because either epistatic interactions have no role (i.e., 

M1 is correct) or there are unaccounted interactions between C57Bl/6 and FVB/N alleles 

at other loci. 

M2 poorly fits the ASD incidences in the F2 intercross and C57Bl/6 backcross (P 

< 0.0001; Figure 2.7C).  ASDs appear more genetically complex than VSD.  First, 

additional loci and interactions must be postulated to account for the >4-fold difference in 

the incidence of ASD between the C57Bl/6 backcross and C57Bl/6.  Inspection of the 

incidences in the crosses indicates that more than two modifier loci in each of the lines 

are likely be involved.  Second, M1 and M2 predict the absence of defects in the F1 

because homozygosity of a susceptibility allele at a modifier locus is assumed necessary 

for a defect.  The assumption appears reasonable for muscular and membranous VSDs 

but not for ASD.  The presence of ASDs in the F1 suggests that heterozygosity at some 

loci confer susceptibility. 

Taken together, the two segregation models indicate that three or more modifier 

loci and at least one epistatic interaction influence the susceptibility to muscular VSD and 

ASD in Nkx2-5+/- animals.  At least two loci influence membranous VSD susceptibility. 

The loci and interactions inferred from the C57Bl/6 X FVB/N crosses probably represent 

only a subset of all that exist among inbred mouse strains or the human population.  A 
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more precise estimate of the number of modifier loci in the mouse model, whether 

independent or epistatic, involved in any of the defects requires additional information, 

such as genetic linkage analyses that are underway.
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Discussion 

Normal cardiac development is critical for the survival of an individual.  Any 

mechanism that could ensure normal development would increase the fitness of a species.  

In the short term, natural selection would eliminate major deleterious mutations.  In 

contrast, stabilizing selection could promote the evolution of a versatile system that 

buffers the effects of genetic and environmental perturbations to the developing heart.  

The invariance of the normal heart form would then be enhanced.6  Waddington 

described the general mechanism metaphorically as “canalization” in which development 

flows down channels to produce a highly invariant wild-type form.  He considered the 

depth of the channels analogous to the degree of buffering, which he deduced to have a 

genetic basis.26  Crucial phenotypes are maintained about a stable optimum.  Sufficiently 

great insults, however, decanalize an individual and reveal the influence of cryptic 

variants of modifier genes that do not affect the phenotype of genetically wild-type 

individuals.5  Investigation of modifier genes thus provides an alternative approach to the 

genetic pathways that shape a normal heart.  Cryptic polymorphisms within them may 

give rise to much of the complexity of congenital heart disease. 

The results of inbred strain crosses indicate that modifier genes contribute to the 

canalization and decanalization of cardiac development in the presence of Nkx2-5 

mutation.  A large fraction of Nkx2-5+/- animals in the C57Bl/6 background has atrial and 

ventricular septal defects, whereas few among F1 hybrid crosses to FVB/N or A/J do.  

Defects recur in F2 crosses at a lower incidence than in C57Bl/6.  We interpret this to 

mean that strain-specific polymorphisms of modifier genes alter the susceptibility of 
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certain cardiac developmental pathways to Nkx2-5 mutation but do not affect the wild-

type form.  Complementation of susceptibility alleles in the F1 and homozygosity at 

some but not all modifier loci in the F2 contribute to the relative differences in defect 

incidence in the successive crosses.  Furthermore, analysis of the incidences of ASD and 

VSD in the F2 crosses and C57Bl/6 suggest that modifier loci act independently of or 

epistatically with other loci.  Thus, a protective allele at a modifier locus might directly 

reduce the risk of a defect or abrogate a synergistic interaction between loci that increases 

risk. 

The surprisingly normal hearts of Nkx2-5+/- animals from the F1 hybrid crosses 

illustrate the important role of polymorphic modifier genes in ensuring the robustness of 

cardiac development.  Protective polymorphisms likely exist against a variety of insults, 

as reductions in heart defect incidence have also been observed in Tbx5 or Gata4 mutants 

in mixed compared to isogenic strain backgrounds.14,15  The greater heterogeneity in 

humans could provide even more genetic material to buffer against numerous, potentially 

common insults like nutrient deprivation or congenital infection.  For well-canalized 

traits, cryptic variation can accumulate in a population in the absence of a major 

perturbation because the phenotype is buffered against change.5  Natural selection due to 

diverse pressures in the wild could also maintain heterogeneity because normally cryptic 

polymorphisms may be protective or detrimental depending upon the context.  The 

resulting genetic architecture could ensure that a fraction of the population survives 

almost any particular perturbation. 
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Recessive susceptibility alleles of modifier genes exist in each of the three inbred 

strains examined, given the presence of defects in the Nkx2-5+/- F2 progeny from all the 

parental backcrosses and intercrosses.  Our statistical analysis of thousands of hearts 

reveals that modifier genes fixed for different variants in the inbred strains influence the 

development of specific types of defects in the presence of Nkx2-5 mutation.  Relative to 

the other strain backgrounds, C57Bl/6 carries polymorphisms that increase the 

susceptibility to muscular VSD, and A/J carries polymorphisms that increase the 

susceptibility to ASD and AVSD.  Modifier genes reside in pathways that affect the 

development of individual or multiple anatomic structures like the atrial and ventricular 

septum, based upon the higher than expected co-incidence of some defects.  The 

observations inform how modifier loci and interactions could be mapped to define the 

genetic pathways leading from Nkx2-5 mutation to various types of defects. 

Even genetic diseases thought to exhibit simple Mendelian inheritance manifest 

with incomplete penetrance and varying phenotypes.  The properties of genetic modifiers 

of the Nkx2-5 mutant phenotype help to explain the basis of the variable presentations of 

congenital heart disease.  Ostensibly sporadic cases of congenital heart disease could 

result from germline or somatic mutations, teratogens, or purely stochastic events.  Our 

results offer an alternative, but not mutually exclusive possibility that polymorphisms of 

genetic modifiers can either suppress or promote the effect of a major mutation.  

