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ABSTRACT 

The brain is not a silent, complex input/output system waiting to be driven by 

external stimuli; instead, it is a closed, self-referential system operating on its own with 

sensory information modulating rather than determining its activity.  Ongoing 

spontaneous brain activity costs the majority of the brain’s energy budget, maintains the 

brain’s functional architecture, and makes predictions about the environment and the 

future.  I have completed three separate studies on the functional significance and the 

organization of spontaneous brain activity.  The first study showed that strokes disrupt 

large-scale network coherence in the spontaneous functional magnetic resonance imaging 

(fMRI) signals, and that the degree of such disruption predicts the behavioral impairment 

of the patient.  This study established the functional significance of coherent patterns in 

the spontaneous fMRI signals.  In the second study, by combining fMRI and 

electrophysiology in neurosurgical patients, I identified the neurophysiological signal 

underlying the coherent patterns in the spontaneous fMRI signal, the slow cortical 

potential (SCP). The SCP is a novel neural correlate of the fMRI signal, most likely 

underlying both spontaneous fMRI signal fluctuations and task-evoked fMRI responses.  

Some theoretical considerations have led me to propose a hypothesis on the involvement 

of the neural activity indexed by the SCP in the emergence of consciousness.  In the last 

study I investigated the temporal organization across a wide range of frequencies in the 

spontaneous electrical field potentials recorded from the human brain. This study 

demonstrated that the arrhythmic, scale-free brain activity often discarded in human and 

animal electrophysiology studies in fact contains rich, complex structures, and further 

provided evidence supporting the functional significance of such activity.  
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CHAPTER I:  Overview of Background and Significance of 

Spontaneous Brain activity 

 

Why study the intrinsic activity of the brain? 

 Historically, there have been two alternative perspectives for understanding brain 

function: the first perspective views the brain as a complex input/output system driven by 

the momentary demands of the environment; the second perspective views the brain as a 

closed, self-referential system operating on its own with the sensory information 

modulating rather than determining its activity (Llinas, 2001). The former view has 

motivated the majority of systems neuroscience research, but the later perspective is 

gaining increasing appreciation. A consideration of various aspects including energy cost, 

anatomical wiring and signal magnitude emphasizes the importance of intrinsic brain 

activity beyond that of evoked activity.  

 From a metabolic perspective, the cost of intrinsic activity far exceeds that of 

evoked activity (Raichle, 2006; Raichle and Mintun, 2006). The adult human brain 

represents about 2% of the body weight, but accounts for about 20% of the body’s total 

energy consumption. Out of this enormous energy budget, 60-80% spent at rest is 

devoted to intrinsic brain activity. The additional energy burden associated with 

momentary demands of the environment may be as little as 0.5% to 1.0% of the total 

energy budget.  

 From a view of cortical anatomy (Braitenberg and Schuz, 1998), even in layer IV 

of primary sensory regions, less than 10% of the synapses represent inputs from outside 

the brain (Peters and Feldman, 1976);  the vast majority of cortical neurons are neither 
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directly under influence of sensory input nor directly involved in motor output. The 

information flow from sensory to motor areas, if there is such a thing, must pass through 

a very large network of interconnected neurons (Braitenberg and Schuz, 1998). It is thus 

more reasonable to think that the dynamic state of this large network determines motor 

output, whereas various sensory inputs only play a role in continually updating this 

dynamic state (Braitenberg and Schuz, 1998).  

 From a physiological standpoint, the magnitude of task-evoked responses in either 

electroencephalography (EEG) or functional brain imaging is very small compared to the 

magnitude of spontaneous signal fluctuations. Thus, conventional studies of brain’s 

responses to carefully controlled sensory, cognitive and motor events require averaging 

over many trials to obtain consistent result. The brain is not a silent system waiting to be 

driven by external inputs, but rather one that constantly exhibits large-amplitude activity 

fluctuations regardless of the state of external inputs (Raichle, 2006). Corroborating the 

above perspective derived from cortical anatomy, this dynamic state of the brain is only 

updated, or informed, by sensory inputs (Petersen et al., 2003). Further, the pattern of 

these spontaneous fluctuations sometimes resembles that of evoked activity (Kenet et al., 

2003; Tsodyks et al., 1999), supporting the idea that the brain’s ultimate function is to 

predict the environment (Llinas, 2001).  

 Lastly, from a phenomenological perspective, neither the neural activity in 

sensory afferents nor that in motor pathways is necessary for conscious experience 

(Tononi, 2005). For example, a person who becomes retinally blind as an adult continues 

to have vivid visual images and dreams; similarly, patients with locked-in syndrome or 
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normal people during dreaming sleep are fully conscious despite the complete paralysis 

and absence of behavior (Tononi, 2005).  

 

Spontaneous BOLD fMRI signal and its correlation structure 

 Spontaneous slow (< 0.1 Hz) fluctuations in the blood oxygen level-dependent 

(BOLD) signals of functional magnetic resonance imaging (fMRI) appear to reflect a 

fundamental aspect of the brain’s organization (Biswal et al., 1995; Vincent et al., 2007). 

These fluctuations are temporally covariant within large-scale functional brain networks 

such as those associated with visual (Lowe et al., 1998), auditory (Cordes et al., 2000), 

sensorimotor (Biswal et al., 1995), language (Hampson et al., 2002), attention (Fox et al., 

2006) and executive (Seeley et al., 2007) functions as well as the 'default network' 

(Greicius et al., 2003). These covariant relationships (i.e., correlation structures) of 

spontaneous BOLD signals exist during restful waking (Biswal et al., 1995; Fox et al., 

2006; Greicius et al., 2003; Hampson et al., 2002; Seeley et al., 2007), task performance 

(Hampson et al., 2002; He et al., 2007), sleep (Larson-Prior et al., 2006) and even general 

anesthesia (Vincent et al., 2007). Moreover, the spontaneous fluctuations of fMRI BOLD 

signal contribute substantially to variability in behavioral performance (Fox et al., 2007).  

 

Electrophysiological correlate of BOLD signal 

 Studies employing simultaneous recordings of BOLD signal and 

electrophysiological activity have found that BOLD responses evoked by sensory stimuli 

appear to reflect synaptic activity as reflected in local field potentials (LFPs), especially 

the strength (i.e., modulated power) of gamma frequency LFP response (Logothetis et al., 
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2001; Mukamel et al., 2005; Niessing et al., 2005; Shmuel et al., 2006; Viswanathan and 

Freeman, 2007). Such a relation between BOLD signal and gamma frequency LFP power 

holds true for both positive (Logothetis et al., 2001; Mukamel et al., 2005; Niessing et al., 

2005; Viswanathan and Freeman, 2007) and negative (Shmuel et al., 2006) task-evoked 

responses. Recently, a similar correlation was found between the spontaneous 

fluctuations of BOLD signal and those of gamma frequency LFP power in monkeys 

(Shmuel et al., 2007). Potentially related to the issue of electrophysiological correlates of 

spontaneous BOLD correlation structure, gamma frequency LFP power remain coherent 

in its spontaneous fluctuations at distances up to 1 cm, unlike spontaneous raw gamma 

oscillations which are correlated only locally (Leopold et al., 2003). 

 In a separate vein, an early study, by recording electrocorticography (ECoG) and 

regional cerebral blood flow (CBF, measured by laser-Doppler flowmetry) 

simultaneously in anesthetized rats, showed that spontaneous waves of CBF faithfully 

followed bursts of ECoG activity at a frequency of < 0.1 Hz (Golanov et al., 1994). This 

suggests that the burst suppression pattern of cortical surface potential may be what 

underlies CBF fluctuations under anesthesia.  

 

Brain oscillations and “1/f noise” 

 Since the first human brain rhythm, alpha waves, was described by Berger 

(Berger, 1929), a host of other brain rhythms have been studied under various 

physiological and cognitive states (Buzsaki, 2006). These oscillatory patterns cover a 

wide range of frequencies from infra-slow oscillations (< 0.1 Hz) to ultra-fast ripples (> 

200 Hz) (Buzsaki and Draguhn, 2004). Generally, higher frequency oscillations are 
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confined to a smaller neuronal space, whereas lower frequency oscillations recruit larger 

brain networks (Buzsaki and Draguhn, 2004; von Stein and Sarnthein, 2000).  

Interestingly, it has recently been found that phase of theta frequency (4-8 Hz) 

oscillations modulates amplitude of gamma frequency (>30 Hz) oscillations (Canolty et 

al., 2006) and unit activity (Jacobs et al., 2007). During deep sleep, the slow oscillation, 

an oscillatory alternation of membrane potential between a hyperpolarized “down” state 

and a depolarized “up” state at about 0.8 Hz (Steriade et al., 1993b), strongly modulate 

power of higher frequency activity (Mukovski et al., 2007; Steriade et al., 1996). Further, 

it has been shown that the phase of theta or gamma oscillations influence the 

development of synaptic long-term potentiation or long-term depression (Holscher et al., 

1997; Wespatat et al., 2004). 

The power spectrum of brain activity, whether it is measured by 

electroencephalography (EEG), magnetoencephalography (MEG), ECoG, LFP, or fMRI, 

obeys a power law distribution (Buzsaki, 2006; Fox and Raichle, 2007; Freeman and 

Zhai, 2009), that is, the power density (P) is inversely proportional to frequency (f), as 

expressed by the relationship, P ~ 1/f β, where β is an exponent that normally varies in the 

range of 0 – 3. This 1/f β power relationship implies that perturbations occurring at slow 

frequencies can cause a cascade of energy dissipation at higher frequencies and that 

widespread lower frequency activity may modulate faster local events (Bak et al., 1987; 

Buzsaki and Draguhn, 2004).  Indeed, the low-frequency end (< 0.1 Hz) of the “1/f 

noise”, termed infra-slow fluctuations or slow cortical potentials (SCP), appear to 

modulate power of higher frequencies, with the trough of SCP corresponding to increased 
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power of higher frequency field potentials (Vanhatalo et al., 2004) as well as increased 

multiple-unit activity (Birbaumer et al., 1990).  

 

Spontaneous brain activity across the awake-sleep cycle 

 The transition from wakefulness to sleep is accompanied by striking changes in 

neural activity patterns measured at all levels of electrophysiological recordings, from 

intracellular membrane potential to scalp EEG. The characteristic oscillatory waveforms 

of non-rapid eye movement (NREM) sleep include sleep spindles (12-15 Hz), delta 

waves (1-4 Hz), the K-complex waveform, and slow oscillations (~ 0.8-1 Hz) (Hobson 

and Pace-Schott, 2002). The early stage of NREM sleep is associated with spindles and 

K-complex. As sleep deepens, power of slower frequencies (< 4 Hz) increases, deep 

NREM sleep (stages 3 and 4) is dominated by delta waves and slow oscillations and thus 

is also named slow-wave sleep (SWS) (Steriade et al., 1993a). Slow waves seen in the 

scalp EEG are a signature of the slow oscillation, at the same frequency, of membrane 

potential in virtually all cortical neurons (Mukovski et al., 2007). As the SWS transits 

into rapid-eye-movements (REM) sleep that is associated with dreaming episodes, the 

large-amplitude slow waves disappear and the EEG patterns show low-amplitude fast 

activity similar to those during waking. These changes in spontaneous brain activity 

parallel the phenomenon that consciousness is present during both waking and REM 

sleep but is diminished during NREM sleep, especially SWS.  

 Given these dramatic changes of neuronal activity patterns, it may come as a 

surprise that the spontaneous correlation structures of fMRI signals are maintained in 

light sleep (Horovitz et al., 2007b), deep sleep (Horovitz et al., 2007a), as well as deep 
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anesthesia associated with burst-suppression EEG patterns (Vincent et al., 2007). 

Potentially helpful in reconciling these results, the spontaneous fMRI signals are at a 

much lower frequency (< 0.1 Hz) than the electrophysiological oscillatory patterns 

mentioned in the previous paragraph, among which the slowest, the “slow oscillation” 

(Steriade et al., 1993b) (i.e., the ‘up’ and ‘down’ states), is around 0.8 – 1 Hz.  

In summary, the sleeping brain presents a fantastic model for studying intrinsic, 

self-organized neuronal activity, as it is a natural physiological state with minimal 

interaction with the environment. Understanding which patterns of spontaneous brain 

activity change across awake-sleep cycle and which do not will be a critical piece in the 

endeavor of elucidating how the brain maintains its intrinsic functional architecture 

despite changing levels of consciousness.  
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CHAPTER II: Breakdown of functional connectivity in frontoparietal 

networks underlies behavioral deficits in spatial neglect 

 

Summary 

 Spatial neglect is a syndrome following stroke characterized by attentional deficits 

in perceiving and responding to stimuli in the contralesional field. Here we examined the 

integrity of attentional systems in patients with spatial neglect by measuring coherent 

fluctuations of blood oxygen level-dependent (BOLD) signals (functional connectivity) 

with functional magnetic resonance imaging (fMRI). Inter-regional connectivity in two 

largely separate attention networks located in dorsal and ventral fronto-parietal regions 

was assessed at both acute and chronic stages of recovery. Consistent with the fact that 

strokes causing neglect often damage the ventral attention network, connectivity between 

regions in this network was diffusely disrupted and showed no recovery. The extent of 

residual connectivity correlated with visual detection deficits in both visual fields, 

consistent with the hypothesized role of the ventral network in mediating non-lateralized 

deficits of spatial neglect. In the structurally intact dorsal attention network functional 

connectivity between left and right posterior parietal cortex was acutely disrupted, but 

fully recovered at the chronic stage. This acute disruption correlated with a behavioral 

‘disengagement’ deficit in responding to unattended stimuli in the neglected field, which 

again is consistent with the role of this region in directing spatial attention. Finally, the 

impairment of functional connectivity within dorsal and ventral attention networks, and 

the associated behavioral deficits, were positively correlated, and depended on the 

disconnections of the white matter tracts connecting frontal and parietal cortices. These 
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findings demonstrate the behavioral significance of BOLD functional connectivity and its 

relevance for explaining the pathophysiology of spatial neglect and potentially of other 

stroke-related behavioral deficits. 

 

Introduction 

Functional connectivity (FC) magnetic resonance imaging (MRI) studies temporal 

correlations between the blood oxygenation level-dependent (BOLD) signals in different 

brain regions. These temporal correlations are readily demonstrated in the resting state 

(i.e. in the absence of an explicit task) (Biswal et al., 1995) and are contributed 

predominantly by low frequency (<0.1 Hz) fluctuations (Cordes et al., 2001). Coherent 

BOLD fluctuations within widely distributed but anatomically discrete networks 

recapitulate the spatial topography of task-evoked BOLD responses commonly observed 

with a variety of behavioral paradigms [e.g. somatosensory (Biswal et al., 1995), 

language (Hampson et al., 2002), default (Greicius et al., 2003; Laufs et al., 2003) and 

attention (Fox et al., 2005; Laufs et al., 2003)].  

The behavioral significance of BOLD FC is poorly understood (but see (Hampson 

et al., 2006a; Hampson et al., 2006b) for two recent studies). One goal of the current 

study was to assess the behavioral significance of BOLD FC by measuring the 

relationship between FC and performance deficits in stroke patients longitudinally. The 

primary question was whether the degree of disruption in FC correlated with the severity 

of behavioral deficits at the acute stage, and whether this correlation was maintained over 

the course of recovery.  
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A second goal of this study was to gain insights into the role of coherent BOLD 

fluctuations in the pathophysiology of neglect. Neglect is a common syndrome following 

right hemisphere that includes both rightward biases in spatial sensory-motor processing, 

as well as several non-lateralized deficits of arousal, capacity, and working memory [for 

reviews see (Heilman et al., 1985; Hillis, 2006; Husain and Rorden, 2003; Mesulam, 

1999; Robertson, 2001)]. Neglect has been traditionally explained in terms of localized 

damage of specific brain structures [inferior parietal lobule (IPL) (Mort et al., 2003; 

Vallar and Perani, 1987), superior temporal gyrus (STG) (Karnath et al., 2001; Karnath et 

al., 2004), subcortical nuclei (Karnath et al., 2002; Vallar and Perani, 1987), and the 

inferior frontal cortex (Husain and Kennard, 1996; Vallar and Perani, 1987). The present 

work fits within a more recent perspective that emphasizes the importance of distributed 

dysfunction in fronto-parietal cortical networks (Corbetta et al., 2005; Thiebaut de 

Schotten et al., 2005). 

We have recently proposed that spatial neglect reflects dysfunction of two fronto-

parietal networks involved in the control of attention. The dorsal attention network 

controls the allocation of spatial attention to extra-personal space, and the selection of 

stimuli and responses predominantly in contra-lateral space, and includes as core regions 

the intraparietal sulcus (IPS) and the frontal eye field (FEF). The ventral attention 

network is necessary for target detection and reorienting toward salient unexpected 

events in either space, is localized predominantly in the right hemisphere, and is centered 

around the temporo-parietal junction (TPJ) and ventral frontal cortex (VFC) [for review 

see (Corbetta and Shulman, 2002)]. Strokes that cause neglect often structurally damage 

the ventral network while sparing the dorsal network (Corbetta et al., 2005; Husain and 
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Rorden, 2003; Malhotra et al., 2006a; Milner and McIntosh, 2005). We have recently 

demonstrated, using a visuo-spatial attention task, that such strokes may lead to a 

functional imbalance of evoked responses in left (hyperactive) and right (hypoactive) 

dorsal parietal cortex, even though these areas are structurally intact (Corbetta et al., 

2005). This imbalance correlates with the degree of contra-lesional inattention and 

recovers over time. These observations suggest that structural damage of the ventral 

network leads to functional impairment of the posterior parietal nodes of the dorsal 

network.  

However, this previous fMRI study of neglect only examined task-evoked 

responses of individual regions. Inferences regarding network-level interactions were 

purely qualitative. Because stroke injury to part of a network may result in network 

dysfunction, direct assessments of functional interactions among brain areas using FC 

MRI should provide a better understanding of neglect.  The dorsal and ventral attention 

networks were originally defined on the basis of task-evoked responses; more recently, 

using FC MRI acquired in healthy resting adults, Fox and colleagues showed that the 

same two networks emerge from an analysis of coherent spontaneous fluctuations of 

BOLD signals (Fox et al., 2006a). Here, we measured inter-regional functional 

connectivity in these two attention networks in patients with neglect at both acute and 

chronic stages after the ictus. Performance measures on a visuospatial attention task were 

correlated with FC measures across subjects. The obtained results show that disrupted FC 

in the dorsal and ventral attention networks constitutes a critical mechanism underlying 

the pathophysiology of neglect. 
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Methods 

Subjects 

Eleven patients (2 female), mean age 59 years, with right fronto-parietal stroke 

and initially demonstrated neglect participated in the study. All provided informed 

consent according to procedures established by the Washington University Institutional 

Review Board. All patients underwent standard rehabilitation for at least 3 months after 

the stroke. Patients were tested twice: once in the acute stage, i.e., ~4 weeks (mean 30 

days) after the stroke and once at the chronic stage, i.e., more than 6 months (mean 40 

weeks) after the ictus. Inclusion criteria: 1. Age 18 or greater. No upper age limit applied. 

2. Single right hemisphere lesion, ischemic or hemorrhagic. 3. Clinical evidence of 

neglect on clinical screening. 4. Awake, alert, and capable of understanding and 

participating in research. 5. Able to tolerate the scanner environment for 2 hours within 

the first 4 weeks after the stroke. Exclusion Criteria: 1. Evidence by CT or MRI of other 

strokes, although up to 2 lacunes were allowed in the subcortical white matter. 2. 

Inability to maintain wakefulness. 3. Presence of other neurological, psychiatric or 

medical conditions precluding active participation in research or altering the 

interpretation of behavioral/imaging studies (e.g., dementia, schizophrenia), or limited 

life expectancy to less than 1 year (e.g., cancer or congestive heart failure class IV). 4. 

Carotid stenosis greater than 50% by Doppler studies or angiogram (as the BOLD 

response in the hemisphere ipsilateral to a carotid stenosis may not reliably track 

neuronal activity). 5. Claustrophobia. 

Twelve young (6 female; age 18-38 years) and twelve older (7 female; mean age 

57.4, range 41-71) healthy subjects were recruited from the Washington University 
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community to serve as control subjects. All control subjects were right-handed, and had 

no neurological history. All gave informed consent following guidelines set by the WU 

Institutional Research Board and were compensated for their time. 

 

Apparatus and stimuli 

Stimuli were generated by an Apple Power Macintosh computer and projected 

onto a screen at the head of the magnet bore by a Sharp LCD projector. Participants 

viewed the stimuli through a mirror attached to the head coil. Stimuli were white on a 

black background. 

 

Task 

The Posner task was implemented as follows in patients and elderly controls. The 

display contained two boxes (unfilled squares) each 1° on a side, centered 3.3° to the 

right and to the left of the central fixation point. Each trial started with the fixation point 

changing color from red to green. After 800 ms an arrow cue pointing left or right was 

presented at the fixation locus for 2360 ms. Following a delay ranging from 1500 to 3000 

ms, an asterisk target was presented for 100 ms in one of the two boxes. Left and right 

targets were equally probable. On 75% of the trials the target was presented at the 

location indicated by the cue (valid), while on 25% of the trials it was presented at the 

opposite location (invalid). The subject indicated target detection as quickly as possible 

with a right hand key-press. Reactions times (RTs) were measured in milliseconds from 

the appearance of the target to the key-press. The next trial began after an inter-trial 

interval (ITI) that was randomized between 4760-9440 ms. The standard session involved 
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eight fMRI runs of 5 minutes each, where each run contained about 20 trials. At the acute 

stage, we obtained between 6 and 12 fMRI runs (mean=8.9) per subject. At the chronic 

stage, the number of fMRI runs ranged from 7 to 12 (mean=9.6). Eight fMRI runs were 

obtained in each elderly control subject.  

  The Posner task procedure for young controls differed slightly. 1) 20% of trials 

ended immediately after the cue. In another 20% of trials the cue was followed by a test 

period lasting 4.72 sec in which no target was presented; 2) the cue-target interval varied 

between 3860 and 5360 ms; 3) the ITI lasted for 2, 3 or 4 frames. The number of fMRI 

runs ranged from 11 to 16 (mean 15.1).  

 

fMRI Scan Acquisition  

Scanning was performed with a Siemens (Erlangen, Germany) 1.5 T Vision MRI 

scanner. Functional data were acquired using an asymmetric spin-echo, echoplanar 

imaging sequence sensitive to blood oxygen level-dependent (BOLD) contrast (TE = 37 

ms, TR = 2.36 s, flip angle = 90°; 16 contiguous 8mm slices with 3.75x3.75mm in-plane 

resolution). The functional data slice tilts and field of view were prescribed parallel to the 

AC-PC plane on the basis of a short (< 2 minute) pre-functional coarse MP-RAGE scan. 

Each fMRI run included 128 frames (volumes). Compensation for asynchronous 

(interleaved) slice acquisition was accomplished by sinc interpolation. The functional 

data were realigned within and across fMRI runs to correct for head motion. Each fMRI 

run was intensity scaled to yield a whole brain mode value of 1000 (not counting the first 

4 frames). Anatomical images were acquired using a sagittal MP-RAGE sequence (TR = 

97ms, TE = 4ms, flip angle = 12°, inversion time = 300ms). For each subject, an atlas 
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transformation to the atlas representative template was computed on the basis of an 

average of the first frame of each fMRI run and MP-RAGE structural images. Our 

template was produced by mutual co-registration of images obtained in 12 normal 

subjects and represents the Talairach coordinate system (Talairach and Tournoux, 1988). 

Each fMRI scan was interpolated to 3mm cubic voxels in atlas space. Time series were 

combined within each session and event-related responses were extracted using the 

general linear model making no assumptions regarding the hemodynamic response shape. 

Regional time courses were extracted by averaging within the regions. Magnitudes were 

computed as the inner product of the timecourses with a canonical hemodynamic 

response function of the gamma type (Boynton, 1996).  

 

Anatomical Imaging and Lesion Segmentation 

Multiple anatomical images were acquired using a sagittal T1-weighted MP-

RAGE sequence (TR = 97ms, TE = 4ms, flip angle = 12°, inversion time = 300ms, 

1x1x1.25 mm voxels) and a T2-weighted fast spin echo sequence. All anatomical data 

acquired in each subject were spatially mutually coregistered and resampled in atlas 

space to 1mm3 voxels. Atlas registration error attributable to the presence of a lesion was 

measured by computing the transformation with and without excluding the lesion and 

determined to be less than 2 mm for the largest lesion in this group of patients. The 

coregistered MP-RAGE images were averaged to increase the contrast to noise ratio. 

Artifactual intensity heterogeneity was corrected using a 3D parabolic (10 free 

parameters) model of the gain field. Lesion boundaries were determined with the aid of 

an unsupervised bi-spectral (T1-weighted plus T2-weighted) fuzzy class means (FCM) 
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procedure that classified voxels into one of four categories: air, cerebrospinal fluid (CSF), 

gray matter and white matter. Expert judgment was required to correctly segment the 

lesion on the basis of the automatic classification, e.g., to distinguish CSF representing a 

cystic lesion vs. lateral ventricle. 

 

Functional Connectivity Analyses 

Additional preprocessing. In preparation for FC analysis, the BOLD volumetric 

timeseries were passed through several additional pre-processing steps: 1) spatial 

smoothing using a 6 mm full width at half maximum Gaussian blur; 2) temporal filtering 

retaining frequencies in the 0.009-0.08 Hz band; 3) removal by regression of several 

sources of variance unlikely to reflect spatially-specific functional correlations: i) six 

parameters obtained by correction of head motion; ii) the signal averaged over the whole 

brain (excluding the ventricles and, in patients, the stroke lesion); iii) the signal from a 

ventricular region; iv) the signal from a white matter region. Temporal derivatives of 

these regressors were included in the linear model, thereby accounting for the time-

shifted versions of spurious variance (e.g., delayed whole brain BOLD signal in venous 

structures). Deterministic task-evoked response components were removed by including, 

for each distinct trial type (left-valid, left-invalid, right-valid, right-invalid), 8 regressors 

corresponding to frames 0 through 7 following the trial onset (cue presentation) (for an 

evaluation of the efficacy of this manoeuvre see Supplementary Note 2). Trials of varying 

cue-target interval were lumped together as the difference between the shortest and 

longest interval (1.5 sec) was less than one frame TR (2.36 sec).  The total number of 

regressors used to remove spurious sources of variance as well as deterministic responses 



  23

thus was 2*(6 + 1 + 1 + 1) + 4*8 = 50, the first factor of 2 corresponding to inclusion of 

temporally differenced as well unmodified waveforms. The present regression strategy 

was accomplished in one step, which differs modestly from the previously described 

serial regression strategy (Fox et al., 2005). 

Construction of regions of interest.ROI for functional connectivity analyses were 

determined from a meta-analysis of four previously published event-related fMRI studies 

of young adults performing the Posner task (Astafiev et al., 2003; Astafiev et al., 2004; 

Corbetta et al., 2000; Kincade et al., 2005). For each study, responses to the cue were 

identified by a whole-brain voxel-wise ANOVA using MR frame as factor. The resulting 

F-score maps were converted to equally probable Z-scores that were then combined using 

a fixed-effects analysis and the resulting map then subjected to automatic peak search. 

Peaks closer than 10 mm were consolidated by algebraically averaging their coordinates. 

ROI were defined around peaks by thresholding the map at thresholds chosen to yield 

regions of approximately constant volume. Eight ROIs were selected on the basis of a 

priori knowledge as representing the dorsal attention network (DAN). Five regions 

representing the ventral attention network (VAN) were similarly defined on the basis of 

differential responses to the target following invalid vs. valid cues (MR frame × cue 

validity interaction effect). All ROIs are listed in Supplementary Table 1. 

FC MRI correlation analysis. The first step in all FC analyses was to extract 

BOLD time courses from each ROI (defined as described above) by averaging over 

voxels within each region. To compute FC maps corresponding to a selected seed ROI, 

the regional timecourse was correlated against all other voxels within the brain as 

originally described by (Biswal et al., 1995). The present main results (regional FC) were 
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obtained by computing Pearson correlation coefficients (r) for region pairs. Statistical 

tests on regional FC results were computed after application of Fisher’s z transform (z = 

0.5ln((1+r)/(1-r))), which yields variates that are approximately normally distributed (Zar, 

1996).  

 

Diffusion Tractography Imaging (DTI) 

 DTI data was acquired on 6 subjects in 48 directions, 2.5 mm cubic resolution, b 

= 800 s/mm2, with 5 averages and was analyzed similar to (Shimony et al., 2006). The 

images were realigned across encodings and datasets to correct for electronic shift and 

head movement. Full brain streamline tractography was performed on all subjects after 

placing starting seed points on 1 mm resolution grid. The SLF tracks were filtered by 

selecting tracks that pass through a large region in the deep white matter of the posterior 

frontal lobe and through the deep white matter of the parietal lobe. The AF tracks were 

selected to pass through the same region in the posterior frontal and a region in the deep 

white matter of the temporal lobe. A consensus volume was created from the tracks in all 

6 subjects, which was then surface rendered for display. For the probabilistic tracking the 

data was analyzed using Bayesian probability theory (Behrens et al., 2003). The lesion 

spot in Fig. 7b (red) was transformed to each subject’s individual space and used as a 

seed region for probabilistic tracking. Probability in each voxel was normalized to the 

voxel with highest connectivity. These results were then transformed to atlas space and 

averaged across subjects. For display purposes voxels with probabilities above 5% or 

10% were colored with two shades of blue and they follow the expected location of the 

SLF and AF. 
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Results 

Overview 

To measure inter-regional FC, it was necessary first to identify regions of interest 

(ROIs) representing nodes in the dorsal and ventral attention systems. To this end, we 

reanalyzed data obtained in four previously published fMRI studies of visuospatial 

attention. Two sets of ROIs were defined and validated by FC mapping using data 

acquired in young healthy subjects, which showed that fluctuations were coherent within 

each system and largely independent across systems. Having defined two sets of 

functionally connected regions involved in attention-related functions, we measured 

inter-regional FC in patients and age-matched controls and determined whether temporal 

correlations within fMRI signals correlated with behavioral performance across patients.  

 

Normal Functional Connectivity of Dorsal and Ventral Attention Networks 

ROIs in the dorsal and ventral attention networks were determined from a meta-

analysis of four previously published event-related fMRI studies of young healthy adults 

in which spatial attention was manipulated using a Posner-like paradigm [(Astafiev et al., 

2003; Astafiev et al., 2004; Corbetta et al., 2000; Kincade et al., 2005) see Methods and 

Supplementary Fig. 1]. In each experiment the locus of attention was indicated on each 

trial by a central arrow pointing toward a left or right location on the computer screen.  

After a variable delay, a target appeared at either the cued location (75% of trials, “valid 

trials”) or the opposite location (25% of trials, “invalid trials”). Subjects were instructed 

to maintain fixation on a central cross-hair and to detect targets as quickly as possible. In 
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different experiments, detection was signaled by a right hand key-press, a saccadic eye 

movement, a pointing hand movement, or object identification. Whole-brain ANOVA 

was conducted on each of the four studies (activation during cue period for dorsal 

attention regions, activation × validity during the period following target presentation for 

ventral attention regions) to identify significantly modulated voxels. The Z-score maps 

were combined using a fixed-effects meta-analysis and ROIs were then identified by an 

automated peak search algorithm.  

Eight ROIs in the dorsal attention network (DAN) were consistently recruited in 

responses to the cue: bilateral FEF, posterior IPS (pIPS), ventral IPS (vIPS), and middle 

temporal area (MT+) (Fig. 1a yellow; Supplementary Table 1, top).  Several regions in 

the ventral attention network (VAN) were identified by consistently stronger activation to 

unexpected than expected targets: a precentral sulcus region (PrCe), middle frontal gyrus 

(MFG), anterior insula, TPJ, and superior temporal sulcus (STS) (Fig. 1a orange; 

Supplementary Table 1, bottom). All ventral regions were lateralized to the right 

hemisphere. 

To confirm that these regions constitute separate FC networks, inter-regional 

temporal correlations of BOLD signals were examined in a data set of young healthy 

subjects (N = 12) performing the Posner task. Time courses were extracted from all 

regions in the right hemisphere, and the consistent task-evoked BOLD responses were 

removed by regression (see Methods and Discussion). The inter-regional correlation 

matrix then was computed (Supplementary Fig. 2).  Correlations between regions in 

different networks were significantly weaker than correlations between regions within the 

DAN (P< .0001) or within the VAN (P < .0003), indicating that the two networks are 
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dissociable. To explore the distributed spatial topography of the correlated activity, seed 

ROI-driven FC maps were computed on a voxel-wise basis for each of the 9 a priori 

attention regions in the right hemisphere. For each network, FC maps were combined 

using a conjunction analysis that identified voxels correlated with at least 3 of 4 regions 

in the DAN (Fig 1b) or 4 of 5 regions in the VAN (Fig 1c). Although only right 

hemisphere regions were used as seeds, the FC defined DAN network was largely 

bilaterally symmetric. Regions consistently correlated within the DAN included FEF, 

MT+, and a large swath of cortex extending along IPS into extrastriate visual cortex.  

Consistent with task-activation studies, the FC-defined VAN network was strongly right 

lateralized and included the TPJ extending into the inferior parietal lobule, MFG, PrCe, 

and anterior insula. A small region also was detected in the left supramarginal gyrus 

(SMG). Interestingly, the largely-bilateral DAN included a right-lateralized region in the 

middle and inferior frontal lobe (see arrow in Figure 1b), which overlapped with the 

VAN, suggesting this region may function as a link between networks [see also (Fox et 

al., 2006a)]. 

