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ABSTRACT OF THE THESIS 

Photoenhanced Oxidation of C60 in Water: Exploring the Roles of H2O2 and Hydroxyl 

Radical Based Reactions 
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Research Advisor: Professor John Fortner 

Transformation of water-stable C60 clusters (nC60) to oxidized, soluble C60 derivatives via 

photoreactions (i.e., reactions in UV irradiation) and ground-state reactions (i.e., reactions in 

dark) with various oxidants, such as oxygen, ozone, free chlorine, among others, have been 

described as critical processes in understanding the ultimate environmental fate of fullerene-

based materials. However, few studies have explored the oxidation of aqueous based C60 (as 

water stable nC60) with hydrogen peroxide (H2O2) / hydroxyl radical (OH), which are common 

oxidants in both natural and engineered systems. Herein, the aqueous physicochemical 

transformations of C60 (as nC60 aggregates) in the presence of H2O2 / OH in both photo-excited 

state and ground state under environmentally relevant conditions are explored and described. 

Results show that nC60 undergoes facile oxidation in the presence of H2O2 under both UV 

irradiation and dark, and the oxidation reaction rates increase with H2O2 concentration, while 

being inversely related to solution pH. Further, Significant enhancement of nC60 transformation 
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was observed under UV photo-irradiation. Resulting product characterization by DLS, FTIR, 

XPS, and TOC are described and collectively demonstrate that oxidized C60 derivatives (with 

addition of covalent oxygen functionality), are readily formed in the presence of H2O2 / OH. 

Increased hydrophilicity of products, as expected with increased (surface) oxidation, was 

quantified through classic octanol-water partition experiments (Kow). Taken together, this work 

emphasizes the significance of fundamentally understanding nanomaterial reactivity and 

identification of corresponding daughter products (and behaviors), as they are key for accurate 

material lifecycle assessments. 

 



1 

1 Introduction 

1.1 Discovery and Structure of C60 

In the 1980s, Kroto and coworkers conducted experiments to vaporizing graphite to evaluate 

resulting carbon species (products) which were analyzed via in-line mass spectrometer, and 

(accidentally) discovered that under certain experimental conditions, the mass spectrometer 

signal at MW 720 was much stronger than others.1 This result implied that a structure for a 

highly stable, 60 carbon molecular cluster exists.1 They proposed the cluster to be a soccer-ball 

shaped icosahedral cage of 60 carbon atoms, which would be the third allotrope of carbon.1, 2 

They went on to name molecule (C60) buckminsterfullerene, which was chosen based on 

similarly arranged geodesic domes designed by the architect R. Buckminster Fuller (from 

Carbondale Illinois!).1 For their discovery, the research team was awarded the Nobel Prize in 

Chemistry in 1996. 

C60 was proposed to be a highly symmetric truncated icosahedron with 12 pentagonal rings 

(PR), 20 hexagonal rings (HR) and 90 bonds including 30 bonds lying only in HRs and 60 

bonds forming the edges of both a PR and a HR, such that each carbon atom is in an identical 

molecular environment.1, 3 Due to the Ih symmetry of the molecule, the charge densities are all 

equal.3 The unique structure of C60 raised considerable research interest concerning the 

electronic structure/properties of the C60 molecule.3 One unique feature of C60 is the strained, 

spherical shape of the non-planar conjugated system which is solely composed of sp2 
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hybridized carbon atoms.3 In an experiment evaluating the electronic states of C60, conducted 

by Weaver and coworkers using photoemission, showed that the electronic configuration 

exhibits an overall bandwidth and a distribution of σ and π character that is nearly the same 

as for graphite and diamonds, providing a long-anticipated test for calculations of the electronic 

configuration of C60 and relative fundamental properties.4 Haddon focused on the electronic 

structure as well as bonding of icosahedral C60, and concluded that icosahedral C60 molecules 

are supposed to be stable, isolable, and are able to accept up to 12 electrons in the solution, 

which means they are good electrophilic materials.3 The carbon hybridization of icosahedral 

C60 is calculated to be approximately s0.09p for the π orbitals and sp2.28 for the σ system, 

having about 90% of the resonance stabilization of an equivalent planar graphite system.3 And, 

due to the particular symmetry of the molecule, the electronic and vibrational spectra of the 

molecule were thought to be comparatively simple.3 

After the observation of C60 being produced by vaporizing graphite by Kroto et al., an efficient 

synthesis using an evaporation-based method ---- producing graphitic carbon soot which 

contained a small of percentage of C60 molecules (which could be extracted via HPLC) ---- was 

discovered and developed by Kratschmer et al.. This gram quantity route facilitated the broad 

study of C60 (among other fullerenes) and new classes of molecular crystals based on C60 which 

were found to possess novel properties ---- eventually leading to research towards application.5-

7 
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1.2 Physical and Chemical Properties of C60 

C60 is a black solid with the diameter of ~7Å,2, 7 and is very stable under ambient conditions. 