Maximum genetic heterogeneity in the F1 is associated with near complete suppression 

of deleterious phenotypes, leading to normal carriers.  On the other hand, homozygosity 

at some loci in the F2 contributes to the manifestation of a specific defect among multiple 
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potential phenotypes, which in a heterogeneous human population could appear like 

sporadic disease or pleiotropic defects. 

This large study, which systematically varies the genetic background of a mouse model, 

offers insights into how genetic modifiers ensure normal cardiac development and 

influence the manifestation of congenital heart disease.  Knowledge resulting from the 

characterization and identification of the modifiers in the mouse will almost certainly be 

relevant to human disease because pathways in cardiovascular development and 

physiology are strongly conserved.  For example, dozens of quantitative trait loci that 

affect blood pressure are common between rodent models and human populations.27,28   

Cardiac development is robust.  Appreciating how, one could conceivably mimic nature 

to reduce the heavy burden of congenital heart disease on children and their families. 
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Figures: 
 

Figure 2.1.  Atrial and ventricular septal defects in newborn Nkx2-5+/- animals.  An intact 

ventricular septum (A) and a normal atrial septum with a patent foramen ovale (B) in 

wild-type hearts.  (C) Membranous VSD and (D) muscular VSD in Nkx2-5+/- hearts.  (E) 

Secundum ASD in an Nkx2-5+/- heart.   Arrowheads point to the relevant defect in each 

section.  Ao, Aorta.  RA, LA, right, left atrium.  RV, LV, right, left ventricle. 

 

Figure 2.2.  The incidence of septal defects in wild-type and Nkx2-5+/- animals in the 

C57Bl/6 background and in F1 crosses to FVB/N and A/J.  The incidence of ASD and 

VSD in Nkx2-5+/- hearts is substantially reduced in the F1 hybrids compared to the 

C57Bl/6 parental strain (P < 0.001). 

 

Figure 2.3.  The incidence of specific heart defects in Nkx2-5+/- animals from F2 

intercrosses and parental backcrosses of C57Bl/6 and FVB/N or A/J.  Cross-specific 

differences in the incidence of ASD and AVSD are significant between the C57Bl/6 X 

FVB/N and C57Bl/6 X A/J F2 intercrosses.  The incidence of VSD is comparable 

between the C57Bl/6 X FVB/N and X A/J F2 crosses. 

 

Figure 2.4.  Rarer heart defects are found in Nkx2-5+/- F2 progeny. Sections through an 

Nkx2-5+/- heart from the C57Bl/6 X A/J F2 intercross demonstrate an atrioventricular 



38 

 

septal defect with its VSD (A), common valve (B) and primum ASD (C) marked by 

arrowheads in each section.  Sections through an Nkx2-5+/- heart from the C57Bl/6 X 

FVB/N F2 intercross demonstrate double outlet right ventricle with the pulmonary artery 

(D, PA) and aorta (F, Ao) both arising from the right ventricle.  An intermediate section 

(E) demonstrates the side-by-side arrangement of the great arteries. 

 

Figure 2.5.  The incidence of muscular and membranous VSD among the F2 crosses and 

C57Bl/6 background is determined by the cumulative effect of multiple, strain-specific 

susceptibility genotypes.  Muscular VSD is more common in Nkx2-5+/- animals in the 

C57Bl/6 background than membranous (P< 0.0005).  In the F2 crosses, muscular VSD 

incidence is positively correlated with the average fraction of the C57Bl/6 genome in the 

progeny (R = 0.91, P < 0.02).  Membranous VSD is negatively correlated (R = -0.97, P < 

0.003).  The average number of C57Bl/6 or non-C57Bl/6 alleles per locus based on a 

Mendelian distribution in each F2 cross is noted.  MBR, membranous VSD.  MUSC, 

muscular VSD. 

Figure 2.6.  Some modifier loci may contribute to the development of both ASD and 

VSD.  (A)  ASD and VSD co-occur in the F2 intercrosses and C57Bl/6 backcross of the 

C57Bl/6 X A/J F1 more often than expected by the null hypothesis of complete 

independence between the defects.  (B) The co-incidence rates are subdivided by VSD 

types in the two intercross populations, which have sufficiently large sample sizes for 

statistical comparison. 
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Figure 2.7.  Segregation analyses define the minimum number of modifier loci and 

interactions involved in the susceptibility to ASD and VSD.  The observed and expected 

incidences of (A) muscular VSD, (B) membranous VSD, and (C) ASD are predicted in 

the Nkx2-5+/- C57Bl/6 X FVB/N F1 and F2 progeny under two segregation models.  

Model M1 postulates two loci that do not interact.  M2 postulates three loci, two of which 

interact.    M1 approximates the observed incidences of membranous VSD but fits 

muscular VSD and ASD poorly.  M2 fits muscular VSD well but not ASD or 

membranous VSD.  Both models predict no defects in the F1, which contrasts with the 

ASDs observed. 
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Figure 2.2 
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Figure 2.3 
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Figure 2.5 
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Figure 2.6 
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Chapter 3: Characterization of Modifiers of Congenital Heart 
Disease in an Nkx2-5+/- risk Model 
 
 
Abstract 
 

While a clear heritable risk has been observed for congenital heart disease, there 

is considerable variation in penetrance and presentation likely due to multiple genetic 

and environmental risk factors. To identify causative genetic and environmental factors 

and interactions responsible for variability in heart development, greater than 4,200 

hearts from Nkx2-5 heterozygous knockout mice have been collected and examined. 

Genome wide linkage analysis was conducted on 306  mice from the FVB/n F2 

intercross and 80 mice from the A/J F2 intercross diagnosed with VSDs to map main 

effect and interacting loci throughout the mouse genome that correlate with risk. 

Additionally the possibility of environmental interactions was explored in this analysis 

by including maternal and paternal age and litter size as additive and interactive terms 

in the models tested. Significantly linked genomic regions were identified from the 

FVB/n population on chromosomes 6, 8 and 10 implicating genes in these positions as 

important candidates for VSD risk. Linkage analysis on the A/J cross identified both 

shared and unique modifiers from the FVB/N cross scan. Maternal age was found to 

significantly correlate with VSD risk in FVB/N crosses but not A/J providing evidence 

for strain specific susceptibility to a non-heritable risk factor. The findings in this study 

implicate modifier genes as major players in cardiac developmental pathways by 

buffering against genetic and environmental insults in the majority of a population 

while directing the manifestation of disease in a few. Characterization of the genetic 

architecture of congenital heart disease in a mouse model will provide a deeper 
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understanding of its multifactorial nature and possibly lead to novel strategies for 

prognosis and prevention. 

