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Summary paragraph: Regional species diversity generally increases with primary productivity 18 

while local diversity-productivity relationships are highly variable.  This scale-dependence of the 19 

biodiversity-productivity relationship highlights the importance of understanding mechanisms 20 

governing variation in species composition among local communities, known as β-diversity.  21 

Hypotheses to explain changes in β-diversity with productivity invoke multiple mechanisms 22 

operating at local and regional scales, but the relative importance of these mechanisms is 23 

unknown.  Here we show that changes in the strength of local density-dependent interactions 24 

within and among tree species explain changes in β-diversity across a subcontinental-25 

productivity gradient.  Stronger conspecific relative to heterospecific negative density 26 

dependence in more productive regions was associated with higher local diversity, weaker 27 

habitat partitioning (i.e. less species sorting), and homogenization of community composition 28 

among sites (lower β-diversity).  Regional processes associated with changes in species pools 29 

had limited effects on β-diversity.  Our study suggests that systematic shifts in the strength of 30 

local interactions within and among species might generally contribute to some of the most 31 

prominent but poorly understood gradients in global biodiversity. 32 

 33 

 34 

  35 
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The relationship between biodiversity and net-primary productivity is one of the most prominent 36 

and well-studied biological patterns on Earth 1-6.  Species richness generally increases linearly 37 

with productivity across regions 7, 8, but the relationship is weaker and highly variable at smaller 38 

spatial scales 2, 5, 9, 10.  Increases in regional species richness relative to local species richness 39 

across productivity gradients could be explained by greater site-to-site variability in species 40 

composition, known as β-diversity, in more productive regions 3, 4, 11-14.  Yet β-diversity does not 41 

generally increase with productivity 15-19, leaving the mechanisms that might account for scale-42 

dependent changes in species diversity with productivity unclear.  These mechanisms are critical 43 

to understand given that global climate change is predicted to cause dramatic changes in net 44 

primary productivity 20, potentially leading to loss of species and ecosystem function 21. 45 

 Mechanisms underlying the relationship between β-diversity and primary productivity 46 

have remained elusive because several non-mutually-exclusive community-assembly 47 

mechanisms operating at different spatial scales may alter β-diversity along productivity 48 

gradients.  At regional scales, two mechanisms might influence β-diversity.  First, productive 49 

regions may have higher β-diversity because more species exist in their regional-species pools 50 

(i.e. higher regional species richness; Fig. 1a).  In regions with larger species pools, a smaller 51 

proportion of the species pool is expected to occur in any one locality wherein only a limited 52 

number of individuals can occur, resulting in greater variation in species composition among 53 

localities (higher β-diversity) 11, 22.  Second, β-diversity may be higher in regions with more 54 

environmental heterogeneity if species sort among more available niches 3, 19, 23-25.  Therefore, 55 

changes in β-diversity across regions may reflect changes in environmental heterogeneity across 56 

productivity gradients (Fig. 1b). 57 

In addition to regional mechanisms, shifts in the strength of local density-dependent 58 
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interactions within and among species may explain changes in β-diversity with productivity, but 59 

this mechanism remains unexamined.  Stronger interspecific competition or pressure from 60 

generalist natural enemies can result in heterospecific negative density dependence (HNDD), 61 

where individual recruitment and survival decline with increasing local densities of 62 

heterospecifics 26-28.  Stronger HNDD, in turn, can reduce local diversity (or α-diversity) via 63 

competitive exclusion or apparent competition 26-28.  Stronger HNDD can also cause greater 64 

habitat partitioning (i.e. species sorting) along environmental gradients, as species become more 65 

locally abundant and exclude others from habitats where they have higher fitness 26-29.  Both 66 

reductions in local diversity and increased habitat partitioning from stronger HNDD are expected 67 

to increase β-diversity (Fig. 1c) 23, 29, 30.  Theoretical and empirical studies suggest that higher 68 

densities may intensify interspecific competition in more productive environments 31-33, in which 69 

case β-diversity may also increase with productivity if HNDD mediates diversity-productivity 70 

relationships.  However, evidence for stronger interspecific competition in more productive 71 

environments is mixed 2, 10, and competition among species may be greater in less productive 72 

environments where limiting resources are scarce 28.  Therefore, increases in productivity across 73 

regions might increase or decrease β-diversity if productivity increases or decreases the strength 74 

of HNDD, respectively.   75 

In addition, local density-dependent interactions among conspecifics may influence 76 

changes in β-diversity with productivity.  Stronger conspecific negative density dependence 77 

(CNDD), caused by greater intraspecific competition or increased pressure from host-specific 78 

predators or pathogens 34-37, should limit local abundances of dominant species, thereby 79 

providing space for other species and increasing local diversity relative to regional diversity 35, 38-80 

41.  This has led to the prediction that stronger CNDD should homogenize community 81 
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composition among sites (i.e. decrease β-diversity; Fig. 1d) 30, but this prediction remains 82 

untested.  Moreover, recent studies have found that CNDD can be stronger in wetter regions and 83 

resource-rich environments 36, 42, suggesting that the strength of CNDD may increase with 84 

productivity 43.  If so, stronger CNDD might cause β-diversity to be lower in more productive 85 

regions.  In summary, β-diversity may increase or decrease with productivity depending on the 86 

relative influence of regional processes as well as how productivity changes the relative strength 87 

of local density-dependent interactions within and among species. 88 

Here, we untangle the relative importance of these regional- and local-scale mechanisms 89 

to changes in β-diversity of tree species across a subcontinental productivity gradient.  We used 90 