C60 has a density of 1.65 g/cm3, and sublimates at 800 K.8 C60 can be readily dissolved into a 

number of organic solvents such as toluene and benzene, but is basically insoluble in water 

(approximately < 10-9 mg/L).8, 9 Other physical properties are listed in Table 1.1.10 

Table 1.1 Physical properties of C60 

Quantity Value 

Moment of inertia I 1.0  10-43 kgm2 

Volume per C60 1.87  10-22 cm-3 

Number of distinct C sites 1 

Number of distinct C-C bonds 2 

Binding energy per atom 7.40 eV 

Heat of formation (per g C atom) 1.16 kcal 

Electron affinity 2.65±0.05 eV 

Cohesive energy per C atom 1.4 eV atom-1 

Spin-orbit splitting of C (2p) 0.00022 eV 

First ionization potential 7.58 eV 

Second ionization potential 11.5 eV 

Optical absorption edge 1.65 eV 
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The structure of C60 results in highly hydrophobic properties in addition to being highly baro- 

and thermotolerant.11 The non-aromatic sp2 configuration (aspects) of the carbon atoms renders 

it to have unique chemical susceptibility to modifications, thus being an excellent starting 

structure for various fullerene derivatives.11 Also, C60 has relatively good electron conductivity 

and effective charge separation at the donor/acceptor interface due to molecular 

structure/arrangement,12 and thus C60 can act as a semiconductor, conductor and 

superconductor under specific conditions.8 Further, C60 is also an excellent photosensitizer with 

high reactive oxygen species (ROS) production efficiencies.13 Enhanced photoactivity is 

notably attributed to small size, large surface area, and conjugated (and strained) molecular 

structure as well as their strong absorbance throughout the UV-vis spectrum.13 

1.3 Chemistry of C60 

The chemical reactivity of fullerene, C60, has been widely studied since its discovery. The 

primary chemical reactions of fullerenes can be categorized mainly as four groups: (i) reduction 

reactions; (ii) addition reactions including cycloadditions, addition involving bridging, and 

addition of various groups such as halogens and hydrogens; (iii) nucleophilic and electrophilic 

substitution reactions; and (iv) polymerization reactions. All of these reactions are able to form 

various fullerene derivatives.14, 15 

Due to its high electrophilicity, C60 is readily reduced and can undergo reduction via Birch 

conditions, by hydrogen with Pt catalyst, diimide, hydrogen transfer reagents such as 

dihydrophenanthrene, and by diborane (in THF).15 When C60 reacts with t-butyl-lithium, 
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controlled anion formation can be achieved, eventually forming corresponding hydrogenated 

derivatives.15 C60 in organic solvents (in the ground state) can also be reduced to fulleride 

anions, and then form fullerene hydrides, by hydrogen, sodium, liquid ammonia and so forth.10, 

16 

Through the addition of functional groups, exohedral modifications of fullerenes in three 

dimensions can occur.6 High reactivity of C60 is also partially due to it is a strained, electron-

deficient poly-alkene environments with highly localized (and sterically exposed) double 

bonds.17 It easily forms adducts with multiple nucleophiles, radicals, and carbenes, 

participating in different thermal cycloaddition reactions as the electron-deficient dienophile 

component, and can also undergo photochemical cycloaddtions.17 When C60 is exposed to 

oxygen, the formation of oxygen bridges, epoxides, has been reported.15 Further, oxygen can 

be bound through the formation of ethers produced either by ultraviolet irradiation or by 

heating the epoxides. Besides the oxygen, methylene adducts of C60 and metallic bridges have 

been observed.15, 16 Apart from the addition reactions described above, addition of halogens 

and hydrogens have also been reported. Until now, fullerene bromination is the most controlled 

halogenation, but gives the most (water) insoluble derivatives.15 Also, C60 is readily 

hydrogenated, and forms 𝜂2  complexes (coordination to a 6-6 bond) with many transition 

metals.17 Moreover, the addition of electrophiles and nucleophiles can also occur as well, 

forming various derivatives. All of the addition reactions are exothermic and are partially 

driven by molecular strain relief of the cage structure (mostly associated with the 
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pyramidalization of its sp2 carbon atoms).17 Just as the parent fullerenes are reactive towards 

nucleophilic addition, the derivatives are very reactive towards nucleophilic substitution.15 For 

example, fluorinated C60 reacts readily with nucleophiles including water.15 With highly 

reactive nucleophiles such as amines, reactions are nearly instantaneous, whereas with weak 

nucleophiles such as acetic acid, longer time frames (days to weeks) are required.15 The 

reaction of halogenated derivatives of C60 with aromatics in the presence of Lewis acid catalyst 

is a classic example of an electrophilic aromatic substitution.15 

Polymers involving C60 include ‘pearl necklace’ and ‘pendant chain’ configured structures, and 

the other is a necklace variant with direct links between the cages, formed by polymerization 

of C60 by ultraviolet irradiation in the absence of oxygen.15 

1.4 Applications and Productions of C60  

C60 has become one of the most popular electron-acceptor materials used in organic 

photovoltaics in recent years due to its electronic properties.12 Polymer-fullerene bulk 

heterojunction (BHJ) solar cells have consistently been improving in field of organic 

photovoltaics (OPV), and have been an area toward optimization and simplification for more 

efficient performance.18 

The superior photochemical properties of C60 allow equimolar photon conversion to singlet 

oxygen (1O2) under irradiation, and photon energy during this process can exceed 2.3 eV (<550 

nm).19 This high yield of 1O2 generation provides prospective applications for C60 and its 
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derivatives as a substitute for photodynamic therapeutic reagents, or as an artificial catalyst for 

