
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2007-46

2007

Customizing Component Middleware for Distributed Real-Time Customizing Component Middleware for Distributed Real-Time

Systems with Aperiodic and Periodic Tasks Systems with Aperiodic and Periodic Tasks

Yuanfang Zhang, Christopher Gill, and Chenyang Lu

Many distributed real-time applications must handle mixed aperiodic and periodic tasks with

diverse requirements. However, existing middleware lacks flexible configuration mechanisms

needed to manage end-to-end timing easily for a wide range of different applications with both

aperiodic and periodic tasks. The primary contribution of this work is the design,

implementation and performance evaluation of the first configurable component middleware

services for admission control and load balancing of aperiodic and periodic tasks in distributed

real-time systems. Empirical results demonstrate the need for, and the effectiveness of, our

configurable component middleware approach in supporting different applications with

aperiodic and periodic tasks.

... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Zhang, Yuanfang; Gill, Christopher; and Lu, Chenyang, "Customizing Component Middleware for
Distributed Real-Time Systems with Aperiodic and Periodic Tasks" Report Number: WUCSE-2007-46
(2007). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/145

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/145?utm_source=openscholarship.wustl.edu%2Fcse_research%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/145

Customizing Component Middleware for Distributed Real-Time Systems with Customizing Component Middleware for Distributed Real-Time Systems with
Aperiodic and Periodic Tasks Aperiodic and Periodic Tasks

Yuanfang Zhang, Christopher Gill, and Chenyang Lu

Complete Abstract: Complete Abstract:

Many distributed real-time applications must handle mixed aperiodic and periodic tasks with diverse
requirements. However, existing middleware lacks flexible configuration mechanisms needed to manage
end-to-end timing easily for a wide range of different applications with both aperiodic and periodic tasks.
The primary contribution of this work is the design, implementation and performance evaluation of the
first configurable component middleware services for admission control and load balancing of aperiodic
and periodic tasks in distributed real-time systems. Empirical results demonstrate the need for, and the
effectiveness of, our configurable component middleware approach in supporting different applications
with aperiodic and periodic tasks.

https://openscholarship.wustl.edu/cse_research/145?utm_source=openscholarship.wustl.edu%2Fcse_research%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/145?utm_source=openscholarship.wustl.edu%2Fcse_research%2F145&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2007-46

Customizing Component Middleware for Distributed Real-Time Systems
with Aperiodic and Periodic Tasks

Authors: Yuanfang Zhang, Christopher Gill and Chenyang Lu

Corresponding Author: {yfzhang, cdgill, lu}@cse.wustl.edu

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Customizing Component Middleware for Distributed
Real-Time Systems with Aperiodic and Periodic Tasks

Yuanfang Zhang, Christopher Gill and Chenyang Lu

Department of Computer Science and Engineering
Washington University, St. Louis, MO, USA

{yfzhang, cdgill, lu}@cse.wustl.edu

Abstract. Many distributed real-time applications must handle mixed aperiodic
and periodic tasks with diverse requirements. However, existing middleware lacks
flexible configuration mechanisms needed to manage end-to-end timing easily for
a wide range of different applications with both aperiodic and periodic tasks. The
primary contribution of this work is the design, implementation and performance
evaluation of the first configurable component middleware services for admission
control and load balancing of aperiodic and periodic tasks in distributed real-time
systems. Empirical results demonstrate the need for, and the effectiveness of, our
configurable component middleware approach in supporting different applica-
tions with aperiodic and periodic tasks.

1 Introduction

Many distributed real-time systems must handle a mix of aperiodic and periodic tasks.
Some aperiodic tasks have end-to-end deadlines whose assurance is critical to the cor-
rect behavior of the system. For example, in an industrial plant monitoring system, an
aperiodic alert may be generated when a series of periodic sensor readings meets certain
hazard detection criteria. This alert must be processed on multiple processors within an
end-to-end deadline, e.g., to put an industrial process into a fail-safe mode. User inputs
and sensor readings may trigger other real-time aperiodic tasks as well.

However, there is a significant gap between the needs of these applications and the
support provided to them even by state-of-the-art real-time middleware. Specifically,
while significant theoretical results on aperiodic scheduling [1] have been achieved,
there is a growing need to apply those results to the standards-based middleware that is
increasingly being used for developing distributed real-time applications.

In previous work we have developed the first middleware-layer on-line admission
control service supporting both aperiodic and periodic end-to-end tasks [2]. However,
a more complete set of inter-operating services is needed, and for many of those ser-
vices multiple strategies for their operation should be supported. For example, even for
a single theoretic technique such as aperiodic utilization bound (AUB) [3], an admis-
sion control service may have alternative strategies, the effectiveness of which depends
significantly on workload characteristics and application requirements. Our original ad-
mission control service had a single fixed strategy for when admissability was decided,
which was only at the first arrival of each task. However, as we describe in Section 3.2,

for some applications deciding admissibility for each separate job of a periodic task
may be a better alternative to reduce pessimism of the admission decision.

Moreover, it is essential to make those strategies easily and individually config-
urable, which is difficult for implementations that rely directly on distributed object
middleware (like our original admission control service, which was based on TAO [4]).
Specifically, in those implementations changing the supported strategy requires explicit
changes to the service code itself, which can be tedious and error-prone in practice. Not
only must appropriate services expose a variety of strategies, but the configuration of
those strategies must be supported in a flexible yet principled way, so that system devel-
opers are able to explore alternative configurations but invalid configurations cannot be
chosen by mistake. Providing configurable middleware service strategies to real-time
applications with aperiodic and periodic tasks thus faces several important challenges:

– new and existing services for real-time systems with aperiodic and periodic tasks
must provide configurable strategies, and configuration tools must be added or ex-
tended to allow configuration of those strategies;

– the specific criteria that distinguish which service strategies are preferable must be
identified, and applications must be categorized according to those criteria;

– appropriate combinations of services’ strategies must be identified for each such
application category, according to its characteristic criteria;

– invalid combinations of strategies must be identified, and then disallowed during
configuration; and

– empirical studies must be conducted to evaluate overheads and trade-offs among
alternative valid combinations of service strategies.

