
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2007-53

2007

Byzantine Fault-Tolerant Web Services for n-Tier and Service Byzantine Fault-Tolerant Web Services for n-Tier and Service

Oriented Architectures Oriented Architectures

Sajeeva L. Pallemulle and Kenneth J. Goldman

Web Services that provide mission-critical functionality must be replicated to guarantee correct

execution and high availability in spite of arbitrary (Byzantine) faults. Existing approaches for

Byzantine fault-tolerant execution of Web Services are inadequate to guarantee correct

execution due to several major limitations. Some approaches do not support interoperability

between replicated Web Services. Other approaches do not provide fault isolation guarantees

that are strong enough to prevent cascading failures across organizational and application

boundaries. Moreover, existing approaches place impractical limitations on application

development by not supporting long-running active threads of computation, fully asynchronous

communication, and access to host specific information.... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Pallemulle, Sajeeva L. and Goldman, Kenneth J., "Byzantine Fault-Tolerant Web Services for n-Tier and
Service Oriented Architectures" Report Number: WUCSE-2007-53 (2007). All Computer Science and
Engineering Research.
https://openscholarship.wustl.edu/cse_research/153

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/153?utm_source=openscholarship.wustl.edu%2Fcse_research%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/153

Byzantine Fault-Tolerant Web Services for n-Tier and Service Oriented Byzantine Fault-Tolerant Web Services for n-Tier and Service Oriented
Architectures Architectures

Sajeeva L. Pallemulle and Kenneth J. Goldman

Complete Abstract: Complete Abstract:

Web Services that provide mission-critical functionality must be replicated to guarantee correct execution
and high availability in spite of arbitrary (Byzantine) faults. Existing approaches for Byzantine fault-
tolerant execution of Web Services are inadequate to guarantee correct execution due to several major
limitations. Some approaches do not support interoperability between replicated Web Services. Other
approaches do not provide fault isolation guarantees that are strong enough to prevent cascading failures
across organizational and application boundaries. Moreover, existing approaches place impractical
limitations on application development by not supporting long-running active threads of computation,
fully asynchronous communication, and access to host specific information. We present Perpetual-WS,
middleware that supports interaction between replicated Web Services while providing strict fault
isolation guarantees. Perpetual-WS supports both synchronous and asynchronous message passing and
enables an application model that supports long-running active threads of computation. We present an
implementation based on Axis2 and performance evaluations demonstrating only a moderate decrease in
throughput due to replication.

https://openscholarship.wustl.edu/cse_research/153?utm_source=openscholarship.wustl.edu%2Fcse_research%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/153?utm_source=openscholarship.wustl.edu%2Fcse_research%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2007-53

Byzantine Fault-Tolerant Web Services for n-Tier and Service Oriented
Architectures

Authors: Sajeeva L. Pallemulle and Kenneth J. Goldman

Corresponding Author: kjg@cse.wustl.edu

Web Page: http://dsys.cse.wustl.edu/

Abstract: Web Services that provide mission-critical functionality must be replicated to guarantee correct
execution and high availability in spite of arbitrary (Byzantine) faults. Existing approaches for Byzantine
fault-tolerant execution of Web Services are inadequate to guarantee correct execution due to several major
limitations. Some approaches do not support interoperability between replicated Web Services. Other
approaches do not provide fault isolation guarantees that are strong enough to prevent cascading failures
across organizational and application boundaries. Moreover, existing approaches place impractical limitations
on application development by not supporting long-running active threads of computation, fully asynchronous
communication, and access to host specific information.

We present Perpetual-WS, middleware that supports interaction between replicated Web Services while
providing strict fault isolation guarantees. Perpetual-WS supports both synchronous and asynchronous message
passing and enables an application model that supports long-running active threads of computation. We present
an implementation based on Axis2 and performance evaluations demonstrating only a moderate decrease in
throughput due to replication.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Byzantine Fault-Tolerant Web Services
for n-Tier and Service Oriented Architectures

Sajeeva L. Pallemulle Kenneth J. Goldman

Department of Computer Science and Engineering
Washington University in St. Louis, St. Louis, MO 63130 USA

{sajeeva, kjg}@cse.wustl.edu

ABSTRACT
Web Services that provide mission-critical functional-

ity must be replicated to guarantee correct execution and
high availability in spite of arbitrary (Byzantine) faults. Ex-
isting approaches for Byzantine fault-tolerant execution of
Web Services are inadequate to guarantee correct execution
due to several major limitations. Some approaches do not
support interoperability between replicated Web Services.
Other approaches do not provide fault isolation guarantees
that are strong enough to prevent cascading failures across
organizational and application boundaries. Moreover, exist-
ing approaches place impractical limitations on application
development by not supporting long-running active threads
of computation, fully asynchronous communication, and
access to host specific information.

We present Perpetual-WS, middleware that supports in-
teraction between replicated Web Services while provid-
ing strict fault isolation guarantees. Perpetual-WS supports
both synchronous and asynchronous message passing and
enables an application model that supports long-running ac-
tive threads of computation. We present an implementation
based on Axis2 and performance evaluations demonstrating
only a moderate decrease in throughput due to replication.

KEY WORDS
Web Services, Fault tolerance, Byzantine agreement, n-Tier
systems, Axis2, Asynchronous communication

1 Introduction
Enterprises and institutions increasingly use Web Ser-

vices [1] to provide a wide variety of utilities, ranging
from simple mapping utlities (Google Maps [2]) to mission-
critical utilities such as payment authorization portals for
credit card transactions (Mastercard [3]). Combining func-
tionality offered by multiple Web Services from different
providers to perform high-level tasks has become the de
facto model for building complex enterprise applications.