 
 
 
Introduction 
  
 Congenital heart disease is the top source of birth defect related death and a 

major burden on our health care system as 10% of these children require 1 or more 

surgeries in their lifetime 1. With a 16% incidence in offspring of affected patients, it 

is clear that a strong genetic component exists and thus epidemiological patterns have 

been studied extensively over the last 50 years 2. Up until the past decade, syndromes 

with highly penetrant heart defects have resulted in an emphasis on monogenic causes 

that highlight the outdated genetic determinism paradigm where one gene is linked to 

one phenotype. Pleiotropy further complicates the disease model as most disease 

causing mutations described increase risk for a number of different types of defects. 

Congenital heart disease has thus been reported as having a multifactorial model of 

inheritance indicating that multiple genes and environmental factors are to blame for 

the variability in disease manifestation 3.  

 Despite heart defects being a major health concern for 1 in every 120 babies 

born in the United States, the phenotype for the other 119 babies is a normal heart. 

The complexity of the system may reflect redundancy, and compensatory regulatory 

interactions that buffer the system to genetic and environmental perturbations 4. The 

range of phenotypes segregating within human families and among different inbred 

mouse backgrounds with a common disease gene reflects the influence of an 
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underlying genetic distribution 5. The effects of mutations in major heart development 

genes are likely modified by other factors which may be genetic or environmental.  

 Investigating modifiers is challenging because their phenotypic effects might 

only become observable in the context of a dramatic perturbation of the regulatory 

network that controls heart development. Gibson et al has coined the term cryptic 

variation to describe this phenomenon which is likely the rule rather than the 

exception in complex disease etiology. Important information lies in this genetic 

variance because while specific alleles of  genetic modifiers may cause congenital 

malformations, it is likely that other variants are responsible for buffering the effects 

of mutations in major heart genes and thus responsible for how robust heart 

development is the majority of the time.   

 In this study we investigate potential sources of variability in risk using a 

simple inbred mouse model system in which much of the variation that occurs in 

natural populations can be controlled for. Both heritable and non heritable modifiers 

may affect penetrance, dominance deviation, expressivity and pleiotropy, but only in 

the presence of a major heart gene mutation 6. The Nkx2-5 heterozygous knockout 

mouse in the C57Bl/6 inbred strain served as a near homogeneous, disease vulnerable 

population in which we could add in genetic sources of variability to observe the 

affect on heart disease risk. Outcrossing this mouse to two other inbred strains 

provided for variability in genetic background that could then be mapped to identify 

genetic modifiers. Non heritable risk factors such as parental age and litter size were 

also noted as potential sources of variability in disease risk.  
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 In this study, we seek to parse out the underlying variation that affects heart 

defect incidence and presentation through genetic linkage mapping. In addition, we 

explore how environmental variance due to non heritable factors such as parental age 

of the F2 pups and litter size might modify disease risk. Once we are able to isolate 

the different sources of variance responsible for the complex nature of congenital 

heart disease, the medical community will be considerably better equipped to prevent 

and protect against this debilitating health problem.   

 

Methods 

 

Mouse Strains and Breeding 

Nkx2-5+/- mice were backcrossed to C57Bl/6 for 10-13 generations.  The 

knockout allele was generated and genotyped as previously described 7.  The C57Bl/6 

and FVB/N inbred strains were obtained from Charles River Laboratories and the A/J 

strains from the Jackson Laboratories. Nkx2-5+/- C57Bl/6 males were crossed to 

FVB/N females to generate the F1 hybrid mice.  Nkx2-5+/- F1 animals were 

intercrossed to generate F2 progeny as described 8. Animals were housed under 

standard conditions in the same room and fed the same chow.  The experiments were 

approved by the animal studies committee at Washington University School of 

Medicine. 

   Approximately 4,200 F2 neonates were collected within hours of birth to 

prevent cannibalization and to keep track of population genotype frequencies.  The 

neonates were euthanized, dissected and genotyped for the Nkx2-5 knockout through 
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standard PCR protocol. The mouse torso sections were fixed in 10% neutral buffered 

formalin for 2 nights and then transferred to 70% ethanol.  The fixed hearts were 

dissected out, paraffin-embedded and serially sectioned completely in the frontal 

plane at 6 μm thickness.  The cardiac tissue was stained with hematoxylin and eosin 

for examination under a 5x microscope objective.  Diagnoses of heart defects were 

independently validated by at least two people for each heart and recorded (Table 

3.1). Genomic DNA was isolated from every animal by standard phenol-chloroform 

extraction.  

 

SNP Genotyping 

 Approximately 120 SNPs polymorphic between C57Bl/6 and FVB/n or A/J 

mouse strains were chosen for genome wide coverage of the 19 autosomes at an 

average density of 15-20cM. SNPs with common alleles between FVB/n and A/J 

were chosen whenever possible. High throughput genotyping was accomplished using 

the Sequenom MassARRAY system at the Human Genetics Division Genotyping 

Core at Washington University.  

 

Statistical Analysis 

Linear dependence between non heritable factors; litter size, maternal and 

paternal age was evaluated using the Pearson Product Moment correlation. Logistic 

regression using the R statistical software package was then carried out to determine 

correlation of the binary heart phenotype with each of the continuous non heritable 

variables. Maternal and Paternal age were log transformed prior to analysis to adjust 
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for skewness and kurtosis. Statistical significance was defined by P < 0.05. Because 

correlation was evident between the predictors, multiple logistic regression was 

performed anytime multiple predictors for a heart phenotype were found to be 

significant. Odds ratios and adjusted odds ratios where determined from the 

regression coefficients along with 95% confidence intervals. 