To address these challenges, and thus to enhance support for diverse distributed
real-time applications with aperiodic and periodic tasks, we have designed and imple-
mented a new set of inter-operating services as configurable middleware components,
atop the CIAO [5] quality-of-service (QoS)-aware component middleware platform.
We have also developed a new front-end for the DAnCE [6] QoS-enabled component
deployment and configuration engine, to integrate these service components for each
particular application according to its specific criteria.
Research Contributions: In this work, we have (1) developed what is to our knowledge
the first example of configurable component middleware services supporting multiple
admission control and load balancing strategies for aperiodic and periodic end-to-end
real-time tasks; (2) developed a novel component configuration pre-parser and inter-
faces to select and configure real-time admission control and load balancing services
flexibly at system deployment time; (3) defined categories of real-time applications ac-
cording to specific characteristics, and related them to suitable combinations of strate-
gies for our services; and (4) provided a case study that applies different configurable
services to a domain with both aperiodic and periodic tasks, offers empirical evidence
of the overheads involved and the trade-offs among service configurations, and demon-
strates the effectiveness of our approach in that domain. Our work thus significantly
enhances the flexibility and applicability of distributed real-time middleware for sys-
tems with aperiodic and periodic tasks.

Section 2 introduces the services provided by the CIAO and DAnCE middleware
frameworks which our work extends, and provides background information on a spe-

cific approach to supporting aperiodic tasks, whose features our work makes config-
urable. Section 3 presents our component middleware architecture, configurable strate-
gies, and configurable component implementations for supporting aperiodic task schedul-
ing end-to-end in distributed real-time systems. Section 4 describes our new configura-
tion engine extensions, which can flexibly configure different strategies for our services
according to each application’s requirements. Section 5 evaluates the performance of
our approach including trade-offs among different service strategy combinations, and
characterizes the overheads introduced by our approach. Section 6 presents a survey of
other related work. Finally, we offer concluding remarks in Section 7.

2 Background

Component Middleware: Component middleware platforms are an effective way of
achieving customizable reuse of software artifacts. In these platforms, components are
units of implementation and composition that collaborate with other components via
ports. Groups of related components are connected together via their ports to form com-
ponent assemblies. The ports define components’ collaborations in terms of provided
and required interfaces, event sources and sinks, and attributes. The ports isolate the
components’ contexts from their actual implementations. Component middleware plat-
forms provide execution environments and common middleware services, and support
additional tools used to configure and deploy the component assemblies.

The Component-Integrated ACE ORB (CIAO) [5] implements the Lightweight CCM
specification [7] (which in contrast to the full CCM is better suited to the needs of real-
time and embedded systems) and is built atop the TAO [4] real-time CORBA object
request broker (ORB). CIAO supports real-time QoS by combining the flexibility of
component middleware with the predictability of Real-time CORBA. CIAO abstracts
real-time policies as installable and configurable units. However, CIAO does not support
aperiodic task scheduling, admission control or load balancing. We base our approach
on extending CIAO to configure and manage aperiodic task support.

DAnCE [6] is a QoS-enabled component deployment and configuration engine that
implements the Object Management Group (OMG)’s Deployment and Configuration
specification [8]. DAnCE parses component configuration/deployment descriptions and
automatically configures ORBs, containers, and server resources at system initialization
time, to enforce end-to-end QoS requirements. However, DAnCE does not provide es-
sential features needed to configure our admission control and load balancing services
correctly, e.g., to disallow invalid combinations of service strategies.
Aperiodic Task Support: Aperiodic tasks have been studied extensively in real-time
scheduling theory, including work on aperiodic servers that integrate scheduling of ape-
riodic and periodic tasks [9–17]. New schedulability tests based on aperiodic utilization
bounds [3] and a new admission control approach [18] also were introduced recently.
In [2], we implemented and evaluated services for two suitable aperiodic scheduling
techniques (aperiodic utilization bound [3] and deferrable server [9]). Since aperiodic
utilization bound (AUB) has a comparable performance to deferrable server, and re-
quires less complex scheduling mechanisms in middleware, we focus exclusively on
the AUB scheduling technique in this paper. Our experiences with AUB reported in this

paper illustrate how configurability of other scheduling techniques can be integrated
within real-time component middleware in a similar way.

With the AUB approach, three kinds of strategies must be made configurable to pro-
vide flexible and principled support for diverse distributed real-time applications with
aperiodic and periodic tasks: (1) when admissability is evaluated (to trade-off the gran-
ularity and thus the pessimism of admission guarantees), (2) when the contributions
of completed subtasks can be removed from the schedulability analysis used for ad-
mission control (to reduce pessimism), and (3) when tasks can be assigned to different
processors (to balance load and improve system performance).

In AUB [3], the set of current tasks S(t) at any time t is defined as the set of tasks
that have been released but whose deadlines have not expired. Hence, S(t) = {Ti|Ai ≤
t < Ai + Di}, where Ai is the release time of the first subtask of task Ti, and Di is the
deadline of task Ti. The synthetic utilization of processor j at time t, Uj(t), is defined
as the sum of individual subtask utilizations on the processor, accrued over all current
tasks. According to AUB analysis, a system achieves its highest schedulable synthetic
utilization bound under the End-to-end Deadline Monotonic Scheduling (EDMS) al-
gorithm under certain assumptions. Under EDMS, a subtask has a higher priority if it
belongs to a task with a shorter end-to-end deadline. Note that AUB does not distin-
guish aperiodic from periodic tasks. All tasks are scheduled using the same scheduling
policy. Under EDMS task Ti will meet its deadline if the following condition holds [3]:

ni∑

j=1

UVij
(1 − UVij

/2)

1 − UVij

≤ 1 (1)

where Vij is the jth processor that task Ti visits. A task (or an individual job of a
task) can be admitted only when this condition continues to be satisfied for all admitted
tasks and this task. Since real-time applications may or may not tolerate job skipping,
whether this condition is checked only when a task first arrives or whenever each job
arrives should be configurable.