Mission-critical Web Services must guarantee correct
execution and availability in spite of failures. Fail-stop fail-

ures, such as host crashes, can be masked by failing over to
other hosts, but achieving Byzantine Fault Tolerance (BFT)
[4] requires a higher degree of replication1 since failures
may be caused by malicious attacks and arbitrary software
errors in addition to host crashes and network disruptions.

Replicated Web Services that serve multiple applications
must ensure fault isolation between applications. To pro-
vide such a guarantee, a Web Service must be able to main-
tain safety (consistent replica state) and liveness (eventual
execution of requested tasks) even when interacting with
potentially compromised2 Web Services. Consequently, an
execution environment that (1) enables interaction between
replicated Web Services with different degrees of replica-
tion while (2) guaranteeing safety and liveness is desirable
for deployment of mission-critical Web Services.

Existing approaches [5, 6, 7] to building Byzantine fault-
tolerant Web Services have failed to gain traction due to sev-
eral major limitations. Most approaches only allow repli-
cated Web Services to be accessed by unreplicated Web
Service endpoints3. In addition, existing approaches do not
guarantee the safety or liveness of replicated calling (client)
Web Services if target (server) Web Services are compro-
mised. New directions in Web Services technology such as
orchestration (Section 2.2) require support for Web Services
with long-running active threads of computation. However,
existing approaches only support Web Services that per-
form short-lived passive computations. Fully asynchronous
messaging allows calling Web Services to issue requests in
parallel and target Web Services to start processing incom-
ing requests before finishing previous computations. Such a
programming model, which is increasingly popular among
Web Service developers, is incompatible with existing ap-
proaches. Moreover, these approaches enforce determinism
in Web Service applications by precluding access to host
specific information (e.g., local clock). Section 3 describes
limitations of existing approaches in greater detail.

13f+1 state machine replicas are needed to tolerate f Byzantine faults.
2A compromised Web Service has more than f faulty replicas.
3Endpoints may be other Web Services or client applications.

Calling drivers send request to
target voter primary.

Target voters forward reply to
responder.

Calling drivers forward result
to calling voter primary.

Calling drivers learn the result
from co-located calling voters.

Target voter replicas run
CLBFT to agree on request.

Calling voters run CLBFT to
agree on the result.

1.

2.

5.

7.

8.

9.

d1 vP d2 v2 d3 v3 d4 v4 d1 vP d2 vR d3 v3 d4 v4

 c1 c2 c3 c4 t1 t2 t3 t4 Stages of the Algorithm

Target voters agree on request

Target voters pass the request
to co-located target drivers.

3.

Target drivers calculate and pass
result to co-located target voters.

4.

Responder sends reply bundle
to calling drivers.

6.

Calling voters agree on result

Figure 1. The stages of a normal (non-faulty) Perpetual request. Ellipses show passive voters (v), and rectangles show active
drivers (d) of service replicas. The primaries (P) of both voter groups and the responder (R) of the target voter group are also shown.

We address these concerns with Perpetual-WS, middle-
ware that augments the Apache Axis2 [8] Web Service ex-
ecution environment with a Byzantine fault-tolerant trans-
port module and an API suitable for fully asynchronous
communication. Perpetual-WS supports Web Services that
may utilize a long-running active thread of computation,
local clock queries, pseudo-random numbers, and times-
tamps. The transport module uses Perpetual [9], an algo-
rithm that enables interaction between state machine replica
groups while preserving safety and liveness. Our bench-
mark evaluations show that Perpetual-WS scales well to
large replica groups and incurs only a modest decrease in
throughput when used to replicate Web Services that per-
form non-trivial computation tasks.

The rest of this paper is organized as follows. Section
2 presents an overview of Perpetual, Web Services, and
Axis2. Section 3 describes unique properties of Perpetual-
WS in the context of related work. We present the
Perpetual-WS programming model in Section 4. The archi-
tecture and implementation details are discussed in Section
5. Section 6 presents macro and micro benchmark evalua-
tions of our implementation, and we conclude in Section 7
with a discussion of future work.

2 Background
In this section we provide overviews of Perpetual, Web

Services, and Axis2.

2.1 Perpetual

Perpetual enables two replicated deterministic services
to interact using synchronous or asynchronous message ex-
change models. The safety and liveness of correct ser-

vices are guaranteed even during interactions with poten-
tially compromised services. For correctness, the Perpetual
algorithm assumes that cryptography cannot be subverted
and that message delays do not grow faster than time.

2.1.1 Algorithm
We describe the Perpetual algorithm in terms of a target ser-
vice t, comprised of nt = 3ft + 1 replicas t1, . . . , tnt , and
a calling service c comprised of nc = 3fc + 1 replicas
c1, . . . , cnc , where ft and fc are the upper bounds on the
number of faulty replicas tolerated by the target and calling
services, respectively.

Each replica i (target or calling) is composed of a voter
vi and a driver di. The voters and the drivers form two
distinct replica groups with the voter and driver of a par-
ticular replica co-existing on a single host. Voters of a
particular service s use the Castro and Liskov Byzantine
fault-tolerance (CLBFT) [10] algorithm to run agreement
on replies to requests originated by s as well as external
requests sent to s by other services.

Each driver contains an executor, a black box capturing
application behavior. Executors model deterministic appli-
cations that: (1) request operations on target services and
process their replies and (2) execute operations requested
by calling services and sending back replies. The requests
may be synchronous or asynchronous.

We illustrate the algorithm in Figure 1 by tracing the ex-
ecution of a request in the non-faulty case. When the ex-
ecutor at calling replica cj requests an operation to be per-
formed by t, the driver dj sends the request to the voter
primary of t (Stage 1). The voter primary of t waits for at
least fc + 1 matching requests before starting CLBFT to

2

agree on the request (Stage 2). Upon agreement, each voter
vk of t passes the request to its co-located driver dk (Stage
3) using the local event queue. The executor at dk dequeues
the request, executes it, and sends the result back to voter
vk via driver dk (Stage 4). Note that the executor at dk is
not required to finish executing a request before starting the
execution of the next request. The executor at dk, for ex-
ample, may deterministically choose to start the execution
of the next request while waiting for replies to external re-
quests issued during the execution of the previous request.