To detect risk loci, genome-wide linkage analysis was conducted with Interval 

mapping using the R/QTL software package. A total of 251 C57Bl/6 x FVB/n F2 

mice with membranous VSDs and 80 mice muscular VSDs as well as 285 control 

mice were included in the genome scan. For the C57Bl/6 x A/J cross, 87 F2 mice with 

membranous VSDs and 116 controls were included in the analysis. The heart defects 

were found to occur evenly in both sexes indicating a lack of sex specific effects. The 

Expectation-Maximization algorithm with a binary model was specified to generate 

LOD scores representing the likelihood of linkage at a particular genomic region. 

Main effect scans evaluated the probability of VSD risk linkage at each marker 

genotyped as well as imputed marker genotypes at 5.0 cM intervals between true 

markers. The scan is designed to detect the presence of single QTL effects throughout 

the mouse genetic map.  

Both litter size and maternal age were added to single effect scans as additive 

and then interactive covariates separately. The additive covariates account for 

potential residual variance and the interactive covariates detect gene by covariate 

specific interactions. A LOD score exceeding a 0.05 threshold alpha value was 

considered significant. 
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The Genome wide threshold of significance was determined through the use 

of permutation analysis as described by Sen and Churchill 9. Greater than 5000 

permutations were conducted for each main effect scan run. This method has the 

strength of taking the data structure into account as it randomizes the genotypes with 

respect to phenotypes for each permutation. The weakness of this method is that it 

can give inflated significance to smaller sample sized runs ( n < 100 affected) 10.  

 

A two-dimensional (two-way) scan was conducted to account for the potential 

effects of multiple genetic loci, some of which may interact. The interaction may be 

additive, synergistic or more complex as when the expression of one locus depends 

on the genotype of another (an epistatic interaction).  Each marker (including imputed 

markers) is tested in combination with every other marker for correlation with 

phenotype. The following models are considered in this analysis for each of the locus 

pair combinations as described in Broman et al11,12.  

 

 Full:             (y) = β0+ β1(qtl1) + β2(qtl2) + β3(qtl1,qtl2) + ε 

 Additive:      (y) = β0+ β1(qtl1) + β2(qtl2) + ε 

 Single QTL: (y) = β0+ β1(qtl1) + ε 

 Null:          (y) = β0+ ε 

 

The models are then compared to generate five LOD scores: 

 

   LODf   =  Full – Null 

   LODa   = Additive – Null 

   LODfv1 =  Full – Single 
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   LODav1 = Additive – Single 

   LODi  =  Full - Additive 

 

Genome wide thresholds for significance for all five LOD scores tested were 

generated with 1000 permutations for the two-way scans. 

 

 

 

 

 

Loci of interest were identified by two dimensional scan results based on 

recommendations by Broman at all in which multiple LOD score thresholds are 

interpreted in combination: 

    

(1) LODf  > FullT and either LODfv1 > Fv1T or LODi > IntT 

 

(2) LODa > AddT and LODav1 > Av1T 

 

Satisfaction of condition (1) indicates evidence for two loci in which there is 

potential for epistatic interactions. In contrast, condition (2) solely supports evidence 

that there are two loci interacting additively. 

Two-way genome wide scans have high and sometimes stifling thresholds of 

significance to account for the large number of tests being conducted. Larger sample 

sizes are required since there are 9 possible biallelic genotypes that need to be 

represented for each marker locus.  Single effect genome scans were also conducted 

FullT Fv1T IntT AddT Av1T OneT 

8.51 6.69 6.1 5.85 2.79 3.44 



 

56 

with significant candidate peaks as covariates. Scans were conducted with a candidate 

locus set as an additive covariate and then compared to scans with the candidate locus 

as an interactive covariate. Any regions which show a significant jump in LOD score 

would be considered to be evidence of an interaction, however only subject to single 

genome wide scan thresholds because of prior knowledge of the candidate. 

 Models including significant main effect loci and non heritable variables were 

tested using the fitqtl function provided in R/qtl in order to estimate the percentage of 

phenotypic variance explained 11. A drop analysis was also conducted with this 

function to test models in which each term was successively dropped and then 

compared to the full model.  

 

Results 

 

Heritable Risk Factors 

 Linkage analysis on the binary phenotype of (VSD presence/No defects) was 

performed to detect significant main effect loci across the genome indicating 

locations of potential risk modifying candidates (Figure 3.1).  The F2 intercross 

generation of the C57Bl/6 x FVB/n cross yielded 3 loci located on chromosomes 6, 8 

and 10 with logarithm of odds (LOD) scores exceeding the 3.44 threshold of 

significance (α = 0.05) defined by permutation analysis.  

Based on the physiological differences between membranous and muscular 

VSDs, linkage scans were also conducted on these phenotypes separately. Removal 

of the muscular VSDs from the membranous data results in a reduction in false 
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positives for any main effect loci that are not associated with muscular VSD risk. The 

membranous VSD specific scan showed increases in LOD scores for loci on 

chromosomes 8 and 10 despite the reduction of sample size of affected mice (Figure 

3.2). The increase is evidence of distinct genetic etiologies of these two defects 

specifically suggesting that loci on chromosomes 8 and 10 are only important for 

membranous VSD risk and not muscular. In contrast, the chromosome 6 candidate 

peak showed a modest decrease in significance suggesting that this peak may be a 

shared risk factor for the two types of VSDs. The muscular VSD phenotype showed 

considerably reduced signals without any genomic regions exceeding the α threshold 

of 0.05 as well as greater background noise (Figure 3.3). A reduced sample size 

(n=80 affecteds) probably is a major contributor to the lack of significance in this 

scan. However, the data may also be indicative of a more genetically heterogeneous 

risk profile in which the presence of a large number of small effect genes directs 

penetrance of the phenotype. The peak on chromosome 6 appears to be common 

between the two types of VSDs indicating some commonality in the disease pathways 

of the two defects.  

Inheritance patterns of each significant peak show risk alleles originating from 

both C57Bl/6 and FVB/n strains as hypothesized in Winston et al through segregation 

analysis on this data (Figure 3.4)8. Both chromosome 8 and 10 follow a semi 

recessive inheritance which is consistent with the lack of VSDs in F1 hybrid mice. 

