
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

Volume 12 Washington University 
Undergraduate Research Digest 

Spring 2017 

Strong Coupling of a Spin Ensemble in Ruby Crystal to a Three-Strong Coupling of a Spin Ensemble in Ruby Crystal to a Three-

Dimensional Copper Cavity Dimensional Copper Cavity 

Michael Seitanakis 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/wuurd_vol12 

Recommended Citation Recommended Citation 
Seitanakis, Michael, "Strong Coupling of a Spin Ensemble in Ruby Crystal to a Three-Dimensional Copper 
Cavity" (2017). Volume 12. 136. 
https://openscholarship.wustl.edu/wuurd_vol12/136 

This Feature Article is brought to you for free and open access by the Washington University 
Undergraduate Research Digest at Washington University Open Scholarship. It has been accepted for inclusion in 
Volume 12 by an authorized administrator of Washington University Open Scholarship. For more information, 
please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/wuurd_vol12
https://openscholarship.wustl.edu/wuurd
https://openscholarship.wustl.edu/wuurd
https://openscholarship.wustl.edu/wuurd_vol12?utm_source=openscholarship.wustl.edu%2Fwuurd_vol12%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/wuurd_vol12/136?utm_source=openscholarship.wustl.edu%2Fwuurd_vol12%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


21

ABSTRACT

In the pursuit of developing quantum technology, researchers study 
novel ways to measure and control quantum phenomena. For example, 
if strong enough coupling is attained with the spin ensemble in a ruby 
crystal that has a small enough linewidth, this system could serve in a 
quantum computer as a quantum memory. Previous research has shown 
strong coupling to spin ensembles, but achieving a smaller spin linewidth 
is required to create quantum memory devices. This study examines the 
coupling between a spin ensemble and a double post reentrant three-
dimensional copper cavity, which could take advantage of its higher mode 
volume and a more constant magnetic field through the ruby volume 
to achieve higher coupling and a smaller spin linewidth. Measuring the 
transmittance through the cavity, the change in quality factor, Q, and 
resonant frequency of the cavity indicate coupling strength, g, and the spin 
linewidth. As the advent of the quantum computer nears, this research 
adds to the body of work that attempts to access the vast expanse of 
Hilbert space.
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INTRODUCTION

The successful development of a quantum computer would be “more revolutionary 
than anything before, including the classical computer and the internet”1. Research 

in quantum computing consists of creating and developing technology that measure and 
control quantum phenomena in diverse physical systems. Each device has its advantages 
and disadvantages, suggesting the need for a quantum computer made of different 
integrated components with different specializations. For example, much research has 
been conducted on the precise measurement, fast control, and efficient coupling of the 
transmon qubit2; however researchers cannot overcome the shortcoming that quantum 
information disappears quickly when stored in a transmon relative to computation 
time. To circumvent the issue of information loss in transmons, recent research has 
gone into developing quantum memory devices, which store quantum information for 
long amounts of time (relative to the computation time). Spin ensembles in ruby hold 
information much longer than fast-processing transmon qubits4 and they also have a 
resonance in the energy range of transmons, which suggests direct coupling is feasible. 
Current research attempts to develop different devices that access the ruby spin ensemble 
through electromagnetic coupling6. Previous works have achieved strong coupling, but 
the spin linewidth was too wide for the quantum information storage application6. We 
hypothesized that a three-dimensional double post reentrant cavity would achieve strong 
coupling to the ruby spin ensemble since it can focus the magnetic field within the ruby, 
and would have better spin linewidth. To test the coupling, we designed a cavity and ruby 
shape to maximize magnetic coupling, measuring the change in cavity resonance and 
quality factor as an external magnetic field changed the ruby spin ensemble resonance. 
Achieving strong coupling between the cavity and this spin ensemble along with finding 
a larger spin ensemble quality factor would lead to further research in coupling ruby 
spins to other quantum systems like transmon qubits. A benefit of the 3D cavity is the 
potential to couple the ruby spins with part of the cavity mode to transmon qubits with 
another part of the cavity mode. The strong coupling found in this experiment shows 
promise in this cavity’s ability to control ruby spins and eventually couple them to 
transmon qubits or other components like them.