To avoid the nt∗nc messages that would result from hav-
ing all voters of t send replies to all drivers of c, each voter
of t forwards its reply to a particular voter of t, known as the
responder (Stage 5). The responder, specified in the origi-
nal request messages from the drivers of c, collects ft + 1
matching replies and forwards the reply bundle (including
all authenticators) to each driver of c (Stage 6). When a
driver dj of calling replica cj receives this message, it au-
thenticates the reply bundle and forwards the result to the
primary of c’s voter group (Stage 7) that uses CLBFT to
agree on the reply (Stage 8). Once agreement has been
reached, each voter of c enqueues the result in the local
event queue (Stage 9). When an executor of c determin-
istically decides to consume the result of a request, it pulls
that result from the event queue, blocking if necessary until
a result for that request is available.

Our previous work [9, 11] describes fault handling,
checkpoint generation, and garbage collection in Perpetual.

2.1.2 Implementation
A high quality Java-based prototype of Perpetual has been
developed by our group [9]. The implementation con-
tains three main modules. The first module implements
CLBFT. The second module implements the core Perpet-
ual algorithm. Both CLBFT and Perpetual Core modules
abstract away transport, authentication, and encryption de-
tails, which are provided by a ChannelAdapter module. The
ChannelAdapter itself achieves transport independence by
encapsulating the transport oriented details within Connec-
tion modules. The current implementation provides a Con-
nection module that supports SSL/TCP communication.

The implementation uses Message Authentication Codes
(MAC) [12] to authenticate all communication. We uti-
lize non-blocking sockets, thread-pooling, and memory-
mapped buffers for improved performance.

2.2 Web Services
Web Services are based on a two-tier model, in which,

a caller (or client) sends a SOAP [13] message to a tar-
get Web Service and expects a reply. However, in reality,
the target Web Service may need to contact other Web Ser-
vices in order to process the original message. For example,
when an end-user makes a credit card transaction at an on-
line store, the store Web Service must contact a payment

gateway which will in turn contact a bank before authoriz-
ing the purchase. Consequently, complex distributed appli-
cations may span multiple Web Service tiers that are located
across organizational and geographical boundaries.

Large enterprise applications are increasingly built by
grouping Web Services using a Service Oriented Architec-
ture (SOA) [14]. Unlike in tiered Web Services applica-
tions, where calls to one tier are embedded within Web Ser-
vices of another tier, Web Services in SOA applications typ-
ically provide unassociated sets of functionality. The ap-
plication depends on an orchestrator that actively executes
rules that specify the data flow from one Web Service to
another to complete overall tasks. Standards such as the
Business Process Execution Language (BPEL) and corre-
sponding BPEL engines (e.g., Apache ODE [15]) facilitate
the creation and execution of SOA applications.

Most existing Web Services applications use syn-
chronous communication, in which the caller sends a SOAP
message to a Web Service and blocks until it receives a re-
ply message. If the target Web Service takes a long time to
process the message or is slow to respond, the caller may
be blocked needlessly. Although this scenario may be ac-
ceptable for client-to-business (C2B) interactions, valuable
processing time may be lost if the caller is a Web Service
that initiated a business-to-business (B2B) interaction with
another Web Service. Consequently, asynchronous commu-
nication, in which callers send SOAP messages to target
Web Services and continue to execute their business logic
while waiting for a response, is becoming increasingly pop-
ular. New standards (e.g., WS-Addressing [16]) as well as
new message exchange patterns (MEP) (e.g., conversational
Web Services [17]) have been developed to facilitate asyn-
chronous communication. Most Web Services middleware
(e.g., Axis2) provides API level support for asynchronous
communication.

2.3 Apache Axis2

Apache Axis2 [8] is a popular open source implementa-
tion of SOAP [13] written in Java4. It provides API level
support for sending and receiving SOAP messages. The
Axis2 architecture consists of loosely coupled modules that
encapsulate high-level functions (e.g., Transport).

Axis2 provides a Client API that supports synchronous
and asynchronous communication. Messages are passed to
the Axis2 Engine through the Client API. The Axis2 Engine
contains an OUT-PIPE that holds a series of handlers that
augment the message. The OUT-PIPE can be customized by
adding extra handlers. Once a message has passed though
the OUT-PIPE, it is handed to a TransportSender. Different
implementations of TransportSender may use different pro-
tocols (e.g., HTTP, HTTPS, SMTP) to send the message to a
matching TransportListener at the receiver.

4An implementation of Axis2 in c also exists.

3

! "#$%#&'()*+,! -.#/(! 01-*+,! ,1,!

2#%)34(!+,!36&#$7%#$(83)3&9! ! ! ! !

1(')&!3:7)(&376! ! ! ! !

;76<*$'6636<!(4&3=#!&.$#(5:! ! ! ! !

>:964.$767':!47//'634(&376! ! ! ! !

>44#::!&7!.7:&*:%#43?34!36?7$/(&376! ! ! ! !

;7@!4$9%&7<$(%.34!7=#$.#(5! ! ! ! !

-$(6:%7$&!365#%#65#64#! ! ! ! !

,'%%7$&!?7$!'6/753?3#5!%(::3=#!+,! ! ! ! !

A96(/34!+,!53:47=#$9! ! ! ! !