Chromosome 6 shows the risk allele being inherited semi-recessively from the 

C57Bl/6 parent were as chromosome 8 has the risk allele inherited semi-recessively 
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from the FVB/n parent. In the case of chromosome 10, the risk allele is inherited from 

the C57Bl/6 parent with no dominance effects detected. 

Genome wide scans for the F2 C57Bl/6 x A/J mice with membranous VSDs 

yielded loci on chromosomes 3 and 4 that exceeded the genome wide α = 0.05 

threshold of significance (Figure 3.5).  The effect plots show that both of these 

candidate regions have their risk allele being inherited from the A/J inbred line 

(Figure 3.6). In the case of the chromosome 3 peak there appears to be no dominance 

effects whereas for peak on chromosome 4, risk is inherited recessively. Both of these 

peaks are not present in the FVB/n F2 genome scans indicating that A/J mice have 

risk factors specific to their strain. Of particular interest are peaks present on 

chromosomes 8 and 10 in very close proximity to the significant loci on 

chromosomes 8 and 10 mapped in the FVB/n membranous VSD scan although in the 

A/J scan, they do not achieve genome wide significance. The A/J chromosome 8 and 

10 loci also share similar inheritance patterns which is further evidence that these are 

truly common risk factors between FVB/n and A/J F2 intercross mice. Given the 

differences in VSD incidence between F2 FVB/n and A/J mice (Table 3.1) it is 

expected that at least some of the risk loci are strain specific as is the case here. 

Of particular interest is the lack of major heart development genes within the 

three candidate gene intervals on chromosomes 6, 8 and 10. Only chromosome 8 has 

genes implicated in heart defect risk, Hand2 and Tll1, located very close to the region 

of peak LOD score.  Hand2 has been implicated as being in a common pathway with 

Nkx2-5 and involved in ventricular septal development13,14. It has been reported that 

Tll1 is activated by Nkx2-5 and also important in cardiac septation15,16. Likely, the 
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genetic modifiers at the other two loci will prove to be genes that have novel 

relationships to the cardiac developmental pathway.  

 

Non-heritable Risk Factors 

 Paternal and maternal ages and litter size were evaluated as potential risk 

factors for increased membranous VSD incidence in C57Bl/6 x FVB/n and A/J F2 

intercross mice. Analysis of 2,400 F2 intercross heterozygous Nkx2-5+/- knockout 

mice collected showed a significant positive correlation for maternal age with 

membranous VSD defect incidence (P = 0.006, OR = 4.07) in the FVB/n intercross 

(Table 3.2). Litter size was found to negatively correlate with VSD risk in FVB/n (P= 

0.002, OR=0.92) although the effect size is considerably smaller (Figure 3.7). These 

two non-heritable risk factors are significantly correlated (P < 0.001, R = -0.35) 

independently of VSD incidence since older mice have smaller litters, however this is 

adjusted for in the multiple logistic regression model. Paternal age did not show a 

significant correlation with membranous VSD risk. In the case of muscular VSD risk, 

there were considerably fewer affected mice but a significant maternal age affect was 

detected (P=0.03, OR=2.99). 

A total of 1,370 A/J F2 intercross mice were analyzed for correlation with the 

three non-heritable risk factors. C57Bl/6 x A/J F2 intercross mice show a significant 

maternal age affect on membranous VSD risk (P=0.02, OR=3.96) but not muscular 

VSDs. Additionally, litter size was found to significantly affect muscular VSD 

incidence in these mice although with a marginal effect size (P=0.02, OR=1.14). 
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Interaction Scan 

A two-way genome scan for interacting loci was performed to assess potential 

interactions between loci as might be expected for complex disease susceptibility. 

The interaction scan was only run on membranous VSD data since larger sample 

sizes are required to exceed the very stringent genome wide thresholds of 

significance. An initial genome wide scan was run in which every marker locus was 

tested in combination with every other marker locus (Figure 3.8). The threshold for 

significance was generated by 1000 permutations: 

 

 

FullT Fv1T IntT AddT Av1T OneT 

8.51 6.69 6.1 5.85 2.79 3.44 

 

 

 The two-way genome wide scan yielded three pairs of loci that satisfied 

condition 1 (Table 3.3). Each pair consists of genomic regions that exceeded genome 

wide thresholds in the previous main effect scan, loci on chromosomes 6, 8 and 10, 

indicating that the effect of these regions may be enhanced by the genotypes of one 

another. The interactive LOD score for each pair did not exceed genome wide 

thresholds indicating that this may be a purely additive or synergistic effect and likely 

not a true case of epistasis. These locus pairs also satisfied the condition 2 threshold 

confirming at least an additive interaction between them.  
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 To further check whether yet undetected loci are interacting with the main 

effect regions mapped on chromosomes 6, 8 and 10, each locus was tested as an 

additive and then interactive covariate in order to compare the results of the two 

scans. There were no major jumps in LOD scores between these scans which supports 

the conclusion that in this model, no epistatic interactions have been detected (data 

not included). 

 

Covariate addition 

 Since maternal age is a risk factor for VSD in FVB/n F2 intercross mice, 

genome-wide linkage scans were run including maternal age as an additive and then 

as an interactive covariate.  The additive covariate accounts for residual variance in 

the population of mice due to maternal age. A negligible increase in power resulted 

from this adjustment. Maternal age was also included as an interactive covariate to 

scan for regions in the genome that are specifically affected by variance in maternal 

age. No significant jumps in LOD score were detected.  Inclusion of litter size as an 

additive covariate showed marginal improvement in LODs scores of peak regions. 

