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1 Introduction

A message is an atomic data unit meaningful for a distributed application. In
many such applications, it is desirable to deliver a message to a remote com-
puter as soon as possible, i.e., to minimize the delay of the message. Applica-
tions communicate messages over packet-switching networks where the maxi-
mum packet size is relatively small: 1,500-byte packets dominate the Internet.
Hence, delivering a long message might involve thousands or even millions of
packets. The ability of a network to minimize message delay is constrained
chiefly by the path capacity from the source to the destination. Specifically,
the capacity of a bottleneck link on the path is the main factor determining
minimal achievable delay. Beside the efficiency objective of average delay min-
imization, allocation of the bottleneck capacity is also subject to the fairness
constraint of not shutting off communication for any individual message.

Shortest Remaining Processing Time (SRPT) transmits messages preemp-
tively in the order of remaining transmission delay and is optimally effi-
cient [15,17]. However, minimal average delay comes at the expense of po-
tential unfairness. Under heavy load, SRPT might starve long messages by
delaying them without bound [2].

Processor Sharing (PS) is an alternative classic algorithm that has become a
de facto standard of fairness in network capacity allocation [3]. PS instanta-
neously allocates equal shares of the bottleneck capacity to all pending mes-
sages. Consequently, expected delay of a message under PS is proportional
to the message size. Whereas packet-switching networks do not support in-
stantaneous sharing of the bottleneck link capacity, a great number of packet
transmission algorithms were proposed to approximate the PS ideal. Packet-
grained approximations of PS include Weighted Fair Queuing [5], Start-time
Fair Queueing [9], Deficit Round Robin [16], and other algorithms for fair
queuing at routers as well as fair end-to-end congestion control schemes ex-
emplified by Transmission Control Protocol [10].

While SRPT is unfair, PS achieves fairness by sacrificing efficiency: average
delay of messages under PS is significantly higher. Recent studies reveal re-
markable existence of efficient fair algorithms that have it both ways and
combine PS fairness with SRPT-like efficiency. Fair Sojourn Protocol (FSP) is
a specific efficient representative of the fair algorithmic class where no message
experiences longer delay than under PS [6]. FSP transmits the message with
the earliest PS completion time and was independently proposed as Virtual
Finish Time First (ViFi) [8]. Significant reduction in average delay under FSP
versus PS is substantiated both experimentally and analytically [6,8,18].

In this paper, we shed more light on the class of fair algorithms for net-
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work capacity allocation where no individual message starves, meaning that
the message is delivered no later than under PS. First, we introduce a slack
system to characterize fair algorithms completely and derive necessary and
sufficient conditions for an online algorithm to be fair. Using the slack system,
we propose efficient fair algorithms called Pessimistic Fair Sojourn Protocol
(PFSP), Optimistic Fair Sojourn Protocol (OFSP), and Shortest Fair Sojourn
(SFS). Then, we prove that neither one of the above trio nor another fair
online algorithm guarantees minimal average delay attainable without starva-
tion. Our analysis also reveals lower bounds on worst-case inefficiency of fair
algorithms in comparison to the optimally efficient SRPT. We conduct exten-
sive simulations for various distributions of message sizes and arrival times,
with arrival patterns ranging from smooth to bursty and different levels of
variance in message sizes. The experiments show that SFS supports SRPT-
like efficiency and consistently provides much smaller average delay than PS
or FSP.

While our paper is written in the context of message communication over
computer networks, its analytical methodology and developed algorithms con-
stitute a more general contribution. We believe that our techniques are useful
in web server scheduling and other application domains where a bottleneck
resource needs to be allocated fairly and efficiently.

The rest of the paper is structured as follows. Section 2 clarifies our model,
metrics, and terminology. Section 3 presents the slack-system characterization
of fair algorithms. Section 4 proposes PFSP, OFSP, and SFS but rules out
existence of a fair online algorithm that guarantees minimal average delay
achievable without starvation. Section 5 derives the lower bounds on worst-
case inefficiency of fair algorithms. Section 6 reports the experimental compar-
ison of SFS with SRPT, PS, and FSP. Finally, Section 7 sums up our findings
and discusses future work.

2 Model, Terminology, and Metrics

We define a message as an atomic data unit meaningful for an application.
Related studies refer to messages under other names such as jobs or requests.
Messages arrive for network transfer in their entirety. Delay of a message is
time passed from the message arrival until the whole message reaches its des-
tination. Other common names for delay include transfer time, response time,
flow time, and sojourn time. Transmission delay of a message represents its
communication needs and equals S

C
, where S is the message size, and C is the

capacity of the network bottleneck link shared with all the other messages.
Transmission delay is also known as processing time, e.g., as reflected in the
name of SRPT. We assume that the communications utilize the entire bottle-
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neck link capacity and experience negligible propagation, node processing, and
error recovery delays. Then, besides transmission delay, the only other com-
ponent of message delay is due to waiting for the bottleneck link to become
available.

Arrival times and transmission delays of messages characterize network load.
Network service is represented by an algorithm that allocates the bottleneck
link capacity to unfinished messages. In particular, we are interested in online
algorithms that have no information about future messages. Capacity alloca-
tion enjoys ideal flexibility that allows both instantaneous link sharing and
instantaneous transmission preemption.

Since PS has become synonymous with fairness in network resource allocation,
we rely on delays of individual messages under PS as a basis for defining the
fair algorithmic class:

Definition 1 Starvation is a scenario where a message finishes later than
under PS.

Definition 2 An algorithm for capacity allocation is fair if and only if no
starvation occurs under the algorithm for any load.