Diels-Alder and Ene reactions.19 Additionally, C60 and derivatives were also reported to be a 

novel environmental photocatalyst utilizing visible light (or sunlight) to promote both 1O2 

production and the oxidizing ability of 1O2 for contaminant degradation and microbial 

devitalization.19 

Functionalized fullerenes have also been applied in the construction of highly sensitive 

biosensors for versatile biomedical applications because of their special physicochemical 

characteristics.20 The most advanced research on fullerene functionalization and its application 

in sensor devices has demonstrated that fullerene can be utilized successfully in constructing 

biosensors to detect glucose levels in blood serum; to detect urea levels in urine solution; to 

identify doping agents; and to analyze pharmaceutical preparation methods/reactants, and 

among others.20 

Pristine C60 has been reported to be a promising media for the delivery of the anticancer drug 

doxorubicin (Dox) to its biological targets in tumor cells. It was found that Dox incorporated 

with C60 brings about 1.5-2 times increase in Dox toxicity towards different human tumor cell 

lines compared to when only Dox is used.21 Water-stable clusters of C60 are a promising 

material for the control of reactive oxygen species (ROS) dependent inflammation including 

allergic diseases. Fullerenes and some of their derivatives, as antioxidants, also enable efficient 

ROS inactivation. It was also recently observed that nC60 (as a cluster, which is described below) 

changes the immune response from Th2 to Th1, and recovers the function of the skin barrier to 
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some extent, providing an excellent alternative to the treatment of allergic and other 

inflammatory diseases such as Parkinson’s, Alzheimer’s and Atopic dermatitis.22 

Thus, due to its potential multifold applications, C60 has attracted enormous research attention 

and is now being produced in large quantities globally.23 Until now, three methods have been 

used to produce pure fullerene, primarily as C60: (i) The Hufmann-Kratschmer procedure which 

is based on an arc-discharge between graphite rods in an atmosphere of helium; (ii) Combustion 

of benzene under oxygen deficient conditions; (iii) Condensation of polycyclic aromatic 

hydrocarbons through pyrolytic dehydrogenation or dehydrohalogenation.24  

1.5 C60 Clusters in Water: nC60 

C60 is readily dissolved into a number of organic solvents; however, its solubility in water is 

extremely low (approximately < 10-9 mg/L).9 Interestingly, it was observed that C60 can be 

made effectively available in water as a water stable nano-scale aggregate, termed herein as 

“nC60”, via solvent exchange protocols (among others), which can enhance the aqueous 

availability by orders of magnitude (up to 100-200 mg/L).9, 25 nC60 formation has also been 

reported by adding C60 to distilled water and continuously mixing for a period of time (days to 

weeks).25 All methods can form highly negatively charged surfaces (for nC60), which 

contributes to water stabilization.26 However, it has also been reported that nC60 preparation 

methods can affect nC60 formation in terms of size and morphology.26 C60 aggregates formed 

via extended mixing in water (aqu/nC60) differ from those produced by the solvent exchange 

method (THF/nC60).
26 Generally, aqu/nC60 clusters are more polydispersed than THF/nC60 in 
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the aqueous phase.26 Moreover, the morphologies of C60 aggregates also vary with different 

preparation methods. Typically, THF/nC60 processing results not only in spherical but also 

faceted particles with few irregular particle shapes, while particle shapes in aqu/nC60 were 

mostly irregular/amorphous.26 nC60 formation is also pH and ionic strength dependent, as 

observed for variable aggregate size and zeta potential that decreased with increased pH and 

with decreased ionic strength.27 In addition, it was reported that the stability of nC60 can be 

affected by solution conditions such as ionic strength, pH, and natural organic matters 

(NOMs).28, 29 nC60 aggregation can also occur at higher ionic strengths (≥ 50 mM), with 

aggregation size increasing as a function of (increased) ionic strength.28 The absolute zeta 

potential of nC60 decreased as the ionic strength increased.28 Natural organic matter (NOM), 

can stabilize nC60 which is hypothesized to be a result from the structural and conformational 

characteristics of the adsorbed NOM layers contributing to steric repulsion forces.29 Titration 

of nC60 suspensions in the aqueous phase revealed that the isoelectric point (pI) of nC60 is less 

than 1.0 for suspensions formed by long-term stirring.30 Overall, the formation of nC60 

enhances availability of fullerene in the aqueous phase by orders of magnitude in terms of 

stability and alters the physical and chemical properties considerably. 