There was no evidence of litter size specific interactions when litter size was added to 

the model as an interactive term (data not included).  
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Discussion 

 

The pleiotropy, genetic heterogeneity, variable expressivity and incomplete 

penetrance of congenital heart disease have been described exhaustively in the 

literature as major hurdles in the characterization of risk 1,3,17. Individual risk is 

difficult to assess even in the presence of a known mutation segregating in a family or 

a knockout in an inbred animal strain due to yet undefined risk factors. While Nkx2-5 

undoubtedly plays a major role in heart development 18-20, haploinsufficiency of the 

gene is not sufficient to cause disease. In the Nkx2-5 knockout inbred mouse model, 

it has been shown that the disease phenotype is heavily influenced by genetic 

background. Each of the three strains studied C57Bl/6, FVB/n and A/J carry 

susceptibility alleles at different loci for ventricular septal defects  demonstrating the 

influence of alternative genomic variability 8.  Additionally, non-heritable sources of 

variation such as litter size and maternal age further modify risk but only in specific 

genetic backgrounds. Understanding why individuals with known predisposing 

factors do not manifest the disease may provide insight into therapeutics that can 

circumvent risk pathways21.     

Variability within the VSD Phenotype 

Congenital heart disease is a heterogeneous group of malformations in which 

clinical taxonomy is not necessarily based on developmental etiology 22.  

Intellectually there is a disconnect between the fields of cardiac development and 

congenital heart disease which contrasts with fields like cancer biology and oncology 

or basic and clinical immunology where one can feasibly envision how a discovery in 
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the lab could be practically relevant to their respective medical fields. In this study we 

have presented evidence that muscular and membranous VSD subtypes have distinct 

genetic etiologies in this risk model. VSDs are generally described based on 

physiologic location in the heart and not developmental etiology. Membranous 

defects are found at the point where the septum reaches just under the aorta and 

pulmonary arteries. In cross section, the defect shows a septum that takes on a 

characteristic clean and rounded shape where the hole forms. In contrast, muscular 

VSDs also called trabecular VSDs occur anywhere within the muscular portion of the 

ventricular septum and vary in appearance from smooth to jagged edged. 

Additionally, muscular VSDs often occur multiple times within one heart. While the 

etiologies of these two defects remain unclear, it has been hypothesized that muscular 

defects may be the result of incomplete proliferation of cardiomyocytes  or excessive 

resorbtion of the muscular septal wall during ventricular remodeling 23,24. This 

contrasts with membranous VSDs which are more likely the result of insufficient 

growth of the ventricular septal wall as it invaginates towards the endocardial cushion 

during development. 

The results of the linkage scans give evidence to support separate 

developmental pathways and thus distinct genetic etiologies of these two defects. 

However, there is potentially a common risk factor on chromosome 6. Given that 

Nkx2-5 increases risk for both types of phenotypes, it is not unexpected that another 

gene may direct a heart towards risk for either or both subtypes of VSDs. Fine 

mapping regions of interest in the muscular VSD scan may reveal genes involved in 

programmed cell death and remodeling whereas, the membranous candidates may 
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reveal growth factors and genes that regulate them. The noisier appearance and lack 

of significance of loci in the muscular scan may be due to a more heterogeneous 

genetic pathway which is consistent with the increased variability observed in the 

cross sections. However dissimilar these VSD subtypes may be in their origin, both 

are considerably more likely to occur in an Nkx2-5 haploinsufficient individual 

indicating that there is some commonality in their disease pathways. The disruption 

caused by the knockout mutation is adequate to unlock the importance of underlying 

buffering genetic variation that directs towards a particular disease phenotype. In 

families with a segregating mutation in a major cardiac gene, risk may be governed 

by a number of common variants that offer alternative pathways around the initial 

disruption.  

 

Variability within Membranous VSD Risk 

Genome wide linkage mapped three significant risk loci for the membranous 

VSD phenotype in the presence of Nkx2-5 haploinsufficiency. The presence of 

multiple main effect modifiers is consistent with the polygenic models that have been 

predicted in our lab and others for congenital heart malformations. We have reported 

evidence through segregation analysis for at least 2 FVB/n specific risk alleles and 2 

C57Bl/6 risk alleles which is further corroborated by the linkage scan results 8. In an 

inbred mouse model in which ~99% of the alleles are fixed, it is intriguing that 

polymorphisms between strains that have only recently diverged and come from a 

limited gene pool have a substantial effect on VSD risk. These strain specific 

differences are evidence that a greater source of underlying genetic variation is 
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present in natural populations that is only subject to selection in the presence of a 

major failure in the developmental pathway such as a major gene knockout or drastic 

environmental change. An old system such as the heart is ideal for this variation 

structure as it has been subject to many generations of stabilizing selection 25.  

The Effect of Non heritable risk Factors 

The concept of context specific genetic risk factors that are only important 

under certain genetic or environmental circumstances is consistent with the lack of 

reproducibility in many large genome association studies 25. The effect of maternal 

age in the FVB/n F2 intercross and A/J exemplifies that the normally robust cardiac 

developmental pathway can become vulnerable to non-heritable factors in the 

presence of a major haploinsufficiency and the right (or wrong) genetic background.  

Evolutionary Benefits of Variability 

The Nkx2-5 heterozygous knockout model serves as an example of how a 

major perturbation to the normally robust cardiac development pathway can result 

predominantly in a healthy phenotype. The mosaic backgrounds of the F2 intercross 

mice are a closed pool of variation in which bottled up genetic potential serves as the 

major governing force of risk. G. Gibson described this as the effect of cryptic genetic 

variation which can be present in any well canalized system which is evolutionarily 

old and has experienced many generations of stabilizing selection 5. We propose that 

the complexity of congenital heart disease is the result of important underlying 

variability that is selectively beneficial in populations. Alleles of modifier genes have 

the potential to increase risk or protect against it as well as direct presentation. A 
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system in which underlying variation that is potentially protective is better equipped 

to maintain developmental homeostasis than a single-variant determined system 26.  

The fitness of the species is enhanced by the range of options presented by underlying 

variation in modifier genes that normally have little or no detectable phenotypic 

effect. A major perturbation of the system however can reveal an entire distribution of 

important risk modifying alleles. This utilitarian mechanism provides a robust 

developmental system to the majority while predisposing a minority to unfortunate 

susceptibilities. In this study we have identified multiple sources of variability in a 

simple model that any one of which represents an interesting pathway for scientists to 

study or for clinicians to target. 
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 Figures: 

Figure 3.1. Genome wide linkage scan result to map VSD risk loci in FVB/n F2 

intercross mice. A total of 306 mice with VSDs and 284 controls were included in 

this scan.  