 These two a priori sets of ROIs were then applied to the comparison of FC in 

patients versus in age-matched controls. Defining the ROIs in a separate group of young 

adults minimized the possibility of bias in the patient vs. control comparison. The 

selected ROIs were complete in the sense that no other brain region outside the two 

networks showed robust attention-related BOLD response in patients at either stage 

(Supplementary Fig. 1).  
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Figure 1 Dorsal and ventral attention networks. (a) ROIs defined by activation fMRI 
studies and used as ROIs for FC analyses. Dorsal network regions: yellow; ventral 
network regions: orange. Region sizes were controlled to be about 900 mm3. (b) For each 
of the four right hemisphere DAN ROIs, group statistical maps were obtained using a 
random-effects analysis on the Fisher-transformed correlation maps and corrected for 
multiple comparisons at a significance level of P<0.05 (z=3, cluster size = 17 voxels). 
The four FC maps were combined to produce the conjunction map shown. Voxels in 
yellow are positively correlated with all 4 ROIs; red: positively correlated with 3 of 4 
ROIs; green: negatively correlated with 3 of 4 ROIs; blue: negatively correlated with all 4 
ROIs. Arrow points to the major right-lateralized region in the DAN, which overlaps with 
the VAN. (c) FC maps from the 5 VAN ROIs were used to produce the conjunction map. 
Color code similar to (b).  
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Patients: Lesion Anatomy and Behavior 

 We longitudinally studied eleven patients with spatial neglect following right 

hemisphere stroke (mean age 59, range 42-73, 2 female).  Lesions were centered in the 

IPL, STG, frontal operculum, insula, as well as subcortical nuclei and white matter (Fig. 

2a). The distribution of lesions in this group is typical of larger samples (Karnath et al., 

2004; Mort et al., 2003). All ROIs in the DAN were spared by the lesions, whereas ROIs 

in the VAN were damaged to various degrees. PrCe, MFG, TPJ, STS, and anterior insula 

were damaged in 0, 2, 4, 3, and 3 patients, respectively (Fig 2a).  

Patients performed the Posner task both in and out of the scanner at both the acute 

(30 ± 23 (mean ± s.d.) days post stroke) and the chronic (40 ± 11 weeks post stroke) 

stages of recovery. A group of twelve age-matched normal subjects (mean age 57.4, 

range 41-71, 7 female) were scanned while performing the Posner task in the same way 

as the patients. 

 Three types of behavioral deficits in the Posner task were assessed. A visual field 

(VF)-independent component of neglect was defined as increased misses and slowed 

reaction times (RT) across both visual fields as compared to controls. A VF-dependent 

component was defined as more misses and slower RTs in the contralesional than 

ipsilesional VF. Finally, a “disengagement deficit”, common in neglect patients, was 

defined as specific impairment in detecting targets in the left VF following an invalid cue 

as this condition requires disengaging attention from the good VF and reorienting to the 

bad VF (Friedrich et al., 1998; Morrow and Ratcliff, 1988; Posner et al., 1984). 
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The behavioral performance of the patients was compared to age-matched 

controls using a three-way ANOVA, with group (control or patient), VF (left or right), 

and cue validity (valid or invalid) as factors (Fig. 2b).  Patients had significantly more 

misses than controls (VF-independent impairment, Acute: F1,22= 19.5, P = .0002; 

Chronic: F1,22 = 7.4, P = .01), were particularly impaired in the left VF (lateralized 

impairment, VF x Group, Acute: hit rates, F1,22 = 13.6, P = .001; RT, F1,22 = 17.8, P = 

.0004; Chronic: hit rates, F1,22 = 2.45, P = .1; RT, F1,22 = 15.1, P = .0008), and had a 

significantly greater disengagement deficit (Group × VF × Validity, Acute: hit rates, F1,22 

= 3.9 P = .06; RT, n.s.; Chronic: hit rates, n.s.; RT, F1,22 = 4.27, P = .05). 

The improvement of behavioral performance from acute to chronic stage was not 

significant at the P < 0.05 level using the data from the scanner session, although the 

trends were in the expected direction (Fig. 2b). A significant improvement was observed 

in separate acute and chronic sessions conducted in a regular testing room. Target 

detection improved overall in both visual fields (Stage: hit rates, F1,9= 5.6, P = .04; RT, 

F1,10 = 5.3, P = .04), and both rightward bias (Stage × VF: RT, F1,10 = 6.4, P < .03) and 

disengagement deficit (Stage × VF × Validity, RT: F1,10 = 8.3, P=.016) were significantly 

reduced. Therefore, behavioral impairment including VF-independent, VF-dependent, 

and disengagement deficits recovered significantly over the interval between the acute 

and chronic sessions.  
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Figure 2 Lesion and task performance of patients. (a) Left panel: Overlap of lesion (N = 
11, purple: damaged in 1-3 patients; blue: damaged in 4-7 patients) and ROIs constructed 
for FC analyses (DAN: green, VAN: red). Right panel: Lesion overlap (N=11) overlaid 
on patients’ average anatomical image. Values denote the number of patients in which the 
particular voxel was damaged by lesion.  (b) Performance in the Posner task, compared 
with age-matched controls. Left: percent miss; Right: RTs averaged across hit trials. 
Error bars denote s.e.m.  
 

 

Functional Connectivity in Dorsal Attention Network (DAN)  

We conducted several analyses to determine whether stroke affected basic 

characteristics of the BOLD signals, specifically, variance and temporal frequency 

distribution. These observations helped to rule out the possibility that the results 

presented below were artifact attributable to higher signal variance, more movement or 
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abnormal neural-vascular coupling in patients (See Supplementary Note 1 and 

Supplementary Fig. 3  for methods and results).  

We measured functional connectivity in the DAN after consistent task-related 

responses were removed from the time series (see Methods and Discussion), and found a 

specific breakdown of FC between left and right pIPS. Left-right pIPS FC was reduced in 

acute patients as compared to age-matched controls (Fig. 3a, P = .04, unpaired t-test, two-

tailed), but fully recovered at the chronic stage (Fig. 3a, acute vs. chronic: P < 0.03; 

chronic vs. control: 0.72±0.22 vs. 0.70±0.16). The disruption of inter-hemispheric FC 

was restricted to pIPS among the four homologous region pairs in the DAN (Fig. 3c). 

As noted above, we have previously shown an inter-hemispheric imbalance in 

task-evoked BOLD responses in dorsal posterior parietal cortex at the acute stage of 

neglect that recovers over time (Corbetta et al., 2005).  This finding was reproduced in 

the current data set (with 2 subjects not included in the previous study): The right pIPS 

was less recruited than left pIPS at the acute stage, but the two sides showed balanced 

activation at the chronic stage (Fig. 3b).  

 Critically, the breakdown of FC in dorsal parietal cortex was behaviorally 

significant. At the acute stage, there was a strong correlation between the strength of left-

right pIPS FC and detection of unattended targets in the left visual field (Fig. 3d, hit rates: 

r = 0.846, P = .0005; RT: r = -0.593, P = .05), such that the lower the inter-hemispheric 

FC in dorsal parietal cortex, the more impaired patients were in reorienting attention 

toward the neglected visual field. This correlation remained highly significant after 

correction for both lesion size and movement (hit rates: r = 0.699, P < .05).  The data 

from the other three trial types (left valid, right valid and invalid) showed a similar trend 
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that failed to reach significance (Supplementary Table 2).  The correlation between 

behavior and FC was specific to dorsal parietal cortex; no significant correlation with 

behavioral measures was found for the other three homologous region pairs in the DAN 

(for correlation with hit rates see Supplementary Table 2).   

 Given that task-evoked responses are also abnormal in pIPS, an important 

question concerns whether the impairment of FC makes a difference beyond the 

abnormal evoked responses. Two analyses suggested that disrupted functional 

connectivity correlated with poor performance independently of task-evoked responses. 

First, there was no significant correlation between decreased FC and imbalanced task-

evoked responses in pIPS (all P > .2, Supplementary Table 3a). Second, partial 

correlation analyses demonstrated that controlling for the degree of abnormal task-evoked 

responses did not decrease and, in some cases, even slightly increased the FC-

performance correlation (Supplementary Table 3b).  

 At the chronic stage, the majority of patients showed improvement in both inter- 

hemispheric pIPS FC and performance, but 3 patients continued to show persistent 

impairments in both measures, resulting in a significant group correlation between these 

two measures (hit rates, left VF, valid: r = 0.619, P = .04; left VF, invalid: r = 0.587, P = 

.057; right VF, invalid: r = 0.712, P = .01). Behavioral relevance remained specific to 

inter-hemispheric pIPS FC; neither vIPS, FEF nor MT FC showed correlation with 

performance (either hit rates or RTs). 
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Figure 3 Left-right pIPS FC. (a) Temporal correlation between left and right pIPS in 
patients (N=11), elderly controls (N = 12) and young controls (N = 12). (b) Rebalancing 
of task-evoked responses between left and right pIPS at chronic stage. (c) Temporal 
correlations of all homologous pairs of regions in DAN, only left–right pIPS correlation 
was impaired acutely. (d) Across acute patients, left-right pIPS FC significantly 
correlated with % miss (left panel) and RT (right panel) in detecting targets in the left VF 
following an invalid cue. Filled circle indicates the subject with largest lesion 
(200,928mm3). Error bars denote s.e.m.  
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Functional Connectivity in Visual Cortex 

Consistent with models of attention that posit feedback interactions from 

attention-controlling dorsal parietal regions to data-processing visual regions (Corbetta 

and Shulman, 2002; Kastner and Ungerleider, 2000), an imbalance of task-evoked 

activity similar to that demonstrated in dorsal parietal cortex has been recorded in visual 

cortex in patients with left neglect (Corbetta et al., 2005). Accordingly, we measured 

temporal correlations between left and right visual cortex, using ROIs in retinotopic 

occipital cortex defined by functional and anatomical criteria [as in (Corbetta et al., 

2005)]. Interestingly, inter-hemispheric FC in visual cortex was completely intact (acute 

vs. chronic vs. age-matched controls: dorsal retinotopic ROIs, 0.77±0.07 vs. 0.77±0.07 

vs. 0.78±0.07; ventral retinotopic ROIs, 0.74±0.10 vs. 0.72±0.16 vs. 0.69±0.07). Thus, an 

inter-hemispheric imbalance in task-evoked activity was not necessarily accompanied by 

a breakdown of inter-hemispheric FC, indicating that abnormal task-evoked activity does 

not lead to abnormal FC. The observation of intact FC in visual cortex but disrupted FC 

in dorsal parietal cortex, however, does not contradict the presence of top-down 

modulation, which might be more dynamic and task-dependent, i.e., manifesting within 

task-induced responses. Neither task-evoked responses (Corbetta et al., 2005) nor FC in 

visual cortex correlated with behavioral performance, indicating that spatial neglect is 

less related to the functioning of visual cortex than to parietal cortex.  

 

Functional Connectivity in Ventral Attention Network (VAN) 

 The structural integrity of regions in the VAN and, presumably, of their respective 

anatomical connections, was compromised by strokes to different degrees in different 
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patients. Correspondingly, we found a global impairment of functional connectivity in the 

ventral network, which did not recover (see Fig. 4a for MFG-STS FC, see Supplementary 

Fig. 4 for all pair-wise FC within the VAN).                                                                                                  

Behavioral correlations with FC at the acute stage were largely restricted to MFG-STS 

and MFG-TPJ (Supplementary Table 2).  MFG-STS FC correlated significantly with hit 

rates in both visual fields in the valid condition (left VF: r = 0.693, P = .016; right VF: r = 

0.652, P = .027) and in the left visual field, invalid condition (r = 0.775, P = .003) (Fig. 

4c). MFG-TPJ FC correlated with hit rates only in the valid conditions, but again in both 

visual fields (L VF: r = 0.747, P = .006; R VF: r = 0.731, P = .008, not shown). Results 

after correction for both movement and lesion size are shown in Supplementary Table 3. 

 

Figure 4 MFG-STS FC. (a) Temporal correlations between MFG and STS was 
significantly impaired in patients compared with controls and did not recover at the 
chronic stage. Error bars denote s.e.m. (b) Task-evoked responses in MFG and STS. (c) 
Across acute patients, MFG – STS FC significantly correlated with % miss in detecting 
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targets in the left VF following valid (left panel) or invalid (middle panel) cues and in 
right VF following valid cues (right panel).  

 

 

Interestingly, the task-evoked responses in these areas did show some evidence of 

recovery (e.g., Fig 4b, P = 0.067), indicating that these regions might have independently 

partially regained function. 

 So far we have assessed all pair-wise FC between the five a priori ROIs in the 

VAN. Since the VAN as defined by FC also included a left SMG region (see Figure 1c), 

we assessed the FC between this L SMG region and its homologous right hemisphere 

region (R SMG). (This L SMG region showed a significant validity × time effect in the 

meta-analysis of young adult fMRI (Supplementary Figure 1b), but did not pass the 

threshold used in the peak-search algorithm, and therefore was not included in the a 

priori set of ROIs.)  First, voxel-wise FC maps obtained by seeding the L SMG 

(Supplementary Figure 5a) and R SMG (Supplementary Figure 5b) confirmed the right 

hemisphere laterality of the VAN. The inter-hemispheric SMG FC, as most of other pair-

wise FC in the VAN (Supplementary Fig. 4), was acutely disrupted and did not recover 

(Fig. 5a). Task-evoked responses in SMG were similar to those in pIPS in the sense that 

an acute imbalance recovered at the chronic stage, although these effects did not reach 

statistical significance (Fig. 5b). Inter-hemispheric FC of the SMG significantly and 

specifically correlated with disengagement deficit at the acute stage (Fig. 5c, with %miss: 

P < .001, significant after correction for both movement and lesion size (Supplementary 

Table 4); with RT: P = .03). In this characteristic the SMG was also similar to the pIPS. 

Moreover, there was a significant positive correlation between decreased pIPS FC and 
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decreased SMG FC (Fig. 5d). However, unlike inter-hemispheric pIPS FC, inter-

hemispheric SMG FC showed no recovery from acute to chronic stages.  

 

Figure 5 Left-right SMG FC. (a) Temporal correlation between left and right SMG was 
significantly impaired in patients compared with controls and did not recover at the 
chronic stage. Error bars denote s.e.m. (b) Task-evoked responses in left and right SMG. 
(c) Across acute patients, L – R SMG FC significantly correlated with % miss (left) and 
RT (right) in detecting targets in the left VF following an invalid cue. (d) Across acute 
patients, inter-hemispheric FC in pIPS and in SMG correlate with each other.  
 

 

Interaction between DAN and VAN 

The results presented up to this point indicate that strokes associated with spatial 

neglect cause an acute disruption of FC between left and right dorsal parietal cortex, 

persistent breakdown of FC between several regions of the VAN, and robust correlation 

of disrupted FC with impaired performance in a spatial attention task. Below we consider 
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whether spatial neglect was associated with a deficit in the interaction between pIPS and 

the VAN.  

First, we found that the physiological impairments in the two networks were 

highly correlated. Decreased MFG-STS FC (Fig 6a, r = 0.781, P = .003) and decreased 

inter-hemispheric SMG FC (Fig. 5d, r = 0.722, P < .01) each significantly correlated with 

decreased inter-hemispheric pIPS FC at the acute stage. Although this correlation might 

result from inter-subject variability in fMRI signal quality, FC of no other pair of regions 

within the VAN correlated with left-right pIPS FC, strongly arguing against this 

possibility. These correlations between pIPS FC and VAN FC were not observed in either 

the young or old control groups, suggesting this relationship was specific to the 

pathophysiology in patients.  

 

Figure 6 MFG as a potential link between DAN and VAN. (a) Correlation between 
MFG–STS FC and left-right pIPS FC across acute patients. (b) Part of MFG ROI is in 
temporal correlated with both networks.MFG ROI used in FC analyses (yellow) and the 
overlap region (blue) between DAN (thresholded as 3/4) and VAN (thresholded as 4/5). 
Overlap between MFG ROI and the DAN-VAN overlap region is shown in red.  
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Second, we investigated the anatomical basis of spatial neglect and its relation to 

disrupted FC. We divided the patients into two subgroups (each N=5) based on a median-

split of the severity of left sided neglect at the acute stage (calculated as %miss and RT 

(Left – Right VF), averaged across valid and invalid trials). The two subgroups 

significantly differed at the acute stage in leftward neglect (VF × Group: hit rates, F1,8 = 

20.7, P < .002; RT, F1,8 = 35.1, P = .0004) and in overall detection speed across both 

visual fields (RT: F1,8 = 8.14, P = .02) (Fig. 7a).  Moreover, consistent with results 

presented earlier, at the acute stage, inter-hemispheric pIPS FC (P < .04), MFG-STS FC 

(P < .07), and inter-hemispheric SMG FC (P < .01), but not MFG-TPJ FC (P = .89), were 

all lower in patients with more severe neglect (Fig. 7c). When we contrasted voxel-wise 

the distributions of anatomical damage in the two groups, we discovered that a region 

located at the arcuate fasciculus (AF) and the superior longitudinal fasciculus (SLF) was 

damaged in all patients with more severe neglect, but was spared in all patients with 

milder neglect (Fig. 7b). The AF connects middle frontal areas with superior temporal 

areas (Petrides and Pandya, 2002), providing a possible structural basis for the disruption 

of MFG-STS FC. Since part of MFG is temporally correlated with both networks (Fig. 

6b), interruption of the MFG-STS connectivity might also affect communication between 

the VAN and pIPS. The SLF connects both the superior and inferior parietal lobules with 

dorsolateral prefrontal cortex (Schmahmann and Pandya, 2006), providing a plausible 

structural basis for the disruption of fronto-parietal FC in the VAN. More importantly, 

disrupted SLF may also damage the communication between ventral frontal component 

of the VAN and posterior parietal component of the DAN. Supporting this hypothesis, 
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FC between MFG and pIPS was strongly disrupted and did not recover (Supplementary 

Figure 4).   

 

Figure 7 Median-split of all patients based on VF bias in the acute stage. (a) Behavioral 
performance of each subgroup at acute and chronic stages. (b) A white matter region 
(red) was damaged in all patients from the severe subgroup but spared in all patients from 
the mild subgroup. Top: streamline diffusion tensor tractography (sDTT) of the superior 
longitudinal fasciculus (SLF, pink) and the arcuate fasciculus (AF, green), with the lesion 
spot shown in red. The relatively abrupt anterior ending of the SLF was likely due to the 
crossing corticospinal tracts. Bottom: probabilistic DTT seeded in the lesion (red). 
Voxels in which > 5% of all tracts from the seed pass through are shown in dark blue. 
Voxels in which > 10% of tracts from the seed pass through are shown in light blue.  (c) 
The subgroup with severe VF bias also had more impaired left-right pIPS FC, MFG – 
STS FC and left-right SMG FC. 
 

 
 

Finally, results from a single case not included in the previous analyses indicated 

that disrupted inter-hemispheric pIPS FC alone does not lead to severe neglect. This 

patient (age 36) suffered a right dorsal medial parietal lesion that extended into the corpus 

callosum and presumably partially damaged the fibers connecting left and right posterior 

parietal cortices (Fig. 8a). As might be predicted, inter-hemispheric FC in pIPS was 2.8 
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standard deviations (SD) lower than the mean of the whole group at the acute stage (1.5 

SD lower at chronic stage) (Fig. 8b left). However, this patient had a very mild VF bias 

(Fig. 8b middle & right, ~ 1 SD below the mean of the patient group and not significantly 

different from controls). Therefore, our data suggest that decreased pIPS inter-

hemispheric BOLD FC alone is not sufficient to cause severe neglect. In other words, it 

appears that the severity of left neglect robustly correlates with decreased inter-

hemispheric pIPS FC only in the presence of a damaged VAN. This clinical case, 

together with similar previous observations (e.g., (Quigley et al., 2003)), support a view 

that cortico-cortical connections provide a structural basis of BOLD functional 

connectivity.  
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Figure 8 Single case with right dorsal medial parietal lesion. (a)pIPS ROI (red) overlaid 
on patient’s own anatomical image. (b) Comparison of the single case to the mean of all 
the other patients (N = 11). Left: Inter-hemispheric pIPS FC. Middle (% miss) and Right 
(RT): Measurements of rightward visual field bias (% miss and RT) evaluated as (left 
VF) – (right VF), collapsed across valid and invalid trials. Error bars denote s.e.m.. 
 

 

Discussion 

 We have demonstrated the behavioral significance of BOLD functional 

connectivity by showing an across-subject correlation of disrupted FC and the severity of 

spatial neglect. The results also suggest that disrupted functional connectivity in the two 
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attention networks underlies different components of the syndrome, and yet correlate 

with each other. These findings emphasize a network view of neglect and, more 

generally, stroke. Below, we discuss how these results enhance our understanding of the 

neural basis of spatial neglect and support the use of FC MRI as a clinical tool.  

 

Understanding spatial neglect with connectivity in mind 

 We have proposed that it is the conjunction of structural and functional damage to 

the ventral and dorsal frontoparietal attention networks that causes neglect. This view 

explains why neglect patients usually show both spatially lateralized (i.e., neglect of 

contralesional space) and non-lateralized (i.e., low arousal, impaired working memory, 

lower attentional capacity) deficits. Previous studies in healthy subjects indicate that the 

dorsal network mediates control of spatial attention with a contralateral bias (Corbetta et 

al., 2002; Macaluso et al., 2002; Sereno et al., 2001; Silver et al., 2005), while the ventral 

system is involved in non-lateralized attentional functions, including spatial and temporal 

capacity (Husain and Rorden, 2003; Peers et al., 2005; Shapiro et al., 2002) vigilance 

(Pardo et al., 1991; Rueckert and Grafman, 1996; Wilkins et al., 1987), saliency detection 

(Downar et al., 2000; Serences et al., 2004) and re-orienting of attention (Arrington et al., 

2000; Corbetta et al., 2000; Macaluso et al., 2002).  According to this account, structural 

damage to the right hemisphere ventral regions, which is the most commonly lesioned 

area in spatial neglect, causes non-lateralized deficits directly, and lateralized deficits 

indirectly, through distant effects on the dorsal parietal cortex that induce functional 

abnormalities therein.  
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This general framework is well supported by the current results. The pIPS was the 

only region in the dorsal network showing (at the acute stage) both a breakdown of inter-

hemispheric FC and an imbalance (left>right) of task-evoked responses.  Critically, both 

abnormalities were associated with behavioral performance, especially detection and 

reorienting in the left VF, and both abnormalities recovered completely at the chronic 

stage. The pIPS region normally is recruited by allocation of attention covertly or overtly 

(Corbetta et al., 1998), is adjacent to regions involved in planning arm movements 

(Astafiev et al., 2003), and contains a complete representation of the contralateral visual 

field (Schluppeck et al., 2005; Silver et al., 2005). It is therefore well positioned to 

mediate spatially lateralized deficits of neglect that typically involve attention, perception 

and responding. Consistently, inter-hemispheric pIPS FC most strongly correlated with 

the disengagement deficit, which reflects the lateralized component of neglect (i.e., left 

hemi-inattention).  

In the VAN, significant correlations between MFG-TPJ FC and behavioral 

deficits were the same in both visual fields, consistent with the hypothesized contribution 

of the VAN to the non-lateralized component of neglect. Interestingly, MFG-STS FC 

showed a similar, albeit weaker, behavioral correlation pattern as inter-hemispheric pIPS 

FC, suggesting that TPJ and STS, although both part of the ventral network, may have 

distinct attentional functions. Another interesting result was that the degree of inter-

hemispheric SMG FC closely correlated with the disengagement deficit in the left visual 

field, a correlation similar to that observed for left/right pIPS. This result may suggest 

that, at the acute stage, successful re-orienting to unattended targets requires inter-

hemispheric coordination between ventral parietal areas involved in detecting unattended 
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targets (Astafiev et al., 2006; Corbetta et al., 2000; Macaluso et al., 2002), and dorsal 

parietal areas involved in shifts of attention. However, at the chronic stage, an 

improvement in the disengagement deficit was accompanied with a recovery of inter-

hemispheric FC in dorsal parietal, but not ventral parietal cortex.  

While these results suggest some dissociation of the neural systems underlying 

lateralized and non-lateralized deficits, to the extent that greater VAN damage causes 

greater disruption in pIPS FC, lateralized and non-lateralized deficits should be 

correlated. Indeed, multiple studies have indicated an interaction between these two 

components of neglect (Robertson, 2001; Robertson et al., 1998), consistent with the 

strong correlation between lateralized (e.g., difference between left and right VFs) and 

non-lateralized (e.g., averaged across VFs) behavioral deficits observed here (RT: r = 

0.68, P = .01). Clinical interventions that enhance non-spatial vigilance improve leftward 

spatial neglect (Malhotra et al., 2006b; Robertson et al., 1995; Robertson et al., 1998), 

again suggesting a functional interaction between ventral and dorsal attention networks.  

What is the functional-anatomical locus of this interaction? The close association 

between ventral structural damage and pIPS functional abnormalities suggests that pIPS 

is the major component of the dorsal network receiving input from the ventral network.  

Several converging results suggest that this input might come from right MFG. First, in 

the intact brain, right MFG shows BOLD signal temporal correlations with both VAN 

and DAN (Fig. 6b), suggesting it may function as a node shared between the two 

networks. Second, MFG-pIPS FC was as strong as within-VAN FC in elderly controls, 

but was severely and persistently disrupted in patients. In concert, the median-split lesion 

analyses indicated that patients with more severe spatial neglect sustained damage of the 
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SLF, which connects dorsolateral prefrontal cortex to superior and inferior parietal 

lobules, providing a plausible structural basis for the disruption of MFG-pIPS FC and 

MFG-TPJ FC. Third, disrupted FC between left and right dorsal parietal cortex was 

positively correlated with disrupted FC between STS and MFG. Fourth, behaviorally 

significant FC within the right hemisphere ventral network almost always involved the 

MFG. More speculatively, there is evidence that stimulation of a tract that could 

plausibly connect MFG to the posterior parietal cortex produces neglect-like symptoms 

(Thiebaut de Schotten et al., 2005). Furthermore, lesions causing neglect in both monkeys 

and humans tend to involve intra-hemispheric white matter long-range tracts bi-

directionally connecting parietal and frontal cortices (Gaffan and Hornak, 1997) (Paolo 

Bartolomeo, personal communication).  

Slightly complicating this picture, recovery of pIPS FC and task-evoked 

responses depended neither on the recovery of FC in the ventral network nor on the 

recovery of FC between MFG and pIPS. Speculatively, recovery of dorsal parietal cortex 

function, paralleling behavioral recovery, may reflect a stronger volitional control of the 

locus of spatial attention that results from the clinical rehabilitation and treatment of 

neglect patients (Diller and Weinberg, 1977).  

 Lastly, we revisit the long-standing puzzle that neglect is more frequent, severe 

and enduring following right than left hemisphere lesions. Traditionally, theories of 

neglect have proposed that the lateralization of neglect reflects an asymmetrical 

representation of space in the two hemispheres (Heilman and Van Den Abell, 1980; 

Hillis, 2006; Mesulam, 1999). In the current view, spatial representations are contained in 

the DAN, which is bilaterally symmetric. It is the VAN, which encodes non-spatial 
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functions, that is strongly lateralized to the right hemisphere, as suggested by task-

activation (summarized in (Corbetta and Shulman, 2002)) and FC ((Fox et al., 2006a) and 

the present results) studies. Even when a left SMG region was selected as seed ROI, we 

found a lateralization to the right hemisphere of the ventral frontoparietal FC 

(Supplementary Fig. 5). Therefore, right hemisphere strokes are more likely to damage 

the VAN, and through its connections with the DAN via intra-hemispheric white matter 

tracts, more likely to cause a significant functional imbalance in posterior parietal cortex 

that will secondarily cause a rightward bias with left field detection deficits. Furthermore, 

non-spatial functions mediated by the VAN will be more permanently damaged after a 

right hemisphere stroke. Our model suggests that the right lateralization of neglect 

reflects primarily a lateralization of non-spatial functions, rather than spatial functions, 

which when disrupted also produce asymmetrical deficits in spatial functions.  

 

Dissociation of FC and task-activation measures 

Our data suggest that abnormal task-evoked responses and functional connectivity 

represent different and complementary physiological indicators of dysfunction. 

Supplementary Table 3 shows that the correlations between FC and performance were 

independent of task-evoked responses. Moreover, impairments in these two 

measurements could occur independently: imbalanced inter-hemispheric task-evoked 

responses occurred in the presence (e.g., pIPS) or absence (e.g., visual cortex) of 

disrupted FC; recovery of task-evoked responses in two regions was accompanied (e.g., 

left-right pIPS) or not accompanied (e.g., MFG-STS) by recovery of functional 
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connectivity. At this stage we note that a thorough understanding of these dissociations 

will need further experimental work. 

 

FC MRI of resting state data vs. task state data  

 It is important to note that our FC analyses were conducted on fMRI data that was 

acquired while subjects performed an event-related attention task rather than at rest, but 

with the deterministic (i.e., consistent) task-evoked effects removed. For a detailed 

discussion on the potential difference between FC results using the current method and 

those using resting-state data see Supplementary Note 3.  

 

Functional connectivity vs. anatomical connectivity 

The current work is also relevant to understanding the relation of functional 

connectivity to anatomical connectivity. BOLD functional connectivity produces 

networks with spatial patterns similar to those of anatomical connectivity [for discussion 

see (Vincent et al., 2006)], i.e., coherent BOLD relationships appear to depend on 

anatomical connectivity. However, functional connectivity between regions can be 

disrupted in the absence of anatomical damage to those regions or their connections (e.g., 

inter-hemispheric pIPS FC in all the 11 patients), suggesting that anatomical connectivity 

may be necessary but not sufficient for normal functional connectivity; 

excitatory/inhibitory neuronal inputs from other regions are also needed. 

 

FC MRI as a tool for studying patient populations 
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FC MRI is a promising new tool for the investigation of brain-behavior 

relationships in patient populations. It makes no demands on the subject other than 

holding still and possibly maintaining fixation and therefore can be acquired even in 

patients that cannot perform a task (for some examples of resting-state FC studies in 

patients see (Greicius et al., 2004; Lowe et al., 2002; Quigley et al., 2001; Waites et al., 

2006); for a study using similar approach as the current study see (Whalley et al., 2005)). 

This significantly widens the range of patients that can participate in functional brain 

imaging protocols. Moreover, FC measures are less confounded by differences in task 

performance between patient and control groups or between patient groups at different 

stages of recovery, as compared to conventional task-activation measures. This is 

particularly true for resting-state FC MRI. Finally, FC MRI is robust and reliable in 

individual subjects after relatively short (5-15 minutes) scanning sessions, and is 

therefore suitable to clinical applications.  

Previous studies of FC in patient populations have usually described group 

differences in the spatial pattern or strength of FC between patients and controls. Our 

study, which shows that across subjects the disruption of FC indexes the severity of 

impaired performance, (see (Hampson et al., 2006a; Hampson et al., 2006b) for similar 

correlations in healthy subjects), provides stronger evidence that intact BOLD FC is 

critical for normal brain function.  

 

Supplementary data 

Supplementary Note 1: BOLD signal quality in stroke patients 
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Movement was assessed by summing the deviations (3 translations plus 3 

rotations at a radius of 50 mm) used to compensate for head motion within fMRI runs. 

The presently reported quantity is head movement rms mm averaged over runs and 

subjects. This quantity was 0.73±.030 mm for patients at the acute stage, 0.60±0.28 mm 

for patients at the chronic stage and 0.42±0.08 mm for age-matched controls. Acute 

patients moved more than age-matched controls (P = .003); the following comparisons 

were not significantly different: chronic patients vs. age-matched controls; and patients in 

the two stages of recovery. Critically, rms movement was not correlated with inter-

regional FC measures (see the following figure for two examples). Hence, it is unlikely 

that patient vs. control movement differences account for the present main FC results. 

Further, a significant pIPS FC – performance correlation persisted after regressing out 

both rms movement and lesion size using partial correlation. Supplementary Table 4 

shows that other major FC – behavior correlational results also remained significant after 

correcting for both movement and lesion size.  

 

We also conducted several analyses to determine whether stroke affected basic 

characteristics of the BOLD signal, specifically, its variance and temporal frequency 

distribution. The BOLD signal s.d. averaged throughout all voxels in the brain (excluding 
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ventricles) was significantly higher in patients than in age-matched controls 

(Supplementary Fig. 3a).Two likely sources of higher signal variance in patients can be 

identified: more movement and more cerebrospinal fluid in the brain owing to the 

presence of lesions. To examine whether greater signal variance in patients was evenly 

distributed across different regions in the brain, we assessed signal s.d. in 15 widely 

separated ROIs, including all a priori attention ROIs as well as bilateral motor cortices 

(Supplementary Fig. 3b). In all regions, signal s.d. was higher in patients at the acute 

stage than in controls (difference significant in 10 out of 15 ROIs). Thus, increase of 

signal variance in patients was approximately evenly distributed across the brain. From 

acute to chronic stage, signal s.d. dropped in 13 out of 15 regions. BOLD signal power 

spectral density distributions (i.e., temporal frequency content) were not different in 

comparisons of age-matched controls vs. stroke patients in both stages of recovery 

(Supplementary Figure 3c).  