The deposition of nC60 in (onto) porous medium (i.e. aquifer or a water treatment filter) has 

also been evaluated to understand the potential transport, exposure, and impacts on organisms 

and ecosystems.31 Deposition was found to increase with increasing ionic strength and the 

concentration of polysaccharide-type organic matter, and with decreasing of Darcy velocities.31 
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The retention of nC60 in porous media is decreased under conditions with lower ionic strengths 

and higher concentrations of humic-like substances.31 Significant differences in nC60 properties 

and transport behavior were also observed as a function of preparation methods.31In addition 

to the studies referenced above, a number of investigations on nC60 and of its derivatives, 

including the effects of aggregation, transformation in natural conditions, redox reactions, and 

photochemistry, have been increasing dramatically in recent years.25, 32-35  

Due to its unique structure, including extensively conjugated-pi system, C60 can strongly 

absorb light, which, in turn facilitates the photochemical transformation of nC60.
36, 37 It has 

been demonstrated that nC60 can undergo photochemical transformation when exposed to 

monochromatic UV light at 254 nm under aerobic conditions (dissolved oxygen: 9 ppm).36 

Characteristic peaks of nC60 (over 280-600 nm, with 1T1u – 1Ag transition peaks of 260, 340 

and 450 nm)10 in the visible and UV regions disappeared gradually during the process, with a 

new absorption, centered at 210 nm, appearing meanwhile, indicating the formation of a new 

soluble product containing various oxygen functional groups like epoxides and ethers.36 

Besides pure UVA light, nC60 transformation can also occur under the irradiation of sunlight 

and lamp light (300-400 nm wavelengths), indicated by loss of the brown to yellow color of 

nC60 as well as UV absorbance, and size decreasing as the exposure time increased.37 1O2 was 

proved to be produced as one of the reaction intermediates, and it plays a significant role in 

mediating C60 phototransformation in the aqueous phase.38 Further, the products after long-

term (947 h) exposure of nC60 to sunlight were reported to be a distribution of C60 derivatives 
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with oxygen-containing functional groups, such as vinyl ether and carbonyl or carboxyl groups, 

which resemble a commercial fullerol (C60(O)x(OH)y, where x + y = 22, (MER Corp.)).39  

C60 is readily attacked by electrophilic species like oxygen, ozone, halogen group, hydroxyl 

radicals (OH) and so forth, forming various derivatives.17, 25, 32-34, 40 All of these can oxidize 

C60 to different degrees. Monoxide C60O, which is the major and (in most cases) sole oxidation 

product of C60, can be formed even when the starting C60 (in toluene) is exposed to atmospheric 

oxygen in light, but the reaction rate is low.41 It has also been reported that C60O can be formed 

during the synthesis of aqu/nC60, due to the trace amount of ozone in the atmosphere.42 

Reactions between nC60 and ozone in the aqueous phase in the ground state indicated that the 

formation of highly oxidized, mainly as water stable hemiketal derivatives, can occur, with up 

to 29 oxygen added per C60 molecule.25 When exposed to free chlorine in the aqueous phase, 

nC60 chlorination also has been observed to occur in both the ground state and photo-excited 

state.33, 34 In the ground state, it is suggested that C60 is covalently bonded partially with oxygen 

and chlorine in the outer surface, altering stabilities of product aggregates over widened pH 

and ionic strength range.33 In the photo-excited state, it was observed that the chlorination of 

nC60 is significantly enhanced.34 Similarly, surface chlorination, hydroxylation, and oxidation 

occurred on the surface of nC60.
34 Extensive photochlorination even can lead to isolated 

benzenoid ring structures that does not exist for parent nC60 (cages), while maintaining the 60-

carbon cage structure.34 Among relevant electrophilic species, hydroxyl radical (E(OH / OH-): 

2.80 V)32, 43 is a highly active oxidant and is also ubiquitous in the environment, which can be 
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produced via multiple pathways including photolysis of hydrogen peroxide; ozone 

decomposition in natural waters or water treatment systems; and the Fenton reactions in the 

ground state or under light.32, 43-47 Lee et al. studied the transformation of water-stable C60 (nC60) 

exposed to OH radical which was produced via steady-state γ-radiation under N2- and N2O-

saturated conditions in the ground state (dark). It was observed that only 36% of C60 carbons 

at the surface were converted to monooxidized forms, despite a high concentration ratio of 

[OH]total/[C60]0.
32  

In general, the photo-excited C60 is more reactive than C60 in the ground state since that C60 

can be transformed from the ground-state C60 to the photoexcited singlet C60 (
1C60) under the 

light irradiation, and 1C60 will rapidly transform to the photoexcited triplet C60 (
3C60) through 

intersystem crossing. 3C60 has two pathways for subsequent reactions. One, is 3C60 can accept 

electrons from electron donors, producing C60
∙−  with the formation of the superoxide anion 

radical (O2
∙−) via O2 receiving the electron from C60

∙− , and the other (2) is that 3C60 can transfer 

energy to other molecules such as oxygen molecules to form 1O2.
38, 48 Past studies have 

indicated that the reaction of 1O2 with 3C60 is required for the oxidative phototransformation of 