Note that a task remains in the current task set even if it has been completed, as long
as its deadline has not expired. To reduce the pessimism of the AUB analysis, a reset-
ting rule is introduced in [3]. When a processor becomes idle, the contribution of all
completed subtasks to the processor’s synthetic utilization can be removed without af-
fecting the correctness of the schedulability condition (Condition 1). Since the resetting
rule introduces extra overhead, it should be made configurable whether the contribution
of only aperiodic subtasks or of both aperiodic and periodic subtasks can be removed
early. Under AUB-based schedulability analysis, load balancing also can effectively
improve system performance [3]. However some applications require persistent state
preservation between jobs of the same task, so it should be made configurable whether
a task can be reassigned to a different processor at each release.

3 Component Middleware Approach

In this section, we introduce our configurable service framework, and describe different
application criteria and their relationships to different configurable strategies. We also
discuss the implementation of the configurable components needed by our approach.

3.1 Architecture Overview

To support end-to-end aperiodic and periodic tasks, we have developed a new mid-
dleware architecture that extends CIAO to provide task management, and a front-end
configuration engine for DAnCE. The key feature of our approach is a configurable
service framework that can be customized for different sets of aperiodic and periodic
tasks. Our framework provides configurable admission controller (AC), idle resetter
(IR) and load balancer (LB) components which interact with application components
through task effector (TE) components. The AC component provides on-line admission
control and schedulability tests for tasks that arrive dynamically at run time. The LB
component provides an acceptable task assignment plan to the admission controller if
the new arrival task is admittable. The IR component reports all completed subtasks
on one processor to the AC component when the processor becomes idle, so the AC
component can remove their expected utilization to reduce the pessimism of the AUB
analysis at run-time.

Task Manager

EC/ORB

AC

LB

Application
Processor 1

EC/ORB

T1,1

TE IR

Application
Processor 2

EC/ORB

T1,2

TE IR

Application
Processor 3

EC/ORB

T1,1

TE IR

Application
Processor 4

EC/ORB

T1,2

TE IR

Application
Processor 5

EC/ORB

T1,3

TE IR

Original
Component

Duplicate
Component

Original Task
Allocation

Task
Reallocation

Fig. 1. Distributed Middleware Architecture

Figure 1 illustrates our distributed configurable component middleware architec-
ture. All processors are connected by TAO’s federated event channel [19] which pushes
events through local event channels, gateways and remote event channels to the events’
consumers sitting on different processors. We deploy one AC component and one LB

component on a central task manager processor, and one IR component and one task
effector (TE) component on each of multiple application processors. As an example,
Figure 1 shows an end-to-end task Ti composed of 3 consecutive subtasks, Ti,1, Ti,2

and Ti,3, executing on separate processors. Ti,1 and Ti,2 have duplicates on other ap-
plication processors. When task Ti arrives at an application processor, the task effector
component on that processor pushes a “Task Arrive” event to the AC component and
holds the task until it receives an “Accept” command from the AC component. The AC
component and LB component decide whether to accept the task, and if so, where to
assign its subtasks. The solid line and the dashed line show two possible assignments
of subtasks. If the first subtask Ti,1 is not assigned to the processor where Ti arrived,
we call this assignment a task reallocation.

A key advantage of this centralized architecture is that it does not require synchro-
nization among distributed admission controllers. In contrast, in a distributed architec-
ture the AC components on multiple processors may need to coordinate and synchro-
nize with each other in order to make correct decisions, because admitting an end-to-
end task may affect the schedulability of other tasks located on the multiple affected
processors. A potential disadvantage of the centralized architecture is that the AC com-
ponent may become a communication bottleneck and thus affect scalability. Therefore,
our current middleware architecture is suitable for small to medium scale real-time sys-
tems in which processors are connected by high-speed real-time networks. However,
the computation time of the schedulability analysis is significantly lower than task ex-
ecution times in many high performance real-time applications, which may alleviate
the scalability limitations of a centralized solution somewhat. In summary, while our
real-time component middleware approach can be extended to use a more distributed
architecture, we have focused first on a centralized approach with less complexity and
overhead. As future work we plan to examine the benefits and costs of decentralized
admission control and load balancing.

3.2 Applications Criteria and Middleware Strategies

Three criteria distinguish how different applications with aperiodic tasks should be sup-
ported: whether application components are replicated on multiple processors (criterion
C1); whether persistent state must be preserved between jobs of a same task (criterion
C2); and whether the application can tolerate job skipping (criterion C3). According to
these different application criteria, the AC, IR and LB components can be configured to
use different strategies. For each component, which strategy is more suitable depends
on these criteria and the application’s overhead constraints. As we discuss in Section 5,
experiments we have run under different combinations of strategies can provide valu-
able configuration guidance to application developers. Moreover, we have designed all
strategies with corresponding configurable component attributes, and provide a config-
uration pre-parser and a component configuration interface to allow developers to select
and configure each service’s mechanisms and attributes flexibly, according to each ap-
plication’s specific needs. We now examine the different strategies for each component
and the trade-offs among them.

Admission Control (AC) Strategies: Admission control offers significant advantages
for systems with aperiodic and periodic tasks, by providing on-line schedulability guar-
antees to tasks arriving dynamically. Our AC component supports two different strate-
gies: AC per Task and AC per Job. AC per Task performs the admission test only when
a task first arrives while AC per Job performs the admission test whenever a job of the
task arrives. Only applications satisfying criterion C3 are suitable for the second strat-
egy, since it may not admit some jobs. Moreover, the second strategy reduces pessimism
at the cost of increasing overhead. The application developer thus needs to consider
trade-offs between overhead and pessimism in choosing a proper configuration.
AC per Task: Considering the admission overhead and the fixed inter-arrival times of
periodic tasks, one strategy is to perform an admission test only when a periodic task
first arrives. Once a periodic task passes the admission test, all its jobs are allowed to be
released immediately when they arrive. This strategy improves middleware efficiency
at the cost of increasing the pessimism of the admission test. In the AUB analysis [3],
the contribution of a job to the synthetic utilization of a processor can be removed
when the job’s deadline expires (or when the CPU idles if the resetting rule is used and
the job has been completed). If admission control is performed only at task arrival time,
however, the AC component must reserve the synthetic utilization of the task throughout
its lifetime. As a result, it cannot reduce the synthetic utilization between the deadline
of a job and the arrival of the subsequent job of the same task, which may result in
pessimistic admission decisions [3].
AC per Job: If it is possible to skip a job of a periodic task (criterion C3), the alternative
strategy to reduce pessimism is to apply the admission test to every job of a periodic
task. This strategy is practical for many systems, since the AUB test is highly efficient
when used for AC, as is shown in Section 5.3 by our overhead measurements.

