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ABSTRACT OF THE DISSERTATION

Improving Radiation Therapy Through Motion Tracking

by

Hanlin Wan

Doctor of Philosophy in Biomedical Engineering

Washington University in St. Louis, 2016

Parag Parikh, Chair

Radiation therapy is a widely-used cancer treatment method in which lethal doses of

ionizing radiation are delivered to cancerous cells. Given the high dose requirements

and the risk of associated complications, it is essential that radiation be targeted

to cancerous cells while minimizing the dose to surrounding tissue. While current

technology allows for accurate targeting of radiation dose, there is one major hurdle:

Respiratory motion causes movement of up to a few centimeters of tumors in the

abdomen and thorax, rendering even the most accurate radiation delivery machine

highly inaccurate. Imaging devices integrated with the treatment machines allow

us to visualize the moving tumors, either indirectly through x-ray imaging of nearby

implanted fiducial markers, or directly through magnetic resonance imaging. The

research presented here investigates two new methods of tracking the tumor motion

on these modalities.
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Chapter 1

Introduction

1.1 Respiratory Motion in Radiation Therapy

In radiation therapy, high doses of ionizing radiation are targeted at the cancerous

tissue, causing damage to cell DNA that results in the shrinking or even complete

recession of the tumor. Approximately 2/3 of all cancer patients will receive radia-

tion therapy during their illness, with the majority receiving external beam radiation

therapy (EBRT) [1]. In EBRT, large amounts of radiation are delivered through an ex-

ternal source. This radiation can originate from a variety of different sources, such as

gamma rays from cobalt-60 machines or high-energy x-rays from linear accelerators.

Because such high doses of radiation are required to kill tumor cells, it is important to

direct as much of that radiation as possible to the cancerous tissues, while minimizing

the dose to the surrounding, healthy tissue.

Today, intensity modulated radiation therapy (IMRT) [2] is by far the most common

method of radiation delivery. In IMRT, each radiation beam is further divided into

a number of smaller beamlets, all of which have their own intensity profiles (Figure
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Figure 1.1: Schematic of an IMRT delivery. The radiation dose is highest in the targeted red
portion in the middle and lower farther away from it.

1.1). Combined with the use of multiple beams directed from various angles, IMRT is

able to deliver varying amounts of radiation to different tissues very precisely. This

is especially important for organs that are particularly sensitive to radiation dam-

age, such as the bowel, stomach, duodenum, or spinal cord, which may lie in close

proximity to the targeted tumor volume.

The radiation therapy process consists of three steps. First, a patient simulation

is performed, in which a volumetric image of the target anatomy is acquired. This

is generally a computed tomography (CT) image, although the use of magnetic res-

onance (MR) images has been increasing in recent years. Second, the simulation

images are imported into a treatment planning software, in which the radiation dose

to the target is virtually planned, as in Figure 1.1. Finally, the patient is placed into

the treatment machine for radiation dose delivery according to the treatment plan.

In the planning step, a computer algorithm optimizes the direction and profile of
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the beams based on physician-drawn contours and constraints. For example, the

clinical target volume is the volume that encompasses the visible tumor and the un-

imageable tumor spread. This is the volume that must receive a high dose of radiation

for optimal treatment. However, due to uncertainties in planning and delivery, the

contour must be expanded into the planned target volume (PTV) to ensure that the

entire tumor is irradiated. Other important contours include organs at risk, in which

a maximum dose constraint is established in order to reduce damage to sensitive

tissues.

In order to accurately deliver the radiation according to plan, the patient must be

accurately set up on the treatment table, which is typically accomplished through the

use of imaging with an integrated imager. The most common type of imager has an

x-ray unit mounted 90◦ from the radiation delivery unit on the same rotating gantry.

The data presented in Chapters 2 and 3 was acquired from such an imaging unit,

namely the Varian Trilogy and TrueBeam machines (Varian Medical Systems, Palo

Alto, CA). More recently, companies are looking to combine radiation delivery with

an MR imager, allowing for significantly better soft tissue images without additional

x-ray radiation to the patient. The data presented in Chapter 4 was acquired from

the first integrated MR/radiation delivery machine to be used clinically, namely the

ViewRay MRIdian (ViewRay Inc., Cleveland, OH) [3].

On each treatment day, or fraction, the patient undergoes imaging immediately prior

to radiation delivery in order to ensure proper positioning on the treatment table.

The radiation therapists then use these images to manually line up the physician-

assigned targets on the pre-treatment image to the planning image. In patients with

thoracic or abdominal tumors, there is the added challenge of respiratory motion,

which can result in tumor movement up to several centimeters. If not taken into

3



account, this motion causes reduced dose to the target cells and an increased dose to

the surrounding, healthy tissue [4,5].

There are multiple ways in which physicians can account for respiratory motion. The

most commonly used method is a motion-encompassing technique. By using imaging

such as slow CT [6] or four-dimensional CT [7], physicians can estimate the extent of

the tumor motion as well as establish a time-averaged tumor location. By planning

the radiation based on this mean position and taking into account the magnitude of

the motion, the expected dose blurring effect of respiration can be compensated [8].

Another method is respiratory gating, in which the radiation dose is delivered only

when the patient is in a certain phase of the respiratory cycle. To perform respiratory

gating, the motion of the target needs to be tracked through the use of respiratory

surrogates, typically a combination of internal and external surrogates. The motion

of the internal surrogate, typically a fiducial marker (FM) implanted in close prox-

imity to the tumors, is correlated with an easily tracked external surrogate, such

as Varian’s Real-time Position Management (RPM) system (Varian Medical Systems,

Seattle, WA). The radiation beam is then gated on or off depending on set bound-

aries for the values obtained from the external surrogate. In the case of ViewRay’s

MR system, gating can be performed directly on the tumor itself as seen on the MR

images.

In order to effectively apply motion management, it is essential to track the tumor

motion accurately. The research here addresses such tracking issues. Chapters 2 and

3 investigate the tracking of FMs in fluoroscopic and cone beam CT (CBCT) images,

respectively, while Chapter 4 investigates the tracking of the tumors directly in MR

images.

4



1.2 Fiducial Tracking in X-Ray Images

FMs are commonly used in EBRT to aid in the patient setup. Since the tumors are not

usually visible with x-ray imaging, FMs are implanted near the tumor as surrogates.

The FMs can then be used to align the patient to the FMs from the planning CT.

Because of nonridity of the internal organs, the use of FMs can greatly increase the

setup accuracy compared to aligning the patient using skin marks [9, 10] or bony

anatomy [11,12].

To set up a patient using FMs, x-ray images are acquired immediately prior to treat-

ment, and the FMs are then manually aligned to those in the planning CT. This is

usually in the form of a pair of orthogonal fluoroscopy images and/or a CBCT image.

For a stationary target, two images acquired 90◦ apart is sufficient to accurately lo-

calize the marker in 3D space. However, for a moving target, a CBCT acquisition is

preferred. A CBCT image is a series of hundreds of fluoroscopic images acquired at

different gantry angles over the course of about a minute. These images can then be

reconstructed into a 3D volume for marker alignment.

Due to respiratory motion and the long acquisition time for CBCT, the reconstructed

volume will have a marker that is blurred in the superior-inferior direction. A good

strategy for patient setup is to align the time-averaged, mean marker position to the

marker in the planning CT. This theoretically results in a perfect alignment with

the average marker location and therefore the highest planned dose will be in the

same location. Another strategy is to use respiratory gating, in which the beam is

turned on and off based on the FM location. The beam would be on only when the

marker is within the contoured boundary, which we will call the marker PTV (mPTV).

Respiratory gating allows for a smaller range of motion in which the beam is on,
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therefore reducing the dose blurring effect. Setting up the patient using the mean

marker position can be time consuming and inaccurate due to the blurred images,

and using respiratory gating is even more time consuming to set up. Chapters 2

and 3 attempt to address this issue by tracking the motion of the FMs in these x-

ray images and automatically optimizing the patient setup for both the mean marker

position setup as well as the gating setup.