 

Figure 3.2.  Genome wide linkage scan result to map membranous VSD specific 

risk loci in FVB/n F2 intercross mice. A total of 251 mice with membranous 

VSDs and 284 controls were included in this scan.  

 

Figure 3.3. Genome wide linkage scan result to map muscular VSD specific risk 

loci in FVB/n F2 intercross mice. A total of 80 mice with muscular VSDs and 284 

controls were included in this scan.  

 

Figure 3.4. Effect plots for significant loci mapped in the FVB/n F2 intercross 

membranous VSD linkage scan. C/C = homozygous for C57Bl/6 alleles, C/F = 

heterozygous for C57Bl6 and FVB/n alleles and F/F = homozygous for FVB/n 

alleles. The y-axis represents that incidence of mice with membranous VSDs that 

have the respective genotype indicated on the x-axis. Error bars are derived from 

the imputed genotypes in interval mapping analysis.   

 

Figure 3.5. Genome wide linkage scan result to map VSD risk loci in A/J F2 

intercross mice. A total of 87 mice with membranous VSDs and 116 controls 

were included in this scan. 
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Figure 3.6. Effect plots for significant loci mapped in the A/J F2 intercross 

membranous VSD linkage scan. C/C = homozygous for C57Bl/6 alleles, C/A = 

heterozygous for C57Bl6 and A/J alleles and A/A = homozygous for A/J alleles. 

The y-axis represents that incidence of mice with membranous VSDs that have 

the respective genotype indicated on the x-axis. Error bars are derived from the 

imputed genotypes in interval mapping analysis.   

 

Figure 3.7. Incidence of VSD is plotted against maternal age (days) and litter 

size.   

 

Figure 3.8. Two-way scan for genetic interactions that correlate with 

membranous VSD risk. The x-axis includes every marker location tested and the 

resulting full model LOD scores color coded according the right hand key. The y-

axis includes every marker location tested and the resulting epistatic LOD scores 

color coded according to the left hand side of the key. 
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Table 3.1.  Incidence of VSDs in inbred mouse crosses 

 

 VSD Incidence 
Cross Membranous Muscular 
C57 Parent 7.5% 27.1% 
F1 FVB Hybrid 1.3% 0.0% 
F1 AJ Hybrid 0.0% 0.0% 
F2 FVB Intercross 9.7% 3.2% 
F2 AJ Intercross 8.2% 3.4% 
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Figure 3.4 
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Table 3.2. Regression of Non-heritable predictors and VSD phenotypes 

F2 Intercross Membranous VSD  Muscular VSD  
  P-value OR 95% CI P-value OR 95% CI 
FVB/n Mother 0.006 4.07 1.52-11.42 0.030 2.99 1.12-8.18 
 Father 0.097 0.45 0.17-1.12 0.642 1.24 0.50-3.03 
 Litter 0.002 0.92 0.86-0.96 0.890 1.01 0.93-1.07 
A/J Mother 0.021 3.96 1.26-13.18 0.383 0.53 0.13-2.27 
 Father  0.131 2.23 0.79-6.44 0.240 0.45 0.11-1.74 
 Litter 0.636 0.98 0.89-1.07 0.022 1.14 1.07-1.28 
* P-value adjusted for correlation with other significant predictors 
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Figure 3.7 
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Table 3.3. Two-way scan candidate regions that exceeded threshold 
conditions. 

 

 
Condition 1 

Epistatic Model  
Locus 1 (cM)  

 
Locus 2 (cM)  

 
Full  

 
Fv1  

 
Int  

Chr8@37.4 Chr10@4.5 13.901 7.324 2.378 
Chr6@52.3  Chr10@4.5 13.509 7.513 1.689 
Chr6@52.3 Chr8@32.4 12.926 6.35 0.254 

 

 

 

Additive  Model  

Condition 2 

Locus 1 (cM)  
 
Locus 2 (cM)  

 
Add 

 
Av1  

Chr6@52.3 Chr8@32.4 12.672 6.095 
Chr8@32.4  Chr10@4.5 11.875 5.299 
Chr6@52.3 Chr10@4.5 11.821 5.824 
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Chapter 4: Conclusion and Future Directions 

 

Genomic Mapping of Genetic Modifiers 

 In this study, an Nkx2-5 haploinsufficient mouse has served as a risk model for 

the phenotypic variability of congenital heart disease risk that is commonly observed in 

human studies. Through the examination of the incidences of congenital heart defects in 

C57Bl/6 heterozygous knockout mice outcrossed to FVB/n and A/J as described in 

Chapter 1, it has been determined that while Nkx2-5 mutation is a major risk factor for 

heart defects, genetic background is crucial for directing penetrance and presentation of 

those defects.  Segregation analysis has implicated three or more modifier loci and at 

least one epistatic interaction that influence susceptibility to muscular VSD and ASD in 

Nkx2-5+/- animals.  At least two loci influence membranous VSD susceptibility (Chapter 

2).  

Genomic mapping using F2 intercross strains has proven to be an effective 

method for detecting and mapping candidate risk loci and interactions1. Significant 

regions were mapped for membranous VSD risk on chromosomes 6, 8 and 10. 

Additionally, the genome scan for muscular VSD risk loci revealed a potentially common 

risk factor on chromosome 6 as well as a number of completely different suggestive 

candidate regions elsewhere in the genome. Unfortunately, a caveat of using F2 

generation outcrosses for gene mapping is that the candidate intervals are rather large 

(20-40Mb) because there are only two generations of recombination. Lists of genes 

located in these regions can be narrowed based on gene functionality and expression data. 
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However, there is a risk that using filters based on known information will rule out small 

effect genes that have novel roles in heart development. Given that only one of the 

significant regions (chromosome 8) yielded genes that have been previously implicated in 

heart development, this seems like a valid concern.  