The following considerations argue that the results in this paper are not artifacts 

attributable to movement, high signal variance, or abnormal neural-vascular coupling in 

the patient group. More movement might decrease signal quality throughout the brain by 

contributing to higher signal variance. However, our results were highly regionally 

specific. For instance, decreased inter-hemispheric FC was observed in pIPS but not in 

FEF, vIPS, or MT+. This regional specificity is not easily explained on the basis of gross 

head movement. The critical point, however, is that our main results concern highly 

specific correlations between inter-regional FC measures and behavioral performance. 

Thus, more movement may explain a uniform increase in signal variance and decreased 
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signal-to-noise ratios, but is not expected to affect FC measure correlations with 

performance in a regionally specific fashion. 

            An excellent question regards whether BOLD signal accurately reflects neuronal 

activity in post-stroke population. Although caution has to be taken when using fMRI to 

study patients with cerebrovascular disease (Carusone et al., 2002; D'Esposito et al., 

2003; Hamzei et al., 2003; Krainik et al., 2005; Murata et al., 2006), the current findings 

cannot be explained by potential abnormal neurovascular coupling in the patient group. 

First, decremented BOLD response in stroke, if present, is a relatively diffuse problem 

(Murata et al., 2006; Pineiro et al., 2002; Rossini et al., 2004). The above-discussed 

considerations regarding the specificity of the present findings in relation to globally 

compromised image quality apply also to the question of neurovascular coupling. It 

seems to us implausible that abnormal vessels would appear only around the pIPS but not 

in other regions in the DAN, and only in patients with worse performance. Also, it is 

unlikely that abnormal neurovascular coupling could lead to artifactually high 

correlations between BOLD synchrony and performance. Third, in ventral attention 

regions, although both task responses and synchrony were impaired at acute stage, only 

the former recovered at chronic stage. Since both measures depend on neurovascular 

coupling, this dissociation argues against an account of the results by abnormal 

vasculatures. Fourth, the frequency distribution of the power of BOLD signals was no 

different in patients than in controls as shown by power spectral density (Supplementary 

Fig. 3c), suggesting there was no other alteration in signal quality in stroke patients 

beyond higher signal variance. Finally, recomputing the BOLD FC-performance 

correlation statistics excluding all the patients with lacunes  - the type of stroke associated 
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with artifactual decrement of BOLD response (Pineiro et al., 2002) - did not alter the 

main results. Three patients that had one lacune, three others with two lacunes (all in the 

subcortical area or white matter) were excluded. On the basis of the remaining 6 patients, 

at the acute stage, inter-hemispheric pIPS FC correlated with % miss in L VF, invalid 

condition: r = -.915, P = .007; MFG-STS FC with % miss in L VF, invalid condition: r = 

-.804, P = .05; inter-hemispheric SMG FC with % miss in L VF, invalid condition: r = -

.915, P = .007.  

 

Supplementary Note 2: Efficacy of Task regression 

To emphasize the intrinsic functional connectivity, we performed FC analyses 

after removing deterministic task-evoked responses. Removal of task-evoked responses 

was achieved by including the event-related design matrix not assuming hemodynamic 

response shape (Ollinger et al., 2001) in the procedure that removed variance attributable 

to nuisance regressors (e.g., head movement). We examined the effect of task removal by 

computing residual task-evoked responses, signal variances, and inter-regional 

correlations in pIPS, MFG and STS as well as left and right motor cortex. 

The following analyses demonstrate that deterministic BOLD responses time-

locked to the task were effectively eliminated. After task removal, the modeled evoked 

response residual did not differ from baseline (e.g., see Supplementary Fig. 5a for left 

pIPS averaged across acute patients). Task-removal significantly reduced signal variances 

in nearly all regions investigated (11 out of 12, all P < .003). Task regression also 

reduced more variance in left than right motor cortex, (region × maneuver, signal s.d.: 

F1,10= 31.7, P = 0.0002), as expected, given that left motor cortex is more strongly 
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activated by the task (right hand key-presses). Task removal did not change left-right 

pIPS FC (F1,10= 0.013, P = .9) (Supplementary Fig. 6b left) or MFG – STS FC (F1,10 = 

0.88, P = .4,, data not shown). However, temporal correlation between left and right 

motor cortices was significantly enhanced by task-removal (Supplementary Fig. 6b right). 

This is expected, since removing task-evoked responses should increase the 

proportionality of intrinsic activity in left motor cortex that is correlated with activity in 

right motor cortex (Fox et al., 2006b). 

 

Supplementary Note 3: FC MRI of resting state data vs. task state data  

It is important to note that our FC analyses were conducted on fMRI data that was 

acquired while subjects performed an event-related attention task rather than at rest, but 

with the deterministic (i.e., consistent) task-evoked effects removed. Below, we discuss 

factors that could produce differences between FC analyses conducted on data collected 

during a task with consistent task-evoked activations removed, and at rest.  

Our linear model of the task-evoked response did not assume a shape for the 

hemodynamic response, thereby enabling maximal removal of consistent task-evoked 

effects (see Supplementary Note 2 for an evaluation of the efficacy of this regression). 

However, this modeling cannot account for trial-to-trial variability in task-evoked 

responses, which cannot be distinguished from spontaneous fluctuations of the intrinsic 

activity. Such variability could be due to primary variability in the response itself or non-

linear addition of task-evoked response and intrinsic activity. Theoretically, trial-to-trial 

variability of task-evoked response, if present in the residual, could contribute to FC 

measures. However, this contribution is likely to be small, since the variable component 
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of task-evoked BOLD responses should be smaller than the mean response, which itself 

is small compared to intrinsic fluctuations. Experimental evidence suggests that inter-

hemispheric FC in motor cortex obtained during a bilateral motor task with task-evoked 

responses removed is very similar to that obtained at rest (Arfanakis et al., 2000). 

Empirically, we note that the spatial patterns of FC-defined attention networks obtained 

in this experiment (after task-regression, Fig. 1) were very similar to those observed 

during rest (Fox et al., 2006a). Additionally, recent data suggest that intrinsic BOLD 

fluctuations and deterministic task-evoked BOLD responses superpose approximately 

linearly (Fox et al., 2006b). Such linear superposition has also been previously reported 

using optical imaging, albeit at a much faster time scale (Arieli et al., 1996).  

Another potential mechanism contributing to difference between task-state data 

with task-related variance removed and resting-state data concerns general effects that are 

not time-locked to the paradigm. For example, the task state might alter intrinsic 

fluctuations by maintaining arousal. Indeed, it has recently been shown that intensive 

continuous task performance may alter intrinsic fluctuations (Fransson, 2006). Finally it 

should be acknowledged that our GLM model assumes that the deterministic response is 

constant through the entire session. Thus, we did not model potential systematic change 

in the evoked response over time due, e.g., to fatigue or learning (for discussions of such 

effects see (Caclin and Fonlupt, 2006)). In summary, caution should be attached to the 

notion that FC measured after regression of task-evoked responses is identical to that 

measured at rest. We believe that the essential findings reported here are most likely not 

contingent on task performance but this prediction awaits future testing.  
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Supplementary Figures 
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Supplementary Figure 1.Whole-brain voxel-wise analyses on task activation patterns. 
(a) Response to the cue. Top: meta-analysis of four previous studies of young healthy 
subjects performing Posner-like tasks, used for generating DAN ROIs. Middle: acute 
patients. Bottom: chronic patients. All maps are thresholded at P < 0.05 after correction 
for multiple comparison (Z=3, cluster size  = 17 voxels). (b) Regions showing differential 
activations to the invalid versus valid targets. Shown is meta-analysis on the four 
previous studies used for generating VAN ROIs. Maps are thresholded similarly as in (a). 
No brain voxel was significant after multiple comparison correction in this analysis on 
patients at either stage.  
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Supplementary Figure 2 Correlation coefficients between all possible pairs of right-
hemisphere a priori ROIs were computed for each subject in the young control group. 
Shown is the correlation matrix averaged across 12 subjects (top and middle). Across-
network (DAN·VAN) correlations were significantly weaker than within-network 
correlations (DAN-DAN: P < .0001; VAN-VAN: P = .0009) (bottom panel). The spatial 
overlap beween FEF and PrCe was excluded from each ROI, but the two regions are still 
spatial adjacent. Due to spatial smoothing used in preprocessing of the images, there is 
likely spill over of signals from one region to the other, which explains the high FEF – 
PrCe correlation, as well as the relatively high correlations between FEF and VAN ROIs 
and between PrCe and DAN ROIs. The next highest across-network correlation appears 
between MFG and pIPS.  
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Supplementary Figure 3 Quality ofBOLD signal in stroke patients. (a) Signal variances 
averaged across whole brain, excluding ventricles (acute vs. elder control: P = .01, 
chronic vs. elder control: P = .06). (b) Signal s.d. averaged within each ROI. Both the 
enhancement of s.d. in patients relative to control, and the drop of s.d. from acute to 
chronic stage were approximately evenly distributed across the brain. Regions marked 
with asterisks had significantly higher signal s.d. in acute patients compared to controls 
(all P < .04).  (c) Power spectral density (normalized by total signal variance) of BOLD 
signal from pIPS. There were no obvious effects of either aging or stroke on frequency 
content.  
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Supplementary Figure 4 FC within VAN in patients and age-matched controls. Error 
bars denote s.e.m. FC between MFG–PrCe, MFG–Insula, MFG–R pIPS, and MFG–L 
pIPS was significantly reduced in patients vs. controls. Although other correlations 
(including MFG–TPJ, MFG–STS, PrCe–Ant Insula) were also lower in patients, these 
differences were not significant at the 5% leve. One important observation was that no 
pairwise FC in the VAN showed significant recovery from the acute to chronic stages.  
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Supplementary Figure 5 (a) Left: left SMG region defined from normal FC patterns of 
the VAN (Fig. 1c). Middle and right: voxel-wise FC map generated by seeding in L SMG 
from the young control group, shown are Z scores from random-effects analysis, 
corrected for multiple comparison at a significance level of P < 0.05(Z > 3.0, cluster size 
>17 voxels). (b) Left: right SMG region defined as homologous region of the L SMG. 
Middle and right: voxel-wise FC map generated by seeding in R SMG from the young 
control group, values are the same as in (a).  
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Supplementary Figure 6 Validation of task-evoked response regression procedure. (a).  
Averaged responses in L pIPS to various trial types before (left) and after (right) task 
removal. The response evoked by each event type was modeled without constraints over 
8 frames following the cue, i.e., without prior assumptions regarding the hemodynamic 
response profile. Residual time courses were averaged over the 11 acute stage patients. 
(b) Task removal significantly increased correlation values between left and right motor 
cortex, but did not change left-right pIPS correlation. Left-right pIPS correlation 
significantly recovered from the acute to chronic stages (F1,10= 6.254, P = .03), while L – 
R motor correlation did not significantly change with stage. 
 

 



  64

Dorsal Attention ROIs 
Talairach coordinates Volumn 

(mm3) x y z 

L frontal eye field (FEF)  -26 -9 48 918 

R frontal eye field (FEF) 32 -9 48 729 

L posterior intraparietal sulcus (pIPS) -25 -63 47 918 

R posterior intraparietal sulcus (pIPS) 23 -65 48 945 

L ventral IPS (vIPS) -24 -69 30 918 

R ventral IPS (vIPS) 30 -80 16 999 

L middle temporal region (MT+) -43 -70 -3 918 

R middle temporal region (MT+) 42 -68 -6 837 

Ventral Attention ROIs 
Talairach atlas coordinates Volumn 

(mm3) x y z 

R precentral sulcus (PrCe) 38 -3 50 918 

R middle frontal gyrus (MFG) 39 12 34 864 

R Anterior Insula 38 16 1 918 

R temporal-parietal junction (TPJ) 49 -50 28 810 

R superior temporal sulcus (STS) 55 -50 11 891 

 

Supplementary Table 1. Seed regions defined for FC analyses.  

 An automated peak search algorithm was run on the combined Z score map from 

meta-analysis, separately for dorsal and ventral networks. Coordinates were computed as 

center of mass for a cluster of peak foci within a ROI, not weighted by Z scores. Region 

sizes were controlled by including only 30-37 voxels with highest Z values.  
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Correlation between functional 

connectivity and hit rates 

Left Right 

Valid Invalid Valid Invalid 

r P r P r P r P 

Homologous 

Pairs of 

Regions in 

Dorsal 

L-R pIPS 0.577 0.06 0.846 0.0005* 0.534 0.09 0.556 0.076 

L-R FEF 0.579 0.06 0.353 0.3 0.517 0.1 0.333 0.3 

L-R vIPS -0.171 0.6 0.005 1 -0.128 0.7 -0.368 0.3 

L-R MT 0.023 0.9 0.374 0.3 0.055 0.9 0.192 0.6 

All Pairs of 

Regions in 

Ventral 

Attention 

Network 

MFG-STS 0.693 0.016* 0.775 0.003* 0.652 0.027* 0.404 0.2 

MFG-TPJ 0.747 0.006* 0.317 0.4 0.731 0.008* 0.338 0.3 

MFG-PrCe 0.624 0.039* 0.298 0.4 0.578 0.06 0.024 0.9 

MFG-Ant Insula 0.051 0.9 -0.374 0.3 -0.037 0.9 -0.319 0.3 

TPJ-PrCe 0.539 0.09 -0.026 0.9 0.552 0.08 0.291 0.4 

TPJ-STS -0.358 0.3 -0.024 0.9 -0.289 0.4 -0.387 0.2 

TPJ-Ant Insula -0.274 0.4 -0.448 0.2 -0.409 0.2 -0.703 0.01* 

STS-PrCe 0.541 0.09 0.527 0.1 0.452 0.2 0.232 0.5 

STS-Ant Insula 0.072 0.8 0.071 0.8 -0.058 0.9 -0.482 0.1 

PrCe-Ant Insula 0.536 0.09 0.291 0.4 0.307 0.4 0.166 0.6 

Supplementary Table 2.Correlation between inter-regional FC and hit rates across acute patients (N = 11).
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 Correlation with inter-hemispheric pIPS FC r-Value  P-Value 

Acute 

Difference between the magnitudes of evoked responses in left 

and right pIPS  
.127 .72 

Normalized magnitude difference of evoked responses [(left – 

right)/(left + right)] 
-.351 .3 

Chronic 

Difference between the magnitudes of evoked responses in left 

and right pIPS  
-.414 .21 

Normalized magnitude difference of evoked responses [(left – 

right)/(left + right)] 
-.377 .26 

 

Supplementary Table 3a. Across-subject correlation between inter-hemispheric FC and 

the degree of imbalanced task-evoked responses (with two different measurements) in 

pIPS.  
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Acute, Left VF, Invalid cue Correlation 

Partial 

correlation 

(controlling for 

absolute 

magnitude 

difference) 

Partial 

correlation 

(controlling for 

normalized 

magnitude 

difference) 

Correlation 

with  

%miss 

Inter-hemispheric pIPS 

FC 

R = -.846, P = 

.0005 
R = -.868  R = -.856 

Magnitude difference  

(left pIPS – right pIPS)  
R = .090, P = .80   

Normalized magnitude 

difference  

[(left - right)/(left + 

right)] 

R = .151, P = .67   

Correlation 

with reaction 

times (ms) 

Inter-hemispheric pIPS 

FC 
R = -.593, P = .05 R = -.645 R = -.593 

Magnitude difference  

(left pIPS – right pIPS)  
R = .234, P = .50   

Normalized magnitude 

difference  

[(left - right)/(left + 

right)] 

R = .119, P = .74   

Supplementary Table 3b.Correlation (across patients at acute stage) between 

disengagement deficit and inter-hemispheric pIPS FC or between disengagement deficit 

and imbalanced task-evoked responses in pIPS, as well as partial correlation between 

disengagement deficit and pIPS FC when controlling for imbalanced evoked responses.  
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Correlation with 

hit rates 
MFG-STS MFG-TPJ L – R SMG 

Left VF, valid r = 0.552 n.s. r = 0.776 P < .02   

Left VF, invalid r = 0.755 P < .02    r = .711 P < .01 

Right VF, valid r = 0.519 n.s. r = 0.768 P < .02   

 

Supplementary Table 4.Correlation between functional connectivity and hit rates at 

acute stage, after correction for both movement and lesion size. 
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CHAPTER III:  Electrophysiological correlates of the brain’s intrinsic 

large-scale functional architecture 

 

Summary 

Spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signals 

demonstrate consistent temporal correlations within large-scale brain networks associated 

with different functions. The neurophysiological correlates of this phenomenon remain 

elusive. Here we show in humans that the slow cortical potentials recorded by 

electrocorticography demonstrate a correlation structure similar to that of spontaneous 

BOLD fluctuations across wakefulness, slow-wave sleep and rapid-eye-movement 

(REM) sleep. Gamma frequency power also showed a similar correlation structure, but 

only during wakefulness and REM sleep. Our results provide an important bridge 

between the large-scale brain networks readily revealed by spontaneous BOLD signals 

and their underlying neurophysiology.   

 

Introduction 

 Spontaneous slow (< 0.1 Hz) fluctuations in the blood oxygen level-dependent 

(BOLD) signals of functional magnetic resonance imaging (fMRI) appear to reflect a 

fundamental aspect of the brain’s organization (Biswal et al., 1995; Vincent et al., 2007). 

These fluctuations are temporally covariant within large-scale functional brain networks 

such as those associated with sensorimotor (Biswal et al., 1995), language (Hampson et 

al., 2002), attention (Fox et al., 2006) and executive (Seeley et al., 2007) functions as 

well as the 'default network' (Greicius et al., 2003). These covariant relationships (i.e., 
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correlation structures) of spontaneous BOLD signals exist during restful waking (Biswal 

et al., 1995; Fox et al., 2006; Greicius et al., 2003; Hampson et al., 2002; Seeley et al., 

2007), task performance (Hampson et al., 2002; He et al., 2007), sleep (Horovitz et al., 

2008) and even general anesthesia (Vincent et al., 2007). Furthermore, their integrity 

appears to be essential to normal brain function (He et al., 2007). However, in contrast to 

evoked BOLD responses (Logothetis et al., 2001; Mukamel et al., 2005; Niessing et al., 

2005; Shmuel et al., 2006), the electrophysiological basis of these spontaneous covariant 

BOLD fluctuations is unknown. Here we investigated this question in five patients with 

intractable epilepsy undergoing evaluation with surgically implanted grids of subdural 

electrodes. Each patient underwent about a week of continuous video-monitored 

electrocorticography (ECoG) for the purpose of determining the epileptic focus prior to 

surgical resection.  

The present analyses were based on ECoG data recorded in three distinct arousal 

states: 1) extended awake periods during which patients were in bed or seated, typically 

watching TV, eating or engaged in social interactions; 2) slow-wave sleep (SWS); and 3) 

rapid-eye-movement (REM) sleep. Representative ECoG data are shown in Fig. S1. 

Resting-state (maintaining visual fixation) BOLD fMRI was acquired in a separate 

session either before or after surgical intervention. Patient information and data details 

are included in the Supplementary Table. In what follows we present analyses using four 

different strategies to compare the correlation structures of BOLD and ECoG signals.  

 

METHODS 

Subjects 
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 Five patients undergoing surgical treatment for intractable epilepsy participated in 

the study. To localize epileptogenic zones, patients underwent a craniotomy for subdural 

placement of electrode grids and strips followed by 1-2 weeks of continuous video and 

ECoG monitoring. The placement of the electrodes and the duration of monitoring were 

determined entirely by clinical considerations. All patients gave informed consent 

according to the procedures established by Washington University Institutional Review 

Board. Exclusion criteria were: (1) widespread interictal spike-and-wave discharges; (2) 

age < 10 years old; (3) severely impaired cognitive capability; (4) diffuse brain tissue 

abnormality, e.g., tuberous sclerosis, cerebral palsy; (4) limited electrode coverage, e.g., 

only temporal lobe strips. See Supplementary Table for demographic and clinical 

information.  

 

Electrophysiology data acquisition  

 The electrode arrays (typically 8×8, 4×5 or 2×5) and strips (typically 1×6 or 1×8) 

consisted of platinum electrodes of 4 mm diameter (2.3 mm exposed) with a center-to-

center distance of 10 mm between adjacent electrodes (AD-TECH Medical Instrument 

Corporation, Racine WI). ECoG signals were recorded using a standard clinical 

monitoring system (Proamp, LaMont Medical Inc., 0.1 to 500 Hz bandpass, 18 dB/octave 

roll-off). Sampling frequency was 512 Hz for Patients 1 through 4 and 200 Hz for Patient 

5. Noisy electrodes and electrodes overlaying pathologic tissue (including both the 

primary epileptogenic zone and areas showing active interictal spike-wave discharges) 

were eliminated from all analyses. 
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 Artifact-free and interical-spike-free segments of ECoG data were clipped off the 

clinical recordings obtained in three distinct arousal states: quiet wakefulness, SWS 

(stages 3/4) and REM sleep. The length of data segments ranged from 2.7 to 112 min 

(mean 20.6 min). Arousal state determination was based on the conjunction of ECoG and 

video recordings. REM sleep was identified by (1) active eye movements in the video 

record and/or the electrooculogram and (2) low power in the < 4 Hz band. Time courses 

of < 4 Hz BLP were computed over entire night-time records using Fast Fourier 

transform (FFT) applied to half-overlapping windows of 1 sec length. Periods with < 4 

Hz BLP as low as the waking state were selected, excluding those preceded by a sharp 

(as opposed to gradual) transition from SWS (marked by high < 4 Hz BLP), which were 

more likely to represent arousal/awakening rather than REM sleep. Total lengths of data 

collected for each patient are listed in Supplementary Table.  

 

Electrode localization 

 Plain X-ray films and CT scans were acquired postoperatively with the subdural 

electrodes in place to define the electrode positions in relation to the skull. The CT 

images were co-registered to subject’s own MP-RAGE and then to the atlas-

representative image. The Talairach coordinates of the center of each electrode then were 

determined using a locally developed automated procedure. 3-D renderings of the pial 

surface were generated from atlas-transformed MP-RAGE images using MRIcro 

(http://www.sph.sc.edu/comd/rorden/mricro.html) (Fig. 1b) and Freesurfer 

(http://surfer.nmr.mgh.harvard.edu) (Fig. 1c). Displays showing BOLD correlation maps 
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and electrode locations overlaid on the pial surface (from Freesurfer) were generated 

using CARET (http://brainmap.wustl.edu/caret). 

 For each electrode, the corresponding BOLD sensorimotor correlation map Z-

score (thresholded at a significance level of P < 0.05 corrected for multiple comparisons, 

see Supplementary Information) was evaluated by averaging over a 5-mm-radius sphere 

centered on the electrode, excluding voxels outside the pial surface. Electrodes with a Z-

score greater than 3 were classified "sensorimotor”. Electrodes with a Z-score equal to or 

less than 0 were classified as “control”. A group of contiguous “sensorimotor” electrodes 

constituted a sensorimotor ROI. A group of contiguous “control” electrodes constituted a 

control ROI. The distance between two ROIs was computed in Talairach space as the 

distance between the center of mass of each group of electrodes. The distances between 

ROIs were carefully controlled such that i) all ROIs were separated by > 2 cm, to focus 

on large-scale brain functional connectivity; ii) the distribution of inter-ROI distances 

was comparable between the sensorimotor-sensorimotor and sensorimotor-control groups 

(see Supplementary Note 4 and Fig. 3). In addition, widespread, strong negative 

correlations to the sensorimotor network were avoided as control ROIs, because their 

physiological meaning is as yet unclear.  

 

ECoG correlation analyses and comparison with BOLD correlation structure 

 ECoG signals were re-referenced to the common mean before further analyses. In 

Patient 2, results obtained using such average reference derivation were compared to 

those obtained using a modified Laplacian derivation (see Supplementary Note 1). A 60-

Hz notch filter was used for ECoG signals filtered in 50 – 100 Hz.  
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Analysis of filtered regional ECoG signals 

 Analysis was performed separately in eight different frequency ranges: < 0.5 Hz, 

1 – 4 Hz, 5 – 10 Hz, 10 – 20 Hz, 20 – 50 Hz, 50 – 100 Hz, 100 – 150 Hz and 150 – 200 

Hz. Regional ECoG time series were extracted by averaging over the electrodes 

constituting each ROI, and were made zero-mean and detrended. Data were Fourier 

transformed, the cross- and auto- spectra corresponding to ROI pairs were computed and 

averaged over half-overlapping windows of 10-sec length across the entire data set (data 

segments from the same arousal state were averaged together).  The averaged cross- and 

auto- spectra for each ROI pair were filtered in each of the above frequency ranges (18 

dB/octave) and inverse Fourier transformed to yield the lagged cross- and auto- 

covariance functions for each frequency band. The lagged cross-covariance functions 

then were normalized to obtain the lagged cross-correlation functions. This approach is 

similar to that used in von Stein et al. (von Stein et al., 2000).  Lagged cross-correlation 

functions are shown in Figs. 2a, S3 and S4. 

Analysis of regional γ-BLP signals 

 Regional γ-BLP timeseries (2 sec sampling interval) were obtained by FFT of 

successive half-overlapping 4 sec windows and summing over frequency bins in the 

range 50 to 100 Hz (excluding 60-Hz bin). For each ROI pair and arousal state, lagged 

cross-correlation functions were conventionally computed in the time-domain for each 

data segment and averaged across segments in the same arousal state. 

Analyses of regional BOLD signals 

 Regional BOLD timeseries were computed by averaging over voxels under 

electrodes constituting each ROI (see Electrode localization above). For each ROI pair, 



  86

lagged BOLD cross-correlation functions were conventionally computed in the time 

domain for each fMRI run and then averaged across runs.   

 Statistical testing of all cross-correlations was performed after application of 

Fisher's r-to-z transform. 

 

Spatial correlation of temporal correlation maps 

 Spatial correlation was employed to assess spatial similarity of correlation maps 

(Fox et al., 2006). Here, correlation maps were obtained by computing temporal 

correlations of the signal (BOLD or ECoG) at one (seed) electrode against all other 

electrodes. Thus, we obtained B
ikr and E

ikr , the (zero-lag) temporal correlation map 

corresponding to seed electrode i, where k indexes all other electrodes and the superscript 

indicates modality (BOLD or ECoG). ECoG correlation maps ( E
ikr ) were computed on 

signals that were low-pass filtered at < 0.5 Hz and down-sampled to 8 Hz (Figs. 5b and 

S6) or by usingγ-BLP timeseries (Fig. S10). The rik
B and E

ikr were subjected to Fisher's r-to-

z transformation to obtain zik
B and zik

E . Within-modality and cross-modality spatial 

correlations, BB
ijR : , EE

ijR : and EB
ijR : , then were computed for pairs of seed electrodes. Thus, 

for seed electrodes i and j, the spatial correlation was computed as 

 Rij
X :Y =

(zik
X − z i

X )(z jk
Y − z j

Y )
k≠ i, j
∑

(zik
X − z i

X )2

k≠ i
∑ (z jk

Y − z j
Y )2

k≠ j
∑

, 

where X and Y each range over B (BOLD) and E (ECoG). 

 

MRI data acquisition and pre-processing 
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 MR imaging was conducted at the Washington University Neuroimaging 

Laboratories either before admission or after discharge from the hospital. Patients were 

compensated for their time. Scanning was performed with a Siemens (Erlangen, 

Germany) 3 Tesla Trio MRI scanner. Functional data were acquired using the standard 

Siemens echoplanar BOLD fMRI sequence (TE = 27 ms, TR = 2 s, flip angle = 90°; 32 

contiguous 4 mm slices with 4 × 4 mm in-plane resolution). The functional data slice tilts 

and field of view (256 mm) were prescribed parallel to the AC-PC plane on the basis of a 

short pre-functional coarse MP-RAGE scan. Each fMRI run included 150 or 200 frames 

(volumes). Number of frames acquired per patient ranged from 1200 to 2400. BOLD data 

preprocessing included compensation for asynchronous (interleaved) slice acquisition and 

realignment within and across fMRI runs to correct for head motion. Each fMRI run was 

intensity scaled to yield a whole brain mode value of 1000. Anatomical images were 

acquired using a sagittal T1-weighted MP-RAGE sequence (TR = 2200 ms, TE = 2.34 

ms, flip angle = 7°, inversion time = 1000 ms, 1×1×1 mm3 voxels) and a T2-weighted 

fast spin-echo sequence. Atlas transformation was computed on the basis of an average of 

the first frame of each fMRI run and MP-RAGE structural images. Our atlas 

representative template was produced by mutual co-registration of MP-RAGE images 

obtained in 12 normal subjects (as described in (Lancaster et al., 1995)) and represents 

the Talairach coordinate system (Talairach and Tournoux, 1988). The functional data 

were resampled in atlas space to 3 mm3 voxels.  

 

Voxel-wise BOLD correlation analyses 

Additional preprocessing 



  88

In preparation for correlation analyses, the BOLD time series were passed through 

several additional pre-processing steps, essentially as previously described (He et al., 

2007): 1) spatial smoothing using a 6 mm full width at half maximum Gaussian blur; 2) 

low-pass filtering at 0.1 Hz; 3) removal by one-step linear regression of several sources 

of variance unlikely to reflect spatially-specific functional correlations: i) six parameters 

obtained by correction for head motion; ii) signal averaged over the whole brain; iii) 

signal from a ventricular region; iv) signal from a white matter region. Temporal 

derivatives of these regressors were included in the linear model, thereby accounting for 

the time-shifted versions of spurious variance. 

Correlation analysis  

To compute voxel-wise sensorimotor network correlation maps, a seed ROI in the 

hand representation of primary sensorimotor area was anatomically defined for each 

subject. The BOLD time course was extracted from this ROI by averaging over all 

included voxels. This time course then was correlated against all other voxels in the brain 

to obtain Pearson correlation coefficient (r) images. The r images were transformed by 

application of Fisher’s r-to-z transformation (z = 0.5ln[(1+r)/(1-r)]) and then normalized 

by the estimated variance to yield Z-score maps. Variance was estimated as 1/√(df  - 3), 

where df = n/c, n being total number of time points (frames) in the dataset. The factor, c, 

corrects for autocorrelation in the BOLD timeseries according to Bartlett’s theory 

(computed as as the time integral of the squared lagged autocorrelation function)(Jenkins 

and Watts, 1998) and, in the present data, had the value 3.3722. Z-score maps were 

thresholded at a significance level of P < 0.05 corrected for multiple comparisons on the 
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basis of Monte Carlo simulation (Z ≥ 3, cluster size ≥ 17 voxels); voxels not meeting this 

significance criterion were set to 0.  

The sensorimotor networks defined by these BOLD correlation maps were 

concordant with the clinical electrophysiological localization results (using 

somatosensory evoked potentials and motor cortical stimulation).  

 

Statistical testing of covariance matrix similarity by eigenvector decomposition 

 Eigenvector decomposition (diagonalization) factors a multivariate process into 

components. Let B(t) be a time-dependent, n ×1column vector representing the BOLD 

time series measured under the n ECoG electrodes on the interval, 0 < t ≤ TB . The 

BOLD:BOLD covariance matrix,  

 CB = (1/TB ) B(t) ′ B (t)dt
0

TB

∫ ,       (1) 

can be expressed as 

 

CB = WBLB ′ W B ,        (2) 

 

whereWB is a n × n  array of column eigenvectors, LB is a diagonal n × n  array of 

eigenvalues, λBi,i =1,2,...,n{ }, and ′ W B  is the transpose ofWB .  Suppose without loss of 

generality that the eigenvectors have been sorted in order of decreasing variance, i.e., 

λB1 > λB 2 > ... > λBn . Inverting Eqn 2 yields 

 

 (1/TB ) ′ W B B(t)[ ] ′ B (t)WB[ ]dt
0

TB

∫ = ′ W BCBWB = LB .    (3) 
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Thus, eigenvector-weighted linear sums of the BOLD timeseries form a new set of n  

signals, ′ W B B(t), with covariance matrix, LB . In other words, if wBi  is the ith column of 

WB , then 

 (1/TB ) ′ w BiB(t)[ ] ′ B (t)wBi[ ]dt
0

TB

∫ = λBi .      (4) 

Completely analogous expressions can be written for the ECoG data, E(t). Thus, the 

ECoG:ECoG covariance matrix is 

 CE = (1/TE ) E (t) ′ E (t)dt
0

TE

∫ = WE LE ′ W E .     (5) 

The preceding constitutes the foundation for a measure of covariance structure similarity. 

Specifically, suppose, as in Eqn 3, that the BOLD eigenvectors are used to form weighted 

sums of the ECoG timeseries, ′ W B E(t) . If the BOLD and ECoG covariance structures are 

completely similar then they share the same eigenvectors (WB = WE ) and their 

eigenvalues ( λBi{ }and λEi{ }) are identically ordered. Then, the covariance matrix of the 

transformed ECoG data must be LE  and the variances of the transformed ECoG data 

computed as in Eqn 4, 

 φEi = (1/TE ) ′ w BiE(t)[ ] ′ E (t)wBi[ ]dt
0

TE

∫ ,      (6) 

must be ordered as the λBi{ }, i.e., φE1 > φE 2 > ... > φEn .  In other words, if the two 

covariance structures are similar, eigenvectors that account for more BOLD variance also 

account for more ECoG variance. Conversely, if the covariance structures are unrelated, 

eigenvector decomposition of one covariance matrix conveys nothing about the other and 

the φEi{ } ordering will be random. A test of covariance structure similarity therefore can 
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be formulated as the Spearman rank order correlation test (Zar, 1984). The relevant 

statistic is 

 rs =1−
6 di

2

i=1

n

∑
n3 − n

,        (7) 

 

where di  is the difference in rank orders of the φEi{ } and λBi{ }, i.e., di = O(φEi) − i .  No 

relation between the two covariance structures corresponds to the null hypothesis: rs = 0. 