1.3 Tumor Tracking in Cine MR Images

While FMs are the current gold standard for tumor localization, there are some draw-

backs to their use. FM implantation is an invasive procedure; there are restrictions

on where the FMs can be implanted; FMs may migrate over time; and tumors can

shrink, grow, and deform in ways such that FMs cannot accurately describe their lo-

cations [13]. One solution is to use MR imaging to image the tumors directly rather

than rely on a FM surrogate.

Combining MR imaging with radiation delivery is a difficult problem due to inter-

ference of the strong magnetic field with the radiation delivered to the patient [14].

ViewRay tackled this problem by using a weaker 0.35 T magnet combined with three

gamma-emitting cobalt-60 sources. This combination has been shown to produce

plans comparable to those from traditional linear accelerators [15–17].

With MR imaging of the tumor during treatment, respiratory gating can be performed

directly on the tumor target as opposed to on FMs. Similar to the mPTV concept,

where the FM must stay within a specified contour, gating on the ViewRay can be

performed with a physician-specified contour for the tumor motion. The tumor target
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would be automatically tracked and the beam would be turned off when it leaves the

specified boundaries. However, the current clinical tracking software on the ViewRay

is not very robust, making gating less than optimal. Traditional tracking algorithms

also do not work well due to the poor image contrast and resolution as a result of the

weak magnetic field. Chapter 4 attempts to address the tracking of the tumor in a

new, more robust way.
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Chapter 2

Fiducial Tracking in Fluoroscopic

Images†

Fluoroscopic images can be acquired using an onboard imager both prior to and dur-

ing treatment. Although this process allows the physician to visualize FM motion and

make decisions on how best to manage it, it is impractical for the physician to moni-

tor the entire duration of treatment. Previous works have attempted to address this

issue by automating the tracking of FMs. In this chapter, we present a new method

for tracking FM in fluoroscopic images and compare it to previous, template based

methods.

†The work in this chapter has been previously published in [18]. c© Institute of Physics and Engi-
neering in Medicine. Reproduced with permission. All rights reserved.
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2.1 Background and Significance

Knowledge of a moving tumor’s location is critical for optimal radiation delivery [19],

as it allows for better selection of gating windows [20, 21] and determination of the

actual dose prescribed to the patient [22, 23]. One way to track this tumor motion is

by tracking the nearby implanted FMs seen through x-ray imaging.

A number of different groups has worked on algorithms to track FMs in fluoroscopic

images. Nederveen et al. used a marker extraction kernel as the template for cylin-

drical FMs [24–26]; Shirato et al. modeled gold spheres by creating templates with 2D

Gaussian distributions [27]; and Tang et al. used rectangular templates to model gold

spherical and cylindrical FMs [28]. Each of these algorithms required prior knowl-

edge of the exact shape and size of the FMs. A different algorithm, created by Balter

et al., did not require specific known marker shapes and instead a reference image as

the template [29,30]. These algorithms are all based on template matching (TM) and

its derivatives, with specific requirements for the marker shape (generally spherical

or cylindrical) and size, as well as for images with good contrast and no background

clutter.

These algorithms generally work well with FMs that have known, regular shapes and

high signal-to-noise ratios. However, multiple companies are now developing coiled

FMs (e.g. Visicoil - RadioMed Corp., Bartlett, TN; VortX - Boston Scientific Corp.,

Natick, MA), which are smaller in size and irregular in shape, making them both

easier to implant and less likely to migrate [31, 32]. Coiled FMs appear in images

with irregular shapes as well as lower contrast and signal-to-noise ratios. As a result,

they require a reference image approach to TM, in which the user must manually

create the template. As will be demonstrated later in this chapter, the performance
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of TM algorithms with this approach greatly depends on the quality of the template.

We present here a novel method based on an optimization algorithm known as dy-

namic programming (DP) that can robustly track implanted FMs of any size, shape, or

orientation in fluoroscopic images. The first paper on DP was published in 1952 [33],

and since then, this method has been used for numerous optimization problems in

many different fields. We will show that for tracking FMs in fluoroscopic images, our

DP-based algorithm greatly outperforms the current TM based methods.

2.2 Materials and Methods

2.2.1 Tracking Algorithm

The FM tracking algorithm is a 2-step, iterative method that alternates between con-

straining the search window and running the DP optimization. The search window is

used to limit the search space for the FM in image i to a 100× 100 box (approximately

23× 23 mm) centered at

Pu (i) = pu (2.1)

Pv (i) = pv + s ·RPMi .

s is the scaling factor for the respiratory surrogate signal value RPM , and (pu, pv) is

the expected coordinate of the marker in the absence of motion. For the first iteration,

pu and pv is manually selected and s = 0.

The 23 mm search window roughly corresponded to the maximum range of the FMs

10



in 95% of data sets. The use of a search window decreases the computational com-

plexity while increasing the robustness of the algorithm. The FM does not typically

move much laterally in the u direction, hence the constant Pu (i). However, due to

respiratory motion, it can deviate substantially in the v direction. Therefore, Pv (i)

has an adjustment term that correlates to an external respiratory surrogate.

The second step is the DP step, in which a cost function f (p1, p2, . . . , pN) is minimized.

Each pi is a vector of all the possible FM locations in image i, and N is the number

of images. In the fluoroscopic images, radiopaque FMs have a lower intensity than

neighboring pixels. Therefore, the list of possible locations corresponds to all of the

local minima in the search window. Smoothing with a Gaussian kernel (σ = 7 pixels)

removes much of the noise without eliminating the minima associated with the actual

FMs, reducing the number of local minima to about 50 per search window.

The DP optimization algorithm is used to find the (ui, vi) in each pi such that the

following cost function is minimized:

f (p1, p2, . . . , pN) =
N∑
i=1

g (pi) + α
N∑
i=1

h (pi) + β
N−1∑
i=1

k (pi, pi+1) (2.2)

where

g (pi) =

√
(ui − cu,i)2 + (vi − cv,i)2 (2.3)

h (pi) = I (ui, vi)

k (pi, pi+1) =

√
(ui − ui+1)

2 + (vi − vi+1)
2 .

g ( · ) and h ( · ) are cost functions that depend only on image i while k ( · ) is a cost
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function that depends on two neighboring images, i and i+ 1.

g (pi) is the Euclidean distance from the center of the search window (cu,i, cv,i) =

(Pu (i) , Pv (i)) to the minima (ui, vi). This term forces the minimum cost to occur when

the FM is close to the center of the search window. k (pi, pi+1) is the Euclidean distance

between possible minima in adjacent images. Since images are acquired at 11 Hz, it

is assumed that the FM does not move much between successive images. Therefore,

this term forces the minimum cost to occur when the FM moves the least between

successive images. h (pi) is the linearly rescaled grayscale intensity value I such that

the extreme values for the pixels in each pi are 0 and 1. FMs have lower intensities

than the background, and therefore, this term forces the minimum cost to occur at

the lowest intensity pixel. The parameters, α = 35 and β = 10, were determined

empirically to balance the need to constrain motion between images with the need to

avoid false minima.

After the DP step, the algorithm returns to step 1 with a refined search window (new

pu, pv, and s) such that the sum of distances between the set of (Pu, Pv) and the set of

DP-tracked location (ui, vi) over all of the images is minimized:

f (pu, pv, s) =
N∑
i=1

√
(pu − ui)2 + (pv + s ·RPMi − vi)2 . (2.4)

The algorithm alternates between optimizing (ui, vi) by minimizing Equation 2.2 and

optimizing pu, pv, and s by minimizing Equation 2.4 until less than 1% of the pre-

dicted locations change between iterations. In general, 2-3 iterations are required for

convergence.

After convergence, the set of (ui, vi) for each fluoroscopy image i from the final iter-
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Figure 2.1: Sample FMs from each of the 24 patients.

ation is used in conjunction with TM (normalized cross correlation) to further refine

the tracking, resulting in the DPTM algorithm. Unlike previous TM algorithms, the

location of the FM is already known, and therefore, the search space for TM only

needs to be twice the size of the template in each direction. This small search window

prevents failed tracking due to nearby objects and drastically improves robustness.