! Figure 2. Unique properties of Perpetual-WS

When a message is received by a TransportListener, it is
sent to a MessageReceiver though an IN-PIPE in the Axis2
Engine. The IN-PIPE also contains a series of handlers that
can be customized. At a server, the MessageReceiver may
invoke requested operations and send results back using the
OUT-PIPE. At a client, the MessageReciver may return re-
sults to a thread blocked on a synchronous call or invoke a
Callback object to complete an asynchronous call.

3 Contributions and Related Work
We build upon Perpetual and Axis2 to develop efficient

middleware for BFT execution of Web Services. In this
section, we present unique properties of Perpetual-WS in
the context of related work. In particular, we compare
Perpetual-WS to Thema [5], BFT-WS [6], and SWS [7].

Interaction between replicated Web Services: Both
Perpetual-WS and SWS enable interaction between Web
Services with different degrees of replication. Thema and
BFT-WS support BFT execution of Web Services through
replication and enable replicated Web Services to process
requests from unreplicated callers. Thema also enables
replicated Web Services to issue calls to unreplicated Web
Services. However, Thema and BFT-WS do not support in-
teraction between replicated Web Services.

Fault isolation: Replicated Web Services may encounter
compromised target Web Services that may not respond or
send different messages to individual replicas of the caller.
For liveness, the caller may have to deterministically abort
the request. For safety, the calling replicas may have to de-
terministically choose a single result. Perpetual-WS guar-
antees the safety and liveness of all non-faulty Web Ser-
vices even when interacting with potentially compromised
Web Services. BFT-WS does not support replicated callers,
and neither Thema nor SWS guarantee safety or liveness if
target Web Services are faulty5.
Long-running threads of computation: In all four ap-
proaches the Web Service being replicated must be deter-
ministic. However, Thema, BFT-WS, and SWS all require
that Web services be passive, meaning that the state of the
application changes only in response to external messages.

5SWS doesn’t guarantee safety of targets if callers are compromised.

Perpetual-WS only requires that the application be single
threaded, meaning that active processes such as orchestra-
tion can take place within a replicated Web Service applica-
tion in addition to processing external messages.

Asynchronous communication: Thema and SWS only sup-
port synchronous message exchange patterns. Conse-
quently, Web Services that use Thema or SWS may be
blocked waiting for responses instead of processing incom-
ing messages. BFT-WS does not support replicated callers,
and it does not support asynchronous processing of incom-
ing messages. In contrast, Perpetual-WS allows replicated
Web Services to send and receive messages asynchronously.
When acting as caller, a Web Service may send a message
and continue other processing tasks until it receives a re-
sponse; when acting as a target, it may start processing in-
coming requests before completing previous requests (e.g.,
if a previous request resulted in an out-call).

Host-specific information: Web Service developers may
need to access host specific information such as local clock
values, timestamps, and random numbers. Thema, BFT-
WS, and SWS enforce determinism by precluding local ac-
cess to such information. Perpetual-WS does require de-
terministic execution, but takes a more flexible approach by
ensuing that function calls to access such information return
consistent values on all replicas. (See Section 4.2).

Cryptographic overhead: Thema and Perpetual-WS use
message authentication codes (MAC) to authenticate mes-
sages while SWS and BFT-WS use digital signatures [18].
MAC calculations are three orders of magnitude faster than
digital signature calculations. Consequently, Thema and
Perpetual-WS scale better to larger replica groups, which
require more messages per request-reply cycle.

Transport independence: The goal of BFT-WS is to achieve
maximum interoperability by integrating within the Axis2
handler-chain. This model allows BFT-WS to directly use
different Axis2 transport modules (e.g., HTTP, SMTP).
Perpetual-WS is also transport independent since Connec-
tion objects that support different low-level transport pro-
tocols can be plugged into the ChannelAdapter of Perpet-
ual (See Section 5). In contrast, Thema utilizes the BASE
[19] implementation of CLBFT, which uses a tightly cou-
pled rudimentary UDP based messaging protocol. SWS
uses SOAP, but implementation details are not available.

Support for existing Web Services: Thema, BFT-WS, SWS,
and Perpetual-WS can all replicate existing passive deter-
ministic Web Services that use synchronous communication
without modification to the application code. In addition,
deterministic Web Services that have a long-running thread
of computation and asynchronous communication can also
be replicated using Perpetual-WS with minimal modifica-
tions to the to the application code.

4

interface MessageHandler:
void send(MessageContext request); // Sends the message without blocking.
MessageContext receiveReply(); // Returns the next reply, blocking if none are available.
MessageContext sendReceive(MessageContext request); // Sends the message and waits for a reply.
MessageContext receiveReply(MessageContext request); //Returns a specific reply, blocking if necessary.
MessageContext receiveRequest(); // Returns the next request, blocking if none are available.
void sendReply(MessageContext reply, MessageContext request); // Asynchronously sends the reply.

interface Utils: // Provides access to deterministic utility functions.
long currentTimeMillis(); // To use instead of the method in java.lang.System.
java.util.Date timestamp(); // To avoid creating java.util.Date objects directly.
java.util.Random random(); // To avoid creating java.util.Random objects directly.

Figure 3. The Perpetual-WS API provides messaging support and access to deterministic utility methods.

Dynamic discovery: Web Services depend on service bro-
kers to resolve endpoint references to actual destination
hosts using the UDDI [20] protocol. However, UDDI does
not support replicated Web Services. SWS addresses this
problem by making simple modifications to UDDI to store
and serve information related to each replica host of a Web
Service. Thema, BFT-WS, and Perpetual-WS do not cur-
rently support dynamic resolution of endpoint references.

In addition to BFT-WS and Thema, many other ap-
proaches to tolerate fail-stop failures in Web Services also
exist [21, 22, 23, 24, 25]. There has also been some work in
supporting replicated-to-replicated interactions [26, 27, 28]
in contexts other than Web Services.