The Spearman rank order test is nonparametric. Its application in the present context 

involves no assumptions concerning either BOLD or ECoG signals other than each has a 

diagonalizable covariance matrix. 

 Highly significant results were obtained in all patients (Figs. 5c and S8) indicating 

that the covariance structures of BOLD and slow (< 0.5 Hz) ECoG signals are similar. 

These results were strikingly invariant with respect to the state of arousal during ECoG 

recording. 

 

Examining the relation between BOLD and ECoG correlation structures as a 

function of ECoG frequency 

 In our initial analysis to determine the correspondence between BOLD and ECoG 

correlation structures as a function of ECoG signal frequency (main text Fig. 2a), we 

filtered the ECoG signal in eight different frequency bands.  Here we present an analysis 

addressing the same question but with a fine spectral resolution.  

 First, complex coherence spectrum was computed for each SM-SM and SM-C 

ROI pair from all patients using a 1-sec length, half-overlapping moving window. Then, 
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for each 1-Hz-width frequency bin from 1 to 100 Hz, results from all ROI pairs were 

plotted in a complex coherency plane, such as those shown in Fig. S5b.  The separation 

between SM-SM and SM-C clusters in this coherency plane represents how well the 

correlation structure of ECoG signal at the particular frequency corresponds to that of 

BOLD. This is so because the ROI-pair type was defined based on BOLD correlation 

structure. Hence, if ECoG signal has a similar correlation structure as BOLD, the SM-

SM, but not SM-C, ROI pairs should be in-phase on average. The statistical evaluation of 

such a separation between SM-SM and SM-C ROI pairs in the complex coherence plane 

was tested using a two-sample Hotelling’s T2 test 

(http://www.philender.com/courses/multivariate/notes3/groups.html) against the null 

hypothesis that the SM-SM and SM-C ROI pairs constitute one cluster.  

 The MATLAB code for performing this test is presented below. The input values, 

a, b, c, d, are the vectors containing the abscissa values for SM-SM ROI pairs, the 

ordinate values for SM-SM ROI pairs, the abscissa values for SM-C ROI pairs, and the 

ordinate values for SM-C ROI pairs, respectively. T2 returns the Hotelling’s T2 value.  F 

returns the converted F2, n1+n2-3 value, in which n1 and n2 are the number of SM-SM and 

SM-C ROI pairs respectively.   

function [T2 F] = TwoSample_Hotelling(a,b,c,d) 
meanA = mean(a) 
meanB = mean(b) 
meanC = mean(c) 
meanD = mean(d) 
n1 = length(a) 
n2 = length(c) 
C = n1 * n2 * (n1 + n2 -2) / (n1 + n2) 
 
X1 = [a b] 
for i = 1:n1 
X1bar(i,:) = [meanA meanB]; 
end 
S1 = (X1 - X1bar)' * (X1 - X1bar) 
 
X2 = [c d] 
for i = 1:n2 
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X2bar(i,:) = [meanC meanD]; 
end 
S2 = (X2 - X2bar)' * (X2 - X2bar) 
 
W = S1 + S2 
x = [meanA meanB]' - [meanC meanD]' 
D2 = x' * inv(W) * x 
T2 = C * D2 
F = T2 * (n1 + n2 - 2 - 1)/((n1 + n2 -2)*2) 

 
 
 
RESULTS 

Correlation structures of spontaneous BOLD signal and slow cortical potential 

In the first three analyses we focused on the sensorimotor network, because the 

ECoG electrodes provided adequate coverage of the sensorimotor network in all 

presently studied patients but much poorer coverage of the other networks known to 

exhibit covariant BOLD fluctuations. For each patient, we first computed a voxel-wise 

BOLD correlation map of the sensorimotor network (Figs. 1 and S2, for methods see 

Supplementary Information). Electrodes then were categorized according to the 

underlying BOLD correlation map: Electrodes within the sensorimotor network as 

defined by this map (Z-score > 3, P < 0.05) were labeled "sensorimotor". Electrodes 

outside this network (Z ≤ 0, see Methods) were labeled "control". To increase signal-to-

noise ratio, in the first two analyses, we defined sensorimotor and control ROIs as 

contiguous groups of sensorimotor and control electrodes, and averaged ECoG and 

BOLD signals within each ROI. Several ROIs of each type were defined in all patients 

(Figs. 1 and S2).  
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Figure 1 Spatial topography of electrode coverage and sensorimotor network in Patient 
1. (a) X-ray showing electrode placements. (b) 3-D rendering of anatomical MRI and 
projection of electrode locations onto the 3-D surface. Clinical mapping of the 
sensorimotor cortex is indicated by color patches. Red: hand motor area based on median 
nerve somatosensory evoked potential (SSEP); Yellow: hand sensory area based on 
SSEP; Blue: facial twitching in response to cortical stimulation; Green: hand grasp in 
response to cortical stimulation. (c) BOLD sensorimotor correlation map (Z-score, 
thresholded at P < 0.05, corrected for multiple comparisons) and electrode locations 
overlaid on the pial surface reconstructed from anatomical MRI. Two bad electrodes in 
the anterior temporal strip were eliminated. Four sensorimotor ROIs (delineated by 
magenta contours) and four control ROIs (blue contours) were determined in this patient. 
The cross hatching indicates the epileptogenic zone that was subsequently resected.  
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In the first analysis, we computed lagged cross-correlation functions for all 

possible sensorimotor-sensorimotor and sensorimotor-control ROI pairs using BOLD and 

filtered ECoG signals. Since the sensorimotor ROIs were located within a common 

network defined by BOLD correlation structure whereas the control ROIs were outside 

this network, BOLD correlations between sensorimotor ROIs should be by definition 

higher than correlations between a sensorimotor ROI and a control ROI (see Figs. 2b and 

S3). The question was whether some type of electrophysiological activity may similarly 

differentiate sensorimotor-sensorimotor from sensorimotor-control correlations. To 

pursue this question, ECoG signals filtered in eight different frequency bands (< 0.5 Hz, 

1 – 4 Hz, 5 – 10 Hz, 10 – 20 Hz, 20 – 50 Hz, 50 – 100 Hz, 100 – 150 Hz and 150 – 200 

Hz) were used to compute the lagged correlation functions (see Methods). These 

correlation functions then were compared across the two types of ROI pairs.  

ECoG activity in the two slowest frequency bands (< 0.5 Hz and 1 – 4 Hz bands) 

distinguished sensorimotor-sensorimotor from sensorimotor-control ROI pairs: the 

sensorimotor-sensorimotor ROI pairs were positively correlated whereas the 

sensorimotor-control ROI pairs were negatively or not correlated. Remarkably, this 

distinction was present in all arousal states (Figs. 2a and S3). Similar findings were 

absent in higher frequency bands (Figs. 2a and S4). These results were consistent across 

all five subjects. Considering only the waking data, across all patients 86% of the 

sensorimotor-sensorimotor correlation functions (using either < 0.5 Hz or 1 – 4 Hz band 

ECoG) had a positive peak with r value > 0.1 in the lag range within ±0.5 sec; in contrast, 

only 19% (< 0.5 Hz band) or 16% (1 – 4 Hz band) of sensorimotor-control correlations 

showed similar positive peaks. For statistical results see Fig. 2c. Importantly, this 
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difference in slow ECoG signal correlation between sensorimotor-sensorimotor and 

sensorimotor-control ROI pairs cannot be accounted for by a difference in their 

respective inter-ROI distances, as the distribution of inter-ROI distances were the same 

for the two groups of ROI pairs  (Fig. 3).  

 

 
Figure 2 (a) Patient 1: Lagged cross-correlation functions were computed using ECoG 
signal filtered in eight frequency bands for all possible sensorimotor-sensorimotor (SM-
SM, N = 6) and sensorimotor-control (SM-C, N = 16) ROI pairs. ROI pairs of similar 
type were averaged together after Fisher’s r-to-z transformation. Red hues: sensorimotor-
sensorimotor; blue/green hues: sensorimotor-control. (b) Patient 1: BOLD lagged cross-
correlation functions averaged separately for sensorimotor-sensorimotor (red) and 
sensorimotor-control (blue) ROI pairs. (c) Combining data over all patients: Peak ECoG 
cross-correlation values (within ±500ms lag) as a function of ROI-pair type (SM-SM vs. 
SM-C) and arousal state (awake, SWS and REM). Two-way ANOVA yielded a highly 
significant main effect of ROI-pair type (< 0.5 Hz: F1,47 = 20.1, P < 0.0001; 1 – 4 Hz: 
F1,47 = 17.8, P = 0.0001). Neither the effect of arousal state nor the interaction of ROI-
pair type × arousal state was significant (P > 0.1). All error bars denote SEM.  
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Figure 3 Effect of inter-ROI distance on ECoG peak cross-correlation values (within lag 
of ±500 ms). Left: < 0.5 Hz band; Right: 1 – 4 Hz band. ECoG data were from the 
waking state.  Each ROI pair is represented by one symbol. Filled circle: sensorimotor-
sensorimotor ROI pair.  Open diamond: sensorimotor-control ROI pair.  
 

Whereas the above analyses filtered the ECoG signal in eight different frequency 

bands and thus had a crude spectral resolution, converging results from an independent 

analysis employing coherence measurement with a fine spectral resolution are presented 

in Fig. S5 (for methods see “Examing the relation between BOLD and ECoG correlation 

structures as a function of ECoG frequency” in Supplementary Information). 

In the second analysis, to quantitatively assess the similarity between the correlation 

structures of BOLD signal and slow ECoG activity, we plotted ECoG (filtered at < 0.5 

Hz, Fig. 4a; 1 – 4 Hz, Fig. 4b) vs. BOLD correlation values across all sensorimotor-

sensorimotor and sensorimotor-control ROI pairs in all patients. Highly significant 

correlations between BOLD and ECoG correlation measures were found for ECoG 

signals in the < 0.5 Hz and 1 – 4 Hz bands from all three arousal states (all P < .002), 

thereby demonstrating a correspondence between the correlation structures of 

spontaneous BOLD signal and slow (< 4 Hz) cortical potential (SCP) recorded by ECoG.  
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Figure 4 BOLD vs. ECoG cross-correlation function peak values. Peak correlations of 
filtered (< 0.5 Hz and 1 – 4 Hz) ECoG activity were evaluated for lags in the range±500 
ms. Peak correlations of BOLD and γ-BLP (both sampled at 2 sec interval) were 
evaluated at zero-lag. Each ROI pair is represented by one symbol. All sensorimotor-
sensorimotor and sensorimotor-control ROI pairs from all patients are shown. In Patient 
2, the ECoG derivation was modified Laplacian; in all other patients it was average 
reference. (a) < 0.5 Hz ECoG; (b): 1 – 4 Hz ECoG; (c) γ-BLP ECoG. P values represent 
the significance of the measured correlation between BOLD and ECoG peak correlations. 
 
 

In the third analysis, we computed spatial correlations between BOLD and slow 

ECoG (< 0.5 Hz band) correlation maps to compare their spatial patterns on an electrode-

by-electrode basis. Voxel-wise BOLD correlation maps were spatially sampled by the 

electrode coverage to compare with ECoG correlation maps (for each electrode, the 

corresponding BOLD correlation value was evaluated by averaging over a 5-mm-radius 
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sphere centered on that electrode, excluding voxels outside the pial surface). For 

correlation map examples see Fig. 5a. All sensorimotor and control electrodes were used 

as seed electrodes, thus this analysis did not depend on ROIs. We found that the great 

majority of BOLD and ECoG correlation maps obtained by seeding at the same electrode 

were highly similar (98.3% of such comparisons had a spatial correlation value that was 

significant at the P < 0.05 level, uncorrected for potential dependence of signals at 

neighboring electrodes). Next, we examined similarity of correlation maps obtained with 

different seed electrodes within the sensorimotor system, the outcome measure being the 

mean spatial correlation averaged over pairs of seed electrodes. As shown in Figs. 5b and 

S6, this measure was significantly positive, regardless of whether the spatial correlations 

were computed within modality (BOLD:BOLD or ECoG:ECoG) or across modalities 

(BOLD:ECoG). In contrast, the spatial correlation measures comparing maps obtained by 

seeding at “sensorimotor” electrodes vs. those obtained by seeding at "control" electrodes 

were on average around zero, again regardless of whether the comparison was within or 

across modalities. These spatial correlation results cannot be accounted for by the effect 

of distance between seed electrodes (see Fig. S7). They confirmed the above finding that 

the correlation structures of spontaneous BOLD and slow (< 0.5 Hz) ECoG signals are 

similar, at least within the framework of the sensorimotor system.  

In the fourth analysis, to extend our finding beyond the sensorimotor system, we 

evaluated the similarity of BOLD and slow ECoG (< 0.5 Hz band) covariance structures 

using an eigenvector decomposition strategy (for details of the method see “Statistical 

testing of covariance matrix similarity by eigenvector decomposition” in Supplementary 

Information). In brief, this strategy tested whether the eigenvectors accounting for more 
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variance in the BOLD data also accounted for more variance in the ECoG data, which, if 

true, would strongly reinforce the impression of a similarity between the BOLD and 

ECoG covariance structures derived from our other analyses. This analysis included all 

ECoG electrodes providing technically satisfactory recording, and hence was independent 

of the distinction between sensorimotor and non-sensorimotor networks. Statistical 

significance was assessed using a non-parametric test (Spearman rank order correlation) 

requiring no correction or qualification. The results again showed that the covariance 

structures corresponding to the two types of signals (BOLD and < 0.5 Hz ECoG) were 

similar in all five patients, for ECoG data acquired in all three arousal states (all P < 

0.005, Figs. 5c and S8).  

 



  101

Figure 5 Similarity of BOLD and ECoG (< 0.5 Hz band) correlation structures assessed 
by spatial correlation and eigenvector decomposition strategies in Patient 1.  (a) Raw 
representative BOLD and ECoG (< 0.5 Hz) correlation maps that were used for spatial 
correlation analyses. Each dot represents one electrode, arrow points to the seed 
electrode. Color represents Fisher’s z-transformed correlation value between each 
electrode and the seed electrode, computed using BOLD signal or <0.5 Hz ECoG signal 
from each arousal state. BOLD correlation maps were spatially sampled by the electrode 
coverage to compare with ECoG correlation maps. The maps in the top row seed at a 
same sensorimotor electrode, those in the bottom row seed at a control electrode. Note 
that these two seed electrodes are separated only by 2 cm. A: anterior; P: posterior; D: 
dorsal; V: ventral. This 2-D presentation of the electrode grid was extrapolated from Fig. 
1c.  (b)Statistical results of spatial correlation analysis. Spatial correlations were 
computed between two BOLD correlation maps (BOLD:BOLD), between two ECoG 
correlation maps (ECoG:ECoG), or between a BOLD and a ECoG correlation map 
(BOLD:ECoG). Each bar represents the mean spatial correlation averaged over seed-
electrode pairs. SM–C: One correlation map obtained by seeding at a sensorimotor (SM) 
electrode, the other map by seeding at a control (C) electrode. SM–SM: both maps were 
obtained by seeding at a sensorimotor electrode. Error bars denote SEM. ***: significant 
non-zero mean spatial correlation (P < 0.0001; one-sample t-test). The over-bracketed P 
values indicate unpaired t-tests comparing seed electrodes within (SM-SM) vs. across 
(SM-C) functional systems. ECoG data were from the waking state. Comparable results 
were obtained in all patients and for ECoG data from all states of arousal (Fig. S6). (c) 
Eigenvector decomposition analysis comparing BOLD and ECoG (from all three states) 
covariance structures. The ordinate shows the fraction of ECoG variance captured by 
eigenvectors derived by diagonalization of the BOLD covariance matrix. These 
eigenvectors were sorted by the rank-ordering of their corresponding eigenvalues (index 
shown in abscissa), such that the eigenvector with the smallest index was associated with 
the largest eigenvalue and hence accounted for most variance in the BOLD data. The 
variable range of abscissa reflects the number of eigenvectors, which is the same as the 
number of usable electrodes in each patient. The decreasing trend of the plot indicates 
that eigenvectors accounting for more BOLD variance also accounted for more ECoG 
variance. Statistical significance of the covariance structure similarity (tested by 
Spearman rank order correlation) is listed in the inset. Comparable results were obtained 
in all patients (Fig. S8). 

 

Correlation structures of spontaneous BOLD signal and gamma band-limited power 

So far we have demonstrated a correspondence between the correlation structures 

of spontaneous BOLD signal and SCP representing the slowest component of raw ECoG 

signals (< 4 Hz). However, power of gamma frequency (> 30 Hz) has not only been 

demonstrated to correlate with BOLD in stimulus-evoked activity (Logothetis et al., 
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2001; Mukamel et al., 2005; Niessing et al., 2005; Shmuel et al., 2006) but has also been 

shown to remain coherent in its spontaneous fluctuations at distances up to 1 cm, unlike 

spontaneous raw gamma oscillations that are correlated only locally (Leopold et al., 

2003). Hence, we tested, in an additional analysis, whether gamma (50 – 100 Hz) band-

limited power (γ-BLP) also had a correlation structure similar to spontaneous BOLD 

signals. Fig. 4c shows scatter plots of BOLD correlations against γ-BLP correlations 

across all ROI pairs. A significant correlation with BOLD was found for γ-BLP in 

waking (P = 0.008) and REM (P < 0.0001) but not SWS (P = 0.28) data. We note that the 

lack of correspondence during SWS was not due to a reduction in the amount of gamma 

frequency power, which was invariant across arousal states (Fig. S9) (Steriade et al., 

1996). Consistent results from spatial correlation analysis comparing BOLD and γ-BLP 

correlation maps are shown in Fig. S10.  

Given the correlation between γ-BLP and BOLD signal in stimulus-evoked 

responses (Logothetis et al., 2001; Mukamel et al., 2005; Niessing et al., 2005; Shmuel et 

al., 2006), it is possible that the waking γ-BLP result presented above was partly driven 

by environmental stimuli present during data recording. However, a similar result was 

obtained for γ-BLP during REM sleep, in which neuronal activity arises completely from 

within. Therefore, it appears that endogenous brain activity during REM sleep, and 

presumably also wakefulness, modulates γ-BLP in a spatial pattern similar to that of 

spontaneous BOLD fluctuations. Equally telling, γ-BLP during SWS did not show a 

similar correlation structure. This result is consistent with the view that coherent patterns 

in gamma frequency activity are related to conscious experiences (Rodriguez et al., 1999; 

Singer, 2001) that are more prevalent in wakefulness and REM sleep than in SWS 
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(Hobson et al., 2000; Llinas and Ribary, 1993). An alternative but not contradictory 

explanation is that the bistability of thalamocortical circuits between up- and down- states 

during SWS (Massimini et al., 2004) is responsible both for the fading of consciousness 

and for the collapse of gamma power correlations.  

Interestingly, whereas the BOLD and SCP correlations included both negative 

and positive values, gamma-BLP correlations were mainly positive (Fig. 4). One possible 

explanation is that the removal of global signal in BOLD signal processing and the usage 

of average reference in ECoG analysis forced the appearance of negative BOLD and SCP 

correlations, whereas no equivalent maneuver was done in the BLP analysis.  However, 

negative SCP correlations also emerged when modified Laplacian montage was used (see 

results from Patient 2 in Fig. 4 and Supplementary Note 1), in which case there was no 

numerical mandate of negative correlations. An alternative explanation is that the positive 

correlations of BOLD/SCP mean that the two regions are in the same network, which, as 

if crossing a threshold, “enables” the correlated γ-BLP relationship; by contrast, no γ-

BLP relationship exists when this threshold is not crossed. Undoubtedly a better 

understanding of the above phenomenon awaits future investigation.  

 

Discussion 

To summarize, we have identified two types of neurophysiological signals that 

demonstrate a similar correlation structure to that of the spontaneous fMRI BOLD signal: 

SCP and γ-BLP. For SCP the correspondence with BOLD was state-invariant. For γ-BLP 

the correspondence was present in wakefulness and REM but not SWS. This leads us to 

suggest that spontaneous fMRI BOLD signals and SCPs both reflect a fundamental 
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stratum of the brain’s intrinsic organization that transcends levels of consciousness. The 

more labile, state-dependent structures of γ-BLP, while similar, appear to be built on 

scaffolding provided by the more fundamental processes represented in the BOLD 

signals and the SCPs.  

A remaining question regards whether the spontaneous BOLD signal, SCP and 

gamma-BLP are correlated on a time-varying basis. This could not be directly addressed 

in the present study for the lack of simultaneous BOLD and ECoG recordings. However, 

since these three signals have comparable frequency ranges (see Supplementary Note 2), 

it is not unreasonable to speculate that they may indeed be temporally coherent. 

Unfortunately, to date relevant empirical observations remain scarce. Nevertheless, it has 

been shown in anesthetized rats that spontaneously fluctuating total hemoglobin 

concentration and low-pass filtered local field potential are temporally correlated (Jones 

et al., 2007); when the anesthesia level was deepened to producing burst-suppression 

ECoG patterns, the spontaneous fluctuating blood flow faithfully followed bursts of 

ECoG activity at a frequency of ~ 0.1 Hz (Golanov et al., 1994). Whereas non-neuronal 

factors have been shown to contribute to spontaneous BOLD signal variance (Birn et al., 

2006; Shmueli et al., 2007; Wise et al., 2004), the above studies and the present work 

suggest an important neural origin of these signals. Furthermore, numerous early EEG 

studies have shown that the negative shift of SCP occurs in response to various task 

demands much in the same way as the BOLD signal activation does (for a recent review 

see Khader et al. (Khader et al., 2008)).  Hence, SCP may be a fundamental neural basis 

of the BOLD signal – a basis for both the spontaneous BOLD fluctuations and task-

evoked BOLD responses alike.  
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Our results and the foregoing interpretations are consistent with well-established 

neuroanatomical and neurophysiological observations. The negative shift of SCPs reflects 

depolarization of apical dendrites in cortical superficial layers, e.g., by excitatory, 

nonspecific thalamic inputs (Birbaumer et al., 1990; Mitzdorf, 1985). Therefore, 

spontaneous SCP and the correlated BOLD signal fluctuations likely reflect endogenous 

fluctuations of cortical excitability within functional systems. (For a discussion on the 

relation between SCP and the “up-and-down states”, which also reflects fluctuations of 

cortical excitability, see Supplementary Note 3.) Interestingly, glial cells become 

depolarized by local excitatory dendritic activity and contribute to negative SCP 

regardless of cortical depth because of their syncytial connections (Birbaumer et al., 

1990; Goldring, 1974); these glial cells also concurrently take up synaptically released 

glutamate and contribute to locally increased glycolysis, which, in turn, increases the 

BOLD signal (Raichle and Mintun, 2006).  

It has been shown that the trough of SCP is associated with increased power of 

higher frequency field potentials (Vanhatalo et al., 2004)as well as increased multiple-

unit activity (Birbaumer et al., 1990). Hence, the correlated noise in unit recordings 

(Averbeck et al., 2006) may be regulated by the correlated, spontaneous fluctuations of 

SCPs confined within the large-scale brain functional networks. Furthermore, a long-

established line of research showing the influence of spontaneous variations of SCPs on 

psychological performance is especially intriguing. Tasks presented on the negative shifts 

of spontaneous SCP fluctuations are solved faster (Stamm et al., 1987), more accurately 

(Stamm and Gillespie, 1978) and had lower sensory threshold (Devrim et al., 1999), 

supporting the role of spontaneous activity in facilitating responses to stimuli. Similar 
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investigations in the fMRI domain have only begun to blossom (Boly et al., 2007; Fox et 

al., 2007).  

 

Supplementary Data 

Supplementary Table.  
Demographic, clinical and data collection information of the patients. 

 
L, left; R, right; SMA, supplementary motor area; WASI, Wechsler Abbreviated 

Scale of Intelligence; WRAT-3, Wide Range Achievement Test-Revision 3.  
 

Supplementary spatial correlation analyses results 

 Spatial correlation analyses comparing BOLD and < 0.5 Hz ECoG correlation 

maps are shown in Fig. S6. The first question addressed was similarity of BOLD and 

ECoG correlation maps corresponding to the same seed electrode within the sensorimotor 

system. Summing over all patients, there were 79 such seed electrodes. For 78 of them, 
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the BOLD and awake ECoG correlation maps were spatially similar (as indicated by a 

significant EB
iiR : value, i∈ sensorimotor; P < 0.005, uncorrected for potential dependence 

of adjacent electrodes). Similar results were obtained for SWS (P < .01for 78/79 of 

sensorimotor electrodes) and REM (P < .02 for 77/79). Next, we examined similarity of 

correlation maps for seed electrode pairs within the sensorimotor system. In all patients, 

the correlation maps corresponding to two sensorimotor seed electrodes were on average 

spatially similar. Critically, this similarity held regardless of whether assessed within or 

across modalities. Thus, as shown in Fig. S6, sensorimotorBOLD:sensorimotorBOLD as 

well as sensorimotorECoG:sensorimotorECoG and 

sensorimotorBOLD:sensorimotorECoG spatial correlations were all significantly 

positive, as assessed by t-tests applied to Fisher z-transformed spatial correlations {Rij,i, 

j∈ sensorimotor, i≠j} against the null hypothesis of zero mean (P < 0.05 for all patients 

and all arousal states). In contrast, mean spatial correlations for seed electrodes of unlike 

type {Rij , i∈ sensorimotor, j∈ control} were close to zero, again regardless of modality-

association (see Fig. S6).  

 Spatial correlation analyses comparing BOLD and γ-BLP ECoG correlation maps 

are shown in Fig. S10. The distinction between sensorimotor:sensorimotor and 

sensorimotor:control spatial correlations was most pronounced during REM, the 

conscious state in which brain activity is exclusively endogenous.  

 

Supplementary Note 1.Effect of reference on ECoG signal analysis 

 Electrophysiological activity sensed by a shared reference electrode leads to 

artifactually elevated correlation and coherence measures. In the present study, we used 
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an average reference derivation, which eliminates the influence of the physical reference 

electrode. The computed average reference potential typically is close to zero when many 

widespread electrodes are used (Nunez et al., 1997), as in our data. Hence, the effect of 

reference on our results should be small. 

 This was confirmed in one subject (Patient 2) in whom the sensorimotor system 

topography (as determined by BOLD correlation map) and electrode coverage permitted 

ECoG regional analysis using a modified Laplacian derivation. In the modified Laplacian 

derivation, each regional ECoG signal is computed by averaging over electrodes 

constituting the ROI and subtracting the signal averaged over the surrounding electrodes 

(see Fig. S2a). The modified Laplacian derivation effectively isolates local vertical 

currents underneath the ROI and eliminates all dependence on a reference. Thus, it 

provides an approximation to what would be obtained with trans-cortical recording (i.e., 

surface recording referenced to the underlying white matter). 

Prerequisites for modified Laplacian recording are: 1) presence of surrounding 

electrodes, meaning that the ROI cannot be on the edge of the grid or on a strip; 2) the 

electrodes within the ROI must carry a common signal of interest, not carried by the 

surrounding electrodes. In the present context, this means the electrodes within a 

sensorimotor ROI must be over positive areas in the BOLD sensorimotor correlation 

map, while the surrounding electrodes are over nonsignificant or negative areas. Both 

these conditions were met in Patient 2 (Fig. S2a). The results obtained using such 

modified Laplacian derivation (Fig. S4) were very similar to those using the average 

reference derivation (Fig. S3, Patient 2). 
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Supplementary Note 2. Frequency content of spontaneous BOLD, SCP and γ-BLP 

fluctuations 

 Spontaneous BOLD (Cordes et al., 2001; Hathout et al., 1999) and γ-BLP 

(Leopold et al., 2003) fluctuations are both dominated by frequencies of < 0.1 Hz. The 

SCPs shown herein that correlated with BOLD are< 4 Hz but have exponentially 

increasing power towards lower frequency (Vanhatalo et al. (2004) and our unpublished 

data using DC-coupled recording). Our measurements are affected by the lower 

frequency cutoff (0.1 Hz, 18dB/octave roll-off) of our clinical FDA-approved EEG 

amplifier. Nevertheless, exponentially increasing power towards the low frequency end 

still allows substantial low frequency (< 0.1 Hz) ECoG power to be collected (Fig. S9).  

 

Supplementary Note 3. The relation between SCP and the slow oscillation 

 “Slow oscillation” is a rhythmic, synchronized oscillation of neuronal membrane 

potential between a hyperpolarized “down” state and a hypopolarized “up” state (Steriade 

et al., 1993). It is observed spontaneously during anesthesia (Steriade et al., 1993), slow-

wave-sleep (Massimini et al., 2004; Steriade, 1997) and quiet wakefulness (Petersen et 

al., 2003). The slow oscillation has been postulated as a possible neuronal correlate 

underlying spontaneous BOLD signal fluctuations (Raichle, 2006). However, in light of 

the present results, we do not think the slow oscillation contributes to the SCP correlate 

of spontaneous BOLD signal for the following reasons:  

 (1) The frequency content of slow oscillation is distinct from that of SCP or 

BOLD signals. Whereas both SCP and BOLD signal demonstrate a power spectrum that 

obeys power-scaling law (P ∝ 1/f α) (see Note 3 above), the slow oscillation has a narrow 
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frequency range that centers around 0.8 Hz in natural SWS (Massimini et al., 2004; 

Steriade, 1997).  

 (2) Among natural physiological states, the slow oscillation is most prominent in 

SWS, and often is not observed in the waking state or REM sleep (Steriade, 1997). To the 

contrary, the spontaneous fluctuations of SCP and BOLD signals and their correlation 

structures are maintained across a wide range of arousal states, certainly including 

wakefulness.  

 (3) The slow oscillation during SWS has been shown to propagate across the 

scalp in traveling wave fashion, without apparent relation to network topography 

(Massimini et al., 2004). In contrast, the spatial patterns of BOLD signal and SCP are 

tightly linked to functional systems.  

 (4) Existing evidence hints at a relation of SCP modulating the slow oscillation, as 

during SWS there is increased power of slow oscillation at the trough of SCP (Fig. 2C of 

Vanhatalo et al. (2004)), reinforcing the impression that SCP and slow oscillation are 

distinct phenomena.  

  

Supplementary Note 4. Effect of distance on ECoG correlations 

 The distributions of inter-ROI distances were the same for sensorimotor-

sensorimotor and sensorimotor-control ROI pairs (Fig. 3). Therefore, although field 

potential correlations may fall off with increasing distance (Nunez et al., 1997), such an 

effect does not account for the observed difference between sensorimotor-sensorimotor 

and sensorimotor-control ECoG correlations. Further, it should be noted that all ROI 
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pairs were separated by at least 2 cm, hence, the correlation structures investigated herein 

belong to the category of large-scale brain networks.  

 A related topic, the effect of inter-seed distances on spatial correlation results, was 

also investigated, the result of which is shown in Fig. S7. Similarly, the difference 

between sensorimotor-sensorimotor and sensorimotor-control spatial correlations cannot 

be accounted for by a difference in the distances between seed electrodes.  

 

Supplementary Note 5. Can results from epilepsy patients be extrapolated to normal 

subjects?  

 Despite the enormous scientific insights gained from research using epilepsy 

patients (e.g., Engel et al., 2005; Gazzaniga et al., 1965), there is always the question of 

whether results from neurological patients can be extrapolated to normal subjects. 

Nonetheless, the present results are most likely extendable to normal physiology for the 

following reasons. (a) This group of patients had average or above intellectual and 

academic functioning, as tested by standard neuropsychological battery (see 

supplementary table).  (b) In all patients the epileptic focus was focal. (Otherwise they 

would not have been candidates for surgery, which involves focal resection of epileptic 

brain region.) (c) Patients with diffuse brain tissue abnormality, including widespread 

interictal spike-wave discharges, were excluded from the study. (d) Considerable care 

was taken to exclude any interictal spikes and other ECoG phenomena associated with 

seizure from the collected data. (e) Three out of five patients had localized temporal lobe 

seizures, yet coherent SCP and gamma-BLP fluctuations confined within the 

sensorimotor system were found in every single patient.  
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Supplementary Figures 

 

Supplementary Figure 1 Samples (10 sec duration) of raw ECoG data from Patient 3.(a) 
Awake record. Channels over sensorimotor cortex display a μ rhythm (arrow). (b) SWS 
and REM. In the REM segment, the three channels at the bottom are left eye EOG, right 
eye EOG, and the subtraction between the two, respectively. Note presence of μ rhythm 
during REM. Channels in the central portion of the display (bracketed) were over 
occipital areas and show slow activity that may represent PGO waves. Bottom: Power in 
the < 4 Hz band computed for a continuous record of 3 hr and 20 min, starting at 
2:33AM. Times corresponding to the 10 sec samples shown in b are marked. 
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Supplementary Figure 2 Complement of Main Text Fig. 1 for Patients 2 through 5: 
Spatial topography of electrode coverage and BOLD correlation map of the sensorimotor 
network. Format as in Main Text Fig. 1. Electrodes excluded due to bad signal or 
covering pathological tissue are eliminated from the reconstructed figures but not the 
plain X-ray images. For Patient 2, plain X-ray images were not available. Also in Patient 
2, in addition to average reference derivation used in all patients, a modified Laplacian 
derivation was tested, meaning the signal averaged over all electrodes constituting each 
ROI (delineated by magenta or blue contour) was subtracted by the signal averaged over 
the surrounding electrodes (on black contour). 
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Supplementary Figure 3 Complement of Main Text Fig. 2 for Patients 2 through 5: 
Lagged ROI cross-correlation functions corresponding to < 0.5 Hz and 1 – 4 Hz band 
ECoG activity as well as BOLD signals. Format as in Main Text Fig. 2, but with different 
arousal states separately plotted for ECoG results. Red hues: sensorimotor–sensorimotor 
ROI pairs; Blue/green hues: sensorimotor–control ROI pairs. All data were analyzed 
using the average reference derivation. P values reflect significance of unpaired t-tests 
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comparing sensorimotor-sensorimotor vs. sensorimotor-control cross-correlation peak 
values. Similar statistical testing was not possible in Patients 2 and 5 because each had 
only one sensorimotor-sensorimotor ROI pair.  
 