Idle Resetting (IR) Strategies: The use of a resetting rule can reduce the pessimism
of the AUB schedulability test significantly [3, 2]. There are three ways to configure
IR components in our approach. The first of these three strategies avoids the resetting
overhead, but is the most pessimistic. The third strategy removes the contribution of
completed aperiodic and periodic tasks more frequently than the other two strategies.
Although it has the least pessimism, it introduces the most overhead. The second strat-
egy offers a trade-off between the first and the third strategies.
No IR: The first strategy is to use no resetting at all, so that if the subtasks complete their
executions, the contributions of completed jobs to the processor’s synthetic utilization
are not removed until the task deadline. This strategy avoids the resetting overhead, but
increases the pessimism of schedulability analysis.
IR per Task: The second strategy is that each IR component records completed aperi-
odic subtasks on one processor. Whenever the processor is idle, a lowest priority thread
called an idle detector begins to run, and reports the completed aperiodic jobs to the AC
component through an “Idle Resetting” event. To avoid reporting repeatedly, the idle de-
tector only reports when there is a newly completed aperiodic job whose deadline has
not expired.
IR per Job: The third strategy is that each IR component records and reports not only
the completed aperiodic subtasks but also the completed jobs of periodic subtasks.

Load Balancing (LB) Strategies: Under AUB-based AC, load balancing can effec-
tively improve system performance in the face of dynamic task arrivals [3]. We use a
heuristic algorithm to assign subtasks to processors at run-time, which always assigns
a subtask to the processor with the lowest synthetic utilization among all processors on
which the application component corresponding to the task has been replicated (crite-
rion C1). 1 Since migrating a subtask between processors introduces extra overhead,
when we accept a new task, we only determine the assignment of that new task and do
not change the assignment plan for any other task in the current task set. This service
also has three strategies. The first strategy is suitable for applications which cannot sat-
isfy criterion C1. The second strategy is most applicable for applications which only
satisfy C1, but can not satisfy criterion C2. The third strategy is most suitable for appli-
cations which satisfy both C1 and C2.
No LB: This strategy does not perform load balancing. Each subtask does not have a
replica and is assigned to a particular processor.
LB per Task: Each task will only be assigned once, at its first arrival time. This strat-
egy is suitable for applications which must maintain persistent state between any two
consecutive jobs of a periodic task.
LB per Job: The third strategy is the most flexible. All jobs from a periodic task are
allowed to be assigned to different processors when they arrive.

Combining AC, IR and LB Strategies: When we use the AC, IR and LB components
together, their strategies can be configured in 18 different combinations. However, some
combinations of the strategies are invalid. The AC-per-Task/IR-per-Job combination is
not reasonable, because per job idle resetting means the synthetic utilizations of all
completed jobs of periodic subtasks are to be removed from the central admission con-
troller, but per task admission control requires that the admission controller reserves
the synthetic utilization for all accepted periodic tasks, so an accepted periodic task
does not need to go through admission control again before releasing its jobs. These
two requirements are thus contradictory, and we can exclude the corresponding config-
urations as being invalid. Removing this invalid AC/IR combination means removing 3
invalid AC/IR/LB combinations, so there are only 15 reasonable combinations of strate-
gies left. An advantage of our middleware architecture and configuration engine is that
they allow application developers to configure middleware services to achieve any valid
combination of strategies, while disallowing invalid combinations.

3.3 Component Implementation

Configurable component middleware standards, such as the CORBA Component Model
(CCM) [20], can help to reduce the complexity of developing distributed applications
by defining a component-based programming paradigm. They also help by defining a
standard configuration framework for packaging and deploying reusable software com-
ponents. The Component Integrated ACE ORB (CIAO) [21] is an implementation of the

1 The focus here is not on the load balancing algorithms themselves. Our configurable middle-
ware may be easily extended to incorporate LB components implementing other load balanc-
ing algorithms according to each application’s needs.

Lightweight CCM specification [7] that is specifically designed and optimized for dis-
tributed real-time systems. To support the different strategies described in Section 3.2,
and to allow flexible configuration of suitable combinations of those strategies for a
variety of applications, we have implemented admission control, idle resetting and load
balancing in CIAO as configurable components. Each component provides a specific
service with configurable attributes and clearly defined interfaces for collaboration with
other components, and can be instantiated multiple times with the same or different at-
tributes. Component instances can be connected together at run-time through appropri-
ate ports to form a distributed real-time application.

As Figure 2 illustrates, we have designed and implemented 6 configurable com-
ponents to support distributed real-time aperiodic and periodic tasks end-to-end, using
ACE/TAO/CIAO version 5.5.1/1.5.1/0.5.1. The Task Effector (TE) component holds

Location

Complete

Complete

Release

Accept

Task
Arrive

Real-Time ORB

Federated EC Federated EC

AC
Effec

tor
F/I

Subt
Last
Subt

IR

LB

Component

Container

Event
Source/Sink

Receptacle/Facet

Release Trigger

Idle Resetting

Fig. 2. Component Implementation

the arriving tasks, waits for the AC component decision and releases tasks. The Ad-
mission Control (AC) component decides whether to accept tasks. The Load Balancing
(LB) component computes task allocations so as to balance the processors’ synthetic
utilizations. The First/Intermediate (F/I) Subtask component executes the first or an in-
termediate subtask at a given priority. The Last Subtask component executes the last
subtask at a given priority. The Idle Resetting (IR) component records and reports the
completed subtasks when a processor goes idle.

Each component may have several configurable attributes, so that it can be instan-
tiated with different properties, like its criticality and execution time (for application
components) or its strategy (for AC, IR and LB components). As we discussed in Sec-
tion 3.1, our admission control and load balancing approaches adopt a centralized ar-
chitecture, which employs one AC component instance and one LB component instance
running on a central processor (called the “Task Manager” processor).