For data sets with multiple FMs, the tracking is performed on each FM individually,

independent of the other FMs.

2.2.2 Test Data

To test the DPTM algorithm and to compare it with previous TM algorithms, fluo-

roscopy images were collected from 24 different patients (14 liver, 7 pancreas, 3 lung)

over multiple fractions, resulting in a total of 407 data sets. Each data set contained

about 225 images. The range of motion for each FM is 12 ± 5 mm, with the largest

motion being 30.7 mm. Figure 2.1 shows examples of FMs (all Visicoil) from each of

the 24 patients. It is clear that the FMs have a wide range of shapes and sizes.

13



To establish a ground truth, a bounding box was manually drawn around the FMs

in each image for each data set. The true location of the FM is then taken to be the

center of the box. The accuracy of manual contouring is estimated to be better than 2

pixels (0.5 mm). These true locations are then used to evaluate the performance of the

different algorithms based on two metrics: mean error and 95% error. The mean error

is the mean distance from the true locations to the outputted locations across all the

images in a data set. This gives an idea of the overall performance of the algorithm.

The 95% error is the distance from the true to the outputted locations that 95% of the

images in a data set fall below. This gives an idea of the consistency of the algorithm,

which is very important in clinical settings.

Since TM algorithms are very sensitive to the template used, each data set was tested

with three different templates. Figure 2.2 on the left shows a 100× 100 pixel (23× 23

mm) search window for one of the images. The search window in each image was

always centered at the true location to simulate a best-case scenario. On the right

are the three templates used. The top template comes from manually outlining the

FM in the first image of the data set (contoured template). For each data set, 10

random images were chosen to create the other two templates. These were created by

cropping the image around the known true location. The size of template used was

the same as the contoured template with a 7-pixel (1.6 mm) padding added on all four

sides. After 10 such trials, the templates that resulted in the lowest and highest mean

errors (corresponding to the best and worst templates in Figure 2.2) were saved and

used for all further comparisons. For this patient, the FM rotated during respiratory

motion. The best and worst templates corresponded to different orientations of the

FM.

For each data set, the FM locations were also tracked using our DP algorithm with no
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Figure 2.2: Images for Patient #1. Left: One example of a 23×23 mm search space. Right: The
3 templates used for testing; contour - manually traced outline, best - template resulting in
best tracking performance with TM, worst - template resulting in worst tracking performance
with TM.

TM refinement, as well as with the same three templates as used in TM (DPTM). All

instances of TM use the normalized cross correlation between the template and the

search space to find the pixel corresponding to the greatest correlation.

In the rest of this chapter, we first explore the performance of TM using various tem-

plates. Next, we compare DP, which does not require a user-defined template, to TM

using the best possible template. Finally, we show the tracking accuracy by using

DPTM.

2.3 Results

Figure 2.3 shows the tracking results for the same data set as shown in Figure 2.2

using the three different templates for TM as described in Section 2.2.2. The images
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Figure 2.3: Tracking results comparing TM using the best, worst, and contoured templates
on the same data set as used in Figure 2.2. The images on the vertical dashed lines represent
the corresponding actual image of the FM. The errors are caused by differences in the FM
orientations at different breathing phases coupled with the different orientations of the 3
templates.

at the top are the corresponding actual images of the FM at that time. The two on

the left show the FM in a horizontal orientation. In these situations, TM best and

TM contour, whose templates had the same horizontal orientation, accurately located

the FM. On the other hand, the TM worst template, which had a vertical orientation,

failed in these images. Instead, it located a second FM which was oriented vertically

and located about 15 mm away. The rightmost image corresponded to peak inhalation,

where the FM rotated to a vertical orientation. In these images, TM best and TM

contour matched to random background objects, while TM worst accurately located

the FM.

Table 2.1 summarizes the performance of TM on the 407 data sets with the different

templates. For conciseness, the metric ME1 will be defined as the percentage of data

sets with a mean error of 1 mm or less, and the metric 95E2 will be defined as the
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Table 2.1: Comparison of the ME1 and 95E2 for DP, TM, and DPTM with the 3 different
templates on 407 data sets. ME1 - percentage of data sets with a mean error of 1 mm or less;
95E2 - percentage of data sets with a 95% error of 2 mm or less.

Algorithm ME1 95E2
TM Best 92.4 88.2

TM Worst 71.7 66.8
TM Contour 47.4 42.5

DP 90.7 90.2
DPTM Best 99.3 98.3

DPTM Worst 98.5 98.0
DPTM Contour 99.0 98.8

percentage of data sets with a 95% error of 2 mm or less. The best template performed

very well, with an ME1 of 92% and 95E2 of 88%. However, the worst and contoured

templates performed much worse, further demonstrating the importance of choosing

a good template for TM.

Figure 2.4 shows the tracking results using DP on the same data set as used in Fig-

ures 2.2 and 2.3. In this example, the locations outputted by the DP algorithm is

much more accurate than any of the TM algorithms. The only necessary input for

DP is an approximate starting location so that the algorithm knows where to start

searching for the FM.

Table 2.1 shows that over the 407 data sets, DP performs as well as TM best, with a

ME1 of 91% and a 95E2 of 90%.

Because DP uses local minima to determine possible FM locations, and has no a-priori

information on where these minima fall along the overall shape of the FM, it may not

necessarily always pick the same location on the FM in all the images. Figure 2.5 is

a good example of this. The FM is approximately 10 mm long, and the estimated FM

location by DP fluctuates wildly. The DP algorithm is based on the assumption that
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Figure 2.4: Tracking results using DP on the same data set as used in Figures 2.2 and 2.3.

the images are acquired at a fast enough rate that the FMs do not move much between

successive images. Since the possible FM locations correspond to local minima in the

images, and large FMs are likely to contain multiple local minima, the DP algorithm

will choose the points on the FM that results in the least movement. While the figure

shows that DP appears to have failed to properly track the FM, visual inspection

revealed that the estimated location was in fact somewhere on the FM in every single

image.

Figure 2.6 plots the mean and 95% errors of DP as a function of FM size. The size of

the FM was defined as the diagonal length of the bounding box from the contoured

templates. It appears that the error of the DP algorithm does indeed increase as the

size of the FM increases.

To track larger FMs more accurately, a TM refinement step was added after DP

(DPTM). Since DP does very well at locating some point on the FM, the template

used for the TM step can be very small, and the search space only needs to be twice
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Figure 2.5: Tracking results comparing DP, DPTM contour, and TM best on Patient 2. While
DP appears to fail to properly track the FM, the estimated location is on the FM in every
image. An image of the FM is shown on the right.

Figure 2.6: (a) Mean and (b) 95% error for DP with no template as a function of the FM size,
defined as the diagonal length of the bounding box from the contoured templates.
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the size of the template in each direction. Not only does this smaller search win-

dow decrease the computation complexity of TM, but it also makes TM much more

robust to background noise and other objects. Figure 2.5 shows that the tracked FM

locations using DPTM with the contoured template is very accurate, despite the DP

location fluctuating wildly over the long FM.

Table 2.1 shows that the template used for DPTM does not affect its performance,

Regardless of whether it is the contoured, best, or worst template, DPTM was able to

achieve an ME1 of about 99% and 95E2 of 98%, which are far better than TM best

(ME1 = 92%, 95E2 = 88%). This shows that DPTM can improve on the performance

of TM without worrying too much about the quality of the template.

2.4 Discussion

In this chapter, we have presented a new algorithm, DPTM, to track any FM in flu-

oroscopic images. Previous algorithms used to track FMs are all based on TM or

derivatives thereof [24–30]. These algorithms have strict requirements on template

generation in order to achieve optimal results. Furthermore, these algorithms were

mostly tested on gold spheres or cylinders. However, physicians are moving more

towards flexible, coiled FMs, which can take on any arbitrary shape in the acquired

images. We showed in Figure 2.3 and Table 2.1 that the performance of these TM

based methods varies greatly depending on the quality of the templates. We showed

that when a good template is used, TM is fairly robust. However, when the template is

suboptimal, TM may often stray from the true FM locations, and track to background

objects. In clinical settings, the physicians may not have the luxury of creating and
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testing multiple templates to see which one performs the best.