C60 not only in organic solvents, but also in the aqueous phase.37, 38, 49, 50 

1.6 Hydroxyl Radicals’ Generator: Hydrogen Peroxide  

Advanced oxidation processes (AOPs) including Fenton, photo-Fenton, wet oxidation, 

ozonation, and photooxidation are considered to be effective ways to treat (degrade) organic 

pollutants in water.51 The main difference among such processes is how OH is produced. 
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Among these, photolysis of H2O2 under UV irradiation is one of the most widely applied waste 

water treatments.51 

Hydrogen peroxide (H2O2) is one of the most effective oxidants for degradation of organic 

contaminants and for microbial disinfection. The concentration level of H2O2 varies in water 

phase and air as a function of water quality. For the treatment of micro pollutants, 0.2~1.5 mM 

H2O2 is suggested.52, 53 In treatment of bacteria abundant wastewaters such as livestock 

wastewater, the concentration of H2O2 could reach as high as 6 mM H2O2.
54 For dental uses, 

0.05%~0.25% H2O2 have been reported for irrigation processes.55 H2O2 has also been observed 

in gas phase; in ordinary air (RH~40%), the concentration level is only 0.46 ppb; in wet air 

(RH~96%), it is increased to 0.937 ppm.56 As an industrially produced reagent, the demand for 

H2O2 is increasing globally. According to the statistical report published by the ICON Group, 

$383,067 total worth of H2O2 was exported in 2005, and it increased by 37% in 2011.43 

Under irradiations (both engineered UV or natural sunlight), hydroxyl radical is produced via 

photolysis of H2O2, as shown as Equation (1-1)57: 

H2O2
hv
→ 2 • OH  (1-1) 

The quantum yield of this reaction is Φ(OH ) = 0.96 ± 0.04 (UVA at 351 nm).58 

Without photoirradiation, hydroxyl radicals can be produced through a Fenton reaction as 

shown below47: 
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 Fe(II) + H2O2 → Fe(III) + OH
− +• OH (1-2) 

The optimal pH for Fenton reaction is ca. 3.0, which is not common in natural environments. 

Also, the oxidation rate(s) is limited by the accumulation of ferric oxide sludge produced during 

the process.47 Chen et al. proposed a Fenton-HA system using hydroxylamine (NH2OH) as an 

accelerating agent in the system, with a workable pH range (pH 2-6) for the reaction.47 

Hydroxyl radicals can readily react with many organic and inorganic compounds via hydrogen 

abstraction, radical-radical reactions, electrophilic addition, and electron transfer(s).59 

Interestingly, the reaction of nC60 with H2O2 / OH has not been evaluated in details ---- 

especially under photoexcited conditions. 

1.7 Framework and Motivation of This Study 

1.7.1 Objectives 

The release of C60 into the environment is now a reality based on mass production and expanded 

applications. As a result, C60 reactivity (through nC60 formation by extended mixing via no 

solvent-phase intermediate) in the aqueous phase is probable. It was found that prokaryotic 

exposure to nC60 at relatively low concentrations is inhibitory, indicated by lack of growth 

(≥0.4 ppm) and decreased aerobic respiration rates (4 ppm).9 Similarly, it was proposed that 

nC60 can inhibit benzo(a)pyrene efflux from hepatocytes of Cyprinus carpio, by affecting cell 

membrane fluidity and P-glycoprotein expression, revealing the possible mechanism of nC60 

posing risks on humans.60 The study of ecotoxicological impact of nC60 on bacterium (Bacillus 
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stearothermophilus) and an aquatic plant (Lemna gibba), it was observed that the contents of 

chlorophylls a and b, and chloroplast oxygen production decreased drastically in L. gibba, 

leading to the inhibition of growth of L. gibba, in contrast to that of the bacteria.61 Overall, it 

is suggested from the study results that nC60 should be treated as an environmental contaminant, 

potentially jeopardizing the equilibrium of aquatic ecosystems.61 Further complicating these 

observation is the fact that C60 readily reacts with a variety of ubiquitous reactants, including 

hydroxyl radicals (being produced via H2O2 photolysis under UV irradiation, which readily 

happens in both the environment and in engineered systems). 