Each application processor contains one instance of a TE component and one in-
stance of an IR component. The TE component on each processor reports the arrival of
tasks on that processor to the AC component, which then releases or rejects the tasks

based on the admission control decision. The IR component on each application proces-
sor records and reports the completed subtasks on that processor to the AC component,
whenever that processor goes idle. Each end-to-end task is implemented by a chain of
F/I Subtask components and one Last Subtask component. We now describe the behav-
ior of each kind of component in more detail.
Task Effector (TE) Component: When a task arrives, the TE component puts it into
a waiting queue and pushes a “Task Arrive” event to the AC component. When the TE
component receives an “Accept” event from the AC component, the corresponding task
waiting in the queue will be released immediately. The TE component has two con-
figurable attributes. One is a processor ID, which is used to distinguish TE component
instances deployed on different processors. The other is the AC-per-job/AC-per-task
attribute, which indicates whether periodic tasks are admitted per job or per task. If
the periodic tasks are admitted per job, then before releasing any job of a periodic task
the TE component will hold it until receiving an “Accept” event from the AC compo-
nent. Otherwise, when a periodic task is admitted the AC component will reserve CPU
capacity for it, so all subsequent jobs from that same periodic task can be released im-
mediately without going through the AC component again. These attributes can be set
at the creation of a TE component instance and also may be modified at run-time.
First/Intermediate (F/I) and Last Subtask Components: Both the F/I and Last Sub-
task components execute application subtasks. The only difference between these two
kinds of components is that the F/I Subtask Component has an extra port that publishes
“Trigger” events to initiate the execution of the next subtask. The Last Subtask Compo-
nent does not need this port, since the last subtask does not have a next subtask. Each
instance of these kinds of components contains a dispatching thread that executes a par-
ticular subtask at a specified priority. Both kinds of components have three configurable
attributes. The first two attributes are the task execution time and priority level, which
are normally set at the creation of the component instances as specified by application
developers. The third attribute is No-IR, IR-per-task, or IR-per-job, which means the
resetting rule either is not enabled or is enabled per task or per job respectively. Per-
task means the Idle Resetting Component will not be notified when periodic subtasks
complete. Since each job of an aperiodic task can be treated as an independent aperiodic
task with one release, the idle resetting component is notified when aperiodic subtasks
complete. The dispatching threads in a F/I Subtask Component or a Last Subtask Com-
ponent are triggered by either a “Release” method call from the local TE component
instance or a “Trigger” event from a previous F/I Subtask component instance. Both
F/I Subtask and Last Subtask components call the “Complete” method of the local IR
component instance when a subtask completes.
Idle Resetting (IR) Component: It receives “Complete” method calls from local F/I or
Last Subtask components, and pushes ”Idle Resetting” events to the AC component. It
has one attribute, the processor ID, which is used to distinguish the component instances
sitting on different processors.
Admission Control (AC) Component: It consumes “Task Arrive” events from the TE
components and “Idle Resetting” events from the IR components. It publishes “Accept”
events to the TE components to allow task releases. It makes “Location” method calls
on the LB component to ask for proposed task assignment plans. The AC component

has a No-LB/LB-per-task/LB-per-job attribute, which indicates whether load balancing
is enabled, and if it is enabled whether it is per task or per job. If that attribute is set to
LB-per-task, once a periodic task is admitted its subtask assignment is decided and kept
for all following jobs. However, aperiodic tasks do not have this restriction as they are
only allocated at their single job arrival time. A value of LB-per-job means the subtask
assignment plan can be changed for each job of an accepted task.
Load Balancing (LB) Component: It receives “Location” method calls from the AC
component, which ask for assignment plans for particular tasks. The LB component
tries to balance the synthetic utilization among all processors, and may modify a previ-
ous allocation plan for a task when a new job of the task arrives. It returns an assignment
plan that is acceptable and attempts to minimize the differences among synthetic uti-
lizations on all processors after accepting that task. Alternatively, the LB component
may tell the AC component that the system would be unschedulable if the task were
accepted.

4 Deployment and Configuration

Although we have designed our configurable components specifically for developers
who want middleware support for aperiodic scheduling, it is still not easy for an appli-
cation developer to assemble and deploy those components correctly by hand. There-
fore, we have automated the deployment and configuration of these components using
standards-based component middleware techniques. CIAO’s realization of the OMG’s
Deployment and Configuration specification [8] is called the Deployment and Config-
uration Engine (DAnCE) [6]. DAnCE can translate an XML-based assembly specifi-
cation into the execution of deployment and configuration actions needed by an ap-
plication. Assembly specifications are encoded as descriptors which describe how to
build distributed applications using available component implementations. Information
contained in the descriptors includes the number of processors, what component im-
plementations to use, how and where to instantiate components, and how to connect
component instances in an application.
Front-end Configuration Engine: Although tools such as CoSMIC [22] are provided
to help generate those XML files, those tools do not consider the configuration require-
ments of the new services we have created. We therefore provide a specific configura-
tion engine that acts as a front-end to DAnCE, to configure our services for application
developers who require configurable aperiodic scheduling support. This extension to
DAnCE helps to alleviate complexities associated with deploying and configuring our
services. The application developer first provides two text files. One is a configuration
file shown in Figure 3, which consists of the configuration settings for the admission
control, idle resetting and load balancing services. The other is a workload file which
describes each end-to-end task and where its subtasks execute. Our front-end config-
uration engine parses these two files, then generates an XML-based deployment plan,
which can be recognized by DAnCE. As an example, Figure 3 shows a configuration
file which sets the AC, IR and LB services to per-task (PT). Figure 3 also shows part of
the XML file generated by our configuration engine, with the LB strategy (LB Strategy)
setting of PT.