To quantify fairness of an algorithm to a particular message, we introduce a
metric of starvation stretch:

Definition 3 Starvation stretch sX(m) of message m under algorithm X is
the ratio of message delay dX(m) under algorithm X to message delay dPS(m)
under PS:

sX(m) =
dX(m)

dPS(m)
. (1)

Note that algorithm X is deemed unfair if there exists load where sX(m) > 1
for at least one message m.

Also note an implicit assumption that network capacity is allocated among
messages. We strongly believe that fairness of capacity allocation should be de-
fined with respect to real-world entities, rather than messages or packet flows
as in traditional networking. However, since the important “among what” as-
pect is orthogonal to our main contributions and requires a separate thorough
treatment, we do not explore it further in this paper.

To quantify efficiency of capacity allocation under algorithm X, we measure
average delay DX for all N messages in imposed load:

DX =

N
∑

m=1
dX(m)

N
. (2)
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Because SRPT is an optimally efficient algorithm if fairness concerns are put
aside, we use average delay under SRPT as a baseline for assessing efficiency
of fair algorithms:

Definition 4 Average letup LX under algorithm X is the ratio of average
delay DX under algorithm X to average delay DSRPT under SRPT:

LX =
DX

DSRPT

. (3)

Although a fair algorithm is not always able to match the ideal efficiency of
the unfair SRPT, consistent closeness of average letup LX to 1 is an indicator
that fair algorithm X is highly efficient.

3 Slack-System Characterization of Fair Algorithms

In this section, we derive a complete analytic characterization for the class
of fair algorithms. First, we observe that pending messages finish under PS
in the same order regardless of future message arrivals. Second, we introduce
the slack of a message as a key measure of flexibility that a fair algorithm has
in allocating the capacity among unfinished messages. Finally, we establish
necessary and sufficient conditions for an online algorithm to be fair.

Since fairness is defined in terms of message completion times under PS, we
maintain a shadow PS schedule [6,8,14] when reasoning about alternative al-
gorithm X. PS has the following remarkable property, which is proved in [6]
and also known in the context of fair packet queuing [5,9]:

Lemma 1 The order of completion times for pending messages under PS is
independent of future message arrivals.

The stable ordering of pending messages under PS creates a possibility for
algorithm X to deviate from the PS schedule without a risk that subsequent
message arrivals cause starvation. The chief rationale for such deviations is
to improve efficiency. In particular, abandoning the instantaneous sharing of
PS to transmit one message at a time might reduce average delay signifi-
cantly [6,8]. We denote remaining transmission delay of message m under PS
and algorithm X as vm(t) and wm(t) respectively. To differentiate between the
statuses of a message in the two schedules, we formalize the distinction with
terms unfinished and pending:
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Definition 5 Message m is unfinished at time t if and only if the message
arrives by time t and wm(t) > 0.

Definition 6 Message m is pending at time t if and only if the message ar-
rives by time t and vm(t) > 0.

Let n be the number of pending messages at time t. If algorithm X is fair, then
the n pending messages include all unfinished messages at time t. However,
wm(t) might be 0 for pending message m if algorithm X finishes this message
by time t. We index pending messages in a shadow order:

Definition 7 The shadow order at time t is the sequence of pending messages
indexed as m = 1, . . . , n in the non-decreasing order of vm(t).

To quantify the flexibility that a fair algorithm has in allocating the capacity
among unfinished messages, we characterize messages with a measure called
slack:

Definition 8 Assuming that no messages arrive in the future, consider trans-
mitting messages one after another in the shadow order. Slack am(t) of pending
message m at time t is the difference between the completion times of message
m under PS and in the above schedule.

The slack system refers to the trio of n-vectors v(t), w(t), and a(t) indexed
in the shadow order. Below, we derive closed-form expressions for the slack
vector.

Theorem 1 (Slack) The slack of pending message m equals

am(t) = (n − m)vm(t) +
m
∑

i=1

(vi(t) − wi(t)) (4)

Proof: If messages are transmitted one after another in the shadow order,
then message m finishes in this schedule at time g:

g = t +
m
∑

i=1

wi(t). (5)

PS completes pending messages also in the shadow order. Hence under PS,
each message i = 1, . . . ,m with remaining transmission delay vi(t) finishes
by time f when PS completes message m. Also over time interval [t; f), each
message m + 1, . . . , n reduces its remaining transmission delay by the same
amount vm(t). Thus, the completion time of message m in the shadow PS
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schedule equals:

f = t + (n − m)vm(t) +
m
∑

i=1

vi(t). (6)

Since am(t) = f − g by Definition 8, substituting g and f with Equations 5
and 6 establishes the theorem.

While Equation 4 captures the slack vector at any time t, the following theorem
directly expresses the impact of message arrivals on the slack vector:

Theorem 2 (Arrival) If a message with transmission delay x arrives at
time t and becomes pending message m, the slack vector changes as follows:

ai(t) =



























ãi(t) + ṽi(t) for i < m,

ãm−1(t) + (ñ + 1 − m) (x − ṽm−1(t)) for i = m,

ãi−1(t) for i > m.

(7)

where tildes mark the values that the slack system would have if the message
did not arrive at time t, while ã0(t) and ṽ0(t) denote 0.

Proof: The arrival of the message yields the following vectors v(t) and w(t):

(vi(t), wi(t)) =



























(ṽi(t), w̃i(t)) for i < m,

(x, x) for i = m,

(ṽi−1(t), w̃i−1(t)) for i > m.