 
 
 
 
 
 
 

 
  
Supplementary Figure 4 ECoG cross-correlation functions obtained in Patient 2 using 
the modified Laplacian derivation. ECoG signals were filtered in four different frequency 
bands. Comparable results for the two slowest frequency bands obtained using the 
average reference derivation are shown in Fig. S3.  
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Supplementary Figure 5 Results from coherence analysis (using 1-sec length, half-
overlapping moving windows). (a) Spectra of coherence magnitude averaged across 
Patients 1-4, separately for SM-SM ROI pairs and SM-C ROI pairs. Patient 5 was not 
used here because of a different sampling frequency (200 Hz, as opposed to 512 Hz).  (b) 
Scatter plots showing the coherence magnitude and phase for each ROI pair, using ECoG 
data filtered in 1-Hz bins centered around 1 Hz, 40 Hz, 75 Hz, or 100 Hz. Each dot 
represents one ROI pair. All SM-SM (red) and SM-C (blue) ROI pairs from all 5 patients 
are included. The distance of each dot to (0,0) is the magnitude of coherence. The angle 
of this vector represents the phase difference between the two ROIs. Using 1 Hz ECoG 
signal, SM-SM ROI pairs are generally in phase, which corresponds to positive 
correlations as seen in Figs. 2a & S3, in contrast, the phase values of SM-C ROI pairs are 
scattered across the midline and on average out-of-phase. A similar separation between 
SM-SM and SM-C clusters is absent in gamma frequency bands. (c) The separation 
between SM-SM and SM-C ROI pairs in the complex coherency plane (as shown in b) 
was tested for each 1-Hz-width frequency bin from 1 to 100 Hz using ECoG data from 
each arousal state, using a two-sample Hotelling’s T2 test (see Supplementary methods). 
The T2 values were converted to F values (F2,46) and plotted. All ROI pairs from all 5 
patients were included in the test. The black line indicates significance level of P < 0.01, 
assuming independence between ROI-pairs. The F-spectrum significance for waking and 
REM sleep data dropped below P < 0.01 above 4 and 3 Hz, respectively, which 
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corresponds well with results shown in Figs. 2a & S4. The result for SWS ECoG data is 
noisier, which may be due to the strong presence of up-down states during SWS (see 
Supplementary Note 4 for detailed discussions). The lack of statistically significant result 
for < 4 Hz ECoG data from SWS in this analysis does not invalidate our conclusion that 
SCP shows a similar correlation structure to BOLD across all three arousal states, which 
is a convergent result from analyses using four different strategies (Figs. 2c, 4, 5, S6, S8). 
Nevertheless, the correspondence between SCP and BOLD correlation structures may be 
weaker in SWS compared to that during waking or REM sleep.  
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Supplementary Figure 6 BOLD and ECoG (< 0.5 Hz band, from all three arousal states) 
spatial correlation results obtained in all 5 patients. Relevant formulae are given in the 
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Methods section of the online pdf. For each patient and arousal state, spatial correlation 
grids are shown on top; each color-coded element corresponds to Ri, j

B:B , Ri, j
B:E , or Ri, j

E:E , 
where the superscript indicates modality pair (BOLD or < 0.5 Hz ECoG) and the 
subscript indexes seed electrode pair. The R values are arranged in blocks corresponding 
to modality and seed electrode type (sensorimotor (SM) or control (C)). Note the 
preponderance of positive within-modality ( Ri, j

B:B  and Ri, j
E:E ) as well as positive cross-

modality ( Ri, j
B:E ) spatial correlations when both seed electrodes are sensorimotor ( i, j ∈

sensorimotor; 4 left-most blocks). By distinction, comparing maps obtained with 
sensorimotor vs. control seed electrodes yielded spatial correlations that were either 
homogeneously near zero or a mixture of positive and negative values (4 right-most 
blocks). The bar graphs under the colored grid displays represent spatial correlations ( R 
values) averaged over various blocks. Thus, "BOLD-BOLD SM-SM" corresponds to the 
average over the set, {Rij

B :B , i, j ∈sensorimotor, i≠j}. "BOLD-ECoG SM-C" corresponds 
to the average over the sets, {Rij

B :E , i ∈sensorimotor, j ∈control} and {Rij
B :E , i ∈control,

j ∈  sensorimotor}. The number of bar graphs (6) is less than the number of blocks (8) 
because of partial redundancy in the grid displays. Error bars denote SEM. The asterisks 
denote significantly non-zero mean spatial correlations for both seed electrodes within 
the sensorimotor system (***: P < .0001; **: P < .001; *: P < .05, one-sample t-test). The 
over-bracketed P values indicate unpaired t-tests comparing seed electrodes within (SM-
SM) vs. across (SM-C) functional systems. The results obtained in Patient 1 using 
waking ECoG data are also shown in Main Text Fig. 5b. 
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Supplementary Figure 7 Control for the effect of inter-seed distance in spatial 
correlation analysis. Data are from Patient 2, ECoG signals are < 0.5 Hz from awake 
state. (a) Spatial correlations plotted against the distance between seed electrodes, all 
SM-SM (red) and SM-C (blue) seed electrode pairs are included. Spatial correlations 
were computed between two BOLD maps (left), a BOLD map and an ECoG map 
(middle), or two ECoG maps (right). (b) Format as in (a). Seed electrode pairs separated 
by < 2 cm or > 7.5 cm were excluded, so that the inter-seed distances in both SM-SM and 
SM-C groups range from 2 cm to 7.5 cm. (c) As in (b), except that the trend of distance 
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was taken out by a linear regression for each group (SM-SM and SM-C). (d) Data in (c) 
were subjected to a similar test as in Figs. 5b and S6. The result is very similar to that 
shown in Fig. S6 (Patient 2, awake ECoG). 
 
 
 
 

 
 
Supplementary Figure 8 Similarity of BOLD and ECoG (< 0.5 Hz band) covariance 
matrices assessed by means of eigenvector decomposition (see Supplementary methods).  
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(a) In each plot, the solid lines (left ordinate) show the fraction of ECoG variance 
captured by eigenvectors derived by diagonalization of the BOLD covariance matrix. In 
the present notation, the ordinate is φEi /S , where S = φEi

i
∑ and the abscissa is i where 

icorresponds to the BOLD covariance matrix eigenvalue ordering (greatest variance in 
first eigenvalue). Similarity of covariance structures is indicated by the decreasing trends 
of the plots. Lack of similarity would manifest as the absence of this relation between φEi 
and i. The variable range of i in the plots reflects the number of usable electrodes (n) in 
each patient. Statistical significance was assessed using the Spearman rank order 
correlation test, the results of which are shown in the insets. The dashed lines (right 
ordinate) are the integrated curves of the solid lines. Their locations above the diagonal 
reinforce the impression that eigenvectors with a smaller index value (i.e., accounting for 
more BOLD variance) accounts for more ECoG variance.  (b) For each patient, the 
Spearman rank order correlation values for ECoG data from each arousal state (from 
insets of panel a, shown as colored lines here) are compared to the distribution of those 
computed using shuffled ECoG data. The ordering of ECoG channels was shuffled 20 
times for data from each arousal state, thus, the distribution of shuffled data contains 60 
observations for each patient.  
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Supplementary Figure 9 Power spectra averaged over sensorimotor electrodes in 
wakefulness, SWS and REM. All results are from Patient 1, average reference recording. 
Spectra were averaged across data segments in the same arousal state. (a) Semi-log plot. 
(b) Log-log plot.  
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Supplementary Figure 10 Spatial correlations of BOLD and γ-BLP ECoG correlation 
maps obtained in Patient 1. Format as in Fig.S6 top panels. Note marked enhancement in 
BOLD-ECoG and ECoG-ECoG spatial correlations for both seed electrodes within the 
sensorimotor system (SM – SM) during REM. 
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CHAPTER IV: The temporal structures and functional significance of 

scale-free brain activity 

 

Summary 

The arrhythmic, scale-free brain activity, with a power spectrum following P ∝f-β 

and commonly referred to as “1/f noise”, is often discarded in electrophysiological 

research.  Here we show that it contains extensive nested frequencies with phase of 

slower activities modulating amplitude of faster activities in an upward progression 

across the frequency spectrum.  Importantly, the scale-free brain activity is modulated by 

task performance in a brain-network-specific fashion, and its power-law exponent β 

varies across brain regions, being largest in default network and visual cortex, and 

smallest in cerebellum, hippocampus and thalamus.  We further show that other scale-

free dynamics in nature, such as earth seismic waves and stock market fluctuations, also 

contain extensive nested frequencies, but their exact patterns differ from that of brain 

activity.  These results call attention to the scale-free brain activity, and strongly 

encourage future investigations on its fine spatiotemporal structures and functional 

significance.   

 

Introduction 

Since the invention of human electroencephalography (EEG), and Berger’s first 

demonstration of human occipital alpha rhythm (Berger, 1929), the search for brain 

rhythms has been a dominant theme not only in human EEG and later-developed animal 

local field potential (LFP) research, but also in routine clinical EEG practice.  Indeed, the 
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classical frequency bands in EEG – delta (1-3 Hz), theta (4-8 Hz), alpha (9-12 Hz), beta 

(12-30 Hz) and gamma (>30 Hz)1 – were demarcated based on the various oscillatory 

rhythms that appear conspicuously in the EEG traces from time to time, such as delta 

oscillation during sleep, theta oscillation under certain types of cognition, alpha 

oscillation during eye-closure, beta and gamma oscillations in activated states.  However, 

as pointed out by several pioneers in the field (Bullock et al., 1995; Bullock et al., 2003; 

Freeman and Zhai, 2009; Logothetis, 2002), arrhythmic brain activity also constitutes a 

significant part of EEG and LFP records, if not the major part, but much less is known 

about it. Recently, it was found that broadband field potentials recorded from the human 

brain are modulated by task performance and correlate with neuronal spiking activity 

(Manning et al., 2009; Miller et al., 2009).  Moreover, synchronization between different 

neuronal groups can occur not only by way of synchronized oscillations, but also within 

arrhythmic brain activity with no apparent periodicity (Eckhorn, 1994; Thivierge and 

Cisek, 2008).   

Viewed in the frequency domain, the temporal power spectrum of arrhythmic 

brain activity roughly follows a straight line when plotted in coordinates of log power vs. 

log frequency: log(P) ∝ -β log(f) or P ∝f-β(0<β<3).  This is called a “power-law” 

distribution, “scale-invariance” or “scale-free” dynamics, commonly referred to as “1/f 

noise” (note, however, that the exponent β for brain signals is not always in the vicinity 

of 1, see below).  Periodic brain oscillations appear as local peaks that rise above the 

                                                        
1 In this chapter, I use “delta”, “theta”, “alpha”, “beta”, and “gamma” to denote their 
respective frequency ranges, applied to both periodic oscillations and arrhythmic brain 
activity.  Although the word “oscillation” has often been used to refer to band-pass 
filtered arrhythmic brain activity, I herein use it exclusively to refer to periodic, rhythmic 
brain activities before artificial filtering. 
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power-law distribution in the power spectrum.  The scale-free brain activity (“1/f noise”) 

is invisible in many EEG or LFP studies, since power at each frequency is routinely 

normalized by its value during a pre-task baseline, effectively removing the presence of 

the “1/f noise”, or else the data is “pre-whitened” to remove the “1/f noise” and 

emphasize oscillations (e.g., (Buzsaki, 2006; Mitra and Pesaran, 1999)). The disregard of 

the “1/f noise” is partly due to its ubiquitous presence in nature, including earthquakes, 

solar flares, economics, evolution, ecology, epidemics, electronics, speech and music 

(Bak, 1996; Gisiger, 2001; Hsu and Hsu, 1991; Voss and Clarke, 1975), which often 

leads to doubts of any significance the “1/f noise” might have in the operations specific to 

the brain.  In addition, the possibility that “1/f noise” might originate from instrument 

noise (Zarahn et al., 1997) also deters the studying of it in relation to brain function.   

However, not only LFP, EEG and functional magnetic resonance imaging (fMRI) 

activities exhibit scale-free dynamics (Bullmore et al., 2004; Bullmore et al., 2001; 

Buzsaki, 2006; Freeman and Zhai, 2009; Linkenkaer-Hansen et al., 2001; Milstein et al., 

2009; Monto et al., 2008) but the speed of action potentials (Ward, 2002), the dynamics 

of neurotransmitter release (Lowen et al., 1997) and human cognition and behaviors 

(Gilden, 2001; Maylor et al., 2001; Ward, 2002) also follow a power-law distribution, 

which are inexplicable by instrument noise. Moreover, recent work suggested that 

spontaneous fluctuations in the low-frequency end of the “1/f noise”, termed infraslow 

fluctuations or slow cortical potentials, not only modulate trial-to-trial behavioral 

performance and the amount of higher-frequency activities ((Monto et al., 2008), for 

review see (He and Raichle, 2009)), but also correlate with fMRI signals (He et al., 

2008).   
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Therefore, to understand the arrhythmic, scale-free activity of the brain – the 

common “1/f noise” – seems critical if a full understanding of the brain’s operation is 

aimed for.  Unfortunately, existing studies on the full frequency spectrum of the “1/f 

noise” remain scarce (Buiatti et al., 2007; Freeman and Zhai, 2009; Lin et al., 2006a; 

Manning et al., 2009; Miller et al., 2007; Milstein et al., 2009), and they usually only 

characterize the gross properties of the “1/f noise” such as its power-law exponent or 

variance.  Many simulations of scale-free dynamics have been constructed (e.g., Bak, 

1996; de Arcangelis et al., 2006; De Los Rios and Zhang, 1999; Lin and Chen, 2005; 

Mandelbrot, 1999; Ward and Greenwood, 2007), but it remains to be seen if they 

describe the neurophysiological processes giving rise to the “1/f noise” in the brain.  

Notably, scale-free properties have recently been described in the amplitude and 

synchronization of oscillatory brain activity (Linkenkaer-Hansen et al., 2001; 

Linkenkaer-Hansen et al., 2004; Stam and de Bruin, 2004), and in the temporal and 

spatial distributions of negative LFP peaks (Plenz and Thiagarajan, 2007). Yet, these 

analyses do not directly address the scale-free dynamics so prevalent in the raw 

fluctuations of brain field potentials, and their relationships to the latter await future 

investigation.   

We investigated the fine temporal structures of arrhythmic, scale-free brain 

activity by using nested-frequency analysis.  Nested frequencies refer to a systematic 

relationship between the phase of a lower frequency and the amplitude of a higher 

frequency, and has been described between phase of theta and amplitude of gamma 

activity (Bragin et al., 1995; Buzsaki et al., 2003; Canolty et al., 2006; Lakatos et al., 

2005; Tort et al., 2008), and between phase of delta and sub-delta activity and amplitude 
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of higher frequencies (Lakatos et al., 2008; Monto et al., 2008; Vanhatalo et al., 2004). 

Here we show that the extent of nested frequencies is much broader than previously 

conceived, extending beyond the confinement of brain oscillations, and present within 

arrhythmic, scale-free brain activity.  These results suggest that scale-free brain activity 

contains a rich temporal organization.  We then provide data showing that the power-law 

exponent of scale-free brain activity varies across brain regions and is modulated by task 

performance.  Lastly, we compared scale-free brain activity with other scale-free 

dynamics in nature including earth seismic waves and stock market fluctuations, as well 

as simulated time series.  Although all these dynamics follow a power-law distribution, 

the fine temporal structures present in them differ across systems, likely a manifestation 

of the different underlying generating mechanisms.  These results call attention to the “1/f 

noise” in the brain, and strongly encourage future studies on the fine spatiotemporal 

patterns within and functional meanings of the arrhythmic brain activity. 

 

Methods 

Electrocorticography (ECoG) Data Collection 

Subjects 

Eight patients undergoing surgical treatment for intractable epilepsy participated 

in the study.  To localize epileptogenic zones, patients underwent a craniotomy for 

subdural placement of electrode grids and strips followed by 1-2 weeks of continuous 

video and ECoG monitoring.  The placement of the electrodes and the duration of 

monitoring were determined entirely by clinical considerations.  All patients gave 

informed consent according to the procedures established by Washington University 
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Institutional Review Board.  Exclusion criteria were: (1) widespread interictal spike-and-

wave discharges; (2) age < 8 years old; (3) severely impaired cognitive capability; (4) 

diffuse brain tissue abnormality, e.g., tuberous sclerosis, cerebral palsy; (4) limited 

electrode coverage. See Table S1 for demographic, clinical and data collection 

information.  

Recording apparatus 

The electrode arrays (typically 8×8, 4×5 or 2×5) and strips (typically 1×6 or 1×8) 

consisted of platinum electrodes of 4-mm diameter (2.3 mm exposed) with a center-to-

center distance of 10 mm between adjacent electrodes (AD-TECH Medical Instrument 

Corporation, Racine WI).  ECoG signals were split and sent to both the clinical EEG 

system and a research EEG system (SynAmp2, Neuroscan, DC-coupled recording with no 

low- or high-pass filtering).  All data in the present study were from the research 

amplifier. Sampling frequencies for each patient (ranging from 500 to 2000 Hz) are listed 

in Table S1.  Noisy electrodes and electrodes overlying pathologic tissue (including both 

the primary epileptogenic zone and areas showing active interictal discharges) were 

eliminated from all analyses.  The remaining electrodes were re-referenced to the 

common average before further analyses.  Number of usable electrodes in each patient 

ranged from 28 to 64 (see Table S1).  

Spontaneous ECoG data collection 

In patients #1 – #5, artifact-free, interictal-spike-free ECoG data were collected 

from both wakefulness and slow-wave sleep (SWS, sleep stages 3/4).  Arousal state 

determination was based on the conjunction of ECoG and video recordings.  Total 

lengths of data collected for each patient are listed in Table S1.  In Patient #4, 30 min of 
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rapid-eye-movement (REM) sleep data was also collected.  REM sleep was identified 

based on a conjunction of active eye movements in the video record and the 

electrooculogram (EOG).   

Task ECoG data collection 

Patients #3, #5, #6, #7 and #8 also undertook visuomotor task performance.  

There were two task conditions, both of which involved pressing a button.  In the first 

task condition (“cued”), subjects were instructed to fixate on a white crosshair in the 

center of a black background, presented on a laptop screen.  The cross hair occasionally 

changed from white to dark-gray for a period of 250 ms. Subjects were instructed to press 

a button with their left or right index finger as quickly as possible when they saw the 

crosshair dim.  Both the button-press force and reaction time were recorded (but not used 

in the present analyses).  The inter-trial interval (ITI) varied randomly between 2 and 20 

seconds, with an average ITI of 6.1 sec.  Each task block contained 50 button presses, and 

lasted about 5 min. The left and right hand was used in different task blocks.  In the 

second task condition (“self-paced”), the same white crosshair was presented in the 

center of a black background, which the subject was to fixate on, but this time the 

crosshair lasted without any change for the duration of a task block (5 min).  Subjects 

were instructed to press the button with left or right index finger at their own pace, and to 

separate adjacent button presses by a few seconds.  They were told to avoid rhythms and 

avoid counting either the interval between successive button presses or the number of 

button presses.  Button press force and the timing of button presses were recorded but not 

used in the current analyses. Again, the left and right hand was used in different task 
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blocks. Subjects practiced each task condition for a few trials before the recording session 

began.  The number of task blocks completed by each subject is listed in Table S1.   

 

Functional Magnetic Resonance Imaging (fMRI) Data Collection and Pre-

processing 

fMRI data were from Fox et al. (2007).  Blood-oxygen-level dependent (BOLD) 

fMRI data (4 x 4 x 4 mm voxels, TE 25 ms, TR 2.16 s) were acquired in 17 normal right-

handed young adults (9 females, age 18-27 years) in a 3T Siemens Allegra MR scanner.  

Each subject completed 4 resting-state fMRI runs, each 194 frames (7 min) in duration 

(the first 4 frames were discarded in analyses). Subjects were instructed to fixate at a 

white crosshair presented in the center of a black screen, remain still, and to not fall 

asleep.  Anatomical MRI included a high-resolution (1 x 1 x 1.25 mm) sagittal, T1-

weighted MP-RAGE (TR =2.1 s, TE = 3.93 ms, flip angle = 7°) and a T2 weighted fast 

spin echo scan. fMRI preprocessing steps included, 1st, compensation of systematic, 

slice-dependent time shifts; 2nd, elimination of systematic odd-even slice intensity 

differences due to interleaved acquisition; 3rd, rigid body correction for inter-frame head 

motion within and across runs, and 4th, intensity scaling to a yield a whole brain mode 

value of 1000 (with a single scaling factor for all voxels). Atlas registration was achieved 

by computing affine transforms connecting the fMRI run first frame (averaged over all 

runs after cross-run realignment) with the T2- and T1-weighted structural images 

(Ojemann et al., 1997). Our atlas representative template includes MP-RAGE data from 

12 normal individuals and was made to conform to the 1988 Talairach atlas (Talairach 
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and Tournoux, 1988).  Each fMRI run was transformed to atlas space and resampled to 3 

mm cubic voxels.  Linear trend was removed before calculating power spectrum.  

 

Seismic Wave Data Collection 

Continuous natural seismic wave data (sampling rate 100 Hz) were collected by 

University of Nevada, Reno seismic network, and archived and distributed by Northern 

California Earthquake Data Center (NCEDC) (http://www.ncedc.org/).  The data 

analyzed in the current study were from HHE channel, BEK station, NN network 

(Latitude 39.87°, Longitude -120.36°, Elevation 1743.0m), collected by CMG-40 

seismometers, recorded by RefTeck digitizers.  Data were recorded from Jan 1 to Apr 28, 

2005.  

 

Stock Market Data Collection 

The historical daily prices of Dow-Jones Industrial Average index from Oct 1, 

1929 to Apr 9, 2009 were downloaded from Yahoo Finance website: 

(http://finance.yahoo.com/q/hp?s=%5EDJI).  Daily close price adjusted for dividends and 

splits was used for the analyses.  

 

Power Spectra of ECoG, Seismic, Stock and Simulated signals 

Power spectra were computed using Fast Fourier Transform (FFT) applied to 

half-overlapping, Hanning windows, and averaged across successive windows.  Window 

length was 300 sec for ECoG and simulated data, 8 sec for earth seismic data (the < 0.1 
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Hz frequency range of seismic data was attenuated by a highpass filter in the 

seismometer), and 1000 days for stock market data.   

 

Power Spectra of fMRI signal  

A set of 31 regions of interest (ROIs) were obtained from previous activation 

studies in the laboratory or from published fMRI activation studies.  The anatomical 

locations, coordinates and references of these ROIs are listed in Table S2.  The regions 

were grouped into 5 brain networks and a separate group consisting regions outside the 

neocortex based on their known anatomical/functional properties.  The fMRI signal time 

course from each ROI was extracted for each subject and fMRI run.  The time course 

from each run was subjected to Fourier analysis to yield the power spectrum, and then 

averaged across runs.  The average power spectrum for each ROI was obtained by 

averaging across subjects, and homologous ROIs were averaged together (Fig. 5A).  

Finally, the power-law exponent of each average power spectrum was obtained by using 

a least squares fit (values in Table S2), which was then entered into an ANOVA with 

brain network as the main factor (Fig. 5B).   

 

Cross-frequency phase-amplitude coupling analysis 

For each frequency pair fp and fA, time series x(t) (brain, seismic, economic 

activity or simulated signal) was filtered in the corresponding frequency bins| fp| and |fA| 

using a 3rd-order symmetrical butterworth filter after linear trend removal, to obtain 

filtered time series xfp(t) and xfA(t).  Windows of 600-sec length were used for filtering 

ECoG data and simulated time series, windows of 300-sec length were used for filtering 
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seismic wave data, and windows of 1000-day length used for stock market data.  We also 

performed the same analyses using different window lengths (including 100, 300, 1200, 

3000 sec for ECoG data).  Results described in our paper did not depend on window 

length.  

Next, a standard Hilbert transform was used to obtain an instantaneous phase time 

series for xfp(t), denoted ϕfp(t), and an instantaneous amplitude time series for xfA(t), 

denoted AfA(t).  Then the values of ϕfp(t) were binned into twenty 0.1π intervals from –π 

to π, and the concurrent AfA(t) values were averaged within each phase bin (as shown in 

Fig. 2D).  We denote as )( jA
fp

fA ϕ  the mean AfA value at phase bin ϕfp(j).  

We then apply an inverted entropy measure to obtain a modulation index (MI) 

which describes the deviation of )( jA
fp

fA ϕ  from a uniform distribution (Tort et al., 

2008): MI=
Hmax −H

Hmax

.  H, the entropy of )( jA
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.  Hmax is the maximum possible entropy when the distribution is 

uniform, in which case pj = 1/20, hence Hmax= log20. 

Therefore, MI represents the dependence of AfA(t) on ϕfp(t), i.e., how strongly 

phase of fp modulates amplitude of fA.  To assess the statistical significance of MI, it was 

compared against the distribution of shuffled data.  Shuffling was done by cutting the 

time series ϕfp(t) into 5 equal-length segments, and then shuffling these 5 segments (with 
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no segment remaining at the original place), thereby yielding 44 shuffled time seriesϕ

fp(t)shuffle in total. This shuffling procedure preserves the temporal structure of the original 

signal, and therefore is a rigorous test that is less prone to false positives (Hurtado et al., 

2004).  Then the inverted entropy measure as described above was computed using the 44

ϕfp(t)shuffletime series and the original AfA(t) to produce MIshuffle.   

Finally, the original MI was compared against the mean and s.d. of MIshuffle, 

denoted as MIshuffle  and σ(MIshuffle ) respectively, to obtain the modulation index (MI Z-

score):  

MIZ−score=
MI−MIshuffle

σ(MIshuffle)
. 

 

Phase-amplitude coupling was computed for every frequency pair in a 2-D frequency 

space.  For ECoG data and simulated data, 1-Hz-width frequency bins centered at 1 – 20 

Hz in 1-Hz steps were used for phase extraction (plotted on x-axis), 4-Hz-width 

frequency bins centered at 5 – 200 Hz in 5-Hz steps were used for amplitude extraction 

(y-axis). For seismic wave data, 1-Hz-width frequency bins centered at 1 – 10 Hz in 1-Hz 

steps were used for phase extraction, 2-Hz-width bins centered at 2 – 36 Hz in 2-Hz steps 

were used for amplitude extraction.  For Dow-Jones Index (here frequency is cycle/day, 

c/d), 0.004-c/d-width frequency bins centered at 0.005 – 0.05 c/d in 0.005 c/d steps were 

used for phase extraction, 0.02-c/d-width bins centered at 0.02 – 0.48 c/d in 0.02-c/d 

steps were used for amplitude extraction.   

 

All analyses were performed using custom written code in C or Matlab.  
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Results 

Power Spectra of Electrical Field Potentials of the Brain  

We collected spontaneous electrocorticography (ECoG, i.e., invasive EEG) data 

from five patients (Patients #1 - #5, Table S1) undergoing surgical treatment for drug-

resistant epilepsy, in both quiet wakefulness and slow-wave sleep (SWS, sleep stages 

3/4).  Length of data collected in each arousal state ranged from 12 to 83 min.  In Patient 

#4, 30 min of rapid-eye-movement (REM) sleep data was also collected.  Electrode 

locations documented by plain X-ray pictures are shown in Fig. 1F.  For details of 

clinical and data collection information see Table S1.   

Power spectra of ECoG signals, plotted in log-log coordinates (Fig. 1 A-E, top 

graphs), roughly followed a straight line, with local peaks corresponding to well-known 

brain oscillations rising above this line.  These oscillations included the slow oscillation 

(~0.8 Hz) and sleep spindles (~12 Hz) during SWS, and the theta (~7-8 Hz), alpha (~10 

Hz) and beta (~20 Hz) oscillations in the awake state.  Interestingly, although the slow 

oscillation (i.e., “up-and-down states”) is traditionally considered to be absent in 

wakefulness or REM sleep, an oscillatory peak around its frequency (~1 Hz) is weakly 

present in the waking and REM-sleep power spectra, consistent with recent reports of its 

presence in wakefulness when sleep pressure increases (Vyazovskiy et al., 2009) and its 

slightly higher frequency in wakefulness (~1 Hz) compared to SWS (~0.8 Hz) (Petersen 

et al., 2003).  Multiple brain oscillations notwithstanding, the vast majority of power (> 

90%) in the ECoG signals is accounted for by the power-law distribution representing the 

scale-free brain activity (i.e., “1/f noise”).   
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Figure 1 (A-E)Power spectra and nested frequencies in spontaneous ECoG signals 
recorded from different arousal states in patients #1 – #5.The top graphs show the power 
spectra for all electrodes plotted in a log-log plot, with the thick black line being the 
average across all electrodes. The low-frequency end (<0.1 Hz) of the average power 
spectrum was fitted with a power-law function P(f) ∝ 1/f β. The obtained exponent βis 
shown in each graph. The bottom graphs show the percentage of electrodes with 
significant phase-to-amplitude cross-frequency coupling.  Phase was extracted from 1-
Hz-width bands with center frequencies from 1 to 20 Hz in 1-Hz steps.  Amplitude was 
extracted from 5-Hz-width bands with center frequencies from 5 to 200 Hz in 5-Hz steps.  
To assess the strength of cross-frequency coupling, a modulation index (MI) was 
computed for each electrode (see experimental procedures) and then compared with 
shuffled data to obtain a MI Z-score.  The percentage of electrodes with a significant MI 
Z-score (P < 0.05 after Bonferroni correction) was plotted as color for each frequency 
pair. (F) Electrode locations documented by plain X-ray pictures.  
 
 

To estimate the power-law exponent, we fitted the low-frequency end (<0.1 Hz) 

of the power spectrum with a power-law function log(P) ∝ -β log(f).  The power-law 

exponents β (shown in Fig. 1) ranged from 1.1 to 2.7, with a mean of 1.84.  The average 

exponent during wakefulness and SWS was 2.13 and 1.55 respectively (P < 0.05 by 

paired t-test). We used the low-frequency end for obtaining the power-law exponent, 
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recommended by (Eke et al., 2002), because it is less contaminated by higher-frequency 

oscillatory activities and aliasing effect.  Since there is no current consensus in physics 

literature on the procedure for estimating the power-law exponent (e.g., (Clauset et al., 

2009)), the values of these exponents should be taken as approximates only.  

Nonetheless, they correspond very well with previous reports on the power-law exponent 

of LFP or ECoG activity (Freeman and Zhai, 2009; Miller et al., 2007; Milstein et al., 

2009). 

 

The Widespread Presence of Nested Frequencies 

To investigate temporal structures within spontaneous ECoG signals, we 

examined nested frequency patterns in each electrode.  For a pair of frequencies, 

instantaneous phase and amplitude was extracted for the lower and higher frequency 

respectively.  The lower-frequency phase at all samples was divided into 20 bins, and the 

concurrent higher-frequency amplitude was averaged within each bin.  The resultant 

curve shows the dependency of the higher-frequency amplitude on lower-frequency 

phase, and its deviation from a uniform distribution was evaluated by using an inverted 

entropy measurement to yield a modulation index (MI) (Tort et al., 2008).  The MI was 

compared with shuffled data to obtain a MI Z-score indexing the strength of cross-

frequency phase-amplitude coupling.  For further details on the analytical steps see 

Experimental Procedures.   

Cross-frequency phase-amplitude coupling was investigated in a 2-D frequency 

space: phase was extracted from each 1-Hz-width band centered at 1, 2 … 20 Hz, and 

amplitude was extracted from each 5-Hz-width band centered at 5, 10 … 200 Hz.  For 
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each frequency pair, the percentage of electrodes with a significant MI Z-score (P<0.05 

after Bonferroni correction) is plotted as color in Fig. 1 A-E (bottom graphs).  As can be 

seen from the figure, during wakefulness, extensive nested frequencies are present in 

every patient in the majority of electrodes; the extent of nested frequencies decreases 

during SWS, but remains highly robust across wide frequency ranges in patients #3-#5.  

Such widespread presence of nested frequencies is much more extensive than previously 

conceived, and is difficult to reconcile with a notion picturing nested frequencies only 

within the framework of periodic brain oscillations.  For example, periodic theta 

oscillation is largely absent during SWS in both human EEG and animal LFP recordings 

(Chrobak and Buzsaki, 1998; Lin et al., 2006b; Nishida et al., 2004), consistent with the 

absence of local peak in theta frequency range in the power spectra of our SWS data (Fig. 

1A-E, top).  Nonetheless, theta-phase modulation of higher frequencies is prominent 

during SWS.  Hence, it appears that to explain such widespread presence of nested 

frequencies, the arrhythmic brain activity must be invoked.   