US Forest Service (USFS) Forest Inventory and Analysis (FIA) data comprising over a quarter 91 

million trees in 9,592 plots that span 18 ecoregions in western North America (Fig. 2a).  92 

Ecoregions (hereafter, regions) were defined by the USFS and delineated by elevation and other 93 

physical components including climate, physiography, lithology, and soils 44.  This productivity 94 

gradient ranges from temperate rainforests to semi-arid juniper-sagebrush ecosystems 95 

(Supplementary Table 1), covering substantial variation in net-primary productivity (NPP) while 96 

minimizing the potentially confounding influence of latitude on diversity 45.  The gradient also 97 

has a large enough extent (576,000 km2) to appropriately test the influence of processes that act 98 

across regions, and a spatial-grain size small enough (one plot covers ~0.24 ha) to test the 99 

influence of local-scale species interactions on diversity 41.  We first examine relationships 100 

between productivity and diversity at the regional and local scales, and assess whether β-101 

diversity changes with productivity across regions.  Second, we evaluate the degree to which 102 

differences in regional-species pools (i.e., number and relative abundance of species in a region) 103 

explain changes in β-diversity across regions using null-models 22 (Fig. 1a).  Third, we evaluate 104 
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the degree to which differences in environmental heterogeneity (variation in climate, 105 

productivity & topography within regions) explain changes in β-diversity across regions (Fig. 106 

1b).  Fourth, we assess if the strength of CNDD and/or HNDD change with productivity across 107 

regions, and whether any differences in CNDD and/or HNDD across regions explain changes in 108 

local species diversity, habitat partitioning along environmental gradients, and variation in β-109 

diversity unexplained by regional processes (e.g. Fig. 1c, 1d).  Finally, we discuss broader 110 

implications of our study for understanding the mechanisms underlying variation in diversity-111 

productivity relationships. 112 

 113 

RESULTS AND DISCUSSION  114 

Diversity at local and regional scales increased along the subcontinental-productivity gradient.  115 

Linear regressions revealed that regional (r2 = 0.61, P < 0.001) and mean local (r2 = 0.39, P = 116 

0.006) species richness increased with mean annual NPP across regions (Fig. 2b, Supplementary 117 

Fig. 1).  Examination of species accumulation curves for all regions revealed that sampling of 118 

regional richness did not systematically change across the productivity gradient (Supplementary 119 

Fig. 2).  Mean local species evenness also increased with NPP across regions (r2 = 0.37, P = 120 

0.007), indicating that more productive regions had more equal relative abundances of species in 121 

each FIA plot.  Likewise, the mean local effective number of species (or inverse Simpson 122 

diversity index), which is similar to rarefied species richness and insensitive to sample grain or 123 

extent 46, increased with NPP across regions (r2 = 0.36, P = 0.009), indicating that increases in 124 

mean species richness with productivity were not simply due to the spatial scale of FIA plots or 125 

increases in density.   126 

 Differences in the composition of regional-species pools were associated with differences 127 
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in NPP across regions (permutational multivariate ANOVA test: F1,16 = 4.9, P = 0.001; Fig. 2c), 128 

suggesting that productivity may influence β-diversity via changes to regional-species pools.  129 

However, linear regressions of median β-diversity (r2 = 0.36, P = 0.008; Fig. 3a) and median β-130 

diversity standardized effect sizes (r2 = 0.20, P = 0.061; Fig. 3b), which reflect β-diversity not 131 

accounted for by differences in regional-species pools (hereafter βSES), declined with NPP across 132 

regions.  The relationship between productivity and βSES was slightly weaker than the 133 

relationship between productivity and β-diversity, suggesting that differences in regional-species 134 

pools may partially contribute to—but are not a dominant mechanism causing—β-diversity to 135 

decline with productivity.  Moreover, median βSES was significantly positive in each region 136 

(Supplementary Table 1), indicating that β-diversity was generally higher than would be 137 

expected if community composition was only determined by stochastic assembly from regional-138 

species pools.  Differences in environmental heterogeneity (variation in climate, productivity & 139 

topography within a region) were unrelated to NPP across regions (linear regression: r2 = 0.01, P 140 

= 0.65; Fig. 3c), indicating that regional differences in available niche space had a limited 141 

influence on β-diversity.  Other differences among regions that might have influenced β-diversity 142 

include: the number of FIA plots, region area, mean nearest-plot distance, total number of trees 143 

in a region, mean local-community size (i.e., the average number of tree individuals per FIA 144 

plot), and the contribution of spatial distances among plots to changes in species composition.  145 