4 Perpetual-WS Programming Model

The Perpetual algorithm presented in Section 2.1 only
supports BFT execution of deterministic Web Services.
Passive deterministic Axis2 Web Services that only use syn-
chronous messaging can be executed within Perpetual-WS
without modification. However, Axis2 uses multiple helper
threads to support asynchronous messaging and does not
guarantee deterministic thread scheduling. Changing the
behavior of non-deterministic software to be deterministic
in a manner that is transparent to the software is non-trivial
and beyond the scope of this paper. Instead, we currently
support the following simplified programming model.

4.1 Application Model

Perpetual-WS supports applications implemented using
a single ongoing thread of computation. We do not distin-
guish between server and client behavior. Instead, applica-
tions deployed in Perpetual-WS may (1) issue requests, (2)
query for incoming requests, (3) query for incoming replies,
and (4) issue replies. The Perpetual-WS API provides the
tools required for this programming model.

4.2 Perpetual-WS API

The Perpetual-WS API shown in Figure 3 consists of two
parts. The MessageHandler API is a natural successor to the
Axis2 client API. It provides accessors to obtain incoming
requests and replies. The Utils API provides methods that

may be used to obtain current time, timestamps, and random
numbers. The underlying implementation of these meth-
ods guarantee that the return values are consistent across all
replicas, independent of the host that executes the software.

A caller may asynchronously send requests to Web Ser-
vices using the non-blocking send() method of the Mes-
sageHandler interface. The caller is required to provide the
payload and destination information encapsulated within
a org.apache.axis2.context.MessageContext ob-
ject. The construction of the MessageContext must fol-
low the same rules as when sending a message using the
Axis2 OperationClient API.

A caller may request the next available result for any
pending request using the getNextResult() method. The
method returns the next available reply from the incom-
ing queue, blocking, if necessary, until some reply is avail-
able. The receiveReply(MessageContext request)
method allows the caller to block until the reply to a spe-
cific request arrives. The sendReceive() method enables
synchronous invocations on target Web Services.

A target that accepts incoming requests may do so by
calling the receiveRequest() method. Once the re-
quest has been processed, the Web Service can use the
sendReply() method to send the result back to the caller.

A caller may wish to abort requests issued to unrespon-
sive target Web Services. The default behavior in Perpetual-
WS is not to abort any outstanding requests. To abort a
request, the caller must specify a timeout period using the
setTimeOutInMilliSeconds() method of the Options
object encapsulated within the MessageContext of the re-
quest. Although individual replicas may timeout at different
points in time, the Perpetual voter group ensures that re-
quests are aborted deterministically on all calling replicas.

When currentTimeMillis() or timestamp() is
called, a request is issued to the Perpetual voter group. The
primary of the voter group suggests a value which is then
voted upon by all the voters. Since this vote may take an
arbitrarily long time, these methods may not meet realtime
constraints. Calls to random() will result in the creation of
new java.util.Random objects using a seed value agreed
upon by all of the Web Service replicas.

5

1

Encrypted Communication

Web Service

C
h
an

n
el

 A
d
ap

te
r

Perpetual Core

A
x

is
2

 E
n

g
in

e
A

p
p

li
ca

ti
o

n Caller Logic

Handler

:

:

HandlerO
U

T
 P

IP
E Handler

:

:

Handler

IN
 P

IP
E

T
ra

n
sp

o
rt

MessageHandler

Perpetual
Sender

Perpetual
Receiver

Connection

REQ.
M.C.

REP.
M.C.

REQ.
M.C.

REP.
M.C.

REQ. REP.

REQ.
MSG.

REP.
 MSG.BFT.

 MSG.

(1)

(1)

(1)

(2)

(3) (9)

(10)

(11)

(12)

(12)

(12)
REQ.
M.C.

REP.
M.C.

Web Service

C
h
an

n
el

 A
d
ap

te
r

Perpetual Core

A
x

is
2

 E
n

g
in

e
A

p
p

li
ca

ti
o

n Target Logic

Handler

:

:

HandlerO
U

T
 P

IP
E Handler

:

:

Handler

IN
 P

IP
E

T
ra

n
sp

o
rt

MessageHandler

Perpetual
Sender

Perpetual
Receiver

Connection

REP.
M.C.

REQ.
M.C.

REP.
M.C.

REQ.
M.C.

REP. REQ.

REP.
MSG.

REQ.
 MSG.BFT.

 MSG.

(7)

(7)

(7)

(8)

(9) (3)

(4)

(5)

(6)

(6)

(6)
REP.
M.C.

REQ.
M.C.

Figure 4. High-level modules (darkly shaded) of the
Perpetual-WS architecture. The numbered arrows show the
flow of messages during fault-free execution.

5 Perpetual-WS Architecture
Both Perpetual (Section 2.1.2) and Axis2 (Section 2.3)

architectures are highly modular. Consequently, we were
able to design the Perpetual-WS architecture without modi-
fying the core Axis2 or Perpetual implementations. We now
describe the Perpetual-WS architecture by tracing the exe-
cution of a request during fault-free execution, as shown in
Figure 4. We utilize the WS-Addressing [16] support built
into Axis2 to enable asynchronous communication patterns.

5.1 Modular Interaction
The calling logic passes a MessageContext to the Mes-

sageHandler to initiate the request in stage (1). The Mes-
sageHandler augments the MessageContext by setting
the wsa:replyTo field and assigning a unique ID to the
wsa:messageID field. The MessageContext is then sent
to the Transport layer through the Axis2 OUT-PIPE.