 

Power-law Distribution Is Not an Artifact of Averaging 

As mentioned in INTRODUCTION, brain oscillations and “1/f noise” have so far 

remained two largely separate fields in electrophysiology research.  One important, 

unresolved question concerns whether they pertain to separate physiological processes 

with different underlying mechanisms (e.g., (Bullock et al., 2003; Freeman and Zhai, 

2009)), or alternatively, the “1/f noise” is the result of averaging across time of many 

different, transient and recurrent oscillations at different frequencies and with different 

amplitudes (e.g., (Buzsaki, 2006)).  
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To investigate this issue, we randomly picked three electrodes (from Patient #3), 

two with and one without rhythmic oscillations.  As shown by the power spectra 

averaged across the entire awake record (Fig. 2A left), electrode #33 contains oscillations 

at ~1.5 Hz and at ~20 Hz, electrode #43 contains oscillations at ~7-8 Hz and ~20 Hz, and 

electrode #64 contains no periodic oscillations but only arrhythmic, scale-free activity.  

This impression from the power spectra is confirmed by visually inspecting the raw 

ECoG records.  Two randomly selected 20-second segments of raw data are shown in 

Fig. 2C.  The power spectra of these two short data segments (Fig. 2A middle and right) 

recapitulate the power spectra averaged over the entire 83-min record: Electrode #33 has 

oscillatory peaks between 1 and 2 Hz, and at ~20 Hz; electrode #43 has oscillatory peaks 

at ~7-8 Hz and ~20 Hz; and electrode #64 has no discernible oscillatory peak.  The 

observation that the overall shape of the power spectrum – its power-law distribution and 

the presence or absence of oscillatory peaks – appears to be stable over time was obtained 

in many electrodes.   

 



  150

 
Figure 2 Stability of power-law distribution and nested frequency patterns. (A) Power 
spectra from three example electrodes in Patient #3. The left, middle and right columns 
are from the entire awake record (83 min total), and two randomly selected 20-sec 
segments, respectively.  Note the difference in scales between left vs. middle and right 
graphs.  (B) Phase-amplitude cross-frequency coupling for each of the three electrodes 
computed from the entire awake record.  MI Z-score was plotted as color for each 
frequency pair.  Only significant values (P < 0.05 after Bonferroni correction) are shown.  
(C) The raw data records for the two 20-sec segments.  The whole segment was broken 
into half, 0-10 sec shown in the top and 10-20 sec shown in the bottom.  Note the 
presence of ~1.5 Hz oscillation in electrode #33, and ~20 Hz oscillations in both 
electrodes #33 and #43, corresponding to the peaks in power spectra as shown in (A).  
The absence of oscillation in electrode #64 is consistent with the power-law distribution 
of its power spectrum without notable peaks.  (D) Nested-frequency patterns for selected 
frequency pairs from electrode #64.  Amplitude of the higher frequencies (5-Hz-width 
bands centered at 25, 50, 100, 150, 200 Hz) was averaged at different phases of the lower 
frequencies (1-Hz-width bands centered at 1, 6, 11, 16 Hz) and plotted.  Phase ±π 
corresponds to the trough (surface negativity), and phase 0 corresponds to the peak 
(surface positivity) of the lower-frequency fluctuation.  Nested frequency patterns from 
the two 20-sec segments (middle and right) are very similar to that from the entire awake 
record (left).  
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Therefore, the power-law distribution of the ECoG power spectrum does not seem 

to be an artifact of averaging across time of many independent, periodic oscillations, but 

rather appears to be the direct result of the presence of arrhythmic, scale-free brain 

activity.  One remaining possibility is that there are hidden rhythmic activities at finer 

spatial resolutions than that can be observed with the ECoG electrodes.  However, 

arrhythmic activity is present at every spatial scale in the brain: The power spectrum of 

spontaneous LFP activity also follows a power-law distribution (Leopold et al., 2003; 

Milstein et al., 2009).  Moreover, cortical pyramidal neurons’ spikes are usually non-

rhythmic ((Ermentrout et al., 2008; Faisal et al., 2008; Freeman and Zhai, 2009; Koch, 

1997; Thivierge and Cisek, 2008) but see (Maimon and Assad, 2009)) and “1/f noise” has 

been observed in neuronal spike trains (Gisiger, 2001; Gruneis et al., 1989; Takahashi et 

al., 2004; Yamamoto, 1991).   

 

Stability of Nested Frequencies within Scale-Free Brain Activity 

Next we investigated whether electrodes with only scale-free brain activity but no 

rhythmic oscillations also contained nested frequencies.  Nested frequencies in the above 

three electrodes were computed in the same 2-D frequency space as shown in Fig. 1A-E.  

Significant cross-frequency coupling across wide frequency ranges were found in every 

electrode (Fig. 2B), including electrode #64, which contained no discernible periodic 

oscillations.   

To examine the stability of nested frequency patterns within scale-free brain 

activity, for selected frequency pairs from electrode #64, we plotted the higher-frequency 

amplitude averaged at different phases of the lower frequency.  Amplitude of 5-Hz-width 
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bands centered at 25, 50, 100, 150, 200 Hz was averaged at different phases of lower-

frequency bands (1-Hz-width) centered at 1, 6, 11, 16 Hz and plotted in Fig. 2D.  This 

analysis was repeated for the entire awake record (Fig. 2D, left) and the two 20-sec 

segments shown in Fig. 2C (Fig. 2D, middle and right).  The nested frequency patterns 

from the two short data segments are each similar to the pattern from the entire record, 

suggesting that the nested frequencies present within scale-free brain activity appear to be 

stable over time. Similar results from a few other representative electrodes from each 

patient are shown in Fig. S1.  Importantly, the pattern of nested frequencies varied across 

electrodes, despite that all of them contained mainly arrhythmic brain activity (Fig. S1).    

 

Nested Frequency Patterns Across Brain Surface 

To characterize nested frequency patterns across electrodes, for the same 

frequency pairs as in Fig. 2D, we obtained the MI Z-score, which indexes the strength of 

cross-frequency phase-amplitude coupling, for each of the 259 electrodes from all five 

patients.  Averaged across the 20 frequency pairs, 80% and 65% electrodes had a 

significant MI Z-score in wakefulness and SWS respectively. For each electrode and 

frequency pair we also determined the preferred phase of the lower frequency, which 

denotes the phase of the lower frequency fluctuation at which the higher frequency has 

the largest amplitude.  

Plotting the MI Z-score against preferred phase on an electrode-by-electrode basis 

for each patient and frequency pair, we found that the preferred phase tends to cluster 

around phase 0 and phase ±π, that is, the peak and trough of the lower-frequency 

fluctuation respectively (see Fig. 3A for results from Patients #3&4, Fig. S2 for Patients 
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#1&5, Patient #2 was not used in this analysis due to lesser amount of electrodes).  This 

raised the question of whether the electrodes with preferred phase around 0 and those 

with preferred phase around ±π situated in different cortical regions.  Thus, for each 

frequency pair, we plotted the preferred phase of the lower frequency as color on a 2-D 

representation of the electrode grid (Patient #3 in Fig. 3B, Patients #1, 4&5 in Fig. S3).  

Indeed, electrodes with preferred phase around 0 and those with preferred phase 

around±π formed largely separate clusters, which to a rough degree respected cortical 

anatomy such as the location of Sylvian fissure and central sulcus (marked in Fig. 3B).  

Moreover, these spatial patterns were relatively stable across arousal states.   

It should be noted that the results of this analysis were contributed by both scale-

free brain activity and periodic brain oscillations, because, unlike in Fig. 2, the 

spontaneous ECoG signals from all electrodes were used.  When the periodic brain 

oscillations and scale-free brain activity are already mixed in collected data, as is the case 

for many electrodes in our recordings, there are no a posteriori mathematical tools to 

separate them while preserving their respective biologically meaningful phases. The 

influence of brain oscillations on the results in Fig. 3 can be most clearly seen in 1-Hz-

phase modulation of higher frequency amplitudes (the leftmost column in each sub-

panel).  During wakefulness, the preferred 1-Hz phase is a bimodal distribution, clustered 

around both 0 and±π; however, during SWS it becomes a unimodal distribution with 

most electrodes having their preferred phase around 0.  This is in full accordance with 

known neurophysiology: during SWS, the slow oscillation at around 1 Hz becomes very 

prominent, which modulates higher frequencies strongly.  The surface positive (phase-0) 
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ECoG activity at ~1 Hz corresponds to the intracellular “up-state”, during which higher-

frequency activities are dramatically increased (Vyazovskiy et al., 2009).   

 
Figure 3 (A) Nested frequency patterns from two example patients, #3 and #4, with 2 
and 3 arousal states each. Phase was extracted from 1-Hz-width bands centered at 1, 6, 
11, and 16 Hz.  Amplitude was extracted from 5-Hz-width bands centered at 25, 50, 100, 
150, 200 Hz.  For each phase-amplitude frequency pair, the subplot shows a scatter-plot 
of all electrodes, each represented by one dot.  The ordinate value shows the cross-
frequency coupling strength as indexed by MI Z-score.  The red horizontal line indicates 
significance level (P < 0.05 after Bonferroni correction).  The abscissa value shows the 
preferred phase of the lower frequency, i.e., the phase of the lower-frequency fluctuation 
at which the amplitude of the higher frequency is the largest.  (B) For Patient #3, the 
preferred phase for each frequency pair in (A) and each electrode are plotted as color on a 
2-D representation of the 8 ×8 electrode grid.  The orientation and location of this grid on 
the cortical surface is shown in the top diagram.  The six white cells in the grid are bad 
electrodes that have been eliminated from all analyses.  The approximate locations of the 
central sulcus (CS) and the sylvian fissure (SF) are denoted on the bottom left grid.  
 
 
 
Task Modulation of Scale-Free Brain Activity 

We tested whether scale-free brain activity has any functional significance by 

recording ECoG signals during both quiet wakefulness and task performance in Patients 

#3 & #5 and three additional subjects (#6-#8, see Table S1).  The task included a cued 

button press condition and a self-paced button press condition. In the cued condition, a 
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visual cue prompted the subject to press a button as soon as they saw the cue, the inter-

trial interval varied randomly between 2 and 20 seconds (mean 6.1 sec).  In the self-paced 

condition, the subject was instructed to press the button at their own pace, separating 

adjacent button presses by a few seconds but to avoid either counting or regular rhythms 

(which could entrain scale-free brain activity to oscillations, see, e.g., (Elbert et al., 1991; 

Lakatos et al., 2008)).  The button press was performed by either the left or right index 

finger, corresponding to either the contralateral or ipsilateral hand, as the electrodes 

covered only one hemisphere in each patient. 

We searched blindly for electrodes whose power spectrum was significantly 

altered by task performance.  Significant deviation of power-law exponent during task 

from that during rest was found in 11 electrodes, including four over hand motor area, 

one over the lower motor cortex (representation of tongue/face), three over premotor 

area, one over Broca’s area, one over lateral occipital cortex, and one over lateral 

temporal lobe (Fig. 4 A-C & Fig. S4).  All five electrodes over motor cortex were 

confirmed by cortical stimulation as part of patients’ routine clinical care.  Compared to 

rest, the power-law exponent of all these electrodes decreased during all four trial types, 

suggesting that scale-free brain activity is modulated by task performance.  Interestingly, 

there was no systematic difference between the four trial types.   
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Figure 4 Changes of power-law distribution during task. (A-C) Power-law exponent 
changes during task performance in electrodes over task-relevant brain areas. The task 
consisted of a 2 × 2 design: visual-cued button press (cued) or self-paced button press 
(selfpaced); and the button press was performed by either the left (LH) or right (RH) 
index finger.  Six example electrodes from three patients are shown.  Five additional 
electrodes with significant alteration of power spectrum during task are shown in Fig. S4.  
Significance levels of the difference of power-law exponent between rest and task 
conditions are indicated in the graphs (t-tests).  In Pt #5, SWS power spectrum was 
presented for comparison, but not used for statistical analysis.  (D) Emergence of an 
oscillation from scale-free brain activity during task performance.  Results are from 
electrode #64 in Pt #3, same as electrode #64 in Fig. 2.Left: Power spectra from the 
spontaneous awake state (black), SWS (orange), and four trial types of the task.  An 
oscillatory peak at ~8 Hz emerges during all four task conditions (blue arrow). Top right: 
Randomly selected 20-sec raw data record during task performance. The presence of ~8 
Hz oscillation is readily seen (arrows).  Bottom right: Nested-frequency pattern for 
selected frequency pairs during task-performance (averaged across all task blocks), which 
are very similar to those during spontaneous awake state (see Fig. 2D).  The location of 
all electrodes are shown by X-ray pictures (A&B), reconstructed image from anatomical 
MRI and CT scan (C) and clinical diagram (D).  The electrodes whose power spectra are 
shown are indicated by red and yellow arrows.   
 

In one of the electrodes that contained only scale-free brain activity spontaneously 

(electrode #64 in Pt #3, same as #64 in Fig. 2), we found an oscillation at ~8 Hz emerges 

during task performance, in all four trial types.  This oscillatory activity can be seen in 

both the power spectrum and the raw data records (Fig. 4D).  Nonetheless, the nested 

frequency patterns did not change (compare Fig. 4D bottom right graph to Fig. 2D, and 
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see Fig. S5 for 8-Hz phase modulation of higher frequencies during rest and task). Since 

our task contained no rhythmic structure, the emergence of this 8-Hz oscillation was not a 

result of entrainment by external stimuli, but rather reflected intrinsic properties of the 

underlying neural network.   

 

Spontaneous fMRI Signal is also Scale-Free, and its Power-Law Exponent Varies 

Across Brain Regions 

Next we tested whether the power-law exponent of scale-free brain activity was 

the same across brain regions.  For this we utilized fMRI, which provides whole brain 

coverage, in contrast to the limited cortical surface coverage of ECoG electrodes.  

Resting-state fMRI (with visual fixation) was acquired in 17 consenting healthy 

volunteers in a 3T scanner.  Each subject completed 4 fMRI runs, each run lasted 7 min.   

A set of 31 regions of interest (ROIs) were obtained from previous works by the 

authors or published articles (see Table S2), among which there were 10 pairs of 

homologous brain regions.  Other than three ROIs located outside the neocortex – 

hippocampus, cerebellum and thalamus, the remaining regions resided in five known 

brain networks (attention, default, motor, saliency, and visual) (Fox and Raichle, 2007).   

For each ROI, the fMRI signal from each run was subjected to Fourier analysis to 

yield the power spectrum, which was then averaged across runs and across subjects, and 

power spectra from homologous brain regions were averaged together.  The resultant 

power spectra, plotted in log-log coordinates in Fig. 5A, suggested that the spontaneous 

fMRI signal is also scale-free.  The power-law exponents of the fMRI signals, obtained 

by a least squares fit, are listed in Table S2, with a mean of 0.69, which differed 
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significantly from the power-law exponents of ECoG signals (mean 1.84) (P < 0.0001).  

We note that the power-law exponent of ECoG signals was obtained from the < 0.1 Hz 

range, similar to the frequency range of the fMRI signal, and this low-frequency range of 

the ECoG signal, the slow cortical potential, has been shown to be a correlate of the fMRI 

signal (He and Raichle, 2009; He et al., 2008).  Hence, the difference between ECoG and 

fMRI signal power-law exponent is curious, and its origin warrants future investigation 

(one potential factor being the constraints imposed by the neurovascular coupling 

mechanisms).   

Intriguingly, the power-law exponent of the fMRI signal was found to differ 

between brain networks.  The visual regions, the default network and the dorsal anterior 

cingulate cortex (dACC) had the steepest power spectra, characterized by the largest 

power-law exponent.  On the contrary, the cerebellum, thalamus and hippocampus had 

the shallowest power spectra, characterized by the smallest power-law exponent.  The 

motor and attention regions were in between.  An ANOVA suggested that the effect of 

network on power-law exponent was highly significant (F5,15 = 5.05, P = 0.006).  In 

contrast, when the variances of the fMRI signal (see Table S2) instead of power-law 

exponents were entered into the ANOVA, no significant network effect was found.  It is 

worth noting that the small power-law exponents of the cerebellum, thalamus and 

hippocampus reflected a proportionally smaller amount of low-frequency activity as 

compared to the neocortex, consistent with previous neurophysiological observations and 

their different anatomical structures (Bullock and Basar, 1988; He and Raichle, 2009).  
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Figure 5 Power-law distribution of spontaneous fMRI signal.  fMRI signal power 
spectrum was computed for 31 brain regions (10 pairs of homologous regions were each 
averaged together, for details see Table S2) in a resting-state fMRI data set from 17 
young healthy volunteers.  (A) Power spectrum (normalized by total variance) was 
averaged across all subjects for each brain region and plotted in a log-log plot.  (B) Each 
power spectrum in (A) was fitted with a power-law function P(f) ∝ 1/f β.  The exponent β 
was then averaged across brain regions in the same network (for mapping from region to 
network see Table S2).  Error bars denote S.E.M.  The two regions belonging to the 
saliency network, R FI and dACC, were plotted separately for visualization, given the 
wide difference between their exponents.  The non-neocortical group includes the 
cerebellum, hippocampus and thalamus.  The effect of network was highly significant 
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(F5,15 = 5.05, P = 0.006).  Using Tukey/Kramer post-hoc test, significant differences were 
found between the default network and the non-neocortical group, and between the visual 
and non-neocortical regions.   
 
 
 
Control Recordings 

Because fluctuations of resistivity in electronic conducting materials can also 

exhibit “1/f noise” (Weissman, 1988), it is important to demonstrate that our data were 

not contributed by instrument noise.  Therefore, we conducted a dummy ECoG recording 

in a standard epilepsy in-patient monitoring room without the presence of a patient.  Two 

types of recordings were performed over a duration of 46 min: in the first, a resistor was 

connected into the amplifier to record the internal noise in the recording system; in the 

second the circuit was left open to record the noise pattern in the room.  The power 

spectrum from neither recording showed a power-law distribution (Fig. 7A).  Our fMRI 

data were previously published in (Fox et al., 2007). In this study the authors acquired 

fMRI signals from a water phantom in the same scanner, the power spectrum of which 

was close to white noise (see Fig. S4 in (Fox et al., 2007)), which differs significantly 

from the power spectrum of fMRI signals recorded from the brain (see Fig. 5A herein and 

Fig. S4 in (Fox et al., 2007)).  

 

Scale-Free Dynamics and Nested Frequencies in Earth Seismic Waves and Stock 

Market Fluctuations 

The above results showing nested frequencies in brain ECoG activity raise the 

following question: Since the brain and many other natural processes all exhibit scale-

free dynamics, and nested frequencies are present in brain activity, do other natural 
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processes that are characterized by “1/f noise” also contain nested frequencies?  Hence, 

we conducted nested frequency analysis on spontaneous earth seismic waves (collected 

over 4 months) and the fluctuations of daily close price of Dow-Jones Industrial Average 

Index (collected over 80 years).  Both earth seismic waves and stock market fluctuations 

exhibited scale-free dynamics and followed a power-law distribution in their temporal 

power spectrum (Fig. 6A).  Moreover, the power-law exponents of both data types (2.1 

for seismic waves and 1.9 for stock market) were close to that of the brain ECoG activity 

(mean 2.13 during awake state).    

Intriguingly, both earth seismic waves and stock market fluctuations contained 

extensive nested frequencies (Fig. 6B).  However, the exact pattern of nested frequencies 

in these signals differed from that in brain activity.  For example, a bimodal nested –

frequency distribution with two preferred phases is seldom seen in the ECoG signals (< 

10% of all electrodes), but it was prominent in earth seismic waves.  This bimodal 

distribution in earth waves might be due to different generators in the earth propagating 

to the same surface location; by contrary, the lack of a bimodal nested-frequency pattern 

in the ECoG signal might imply a more homogeneous source of generators. The 

observation that nested frequencies are prominent in these natural and economic scale-

free dynamics reinforces the above conclusion that the widespread nested frequencies 

seen in the ECoG signals were contributed primarily by scale-free brain activity and not 

by isolated, periodic brain oscillations.  
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Figure 6 Power-law distribution and nested frequencies in earth seismic waves (left 
column) and stock market fluctuations (right column).  (A) Power spectra plotted in a 
log-log plot.  For seismic data, frequency is in Hz (cycle/sec).  For stock market data, 
frequency is in cycle/day. The power-law exponent β for seismic and stock market data 
was 2.1 and 1.9 respectively.(B) Top: Phase-amplitude cross-frequency coupling 
assessed by MI Z-score, plotted as color in the 2-D frequency space.  Only significant 
values (P < 0.05 after Bonferroni correction) are shown.  Bottom: Example nested 
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frequency patterns for selected frequency pairs.  Amplitude of the higher frequency was 
averaged at different phases of the lower frequency and plotted.   
 
 
 
Simulations of Scale-Free Dynamics 

Finally, to better understand the relationship between nested frequencies and 

scale-free dynamics, we constructed a few simulations of scale-free time series and 

examined whether they contained nested frequencies.  All simulated time series were 

analyzed in a manner similar to the ECoG data for temporal power spectrum and nested 

frequencies.   

First, a scale-free time series was constructed by filtering white noise (created by 

drawing independent samples from a zero-mean, unit-variance Gaussian distribution) in 

the frequency domain to yield a power-law distribution of log(P) ∝ -β log(f) (β = 1.8), 

while maintaining the random phase of the white noise.  This spectrally generated scale-

free time series with a power-law exponent close to that of brain ECoG activity did not 

contain any nested frequencies (Fig. 7B).  

Second, because the power-law exponent of the ECoG signals was close to 2, 

which is typical of a random walk process (i.e., Brownian motion), we constructed a 

random walk model by summing over a white noise time series: x(t) = x(t-1) + ε(t), where 

ε(t) is the same white noise time series as used in Fig. 7B.  To our surprise, this random 

walk process contained statistically significant nested frequencies (Fig. 7C).  When we 

substituted the input white noise by drawing independent samples from a zero-mean, 

uniform distribution in the range [-0.5, 0.5), the resulted scale-free time series also had 

significant nested frequencies (Fig. 7D).   
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Figure 7 (A) Power spectrum of dummy recording conducted in a standard ECoG-video 
in-patient monitoring room (duration: 46 min). Black: a resistor was connected into the 
amplifier to record the internal noise in the recording system.  Red: the circuit between 
the electrode and the reference ends of the amplifier was left open, in order to record the 
noise pattern in the room.  Neither spectrum follows power-law distribution.  (B) Power 
spectrum and the absence of nested frequency in a spectrally generated scale-free time 
series.  First, a white noise time series was generated by drawing independent samples 
from a zero-mean, unit-variance Gaussian distribution.  This time series was then filtered 
in the frequency domain by the function P(f) ∝ 1/fβ (β = 1.8), and inverse-Fourier 
transformed, then subjected to the same nested frequency analysis as the ECoG data. (C) 
Power spectrum and the presence of nested frequencies in a random-walk model: x(t) = 
x(t-1) + ε(t), where ε(t) is as in (B).  (D) Power spectrum and the presence of nested 
frequencies in a random-walk model: x(t) = x(t-1) + ε(t), where ε(t) is a white noise time 
series generated by drawing independent samples from a uniform distribution in the range 
[-0.5, 0.5). (E) Power spectrum and the absence of nested frequencies in an AR-1 
process: x(t) = φx(t-1) + ε(t), where φ = 0.9 and ε(t) is as in (B) and (C). (F) Power 
spectrum and the absence of nested frequencies in a time series generated by aggregating 

three first-order autoregressive (AR-1) processes: x(t) = ∑
=

3

1
 

i
[φixi(t-1) + εi(t)], where φ1 = 

0.1, φ2 = 0.5, φ3 = 0.9, and εi(t) is normally distributed white noise as in (B) (C) and (E).  
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We then added a single parameter to the above random-walk model to change it 

into a first-order autoregressive (AR-1) process: x(t) = 0.9 x(t-1) + ε(t), where ε(t) is the 

same white noise time series as used in Fig. 7B&C.  The addition of this single parameter 

eliminated nested frequency patterns (Fig. 7E).  Despite the seemingly small change in 

the model, an important difference between this AR-1 process and the random walk 

process in Fig. 7C is that the random walk process has long-range temporal dependence 

(also called “long memory”, see discussions in (Linkenkaer-Hansen et al., 2001)) 

whereas the AR-1 process does not.   

Lastly, we constructed a model of an aggregate of AR-1 processes (Fig. 7F).  The 

approach of aggregating a few AR-1 processes to model scale-free dynamics (in a 

relatively restricted frequency range) has been used extensively in economics (Erland and 

Greenwood, 2007; Granger, 1980), and has been applied with considerable success to 

modeling the power-law distribution of psychological data, such as the fluctuations of 

reaction times in a decision making task (Wagenmakers et al., 2004; Ward, 2002).  

Contrary to our initial conjecture, such a model did not contain any statistically 

significant nested frequencies (Fig. 7F).  Importantly, although a mixture of AR-1 

processes could produce the appearance of “1/f noise”, such dynamics do not have 

genuine long-range temporal dependence (Wagenmakers et al., 2004).   

It might be counterintuitive that a random-walk model contained structures.  We 

suggest that this is because of the higher-order statistical regularities present in the 

arithmetic pseudorandom number generator used for generating white noise, which are 

invisible in most applications but produce interesting patterns under the sensitive nested 
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frequency analyses and when the modeled process contains long memory.  Hence, it 

appears that the combination of even very weak structures in the underlying generative 

process and a long-range temporal dependence are sufficient to produce nested 

frequencies in scale-free dynamics.   

We caution that the simulations constructed here constitute only a subset of all 

models that can give rise to scale-free dynamics (for reviews see (Bak, 1996; Frank, 

2009; Mandelbrot, 1999; Ward and Greenwood, 2007; Weissman, 1988)) and it is 

certainly out of the scope of the present paper to exhaust these models, without which the 

above tentative conclusion that long memory is crucial for nested frequencies to emerge 

in scale-free dynamics remains of a limited scope.   

 

Discussion 

In summary, we have shown that, contrary to common assumption, the 

arrhythmic, scale-free activity, which makes up a significant portion of the spontaneous 

field potentials recorded from the brain, contains a rich temporal organization with phase 

of lower frequencies modulating amplitude of higher frequencies in an upward 

progression across the frequency spectrum.  Moreover, these nested frequency patterns 

varied across electrodes.  Importantly, the power-law exponent of scale-free brain activity 

is modulated by task performance in a brain-network-specific fashion, suggesting a 

potential functional significance.  We further show that power-law exponent of 

spontaneous fMRI signal varied across brain regions, being largest in visual and default-

network regions and smallest in cerebellum, thalamus and hippocampus.  Other scale-free 

dynamics in nature, such as earth seismic waves and stock market fluctuations, also 
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contained extensive nested frequencies, whose exact patterns differed from that of brain 

activity.  Hence, it appears that different mechanisms in a variety of systems can give rise 

to scale-free dynamics (Frank, 2009), but the fine temporal structures in these dynamics, 

such as nested frequencies, differ across systems, possibly a footprint of the different 

underlying generating mechanisms (Fig. 8). 

 

Figure 8 A general picture emerging from the present results.  Different mechanisms in a 
variety of systems – including the human brain, earth seismic activity, stock market, and 
simulated long-memory processes – can all give rise to scale-free signals exhibiting 1/fβ 
power spectrum, but these different signals have different nested-frequency patterns.  
Hence, the different nested-frequency patterns might be thought of as footprints of the 
different underlying generating mechanisms, even when the gross property of the power 
spectrum is similar across these systems.   
 

These results suggest that investigations on scale-free brain activity should go 

beyond characterizing the gross 1/f β power spectrum, and aim at revealing the fine 

spatiotemporal structures and functional meanings in these signals.  We strongly 
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encourage future empirical and theoretical work to bring the arrhythmic, scale-free brain 

activity together with the rest of ongoing electrophysiological brain research, such as 

brain oscillations and EEG event-related potentials.   

 

The Interpretation of Nested Frequencies in Scale-Free Dynamics 

Whereas the interpretation of nested brain oscillations is relatively straightforward 

(Jensen and Colgin, 2007; Schroeder and Lakatos, 2009), that of nested frequencies in 

scale-free brain activity is less intuitive.  In general, nested frequencies in scale-free 

dynamics should also mean that at a particular phase of the lower-frequency fluctuation, 

such as its trough or peak, the amount of higher frequency activity increases.  For 

example, the troughs of surface recorded slow cortical potentials are known to index 

increased cortical excitability and are correlated with increased amount of higher 

frequencies (Birbaumer et al., 1990; He and Raichle, 2009; Rockstroh et al., 1989; 

Vanhatalo et al., 2004).  This is in line with comments on “1/f noise” in the physics 

literature suggesting that perturbations at long wavelength cause energy dissipations at all 

length scales (Bak et al., 1987).  Furthermore, the non-random distribution of preferred 

phase of the lower frequency in our data (Figs. 3 & S2), which clustered around either 

trough or peak of the lower frequency, is indicative of the underlying neurobiological 

mechanisms.   

Nonetheless, as pointed out by Kramer et al. (Kramer et al., 2008), complex 

waveforms such as edges or triangular waves could also produce significant results in 

nested frequency analysis.  While artifacts in EEG recordings can certainly create sharp 

edges, we emphasize that an artifact-free EEG record (such as electrode #64 in Fig. 2C) 
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is also full of complex waveforms that are non-sinusoidal, indeed waveforms that make 

up the “1/f noise”.  These complex waveforms produced by the brain should not be 

considered artifact or noise because they do not fit in an oscillation-centric view of the 

brain, and their functional meaning deserves future investigation.  Our view is similar to 

that of Bullock et al.(2003), who suggested that “the wide-band, apparently stochastic 

background activity in the EEG may in part consist of structured events or sequences, as 

in speech or music”, and “one is compelled to presume that the power spectrum is an 

inadequate descriptor, as it would be for speech or music”.  Under this view, the scale-

free brain activity most likely plays an important role in the brain’s operation, and one 

important goal for future work is to crack the code contained therein.  We would not be 

surprised if new mathematical tools will have to be developed before this goal is within 

reach. The present study, by showing unique nested-frequency patterns in different 

systems, all hiding beneath a similar 1/f β power spectrum, constitutes an initial, modest 

step toward this direction.  

 

The Genesis of Scale-Free Brain Activity 

The power-law distribution is a common attractor distribution that can emerge out 

of many different generative mechanisms (Frank, 2009), and a variety of different models 

have been built which give rise to scale-free dynamics (for reviews see (Bak, 1996; 

Frank, 2009; Mandelbrot, 1999; Ward and Greenwood, 2007; Weissman, 1988)). It 

would be out of the scope of the present paper to exhaustively discuss existing models on 

scale-free dynamics (denoted also as 1/f β noise from here on).  Thus, we focus on 
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potential neurobiological mechanisms that might underlie scale-free field potentials 

recorded from the brain.  

One obvious candidate is the 1/f β noise present in neurotransmitter release 

(Lowen et al., 1997) and neuronal spike trains (Gisiger, 2001; Gruneis et al., 1989; 

Takahashi et al., 2004; Yamamoto, 1991).  However, since these phenomena remain 

isolated observations (we urge more systematic investigations on them), they might not 

be sufficient to account for the ubiquitous scale-free dynamics in EEG or LFP recordings, 

and a brain-network perspective is likely also important.   

Notably, functional brain networks extracted from voxel-by-voxel spontaneous 

fMRI signal correlations have a connectivity distribution that follows power-law scaling 

with an exponent close to 2, suggesting a scale-free network topology (Eguiluz et al., 

2005; van den Heuvel et al., 2008). Furthermore, the geometry of axonal and dendritic 

trees exhibits self-similarity and scale-invariance properties (Bok, 1959; Freeman, 2007).  

While an important future direction in complexity science concerns the bridging of 

complex networks with complex dynamics (Barabasi, 2009) and the relation between 

scale-free and small-world networks remains an area of active research (Bullmore and 

Sporns, 2009), we here tentatively propose that scale-free brain electrical field potentials 

could be produced by random, Poission-like spike trains propagating through scale-free 

brain networks, and that the addition of inhibitory neurons introduces a time constant to 

the network and thus produces periodic brain oscillations added to the scale-free brain 

activity (another mechanism of producing oscillations is cellular pacemakers).  In line 

with recent neurophysiological observations (Logothetis et al., 2007), this mechanism 

does not involve frequency-dependent cortical tissue filtering of field potentials.  While 
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our proposal remains to be tested explicitly, it is consistent with recent results from 

optogenetic manipulations showing that activation of fast-spiking interneurons selectively 

amplifies gamma oscillations and activation of pyramidal neurons amplifies lower 

frequencies, the profile of which resembled 1/f β noise (see Fig. 3d in (Cardin et al., 

2009)).  This proposal is also consistent with recent models of brain networks (Freeman 

and Zhai, 2009; Thivierge and Cisek, 2008).  In Freeman and Zhai (2009), Poission-like 

spike trains were convolved with an impulse response function representing dendritic 

response and summed, the result was scale-free dynamics similar to that recorded by 

ECoG.  Moreover, addition of inhibitory neurons introduced narrow-band oscillations 

that appeared as local peaks above the 1/f β distribution in the power spectrum.  Similarly, 

in Thivierge and Cisek (2008), arrhythmic network spikes were shown to be a direct 

result of heterogeneity among modeled pyramidal neurons, and the addition of inhibitory 

pathways introduced higher-frequency activities.  This model also elegantly showed that 

global synchronization can emerge out of arrhythmic activity and that neuronal spikes 

have long memory – a hallmark of scale-free dynamics. 