1.7.2 Project Frame Work and Significance 

In this work, the transformation of water-stable C60 clusters (nC60) with H2O2 over a range of 

relevant aqueous conditions (e.g., photo-irradiation, pH, reduction-oxidation potentials) are 

quantitatively described. Reaction kinetics were evaluated, using Ultraviolet-visible 

spectroscopy (UV-Vis) with detailed product characterization as described by using dynamic 

light scattering (DLS), Fourier transformation infrared spectroscopy (FTIR), X-ray 

photoelectron spectroscopy (XPS), and the TOC-L total carbon analyzer. Finally, organic 

partitioning (behaviors) of the initial nC60 and the oxidized products are compared and 

discussed through traditional octanol-water partition experiments. Oxidized products, which 

were significantly transformed, show significantly different properties compared to unreacted 

nC60 reactants, including portioning behaviors, which are critical for accurate fate, transport, 

and eventual sustainability of fullerene based materials. 
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2 Materials and Methods 

2.1 Chemicals  

C60 (99.9% purified via sublimation) was purchased from MER Corp. (Tucson, AZ). Hydrogen 

peroxide (H2O2, laboratory grade, 30%), ferrous sulfate heptahydrate (FeSO4 ∙ 7H2O), 

hydroxylamine (NH2OH), tert-butyl alcohol (t-BuOH) and 1-octanol were all purchased from 

Sigma-Aldrich (St. Louis, MO). All solutions were prepared with ultrapure water ( > 18.2 MΩ-

cm resistivity, Milli-Q, Millipore Corp.). 

2.2 nC60 Preparation  

Since large quantities of nC60 solutions were needed throughout the study, a reproducible and 

comparatively simple preparation of nC60 was acquired from Fortner et al.9 Approximately 75 

mg of C60 was added to 4 L new bottle of tetrahydrofuran (THF) (spectroanalyzed, > 99.99%, 

Fisher Scientific) and bubbled with N2 (Airgas, Bowling Green, KY) to eliminate oxygen. Once 

resealing the THF-C60 mixture, the solution was magnetically stirred for 48 h on the stirring 

plate at an ambient temperature (21.0 ± 1.0℃). The saturated solution was then vacuum 

filtered via 0.22 μm  nylon membranes (Whatman GmbH, Germany), bringing about a 

transparent solution with a light pink color, which was transferred to clean bottles and sparged 

with N2 for 10 minutes and stored in the dark for further use. 250 mL C60-saturated THF 

solution was added to a 2 L wide mouth Erlenmeyer flask and stirred rapidly, and 250 mL 

ultrapure water was then added quickly to the stirring mixed solution. Upon the added water, 
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the pink C60 saturated THF solution changed to a transparent yellow solution. Through a rotary 

evaporator (Buchi Rotovap system), the new color mixture was heated (71℃) to collect the 

THF, which is more volatile. To guarantee a consistent level of THF removal from solution, a 

stepwise evaporating procedure was introduced as follows. Starting with 500 mL total volume 

of water-THF mixture (ratio 1:1), approximately 250 mL was evaporated and collected. Then 

100 mL ultrapure water was added to the remaining yellow solution, making the total volume 

to 350 mL, and was evaporated again to 250 mL. Then 100 mL ultrapure water was added to 

the solution and evaporated again to finalize the volume to 250 mL. The solution was cooled 

overnight at room temperature and vacuum filtered into a 250 mL sterile container and stored 

in the dark. The nC60 concentration of this final solution is about 5 mg/L (indicated both UV 

absorbance and total organic carbon detection). In order to remove the residual THF, the 

solution were purified with > 99.5% (volume) Milli-Q water by a stirred-cell membrane 

(Amicon, molecular weight cutoff (MWCO) of 100,000 Da) under an inert atmosphere. The 

purification process was repeated for more than 6 times in order to completely remove residual 

THF and the golden color nC60 suspensions were stored in dark at room temperature.  

2.3 nC60 Oxidation Batch Experiments  

nC60 photoreactions were conducted with 7 mg/L nC60, determined by TOC-L total carbon 

analyzer (Shimadzu Scientific Instrument, Inc., MD), at varied concentrations of H2O2 (5, 10, 

15, 20 mM) in 100 mL customized quartz bottles (Technical Glass Products) on the stirring 

plate (400 rpm) under UV irradiation (351 nm UVA, 2 mW/cm2). The initial total volume of 
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all the reactions is 25mL by adding ultrapure water (18.2 Ω). The initial and final pH were 

measured by S40 SevenMulti pH meter (Mettler-Toledo International Inc., US). For reaction 

at pH 8.5, experiments were conducted in a 100mL quartz beaker (Technical Glass Products) 

using the autotitrator consisting of the 902 titrando and 801 stirrer (Metrohm, USA) with 

hydrochloric acid (HCl) or sodium hydroxide (NaOH) to keep the pH steady (pH 8.5±0.2) via 

tiamo 2.4 computer program. nC60 reactions in the ground state were conducted at pH 8.5 

(dynamic pH change:±0.2) controlled by the autotitrator in a 30 mL borosilicate glass bottle 

(Technical Glass Products) covered with aluminum foil to avoid light irradiation interference 

by mixing 7 mg/L nC60 with 20mM H2O2, 10μM Fe(II) as FeSO4 and 0.4 mM NH2OH, which 

was used as an accelerating agent. As the reaction proceeded, a 1.5 mL sample was taken at 

specific time interval and analyzed by UV-vis spectroscopy immediately (Varian Cary Bio50, 