II  COUPLED OSCILLATORS

This summer I studied coupled oscillators, systems that store energy in each of their 
oscillators as well as in the interactions between the two. This interaction, or coupling, 
allows experimentalists to follow a simple line of logic that leads to amazing discoveries: if 
I can measure oscillator A and oscillator A is coupled to oscillator B, then I can indirectly 
learn information about oscillator B. Later Section III describes the physics of the two 
oscillators that I studied, a spin ensemble in ruby and a resonant cavity. However, first I 
will start by describing coupled harmonic oscillators, a simplified case. A more detailed 
description of coupled oscillators can be found in most classical dynamics texts5.
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Figure 1: Schematic of Two Masses Attached to Simple Springs Oscillating 
without Friction.
Spring with constant k1 (k2) attaches mass m1 (m2) to a fixed wall on the left (right). A third spring of constant k12 
couples the two masses in the middle. Define the position of m1 and m2 as x1 and x2 respectively where x1 = x2 = 0 at 
equilibrium.

Consider a system of two masses, m1 and m2, connected to fixed walls with simple 
springs of Hooke’s constant k1 and k2 respectively and connected to each other with a 
simple spring of constant k12 as shown in Figure 1. In order to explore the motion of the 
masses in this system, one can write down Newton’s law for m1 and m2:

m1ẍ1 = −(k1 + k12)x1 + k12x2

m2ẍ2 = −(k2 + k12)x2 + k12x1

To solve the equations of motion, one can use the ansatz

x1 = B1e
iwt

x2 = B2e
iwt

where w describes a radial frequency at which both masses could sinusoidally oscillate in 
the steady state, ignoring friction, and B1 and B2 are complex numbers that contain the 
amplitude and phase of each mass’ oscillation. Plugging in the guessed forms of x1 and 
x2, the equations of motion become

B1(k1 + k12 − m1w2) − B2k12 = 0

−B1k12 + B2(k2 + k12 − m2w2) = 0

Observing that these coupled linear equations can be written in matrix form, the 
possible values for w that would satisfy both equations would also cause the determinant 
of the coefficients of B1 and B2 to vanish:

(1)

(2)

(3)

det
− k12           (k2 + k12 − m2w2)

(k1 + k12 − m1w2)              − k12

= 0 (4)
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Since the determinant yields a quadratic equation in w2, this system has two possible 
steady state frequencies.

This mathematical framework predicts the results of experiments. For example, let’s 
say we want to know the effect of changing k1 (i.e., making the first spring tighter) on the 
possible steady state frequencies of the system, w(k1) while holding all other parameters 
constant. After some careful algebra, one can isolate w2 and put it in terms of k1. The 
resulting equation takes the form of a hyperbola with one asymptote parallel to the x-axis: 

where each constant has graphical meaning as shown in Figure 2.
To understand Figure 2, first notice that the limit where y becomes its asymptotes, g 

→ 0, represents the situation of two decoupled oscillators. In this limit, the line of zero 
slope would represent the frequency of oscillating mass m2, unaffected by the changing 
spring constant k1, and the sloped line would represent the frequency of mass m1, linearly 
dependent on k1. As coupling increases, the spacing between the frequencies increases 
at the crossing. This avoided crossing spacing, g, allows for a good measurement of 
coupling strength between two oscillators; larger spacing implies stronger coupling.

Thinking about the physics of the system as you sweep through k1 values leads to 
interesting places. When k1 is far from the crossing region, the values for w closely match 
the asymptotes, the frequencies when the oscillators are decoupled. In this range of k1, 
one can think of the oscillators as roughly separate, they do not have a great affect on 
each other, as seen by the small change in w. However when k1 is in the crossing region, 
the coupled resonances differ much more from the decoupled resonances. For this range 
of k1, one can no longer think of the oscillators as separate. They now behave as a hybrid 
oscillator that has distinct modes compared to its separate parts.