These were all unrelated to NPP across regions and, thus, had little influence on the observed 146 

decline in β-diversity with productivity (Supplementary Table 2).   147 

The relative strength of local conspecific and heterospecific negative density dependence 148 

largely accounted for declines in β-diversity with productivity.  Negative effects of 149 

heterospecific trees on focal sapling densities (hereafter HNDD) were strongest in low-150 
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productivity regions (linear regression weighted by the error around HNDD estimates for each 151 

region: r2 = 0.42, P = 0.004; Fig. 4a, Supplementary Fig. 3).  Contrary to the expectation that 152 

stronger HNDD would erode diversity and reduce species richness 26-28, stronger HNDD was not 153 

associated with lower mean local species richness (r2 = 0.03, P = 0.49) or diversity (i.e. Shannon 154 

diversity index; r2 = 0.08, P = 0.25).  Instead, two patterns suggest that stronger HNDD in low-155 

productivity regions is associated with increased habitat partitioning.  First, variation in species 156 

composition associated with the environment declined with NPP (r2 = 0.24, P = 0.04), 157 

suggesting that species in low-productivity regions exhibit greater habitat partitioning than 158 

species in high-productivity regions despite encountering similar or lower environmental 159 

heterogeneity (Fig. 3c).  Second, variation in species composition associated with the 160 

environment increased with HNDD (r2 = 0.42, P = 0.003; Fig. 4b), supporting the idea that 161 

strong interspecific competition or pressure from generalist enemies (e.g., apparent competition) 162 

promotes habitat partitioning 26-29, 47.  Stronger HNDD was also associated with higher βSES (r2 = 163 

0.25, P = 0.033; Fig. 4c), indicating that increases in habitat partitioning from stronger HNDD 164 

contribute to higher β-diversity in less productive regions.   165 

In contrast, stronger CNDD in high-productivity regions was associated with increased 166 

mean local diversity and lower β-diversity (Fig. 4d-4f).  Stronger CNDD in high-productivity 167 

regions (linear regression weighted by the error around CNDD estimates for each region: r2 = 168 

0.41, P = 0.004; Fig. 4d, Supplementary Fig. 3) is consistent with other recent findings of 169 

stronger CNDD in wetter regions and resource-rich environments 36, 42.  Our analyses cannot 170 

determine whether CNDD was due to intraspecific competition, pressure from host-specific 171 

predators and pathogens, or a combination of both processes.  However, our results indicate that 172 

HNDD, which reflects the strength of interspecific competition, is weak in productive regions 173 
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(Fig. 4a).  If the strength of competition among tree species is indicative of the strength of 174 

competition within tree species, then weaker HNDD combined with stronger CNDD in 175 

productive regions (Fig. 4a, 4d) suggests that specialized enemies may contribute to increases in 176 

CNDD with productivity.  Indeed, evidence is mounting that activities of host-specific enemies, 177 

and not intraspecific competition, are largely responsible for CNDD 34-37.  Stronger CNDD in 178 

more productive regions was associated with higher mean local species evenness (r2 = 0.66, P < 179 

0.001; Supplementary Fig. 4), richness (r2 = 0.39, P = 0.005; Fig. 4e), and diversity (r2 = 0.42, P 180 

= 0.004), supporting the hypothesis that CNDD limits the dominance of locally-abundant species 181 

and increases local diversity 35, 38-42.  Stronger CNDD in more productive regions was also 182 

associated with decreased βSES (r2 = 0.37, P = 0.007; Fig. 4f), suggesting that stronger CNDD 183 

decreases β-diversity by homogenizing community composition among sites.  β-diversity also 184 

declined as the ratio of CNDD to HNDD increased (r2 = 0.32, P = 0.014; Supplementary Fig. 5), 185 

indicating that the relative strength of local conspecific to heterospecific density-dependent 186 

interactions may largely determine changes in β-diversity with productivity. 187 

Changes in the strength of local interactions within and among species trumped potential 188 

regional influences on β-diversity across the productivity gradient (Fig. 3, 4).  This result 189 

challenges recent conceptual models that deemphasize the importance of local-species 190 

interactions to community assembly and patterns of biodiversity, particularly at biogeographic 191 

scales 48.  While we examined a broad-scale productivity gradient that was largely decoupled 192 

from the potentially confounding influences of latitude on diversity, our study area provided only 193 

a moderate gradient in regional-species richness (11-41 species).  Vast differences in 194 

biogeography and evolutionary history across even larger gradients in regional-species richness 195 

(e.g., 10-1000 species) might have a stronger influence on β-diversity, and biodiversity in 196 
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general, than local-species interactions 49.  However, effects of local-species interactions on 197 

diversity have been largely neglected at global scales due to lack of appropriate data to test them.   198 

Our results indicate that changes in local diversity and β-diversity along a large-scale 199 

productivity gradient are largely mediated by shifts in the relative strength of local-scale species 200 

interactions (Fig. 4).  Specifically, stronger HNDD in low-productivity regions was associated 201 

with greater habitat partitioning and higher β-diversity, likely because species become more 202 

abundant in favourable environmental conditions.  In contrast, stronger CNDD in high-203 

productivity regions was associated with greater mean local diversity, more equal relative 204 

abundances of species, and lower β-diversity, likely because CNDD limited abundances of 205 

dominant species and homogenized community composition among sites.  While a handful of 206 

previous studies have found that stronger CNDD increases local diversity 35, 40-42, none, to our 207 

knowledge, have examined the relative importance of conspecific and heterospecific density-208 

dependent effects on β-diversity.  These findings provide support for the idea that increases in 209 