Figure 2.4 shows that DP performs much better than all three TM cases on this par-

ticular data set. DP by itself does not require the user to create an initial template;

the user only has to input a single approximate point for each FM. This input can

come from the FM locations contoured in the pre-planning CT images, as will be

demonstrated in Chapter 3 on tracking FMs in CBCT images. This would make the

algorithm fully automatic, requiring no additional user inputs. The iterative nature

and global optimization of the DP algorithm allows for more accurate tracking as long

as the initial point is close, making the algorithm much more robust to variances in

initialization.

Figures 2.5 and 2.6 reveal a major drawback of DP. It does not perform as well with

FMs larger than 7-8 mm. The DP algorithm uses local minima information from the

images to determine possible FM locations. On large FMs, there may exist multiple

local minima. Since the algorithm attempts to minimize the motion of the FMs from

image to image, the tracked locations from DP are likely to jump around on the actual

FM. In Figure 2.5, DP appears to completely fail to track the FM. However, on visual

inspection, the output location in every image did indeed correspond to a point on the

FM, but that point did not stay at a consistent location. Figure 2.6 shows that with

the exception of a few outliers, FMs smaller than 7-8 mm can be accurately tracked

using the DP algorithm alone.

In order to address the issue of large FMs, the DPTM variation was introduced, which

adds a TM step after DP. Since DP is able to accurately locate the FM, the additional

TM step requires a search window that is only twice the size of the template in each

direction. This small search window makes the TM step much more robust to inter-
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Figure 2.7: Tracking statistics for the 407 data sets. (a) Mean and (b) 95% error comparing
TM best, DPTM contour, and DP with no template.

ference from background objects. Table 2.1 shows that the template used has very

little effect on the performance of DPTM, unlike in TM alone. This template infor-

mation can be extracted from the contours in the pre-planning CT images, making

DPTM also fully automatic. Furthermore, the additional TM step greatly improves

the tracking accuracy, especially for larger FMs. Figure 2.5 shows an example where

DPTM was able to improve on the performance of DP when tracking large FMs.

Figure 2.7 shows a more detailed analysis of the results comparing TM best, DP, and

DPTM contour. It clearly shows DPTM as the best performer even when using the

template that performed the worst with TM and DP performing on par with TM best,

without the use of any templates. Figure 2.8 shows the 95% error for each data set,

sorted by patient. For 12 of the 24 patients, both TM and DPTM had 95% errors less

than 2 mm for all data sets. However, for the remaining patients, TM had much more

variation in performance than DPTM. The DPTM 95% error was greater than 2 mm

in only 5 out of the 407 cases compared to 48 of the TM data sets. This shows that

DPTM is much more robust than even TM in the best case scenario.

A major assumption used by the DP algorithm is that the images are acquired quickly

enough that the FMs do not move much between successive images. To test the effect
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Figure 2.8: 95% error for each data set for each patient. 402/407 (98.8%) of DPTM contour
data sets had 95% error < 2 mm, compared to 359/407 (88.2%) of TM data sets.

Figure 2.9: Tracking statistics for the 407 data sets. (a) Mean and (b) 95% error comparing
TM best, DPTM contour at 2.75 Hz, and DP at 2.75 Hz.
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of different temporal frequencies with which the images are acquired, the DP algo-

rithm was run on every nth image to simulate various imaging frequencies. Images

acquired at 2.75 Hz (using every 4th image) still perform very well, as can be seen

in Figure 2.9, which shows the mean and 95% error comparing TM, DP, and DPTM

at 2.75 Hz. Since TM does not use information from neighboring images, its per-

formance remains unchanged. The performance of DP and DPTM both decrease as

the imaging frequency decreases. However, at 2.75 Hz, the ME1 and 95E2 are both

higher for DPTM (94% and 93%) than for TM best (93% and 88%). This shows that

DPTM can still be used for fluoroscopy images acquired at a relative low frequency.

In conclusion, we showed that for tracking FMs in fluoroscopic images, DP alone

works as well as the traditional TM algorithms without needing any information

about the shape or size of the FMs. Furthermore, by combining TM with DP, DPTM

was able to greatly improve the tracking accuracy, even when using the contoured

templates where TM performed very poorly.
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Chapter 3

Fiducial Tracking in CBCT Images†

CBCT images are typically acquired right before treatment to aid in patient setup.

However, this is a manual and very time consuming process. In this chapter, we ex-

tend the DP tracking algorithm to automatically track FMs in CBCT images. We then

use these tracked locations to automatically optimize the patient setup using two dif-

ferent techniques at two different institutions. Finally, we compare the accuracy and

duty cycle of our DP-optimized setup to the actual setup used clinically for treatment.

†The work in this chapter has been previously published in [34]. c© Institute of Physics and Engi-
neering in Medicine. Reproduced with permission. All rights reserved.
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3.1 Background and Significance

In order to properly position thoracic and abdominal patients, a CBCT is acquired

prior to treatment and reconstructed into a 3D volume for registration with the plan-

ning CT. The registration process, which is manually performed by the therapists,

is very time-intensive and potentially suboptimal due to blurring of the FMs caused

by respiratory motion during the minute-long CBCT acquisition. To automate this

patient setup, the FMs must first be accurately tracked in the CBCT projections.

Unlike the FMs tracked in fluoroscopic images in Chapter 2, FMs in CBCT images

appear as different shapes and orientations depending on the gantry angles. This

makes tracking FMs in CBCT images more difficult, especially when using a template

based method. As a result, previous TM based methods require prior knowledge of the

FM shape [28, 35–41]. Most require that the shape be either spherical or cylindrical,

and user intervention is often necessary to select the FM in the first frame or to aid in

creating a 3D model. These restrictions make clinical implementation difficult. Here,

we extend our DP algorithm to track arbitrarily shaped FMs in CBCT projections

with no user intervention.

By fully automating the FM tracking process, we can then automatically calculate

the optimal patient couch position, such as one based on the mean marker position

[42, 43]. For gated patients, there are two additional parameters that need to be

optimized in addition to the couch position: the upper and lower gating bounds [44].

This added complexity makes the clinical cost of gating nontrivial, and as a result, not

as widespread. The major challenges of daily gating include increased patient setup

time due to additional imaging and operator selection of gating window as well as the

clinical cost of training the physicians/therapists to decide on the gating window. In
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this work, we further developed an automated method to optimize both the patient

couch position and the gating bounds using the FM locations as obtained using the

DP algorithm.

Finally, we use intrafraction images acquired every 3 seconds during therapy as the

ground truth for the FM location during treatment in order to compare the DP-

optimized patient setup to the current clinical setup at two different institutions.

3.2 Materials and Methods

3.2.1 Tracking Algorithm

In Section 2.2.1, we described the DP algorithm as applied to tracking FMs in fluo-

roscopic images. In this section, we will describe the modifications used to extend it

from a fixed gantry angle to CBCT projections.

The algorithm is a 2-step, iterative method that alternates between constraining the

search window and running DP. A completely stationary FM with a 3D location L3D =

(x, y, z) and a kV imager angle θ would project to:

Pu (L3D, θ, s) =
−x cos θ − z sin θ

T
+ UC (3.1)

Pv (L3D, θ, s) =
y

T
+ V C + s ·RPM

T = (−x sin θ + z cos θ + SAD) · PS
SID

where SAD is the source-to-axis distance; SID is the source-to-image distance; PS is

the detector pixel size; UC and V C are the projected (u, v) coordinates of the isocenter;
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RPM is the respiratory surrogate signal value; and s is the scaling factor for RPM .