<instance id="Central-AC">

 <configProperty>
 <name>LB_Strategy</name>
 <value>
 <type>
 <kind>tk_string</kind>
 </type>
 <value>
 <string>PT</string>
 </value>
 </value>
 </configProperty>
 </instance>

Config

Workload

Configuration
Engine

XML-based
deployment

plan

Parse the
plan

Component Repository

Deploy components on each node

Select

Create
component

server

Create
Container

Deployment::
NodeImpleme
ntationInfo

AC PT
IR PT
LB PT

Deployment::
DeploymentPlanDAnCE

Plan
Launcher

DAnCE
Execution
Manager

Front End

DAnCE
Node

Manager
Node

Application
Manager

set_configura
tionDAnCE

Node
Application

Container

Fig. 3. Dynamic Configuration Process

To enforce end-to-end deadline monotonic scheduling, the F/I Subtask and Last
Subtask components both expose an attribute called “priority”. When our configuration
engine reads the workload file, it assigns priorities in order of tasks’ end-to-end dead-
lines, and writes this priority information into the generated XML deployment plan, to
be parsed by DAnCE later. Our front-end configuration engine not only generates well
formed assembly specifications, according to the application developers’ instructions,
but it also performs a feasibility check on the configuration file, to ensure correct han-
dling of dependent constraints. For example, per task admission control with per job
idle resetting would be contradictory as we mentioned in Section 3.2. Since a developer
might specify incompatible service configuration combinations, our approach should be
able to detect and disallow them. Finally, if no configuration file is provided or it omits
configuration information, our configuration engine can supply default configuration
settings, i.e., per task admission control, idle resetting and load balancing.

We have used the <configproperty> feature of DAnCE to extend the set of at-
tributes that can be configured flexibly according to other configuration settings. For
example, if the load balancing service is configured using the per-task strategy, the cor-
responding property of the AC component should also be set to per-task. DAnCE’s
Plan Launcher parses the XML-based deployment plan and stores the property name
(LB Strategy) and value in a data structure (Property) which is a field of the AC in-
stance definition structure. The definitions of the AC instance and all other compo-
nent instances comprise a deployment plan (Deployment::DeploymentPlan) that is then
passed to DAnCE’s Execution Manager for execution. The Execution Manager propa-
gates the deployment plan data structure to DAnCE’s Node Application Manager, which

parses it into an initialization data structure (NodeImplementationInfo). Finally, the
Node Application Manager passes the initialization data structure to the Node Applica-
tion. When the Node Application installs the AC component instance, it also initializes
the LB Strategy attribute of the AC component through a standard Configurator inter-
face (set configuration), using the initialization data structure it received.

5 Experimental Evaluations

To validate our approach, and to evaluate the performance, overheads and benefits re-
sulting from it, we conducted a series of experiments which we describe in this section.
The experiments were performed on a testbed consisting of six machines connected
by a 100Mbps Ethernet switch. Two are Pentium-IV 2.5GHz machines with 1G RAM
and 512K cache each, two are Pentium-IV 2.8GHz machines with 1G RAM and 512K
cache each, and the other two are Pentium-IV 3.40GHz machines with 2G RAM and
2048K cache each. Each machine runs version 2.4.22 of the KURT-Linux operating
system. One of the Pentium-IV 2.5GHz machines is used as a central task manager
where the AC and LB components are deployed. The other five machines are used as
the application processors on which TB, F/I Subtask, Last Subtask and IR components
are deployed.

5.1 Random Workloads

We first randomly generated 10 sets of 9 tasks, each including 4 aperiodic tasks and
5 periodic tasks. The number of subtasks per task is uniformly distributed between 1
and 5. Subtasks are randomly assigned to 5 application processors. Task deadlines are
randomly chosen between 250 ms and 10 s. The periods of periodic tasks are equal
to their deadlines. The arrival of aperiodic tasks follows a Poisson distribution. The
synthetic utilization of every processor is 0.5, if all tasks arrive simultaneously. Each
subtask is assigned to a processor, and has a duplicate sitting on a different processor
which is randomly picked from the other 4 application processors.

In this experiment, we evaluated all 15 reasonable combinations of strategies, since
it is convenient to choose and run different combinations with the help of our config-
uration engine. We ran 10 task sets using each combination and compared them. The
performance metric we used in these evaluations is the accepted utilization ratio, i.e.,
the total utilization of jobs accepted by the admission controller divided by the total
utilization of all jobs requesting admission. To be concise, we use capital letters to
represent strategies: N when a service is not enabled in this configuration; T when a
service is enabled for each task; and J when a service is enabled for each job of a task.
In the following figures, a three element tuple denotes each combination of settings for
the three configurable services: first for the admission control service, then for the idle
resetting service, and last for the load balancing service.

The bars in Figure 4 show the average (mean) results over the 10 task sets. As is
shown in Figure 4, enabling either idle resetting or load balancing can increase the uti-
lization of tasks admitted. Moreover, the experiment shows that enabling IR per job
(* J *) significantly outperforms the configurations which enable IR per task (* T *)

0

0.2

0.4

0.6

0.8

1

T_N
_N

T_N
_T

T_N
_J

T_T
_N

T_T
_T

T_T
_J

J_
N_N

J_
N_T

J_
N_J

J_
T_N

J_
T_T

J_
T_J

J_
J_

N

J_
J_

T

J_
J_

JA
ve

ra
g

e
ac

ce
p

te
d

 u
ti

liz
at

io
n

 r
at

io
 o

f
al

l a
cc

ep
te

d
 t

as
ks

Fig. 4. Accepted Utilization Ratio

or not at all (* N *). This is because IR per job removes the contribution of all com-
pleted periodic jobs to the synthetic utilizations which greatly helps to admit more jobs.
Enabling all three services per job (J J J) performed comparably to the other (J J *)
configurations (averaging higher though the differences were not significantly) and out-
performed all other configurations significantly, even though the J J J configuration in-
troduces the most overhead. We also notice the difference is small when we only change
the configuration of the LB component and keep the configuration of other two services
the same. This is because when we randomly generated these 10 task sets, the resulting
synthetic utilization of each processor was similar. To show the potential benefit of the
LB component, we designed another experiment that is described in the next section.