(8)

Expressing ai(t) through Equation 4, substituting vi(t) and wi(t) according to
Equations 8, and replacing n with ñ + 1 leads us to:

ai(t) =







































(ñ + 1 − i)ṽi(t) +
i
∑

j=1
(ṽj(t) − w̃j(t)) for i < m,

(ñ + 1 − m)x +
m−1
∑

j=1
(ṽj(t) − w̃j(t)) for i = m,

(ñ + 1 − i)ṽi−1(t) +
i−1
∑

j=1
(ṽj(t) − w̃j(t)) for i > m.

(9)

After applying Equation 4 again to the right sides of the above, we establish
Equation 7.

Theorem 2 is important for two reasons. First, since a new arrival does not de-
crease slack for any unfinished message, new arrivals do not endanger fairness.
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Second, while the arrival of message m increases slack for messages 1, . . . ,m−1,
the theorem quantifies the extra leeway given to algorithm X in selecting mes-
sages for fair transmission. Now, let us examine how transmission of a message
affects the slack system:

Theorem 3 (Transmission) If algorithm X spends time interval [t; t + δ)
on transmission of message m where δ ≤ n · v1(t), and no messages arrive
during this interval, then the slack vector evolves as follows:

ai(t + δ) =











ai(t) − δ for i < m,

ai(t) for i ≥ m.
(10)

Proof: By transmitting message m over time interval [t; t + δ), algorithm X

reduces remaining transmission delay for message m by δ but does not change
remaining transmission delay for any of the other pending messages:

wi(t + δ) =











wm(t) − δ for i = m,

wi(t) for i 6= m.
(11)

Since vi(t) ≥ v1(t) ≥ δ
n

for each pending message i = 1, . . . , n, and no messages
arrive over the interval, remaining transmission delay for message i in the
shadow PS schedule decreases to:

vi(t + δ) = vi(t) −
δ

n
. (12)

Expressing ai(t+δ) through Equation 4 and then applying Equations 11 and 12
to substitute wi(t + δ) and vi(t + δ) yields:

ai(t + δ) =



















(n − i)vi(t) − δ +
i
∑

j=1
(vj(t) − wj(t)) for i < m,

(n − i)vi(t) +
i
∑

j=1
(vj(t) − wj(t)) for i ≥ m.

(13)

After applying Equation 4 again to the right sides of the above, we establish
Equation 10.

If no messages arrive, and algorithm X transmits message m until time t +
min{wm(t), n · v1(t)}, then either the algorithm finishes message m, or PS
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completes message 1 and thereby reduces the number of pending messages.
Because messages m, . . . , n preserve their slacks, Theorem 3 manifests that
transmission of message m might cause starvation only for preceding messages.
Hence, transmitting the first unfinished message in the shadow order (as in
FSP) does not jeopardize fairness of the algorithm.

If PS completes messages i = 1, . . . ,m at time t, and algorithm X is fair,
then lim

u↑t
vi(u) = 0 and lim

u↑t
wi(u) = 0 for all these m messages, and Equation 4

reveals immediately that the reduction of the pending message count from n

to n − m at time t does not change slacks of the remaining n − m messages.

After having understood properties of the slack system, we now use the system
to derive necessary and sufficient conditions for an online algorithm to be fair.

Theorem 4 (Fairness) An online algorithm for capacity allocation is fair if
and only if am(t) ≥ 0 for all messages m at any time t under arbitrary load.

Proof: (⇒) Suppose am(t) < 0 for message m at time t under load l. Con-
struct load l̃ from load l by removing all messages that arrive after time t.
Since algorithm X is online and operates identically under both loads up to
time t, am(t) < 0 under load l̃ as well. As per Theorem 1, we have:

t +
m
∑

i=1

wi(t) > t + (n − m)vm(t) +
m
∑

i=1

vi(t) (14)

While the left side of Inequality 14 specifies the earliest finish time for all
m messages 1, . . . ,m under algorithm X, the right side shows the time when
all these m messages finish in the shadow PS schedule for load l̃. Hence, at
least one of messages 1, . . . ,m finishes under algorithm X later than in the
shadow PS schedule for load l̃. By Definition 2, algorithm X is unfair. By
transposition, fairness of algorithm X implies am(t) ≥ 0 for all messages m at
any time t under arbitrary load.

(⇐) Suppose am(t) ≥ 0 for all t and m under arbitrary load. Consider the
general scenario of message completion in the shadow PS schedule where m

messages 1, . . . ,m finish at time t. Let time u be such that no messages arrive
or finish under PS during time interval (u; t). Since am(u) ≥ 0, Theorem 1
implies:

m
∑

i=1

wi(u) ≤ n · vm(u) +
m
∑

i=1

vi(u), (15)

where n is the number of pending messages at time t, and:

lim
u↑t

m
∑

i=1

wi(u) ≤ lim
u↑t

(

n · vm(u) +
m
∑

i=1

vi(u)

)

. (16)
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Since wi(u) ≥ 0 and lim
u↑t

vi(u) = 0 for all i = 1, . . . ,m, we establish:

lim
u↑t

m
∑

i=1

wi(u) = 0. (17)

Hence, the m messages 1, . . . ,m finish under algorithm X also by time t. By
Definition 2, algorithm X is fair.

4 Efficient Fair Algorithms

The slack system constitutes not only a comprehensive framework for analyz-
ing fairness of capacity allocation algorithms but also a powerful practical tool
for design and implementation of efficient fair algorithms. In particular, the
algorithm that transmits the first unfinished message in the shadow order is
nothing else but FSP. Since FSP never reduces slack for unfinished messages,
fairness of FSP is an immediate result of the slack-system characterization.