CNDD (e.g. pressure from specialized enemies) enhance local diversity within sites but 210 

homogenize community composition among sites (decrease β-diversity) and reduce the relative 211 

importance of competitive interactions among species 30.  Our results further advance this 212 

framework by demonstrating that shifts in the relative strength of CNDD and HNDD may 213 

underlie relationships between primary productivity and diversity (Fig. 4).   214 

These findings have important implications for understanding why local diversity and β-215 

diversity often show variable relationships with primary productivity.  Studies have found that 216 

both local diversity (species richness) and β-diversity can increase, decrease, or have a unimodal 217 

relationship with productivity 2-6, 11, 16, 19, 22, 50.  Previous explanations for these variable 218 

relationships include differences in spatial scales, geographic extents, and ranges of productivity 219 
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over which diversity is measured 16.  Our results suggest that the shape of these relationships 220 

may also depend on how the strength of CNDD changes relative to the strength of HNDD along 221 

productivity gradients.  Positive relationships between diversity (β-diversity or species richness) 222 

and productivity may reflect stronger self-limitation of dominant species (i.e. stronger CNDD) in 223 

productive environments, as indicated by our results.  However, in some cases (e.g. smaller 224 

spatial extents or smaller ranges of productivity), increases in CNDD with productivity may be 225 

modest or offset by relatively stronger increases in HNDD.  In such cases, greater habitat 226 

partitioning or competitive exclusion in productive environments may lead to unimodal or 227 

neutral diversity-productivity relationships.  Changes in productivity 4, 8, and potentially CNDD 228 

36, 41, accompany other prominent large-scale biodiversity gradients, such as the latitudinal-229 

diversity gradient.  Therefore, systematic shifts in the relative strength of density-dependent 230 

interactions within and among species at local scales might generally contribute to some of the 231 

most striking gradients in global biodiversity. 232 

 233 

METHODS  234 

Data 235 

We used tree species-abundance data from the United States Forest Service (USFS) Forest 236 

Inventory and Analysis (FIA) project.  These data are freely available at 237 

http://www.fia.fs.fed.us/tools-data and were accessed for this study on November 28, 2015.  238 

Since 2000, FIA has used a nationally-standardized sampling design with outstanding sampling 239 

intensity (an average of one plot per 2,428 ha).  FIA plots consist of four 7.3-m-radius subplots 240 

with centres spaced ~36-63 m apart to cover an area approximately equal to 0.24 ha.   We used 241 

data from all forested (> 10% canopy cover) and natural (non-plantation and non-disturbance) 242 



12 

 

FIA plots within ecoregions that at least partially lay between 42° N and 49° N latitude and west 243 

of 105° W longitude.  These values of latitude and longitude capture substantial orographically-244 

generated east-west variation in net-primary productivity (NPP) while minimizing the potentially 245 

confounding influence of latitude and vast differences in biogeographic and evolutionary 246 

histories across the continental USA on species diversity 45.  This area includes all ecoregions 247 

from the coast of Washington and Oregon to the Rocky Mountain front on the boundary of the 248 

North American great plains (east of which forests become very sparsely distributed).  Forests in 249 

this latitudinal belt from eastern North America also have very different biogeographic histories 250 

from forests in our study area.  For example, eastern forests at this latitude were recolonized 251 

from glacial refugia in the southeastern United States, whereas western forests were recolonized 252 

from glacial refugia in the Cascade mountain ranges and along the west coast 51, 52.   253 

We excluded FIA plots that reported any natural or human-caused disturbance (e.g. fire, 254 

logging; FIA protocol requires reporting any disturbances in the 10 years prior to plot 255 

measurement on western US plots, as this is the time between subsequent measurements).  256 

Because disturbance was largely concentrated on private land, we only included FIA plots from 257 

public lands (USFS lands, national parks, state parks and other state-held lands).  Another 258 

important reason for excluding private land from our analysis is that geographic locations are 259 

swapped among private FIA plots within counties to protect landowner privacy, up to 220 km 260 

(largest distance between FIA plots within a county; in Idaho County, Idaho) away from the 261 

original location.  This is not done for public FIA plots, and accurate geographic coordinates are 262 

essential for variation-partitioning analyses (see below).  Ecoregions used in our analysis were 263 

defined by the USFS (‘ECOSUBCD’ in FIA database) 53.  We only included regions that were 264 

defined by FIA as ‘mountainous’ because publicly-owned as well as non-plantation and non-265 
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disturbed forested FIA plots are heavily concentrated in these regions 53.  We only included 266 

regions that had at least 150 publicly-owned FIA plots to have a minimum appropriate sample 267 

size at which to precisely estimate β-diversity (Supplementary Table 1).   268 

We included data from the first complete FIA census since implementation of the 269 

nationally-standardized protocol in 2000.  This includes data collected during 2000-2014.  For 270 

analyses of diversity and environmental habitat partitioning (i.e. species sorting), we included all 271 

individuals >12.7 cm diameter at breast height, or dbh, of tree species (hereafter, trees).  Smaller 272 

individuals (2.5 cm ≤ dbh < 12.7 cm) were only surveyed within four smaller 1.83-m radius 273 

microplots nested within the larger 7.3-m radius subplots.  These smaller individuals (hereafter, 274 

saplings) were used in conjunction with trees to calculate the strength of HNDD and CNDD (see 275 

below).   276 

Environmental variables were provided with FIA data or obtained from publicly-277 

available satellite-based datasets.  Topographic variables (slope, aspect, and elevation) are 278 

provided for each FIA plot.  Where multiple slope and aspect values were reported, we used the 279 

slope and aspect values that reflect the majority of the FIA plot.  We calculated the cosine and 280 

sine of aspect as measures of north-south-facing and east-west-facing slopes, respectively.  281 