5.2 Imbalanced Workloads

In the second experiment, we use an imbalanced workload. It is representative of dy-
namic systems in which a subset of the system processors may experience heavy load.
For example, in an industrial control system, a blockage in an automated assembly line
may cause a sharp increase in the load on the processors immediately connected to it,
as aperiodic alert and diagnostic tasks are launched. In this experiment, we divided the
5 application processors into two groups. One group contains 3 processors hosting all
tasks. The other group contains 2 processors hosting all duplicates. 10 task sets are ran-
domly generated as in the above experiment, except that all subtasks were randomly
assigned to 3 application processors in the first group and the number of subtasks per
task is uniformly distributed between 1 and 3. The synthetic utilization for any of these

three processors is 0.7. Each subtask has one replica sitting on one processor in the
second group.

Each of 10 task sets was run for the 15 different valid combinations, and for each
combination we then averaged the utilization acceptance ratio over the 10 results. These
15 combinations can be divided into 5 sets. Each sets contains three combinations rep-
resented by three adjacent bars in Figure 5. In each set, we kept the admission control
and the idle resetting strategies the same, but changed the load balancing strategy from
none to per task, then to per job. As figure 5 shows, load balancing per task provides a
significant improvement when compared with the results without load balancing. How-
ever, there is not much difference between load balancing per task vs. per job.

0

0.2

0.4

0.6

0.8

1

T_N
_N

T_N
_T

T_N
_J

T_T
_N

T_T
_T

T_T
_J

J_
N_N

J_
N_T

J_
N_J

J_
T_N

J_
T_T

J_
T_J

J_
J_

N

J_
J_

T

J_
J_

JA
ve

ra
g

e
ac

ce
p

te
d

 u
ti

liz
at

io
n

 r
at

io
 o

f
al

l a
cc

ep
te

d
 t

as
ks

Fig. 5. Load Balancer Strategy Comparison

From these two experiments, we found that configuring different strategies accord-
ing to application characteristics can have a significant impact on the performance of a
real-time system with aperiodic and periodic tasks. Our design of the AC, IR and LB
services as easily configurable components allows application developers to explore
and select valid configurations based on the characteristics and requirements of their
applications, and based on the trade-offs indicated by these empirical results.

5.3 Overheads of Service Components

To evaluate the efficiency of our component-based middleware services, we measured
overheads using 3 of the processors to run application components and another pro-
cessor to run the AC and LB components. The workload is randomly generated in the

same way as described in Section 5.1, except that the number of subtasks per task is uni-
formly distributed between 1 and 3. Each experiment ran for 5 minutes. We examined
the different sources of overhead that may occur when a task arrives at TE component
TE1, after which AC and LB components run the task in component TE1 or re-allocate
it to another TE component, TE2. Figure 6 shows how the total delay for each service
includes the costs of operations located in several components. Figure 7 lists the opera-
tion numbers shown in Figure 6 to provide a detailed accounting of the delays resulting
from different combinations of service configurations.

TE1

1

5

AC
LB

3

4

2

2

IR
7

8

TE2

6

2

2

1. hold the task, push event
2. communication delay
3. generate acceptable
 deployment plan
4. apply the admission test

5. release the task
6. release the duplicate task
7. report completed subtask
8. update synthetic utilization

Fig. 6. Sources of Overhead/Delay

mean max
AC without LB (1+2+4+2+5) 1114 1248
AC with LB (1+2+3+2+5) 1116 1253
(no re-allocation)
AC with LB (1+2+3+2+6) 1201 1327
(re-allocation)
LB (no re-allocation) (1+2+3+2+5) 1113 1250
LB (re-allocation) (1+2+3+2+6) 1198 1319
IR (on AC side) (8) 17 18
IR (other part) (7+2) 662 683
Communication Delay (2) 322 361

Fig. 7. Overheads of Service Configurations (µs)

To calculate the delays for AC without LB, AC with LB without re-allocation and
LB without re-allocation, we can simply calculate the interval between when one task
arrives on a processor and when the task is released on the processor. However, if the
LB component re-allocates the first subtask on a different processor using its duplicate,
as in the case of AC with LB, it is difficult to determine a precise time interval between
when one task arrives on one processor and when it is released on another processor,
because like many of the systems for which our approach is suitable, our experiment
environment does not provide sufficiently high resolution time synchronization among
processors. We therefore measure the overheads on all involved processors individu-
ally, then add them together plus twice the communication delays (step 2 in Figure 6)
between the processors. Three processors are involved: the processor where the task
arrives (step 1), the central task manager processor (steps 3 and 4) and the processor
where the duplicate task is released (step 6). We ran this experiment using KURT-Linux
version 2.4.22, which provides a CPU-supported timestamp counter with nanosecond
resolution. By using instrumentation provided with the KURT-Linux distribution, we
can obtain a precise accounting of operation start and stop times and communication
delays. To measure the communication delay between the application processor and the
admission control processor on our experimental platform, we pushed an event back
and forth between the application processor to the admission control processor 1000
times, then calculated the mean and max value among 1000 results. We then divided

the round trip time by 2 to obtain the approximate mean and maximum communication
delays between the application processor and the admission control processor.

The total delay for LB when reallocation happens, is measured in the same way as
for the case of AC with LB with reallocation. To calculate the delay from the IR com-
ponent, we divide its execution into two parts. The small overhead on the admission
control processor must be counted in the overall delay. However, the large overhead
on the application processor and the communication delay only happen during CPU
idle time, and although it represents an additional overhead induced by the IR compo-
nent, it does not affect performance, which is why we report the two parts separately
in Figure 7. From the results in Figure 7, we can see that all of the delays induced
by our configurable components are less than 2 ms, which is acceptable for many dis-
tributed real-time systems. However for applications with tight schedules, a developer
can make further decisions on how to configure services based on this delay informa-
tion and based on the effects of the different configurations on task management, which
we discussed in Section 3.2.