The PerpetualSender implements the Axis2
TransportSender interface. Once the PerpetualSender
receives the MessageContext, a new Prepetual request is
created using the MessageContext as the payload and the
value of the wsa:sendTo field of the MessageContext as
the target Web Service ID. To support non-blocking calls,
the sending thread must not block waiting for a reply from
the Perpetual layer. Hence, the Perpetual request6 is passed
to the Perpetual Core using the non-blocking send method
of the Perpetual API [9] in stage (2). The Perpetual Core
processes the request and sends it to the ChannelAdapter

6The timeout value is also passed in, to abort the request if necessary.

to start stage (3). The ChannelAdapter passes the request
to the Connection module that handles all communication
with the target Web Service primary. The Connection
module adds the relevant authentication information to the
request and sends it out through an encrypted connection.

The corresponding Connection module at the target Web
Service primary receives the request, authenticates it, and
passes it to the Perpetual Core. The Perpetual Core of the
primary replica initiates the agreement protocol in stage (4)
by forwarding the request to the other target Web Service
replicas. Once agreement has been reached, the Perpet-
ual Core at each target Web Service replica places the re-
quest in a FIFO queue that is consumed by the Pepertual-
Listener through the Perpetual API in stage (5). An on-
going thread at the PepertualListener fetches the incoming
request, extracts the MessageContext from the request
message, and passes it to the Axis2 Engine in stage (6).
The Axis2 Engine sends the MessageContext through
the IN-PIPE to the MessageHandler, which implements the
Axis2 org.apache.axis2.engine.MessageReceiver
interface. To support asynchronous processing of incoming
messages, the MessageContext is then placed in another
FIFO queue. Incoming requests are dequeued by the thread
that executes target logic through the Perpetual-WS API.

When the target logic is ready to send a reply, it starts
stage (7) by calling the MessageHandler, passing in the
MessageContexts of both the reply and the original re-
quest. The MessageHandler inspects the wsa:replyTo
field of the request MessageContext to determine the
destination of the reply and sets the wsa:sendTo field of
the reply MessageContext with that value. It also in-
serts the value of the wsa:messageID from the request
MessageContext into a wsa:relatesTo field of the re-
ply MessageContext to be used by the caller to match
the reply with the request. The path that the reply mes-
sage(s) takes until it reaches the MessageHandler(s) at
the caller mirrors the path of the request. If the origi-
nal request was synchronous, the MessageHander returns
the reply MessageContext to the caller thread that is
blocked waiting for that reply in stage (12). Otherwise,
the MessageContext will be placed a FIFO queue to be
fetched by the caller thread through the Perpetual-WS API.

5.2 Deployment

To deploy Perpetual-WS Web Services, we utilized the
stand-alone deployment process of Axis2. We modified the
axis2.xml deployment descriptor to add the MessageHan-
dler and the custom transport modules into the Axis2 stack.
The deployment process for a Web Service mirrors that of
Axis2 except we require an additional replicas.xml file.
Since Perpetual-WS does not currently provide a mecha-
nism to dynamically resolve EndpointReferences to ob-
tain replica group information, static mappings contained in
the replicas.xml file are used instead.

6

3

RBE
Bookstore

TomcatM
y
S
Q
L

Perpetual-WS

PGE

Perpetual-WS

Bank

Perpetual-WS

HTTP SSL SSL

Figure 5. The TPC-W Configuration

6 Experiments
We conducted both macro and micro benchmark evalu-

ations of Perpetual-WS to highlight the scalability and effi-
ciency of our implementation. As our macro-benchmark,
we used an open source implementation [29, 30] of the
TPC-W [31] web e-Commerce benchmark. For our micro-
benchmarks, we used a two-tier setting and measured the
throughput of the calling service.

6.1 TPC-W Benchmark
As shown in Figure 5, the TPC-W benchmark models a

multi-tiered e-commerce application. The benchmark sim-
ulates the operation of an online bookstore with twelve dis-
tinct web pages and measures its throughput using Web In-
teractions Per Second (WIPS) as the unit of measure. Re-
mote Browser Emulators (RBE) are used to simulate the
actions of end-users. Around 5-10% of the total traffic re-
ceived by the bookstore results in requests being issued to
an external Payment Gateway Emulator (PGE).

Our setup mirrors the experimental setup used to eval-
uate Thema [5]. All the RBEs were executed within a
single host and issued requests to the bookstore Web Ser-
vice over HTTP connections. The bookstore Web Service
was deployed on another host and used an Apache Tom-
cat [32] Servlet engine and a (co-located) MySQL [33] im-
age database. Since the TCP-W implementation did not
include a PGE implementation, we changed the bookstore
to call a PGE Web Service implemented using Perpetual-
WS. The PGE calls another Perpetual-WS Web Service that
simulates the actions of a credit card issuing bank. We uti-
lized four different configurations of the benchmark where
the PGE and Bank Web Services both executed in replica
groups of size 1, 4, 7, and 10. We disregarded the minimum
execution time requirement for the PGE to ensure that the
effects of replication were not masked. Both the PGE and
Bank Web Services used asynchronous messaging.

6.2 Micro-benchmarks
For all of our micro-benchmarks, we used a two-tier set-

ting with caller and target Web Services both implemented
using Perpetual-WS. All measurements were recorded at
the calling Web Service. We first measured the request
throughput as the number of calling and target Web Service
replicas was varied, using groups of size 1, 4, 7, and 10. We
then performed experiments to evaluate the effects of non-
zero processing time and the performance gains made by
using asynchronous requests. To simulate null-operations,

we implemented a simple increment method to increment
a counter at the target Web Service and return the old value
of the counter. To simulate non-zero execution time, we
used message digest calculations that approximately took
the required length of time to complete. We measured time
taken to complete 1000 calls and use the average value over
three different runs to calculate each data point.