While FSP always follows the shadow order, transmitting another message
with shorter remaining transmission delay might decrease average delay. How-
ever, the threat of starvation limits the choice of messages available to a fair
algorithm. We identify two types of such eligible messages:

Definition 9 An unfinished message is startable at time t if and only if a fair
online algorithm can start transmitting the message at time t.

Definition 10 An unfinished message is finishable at time t if and only if
starting at time t a fair online algorithm can uninterruptedly transmit the
message until its completion regardless of future message arrivals.

The following two theorems characterize startable and finishable messages
within the slack system:

Theorem 5 (Startability) Message m is startable at time t if and only if
ai(t) > 0 for all i < m and ai(t) ≥ 0 for all i ≥ m.

Proof: Theorem 4 links fairness of an online algorithm to ai(t) ≥ 0 for each
pending message i. By Theorem 3, transmission of message m reduces slack
for all i < m but preserves slack for all i ≥ m. Hence, the ability of a fair
online algorithm to start transmitting message m at time t is equivalent to
ai(t) > 0 for all i < m and ai(t) ≥ 0 for all i ≥ m.
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Theorem 6 (Finishability) Message m is finishable at time t if and only if
ai(t) > wm(t) for all i < m and ai(t) ≥ 0 for all i ≥ m.

Proof: Theorem 4 links fairness of an online algorithm to ai(t) ≥ 0 for each
pending message i. By Theorem 3, uninterrupted completion of message m

preserves slack for all i ≥ m but decreases slack by wm(t) for all i < m. Hence,
the ability of a fair online algorithm to finish message m uninterruptedly
regardless of future message arrivals is equivalent to ai(t) > wm(t) for all
i < m and ai(t) ≥ 0 for all i ≥ m.

While each finishable message is also startable, some startable message m

might not be finishable despite its attractiveness due to shorter remaining
transmission delay than for any of the finishable messages. A fair online al-
gorithm might still be able to finish this message m uninterruptedly if new
messages arrive after time t and raise the slacks of the preceding messages suf-
ficiently high. However, if new arrivals do not fulfil such hope, and the slack
of a preceding message hits 0 before message m finishes, the fair algorithm
will need to suspend message m, and average delay will likely increase due
to the excessive optimism of the algorithm at time t. Below, we define three
algorithms SFS, OFSP, and PFSP (introduced as SFS+ in [7]) that take dif-
ferent approaches in pursuing the SRPT-inspired desire to favor messages with
shorter remaining transmission delay. All three algorithms index messages in
the shadow order.

Definition 11 Pessimistic Fair Sojourn Protocol (PFSP) is the algorithm
that transmits the first finishable message with the shortest remaining trans-
mission delay.

Definition 12 Optimistic Fair Sojourn Protocol (OFSP) is the algorithm that
transmits the first startable message with the shortest remaining transmission
delay.

Definition 13 Shortest Fair Sojourn (SFS) is the algorithm that transmits
the first message with the shortest remaining transmission delay if this message
is finishable; otherwise, SFS transmits the first unfinished message.

The following theorem establishes fairness of these three algorithms:

Theorem 7 PFSP, OFSP, and SFS are fair algorithms.

Proof: Since each of the algorithms transmits a startable message when-
ever there are unfinished messages, Theorems 4 and 5 imply fairness of the
algorithms.

Whereas FSP routinely provides lower average delay than PS [6,8], a natural
question is whether FSP, PFSP, OFSP, SFS, or another fair online algorithm
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Messages of load l Messages of load l̃ Arrival time Transmission delay

1, . . . , 9 1, . . . , 9 0 10 each

10 10 0 14

11 11 90 10

12 12 90 20

13 105 4

Fig. 1. Two loads in the proof of Theorem 8.
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Fig. 2. None of fair online algorithms always provides minimal average delay at-
tainable without starvation; messages 11 and 13 are denoted with solid black and
stripes respectively: (a) optimal schedule for load l; (b) shadow PS schedule for
load l̃; (c) optimal schedule for load l̃.

always yields minimal average delay achievable without starvation. The fol-
lowing theorem rules out such possibility:

Theorem 8 (Optimally efficient fairness) A fair online algorithm does
not guarantee minimal average delay attainable without starvation.

Proof: (1) Consider load l of 12 messages presented in Figure 1. Since SRPT
causes no starvation for this load, it is optimal to transmit the messages in an
SRPT order: any permutation of messages 1 through 9 followed by messages
11, 10, and 12. Figure 2a depicts such an optimal schedule with minimal
average delay 618

12
. Note that average delay under an algorithm that transmits

message 10 before messages 11 and 12 (as in FSP) is higher.

(2) Consider load l̃ that expands load l with message 13 as shown in Fig-
ure 1. At time 105 when message 13 arrives, messages 1, . . . , 9 and 11 are
already finished in the optimal schedule for load l, and the slack system with
pending messages 10, 13, 11, 12 becomes as follows: v(105) = (3, 4, 8, 18),
w(105) = (9, 4, 0, 20), and a(105) = (3, 2, 10, 0). All three unfinished messages

12



10, 13, and 12 are startable at time 105. Although message 13 has the shortest
remaining transmission delay among the unfinished messages, message 13 is
not finishable at time 105. An algorithm that transmits message 13 anyway
(as in OFSP) has to suspend message 13 by time 108 to avoid starvation of
message 10 because the latter finishes in the shadow PS schedule at time 117,
as shown in Figure 2b. The excessively optimistic decision to transmit mes-
sage 13 at time 105 yields suboptimal average delay. The best strategy for
a fair algorithm under the current circumstances at time 105 is to complete
transmission of message 10 by time 114 and then transmit messages 13 and
12 (as in PFSP and SFS). The resulting schedule provides average delay 635

13
.