Heterogeneity in soil characteristics among sites is likely an important environmental variable to 282 

consider, but soils data were only available for 219 of the 9,592 plots (2.2%) used in our 283 

analyses.  However, topography is known to strongly influence soil formation 54, and was used as 284 

a proxy.  We obtained measurements for each FIA plot (mean values within a 1 km buffer 285 

around each FIA plot) of mean annual net primary productivity (NPP) during 2000-2014 from 286 

MODIS satellite-based data operated by the National Aeronautics and Space Administration 287 

(NASA) 55.  We also obtained mean annual temperature (°C), mean temperature of the warmest 288 
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month (°C), mean temperature of the coldest month (°C), mean annual precipitation (mm), mean 289 

summer precipitation (mm), number of degree-days above 18°C, precipitation as snow (mm), 290 

extreme maximum temperature over 30 years (°C), and mean annual relative humidity (%) 291 

during 1981-2010 for each FIA plot from the AdaptWest Project 56.  Other available climatic 292 

variables from AdaptWest (e.g., number of frost-free days) were highly correlated (r > 0.95) with 293 

variables listed above and were not included.  Locations of FIA plots on public land are 294 

perturbed up to 1.67 km but typically within a 0.8 km of the actual location.  Slope, aspect, and 295 

elevation are provided for the actual plot location, and the spatial resolution of the NPP and 296 

climate data (1-km resolution) is similar to that of the FIA perturbed plot locations.  Thus, we 297 

used the perturbed plot locations to match FIA plots with NPP and climate data as in other recent 298 

studies using FIA data 57.   299 

 300 

Analyses   301 

Diversity measures 302 

For each region, we calculated the total number of species (regional species richness), the mean 303 

number of species per FIA plot (mean local species richness), mean local effective number of 304 

species (i.e. the inverse Simpson diversity index, which is similar to rarefied species richness and 305 

insensitive to spatial grain and extent46) per FIA plot, and mean local species diversity (Shannon 306 

diversity index) per FIA plot.  We calculated mean local-species evenness for each region by 307 

first calculating the relative abundance and abundance rank of each species in each FIA plot.  We 308 

then used a mixed model to calculate the mean slope of these local rank-abundance curves for 309 

each region, which is a measure of species evenness 58.  Species relative abundances were log-310 

transformed for these relationships 58.  We also calculated the median pairwise Bray-Curtis 311 
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dissimilarity among FIA plots (hereafter, β-diversity) for each region using the package ‘vegan’ 312 

in R 59, 60.  While Whittaker’s β-diversity partition (
𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝑟𝑖𝑐ℎ𝑛𝑒𝑠𝑠

𝑙𝑜𝑐𝑎𝑙 𝑟𝑖𝑐ℎ𝑛𝑒𝑠𝑠
) increased with productivity 313 

(Fig. 2a), this measure of β-diversity is mathematically dependent on regional and local richness 314 

and does not capture dissimilarities in the presence/absence or relative abundance of species 315 

across sites.  The Bray-Curtis dissimilarity index incorporates information about the relative 316 

abundances of species (a fundamental component of diversity) in addition to presences/absences 317 

of species, and is a recommended measure of β-diversity when composition and relative 318 

abundance data are available 61.  Thus, we measured β-diversity as the median dissimilarity in 319 

the composition and relative abundances of species among FIA plots within each region. 320 

Previous studies of β-diversity-productivity relationships have measured β-diversity 321 

using both incidence-based (i.e. based on species presences/absences) and abundance-based (i.e. 322 

based on relative species abundances) metrics, and have shown that both types of metrics can 323 

increase or decrease with productivity 3, 4, 11, 13, 16, 19, 62.  Thus, the shape of the β-diversity-324 

productivity relationship does not appear to be dependent on the use of incidence- or abundance-325 

based β-diversity metrics.  In this study, we focused on an abundance-based metric (i.e. Bray-326 

Curtis dissimilarity) because variation in relative-species abundance is more informative given 327 

our hypotheses, which focus on the effects of local species interactions on the relative abundance 328 

of species (e.g. effects of CNDD on dominant species).  Abundance-based metrics of β-diversity 329 

are generally preferred when testing hypotheses involving deterministic processes because 330 

incidence-based metrics are more sensitive to random occurrences of rare species 13, 63.  331 