Since the FM is not completely stationary, this set of (Pu, Pv) is used as the centers of

100× 100 pixel search windows (approximately 23× 23 mm) in each CBCT projection

acquired from angle θ. For the first iteration, the 3D location L3D comes from the

contoured FM location from the planning CT, and s = 0.

The second step is the DP step, in which the cost function f (p1, p2, . . . , pN) is mini-

mized. Each pi is a vector of all the possible FM locations in image i, and N is the

total number of projection images. The radiopaque FMs have a lower intensity value

than surrounding pixels and therefore, the list of possible locations corresponds to all

of the local intensity minima in the search window.

The DP optimization algorithm is used to find the (ui, vi) in each pi such that the

following cost function is minimized:

f (p1, p2, . . . , pN) =
N∑
i=1

g (pi) + α
N∑
i=1

h (pi) + β
N−1∑
i=1

k (pi, pi+1) (3.2)

where

g (pi) =

√
(ui − cu,i)2 + (vi − cv,i)2 (3.3)

h (pi) = I (ui, vi)

k (pi, pi+1) =

√
(ui − ui+1)

2 + (vi − vi+1)
2 .

g (pi) is the Euclidean distance from the center of the search window (cu,i, cv,i) =

(Pu (L3D, θi, s) , Pv (L3D, θi, s)) to the minima (ui, vi); k (pi, pi+1) is the Euclidean distance

between possible minima in adjacent images i and i+ 1; h (pi) is the linearly rescaled
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grayscale intensity value I such that the extreme values for the pixels in each pi are

0 and 1; and α = 35 and β = 10 are weighting parameters that were determined

empirically.

After the DP step, the algorithm returns to step 1 with refined search windows (new

L3D and s) such that the sum of distances between the set of projected 3D FM loca-

tions (Pu, Pv) and the set of DP-tracked location (ui, vi) over all of the projections is

minimized:

f (L3D, s) =
N∑
i=1

√
[Pu (L3D, θi, s)− ui]2 + [Pv (L3D, θi, s)− vi]2 . (3.4)

The algorithm alternates between optimizing (ui, vi) by minimizing Equation 3.2 and

optimizing L3D and s by minimizing Equation 3.4 until less than 1% of the predicted

locations change between iterations. In general, 2-3 iterations are required for conver-

gence. The set of (ui, vi) for each CBCT projection i from the final iteration comprise

the output FM locations from our tracking algorithm.

When tracking multiple FMs, the DP step is applied sequentially to each FM individ-

ually, and the search windows are constrained such that all the FMs are assumed to

move together rigidly.

The DP tracking algorithm was evaluated on CBCT projection data sets acquired on

39 gated patients over a 2.5 year period at our institution (Institution A). To assess

the accuracy of the algorithm, all FMs in all CBCT projections were segmented man-

ually for each patient and used as the ground truth for comparison. The centroids of

these manually segmented true FM locations were then compared to the DP-tracked

locations.
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(a) (b)

Figure 3.1: Examples of CBCT projections with the different FMs from (a) Institution A and
(b) Institution B on which the DP algorithm was used. Each block is 16 × 16 mm. The red
dots represent the DP tracked FM location. Note that for the very small FMs, the red dot may
completely cover them.

The tracked FM locations can then be used clinically to automatically set up the pa-

tient. Use of the DP tracking algorithm for automatic patient setup was tested for two

different setup strategies at two different institutions as described in the following.

In both cases, the FM positions in the intrafraction fluoroscopic images were used to

quantify the setup accuracy.

Figure 3.1 shows examples of the different FMs tracked using the DP algorithm from

both institutions, and Table 3.1 summarizes the patient data characteristics.

3.2.2 Gating with Marker PTV

In Institution A, patients were gated based on the RPM external surrogate signal.

The current manual setup (MS) standard is to first match the FMs from the recon-

structed CBCT to those in the planning CT, and then to acquire anterior-posterior

and lateral kV fluoroscopies to verify that the FMs were within the contoured gating
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Table 3.1: Summary of patient data. *The numbers represent the number of patients in each
category.

CBCT Tracking

(Institution A)

Gating with mPTV

(Institution A)

Mean Marker

Position

(Institution B)
Number of patients 39 8 6

Fractions per patient in analysis (Range) 1 5.0± 4.8 (1-14) 2.7± 0.5 (2-3)

FM type*

Visicoil 34 8 0

Gold seed 1 0 6

Calypso 2 0 0

Embolization coil 2 0 0

FMs per patient*

1 10 2 0

2 16 3 1

3 7 1 5

4 6 2 0

Tumor site*

Liver 17 3 6

Pancreas 12 4 0

Abdomen 5 0 0

Lung 5 1 0

CBCT parameters 110kV 20mA 20ms 125kV 20mA 15ms 125kV 80mA 15ms

Machine Varian Trilogy Varian TrueBeam Varian TrueBeam

CBCT projections (Range) 642± 32 (460-673) 894 894

Intrafraction imaging frequency*

Every 3 seconds 7 6

Every 15 seconds 1 0

Number of intrafraction images (Range)

Every 3 seconds 88± 58 (35-320) 85± 20 (41-116)

Every 15 seconds 10± 1 (10-11)
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volume, mPTV, during beam on. The mPTV contour is typically created by extending

the FM contour on the planning CT by 3-5 mm in all directions.

With the DP-tracked FM locations, the following equation can be minimized to find

the optimal FM location L3D and lower and upper gating bounds GL and GH :

f (L3D, GL, GH) = w1

{
(1− ACC) + v [min (0, ACC − 0.95)]2

}
(3.5)

+w2

{
(1−DC) + v [min (0, DC − 0.5)]2

}
where the beam accuracy ACC and the duty cycle DC are

ACC =
# of images with beam on and marker inside mPTV

# of images with beam on
(3.6)

DC =
# of images with beam on

total # of images
.

w1 = 0.8, w2 = 0.2, and v = 20 are weighting parameters that were determined empir-

ically. The beam is on when the RPM signal is between GL and GH (Figure 3.2). The

3D contoured mPTV from the planning CT is projected onto each image to determine

the boundaries of the allowed FM motion. For multiple FMs, 2/3 of the FMs must be

inside the mPTV when the beam is on to be considered accurate.

Equation 3.5 optimizes L3D, GL, and GH by balancing beam accuracy ACC with duty

cycle DC, with additional penalties enforced when accuracy drops below 95% and

duty cycle below 50%. A further assumption of this equation is that the patient is

gated on exhale. The optimal shift is the difference between the original and final L3D

locations, and the optimal gating bounds are GL and GH .

To evaluate the performance of our automated patient setup, 40 CBCT projection
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Figure 3.2: (a) Schematic of gating setup. In this example, accuracy ACC = 4/6 (green /
green+red) and duty cycle DC = 6/10 (green+red / all). (b) Representative FM locations and
mPTV projections corresponding to the color dots from (a). Note that the mPTV projections
look different due to the different gantry angles in the 3 images.

data sets were collected for 8 gated patients over a 5 month period at Institution

A. Intrafraction fluoroscopic images were acquired every 3 seconds during treatment

with the exception of Patient A1 who had images acquired every 15 seconds, and the

FMs were manually segmented in each image. These intrafraction images represent

the true FM locations during treatment, and were therefore used as the ground truth.

The mPTVs were projected onto the intrafraction images for both the DP-optimized

and MS couch positions, and the manually segmented FM locations were then used

to determine whether the FM was inside the mPTV. Finally, Equation 3.6 was used

to calculate the accuracy and duty cycle.
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3.2.3 Mean Marker Position

In Institution B, patients were set up to the mean marker position and not gated. The

current MS standard is to match each FM individually in the reconstructed CBCT to

the planning CT, and then calculating the mean position. This matching is done by

estimating the center of mass from the often blurred FM in the reconstruction.

The targeted 3D FM location is such that the sum of distances between the projected

3D location and DP-tracked location over all of the projections is minimized. There-

fore, we simply find the L3D that minimizes Equation 3.4 with s = 0, and the optimal

shift for patients setup to the mean marker position is the difference between the

original and final L3D locations.