(5)y = a(x − c) + d ± a2(x − c)2 + g2

Figure 2: Avoided Crossing Graph of Equation 5
The asymptotes of the hyperbola y = d and y = 2a(x − c)+d represent the modes of the two oscillators if the spring 
with constant k12did not exist. The gap between y values where the two asymptotes cross indicates coupling strength. 
Notice the y values nearly match the asymptotes far away from the intersection, but greatly differ near the intersection. 
Physically this relationship means that the oscillators act like decoupled oscillators far from where their modes cross, 
and the coupling shows most strongly near the cross.
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The following sections focus on an experiment that uses the coupled oscillator 
model. You might find it useful to refer back to this section and draw analogies to the 
mass and spring model.

III  COUPLING SPIN MODES IN A RUBY CRYSTAL TO A COPPER CAVITY

This section describes an actual experiment that follows the theoretical framework laid
out in Section II. An ensemble of spins in a ruby crystal plays the role of one oscillator, the 
other, a three dimensional copper cavity resonator. The electromagnetic field mediates 
an interaction between the spin ensemble and cavity. First I will describe the physics of 
the two oscillators separately, then I will describe their coupling and the experiment that 
follows.

A. Spin Ensemble In Ruby

Ruby is composed of a lattice of Al2O3 with chromium ions infrequently replacing the 
Aluminum in the lattice (Figure 3). Chromium electrons exist in orbital states with 
angular momentum and a dipole moment that follow the dynamics of a spin-2

3 quantum 
system. Since the chromium ions are spin-2

3 fermions, there are two dominant interactions 
between Cr+3 ions: magnetic dipole-dipole coupling and the exchange interaction. The 
derivation by Stancil in Quantum Theory of Spin Waves7 predicts that the wavelength 
of the resonance determines which of these two interactions dominates: wavelengths 
much longer than spin spacing follow dipole dynamics and wavelengths on the order of 
spin spacing follow the exclusion interaction. The wavelength of our ruby’s resonance 
suggests that the exclusion interaction dominates.

Figure. 3: Ideal Lattice of a Ruby Crystal
Some Al+3 sites are replaced by Cr+3, differentiating the ruby crystal from sapphire, which consists of pure Al2O3.
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In a thorough description of the exclusion interaction and spin dynamics, Stancil’s 
Quantum Theory of Spin Waves7 derives many fundamental spin dynamics from the 
hydrogen atom to a three dimensional magnon system. To model a lattice of exclusion-
interaction-coupled spins, Stancil combines the Heisenberg Hamiltonian with the 
Zeeman Hamiltonian:

The Heisenberg Hamiltonian encapsulates the exclusion energies between each pair 
of nearest-neighbor spins (the first term), and the Zeeman Hamiltonian represents 
the energy of dipole orientations in an external field B0 (the second term). The index j 
represents a specific spin site in the crystal, and the vector d represents a vector to one of 
the nearest neighbors of spin j. The Heisenberg Hamiltonian comes from the exclusion 
interaction between spins which depends on only the relative orientation of the spins, as 
shown by the prefactor

where εS(T) is the energy of the symmetric (antisymmetric) spin orientation. The Zeeman 
Hamiltonian, on the other hand, depends on the strength of the external magnetic field, 
B0. Stancil goes on to derive a mathmatical analogy of this 3D system to a harmonic 
oscillator with quantized energy levels. Solving the eigen problem for this Hamiltonian 
leads to discrete energy levels of the oscillator for a given wavevector κ:

where s is an integer and Z and γκ depend on the relative orientation of the spins. Most 
importantly for this experiment, the Zeeman term causes the energy levels to depend 
linearly on external magnetic field B0. This means that the resonant frequency of the spin 
ensemble (a harmonic oscillator) can be changed by a changing magnetic field enabling 
us to conduct the experiment described in Section II.

B. Resonant Copper Cavity

Although the spin ensemble described in Section III A exhibits amazing solid state physics, 
measuring the resonator requires clever experimental design. Because spin is a magnetic 
phenomenon, external electromagnetic excitations would affect the spin ensemble. A 
resonant conducting cavity provides a well understood, measurable oscillating field that 
can affect the spin dynamics and therefore couple to the ruby resonator.