An influential model of “1/f noise” is the self-organized criticality (SOC) theory 

(Bak, 1996; Bak et al., 1987), which has been applied extensively to simulate brain 

networks (Shin and Kim, 2006), neuronal avalanches and “1/f noise” (de Arcangelis et 

al., 2006; Levina et al., 2007; Lin and Chen, 2005).  Although the SOC theory might be 

more suited to describe neuronal avalanches (Petermann et al., 2009), in our view, 

convincing evidence suggesting that it is the underlying mechanism giving rise to the “1/f 

noise” in raw EEG/LFP records is still lacking. Moreover, the SOC theory emphasizes 

the power-law exponent being close to 1, which is rarely met in empirical 



  172

electrophysiological recordings (Fig. 1, also see (Freeman and Zhai, 2009; Miller et al., 

2007; Milstein et al., 2009)).  Nonetheless, the recent extension of the SOC theory to 

include a broader range of power-law exponents (De Los Rios and Zhang, 1999) might 

aid in expanding its explanatory power. 

Lastly, the relation between scale-free brain activity investigated herein and 

neuronal avalanches manifested in negative LFP (nLFP) peaks (Plenz and Thiagarajan, 

2007) is worthy of future investigation.  Although it was commented that the power-law 

distribution of nLFPs was not predicted by the 1/f β noise in raw LFP traces (Petermann 

et al., 2009), given that both phenomena are extrapolated from the same brain records, a 

relationship between them would be illuminating.  Since neuronal avalanches are specific 

to superficial layers of the cortex (Stewart and Plenz, 2006), a first step might be to 

investigate whether the 1/f β noise in raw LFP traces has any heterogeneity across cortical 

layers.  Surprisingly, we are not aware of any published record on this, and urge such a 

systematic investigation, which would not only shed light onto the potential relationship 

between 1/f β noise and neuronal avalanches, but also be informative on the mechanisms 

underlying 1/f β noise itself.   

 

Implications for Psychology and Cognitive Sciences 

1/f β noise is widely present in the fluctuations of human cognitive and behavioral 

performances (Gilden, 2001).  Because the brain evolved through organisms’ struggles in 

coping with the external world and its main function is to proactively act upon the world 

through its sense and motor organs for the sake of the organism’s survival, it is hardly 

surprising that the statistical properties of the brain’s dynamics reflect the statistical 
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properties of the environment and the universally present scale-invariance thereof; and in 

turn it is hardly surprising that the cognition and behavior as well as music produced by 

the human brain follow the same statistical properties.  Indeed, several most established 

psychological laws applicable across domains and species, including Weber’s law, can be 

derived simply from a scale-free principle (Buzsaki, 2006; Chater and Brown, 1999). In 

line with our results showing that the power-law exponent decreased (i.e., the slope of the 

power spectrum becomes shallower) during task performance in activated brain regions, 

it was found that the slope of 1/f β noise in the fluctuations of reaction times during 

working memory and decision making tasks varied parametrically with task difficulty, 

being steepest for easiest tasks and shallower as the task difficulty increased (Clayton and 

Frey, 1997; Ward, 2002).  Lastly, given that the power-law exponent of spontaneous 

ECoG signal was close to 2 (Fig. 1, also see (Freeman and Zhai, 2009; Miller et al., 2007; 

Milstein et al., 2009)), it is of interest to note that the power spectra of some cartoons are 

approximately 1/f1, whereas those of “realistic” paintings and photographs are close to 1/f 

2, and impressionist paintings have spectra somewhere in between (Balboa and 

Grzywacz, 2003; Ward, 2002).   

 

Conclusions  

By showing fine temporal structures within and potential functional significance 

of the scale-free brain activity, our results draw attention to the arrhythmic, scale-free 

brain activity, and emphasize the importance of investigating its fine spatiotemporal 

patterns and functional meanings beyond the mask of its 1/fβ power spectrum.  These 



  174

results strongly encourage incorporating the arrhythmic brain activity, so prevalent in 

electrophysiological recordings, into both empirical research and theoretical frameworks.   

 

 

Supplementary Data 

 



  175
 



  176

 
 
 
 
 
Fig. S1 Waking power spectra from all electrodes and example nested frequency patterns 
in Patients #1 through #5 (each patient in a separate column).  (A) Power spectra of 
waking ECoG data from every electrode, aligned to the electrode’s position in the 2-D 
electrode grid.  Bad electrodes are eliminated.  The orientation and position of the 
electrode grid on the cortical surface is indicated in the top diagram.  Red squares 
indicate the representative electrode selected in each patient for analyses in (B) to (D).  
(B) Waking ECoG power spectrum plotted in log-log coordinates for the example 
electrode.  (C) Cross-frequency phase-amplitude coupling in each example electrode.  
Phase was extracted in 1-Hz-width bands centered at 1, 2, … 20 Hz.  Amplitude was 
extracted from 5-Hz-width bands centered at 5, 10, … 200 Hz.  Color plots the strength 
of cross-frequency coupling as indexed by MI Z-score.  Only significant values (P<0.05 
after Bonferroni correction) are shown.  (D) Nested-frequency patterns for selected 
frequency pairs in each example electrode.  Amplitude of the higher frequencies (25, 50, 
100, 150, 200 Hz) was averaged at different phases of the lower frequencies (1, 6, 11, 16 
Hz) and plotted.  Phase ±π corresponds to the trough (surface negativity), and phase 0 
corresponds to the peak (surface positivity) of the lower-frequency fluctuation. 
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Fig. S2 Complement to Fig. 3A, nested frequency patterns from patients #1 (top) and #5 
(bottom).  Phase was extracted from 1-Hz-width bands centered at 1, 6, 11, and 16 Hz.  
Amplitude was extracted from 5-Hz-width bands centered at 25, 50, 100, 150, 200 Hz.  
For each frequency pair, the subplot shows a scatter-plot of all electrodes, each 
represented by one dot.  The ordinate value shows the cross-frequency coupling strength 
indexed by MI Z-score.  The red horizontal line indicates significance level (P < 0.05 
after Bonferroni correction).  The abscissa value shows the preferred phase of the lower 
frequency, i.e., the phase of the lower-frequency fluctuation at which the amplitude of the 
higher frequency is the largest. Phase ±π corresponds to the trough (surface negativity), 
and phase 0 corresponds to the peak (surface positivity) of the lower-frequency 
fluctuation. Patient #2 was not used in this analysis because of the lesser number of 
electrodes.  
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Fig. S3 Complement to Fig. 3B, results from Patients #1, #4, and #5.  For each frequency 
pair (phase from 1, 6, 11 and 16 Hz; amplitude from 25, 50, 100, 150, and 200 Hz),the 
preferred phase of the lower frequency in each electrode was plotted as color on a 2-D 
representation of the 8 ×8 electrode grid.  The orientation and location of this grid on the 
cortical surface is shown in the diagram to the left.  The white cells in the grids are bad 
electrodes that have been eliminated from all analyses. Patient #2 was not used in this 
analysis because of the lesser number of electrodes.  
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Fig. S4 Complement to Fig. 4A-C, power-law exponent changes during task 
performance. The task consisted of a 2 × 2 design: visual-cued button press (cued) or 
self-paced button press (selfpaced); and the button press was performed by either the left 
(LH) or right (RH) index finger.  Significance levels of the difference of power-law 
exponent between rest and task conditions are indicated in the graphs (t-tests).  In Pt 
#3&#5, SWS power spectrum was presented for comparison, but not used for statistical 
analysis.  The anatomical locations of each electrode are indicated in the graphs.   
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Fig. S5 Complement to Fig. 4D, results from electrode #64 in Patient #3.  Amplitude of 
5-Hz-width bands centered at 25, 50, 100, 150 and 200 Hz were each averaged at 
different phases of 8-Hz fluctuation (extracted from a 1-Hz-width band).  Phase 0 
corresponds to peak of 8-Hz activity; phase ±π to trough of 8-Hz activity.  The left 
column was from ECoG data during task performance, averaged across all task blocks.  
The right column was from spontaneous ECoG signals in the awake state.   
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Table S1.  Demographic, clinical and data collection information of the patients. 
 

Pt. Age Gender Handed-
ness 

Seizure 
type Seizure focus 

Total length of 
spontaneous ECoG 

data (min) 

Collection of task ECoG data 
(No. of task blocks completed, 

each block ~ 5 min) SR 
(Hz) 

 

No. of 
usable 

electrodes 
Awake SW

S REM LH 
cued 

RH 
cued 

LH 
self-

paced 

RH 
self-

paced 

#1 12 M R Complex 
partial 

R inferior 
frontal 30 20      2000 60 

#2 8 M R Complex 
partial 

R basal 
temporal and 

mesial occipital 
19 12      1000 28 

#3 16 M R Complex 
partial L frontal 83 69  2 2 1 2 500 58 

#4 9 F R Complex 
partial 

R 
somatosensory 69 28 30     1000 59 

#5 28 F R Complex 
partial R frontal 28 24  1 1 1 1 1000 54 

#6 59 F L Complex 
partial 

R inferior 
lateral parietal 33   3 3 3 3 1000 62 

#7 45 F R Complex 
partial L temporal 15   3 3   1000 64 

#8 58 F R Complex 
partial L frontal 5   2 2 2 2 1000 56 

Pt., Patient; SR, sampling rate. 
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Table S2.  Brain regions used for fMRI data analysis in Fig. 5 
 

Region  full name  Network 
Powerlaw 
exponent 

Varianc
e 

Talairach 
coordinates/References 

FEF  (L and R) frontal eye field  attention  0.507  7.63723
5 

‐26, ‐9, 48 & 32, ‐9, 48 
(He et al., 2007) 

MT  (L and R) middle temporal region  attention  0.685  9.38767
6 

‐43, ‐70 ‐3 & 42 ‐68 ‐6 
(He et al., 2007) 

R TPJ  R temporoparietal junction  attention  0.709  11.1535
3  49, ‐50, 28 (He et al., 2007) 

R DLPFC  R dorsolateral prefrontal cortex  attention  0.693  11.4467
8 

43, 22, 34 (Dosenbach et al., 
2006) 

pIPS  (L and R) posterior intraparietal 
sulcus  attention  0.766  14.6165  ‐25, ‐63, 47 & 23 ‐65 48 

(He et al., 2007) 

vIPS  (L and R) ventral intraparietal 
sulcus  attention  0.676  6.94064

7 
‐24, ‐69, 30 & 30, ‐80, 16 

(He et al., 2007) 

AG  (L and R) angular gyrus  default  0.898  14.2466
5 

‐51, ‐54, 30 & 45, ‐66, 27  
(Shulman et al., 1997) 

FP  frontopolar cortex  default  0.777  6.98170
6  ‐3, 45, 36 (Shulman et al., 1997) 

MPF  medial prefrontal cortex  default  0.969  22.7354
7  ‐6, 51, ‐9 (Shulman et al., 1997) 

PCC  Posterior cingulate cortex  default  1.164  28.9781
8  ‐6, ‐45, 33 (Shulman et al., 1997) 

SFG  (L and R) superior frontal cortex  default  0.573  7.26852
9 

‐15, 33, 48 & 18, 27, 48 
(Shulman et al., 1997) 

Broca  Broca's area  motor  0.436  6.44794
1  ‐42, 13, 14 

L SII  L parietal operculum  motor  0.639  9.27823 ‐57, ‐27, 21 
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5 

L motor  L primary motor cortex  motor  0.557  7.85658
8  ‐39, ‐27, 48 

dACC  dorsal anterior cingulate cortex  saliency  0.831  21.5881
8  ‐1, 10, 46 (Dosenbach et al., 2006)

R FI  R frontoinsular cortex  saliency  0.454  14.6093
5  36, 21, ‐6 (Seeley et al., 2007) 

HF  (L and R) hippocampal formation 
Non‐

neocortica
l 

0.414  20.7797
9 

‐21, ‐25, ‐14 & 23, ‐23, ‐14 
(Vincent et al., 2007) 

R cerebellum  R cerebellum 
Non‐

neocortica
l 

0.413  6.48117
6  21, ‐54, ‐21 

tha  (L and R) thalamus 
Non‐

neocortica
l 

0.513  7.75161
8  ‐15, ‐21, 6 & 9, ‐18, 9 

d Retino  (L and R) dorsal retinal region  visual  0.981  10.0807
6  ‐6, ‐75, 9 & 9, ‐75, 12 

v Retino  (L and R) ventral retinal region  visual  0.924  5.99158
8  ‐15, ‐75, ‐9 & 15, ‐75, ‐9 

 
 
References for Table S2: 

Dosenbach, N.U., Visscher, K.M., Palmer, E.D., Miezin, F.M., Wenger, K.K., Kang, H.C., Burgund, E.D., Grimes, A.L., 
Schlaggar, B.L., and Petersen, S.E. (2006). A core system for the implementation of task sets. Neuron 50, 799-812. 

He, B.J., Snyder, A.Z., Vincent, J.L., Epstein, A., Shulman, G.L., and Corbetta, M. (2007). Breakdown of functional 
connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53, 905-918. 

Seeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna, H., Reiss, A.L., and Greicius, M.D. (2007). 
Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27, 2349-2356. 



  184

Shulman, G.L., Fiez, J.A., Corbetta, M., Buckner, R.L., Miezin, F.M., Raichle, M.E., and Petersen, S.E. (1997). Common 
blood flow changes across visual tasks: II. Decreases in cerebral cortex. Journal of Cognitive Neuroscience 9, 648-663. 

Vincent, J.L., Patel, G.H., Fox, M.D., Snyder, A.Z., Baker, J.T., Van Essen, D.C., Zempel, J.M., Snyder, L.H., Corbetta, M., 
and Raichle, M.E. (2007). Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447, 83-86. 
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CHAPTER V: Implications of the current work (i) - The role of 

impaired neuronal communication in neurological disorders 

 

Summary 

Basic and translational neuroscience findings indicate that normal brain function 

depends on activity synchronization within distributed brain networks. This conclusion 

suggests a view of how brain injury causes behavioral deficits that differs from traditional 

localizationist views.  Novel functional neuroimaging methods demonstrate coherent 

activity in large-scale networks not only during task performance but also, surprisingly, at 

rest (i.e. in the absence of stimuli, tasks, or overt responses). Furthermore, breakdown of 

activity coherence at rest, even in regions of the brain that are structurally intact, 

correlates with behavioral deficits and their recovery after injury. Breakdown of 

functional connectivity appears to occur not just after local injury but also in other 

conditions that affect large-scale neural communication.  Therefore, a network 

perspective is fundamental to appreciating the pathophysiology of brain injury at the 

systems level and the underlying mechanisms of recovery, and for developing novel 

strategies of rehabilitation. 

 

Introduction 

 Clinicians commonly localize behavioral deficits to focal lesions in the brain. This 

principle of 'cortical localization of function' is a cornerstone of clinical practice based on 

two theoretical principles that were articulated in the 1800's: One, specific functions are 

represented in specific parts of the brain (Brodmann, 1909). Two, injuries to the brain 



  196

disrupt localized functions and give rise to corresponding behavioral deficits (Broca, 

1863). While there remains debate concerning precisely 'what' is localized within a given 

patch of brain, the general consensus is that complex functions such as language and 

memory emerge from the combination of much simpler ‘elementary operations' 

(Brodmann, 1909; Posner et al., 1988; Ullman, 1984).  These principles have supported 

serial models of brain function in which stimuli (e.g., a word) are first analyzed in 

sensory areas, then associated with more abstract representations (e.g., meaning) in 

higher-order associative areas and finally reach the motor system where a response is 

generated.  Even more sophisticated cognitive-anatomical models (see (Price, 2000) for 

language) assume a feed-forward stream of information processing in which each region 

contributes a specific input/output operation.  While these localizationist ideas remain the 

theoretical backbone of clinical neurology, recent advances in neuroscience suggest a 

much more distributed, parallel, and recursive view of brain function that has deep 

implications for clinical practice. 

 It is well accepted that the brain is anatomically organized in widely distributed 

and highly parallel networks. For example, the visual system is arranged as a hierarchy of 

cortical areas, each connected bidirectionally with areas below and above it (Felleman 

and Van Essen, 1991).  Moreover, many areas are horizontally connected with other areas 

at the same level.  Critically, this anatomical arrangement emphasizes not just a 

bidirectional flow of information (bottom-up from sensory to cognitive to motor areas, 

and top-down from cognitive to sensory levels), but also local and long-range recursive 

processing through cortico-cortical or cortico-subcortical loops.  In other words, 
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perception of a stimulus or performance of a task requires the temporal coordination of 

multiple regions as the behavior unfolds. 

 Efficient transfer of information within the brain has long been assumed to 

depend on changes in mean rate of spike discharge. Thus, pre-synaptic neurons transfer 

information by modulating their mean firing rate, which is integrated dendritically and 

which ultimately leads to a change of the firing rate of post-synaptic neurons (Shadlen et 

al., 1996).  However, more recent results emphasize the importance of rhythmic 

synchronization, which is a universal property of neural systems at the scale of neurons, 

small circuits, and widely distributed networks. Synchronization results in alternating 

periods of excitation and inhibition that can respectively facilitate or inhibit the transfer 

of information (Buzsaki, 2006). Neurons likely communicate most effectively when their 

excitability fluctuations are synchronized. Conversely, a given anatomical connection is 

relatively ineffective when the connected neuronal groups are not synchronized 

(reviewed in (Fries, 2005)). There is a substantial and growing body of evidence that 

rhythmic synchronization plays a functional role in many cognitive functions (reviewed 

in (Engel et al., 2001; Varela et al., 2001)) as well as brain disorders (Uhlhaas and Singer, 

2006). Furthermore, recent evidence indicates that brain networks exhibit synchronized 

spontaneous activity, i.e., are 'functionally connected', even in the absence of specific task 

performance, i.e., at 'rest' (see below). 

 These findings indicate that the functions of any brain region cannot be 

understood in isolation but only in conjunction with the ensemble of other regions 

('network') with which it interacts at rest and during active behavior. The large-scale 

organization of the brain into distributed networks has important implications for our 
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understanding of central nervous system disorders and brain-behavioral relationships 

after brain injury.  Some of these implications were foreseen many years ago by early 

neurologists like Jackson, Andral, Prince, von Monakoff, and Head (reviewed in (Finger, 

1994)) who proposed that neurologic deficits do not simply reflect the primary effect of a 

lesion but also the secondary effects of the lesion on other structures: "Hence it follows 

that at the place where you discover a lesion there does not always reside the direct 

cause of the effects which are produced (Andral, 1833)". Furthermore, the damaged brain 

must be viewed as a whole new system, and not simply as the old system minus the 

lesioned parts: "So far as the loss of function or negative manifestations are 

concerned...it is a new condition, the consequences of a fresh readjustment of the 

organism as a whole to the factors at work at the particular functional level disturbed by 

the local lesion" (Head, 1920).  

  

Functional connections in healthy brains 

 Functional neuroimaging techniques, especially positron emission tomography 

(PET) and functional magnetic resonance imaging (fMRI) have greatly enhanced our 

understanding of the brain. Classically, neuroimaging experiments demonstrated focal 

physiological responses induced by performance of externally imposed tasks. Such 

responses indirectly reflect changes in synaptic activity which manifest in PET as 

changes in regional cerebral blood flow and in fMRI as changes in the blood oxygenation 

level dependent (BOLD) signal (Raichle and Mintun, 2006). The accumulated functional 

neuroimaging experience indicates that anatomically consistent networks comprised of 

widely distributed regions activate and deactivate in concert across a wide range of tasks. 
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For example, eye movements associated with viewing objects in the visual environment 

lead to consistently coupled activations in frontal and posterior parietal cortex (Corbetta, 

1998). While co-occurrence of activations in different regions is suggestive of network 

structure, more definitive evidence has come from analyses of the temporal interactions 

between regions. 

 Over the past decade, several techniques have been developed to determine if 

interactions between jointly activated regions produce enhanced temporal correlations in 

task-evoked responses. (For an earlier review see (Lee et al., 2006). Unfortunately, these 

methods require an a priori model of how regions are connected  (for detailed reviews 

see (Penny et al., 2004; Stephan et al., 2007)). Moreover, they are (invariably) contingent 

upon the specific task used, as changes in the system caused by external inputs are an 

integral part of the model (for examples of applications to patient populations see 

(Hinrichs et al., 2006; Mechelli et al., 2007; Schlosser et al., 2003; Seminowicz et al., 

2004)). 

 Because of these complicating factors, the strongest evidence for network 

structure based on temporal interactions between brain regions has come from the study 

of ‘intrinsic’ neural activity, that is, spontaneous activity observed as subjects lie quietly 

with the eyes either closed or simply fixated on a cross-hair.  'Functional connectivity 

MRI' (fcMRI) is model-free strategy that measures the temporal correlation of the BOLD 

signal between brain regions, usually in the resting state (Biswal et al., 1995; De Luca et 

al., 2005; Fox et al., 2006; Fox et al., 2005; Greicius et al., 2003; Hampson et al., 2002; 

Hampson et al., 2006; Mantini et al., 2007; Vincent et al., 2006).  
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 fcMRI studies in neurologically normal, resting young adults have shown that 

spontaneous fluctuations of the BOLD signal are correlated within widely distributed 

networks that reproduce the topography typically seen in responses to controlled tasks. 

For example, regions commonly recruited by directed attention to environmental stimuli 

or during performance of controlled cognitive tasks, show higher temporal correlations 

among themselves than with other regions even in the resting state (Dosenbach et al., 

2007; Fox et al., 2006; Fox et al., 2005). These intrinsic signal fluctuations are in part 

related to the underlying anatomical connectivity. For example, in monkeys, fcMRI 

correlation maps involving parietal area LIP, the frontal eye fields and functionally 

related temporal areas closely resemble the pattern of anatomical connectivity revealed 

by tract tracing (Vincent et al., 2007).  Similarly, in humans as well as monkeys, 

homologous regions of the cortex typically show high functional connectivity (Salvador 

et al., 2005), a finding that appears to reflect inter-hemispheric connections through the 

corpus callosum.  However, the correspondence between functional and anatomical 

connectivity is not one-to-one.  For instance, while area MT has strong direct connections 

to both area V1 and LIP, it has a stronger resting-state temporal correlation with parietal 

than visual areas.  These considerations suggest that fcMRI reflects anatomical 

connections that are somehow 'weighted' by function. 

 Recent studies have investigated the neural signals that underlie the observed 

temporal correlations of the BOLD signal.  While BOLD fluctuations are slow (< 0.1 Hz) 

some evidence indicates they might be related to power fluctuations of oscillatory 

neuronal activity at higher frequencies (1-200 Hz) (Leopold et al., 2003). Recent studies 
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show that different networks defined by fcMRI at rest are characterized by power 

fluctuations of EEG signals (Laufs et al., 2003; Mantini et al., 2007). 

Critically, resting state fcMRI has been shown to be functionally significant in 

health, disease and normal development. Thus, in healthy adult subjects, functional 

connectivity in a language network correlated with reading ability (Hampson et al., 

2006). Conversely, in stroke patients with spatial neglect, impaired functional 

connectivity in attention networks was observed to correspond to the severity of spatial 

perceptual deficits (see below) (He et al., 2007). Finally, the functional connectivity of 

networks involved in cognitive control was shown to be immature in children,  which 

corresponds to the fact that children normally perform less well than adults in controlled 

cognitive tasks (Fair et al., 2007). 

  

Functional connections in injured brains 

 The identification of complex and distributed brain networks, identified by 

measuring temporal correlations in activity at rest and during behavior, suggests strong 

predictions concerning the effects of a lesion on the brain's functional architecture. First, 

a focal injury will disrupt the synchronization between the site of damage and other 

connected regions, upstream and downstream, leading to changes in excitability 

throughout the network. Furthermore, changes in the state of one network may affect the 

dynamic state of other connected networks. Second, these altered patterns of activity in 

large-scale networks, whether measured at rest or during active behavior, should correlate 

with the observed neurological deficits. Behavioral deficits will reflect not only structural 

damage to a local part of a network, but functional imbalances throughout the network 
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and in other connected networks. Third, recovery of function involves the reorganization 

of entire brain networks.  Rehabilitation may restore the networks to a normal state or 

enable a new state in which functions are performed through compensatory strategies. 

 To-date, the most common functional pattern observed in patients with focal 

injury is a dynamic reorganization of the topography of task-related functional responses. 

For instance, Saur et al. (Saur et al., 2006) tested a group of post-stroke aphasic patients 

(N=14) with an auditory comprehension task at three stages: acute (1.8 days post-stroke), 

subacute (12 days) and chronic (321 days).  They observed in parallel with an 

improvement of language performance increased activation over time of left hemisphere 

language regions (inferior frontal gyrus (IFG) and middle temporal gyrus). In contrast, 

the homologous right hemisphere regions showed an early increase from acute to 

subacute stages that correlated with improvement, followed by a decrement at the chronic 

stage.  A similar pattern of functional reorganization has been observed in primary motor 

cortices (M1) in patients with motor impairment after subcortical strokes (reviewed in 

(Ward, 2006)). These findings carry implications for treatment. Enhancement of 

excitability in ipsilesional M1 by transcranial direct current stimulation (tDCS) 

significantly improves motor performance (Fregni et al., 2005; Hummel et al., 2005). In 

contralesional M1, increased excitability at the acute stage (< 1 month post-stroke) was 

correlated with functional recovery (Butefisch et al., 2003), whereas at the chronic stage 

(> 12 months post-stroke) a decrease of excitability significantly correlated with motor 

improvement (Fregni et al., 2005). 

 The typical interpretation of these findings is that recruitment of contralesional 

and ipsilesional associative regions may be helpful for recovery at the acute and subacute 
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stages but may be maladaptive at the chronic stage, and that preservation or reactivation 

of ipsilesional activity affords the best chances of optimal recovery. A 'connectionist' 

interpretation suggests that these dynamic patterns of activation in the two hemispheres 

are linked and underlie changes in the functional communication within and between 

hemispheres caused by the lesion. For example, the lesion may abolish inhibitory 

influences over homologous areas in the opposite hemisphere mediated by callosal 

connections.  

 Changes in connectivity following a lesion occur rapidly and presumably depend 

on unmasking and changes in synaptic weights of pre-existing connections rather than the 

creation of new pathways.  The rapidity of these changes is evident from a recent TMS 

study in healthy subjects demonstrating that suppression of activity in left premotor 

cortex induces an immediate increase of activity in the contralateral premotor area which 

facilitates behavioral performance (O'Shea et al., 2007).  

 Inter- or intra-hemispheric functional imbalances may also account for disrupted 

functional connectivity between two structurally intact regions that are directly or 

indirectly connected to an area of damage.  A recent study of spatial neglect shows that 

asymmetries in spatial attention correlate with imbalanced functional response in 

structurally intact left and right parietal cortex.  At the subacute stage, activity in right 

ipsilesional parietal cortex was relatively depressed during a spatial orienting task 

whereas activity in contralesional left parietal cortex was relatively enhanced. This 

imbalance was behaviorally significant as the magnitude of activation in left parietal 

cortex correlated with the degree of spatial neglect (Corbetta et al., 2005).  A recent 

follow-up study showed that this functional imbalance was manifested also in fcMRI 
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measures (Fig. 1). Specifically, low inter-hemispheric coherence in parietal cortex 

correlated with worse neglect (He et al., 2007). Critically, in both studies the anatomical 

damage was in the frontal cortex and underlying white matter, far removed from the 

parietal regions where the functional signals were measured. 
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Figure 1 (a) An example of functional connectivity obtained by measuring spontaneous 
blood oxygenation level dependent (BOLD) signal fluctuations with functional magnetic 
resonance imaging (fMRI) in healthy subjects. Areas in yellow/red are temporally 
correlated, and correspond to the 'dorsal attention network' important for the control of 
spatial attention. Areas in green/blue are negative correlated with the dorsal attention 
network, and correspond to the 'default' network. (b) Randomly selected 10-min records 
of fMRI signals from the left (shown in yellow) and right (in red) posterior parietal cortex 
in an elderly healthy subject (top), an acute stroke patient with spatial neglect (middle), 
and the same patient 9 months later when the behavioral deficits have recovered 
(bottom). Both regions are part of the dorsal attention network, and were outside of the 
lesion in this patient, which is shown in black. In healthy subjects, these two regions are 
coherent in their spontaneous fMRI fluctuations. Such temporal relationship is disrupted 
in patients with acute spatial neglect, but is regained during course of recovery.  
 
 

Conclusions 

 These novel findings provide a neurobiological basis for the intuition of early 

neurologists that what ultimately matters is the state of the network and not only what 

happens at the locus of injury.  Knowing that a frontal lesion can cause functional 

changes in parietal cortex and that these changes are behaviorally significant not only 

provides a more complete understanding of brain-behavior relationships, but also opens 

up the possibility of novel interventions.  For instance, preliminary evidence indicates 

that rebalancing of activity across the hemisphere by suppressive TMS improves 

performance (Brighina et al., 2003; Naeser et al., 2005). 

 This network approach also explains why stroke patients present acutely with a 

multiple deficits that are not easily attributable to the locus of injury. For instance, a 

subcortical lesion may not only present with motor deficits but also with a variety of 

impairments of language, attention, working memory, and task control.  It is the rule that 

cognitive functions are almost never normal in patients with a focal brain injury.  While 

traditional explanations invoke non-neuronal factors such as edema, vascular 
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dysregulation, etc, a network perspective explains this multitude of problems by invoking 

disrupted neuronal communication within brain networks. fcMRI, potentially in 

association with simultaneous EEG recordings, is an especially promising approach for 

studying these network-level abnormalities because of its robustness (networks can be 

normally seen in a single subject after 5-15 min scanning), reproducibility, and minimal 

task requirements that enable patients with a large range of deficits to be tested.   

 A final important point is that a network approach can be applied as well to the 

study of non-focal disorders such as Alzheimer's disease (Greicius et al., 2004), 

depression (Greicius et al., 2007) or schizophrenia (Buckholtz et al., 2007; Kubicki et al., 

2007; Zhou et al., 2007). In Alzheimer's disease (AD) a breakdown of functional 

connectivity has been reported in the 'default' network (Greicius et al., 2004) a set of 

brain regions that normally show task-related deactivations during controlled task 

performance (Shulman et al., 1997) and that also are involved in memory retrieval 

(Buckner et al., 2005).  In primary progressive aphasia, weakened functional connectivity 

during a language task between Broca's and Wernicke's regions correlated with the 

degree of language impairment (Sonty et al., 2007). It is likely that a network approach 

using either fcMRI or more task-driven methods (see review by (Lee et al., 2006)) will be 

helpful in other disorders that affect large-scale cortical communication as in the case of 

white matter lesions in multiple sclerosis (Cader et al., 2006) or disrupted interaction of 

basal ganglia and cortex in Huntington's disease (Thiruvady et al., 2007). 
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CHAPTER VI: Implications of the current work (ii) and a hypothesis 

for future work –The fMRI signal, slow cortical potential and 

consciousness 

 

Summary 

As functional magnetic resonance imaging (fMRI) has become a driving force in 

cognitive neuroscience, it is critical to understand the neural basis of the fMRI signal.  

We here discuss a novel neurophysiological correlate of the fMRI signal, the slow 

cortical potential (SCP), which also appears to modulate the power of higher-frequency 

activity, the more established neurophysiological correlate of the fMRI signal.  We 

further propose a hypothesis for the involvement of the SCP in the emergence of 

consciousness, and review existing data that lend support to our proposal.  This 

hypothesis, unlike several previous theories of consciousness, is firmly rooted in 

physiology and as such is entirely amenable to empirical testing.   

 

Introduction 

Since its introduction in the early 1990’s, fMRI has become the most widely used 

tool in human cognitive neuroscience and has produced a formidable array of brain maps 

depicting both localization (as in traditional activation studies) and integration (as in 

more recent functional connectivity studies) of brain activity.  As the fMRI signal 

measures directly blood oxygenation and only indirectly neuronal activity, an important 

need for understanding the neural events contributing to the fMRI signal has been widely 

recognized.  Such a need is further stressed by the inconsistencies between a number of 
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human fMRI and monkey unit physiological studies employing the same tasks 

(Logothetis, 2002).   

Responding to this need, a number of studies have compared the fMRI signal 

(reviewed in (Logothetis, 2008)) or its close relatives (including tissue oxygenation 

(Viswanathan and Freeman, 2007), blood flow (Lauritzen and Gold, 2003), optical 

intrinsic signals (Niessing et al., 2005)) with simultaneously recorded 

electrophysiological signals.  The convergent results from these studies suggest that the 

fMRI signal is contributed predominantly by synaptic activity representing inputs and 

local processing in an area as measured by local field potentials (LFP) (Arthurs and 

Boniface, 2002; Lauritzen and Gold, 2003; Logothetis, 2008; Raichle and Mintun, 2006; 

Viswanathan and Freeman, 2007).  The spiking activity, though often correlated with 

both the LFP and the fMRI signal, can be dissociated from the latter two in a number of 

conditions including adaptation (Logothetis et al., 2001), drug modulation (Rauch et al., 

2008), manipulations of excitatory and inhibitory inputs (Lauritzen and Gold, 2003), and 

a spatial separation between input and output activity (Raichle and Mintun, 2006).   

Whereas multiple frequency ranges of the LFP (e.g., 5-30 Hz (Maier et al., 2008), 

20-60 Hz (Goense and Logothetis, 2008; Kayser et al., 2004), ~25-90 Hz (Logothetis et 

al., 2001; Mukamel et al., 2005; Niessing et al., 2005; Rauch et al., 2008; Viswanathan 

and Freeman, 2007)) have been correlated with the fMRI signal in different conditions, 

all of these studies have only assessed power modulations of the LFP because only the 

power of these frequency ranges has a comparable temporal scale to that of the fMRI 

signal (< 0.5 Hz).  We here add a new dimension to this evolving story by bringing in the 

low-frequency end of field potentials (<4 Hz), which, with a temporal scale overlapping 
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that of the fMRI signal, appears to correlate with the fMRI signal in its raw fluctuations.   