Now, return to time 0 and consider a fair algorithm that transmits all the 13
messages of load l̃ one after another in the shadow order (as in FSP): any
permutation of messages 1 through 9 followed by messages 10, 11 (suspended
at time 105 to transfer message 13), 13, 11 (the rest of it), and 12. Figure 2c
depicts such an schedule. This schedule provides smaller average delay 634

13
and

is optimal for load l̃.

(3) While loads l and l̃ are identical until time 105, the optimal choice of the
message (message 10 versus 11) to transmit at time 90 depends on whether
message 13 arrives at future time 105. Hence, a fair online algorithm does not
guarantee minimal average delay attainable without starvation.

5 Analysis of Worst-case Inefficiency

While Section 4 reveals that none of fair online algorithms assures minimal
average delay achievable with knowledge of future message arrivals, this section
analyzes the worst-case inefficiency of fair online algorithms in comparison
to the optimally efficient but unfair SRPT when load contains N messages.
First, we report a prior result on PS inefficiency [13] because its proof serves
as a foundation for our subsequent reasoning about FSP and other fair online
algorithms.

Theorem 9 (PS inefficiency by Motwani et al) Worst-case average letup

under PS is Ω
(

N
log N

)

.

Proof: Let Hm denote the m-th harmonic number
m
∑

i=1

1
i
. Consider load l where

messages 1 and 2 arrive at time 0, and each of them has transmission delay 1.
The other N − 2 messages of load l are such that message m = 3, . . . , N
arrives at time Hm−2 and has transmission delay 1

m−1
. The SRPT schedule

that finishes message m = 2, . . . , N at time Hm−1 and message 1 at time

13



HN−1 + 1 achieves minimal average delay DSRPT = 2HN−1+1
N

.

Upon the arrival of message m = 3, . . . , N at time Hm−2, the PS schedule
has m pending messages with remaining transmission delay 1

m−1
. Hence, PS

completes all N messages at time HN−1 +1 and provides average delay DPS =
2N+HN−1−1

N
. By Definition 4, average letup under PS is

LPS =
2N + HN−1 − 1

2HN−1 + 1
. (18)

Since HN is Θ(log N), worst-case average letup under PS is Ω
(

N
log N

)

.

Theorem 9 suggests that avoidance of starvation is a potent constraint because
PS can be highly inefficient. As we show below, efficiency loss can be substan-
tial even for fair algorithms that strive to improve upon PS by transmitting
one message at a time.

Theorem 10 (FSP inefficiency) Worst-case average letup under FSP is

Ω
(

N
log N

)

.

Proof: Consider load l̃ that is identical to load l in the proof of Theorem 9
except for transmission delay of messages 1 and 2. Each of these two messages
has transmission delay 1 − 1

3N
in load l̃. The SRPT schedule that finishes

message 2 at time 1− 1
3N

, message m = 3, . . . , N at time Hm−1, and message 1

at time HN−1 + 1 − 2
3N

achieves minimal average delay DSRPT =
2HN−1+1− 1

N

N
.

Upon the arrival of message m = 3, . . . , N at time Hm−2, the shadow PS sched-
ule has m pending messages: each of messages 1 and 2 has remaining transmis-
sion delay 1

m−1
− 1

3N
, and every message 3, . . . ,m has remaining transmission

delay 1
m−1

. Hence, PS completes both messages 1 and 2 at time HN−1 + 2
3

and all the other N − 2 messages later at time HN−1 + 1 − 2
3N

. The FSP
schedule that transmits the N messages one after another as 1, . . . , N finishes
message 1 at time 1 − 1

3N
, message 2 at time 2 − 2

3N
, message m = 3, . . . , N

at time Hm−1 + 1− 2
3N

, and provides average delay DFSP =
N+HN−1−

2

3
+ 1

3N

N
. By

Definition 4, average letup under FSP is

LFSP =
N + HN−1 − 2

3
+ 1

3N

2HN−1 + 1 − 1
N

. (19)

Since HN is Θ(log N), worst-case average letup under FSP is Ω
(

N
log N

)

.

Whereas our lower bound on worst-case average letup under FSP is the same
as for PS, the following theorem indicates that other fair online algorithms
might do better. Nevertheless, fairness still takes a heavy unavoidable toll on
their efficiency in the worst case.
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Theorem 11 (Fair online inefficiency) Worst-case average letup under a

fair online algorithm is Ω
(√

N
)

.

Proof: Consider load of N messages where N is large, N−1 short messages are
such that message m = 1, . . . , N−1 arrives at time m−1 and has transmission
delay 1, and long message N arrives at time 0 and has transmission delay w

such that PS completes message N at time N
2
.