To evaluate the performance of our automated patient setup, 16 CBCT projection data

sets were collected for 6 patients over a 5 month period at Institution B. Intrafraction

fluoroscopic images were acquired every 3 seconds during treatment, and the FMs

were manually segmented in each image. Using Equation 3.4 with s = 0 and (u, v)

being the manually segmented location, the optimal L3D was computed using a least

squares method. This optimal L3D was then compared to the DP and MS L3Ds.

3.3 Results

Using the 87 manually segmented FMs for the 39 patients as the ground truth, the

mean of the absolute 2D error of the DP algorithm was 1.3± 1.0 mm.

Figure 3.3 shows the setup accuracy and duty cycle for the gated patients from Insti-

tution A. Using the paired t-test, the DP algorithm is shown to improve the accuracy
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Figure 3.3: DP and MS (a) accuracy and (b) duty cycle by patient for Institution A. The X’s
indicate the mean with the bars indicating the minimum and maximum. Changes in DP and
MS (c) accuracy and (d) duty cycle for Institution A. Each bar is a fraction, and the dotted
black lines separate the fractions by patient. Blue dots represent fractions where there is no
change in accuracy or duty cycle.
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from Institution B.
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of the setup when compared to the MS currently used clinically (96± 6% vs 91± 11%,

p < 0.01) without a significant decrease in duty cycle (73± 19% vs 76± 13%, p = 0.23).

Figure 3.4 shows the setup errors for the non-gated patients from Institution B. It

plots the difference between the DP and actual mean position as calculated from the

intrafraction images, as well as the difference between the MS and actual mean posi-

tion. The mean difference over all of the fractions for the DP position is 1.5± 0.8 mm

while the mean difference for the MS position is 1.6 ± 0.9 mm. A paired t-test shows

that the DP algorithm performs as well as the MS currently used clinically (p = 0.48).

3.4 Discussion

Patients with abdominal or thoracic tumors are typically set up by manually regis-

tering the pre-treatment CBCT to the planning CT. Often, this alignment is based

on FMs implanted near the tumor site, which appear blurred in the reconstructed

CBCT due to respiratory motion. This manual alignment process is very time inten-

sive, user dependent, and requires a significant amount of user training. We have

demonstrated a fully automatic algorithm that optimizes the patient couch position

and/or gating bounds based on the tracked FMs in the CBCT projections. The algo-

rithm takes 1-2 seconds to run, and is therefore much faster than the several to tens

of minutes needed by the therapists/physicists to perform the task manually.

For the 87 FMs from the 39 patients, we showed that the mean of the absolute 2D

error of the DP algorithm was 1.3± 1.0 mm to the centroid of each FM. There was no

significant difference between the errors for the different anatomical sites. Therefore,

all sites were grouped together in our analysis. In general, the larger FMs had larger
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errors. The DP algorithm assumes that the FM is at a local intensity minima, and

multiple local minima may exist on a single large FM. Therefore, the tracked location

from DP can jump around on the FM and not necessarily at the centroid, as can be

seen in Figure 3.1.

Other methods in the literature that track FMs in CBCT projections are all based

on template matching, and most require that the FMs be of a specific, known shape,

typically spheres and cylinders. Some require the user to manually select the FMs

in the first frame [28, 39] while another requires that the user manually define a re-

gion of interest that fully encompasses the FM’s range of motion [38]. A few other

studies do not require user inputs. They either use the planning CT to get an initial

region of interest [36, 37] or they automatically create the templates using blob de-

tection and rejecting those inconsistent with a 3D position [35]. A couple of recent

studies can create templates for arbitrarily shaped FMs but require significant user

intervention. Poulsen, et al. [40] requires the user to manually segment the FMs in 5

CBCT projections with no background obstructions. Regmi, et al. [41] automatically

creates the templates from the planning CT, but requires manual adjustments of the

templates when there are changes in the distances between FMs on the CBCT and

planning CT, and requires the user to make manual adjustments when tracking fails

in an image.

The biggest advantage to our DP approach over these other methods is that it is

capable of accurately tracking FMs of arbitrary shape and size without any user in-

tervention, and can therefore be more readily incorporated into the current clinical

workflow. Furthermore, this is the first study, to our knowledge, that performs such

marker tracking and patient setup optimization on data from multiple institutions.

To validate and compare our DP-optimized patient setup to the current MS used for
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treatment, intrafraction images were acquired during treatment at two different in-

stitutions. This provided the real gold standard, as the true FM location during treat-

ment was known. After manually segmenting the FM locations in these intrafraction

images, we were able to compare the performance between our DP algorithm and the

current manual clinical setup.

Figure 3.3 shows that on the fractions from Institution A, the DP algorithm improved

the accuracy of the treatment for gated patients significantly (96% vs 91%, p < 0.01)

without a significant decrease in duty cycle (73% vs 76%, p = 0.23). Much of this

difference can be attributed to the extra time needed by the therapists to setup the

gated patients. Changing the gating bounds requires additional fluoroscopy imaging,

and as a result, the therapists make adjustments only when absolutely necessary. In

many cases, this resulted in a lower accuracy as the beam is still on when the FM has

just left the mPTV, but is close enough to not warrant adjustments and additional

imaging. In our optimization, the DP algorithm prioritizes accuracy over duty cycle,

and as a result, many fractions showed an increase in accuracy at the expense of a

slightly decreased duty cycle. However, this slight decrease in duty cycle would not

have any impact on the overall treatment time, as the majority of the treatment time

is spent on getting the patient into the machine and setup in the proper position.

Since there is often some patient movement throughout a single treatment session,

the FMs may have shifted slightly between the time the CBCT was acquired and the

start of the treatment. Therefore, the accuracy of the DP algorithm is not always

100%. For fraction 4 of Patient A7, DP had the greatest decrease in accuracy com-

pared to MS. The DP optimization placed the FM very close to the edge of the mPTV,

but the FM shifted slightly during treatment. As a result, the FM was often 1-2 pixels

outside of the mPTV, which counts as inaccurate in our analysis.

38



Figure 3.4 shows that on the fractions from Institution B, the DP algorithm set up the

non-gated patients to the mean marker position similarly compared to the manual

clinical setup (1.5 ± 0.8 mm vs 1.6 ± 0.9 mm, p = 0.48). The therapists are trained

to align the patients based on the mean marker position, and both methods yielded

results close to the optimal couch position based on manually segmented FM locations

in the intrafraction images.

The main disadvantage of our DP algorithm compared to the template matching

based algorithms is that it cannot be used to track FMs during intermittent imag-

ing. Future work will involve the combining of our DP algorithm with a template

based one. By using the DP-tracked FMs from the CBCT, it is conceivable that high-

quality 3D templates can be automatically generated. These templates can then be

used to improve on the DP tracking similar to the DPTM algorithm from Chapter

2. Furthermore, the templates can also be used to track the FMs in real-time dur-

ing intermittent intrafraction imaging to monitor the patient position throughout the

course of a treatment.

In conclusion, we have shown that our DP-optimized patient setup is as good as or bet-

ter than the current clinical setup at two different institutions. The biggest advantage

of our algorithm is that it requires no user intervention and can provide the optimal

setup before the CBCT has even been reconstructed. By automating the alignment

process, we can greatly reduce the patient setup time, and for some institutions, also

eliminate the extra pre-treatment imaging required.
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Chapter 4

Tumor Tracking in Cine MR

Images†

In the previous chapters, we tracked FMs, which act as surrogates to the tumors that

cannot be seen with x-ray imaging. A combined MR/radiation delivery system allows

for direct visualization of the moving tumors. In this chapter, we propose a new

method that can automatically track the tumor in 2D cine-MR images. We further

compare our algorithm tracking to manually segmented ground truths.

†The work in this chapter has been previously submitted for publication in [45].
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4.1 Background and Significance

In January of 2014, the first cancer patient was treated using the ViewRay MRId-

ian [3]. Combining MR imaging with a radiation delivery system, the MRIdian al-

lowed physicians to see real-time tumor motion during treatment for the first time.