Agilent Technology, CA) scanning from 190 to 800 nm with 0.5 nm interval initialize with 

back ground correction of ultrapure water, to measure nC60 absorbance changes at 340 nm 

(molar adsorption coefficient = 4.486 × 104 M−1 ∙ cm−1), 33 which is a fundamental 

absorbance peak for C60, standing for the concentration of nC60 according to the Beer-Lambert 

law.25, 36, 62 H2O2 concentrations were also monitored via UV-vis during the reaction by adding 

10 uL Titanium (IV) oxysulfate solution (TiOSO4∙xH2O, > 29% Ti basis) to 2 mL diluted 

samples, forming a dark yellow complexation solution with UV absorbance at 407 nm (molar 

adsorption coefficient = 6.89 × 102 M−1 ∙ cm−1).63, 64  

All the experimental conditions were conducted in triplicate at room temperature 
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(21.0 ± 1.0℃) under ambient conditions (dissolved oxygen was ca. 9 ppm indicated with 

NeoFox DO monitor) for 24 hours. Control experiments of nC60 with no H2O2, and nC60 with 

H2O2 in the dark ---- at the same levels of pH ---- were also conducted for comparison. Further, 

to explore the role of hydroxyl radicals during the reactions, control experiment of nC60 mixing 

with 20 mM H2O2 and 200 mM t-BuOH, as a hydroxyl radical scavenger (k[t-BuOH + OH] 

= 5 × 108 M−1 ∙ s−1), under UV irradiation was conducted.25, 65 The reacted products were 

collected at the end of the reactions for DLS, FTIR, XPS, TOC, and water-octanol partition 

experiments for further products characterization. 

2.4 Product Characterization  

The particle size distributions and zeta potentials of the nC60 before and after the reaction were 

measured by using dynamic light scattering (DLS) analysis with a ZetaSizer Nano (Malvern 

Instruments, UK). Liquid-state FTIR analysis was performed by the absorbance infrared 

Fourier transform spectroscopy (Nexus 470 FT-IR, Thermo Nicolet, NC) with a PerkinElmer 

UATR single bounce ATR accessory with a ZnSe crystal. The residual H2O2 background in the 

reacted nC60 solution was removed by being washed in the stirred-cell (Amicon, MWCO of 

1000 Da) for more than five times until the H2O2 background completely disappeared, 

indicated by UV-vis spectra. Original nC60 or purified reacted nC60 samples for FTIR were 

collected through dropping 1.5mL samples continuously on the ZnSe trough and dried in a 

vacuum oven (Thermo Scientific, NC) at room temperature in the dark until ca. 4.5 mL total 

volume on the trough was obtained. An air background spectrum was collected for background 
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subtraction after the sample spectrum collection. Liquid samples for X-ray photoelectron 

spectroscopy (XPS) analysis were prepared by dropping 30 μL purified sample solutions on 

indium wafers and dried in the vacuum oven at room temperature for 1~2 hours. The step above 

was repeated for several times to achieve ca. 250 μL total volume on the wafers. XPS analyses 

of parent and reacted nC60 solutions were performed using a PHI Quantera SXM scanning X-

ray microprobe with monochromatic Al source and conducted at 26 eV pass energy with a 200 

μm X-ray spot size. Toal organic carbon concentrations of parent and daughter nC60 were 

monitored via TOC-L total carbon analyzer. nC60 solution as ca. 8 mg/L is reacted in the photo-

excited state and in ground state, respectively. After 24 h, the reacted samples were taken and 

diluted to determine the final concentration of total organic carbon (if mineralization happens 

during the oxidation process). 

2.5 Octanol-water Partition Coefficients Measurements  

Octanol-water partition coefficients are broadly used as a parameter to determine the fate and 

distribution of organic species, including nC60, in the environment. Here, 8 mL parent nC60 and 

reacted nC60 were mixed with 1-octanol of the same volume in amber glass vials using a rotary 

shaker (Labquake, Thermo Scientific, UT) to be shook for 3h in the dark. The mixtures then 

stood for 24 h for phase separation. The samples in water phase were collected to determine 

the concentration of nC60 left in the water phase through UV-vis analysis. The octanol-water 

partition coefficient was calculated according to the eq 2-1: 
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𝐾𝑜𝑤 =
𝐶𝑜
𝐶𝑤
=
[𝐴𝑏𝑠]340𝑛𝑚,𝑖 − 𝑘 × [𝐴𝑏𝑠]340𝑛𝑚,𝑝

[𝐴𝑏𝑠]340𝑛𝑚,𝑖
 (2-1) 

The concentrations of nC60 before and after reactions in octanol phase were calculated by 

subtracting the nC60 absorbance in the water phase after partitioning from the initial absorbance 

at 340 nm, before partitioning according to the mass balance. Since the volume of water 

dissolved into octanol cannot be ignored, the partition coefficient was corrected by a factor k 

determined experimentally. The Kow of initial nC60 and reacted products were evaluated at pH 

5.6 and 8.5, adjusted by NaOH or HNO3 before the partition. All the partition experiments were 

conducted in triplicate. 
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3 Results and Discussion 

3.1 Reaction of nC60 with H2O2 / OH and Reaction 

Kinetics 

Generally, under UV irradiation, nC60 easily reacts with H2O2 / OH in water, as indicated by 

the gradual loss of the characteristic nC60 peak (340 nm) over (reaction) time (0-24h) in the 

presence of H2O2, as shown in Figure 3.1.  