(1) To estimate w, let n(t) denote the number of pending messages in the
shadow PS schedule at time t. Also, let time k(t) be such that for a message
pending throughout time interval [k(t), t), remaining transmission delay of the
message decreases by 1 over the interval:

t
∫

k(t)

dx

n(x)
= 1. (20)

In particular, k
(

8
3

)

= 0. Let p be the number of short messages that PS

completes during time interval [t; t + δ) where t ≥ 8
3
, δ is a positive integer,

and t + δ < N
2
. Then, the number of pending messages changes over this time

interval as follows:
n(t̃ + δ) − n(t) = δ − p (21)

where t̃ = lim
u↑t

u. The number of short messages that PS completes during

interval [t; t + δ) is equal to the number of short messages that arrive during
interval [k(t); k(t̃ + δ)). Since short messages arrive with period 1, we approx-
imate Equation 21 with:

n(t̃ + δ) − n(t) = δ −
(

k(t̃ + δ) − k(t)
)

. (22)

Dividing both sides of Equation 22 by δ leads us to the difference equation
which we approximate with the following differential equation:

ṅ(t) = 1 − k̇(t) (23)

where the dot represents the time derivative. Differentiating Equation 20, we
receive:

1

n(t)
=

k̇(t)

n(k(t))
. (24)

Taking into account that:
N

2
∫

0

dx

n(x)
= w, (25)

we solve the series of Equations 23, 24, and 25 to establish that w is Θ(
√

N).

(2) The SRPT schedule that transmits the messages one after another as
1, . . . , N achieves minimal average delay DSRPT = 2N+w−2

N
. Now, consider a fair
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online algorithm X. Being fair, algorithm X finishes message N by time N
2
.

Average delay under algorithm X is at least average delay in the schedule
where message N is transmitted as under algorithm X, and all the short mes-
sages are transmitted one after another in the order of their arrival. Whereas
each of the last

⌈

N
2

+ w − 1
⌉

short messages in such schedule experiences de-

lay w, average delay under algorithm X is DX ≥ (N

2
+w−1)w

N
. By Definition 4,

average letup under X is

LX ≥
(

N
2

+ w − 1
)

w

2N + w − 2
. (26)

Because w is Θ(
√

N) as per our derivations above, worst-case average letup

under algorithm X is Ω
(√

N
)

.

6 Simulations

The worst-case inefficiency bounds reported in Section 5 are high and do not
seem to represent typical behavior which we study below. Our experiments
show that SFS, PFSP, and OFSP yield similar average delays, with a surprising
tendency of slightly smaller average delay under the computationally simpler
SFS. Hence, this section compares PS, SRPT, and FSP with SFS only.

6.1 Experimental methodology

We simulate transmission of 3,000 messages over a link with capacity C =
10 Tbps under full link utilization and no data loss. Our choices for the link
capacity and traffic are dictated by our desire to model high-speed networks
of the future. To characterize intensity of the traffic, we quantify the notion
of load l as

l =
M

C · T (27)

where M denotes the average message size, and T is the average message inter-
arrival time. Since the number of messages is finite, all message delays remain
finite even with l > 100%. This feature of our experimental setup enables
us to compare the evaluated algorithms under long-term overload conditions,
which is impossible with analytical techniques that target only steady-state
algorithmic behaviors.

We conduct experiments for diverse arrival patterns ranging from smooth
to bursty and different levels of variance in message sizes. With respect to
message sizes, we report results for uniform, exponential, Lomax, and Pareto
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distributions. Our experimental arrangements for message interarrival times
include exponential and Pareto distributions. The average rate of arrivals is
chosen to yield a desired value of load l. The code and running instructions
for all the reported simulations are available at our web site [11].

6.2 Fairness: lower delays for all

First, we simulate settings where messages arrive according to a Poisson pro-
cess, and message sizes are uniformly distributed between 100 GB and 100 TB.
Figure 3a plots the starvation stretch for every seventh of all 3,000 (ordered
by size) messages in a single experiment at 95% load. Under either of SRPT,
FSP or SFS, a small fraction of messages across the whole spectrum of mes-
sage sizes has starvation stretch 1. These messages finish at exactly the same
times as under PS because they conclude a traffic burst by emptying the queue
upon both their completion under PS and their finish under SRPT, FSP or
SFS. Small and even midsize messages benefit significantly from SRPT, which
delivers them up to 50 times faster than PS. However, some large messages
starve under SRPT. For example, delay for the least lucky message under the
unfair SRPT is about 50 times larger than under PS.

For the fair FSP, Figure 3a shows that 800 smallest messages enjoy similarly
low starvation stretches as under SRPT. To explain the similarity, we observe
that a small message is likely to possess both the shortest remaining trans-
mission delay and earliest PS completion time among unfinished messages.
For larger messages, the FSP profile becomes different. Starvation stretches
of midsize messages rise significantly closer to 1 than under SRPT. On the
other hand, the increase enables FSP to finish all large messages by their PS
completion times.

SFS also schedules small messages similarly to FSP: respective points in Fig-
ure 3a often coincide. The reason for the similarity is the same as for SRPT
versus FSP. Again, SFS and FSP differ in their treatment of midsize and large
message. A dense cluster of points around starvation stretch 1 for large mes-
sages under SFS indicates that SFS reduces delays for midsize messages by
postponing large messages almost as long as possible without causing star-
vation. In addition to the across-the-spectrum line at starvation stretch 1,
Figure 3a also reveals sparser but still discernible rows of points with star-
vation stretches 1

2
, 1

3
, and 1

4
. The rows correspond to messages that arrive

and finish while 1, 2, or 3 other messages remain both pending under PS and
unfinished under SRPT, FSP or SFS.