In February 2015, respiratory gating began. The system would automatically track a

physician-drawn target and pause the radiation beam each time a certain percentage

left a physician-assigned boundary. Despite the utility of this system, there remains

a great deal of room for improvement on the accuracy and consistency with which it

is able to track its target.

Thousands of papers have been published on the topic of tracking a specified moving

target in videos. They range from simple pixelwise difference detection algorithms

[46, 47] to more advanced methods that use mean shift [48], level sets [49], optical

flow [50], and more. While these algorithms have been successfully used to track

various targets, they have not been directly applied to the noisy, low resolution images

obtained from the ViewRay system, which uses a 0.35T open bore magnet to obtain

2D images with a spatial resolution of 3.5 mm × 3.5 mm at 4 frames/second. To date,

the only paper to track targets on the ViewRay system is by Mazur, et al. [51], which

uses SIFT for feature matching. However, this algorithm requires significant user

interaction to select the proper subregion layout and size, something that is too time

consuming and labor intensive to be practical in a clinical setting. Furthermore, the

complexity of the algorithm makes it too computationally slow (~250ms per image) to

be used in real-time.

In order to minimize the amount of user interactions, we take advantage of a few

key properties of the motion of the target in our images. First, the patient is station-
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ary during the treatment. Second, the target, which may be the tumor or an organ,

moves in a well-constrained path due to respiration. Therefore, all images acquired

at the same point in the respiratory cycle should be almost identical. Due to this

one-to-one correlation between the respiratory cycle and the image appearance, the

tracking problem (which requires solving for motion and deformation of a part of the

image) can be converted to a simpler problem of estimating the current phase of res-

piration. In this chapter, we demonstrate that principal component analysis (PCA)

gives a model of image appearance sufficient to estimate this respiratory phase and

therefore offers very fast approaches to tracking.

4.2 Materials and Methods

Figure 4.1 outlines the tracking algorithm, which consists of three components. First,

we create a patient-specific model that maps the image appearance to the target con-

tour by running PCA on the image data (Subsection 4.2.1). The images are binned

into clusters based on their coefficients and an optimal contour of the target is derived

for each bin. Next, during the patient treatment, we compute the PCA coefficients of

each frame and look up the target contour from the closest bin (Subsection 4.2.2).

Finally, we confirm that the PCA coefficients are close to those from the bin and re-

train the model if they are not. We now discuss these parts separately in more detail

(Subsection 4.2.2).
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Figure 4.1: Flowchart of tracking algorithm.

4.2.1 PCA Model Creation

N = 100 training images are used to create the model. For our datasets, this equates

to 25 seconds of imaging (approximately 5-8 breaths). Each of the N images is repre-

sented as a p× 1 vector where p is the number of pixels per image. PCA is applied to

the N vectors and the first two components (PC1 and PC2) are kept. This typically

covers more than 98% of the variance and is therefore a good approximation of the

data. Previous works have also shown that the first two components are sufficient to

model respiratory motion using PCA [52,53].

The N images are then binned into M = 10 equal-sized clusters, minimizing the

Euclidean distance between PC1 and PC2, and the cluster centers. This does well

to separate the images into M respiratory phases. Figure 4.2a plots the N images

as represented by PC1 and PC2, with the median value of each bin indicated by the

black Xs.
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Figure 4.2: (a) Plot of PC1 and PC2 for N = 100 training images. The black Xs represent
the median of each of the M = 10 bins. (b) Averaged images from bins 1, 3, 5, 6, 8, and 10,
from top to bottom. The green circles represent the contoured target, and the red line is in
the same position for all images for visual reference. The images shown are from a physical
phantom where the middle section moves vertically with the two sides being stationary.

All images in each bin are pixelwise averaged together, greatly increasing the signal-

to-noise ratio of the images and decreasing the noise. The target is tracked on these

averaged images using template matching followed by active contouring. Figure 4.2b

shows the averaged images from bins 1, 3, 5, 6, 8, and 10. The green circles represent

the contoured target, and the red lines are at the same position for each image for

easier visual comparison of the contoured target locations.

The template matching uses normalized cross correlation to find the best match to

an initial, manually drawn contour of the target. The template used is a rectangular

crop of the drawing on the contoured image. The matched contour is then used as

the initialization for a region-based active contouring algorithm [54], which allows

for deformations of the target in the different bins. For the active contouring algo-

rithm, the means separation energy [55] function was used with parameters λ = 0.2

(smoothness constraint) and r =
√
N/8 (localization radius), where N is the number
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of pixels in the contour. If r < 7, then the image is upsampled such that r = 7. This

ensures consistent parameters that work for targets of any size.

The PCA motion model consists of the PCA bases from the N training images, trun-

cated to the first 2 components, the M median PC1 and PC2 values from each bin,

and the M tracked contours from each bin. These outputs are then used to track the

target on the new images.

4.2.2 Target Tracking

For each new image i to track, the PCA bases from the model are used to calculate

PC1 and PC2. The nearest bin m is the one with the smallest Euclidean distance

between the image and bin coefficients. Two distance metrics d1 and d2 are used to

determine whether retraining is necessary:

d1 = |PC1i − PC1m| (4.1)

d2 = |PC2i − PC2m|

If both distances are within a set threshold (d1 < r1, d2 < 0.2 · r2, where r1 and r2 are

the differences between the minimum and maximum PC1 and PC2 values, respec-

tively, for all M bins), then the tracked contour for image i is the contour from bin m.

Otherwise, tracking is skipped on image i, and the skip counter is incremented by 1.

If this skip counter exceeds a threshold T = 20, then the model is retrained.
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4.2.3 Model Retraining

To retrain the model, the same algorithm as described in Subsection 4.2.1 is used,

but with the previous N = 480 images (2 minutes worth) instead of the initial 100

training images. The target contour is not redrawn; the same initial manually drawn

contour is used for the template matching. This newly created model is then used

for subsequent tracking. Finally, the skip counter is reset to zero. The purpose of the

retraining is to sporadically update the model to account for any changes in the target

motion patterns over time.

4.2.4 Test Data

Data was collected from a physical phantom (Figure 4.2) and 17 patients imaged on

the ViewRay MRIdian machine. This 0.35T MR acquired images using a balanced

steady-state free precession sequence (Siemens TrueFISP). Typical scan parameters

are TR = 2.1ms, TE = 0.91ms, and a low flip angle.

2D sagittal cine MR images were acquired at 4 frames/second, with a 7mm slice thick-

ness and a 3.5 mm × 3.5 mm (100× 100 pixels) in-plane spatial resolution. The mean

number of images per patient was 4600± 2200 (19± 9 minutes). For each data set, an

initial contour was manually drawn on the first image, and the first 100 images were

used for the model training.

The algorithm was run on each data set twice using the same initial manually drawn

contour: once with the model retraining and once without. When retraining was not

performed, the output contour was from the closest bin, regardless of whether d1 and

d2 were within the set threshold.
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To validate the tracking accuracy of our algorithm, the output contours were com-

pared to manually contoured targets on 2 sets of 100 images per patient. The 1st set

of 100 were from the images immediately following the training set, and the 2nd set

were the last images from each data set. The Dice similarity coefficient (DSC) and

the modified Hausdorff distance (MHD) [56] were used to quantify the comparisons.

The metrics are defined as:

DSC =
2 |Sm ∩ St|
|Sm|+ |St|

(4.2)

MHD =
1

|Bm|
∑

m∈Bm

min
t∈Bt

‖m− t‖

where Sm and St denote the manual and tracking algorithm segmentations, respec-

tively, and Bm and Bt denote the boundary points on Sm and St, respectively.

4.3 Results

Figure 4.3 shows a sample tracking result of our algorithm from each of the data sets.

Figures 4.4a and 4.4b show the DSC and MHD, respectively, for each data set for

the first set of 100 images and the second set of 100 images with and without model

retraining. Figures 4.4c and 4.4d show the mean DSC and MHD, respectively, for the

phantom and over all of the patients.