Moreover, one of our key hypotheses concerns the influence of regional species pools on β-332 

diversity, which we test using a null-model approach 22, 64.  Simulations using this null-model 333 

approach indicate that null-model deviations using abundance-based β-diversity metrics are 334 
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better at detecting deterministic processes than deviations using incidence-based β-diversity 335 

metrics 65. 336 

We used simple linear regression models to test for changes in these measures of 337 

diversity with mean annual NPP across regions.  Variation in NPP was much greater across 338 

regions than within regions (Supplementary Fig. 6), as ecoregion identity explained 72.7% of 339 

total variation in NPP across all 9,592 FIA plots used in this analysis.  Mean regional NPP was 340 

log-transformed in all analyses due to a right-skewed distribution.  To evaluate if regional-341 

species pools (i.e., the number and relative abundances of species in a region) differed among 342 

regions or if assemblages in some regions were nested within assemblages of other regions, we 343 

used nonmetric-multidimensional scaling (NMDS) in the ‘vegan’ package to plot species 344 

composition of regions in NMDS space and the ‘adonis’ function to test for significant 345 

differences in species composition as a function of mean NPP across regions 60.  To examine 346 

other potential regional or sampling influences on β-diversity, we also tested if the number of 347 

FIA plots per region, area of a region (ha), total number of individuals in a region, mean local 348 

community size per region, or the mean nearest-neighbour FIA plot distance within each region 349 

changed systematically with mean regional NPP (Supplementary Table 2).   350 

 351 

Null-model analysis  352 

To evaluate if differences in regional-species pools contributed to differences in β-diversity with 353 

NPP across regions, we performed null-model analyses 22, 64.  Individuals from each regional-354 

species pool (preserving the regional species-abundance distribution) were randomly distributed 355 

among FIA plots in that region while preserving the total number of individuals in each plot 22, 64.  356 

Thus, these null local assemblages were only the product of stochastic assembly from the 357 
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regional-species pool, and all other mechanisms that might cause additional spatial aggregation 358 

of individuals (e.g., habitat partitioning, local interactions among species, dispersal limitation) 359 

were removed.  The pairwise dissimilarities of these simulated communities within each region 360 

(βSIM) were then compared to the observed dissimilarities (βOBS) relative to the standard 361 

deviation of βSIM (σSIM) after 1,000 iterations, and a standardized effect size of the difference was 362 

calculated as: βSES = (βOBS – βSIM)/ σSIM.  Therefore, βSES represents β-diversity that remains 363 

unexplained by stochastic assembly from the regional-species pool 22.  We also tested if median 364 

β-diversity in each region was significantly greater than median β-diversity expected from 365 

stochastic assembly from the regional-species pool by assessing if fewer than 5% of median βSIM 366 

values were greater than or equal to median βOBS (i.e. one-tailed test of significance). 367 

 368 

Environmental heterogeneity among regions 369 

To calculate the multivariate environmental heterogeneity of regions, we first performed a 370 

principal component analysis (PCA) on all 14 environmental variables (elevation, slope, NPP, 371 

cos(aspect), sin(aspect), and the nine climatic variables) across all 9,592 FIA plots.  Variables 372 

were standardized for the PCA.  We then calculated the multivariate environmental 373 

heterogeneity of each region as the mean square of multivariate (Euclidean) distances from each 374 

FIA plot in a region to that region’s centroid.  This is identical to calculating the ‘niche space’ of 375 

each region using outlying mean index (OMI) 66.  We tested for a relationship between 376 

environmental heterogeneity and NPP across regions with linear regression. 377 

 378 

Partitioning variation in species composition  379 
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To assess the degree to which species partition habitat in each region (i.e. species sorting), we 380 

calculated the proportion of variation in species composition among localities associated with 381 

environmental heterogeneity in each region using the ‘vegan’ package 60.  Variation partitioning 382 

produces four terms: β-diversity associated with the environment only (i.e., not associated with 383 

spatial distance), β-diversity associated with spatial distance only, β-diversity associated with 384 

both spatial distance and the environment, and β-diversity unexplained by the environment or 385 

spatial distance.  To test if habitat partitioning (i.e. species sorting) was greater in more 386 

productive regions or regions with stronger HNDD, we tested for a positive relationship between 387 

the variation in species composition purely associated with the environment and regional NPP or 388 

HNDD, respectively.  We also evaluated if variation in species composition associated with 389 

spatial distance changed systematically with NPP to test if differences in dispersal limitation or 390 

other spatial factors might explain changes in β-diversity across regions (Supplementary Table 391 

2).   392 

 393 

Conspecific and heterospecific density dependence  394 

We estimated the strength of CNDD and HNDD following previously-published methods 40, 42.  395 

For each region, we used the following hierarchical model to estimate the mean strength of 396 

CNDD and HNDD: 397 

ln(𝑆𝑖𝑗 + 1) = 𝑟𝑗 + CNDD𝑗 × ln(𝐴𝑖𝑗 + 1) + HNDDtree𝑗 × 𝑎𝑖𝑗 + HNDDsap𝑗 × 𝑠𝑖𝑗 + NPP𝑗 × 𝑛𝑝𝑝𝑖 + 𝜀𝑖𝑗    398 