This signal, termed the “slow cortical potential” (SCP) by us and others (Birbaumer et al., 

1990; He et al., 2008; Khader et al., 2008), appears optimally positioned for carrying out 

large-scale information integration in the brain.  Since conscious experience (see 

Glossary) is always a unitary and undivided whole (Searle, 2000; Tononi, 2008), 

segregated information processing in the brain cannot contribute to the conscious 

awareness of “I”.  Hence, we propose that the SCP may contribute directly to the 

emergence of consciousness* and review existing empirical evidence supporting this idea.  

As the current hypothesis is based on a well-defined, well-characterized physiological 

process, it is entirely amenable to empirical testing.  

 

Evidence for a relationship between the SCP and the fMRI signal 

The SCP is the slow end (mainly <1 Hz, can extend up to ~4 Hz) of the field 

potential that can be recorded using either depth (Goldring, 1974; Rebert, 1973) or 

surface (He et al., 2008; Rosler et al., 1997) electrodes (Box 1).  Negative shift in 

surface-recorded SCP indexes increased cortical excitability (for detailed physiology 

please see the following section).  Since the SCP frequency range is subject to artifacts 

due to sweating (in scalp-electroencephalography (EEG) recordings), movement and 

electrode drift (if polarizable electrodes are used), it has been eliminated in most animal 

physiology as well as human EEG studies by online high-pass filtering.  This is 

                                                        
* In this chapter, I use “consciousness” or “conscious awareness” synonymously as 
“subjective awareness”.  I use “conscious experience” to refer to the experience of 
subjective awareness. Lastly, “conscious state” refers to the physiological states under 
which conscious awareness is present.  
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unfortunate because, as was recognized in the 1970’s, “If DC [i.e., direct-current] 

recording is used, virtually every stimulus-bound cortical activity is seen to be 

accompanied by a change in cortical steady potentials” (P.12 in (Goldring, 1974)).  As a 

result of this methodological neglect, studies on the relationship between SCP and the 

fMRI signal are scarce.  Nonetheless, despite the limited data available, a correlation 

between the SCP and the fMRI signal no less intimate than that between higher-

frequency (>5 Hz) LFP power and fMRI signal can be observed (He et al., 2008; Khader 

et al., 2008; Nagai et al., 2004).  

Investigations of the relationship between LFP power and the fMRI signal have 

generally showed one of the following: (i) covariation of simultaneously recorded LFP 

power and the fMRI signal during a task or electrical stimulation (Goense and Logothetis, 

2008; Kayser et al., 2004; Logothetis et al., 2001; Niessing et al., 2005; Rauch et al., 

2008; Viswanathan and Freeman, 2007); (ii) covariation of simultaneously recorded 

spontaneous LFP power and the fMRI signal (Shmuel and Leopold, 2008); and (iii) 

similar correlation patterns in the spontaneous fluctuations of LFP power and the fMRI 

signal measured separately (He et al., 2008; Lu et al., 2007; Nir et al., 2008).   

To our knowledge, the only available data that demonstrate covariation of 

simultaneously recorded SCP and the fMRI signal during task stimulation (type (i) 

above) has been provided by Nagai and colleagues using simultaneously recorded EEG 

and fMRI (Nagai et al., 2004).These authors found a trial-by-trial correlation between the 

amplitude of a negative SCP response indexing expectancy (“contingent negative 

variation”, CNV) and the fMRI signal amplitude in anterior cingulate cortex (Fig. 1a).  

The anterior cingulate has previously been determined as a generator region of CNV 
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(Nagai et al., 2004).  Evidence for SCP-fMRI correlation of the above type (ii) is 

provided by Jones et al.(Jones et al., 2007), who showed that spontaneously fluctuating 

total hemoglobin concentration (a signal tightly linked to the fMRI signal) and low-pass 

filtered LFP (i.e., depth recorded SCP) are temporally correlated.  Data of the above type 

(iii) is provided by He et al. using invasive EEG (i.e., electrocorticography, ECoG) and 

fMRI in neurosurgical patients(He et al., 2008). It was shown that large-scale (2-10 cm 

on cortical surface) correlation patterns in the spontaneous SCP and fMRI signals were 

similar (Fig. 1b).  This finding has since been extended to inter-hemispheric correlations 

as well (unpublished data).  Taken together, all three types of evidence for the correlation 

between LFP power and the fMRI signal are also available for a correlation between SCP 

and the fMRI signal.   

Beyond the above approaches, there is an extensive literature showing similar 

modulation patterns of the SCP and the fMRI signal in a wide range of cognitive tasks 

(Birbaumer et al., 1990; Khader et al., 2008; Rosler et al., 1997).  For example, visual 

working memory tasks elicit a negative-going slow potential over the parietal cortex, the 

amplitude of which scales with the load of working memory (Vogel and Machizawa, 

2004).  This pattern is very similar to that observed for the fMRI signal in posterior 

parietal cortex during the same task (Song and Jiang, 2006).    

In summary, convergent results suggest that the SCP has a close correspondence 

to the fMRI signal in different experimental conditions.  Like many advances in science, 

the relationship between SCP and fMRI signal is not without prescient conjecture.  In 

1975, H.W. Shipton wrote: “the work of Cooper, which showed slow rhythmic changes 

in brain pO2 and in blood flow (e.g., (Cooper et al., 1966)), is of interest in the context of 
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slow [cortical] potential change”(Shipton, 1975). Next, we consider the physiological 

mechanisms underlying the SCP.  

 

Figure 1.Evidence for a correlation between the slow cortical potential (SCP) and the 
fMRI signal.(a)Simultaneous fMRI and EEG was used to identify fMRI signal activation 
correlated with trial-by-trial measurement of contingent negative variation (CNV) 
amplitude.  CNV is a negative slow potential that relates to the anticipation of a stimulus 
and it is maximal over frontal midline electrodes.  Trial-by-trial covariation between 
CNV amplitude and fMRI signal timecourse in anterior cingulate cortex is shown in a 3-
D plot.  Adapted with permission from Nagai et al. (2004). (b)Correlation patterns in the 
spontaneous fMRI signals and spontaneous SCPs are similar.  A group of 5 patients with 
intractable epilepsy underwent approximately a week of continuous video-monitored 
electrocorticography (ECoG) for the purpose of determining the epileptic focus before 
surgical resection.  Artifact-free, spontaneous ECoG data were collected from three 
arousal states: wakefulness, slow-wave sleep (SWS), and rapid-eye-movement (REM) 
sleep, and then low-pass filtered at <0.5 Hz to yield spontaneous SCPs.  In addition, 
patients underwent a session of resting-state fMRI before the implantation of electrode 
grids.  SCP correlation maps were obtained by computing Pearson correlation 
coefficients between a seed electrode (arrow) and all other electrodes.  For corresponding 
fMRI correlation maps, the fMRI signal was averaged across a group of voxels centered 
at each electrode, and correlation coefficients were computed between the fMRI signal 
associated with the seed electrode and that from all other electrodes.  Representative 
maps from one patient are shown.  A 2-D representation of the electrode grid is shown 
with each dot representing one electrode.  Color represents the correlation value between 
each electrode and the seed electrode (arrow).  Maps in the top row seed at a same 
electrode, those in the bottom row seed at another electrode 2 cm apart.  Note that 
correlation maps with the same seed electrode are similar regardless of whether the fMRI 
signal or the SCP was used in computing the map.  A, anterior; D, dorsal; P, posterior; V, 
ventral.  Adapted with permission from He et al.(He et al., 2008) 
 

The physiological basis of the SCP 
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Simultaneous recordings of surface potentials, field potentials in different cortical 

layers, and intracellular membrane potentials have clearly demonstrated that synaptic 

activities at apical dendrites in superficial layers are the main factor contributing to the 

SCP.  Specifically, long-lasting excitatory postsynaptic potentials (EPSPs) at these apical 

dendrites underlie negative-going surface-recorded SCPs (Birbaumer et al., 1990; 

Goldring, 1974; Mitzdorf, 1985).  As an example, we consider the effect of visual 

stimulation in V1 – a standard model for the investigation of fMRI-electrophysiology 

correspondence (Goense and Logothetis, 2008; Kayser et al., 2004; Logothetis et al., 

2001; Niessing et al., 2005; Rauch et al., 2008; Viswanathan and Freeman, 2007).  

Specific thalamic inputs terminate first on the soma of layer-IV stellate cells and layer-III 

pyramidal cells, and then follow one of two pathways to depolarize the apical dendrites 

of superficial- or deep-layer pyramidal cells (Mitzdorf, 1985) (Fig. 2a).  Given the 

geometry of cortical fields, the earlier processes – excitations of pyramidal cells at their 

soma, produce positive-going surface potentials (Fig. 2b i).  The later processes, 

excitations of pyramidal cells at their apical dendrites, produce surface negative 

potentials (Fig. 2b ii and iii).  However, EPSPs at apical dendrites of deep layer 

pyramidal cells create closed fields and thus have rather small influence on surface 

potentials (Fig. 2b ii).  By contrast, depolarizations of superficial layer apical dendrites 

contribute greatly to negative SCPs (Fig. 2b iii).  The contribution of inhibitory 

interneurons to SCP or field potentials in general is also small because of the low 

amplitude of membrane current flow during inhibitory activity and a lack of laminar 

specificity (Fig. 2b iv) (Birbaumer et al., 1990; Mitzdorf, 1985).  In summary, the later 

component of sensory evoked potentials in EEG or ECoG recordings – a negative slow-
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potential shift – is primarily due to long-lasting depolarizations of superficial layer apical 

dendrites. 

Other than activations by specific thalamic inputs described above, the superficial 

layers are also where long-range intracortical and cortico-cortical connections 

preferentially terminate (Braitenberg and Schuz, 1998; Douglas and Martin, 2004; 

Mitzdorf, 1985).  First, only in superficial layers do pyramidal cells make extensive 

horizontal arborizations (Douglas and Martin, 2004).  Thus, EPSPs in superficial layers 

spread over a considerable spatial extent and manifest themselves as “depolarization 

fields” (~several mm2) in optical imaging recordings (Roland, 2002).  Second, long-range 

inter-areal feedback connections also terminate mainly in superficial layers.  Hence, it is 

not surprising that the SCP and the correlated fMRI signal reveal large-scale brain 

networks in their spontaneous fluctuations (He et al., 2008).  Moreover, superficial-layer 

apical dendrites are also the main target of nonspecific thalamic inputs that originate from 

“matrix cells” spread throughout the thalamus (Jones, 1998).  Interestingly, the reticular 

thalamic nucleus, which the nonspecific thalamocortical projections must pass through, 

exerts a low-pass filter influence that may facilitate the emergence of slow activity 

(Scheibel and Scheibel, 1967).  In summary, long-range intracortical and feedback 

cortico-cortical connections, as well as the nonspecific thalamic inputs, all contribute 

directly and significantly to the SCP.   
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Figure 2.  The physiological basis of the SCP.(a)Left: field potential in primary visual 
cortex of the cat evoked by electrical stimulation of optical radiation.  Each trace is the 
average of 20 responses.  Distance between adjacent recordings is 50 μm.  Middle: 
current source-density (CSD) distribution obtained from the potential profile on the left.  
Sinks, corresponding to active EPSPs, are shaded.  Cortical laminae are indicated.  Sinks 
a, b, and c reflect mono-, di-, and trisynaptic Y-type activity as shown in the right panel; 
sinks d and f reflect mono-, di-, and trisynaptic X-type activity shown in the right panel; 
sink e reflects Y-type and X-type monosynaptic activity.  Sinks a, b, and e contribute to 
type i activity in (b); sinks d and f contribute to type ii activity in (b); sink c contributes 
to type iii activity in (b).  Right: schematic diagram of successive intracortical excitatory 
relay stations as well as cell types involved.  Long-range feedback connections and 
nonspecific thalamic inputs are not depicted.  (b) Schematic diagram of 4 main types of 
cortical activities and their reflection in surface potential (recorded by ECoG or EEG).  i: 
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Depolarization of pyramidal cells at their deeper extremities, which generates a surface-
positive potential deflection.  ii: Depolarization of deep-layer pyramidal cells at their 
apical dendrites or stellate cells.  This type of activity generates a sink in the middle 
layers and a surface-negative potential deflection.  But because of the closed-field 
arrangement of CSD components, its contribution to surface potential is rather small.  iii: 
Depolarization of superficial layer pyramidal cells at their apical dendrites.  This is the 
main contributor to long-lasting surface-negative potentials.  This type of activity 
involves long-distance connections and depends greatly on the general state of cortical 
excitability.  iv: Inhibitory activity does not usually cause significant CSD contributions, 
because of the low amplitudes of membrane currents involved and a general lack of 
lamina specificity.  Adapted with permission from Mitzdorf (Mitzdorf, 1985).   
 

Given that negative SCPs index increased cortical excitability, it should not come 

as a surprise that during the negative shift of spontaneous SCP fluctuations there are 

increased multi-unit activity (Rebert, 1973), increased higher-frequency field potentials 

(Vanhatalo et al., 2004) (B.J. He et al., unpublished), higher amplitude of short-latency 

evoked potentials such as P300 (Ergenoglu et al., 1998), and better behavioral 

performance ((Devrim et al., 1999) and see references in (Birbaumer et al., 1990)).  The 

recently observed phase-coding in the delta frequency range (Lakatos et al., 2008; 

Montemurro et al., 2008) is likely of the same origin as information carried in the SCP 

phase.  Of particular interest in the current context, since the SCP modulates the power of 

higher-frequency activities, it may be a more fundamental correlate of the fMRI signal 

than LFP power is, as implicated in a previous study (He et al., 2008).   

The SCP is one important and substantial contributor to the fMRI signal (but not 

the only one—see Box 2).  In addition to advancing our understanding of the fMRI signal 

and bridging the fMRI field and neurophysiological fields, this observation is also of 

particular interest in the study of consciousness.  For example, fMRI experiments and 

single-unit recordings often show discordant results during manipulations of 

consciousness; this disagreement has been most dramatic in V1 (Logothetis, 2002; Maier 
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et al., 2008; Tong, 2003; Tononi and Koch, 2008).  These puzzling results are at least 

partially illuminated when we bring the SCP and its underlying physiology into the 

picture.  In the remainder of this article, we discuss these data and further propose a 

specific hypothesis on the involvement of the SCP in engendering conscious awareness.   

 

The SCP and consciousness – a neurophysiological hypothesis of 

consciousness 

From a theoretical perspective, information has to be integrated to contribute to conscious 

awareness, for conscious experience is always a unitary and undivided whole (Searle, 

2000; Tononi, 2008).  We suggest that the SCP may be an optimal neural substrate to 

carry such information integration across wide cortical areas because 1) its slow time 

scale allows synchronization across long distance despite axonal conduction delays 

(Buzsaki, 2006; He et al., 2008; Leopold et al., 2003; von Stein and Sarnthein, 2000); 2) 

long-range intracortical and corticocortical connections terminate preferentially in 

superficial layers and thus contribute significantly to the SCP.  Furthermore, for each 

patch of superficial-layer pyramidal neurons (for definition of “patch”, see Fig. 1 in 

(Douglas and Martin, 2004)), corresponding deep layer neurons could provide additional 

information through specialized local processing.  These local deep-layer loops may 

constitute neural substrates for unconscious processes that can affect and be affected by 

conscious experience (for discussions on the relation between conscious and unconscious 

processes see Refs (Baars, 2005; Tononi, 2008)).  A rough schematic depicting our 

hypothesis is shown in Fig. 3a.   
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Figure 3.  SCP and consciousness.(a)Schematic illustration of our hypothesis.  
Superficial layers of the cerebral cortex (shown in purple)are the only layers containing 
extensive long-range horizontal connections (thick blue lines); they are also the main 
target for nonspecific thalamocortical inputs (black lines) as well as long-range inter-
areal feedback connections (thick red arrows).  We propose that long-lasting synaptic 
activities in superficial layers, manifesting as SCPs in surface recording or low-frequency 
current source density (CSD) activity in superficial layers, carry large-scale information 
integration in the brain and contribute directly to conscious awareness.  Neuronal circuits 
in deep layers (thin blue lines) provide specialized local processing that assist superficial-
layer computations and send output to subcortical structures.  Two specific predictions 
made by this hypothesis are provided in Conclusions.  (b) Subjects performed a target 
detection task in which a visual grating stimulus at threshold was briefly presented.  
Following a variable delay, the subject was prompted by an auditory cue to press one of 
two buttons to indicate whether they saw the stimulus.  A small percentage of catch trials 
in which no grating was presented were randomly interleaved.  EEG potential from the 
left parietal electrode (P3, using Laplacian derivation, which emphasizes local vertical 
currents underneath the electrode) was averaged around the onset of grating stimulus (left 
panel), or around the motor response (right panel).  The evoked potentials for “Yes, I 
saw”, “No, I did not see”, and catch trials are shown in black, dark grey and light grey 
respectively.  The inter-subject s.d. for catch trials are shown as dotted lines.  A negative 
slow potential builds up between stimulus onset and motor response during “Yes” trials 
but not catch trials nor the trials during which the stimulus was present but not perceived.  
Adapted with permission from Pins and ffytche et al.(Pins and Ffytche, 2003)(c) Average 
evoked-potentials (EPs) in response to single stimulus pulses at the skin, recorded from 
the surface of somatosensory cortex.  EPs to 500 stimulus presentations were averaged 
for each condition.  Sub T: subthreshold stimuli, none of the 500 stimuli were felt by the 
subject.  T: threshold stimuli, subject reporting feeling some of the 500 stimuli.  Each 
recording trace is 500 milliseconds long.  Primary EP: a transient, surface-positive 
deflection that occurs ~30 ms after the stimulus, was present in both cases.  Secondary 
EP: a later slower surface-negative component, only occurs when the stimulus was at 
times felt. Adapted with permission from Libet et al. (Libet et al., 1967)(d) The 
Bereitschaft potential (BP) is a negative SCP shift preceding the onset of a voluntary 
movement (Kornhuber and Deecke, 1965).  It was shown by Libet (Libet et al., 1983) 
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that the onset of the BP also precedes the subject’s subjective awareness of the intention 
to make the movement by a few hundred milliseconds.  Adapted with permission from 
Haggard (Haggard, 2008).  
 

Interestingly, the cerebellum, generally considered nonessential for consciousness 

(Tononi, 2008; Tononi and Koch, 2008), is notably weak in its low-frequency activity as 

compared to the neocortex (Bullock, 1997).  The cerebellar cortex also lacks the 

“crowning mystery” – layer I, which is one major target for long-range feedback 

connections and nonspecific thalamic inputs (Douglas and Martin, 2004; Jones, 1998).   

In what follows we review existing empirical data supporting a functional role of 

the SCP in the emergence of conscious awareness.   

 

Attention 

Although attention and consciousness are distinct and dissociable phenomena 

(Tononi and Koch, 2008), attention clearly affects which information has better access to 

conscious awareness.  The top-down effect of attention in early sensory cortex is largely 

invisible to spike recordings, but is readily seen in the  fMRI signal (Logothetis, 2002).  

Consistent with a close correspondence between the SCP and the fMRI signal as argued 

here, top-down influence in V1 can be seen with measurements of the SCP using either 

optical imaging or field potential recordings (Lakatos et al., 2008; Roland et al., 2006).  

In the first case, a feedback wave of depolarization was found to traverse the superficial 

layers from higher-order to lower-order visual areas (Roland et al., 2006).  In the second 

case, top-down attention was found to modulate the phase of delta-frequency activity 

which further modulated the power of higher frequencies (Lakatos et al., 2008).  

Importantly, this effect was found only in superficial layers, consistent with the 
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physiology of the SCP and with the laminar preference of feedback connections (Douglas 

and Martin, 2004).   

 

Perception 

Many studies have investigated the neural correlates of conscious visual 

perception (for a recent review see (Tononi and Koch, 2008)), however, only a handful 

presented data including the SCP, which we will focus on here.  Pins and ffytche (Pins 

and Ffytche, 2003) presented visual stimulation at threshold to normal subjects, so that an 

identical stimulus would sometimes be perceived and at other times not.  In trials during 

which the subject perceived the stimulus, a negative slow potential builds up over parietal 

electrodes between the stimulus onset and the response.  This slow potential was next to 

nonexistent in trials during which the stimulus escaped conscious perception (Fig. 3b).  

Using a visual illusion task and depth recording in V1, Leopold and colleagues (Leopold 

et al., 2008) showed that perceptual suppression was only associated with changes in the 

lowest frequencies in upper cortical layers when the current source density (CSD) method 

(which has much better localizing power than raw field potentials, see Fig. 2a) was used.  

Similar to the SCP, the fMRI signal also tracks perceptual changes, whereas spiking 

activity was unaffected (Maier et al., 2008).  Furthermore, momentary fluctuations in the 

spontaneous SCP have an effect on whether a stimulus at threshold is consciously 

perceived or not (Devrim et al., 1999).  An active involvement of the SCP in conscious 

perception is also supported by early experiments in the somatosensory domain.  Through 

a series of elegant experiments using skin stimuli, electrical stimulations applied to the 

subcortical pathway and the cortex itself, Libet (Libet et al., 1967) showed that the 
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secondary evoked response (i.e., a long-lasting negative potential in surface-recordings), 

but not the primary response (i.e., the short-latency positive potential), was essential for 

conscious perception (Fig. 3c).  These findings have since received support from more 

recent studies (Rossion et al., 2000; Sergent et al., 2005).  

 

Volition 

If consciousness is a two-sided coin, then on one side it is occupied by 

perception/experience; on the other side by volition/agency (Gray et al., 2007).  Similar 

to perception, volition (i.e., voluntary actions) also has a long recognized association with 

the SCP.  It was discovered more than 20 years ago that a negative SCP shift preceded 

voluntary movement (Kornhuber and Deecke, 1965) and even the subjective awareness 

of the intention to make the movement (Libet et al., 1983) (Fig. 3d).  Though the 

implications of these results were highly debated by philosophers, the essential findings 

have been replicated numerous times and extended (Haggard, 2008; Libet, 2000).  

Specifically, recent fMRI experiments have determined both the brain regions underlying 

the intention to make a movement and those underlying the awareness of such intention 

(Haggard, 2008).  Important in the current context, recent results showed that the 

outcome of a free choice can be decoded using the fMRI signal up to 6 sec before the 

decision outcome enters conscious awareness (Soon et al., 2008).  Future experiments 

should illuminate whether this early fMRI signal is related to the early negative SCP shift 

preceding a voluntary action.   

 

The unconscious states 
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One of the most dramatic experimental manipulations of consciousness comes 

from stimulations of intralaminar thalamic nuclei in minimally conscious patients (Schiff 

et al., 2007) and anesthetized rats (Alkire et al., 2007).  In both cases of impaired 

consciousness, stimulation of nonspecific thalamic pathways significantly improved 

behavioral responsiveness.  As mentioned previously, nonspecific thalamic afferents 

terminate preferentially on apical dendrites in cortical superficial layers.  Therefore, 

stimulation of these pathways would drive negative shifts of the SCP (i.e., increased 

excitability) and thus may restore long-range communications carried by this signal.  

Similarly, recovery from persistent vegetative state (PVS) was accompanied by 

restoration of functional connectivity between the intralaminar thalamic nuclei and 

prefrontal cortex (Laureys et al., 2000).  These experiments lend important support for 

the current hypothesis of a relation between the SCP and conscious awareness.  Further 

support comes from DC-recordings of auditory evoked potentials (AEP) in humans 

undergoing propofol anesthesia (Fitzgerald et al., 2001).  Whereas the early positive 

component of AEP was preserved during anesthesia, the later component – a negative 

shift in the SCP was abolished under anesthesia and reappeared during emergence from 

anesthesia.   

These results however do not suggest that the negative SCP, whenever it appears, 

is an index of conscious awareness.  Instead, key brain regions may be required (Box 3) 

(Bud Craig, 2009; Dehaene et al., 2006; Tononi and Koch, 2008).  For example, the 

negative SCP can occur in primary sensory cortex under anesthesia (Fig. 2a) without 

propagating to higher-order areas (Fitzgerald et al., 2001).  In parallel, fMRI signal 

activation in response to sensory stimulation is usually found in primary sensory but not 
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higher-order areas in anesthetized or PVS patients (Heinke et al., 2004; Laureys et al., 

2005).   

Large-scale coherent structures in the spontaneous fluctuations of both the SCP 

and the fMRI signal (Box 3) have been described under unconscious states – slow-wave 

sleep (SWS) and deep anesthesia respectively (He et al., 2008; Vincent et al., 2007).  Do 

these findings contradict the current hypothesis?  We suggest not.  These coherent 

fluctuations could reflect spontaneous synaptic activity constrained by anatomical 

connections that continue to maintain homeostasis in the brain (Marder and Goaillard, 

2006), but which lack sufficient information content (such as the bistable dynamics of 

“up-and-down states” (Tononi, 2008)) or the integration necessary for the emergence of 

consciousness.  In fact, in both cases, the patterns of SCP or fMRI signal coherence were 

weaker in the unconscious state as compared to the conscious states (He et al., 2008; 

Vincent et al., 2007).  A decreased baseline level of cortical excitability (not assessed by 

temporal correlation measurements) may also contribute to loss of consciousness, as 

supported by aforementioned experiments in which stimulation of nonspecific thalamic 

pathways restored responsiveness in subjects with impaired consciousness (Alkire et al., 

2007; Schiff et al., 2007).   

 

Concluding remarks 

Studies on the neural basis of the fMRI signal have focused on the LFP power.  

We here present evidence for another neurophysiological signal underlying the fMRI 

signal that has received much less attention – the slow cortical potential (SCP).  The 

linkage between the SCP and the fMRI signal not only advances our understanding of 



  232

cortical physiology but also provides a different vantage point to many experimental 

results.  I further propose that the SCP may carry large-scale information integration in 

the neocortex that contributes to the emergence of conscious awareness.  Experiments on 

consciousness have seldom included the SCP, but whenever it was included, the results 

appear to be consistent with the above hypothesis.  Given that this hypothesis involves a 

specific physiological process, it is clearly amenable to empirical testing.   

 

Specifically, the hypothesis put forward makes two testable predictions: 

I) Whenever there is a change in the content of conscious awareness, there should 

also be a concurrent change in the SCP in corresponding essential brain regions (which 

yet need to be determined for different forms of conscious awareness – we offer a 

speculation on this in Box 3).  

II) In altered states of consciousness, such as deep slow-wave sleep, under 

anesthesia, or in patients with severe brain injury, the spontaneous organization of the 

SCP that is important for large-scale information integration should be altered compared 

to the fully conscious state.  This should also apply to systems with reduced 

consciousness, such as the cerebellum (in comparison to the cerebrum), and maybe 

organisms lower on the evolutionary tree (see Box 3).   

I look forward to future work that confirms or falsifies this hypothesis.   

 

Box 1.  Is the SCP an oscillation? 

The SCP frequency band has also been referred to as “infraslow oscillations” 

(Vanhatalo et al., 2004), but is the SCP really an oscillation?  EEG can be classified in 
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three distinct groups (Logothetis, 2002): rhythmic, arrhythmic and dysrhythmic.  The first 

two appear in normal subjects and refer to waves of approximately constant frequency 

and no stable rhythms, respectively.  The latter refers to pathological rhythms in patient 

groups.  Rhythmic EEG is further subdivided into frequency bands known as delta, theta, 

alpha, beta and gamma, etc.  The SCP frequency range does not normally contain any 

true rhythmic activity, except the “up-and-down states” (also called the “slow oscillation” 

by its discoverer (Steriade et al., 1993)) that occurs during deep sleep (~0.8 Hz).  The 

“up-and-down states” is a distinct phenomenon that can be easily differentiated from the 

SCP (for detailed discussions see supplementary materials in He et al. (He et al., 2008)).  

Therefore SCP is a fluctuation rather than oscillation (Monto et al., 2008) (B.J. He et al., 

unpublished).  The confusion between fluctuations and oscillations, or, arrhythmic and 

rhythmic activities, is quite common.  This is largely because time-frequency analyses 

widely adopted create artificial rhythmic signals.  However, as pointed out by T.H. 

Bullock, “Most of the time in most animals there is little evidence of really rhythmic 

oscillators in the ongoing cerebral activity, let alone that rhythms account for much of the 

total energy” (Bullock, 1997).  We here avoid using terms such as “delta” or “infra-delta” 

to describe the SCP, because these terms have connotations of oscillations that are not 

present in an arrhythmic signal.   

 

Box 2: Other contributors to the fMRI signal 

The arguments we have put forward for a close correspondence between the SCP 

and the fMRI signal do not imply that the SCP is the sole contributor to the fMRI signal.  

Because excitatory synaptic activities contribute to an increased fMRI signal irrespective 
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of cortical depth (the mechanisms of which are reviewed in details elsewhere (Lauritzen 

and Gold, 2003; Raichle and Mintun, 2006)), the short-latency positive components of 

sensory evoked potentials, indexing the initial excitations of mid-layer cell bodies, should 

also contribute to the fMRI signal activation (e.g., Eichele et al., 2005; Mobascher et al., 

2009).  Accordingly, fMRI signal increases were found to spread first from layer IV 

during sensory stimulation in anaesthetized animals (Silva and Koretsky, 2002).  The 

contribution of inhibitory neurons to the fMRI signal remains undetermined, even though 

their activity is clearly accompanied by changes in blood flow and glucose metabolism 

(Buzsaki et al., 2007; Lauritzen and Gold, 2003).   

 

Box 3.  Brain networks, information integration and consciousness. 

Spontaneous SCP and fMRI signals are temporally correlated within a set of 

large-scale functional brain networks such as those associated with visual, auditory, 

somato-sensory/motor, language, attention, executive, and self-reflective functions (see 

(He et al., 2008) and the references therein).  The temporal correlation or independent 

component maps normally presented to describe these networks tend to leave an 

impression that these networks are separate entities.  This impression overlooks the cross-

network interactions that are constantly taking place.  If one watches the raw fluctuations 

of the spontaneous fMRI signal, the signal increases appear to move from one network to 

another with different time-lags in different nodes within a network (see 

ftp://imaging.wustl.edu/pub/raichlab/Spontaneous_fMRI_signal_movies/).  The exact 

physiology underlying cross-network interaction is yet unclear, though one specific 

example might be the anti-correlation between the attention/cognitive-control networks 
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and the default network (Fox et al., 2009).  Interestingly, though both sets of networks 

were present in anesthetized monkeys (Vincent et al., 2007), this anti-correlation between 

networks was gone (unpublished data).  Both cross-network and within-network 

interactions should play a role in large-scale information integration that contributes to 

conscious awareness.   

Not all brain networks contribute to consciousness equally, as discussed in the 

text.  We speculate that the anterior cingulate and anterior insular cortices, as well as the 

default network, might be more pivotal than the sensory/motor networks and maybe even 

the dorsal attention network (including the dorsal visual stream and frontal eye field) in 

the emergence of consciousness.  This conjecture mainly comes from a thought 

experiment comparing the largely unconscious state – slow-wave sleep (SWS), with the 

conscious states including wakefulness and rapid-eye-movement (REM) sleep.  Whereas 

the sensory/motor regions and the dorsal attention network  are as active in SWS as in 

wakefulness; the anterior cingulate, anterior insular and the midline regions of the default 

network are deactivated in SWS and reactivated in both REM sleep and wakefulness 

(Braun et al., 1997; Maquet et al., 2005).  To the best of our knowledge, this conjecture is 

also consistent with existing data from persistent vegetative patients, blindsight patients 

(Laureys et al., 2005; Milner and Goodale, 2008), and from manipulations of momentary 

conscious perception (Bud Craig, 2009; Dehaene et al., 2006).   

Finally, a corollary prediction of the present hypothesis is that in most 

invertebrates (except octopus which does not conform to the following characterization), 

consciousness, if present, might be very different from that in vertebrates because the 

invertebrate nervous systems are similar to the vertebrate cerebellum, spinal cord or brain 
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stem, but distinct from the vertebrate cerebrum, in two aspects: (i) with much pronounced 

fast activity but notably weak slow activity; (ii)seems to consist of a population of 

relatively independent neurons with little integration across the population (Bullock and 

Basar, 1988). This prediction is not formalized herein because we consider it to be non-

testable by current empirical means, for a human being cannot be an invertebrate and 

experience what it experiences from inside, therefore to judge what a fruit fly experiences 

by observing its exhibited behaviors from outside is ill-defined by empirical standards. 
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EPILOGUE 

I came to St. Louis in the summer of 2004 to pursue a Ph.D. in 

neurosciences.  Over the past five and a half years, other than having grown 

a good deal personally (it was a long time!), I consider that I have made the 

following scientific contributions: 

1) Established the functional significance of spatiotemporal structures 

present in spontaneous fMRI signals; 

2) Discovered a novel neurophysiological correlate of the fMRI 

signal, the slow cortical potential (SCP); 

3) Proposed a neurophysiologically based hypothesis on the 

emergence of conscious awareness; 

4) Demonstrated a rich temporal organization present within and a 

potential functional significance of the arrhythmic, scale-free brain activity 

(commonly called “1/f noise”).   

A rough idea of my next-step research, which has to be qualified by 

the totally unpredictable nature of where science takes one, is to test the 

hypothesis on SCP and consciousness, and to bring it together with my work 

on scale-free brain activity, as well as other neurophysiological phenomena 

of the brain.   

A brief Curriculum Vitae at this point is attached below.  
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