6.3 Experimental Setup
All of our experiments were performed on a dedicated

Washington University testbed [34] made up of 2GHz
Opteron machines (with 512 MB of RAM) connected via
a Netgear GSM7352S Gigabit Ethernet router (with the
ping tool reporting 78µs pairwise RTTs). All machines
ran RedHat Desktop 4 (kernel version 2.6.9-42.0.3.EL).
All tests used Java Runtime version 1.6.0 03 and the
RSA/RC4/MD5 SSL ciphersuite. For the TPC-W bench-
mark, we used MySQL Sever 5.1 along with the MySQL
Connector/J 5.1 JDBC driver and Tomcat 5.5.25.

6.4 Experimental Results
As seen in Figure 6, the effects of replicating the PGE

and Bank layers is minimal. Although not shown, we also
conducted the same experiments using different implemen-
tations of the PGE and Bank Web Services that used syn-
chronous requests instead. Overall, the asynchronous PGE
and Bank Web Services performed up to 4% better than the
synchronous versions. Since only 5 − 10% of all requests
to the Bookstore resulted in calls to the PGE, these gains
represent a significant improvement in performance.

Our micro-benchmarks mirror a set of experiments that
we performed on the underlying Perpetual implementation
[9]. The shapes of the resulting graphs bear a striking re-
semblance to our original results [9]. The overall conclu-
sion that we can draw from this observation is that the
cost of authentication and encryption at the ChannelAdapter
layer dwarfs the cost of marshaling and demarshaling XML
requests at the Axis2 layer. This observation justifies our
decision to use point-to-point MACs instead of third party
verifiable digital signatures to authenticate messages.

As seen in Figure 7, the overhead of replication is con-
siderable when only null requests are considered. However,
the results show that the decrease in throughput as a per-
centage of total throughput also diminishes as we add more
replicas to make Web Services more robust. This observa-
tion argues well for the scalability of Perpetual-WS to larger
replica groups.

Figure 8 shows the effect on throughput when incom-
ing requests take non-zero time to process. The overhead
relative to the case with no replication is also shown. We
can see that as requests take longer to process, the over-
head of replication rapidly decreases. For example, con-
sider the case of four replicas in both the caller and target
replica groups. The throughput increases from 31% (of the

7

 0

 1

 2

 3

 4

 5

 6

 7

 8

 7 14 21 28 35 42 49 56 63 70

W
e
b
 I
n
te

ra
c
ti
o
n
s
 P

e
r

S
e
c
o
n
d
 (

W
IP

S
)

Remote Browser Emulator (RBE) Count

npge = nbank = 1
npge = nbank = 4
npge = nbank = 7

npge = nbank = 10

Figure 6. TPC-W benchmark results

 0

 100

 200

 300

 400

 500

 600

1 4 7 10

T
h
ro

u
g
h
p
u
t
(r

e
q
s
/s

e
c
)

Number of calling replicas (nc)

nt = 1
nt = 4
nt = 7

nt = 10

Figure 7. Replica scalability (Null requests)

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16 18 20
 0

 1

 2

 3

 4

 5

R
e
q
u
e
s
t
C

o
m

p
le

ti
o
n
 T

im
e
 (

m
s
/r

e
q
)

R
e
la

ti
v
e
 o

v
e
rh

e
a
d

Request Processing CPU Time (ms/req)

Request Completion Time

Relative Overhead

nt = nc = 1
nt = nc = 4
nt = nc = 7

nt = nc = 10

Figure 8. Effect of non-zero processing time

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 5 10 20 25

T
h

ro
u

g
h

p
u

t
(r

e
q

s
/s

e
c
)

Number of Parallel Asynchronous Requests

nt = nc = 4
nt = nc = 7

nt = nc = 10

Figure 9. Effect of asynchronous messaging

no replication case) for null operations to 66% when a re-
quest takes 6ms (typical database access time) to process.
These results justify the cost of Perpetual-WS replication
for real world applications.

Figure 9 shows the gain in throughput achieved by issu-
ing parallel asynchronous requests. With 4,7, and 10 repli-
cas in both the calling and target Web Services, the through-
put increased by as much as 225%, 239%, and 227%, re-
spectively, when asynchronous communication was used.
These results validate our efforts to support asynchronous
messaging in the context of deterministic applications.

7 Future Work
We plan to develop a deterministic thread scheduler for

Perpetual-WS by building upon existing work [35, 36]. This
extension will enable Perpetual-WS developers to use the
Axis2 Client API and write multi-threaded Web Service ap-
plications. We also plan to develop a UDDI service for dy-
namic Web Service discovery. Ultimately, we plan to ex-
tend the capabilities of Perpetual-WS to include execution

of BPEL [37] processes using the Apache ODE [15] execu-
tion engine.

We thank Haraldur Thorvaldsson for his input in design-
ing Perpetual-WS. We also thank Charlie Wiseman and the
rest of the ONL team for their support in using ONL. The
authors were supported in part by National Science Foun-
dation grants 0305954, 0618266, and 0722328.

References

[1] W3C. Web Services Architecture, 1.2 edition, Febru-
ary 2004.

[2] Google Inc. Google Maps API Concepts, October
2007.

[3] Mastercard. MasterCard Payment Gateway Overview,
2007.

[4] L. Lamport, R. Shostak, and M. Pease. The Byzantine
Generals Problem. ACM Transactions on Program-
ming Languages and Systems, 4(3):382–401, 1982.

8

[5] M. G. Merideth, A. Iyengar, T. Mikalsen, S. Tai,
I. Rouvellou, and P. Narasimhan. Thema: Byzantine-
Fault-Tolerant Middleware forWeb-Service Applica-
tions. In Proc. 24th Symp. on Reliable Distributed
Systems, pages 131–140, 2005.

[6] W. Zhao. BFT-WS: A Byzantine Fault Tolerance
Framework for Web Services. In Proc. Middleware
for Web Services Workshop, 2007.