Before diving into how a cavity interacts with the ruby spin ensemble, first let’s 
consider a cavity in isolation. Solving Maxwell’s equations for a given geometry of a 
conducting cavity allows one to explore the resonance and shape of its electromagnetic 
modes. Griffiths3 describes the boundary conditions and solutions to such problems 
in much more detail. Briefly, since the exterior of the cavity is assumed to be perfectly 
conducting, E = 0 around the boundaries. The following boundary condition applies 
just inside the walls of the cavity:

E = 0

(6)

(7)

(8)

(9)
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Figure 4
The simulated representation of the electric and magnetic field inside a box whose walls are conductors and inside is 
vacuum shows the maxima and minima of the fields in the cavity. a) The three dimensional view of the electric field 
demonstrates that the boundary condition E = 0 is satisfied. From the side view of the electric field, one can see that 
for the lowest mode, the electric field is maximum through the center of the cavity along the red-axis and minimized 
farthest away from the axis. b) Looking down the red-axis at the magnetic field, one can see that the boundary 
condition B = 0 is satisfied and the maximum of the magnetic fields occurs on the periphery of the cavity. Notice that 
the maxima for the electric and magnetic field occur in different locations.

Assuming sinusoidally time varying solutions of E and B, one can solve the relevant 
Maxwell’s equations by applying the boundary conditions. To solve complicated cavities, 
one can use software like HFSS to approximate the time-varying fields for different 
modes. Notice a few features of the simulations shown in Figures 4, 5 and 6 that guide 
the design of a useful cavity shape: 1) E-field is perpendicular to B-field at any point 2) 
E-field maxima and B-field maxima occur at different coordinates. 3) One can identify 
patterns like the E-field of a parallel plate capacitor where there are two close flat metal 
surfaces and the B-field of a current carrying wire around the side of an extrusion.

In order to strongly couple the magnetic field of the cavity to the magnetic spins of 
the ruby, the maximum magnetic field in the cavity should occur inside the volume of 
the ruby. In fact, ideally all of the magnetic mode volume occurs in the ruby while all of 
the electric mode volume avoids it. The electric field should avoid the volume of the ruby 
because the crystal is a dielectric which causes damping in oscillations of the electric 
field. Our experiment used the double post cavity in Figure 6. Most of the magnetic 
field occurs between the two posts, where the rectangular shaped ruby is inserted. The 
electric field mostly occurs outside of the ruby, minimizing loss. The HFSS simulation 
also suggests where to put the probes that couple the cavity to our measurement ports. 
These probes couple to the electric field of the cavity, so they are placed where the electric 
field resides: between the roof and the top of the posts.
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C. Coupling between the Spin Ensemble and the Cavity

Section III A and Section III B describe the physics of two separate oscillators: a spin 
ensemble in a ruby crystal and a conducting cavity. Since spin is a magnetic phenomenon, 
the magnetic field in the cavity affects the spin ensemble. To achieve the strongest effect, 
the most coupling, one should maximize the amount of magnetic field in the ruby 
volume. (I would like to find a derivation of the coupling).8

D. Solenoid

As described in Section III A, the experiment needs a constant external magnetic field 
to tune to frequency of the spin waves. In order to do this, we use a solenoid made 
of Niobium wire, a superconductor. Previous research6 suggests that the ruby will be 
degenerate with the cavity when the external magnetic field reaches about 30mT. The 
magnetic field produced by a solenoid at its center follows the equation

where N is the number of turns of wire, I is the current, µ is the magnetic permeability, 
and L is the length of the solenoid. The length of the solenoid must be large enough to 
create a constant magnetic field through the ruby, a requirement of the spin ensemble 
phenomenon. Calculating the magnetic field of a finite solenoid, I approximated 6 cm to
provide a sufficiently constant magnetic field. Given that the maximum current that the
wire can handle is 1 A (I would stay below this value), N ≥ 3000 turns to achieve a good
sweep through 30 mT. In fabrication, I found all of these parameters to be reasonable.