 

Figure 3.1 UV spectra of parent nC60 (ca. 7 mg/L) and its products as a function of reaction 

time for batch reaction (20 mM H2O2; no buffer added; 351 nm UVA; I = 2 mW/cm2). 

In control experiments consisting of nC60 reacting with H2O2 in the dark, almost no loss of nC60 
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characteristic peak was observed. The control experiment of nC60 reacting with H2O2 / OH in 

the presence of t-BuOH (a standard hydroxyl radical scavenger) was also conducted, and the 

loss of nC60 characteristic peaks was also dramatically mitigated. Both of these results indicate 

that the chemical alteration happens to nC60 is mainly due to the presence of OH, instead of 

H2O2 itself. H2O2 degradation was also observed by reading the decreased peak at 407 nm 

through UV-vis, as shown in Figure 3.2.  

 

Figure 3.2 UV spectra of H2O2 (ca. 20 mM initially, diluted for 25 times; mixed with ca. 7 mg/L 

nC60) as a function of reaction time for batch reaction (351 nm UVA; I = 2 mW/cm2). 

Total organic carbon balance analyses, via the TOC analyzer, before and after the reaction(s), 

indicate there is no mass loss of nC60 as a result of precipitation and/or mineralization (see 
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Figure A.1 in the appendix). Solution pH before and after the reactions are shown in Table 3.1. 

After all reactions, pH were decreased slightly, which was likely due to proton generation via 

the reaction Eq 3-1:66 

H2O2 + OH → O2
∙− + H+ + H2O (3-1) 

Table 3.1 Initial and final pH of the photo-excited reactions 

H2O2 concentration (mM) 5 10 15 20 

Initial pH (Ave.) 5.542 5.369 5.357 5.430 

Final pH (Ave.) 4.717 4.856 4.974 4.849 

Reaction rates of nC60 with H2O2 were determined by the absorbance change (of nC60) at 340 

nm and the change of H2O2 concentration (over the reaction time), which are shown in Figure 

3.3 to Figure 3.6. Pseudo first-order constants of nC60 oxidation were derived according to Eq. 

3-2 to Eq. 3-6, which assume excess (available) H2O2:  

−
d[nC60]

dt
= kr[∙ OH]ss[nC60] (3-2) 

−
d[nC60]

dt
= k1,obs[nC60] (3-3) 

[nC60]

[nC60]0
= e−k1,obst (3-4) 

d[H2O2]

dt
= k2,obs[H2O2] (3-5) 

[H2O2]

[H2O2]0
= e−k2,obst (3-6) 
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Where [OH]ss is the steady-state concentration of OH; k1,obs and k2,obs are the experimentally 

derived pseudo first-order rate constants ( R2 > 0.93), which are presented in Figure 3.7 and 

Figure A.4 in the appendix. 

 

Figure 3.3 nC60 UV absorbance ratios at 340 nm (C/C0) over reactions time (under UV 

irradiation, 351 nm UVA, I = 2 mW/cm2; no buffer added). 
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Figure 3.4 H2O2 concentration ratios (measured at 407 nm by UV-vis) (C/C0) over reactions 

time (under UV irradiation, 351 nm UVA, I = 2 mW/cm2; no buffer added). 
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Figure 3.13 XPS spectra and curve-fitting analysis of unreacted nC60 and reacted products: (a) 

nC60 products with 10 mM H2O2 under UV irradiation; (b) nC60 products with 20 mM H2O2 

under UV irradiation; (c) nC60 products with 50 mM H2O2 under UV irradiation; (d) nC60 

products with 20 mM H2O2 in the dark at pH 8.5; (e) nC60 products with 20 mM H2O2 under 

UV irradiation at pH 8.5; (f) unreacted nC60. 

For reacted nC60 under UV irradiation and for dark reactions (Figure 3.13 a-e), two additional 

peaks appeared at higher energy levels, representing carbon at different oxidation states: 

monooxidized carbons (C-O) at ca. 286 eV and dioxidized carbons (C=O and O-C-O) at ca. 

288 eV, respectively.33, 35, 36 As the H2O2 level increased under UV irradiation, the ratios of 
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Figure A.3 H2O2 UV absorbance at 407 nm over reactions time under varied conditions 
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Figure A.4 Reaction rate constants of H2O2 under UV irradiation 
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Figure A.5 Water-octanol coefficients (Kow) of unreacted nC60 and reacted nC60 products at pH 

5.6 and 8.5 

 

Figure A.6 Quenching of hydroxyl radicals by t-BuOH. 
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