[7] W. Li et. al. A Framework to Support Survivable Web
Services. In Proc. of the 19th IEEE Intl. Parallel and
Distributed Processing Symp., pages 93–102, 2005.

[8] S. Perera et. al. Axis2, Middleware for Next Genera-
tion Web Services. In Proc. of the IEEE Intl. Conf. on
Web Services, pages 833–840, 2006.

[9] S. L. Pallemulle, H. D. Thorvaldsson, and K. J. Gold-
man. Perpetual: Byzantine Fault Tolerance for Multi-
Tiered Distributed Applications. Technical Report
WUCSE-2007-50, Washington University, 2007.

[10] M. Castro and B. Liskov. Practical Byzantine Fault
Tolerance. In Proc. 3rd Symp. on Operating Systems
Design and Implementation, pages 173–186, 1999.

[11] S. Pallemulle, I. Wehrman, and K. Goldman. Byzan-
tine Fault Tolerant Execution of Long-running Dis-
tributed Applications. In 18th IASTED Paralell and
Distributed Computing and Systems, 2006.

[12] B. Prenel and P. van Oorschot. MDx-MAC and Build-
ing Fast MACs from Hash Functions. In Proc. 15th
Conf. on Advances in Cryptology, pages 1–14, 1995.

[13] W3C. SOAP Version Messaging Framework, 1.2 edi-
tion, June 2003.

[14] E. Newcomer and G. Lomow. Understanding SOA
with Web Services (Independent Technology Guides).
Addison-Wesley Professional, 2004.

[15] Apache Software Foundation. Apache Orchestration
Director Engine (ODE) Architectural Overview, Oc-
tober 2007.

[16] W3C. Web Services Addressing (WS-Addressing), 1.1
edition, August 2004.

[17] W3C. Web Services Conversation Language (WSCL),
1.0 edition, March 2002.

[18] W. Diffie and M. E. Hellman. New Directions in Cryp-
tography. IEEE Transactions on Information Theory,
22(6):644–654, 1976.

[19] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using
Abstraction to Improve Fault Tolerance. In Proc. 18th
Symp. on Operating Systems Principles, pages 15–28,
2001.

[20] Luc Clement, Andrew Hately, Claus von Riegen, and
Tony Rogers. UDDI Specification Technical Commit-
tee Draft. OASIS, 2004.

[21] P. Chan, M. R. Lyu, and M. Malek. Increasing web
service dependability through consensus voting. In
Proc. of the 29th Computer Software and Applications

Conf., pages 66–69, 2005.
[22] K. Birman, R. van Renesse, and W. Vogels. Adding

High Availability and Autonomic Behavior to Web
Services. In Proc. of the 26th Intl. Conf. on Software
Engineering, pages 17–26, 2004.

[23] C. Fang, D. Liang, F. Lin, and C. Lin. Fault Foler-
ant Web Services. Journal of Systems Architecture,
53:21–38, 2007.

[24] P. Chan, M. R. Lyu, and M. Malek. Making Services
Fault Tolerant. In Proc. of the Intl. Service Availability
Symp., pages 43–61, 2006.

[25] L. Moser, M. Melliar-Smith, and W. Zhao. Making
web services dependable. In Proc. of the 1st Intl. Conf.
on Availability, Reliability and Security, pages 440–
448, April 2005.

[26] P. Narasimhan, K. P. Kihlstrom, L. E. Moser, and
P. M. Melliar-Smith. Providing Support for Survivable
CORBA Applications with the Immune System. In
Proc. 19th Intl. Conf. on Distributed Computing Sys-
tems, pages 507–516, 1999.

[27] C. Fry and M. Reiter. Nested Objects in a Byzantine
Quorum-Replicated System. In Proc. 23rd Intl. Symp.
on Reliable Distributed Systems, pages 79–89, 2004.

[28] S. Ahmed. A Scalable Byzantine Fault Tolerant Se-
cure Domain Name System, 2001. Master’s thesis,
Massachusetts Institute of Technology.

[29] Todd Bezenek et. al. Characterizing a Java Implemen-
tation of TPC-W. In Proc. of the 3rd Workshop On
Computer Architecture Evaluation Using Commercial
Workloads, January 2000.

[30] J. Kiefer. TPC-W Java Implementation, May 2005.
[31] Daniel A. Menascé. TPC-W: A Benchmark for E-

Commerce. IEEE Internet Computing, 6(3):83–87,
2002.

[32] Apache Software Foundation. The Apache Jakarta
Tomcat 5 Servlet/JSP Container, July 2005.

[33] MySQL AB. MySQL 5.1 Reference Manual, August
2007.

[34] J. DeHart, F. Kuhns, J. Parwatikar, J. Turner, C. Wise-
man, and K. Wong. The open network laboratory.
SIGCSE Proceedings, Mar 2006.

[35] R. Jimenez-Peris, M. Patinez, and S. Arevalo. Deter-
ministic Scheduling for Transactional Multithreaded
Replicas. In Proc. of the 19th IEEE Symp. on Reliable
Distributed Systems, page 164, 2000.

[36] J. Domaschka, F.J. Hauck, H.P. Reiser, and R. Kapitza.
Deterministic Multithreading for Java-based Repli-
cated Objects. In Proc. 18th IASTED Intl. Conf.
on Paralel and Distributed Computing and Systems,
pages 516–521, 2006.

[37] IBM Inc. Business Process Execution Language for
Web Services, 1.1 edition.

9

	Byzantine Fault-Tolerant Web Services for n-Tier and Service Oriented Architectures
	Recommended Citation
	Byzantine Fault-Tolerant Web Services for n-Tier and Service Oriented Architectures

	tmp.1415913124.pdf.NL1YS