To expose the discussed trends more clearly, we repeat the experiment 1,000
times and average the 1,000 obtained sets of starvation stretches sorted in
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Fig. 3. Fairness of FSP and SFS versus unfairness of SRPT for uniformly dis-
tributed message sizes and exponentially distributed interarrival times with 95%
load: (a) starvation stretch for every seventh message in a single experiment; (b) av-
erage of starvation stretches over 1,000 experiments; (c) cumulative distribution of
individual starvation stretches from 100 experiments.

the increasing order of message sizes. Figure 3b shows that SRPT substan-
tially decreases delays of small and midsize messages but the largest messages
typically starve. Under FSP, not only small messages (the rich) benefit from
abandoning PS but also the largest messages (the poor) have average star-
vation stretch about 0.7. Hence, FSP improves upon PS across the board by
reducing delays for all classes of messages: rich, middle, and poor! Figure 3b
also illustrates strategic differences between SFS and FSP. By keeping star-
vation stretches of large messages closer to 1, SFS helps the middle class of
midsize messages to enjoy significantly lower delay than under FSP.

The average starvation stretches reported in Figure 3b blur fates of individual
messages. Hence, Figure 3c plots cumulative distributions of all 300,000 indi-
vidual starvation stretches in 100 instances of our experiment. Comparison of
FSP with SRPT shows that while starvation stretches up to the 85-th per-
centile are higher under the fair FSP, the top 5% of starvation stretches under
the unfair SRPT exceed 1, i.e., belong to starved messages. Comparison of
SFS with FSP reveals a main divide around 73%. Up to the 73-rd percentile,
starvation stretches are lower under SFS. Under either SFS or FSP, the top
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5% of starvation stretches equal 1. Between the 73-rd and 95-th percentiles,
FSP yields smaller starvation stretches. Similarly to Figure 3a, lines in Fig-
ure 3c contain horizontal segments at starvation stretches 1, 1

2
, 1

3
, 1

4
, and 1

5
.

These flat segments reflect messages that arrive, are completed by PS, and
finish under SRPT, FSP or SFS while 0, 1, 2, 3, or 4 other messages remain
unfinished.

6.3 Efficiency: decrease of average delay

To evaluate efficiency of the algorithms, we conduct our experiment for various
values of load l. We repeat the experiment 1,000 times for each examined load
l ≤ 120%, i.e., including all examined instances of underload, but generally less
for overloads of l > 120%. Figure 4a illustrates an intuitive expectation that
average delays under SRPT, PS, FSP, and SFS grow as load increases. After
load hits and surpasses 100%, the delays remain finite and even decelerate
their growth because the number of messages in every experiment is finite. For
the extreme of “infinite” load when all 3,000 messages arrive simultaneously,
the average delays are analytically expressed in [8]. In particular, PS yields
the following average delay in a single experiment with simultaneous message
arrivals:

D
∞

PS
=

N
∑

k=1
(2(N − k) + 1)mk

N · C (28)

where mk is the size of the k-th smallest message, N = 3,000 is the number
of messages, and C = 10 Tbps is the link capacity. When the messages ar-
rive simultaneously, SRPT, SFS, and FSP produce an identical transmission
schedule for the experiment and achieve the same average delay [8]:

D
∞

SRPT
= D

∞

SFS
= D

∞

FSP
=

N
∑

k=1
(N − k + 1)mk

N · C . (29)

For the considered uniform distribution of message sizes, we derive the ex-
pected average delay under PS as:

D
∞

PS
=

(4N + 1)mmin + (2N − 1)mmax

6C
≈ 88,118 seconds

where mmin = 100 GB and mmax = 100 TB are respectively minimum and
maximum message sizes in the distribution. The expected average delay under
SRPT, SFS, and FSP becomes:

D
∞

SRPT
= D

∞

SFS
= D

∞

FSP
=

(N + 1)(2mmin + mmax)

6C
≈ 44,081 sec.
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Fig. 4. Efficiency of SRPT, PS, FSP, and SFS with uniformly distributed message
sizes and exponentially distributed interarrival times: (a) average delay, (b) average
letup, and (c) average letup during underload.

Figure 4a confirms that experimental average delays converge asymptotically
to the above analytical predictions.

Figure 4b plots average letups under PS, FSP, and SFS. All three letups peak
around l = 100%. At this load where the arrival rate matches the link capacity,
PS, FSP, and SFS have respectively 2.8 times, 22%, and 9% larger average
delays than SRPT. Asymptotically, the average letup under PS converges to:

L
∞

PS
=

(4N + 1)mmin + (2N − 1)mmax

(N + 1)(2mmin + mmax)
≈ 2

while SFS and FSP converge to the optimal efficiency:

L
∞

SFS
= L

∞

FSP
= 1.

In general, SFS provides SRPT-like efficiency with consistently lower average
delay than FSP.

While our results for l > 100% offer interesting insights into behavior of the
algorithms in long-term overload conditions, Figure 4c focuses on underload
scenarios l < 100% which are the most relevant for steady-state operation.
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Fig. 5. Efficiency of SRPT, PS, FSP, and SFS with exponential distributions for
both message sizes and interarrival times: (a) average delay, (b) average letup, and
(c) average letup during underload.

Again, SFS consistently outperforms FSP. For example, when load equals
80%, average delays under PS, FSP, and SFS are respectively 2 times, 7%,
and only 3% worse then the minimum attained under the unfair SRPT.

6.4 Sensitivity to traffic patterns

To examine how the distribution of messages sizes affects performance of fair
algorithms, we conduct extra simulations where messages still arrive according
to a Poisson process but message sizes follow an exponential, Lomax, or Pareto
distribution. As in the uniform distribution above, the average message size is
kept 51,250 GB in each of the three new distributions.