Also noted is the potential for multiple QTLs on a single chromosome. The 

multiple peaks on chromosome 10 likely represent two and possibly three separate 

candidate regions. It is possible that the middle peak in the 30cM region may simply be 

an artifact of the two surrounding peaks being in linkage disequilibrium, however finer 

resolution would be preferred over speculation.    

Fine Mapping Strategy 

An important future direction for this research project should include 

implementing a strategy to narrow QTL intervals and resolve multiple peaks in order to 

facilitate the identification of risk affecting loci. Fine-mapping with advanced intercross 

lines (AIL) has been shown to be an effective method to accomplish this goal 2-4. AILs 

are designed to increase the number of informative meioses in the mapping population by 

continued intercrossing of a population to reduce linkage disequilibrium and cause the 

proportion of recombinants between linked loci to asymptotically approach 0.5 5,6.  

Animals from the F2 generation are continually intercrossed through successive 

generations. The breeding is controlled so that siblings and first cousins are not mated to 

avoid excessive inbreeding. Below is a schematic describing a semi-circular breeding 

scheme based on the circular AIL screen described by Kimura and Crow7: 
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Animals from the F10 generation will be phenotyped and affected animals will be 

genotyped for SNPs spaced 1-2 Mb across the genome to get high resolution mapping 

information8. Linkage analysis on this new population will likely reveal considerably 

greater resolution around candidate regions as up to a 5 fold reduction in confidence 

interval compared to the F2 map has been reported using this method9. It is expected that 

fine mapping with AILs will take 2-3 years for the crosses to be complete and the 

adequate number of mice to be collected and diagnosed. At that point candidate regions 

will be narrowed enough to allow for the search for functional variants. As of January of 

2010, A/J has been sequenced with 23x coverage by the Mouse Genome Sequencing 

Consortium at the Sanger Institute.  While the FVB/n strain is not listed as a priority for 

this consortium, hopefully it will be the next in line of mouse genomes to be sequenced 

and therefore complete when the AIL analysis is. Clearly, direct alignment within 

candidate regions would be an excellent source of information especially in non-coding 

Figure created by C. Schulkey 

Figure 4.1 
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regions. Other new avenues to explore include the potential for microRNAs being a 

source of functional variance. The miRBase is continually being populated with more 

information which will be particularly relevant when the candidate gene regions are more 

finely mapped.  

 

Further examination of Maternal Age Effect 

The collection and diagnosis of 2,400 FVB/n and 1,370 A/J intercross mice at 

high risk for congenital heart defects allowed for the unique opportunity to conduct an 

epidemiological experiment in which a number of environmental factors could be 

controlled for. For example, mice were kept in the same physical environment with the 

same chow diet their whole lives. On the other hand, some non-heritable variables were 

not controlled for such as maternal and paternal age and litter size. These variables were 

recorded and later tested in a regression model as predictors of VSD risk. A significant 

effect on membranous VSD risk was detected for maternal age and litter size in both 

crosses.  

Evidence for a maternal age affect in this congenital heart disease risk model is an 

exciting find as it mimics findings in epidemiologic studies on human populations. It is 

well documented that with advanced maternal age comes the increased risk for 

chromosomal abnormalities in the offspring 10. Most notably, these copy number variants 

(CNVs) are responsible for an increased risk of Down’s syndrome which is strongly 

associated with congenital heart defects11. Therefore, one important way that the maternal 
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age effect should be explored further is to check the F2 mice for increased CNVs in pups 

with older mothers.  

However, numerous studies have also been published reporting that incidence of 

heart defects increase with advanced maternal age (35 yrs+) even when controlling for 

chromosomal abnormalities such as Down’s syndrome12-14. Given that increased risk with 

advanced maternal are may not be due to CNVs alone, the question arises as to whether 

increased risk is the result of a change in older oocytes or with the physiologic 

differences in the uterine environment that come with age. For example, it is clear that 

fecundity decreases with advanced age which in mice is reportedly due to increased 

resorption rates, morphological abnormalities of the embryos and delayed development 

and not because of reduced ovulation or implantation rates15.  

Potential changes in uterine environment include the effects of obesity and 

diabetes. C57Bl/6 x FVB/n mice experience clear weight gain as they age which can lead 

to changes in hormonal levels. Type II diabetes in these mothers could further affect 

uterine environment as it does in humans which show increased risk for birth defects16. It 

has been reported that C57Bl/6 mice are at risk for obesity and diabetes, however, A/J 

mice are only at risk for obesity and do not show significant insulin resistance17. The 

strain specific susceptibility to heart defects observed in this study would follow that 

pattern since C57Bl/6 x A/J F2 mice did not show a significant maternal age effect on 

incidence. Two potential experiments to address these hypotheses are 1) glucose 

tolerance testing and 2) high fat diet for young mothers. The first experiments would 

simply determine whether insulin insensitivity is increasing with age in our mice. Ideally, 
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this study could be done prospectively throughout the life of a group of female F1 hybrid 

mice, starting from weaning and ending with menopause. The second experiment would 

address the obesity factor by attempting to accelerate the age/ risk correlation. Are the 

younger, fatter mice having more pups with heart defects? Are they having pups with 

comparable incidences to their older counterparts when they weigh the same?  

Studies on human fertility report the existence of an opposing effect where oocytes 

donated by young women to older women result in restored embryo implantation and pregnancy 

rates indicating the problem lies with the aged oocytes and not the uterine environment18. 

Therefore it seems important to evaluate pre-implantation and post-implantation changes 

as risk modifying factors. Experiments which separate the oocyte from its environment 

could potentially distinguish which factors are causing heart defects, the mother or the 

egg. Oocytes from young donor mothers would be transferred by in vitro fertilization 

procedures into older recipients (and young for control). Another experiment would 

involve actually transferring ovaries from old mice (and young for control) into young 

recipients. These experiments would be conducted in the Nkx2-5 heterozygous knockout 

background. F2 pups produced in this manner would be collected and diagnosed using 

standard procedures to determine the incidence of defects. Even if maternal age is 

secondary to the real effect underlying the increase in congenital heart defects, these 

experiments could potentially rule out a number of physiologic causes of risk to further 

understand the basis of variance in congenital heart disease.  
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