The mean DSC for the phantom was 0.90 ± 0.04 for the 1st set and 0.89 ± 0.04 for the

2nd, while the mean MHD were 0.40± 0.16 pixels (1st set) and 0.44± 0.17 pixels (2nd

set).

No retraining occurred on the phantom data set. For the 17 patients, the mean num-

47



P 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17
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Figure 4.4: (a) DSC and (b) MHD for each data set. Data set P is from the physical phantom.
Mean (c) DSC and (d) MHD for phantom and patients.
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ber of retrains was 1.4 ± 1.4. Five of the patients did not require retraining, while

Patients 1 and 13 required the most number of retrains (4 and 5, respectively).

The mean DSC over all of the patients for the 1st set was 0.89± 0.05, while the mean

DSC for the 2nd set were 0.89 ± 0.04 with retraining and 0.88 ± 0.05 without retrain-

ing. A paired t-test showed no statistical difference between the 1st set and 2nd set

with retraining (p = 0.82) and no significant difference between the 2nd set with and

without retraining (p = 0.29).

The mean MHD over all of the patients for the 1st set was 0.68± 0.18 pixels, while the

mean MHD for the 2nd set were 0.72 ± 0.23 with retraining and 0.79 ± 0.38 without

retraining. Similarly, a paired t-test showed no statistical difference between the 1st

set and 2nd set with retraining (p = 0.22) and no significant difference between the

2nd set with and without retraining (p = 0.40).

4.4 Discussion

Figure 4.3 shows examples of the targets that were tracked by our algorithm. The

targets vary in size, shape, and contrast. However, with guidance from just a single

manually drawn contour, our algorithm was able to successfully track the motion and

deformations of the target over the entire imaging session.

From the training data, the images were separated into 10 bins based on the first

two PCA coefficients and averaged pixelwise. Segmentation of the target was then

performed on the averaged images. This averaging greatly increases the contrast and

decreases the noise in the images, making the segmentation process more robust com-

pared to segmentation on individual images. For each new image to be tracked, the
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Figure 4.5: (a) Plot of PC1 and PC2 for 100 images from training data, 100 images from
normal breathing, and 60 images from a coughing fit. An image from (b) training, (c) normal
breathing, and (d) coughing corresponding to the Xs from (a). The yellow is the contour
from the closest bin. Note the good match during normal breathing and poor match during
coughing.

PCA model is used to determine the bin that contains images closest in appearance

to the new one. If the closeness criteria of Equation 4.1 is met, then the contour of

the bin is assigned as the contour for the new image. We chose to use M = 10 bins as

a compromise between the number of images available to average per bin to decrease

noise and the number of bins needed to accurately capture the motion.

Figure 4.5 shows an example of how the PCA coefficients relate to the image appear-

ance. With normal breathing, the coefficients are similar to those from the training

data. However, if a drastic change occurs, such as the patient coughing, then the

coefficients are far away and exceed the Equation 4.1 thresholds, resulting in unreli-

able tracking. In a clinical setting, the radiation beam would be turned off when the

algorithm determines such unreliable tracking.

In our physical phantom study, we imaged a 1-inch sphere being moved up and down

in a sinusoidal pattern at 0.5 Hz with a peak-to-peak amplitude of 3 cm (Figure 4.2b).

This speed and magnitude of motion represents a worst case scenario when compared

to normal breathing patterns, which typically result in motions up to 1-2 cm at 0.2-0.3

Hz. Figure 4.6 shows zoomed-in versions of an image of the phantom to be tracked,
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(a) (b) (c)

Figure 4.6: (a) Zoomed-in version of the image to be tracked, closest to bin 6 from Figure
4.2a. (b) PCA reconstruction of image using first two components. (c) Bin 6 averaged image
on which tracking is performed. The red lines are in the same location for reference.

the PCA reconstructed image using the first two components, and the averaged image

from the nearest bin. Due to the large motion, the reconstruction is not very good,

with clearly visible blurring of the sphere. However, this does not affect the tracking

accuracy since tracking is performed on the averaged image of the bin, which exhibits

no motion blurring.

For the phantom data, the target location was manually contoured in 200 images in

the same way as for the patient targets. Due to the poor resolution of the system (3.5

mm/pixel) and the relatively small size of the target (~7 pixels in diameter), the man-

ual contours provide a better ground truth for comparison as they take into account

the target manual contouring uncertainties also present in the patient targets. Track-

ing on the phantom resulted in a mean DSC of 0.90 and mean MHD of 0.42 pixels,

both of which indicate good tracking accuracy. We chose to analyze both metrics as

the DSC can be skewed higher for larger targets. For radiation therapy purposes, the

accuracy at the target boundaries is very important, and therefore the MHD provides

a useful metric of comparison.

For both the phantom and the patients, the analyses were performed on two sets

of 100 images, the 1st being the 100 images immediately after the initial training,
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Figure 4.7: Sample tracking result for patient 1 from the (a) 1st and (b) 2nd sets. Red is
without retraining, blue is with retraining, and green is the manually contoured ground truth.
(c) Target centroid y position over the course of the 27 minute treatment.

and the 2nd being the last 100 images of the data set. The two sets were then com-

pared to each other to see if the tracking remained consistent throughout the entire

treatment despite the automatic model retrainings and changes in the images due to

organ motions or other physiological effects (Figure 4.4). The overall mean DSC for

the patients was 0.89± 0.04 and the mean MHD was 0.70± 0.20 pixels. A paired t-test

showed no significant differences between the two sets. These results are similar to

those obtained by Mazur et al. [51], who reported a mean DSC of 0.92 and a mean

MHD of 0.40 pixels. The differences are likely due to contouring difficulties, which in-

clude targets that share boundaries with similar intensity structures, and noise that

make it difficult to distinguish between target and background.

For the 17 patients, the mean number of retrains was 1.4. The purpose of the model

retraining is to account for changes in the image appearances over time. Figure 4.7

shows that over the course of a 27 minute treatment, Patient 1’s breathing patterns

changed drastically after becoming more relaxed, going from fast, shallow breaths

to slower, much deeper ones. As a result, the target motion in the y axis increased

from about 2 pixels peak-to-peak to 8 pixels, causing errors up to 7 pixels (2.5 cm)
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at peak inhalation. The model retraining allowed our algorithm to successfully track

the target despite these large respiratory changes.

For the other 16 patients, retraining appeared unnecessary, as the DSC and MHD

were the same regardless of whether the retaining was performed. In most cases,

the model retraining was triggered by atypically deep breaths not seen during train-

ing or normal movements in the gastrointestinal tract such as a passing of gas. For

Patient 13, retraining was triggered by multiple coughing fits in the middle of the

treatment. In these situations, the target appeared to resume its original motion

trajectory afterwards, so little difference was seen in the tracking results with and

without retraining. Retraining may be more relevant when tracking on images with

higher spatial resolutions that can resolve smaller shifts in the motion trajectory.

Since the appearance of the targets do not change significantly, the original contours

can be reused during retraining.

Due to the simplifications that we made, we are able to correlate the PCA coefficients

of a new image to the tracked contours. The calculation of the coefficients is extremely

fast, requiring less than 1 ms per image. Our PCA approach to tumor tracking will

be able to easily keep up with future technological advances of imaging systems with

higher spatial and temporal resolutions.

In conclusion, we have developed an approach to real-time target tracking from MR

data captured during radiation treatment. The approach detects failure of the model

that arises during anomalies such as coughing or erratic motions. During such oc-

currences, both the tracking and the radiation beam are paused until the patient

resumes normal breathing, preventing delivery of unexpected radiation doses. Fur-

thermore, through model retraining, our algorithm is able to update the model and
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continue accurately tracking a target that drifts away from the initial, training trajec-

tory. The minimal user intervention required by our algorithm (only an initial contour

for tracking needs to be defined) allows it to be readily implemented in the clinic to

aid in motion management, providing for a better radiation delivery with less toxicity

to surrounding, healthy tissue.
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