Figure 5
The modes for this cavity take a different shape due to the cylindrical, conductive extrusions in the interior. a) From 
the side, one can see that the electric field is maximized where the conductive walls become most close, at the top 
of the cylinders. The vectors pointing from the top of the cylinder to the roof mimic the pattern of the electric field for 
a parallel plate capacitor. b) The magnetic field maximum occurs closer to the bottom of the cavity. The concentric 
circles around the posts mimic the magnetic field vectors around a current carrying wire.

(10)B =
 µNI 

       L
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Figure 6
Similar to the cavity in Figure 5, the conducting rectangular posts shape the electric and magnetic fields. a) The 
electric field occurs near the top of the cavity with the vectors mimicking a parallel plate capacitor between the 
posts and the roof. b) The magnetic field maximum occurs near the bottom between the posts. The longer rectangle 
extrusions cause the magnetic field maximum to be evenly distributed in the middle of the two posts.

Figure 7
Output of Vector Network Analyzer (VNA) measurement of S12 for the double post cavity at roughly 0 K. Labels indicate 
the values that determine quality factor Q.
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E. Data and Analysis

Understanding the underlying physics, one can now perform a simple experiment. Just
like the experiment outlined in Section II, one can tune resonance of the spin ensemble 
with an external magnetic field created by a solenoid and observe the effect in the 
resonance of the cavity, which is electromagnetically coupled to the spin ensemble. To 
measure the resonance of the cavity, a Vector Network Analyzer (VNA) probes the cavity 
with a radio frequency signal through one antenna and observes the transmitted power 
in another. The power of transmittance between probe antennae in the cavity peaks 
at the resonance of the cavity (just like when you sing in the shower: a certain note 
resonates in the bathroom and sounds the loudest).

The graph of frequency versus transmitted power shown in Figure 7 ideally follows 
a Lorentzian function. The maximum value and the full width at half of the maximum 
value parametrize the curve. These two values combine to give an important metric of a 
resonant cavity, the quality factor Q:

where ωres is the resonant frequency and ∆ω is the full width half max as shown in Figure 
7. A higher Q indicates a sharper resonant peak, which provides clearer data. Another 
definition of Q reveals another advantage of a higher quality factor:

A resonator with higher Q has less energy loss. In fabrication, discussed later in 
Section IV, one should maximize the Q of both the cavity and spin ensemble.

Once we can tune the frequency of the spin ensemble and measure the resonance of 
the cavity, we can measure the effect of one on the other. I used the LabView programming 
language to orchestrate the experiment.

The experiment produces a 2D intensity plot of the transmitted power at a given 
external magnetic field and frequency (Figure 8). A vertical slice of the graph is an 
averaged VNA measurement like that in Figure 7 at a given magnetic field. One should 
note that the experiment should be done slowly (about 1 second for a change in one mA) 
because rapid change though the current in the solenoid will heat up the fridge. This 
measurement that took a half hour heated the fridge from 9mK to 115mK.

To understand Figure 8 better, consider how the resonant frequency changes with 
magnetic field. For low magnetic field the resonance (lightest spot) and Q (approximated 
by the width of the light patch) do not change, which is expected because the two 
oscillators’ resonances begin far apart. As the magnetic field increases, which increases 
the ruby resonance, the Q decreases and the resonance changes. The Q gets so small at 
around 18 mT that the resonance of the cavity becomes difficult to measure. In this area, 
the two oscillators become intertwined such that one cannot measure them as separate 
oscillators; however, the VNA measures the cavity as if it were a separate oscillator. This 
discrepancy explains the change in Q. At around 25 mT the ruby resonance surpasses the 
cavity resonance enough so that the Q and resonance begin to return to normal. At larger 
magnetic field, which is unattainable with this experimental set up, the cavity resonance 

(11)Q =
 ωres

       ∆ω

Energy Stored

Energy Dissipated per Cycle
Q = 2 (12)
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Figure 8
2D intensity plot of averaged VNA measurements at different magnetic fields.

Figure 9
The data fits the avoided crossing curve, enabling a calculation of coupling strength g.
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and Q would tend towards the values for an isolated cavity since the two oscillators grow 
very detuned in this limit.