𝜀𝑖𝑗  ~ N(0, 𝜎2)         (1) 399 

Where Sij is the observed number of saplings of species j in plot i, rj is the per-capita recruitment 400 

rate for species j at low conspecific tree densities, CNDDj is the per-capita effect of conspecific 401 

tree density on sapling recruitment for species j, Aij is the observed number of conspecific trees 402 
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of species j in plot i, HNDDtree j is the per-capita effect of heterospecific tree density on sapling 403 

recruitment for species j, aij is the observed number of heterospecific trees (i.e. not species j) in 404 

plot i, HNDDsapj is the per-capita effect of heterospecific sapling density on sapling recruitment 405 

of species j, sij is the observed number of heterospecific saplings in plot i, NPPj is the per-capita 406 

effect of NPP on sapling recruitment for species j, nppi is the observed value of NPP in plot i, 407 

and εij is normally-distributed error.  We began with a full random effects structure (i.e. random 408 

species-specific effects for rj, CNDDj, HNDDtree j, HNDDsapj, and NPPj), and then removed 409 

random effects that were either correlated (r ≥ 0.7) with the random intercept or whose standard 410 

deviation was estimated to be at or near zero (SD ≤ 0.1).  This approach avoids over-411 

parameterization of models 67, 68.  However, results were similar if all random effects were 412 

included in the model.  These models were run in R (package ‘lme4’) 59, 69.  Thus, for each 413 

region, we quantified the mean effects of conspecific tree density on focal sapling density 414 

(CNDD), and two measures of HNDD: (1) effects of heterospecific tree density on focal sapling 415 

density (HNDDtree) and (2) effects of heterospecific sapling density on focal sapling density 416 

(HNDDsap; Supplementary Table 3, Supplementary Fig. 3).   417 

Conspecific tree and sapling densities were log-transformed for all forest plots to estimate 418 

the proportional (and not additive) change in sapling densities with increasing conspecific tree 419 

densities 40, 42.  Negative relationships between heterospecific densities and focal sapling density 420 

represent HNDD 40, 42.  Reductions in per-capita recruitment with increasing conspecific tree 421 

density represent stronger CNDD (Supplementary Fig. 7) 40, 42.  Sapling density may also depend 422 

on variation in NPP within a region (e.g., species-specific habitat preferences), so we included 423 

mean annual NPP in our models of sapling density, as well as a random slope of NPP for each 424 
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species to account for potentially different effects of NPP on sapling densities across species, i.e., 425 

equation (1).   426 

We used numerical abundances to quantify densities (trees/ha) for conspecific trees and 427 

all saplings to maintain consistency and comparability with previous studies that quantified stem 428 

densities with numerical abundances 40, 42.  Nonetheless, our reported estimates of CNDD were 429 

highly correlated with estimates of CNDD that used basal area to quantify conspecific and 430 

heterospecific densities (r = 0.93; P < 0.0001).  Likewise, our reported estimates of HNDDsap 431 

were highly correlated with estimates of HNDDsap that used basal area to quantify conspecific 432 

and heterospecific densities (r = 0.99, P < 0.0001).  We used basal area to quantify densities of 433 

heterospecific trees because tree-size distributions can vary extensively across species, and basal 434 

area provides a way to standardize the spatial influence of older age classes across species 42.  435 

Nonetheless, our reported estimates of HNDDtree were highly correlated with estimates of 436 

HNDDtree that used numerical abundances to quantify conspecific and heterospecific densities 437 

(r = 0.90, P < 0.0001).   438 

We found that negative effects of heterospecific trees on sapling recruitment (HNDDtree) 439 

were significant in all but two regions and generally stronger than negative effects of 440 

heterospecific saplings on sapling recruitment (HNDDsap), which were only significant in five 441 

of 18 regions (Supplementary Table 3).  This result supports previous findings that negative 442 

density-dependent effects of heterospecifics tend to come from older instead of younger age 443 

classes 42, 70, 71.  Thus, we report effects of heterospecific trees on sapling recruitment 444 

(HNDDtree) as HNDD in the Results and Discussion section (including Fig. 4).   445 

While changes in CNDD and HNDD might have been influenced by systematic changes 446 

in sapling and tree densities across the productivity gradient, neither sapling (r = -0.06, P = 447 
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0.802) nor tree (r = 0.04, P = 0.884) densities varied with NPP across regions (Supplementary 448 

Table 2).  Furthermore, the scale at which CNDD and HNDD were measured did not influence 449 

estimates for each region.  Density-dependent interactions (e.g. CNDD) are known to occur at 450 

small spatial scales.  Evidence from temperate and tropical forests indicates that these effects are 451 

strongest between 10 m to 30 m from a focal tree, but can extend up to 50 m away from focal 452 

trees 72, 73.  Thus, individuals in particular FIA subplots, which are ~7 m in radius and spaced 453 

~36-63 m apart, may influence density-dependent recruitment or survival in neighbouring 454 

subplots.  Moreover, two previous studies have used FIA data from the eastern and central US to 455 

estimate CNDD (but have not linked changes in CNDD to changes in β-diversity or 456 

productivity).  Both studies used the entire FIA plot to estimate the strength of CNDD 41, 57.  457 

Thus, we used the entire FIA plot to estimate the strength of local density-dependent interactions.  458 

Nonetheless, CNDD measured at the subplot scale was highly correlated with reported measures 459 

of CNDD, regardless of whether subplot CNDD was calculated using basal area (r = 0.90; P < 460 

0.0001) or numerical abundance (r = 0.86; P < 0.0001).  Similarly, HNDD for heterospecific 461 

trees and saplings, each measured at the subplot scale, were highly correlated with reported 462 

measures of HNDD regardless of whether subplot HNDD was calculated using basal area 463 