The exponential distribution is another representative of scenarios where mes-
sage sizes are large and have relatively small variance. Figure 5 reveals that
increased diversity of message sizes reduces efficiency of fair algorithms. With
the exponentially distributed message sizes, average letup under PS peaks
around 4.5. FSP decreases the worst observed average letup to 1.5, which
is brought further down to 1.3 by SFS. The efficiency profiles of the three
algorithms remain qualitatively the same: the algorithms are most inefficient
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Fig. 6. Efficiency of SRPT, PS, FSP, and SFS with Lomax-distributed message
sizes and exponentially distributed interarrival times: (a) average delay, (b) average
letup, and (c) average letup during underload.

when load is around 100%, and SFS consistently provides lowest average delay
among the fair trio.

The next examined distribution of message sizes is Lomax, also known as
Pareto of the second kind. We set the scale and index of the Lomax distribution
to 25,625 GB and 1.5 respectively. The distribution represents high-variability
settings where the average message size is large, and the number of short
messages is significant. Figure 6 shows that inefficiency of PS is greater than
with the exponentially distributed message sizes: worst observed average delay
is almost 6 times higher than under SRPT. On the other hand, FSP and
SFS benefit from the significant presence of short messages. Average delay
under FSP and SFS is only 14% and 6% higher respectively than the SRPT
minimum.

Our second source of highly variable message sizes is the Pareto distribution
with the scale of 17,083 GB and index of 1.5. With the fraction of short
messages being less prominent than in the Lomax distribution, the Pareto
pattern is the most cruel to PS. Figure 7 demonstrates that average letup
under PS peaks around 7.5. Interestingly, these are also the settings where
unfairness of SRPT is less of a problem. Our experiments confirm the surpris-
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Fig. 7. Efficiency of SRPT, PS, FSP, and SFS with Pareto-distributed message sizes
and exponentially distributed interarrival times: (a) average delay, (b) average letup,
and (c) average letup during underload.

ing finding by Bansal and Harchol-Balter [1] that even under heavy load with
Pareto-distributed message sizes, SRPT starves only few messages and does
not inflate starvation stretch much beyond 1. In comparison to PS, efficiency
of the fair FSP and SFS is far superior: average delay is at most 23% and 11%
worse respectively than the minimum achieved by SRPT.

Finally, we experiment with different patterns of message interarrival times.
Unlike with message sizes, the distribution of interarrival times does not af-
fect efficiency of fair algorithms substantially. Figure 8 plots average delay
and letup under PS, FSP, and SFS for uniformly distributed message sizes
and Pareto-distributed interarrival times with Pareto index 1.5. The results
strongly resemble the average delay and letup reported for exponentially dis-
tributed interarrival times in Figure 4. The main deviation seems to lie in
reaction to load changes. With Pareto-distributed interarrival times, average
letup grows and declines slower while approaching and passing a compara-
ble peak value around the 100% load. For Pareto-distributed message sizes,
comparison of Figures 7 and 9 reveals that switching from the exponential to
Pareto distribution of interarrival times has a similar impact of widening and
slightly shortening the peaks of average letup under PS, FSP, and SFS.
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Fig. 8. Efficiency of SRPT, PS, FSP, and SFS with uniformly distributed message
sizes and Pareto-distributed interarrival times: (a) average delay, (b) average letup,
and (c) average letup during underload.

Regardless of the distributions chosen for message sizes and interarrival times,
the efficiency profiles of the fair algorithms are qualitatively the same. The
ability of PS, FSP, and SFS to compete with SRPT is the weakest when
load is about 100%. Under large overload conditions, average letup under PS
converges to around 2 while FSP and SFS operate like SRPT and support
SRPT-like efficiency. Our simulations show consistently that PS and SFS are
respectively the least and most efficient among the evaluated fair algorithms.

7 Conclusions

In this paper, we explored the class of fair algorithms for message commu-
nication where fairness means that no message is delivered later than under
PS. In addition to PS, the fair class includes FSP and newly proposed PFSP,
OFSP, and SFS. We introduced a slack system to characterize fair algorithms
completely and proved that a fair online algorithm does not guarantee min-
imal average delay achievable with fairness. Our analysis also revealed lower
bounds on worst-case inefficiency of fair algorithms. Our extensive simulations
for various distributions of message sizes and arrival times showed that SFS
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Fig. 9. Efficiency of SRPT, PS, FSP, and SFS with Pareto distributions for both
message sizes and interarrival times: (a) average delay, (b) average letup, and (c)
average letup during underload.

supports SRPT-like efficiency and consistently provides much smaller aver-
age delay than PS and FSP. The simulations demonstrated that FSP and
SFS gain their efficiency improvement over PS across the whole spectrum of
message sizes, including long messages but primarily due to dramatic delay
reduction for short messages. SFS outperforms FSP by decreasing delay for
midsize messages.

Our experimental study focused on SFS. A further study needs to compare
efficiency of SFS, PFSP, and OFSP with the optimal efficiency achievable
by a fair offline algorithm. If the efficiency gap is significant, an interesting
approach to narrowing the gap is to predict properties of future messages from
statistical information about past messages.

While link scheduling can affect location of bottlenecks in an arbitrary network
topology, our focus on one link was clearly an excessive simplification. Future
studies should tackle the harder general problem and also address diversity of
applications. First, our analysis ignored propagation, node processing, error re-
covery and other delays dominated by bottleneck transmission delays for long
messages. For shorter messages, the extra delays contribute more to overall
delay and thereby reduce the relative gains from the efficient utilization of the
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bottleneck link. To handle a more complex model, we will learn from prior re-
search on message-grained transmission over packet-switching networks [4,12].
Second, some applications are interested in other network performance metrics
than minimal delay achievable under current load. We are designing an inte-
grated allocation framework where a fair service minimizes average message
delay, and the other services support applications with different performance
objectives.
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