The analysis of this data attempts to find the coupling strength, g, (see Section II) 
between the spin ensemble and cavity. Two curve fits provide independent approximations 
for g. One method uses the avoided crossing equation derived in Section II. The other 
method fits the data to an equation relating the Q of the cavity to external magnetic 
field, an equation used in similar crystal coupling experiments6. The results described 
below find similar values for g for the independent methods. Igor Pro facilitated the data 
analysis, graphing and curve fitting.

The first method fits the maxima of the VNA measurement at each magnetic field 
settingto the hyperbolic avoided crossing equation

where b, f, c, and d were fitting parameters. In reference to the avoided crossing graph in 
Figure 9, 2b=30.502 MHz/mT is the slope of one asymptote, f=20.951 mT is the magnetic 
field strength at which the isolated resonances cross, −d= 11.898 is the resonance of the 
isolated cavity, and c2 = g = 81:9125 MHz. Igor Pro allows one to simultaneously fit 
multiple sets of data to different equations using the same fitting parameters. Using this 
feature, the entire data set was fit to the avoided crossing curve, giving values for the these 
parameters as shown in Figure 9.

Figure 10: Quality Factor Dependence on Magnetic Field
The data in the small detuning range is discarded because Equation 15 only applies for large detuning. In other 
words, the peak in the VNA measurement becomes so indistinct that one cannot perform an accurate Lorentzian fit 
and therefore no Q.

(13)f (x) = b(x − f ) ± (b(x − f ))2 + c + d
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The second method of finding g utilizes an equation that predicts the cavity Q as the 
resonance of the spin ensemble is changed:

In Equation 14, ∆, the detuning between the cavity and ruby resonances, is the 
independent variable. The cavity frequency ωr2  =11.89 GHz and the cavity linewidth 
k2 =7.79 MHz are found far away from degeneracy and are constants in the curve fit. 
The collective coupling strength gs,eff2 =74.84 MHz and the spin linewidth γ2

* = 30.85 
MHz, are extracted from the curve fit in Figure 10.

As you can see, the two values calculated for g are similar for this experiment. 
Comparing to a similar study6, Schuster et al. found their cavity had gs,eff2 =38 MHz, 
which implies less coupling in their 2D cavity. Also, their ruby had a spin linewidth γ2

* = 
96 MHz, which is wider than the result here.

The decrease in spin linewidth is promising, since that is the limitation on further 
applications of storing quantum information in spin ensembles.

IV  BUILDING THE EXPERIMENT

A. Ruby Specifications

The ruby crystal was fabricated by Laser Materials Corporation. The shape is about 
15mmx26mmx1mm with the axis of the ruby pointed along the longest length. The 
crystal is doped with 0.03 percent Cr2O3 by weight.

B. Milling a Cavity

This experiment requires a high Q cavity to attain strong coupling with the ruby spins. 
The Q of the cavity can be affected by the conductivity of the metal walls, smoothness 
of the metal walls, the shape of the cavity, the length of the probes, and impurities on 
the cavity walls. This cavity has a resonance of 11.9 GHz, a room temp Q of around 
800 and a low temp Q of 1527. Copper was used for a few reasons. Mainly, copper does 
not superconduct and has a magnetic susceptibility close to vacuum, which allows an 
external magnetic field to easily pass through to interact with the spins to control Zeeman 
splitting. Superconductors have higher Qs since they have infinite conductivity, but the 
superconductors would either block the external magnetic field or fail to superconduct 
because of the external field. Copper also has a strong thermal conductivity, which cools 
the cavity and inner ruby to the base temperature of the dilution refrigerator. Copper is 
also easily machinable.

This cavity was sent to a company to machine it, but another option for making 
cavities that could be investigated is 3D printing metal cavities.

V  CONCLUSION

Investigating a novel way to couple a ruby spin ensemble to a cavity, I found that the 
double post reentrant copper cavity improved coupling rate g and spin linewidth from 

(14)
∆2 + γ2

*2

2gs
2
,eff γ2

* +k(∆2 + γ2
*2)

Q = ωr
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previous studies. These findings open new avenues to experiments with spin ensembles 
in crystals using similar cavity geometries.
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