(heterospecific trees: r = 0.84; P < 0.0001; heterospecific saplings: r = 0.77; P = 0.0002) or 464 

numerical abundance (heterospecific trees: r = 0.73; P = 0.0006; heterospecific saplings: r = 465 

0.81; P < 0.0001).   466 

Finally, we examined hypothesized relationships between the strength of HNDD, NPP, 467 

habitat partitioning, and β-diversity after accounting for regional influences (i.e., median βSES).  468 

We also examined hypothesized relationships between the strength of CNDD, NPP, local-species 469 

evenness, local-species richness and diversity (Shannon-diversity index), and βSES.  These 470 
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regressions were weighted by the inverse error variance around estimates of either HNDD or 471 

CNDD for each region.   472 

 473 

Data availability 474 

The FIA datasets analysed during the current study are freely available from the United States 475 

Forest Service at http://www.fia.fs.fed.us/tools-data.  The NPP dataset is available from the 476 

University of Montana at http://www.ntsg.umt.edu/project/mod17, and the climate data are 477 

available from AdaptWest at https://adaptwest.databasin.org/pages/adaptwest-climatena. 478 
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   656 

Fig. 1. Hypothesized influences of regional and local processes on patterns of biodiversity 657 
across regions that vary in primary productivity. (a-b) Regional hypotheses predict that site-658 

to-site variation in community composition (β-diversity) increases with (a) regional species 659 

richness (number of species in a region) and (b) environmental heterogeneity (variation in 660 

environmental conditions within a region).  If more productive regions have greater/lower 661 

regional species richness or environmental heterogeneity, then productive regions might have 662 

higher/lower β-diversity, respectively.  (c-d) Local hypotheses predict that β-diversity and mean 663 

local diversity (α-diversity) vary systematically with the strength of local density-dependent 664 

interactions within and among species.  (c) Stronger interspecific competition or pressure from 665 

generalist enemies (which cause heterospecific negative density dependence, or HNDD) is 666 

predicted to reduce mean α-diversity via competitive exclusion or apparent competition.  667 

Stronger HNDD can also increase habitat partitioning (i.e. species sorting) along environmental 668 

gradients.  Reductions in α-diversity and greater habitat partitioning are each expected to 669 

increase β-diversity.  (d) In contrast, stronger intraspecific competition or pressure from 670 

specialized enemies (which cause conspecific negative density dependence, or CNDD) is 671 

expected to increase mean α-diversity and decrease β-diversity.  Effects of productivity on β-672 

diversity across regions, therefore, might depend on whether productivity strengthens or weakens 673 

CNDD and/or HNDD.  See text for details. 674 
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 676 

Fig. 2. Study area in western North America and changes in tree species richness and 677 
composition with net-primary productivity (NPP).  (a) Mean annual NPP (2000-2014) and 678 

US Forest Service Forest Inventory and Analysis (FIA) plots used in this analysis (N = 9,592) 679 

grouped into 18 ecoregions (Supplementary Table 1).  Plots are coloured by their individual 680 

NPP, and regional boundaries and labels are coloured by their mean NPP.  (b) Changes in 681 

regional (triangles) and mean-local (circles) species richness with NPP across regions (NPP is on 682 

a log scale and regions coloured by mean NPP).  (c) The composition of regional-species pools 683 

differed among ecoregions (squares coloured by regional NPP) according to nonmetric-684 

multidimensional scaling (NMDS).  Each circle in (c) represents a species (N = 65 total species).  685 
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 686 
 687 

Fig. 3. Relationships between β-diversity, environmental heterogeneity, and net-primary 688 
productivity (NPP).  (a) Median β-diversity (Bray-Curtis dissimilarity) and (b) median β-689 

standardized-effect size, or βSES (which accounts for regional influences on β-diversity) both 690 

decreased with mean annual NPP across regions.  (c) Environmental heterogeneity (variation in 691 

climate, productivity & topography within a region) was unrelated to NPP across regions.  Each 692 

point is one of 18 ecoregions coloured by its mean annual NPP.  NPP is on a log scale.  Best-fit 693 

lines (±1 SE) are in grey.  Statistics are from linear regression tests.  694 
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 695 
 696 

Fig. 4. Conspecific and heterospecific negative density dependence (CNDD and HNDD), net 697 
primary-productivity (NPP), and effects on β-diversity.  (a) HNDD was weaker in productive 698 

regions.  (b) Stronger HNDD was associated with greater habitat partitioning (i.e. species 699 

sorting), measured as the amount of variation in species composition associated with the 700 

environment, and (c) greater β-diversity after accounting for regional influences (βSES).  (d) 701 

CNDD was stronger in productive regions, and stronger CNDD was associated with (e) greater 702 

local species richness and (f) lower β-diversity (βSES).  Each point is one of 18 ecoregions 703 

coloured by its mean annual NPP.  CNDD and HNDD measures represent means across all 704 

species in a region, and error bars represent ±1 SE around those estimates.  NPP is on a log scale.  705 

Best-fit lines (±1 SE) are in grey.  Statistics are from linear regression tests weighted by the error 706 

around estimates of CNDD or HNDD. 707 
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