6 Related Work

Component Middleware: The architectural patterns used in the CORBA Component
Model (CCM) [23] are also used in other popular component middleware technolo-
gies, such as J2EE [24, 25]. Among the existing component middleware technologies,
CCM is the most suitable for distributed real-time applications since CORBA is the
only standards-based COTS middleware that explicitly consider the QoS requirements
of distributed real-time systems. In addition to CIAO, a number of CCM implementa-
tions are available, including OpenCCM [26], K2 Container [27], MicoCCM [28] and
Qedo [29]. Clarke et al. [30] described the OpenCOM component model which can be
used to construct a full middleware platform. Jordan et al. [31] provided a flexible and
extensible framework for managing resources across a broad spectrum, from low-level
resources like CPU time to higher-level resources such as database connections.
QoS-aware middleware: Quality Objects (QuO) [32, 33] is an adaptive middleware
framework developed by BBN Technologies that allows developers to use aspect-oriented
software development techniques to separate the concerns of QoS programming from
application logic in distributed real-time applications. A Qosket is a unit of encapsula-
tion and reuse for QuO systemic behaviors. In comparison to CIAO, Qoskets and QuO
emphasize dynamic QoS provisioning where CIAO emphasizes static QoS provision-
ing and integration of various mechanisms and behaviors during different stages of the
development lifecycle. The dynamicTAO [34] project applies reflective techniques to
reconfigure Object Request Broker (ORB) components at run-time. Similar to dynam-
icTAO, the Open ORB [35] project also aims at highly configurable and dynamically re-
configurable middleware platforms to support applications with dynamic requirements.
Zhang et al. [36] use aspect-oriented techniques to improve the customizability of the
middleware core infrastructure at the ORB level. Schantz et al. [37] show how priority-
and reservation-based OS/network QoS management mechanisms can be coupled with
standards-based, off-the-shelf middleware to better support dynamic distributed real-
time applications with stringent end-to-end real-time requirements.

QoS-aware component Middleware: Component middleware’s container architecture
enables meta-programming of QoS attributes in component middleware. For example,
aspect-oriented techniques can be used to plug in different systemic behaviors [38].
This approach is similar to CIAO in that it provides mechanisms to inject aspects into
systems at the middleware level. de Miguel’s work [39] further develops the state of the
art in QoS-enabled containers by extending a QoS EJB container interface to support
a QoSContext interface that allows the exchange of QoS-related information among
component instances. To take advantage of the QoS-container, a component must im-
plement QoSBean and QoSNegotiation interfaces. However, this requirement increases
dependence among component implementations. The QoS Enabled Distributed Ob-
jects (Qedo) [40] project is another effort to make QoS support an integral part of
CCM. Qedo’s extensions to the CCM container interface and Component Implemen-
tation Framework (CIF) require component implementations to interact with the con-
tainer QoS interface and negotiate the level of QoS contract directly. Although this
approach is suitable for certain applications where QoS is part of the functional re-
quirements, it tightly couples the QoS provisioning and adaptation behaviors into the
component implementation, which may limit the reusability of the component. In com-
parison, CIAO explicitly avoids this coupling and composes the QoS aspects into ap-
plications declaratively. The OpenCCM [26] project is a Java-based CCM implemen-
tation. The OpenCCM Distributed Computing Infrastructure (DCI) federates a set of
distributed services to form a unified distributed deployment domain for CCM appli-
cations. OpenCCM and its DCI infrastructure, however, do not support key QoS as-
pects for distributed real-time systems, including real-time QoS policy configuration
and resource management. There have been several other efforts to introduce of QoS
in conventional component middleware platforms. The FIRST Scheduling Framework
(FSF) [41] proposes to compose several applications and to schedule the available re-
sources flexibly while guaranteeing hard real-time requirements. A real-time compo-
nent type model [42], which integrates QoS facilities into component containers also
was introduced, based on the EJB and RMI specifications. A schedulability analysis
algorithm [43] for hierarchical scheduling systems has been introduced for dependent
components which interact through remote procedure calls. None of these approaches
provides the configurable services for mixed aperiodic and periodic end-to-end tasks
offered by our approach.

7 Conclusions

The work presented in this paper represents a promising step towards configurable ad-
mission control and load balancing support for a variety of distributed real-time ap-
plications with aperiodic and periodic tasks. We have designed and implemented con-
figurable middleware components that provide effective on-line admission control and
load balancing and can be easily configured and deployed on different processors. Our
front-end configuration engine can automatically process the user’s configuration file
and generate a corresponding deployment plan for DAnCE, thus making it easier for
developers to select suitable configurations, and to avoid invalid ones. Empirical results
we obtained showed that (1) our configurable component middleware is well suited

for satisfying different applications with a variety of alternative characteristics and re-
quirements, and (2) our component middleware services are appropriately efficient on
a Linux platform.

References

1. Sha, L., et. al: Real Time Scheduling Theory: A Historical Perspective. The Journal of
Real-Time Systems 10 (2004) 101–155

2. Zhang, Y., Lu, C., Gill, C., Lardieri, P., Thaker, G.: Middleware Support for Aperiodic Tasks
in Distributed Real-Time Systems. In: RTAS. (2007)

3. Abdelzaher, T.F., Thaker, G., Lardieri, P.: A Feasible Region for Meeting Aperiodic End-to-
end Deadlines in Resource Pipelines. In: ICDCS. (2004)

4. Institute for Software Integrated Systems: The ACE ORB (TAO).
www.dre.vanderbilt.edu/TAO/ (Vanderbilt University)

5. Institute for Software Integrated Systems: Component-Integrated ACE ORB (CIAO).
www.dre.vanderbilt.edu/CIAO/ (Vanderbilt University)

6. Deng, G., Schmidt, D.C., Gill, C., Wang, N., eds.: QoS-Enabled Component Middleware for
Distributed Real-Time and Embedded Systems. CRC Press to appear.

7. Object Management Group: Light Weight CORBA Component Model Revised Submission.
OMG Document realtime/03-05-05 edn. (May 2003)

8. Object Management Group: Deployment and Configuration Specification. OMG Document
ptc/2003-07-02 edn. (July 2003)

9. Strosnider, J., Lehoczky, J.P., Sha, L.: The deferrable server algorithm for enhanced aperiodic
responsiveness in real-time environments. IEEE Transactions on Computers 44(1) (1995)
73–91

10. Sha, L., Lehoczky, J.P., Rajkumar, R.: Solutions for some practical problems in prioritizing
preemptive scheduling. In: RTSS. (1986)

11. Lehoczky, J.P., Sha, L., Strosnider, J.K.: Enhanced aperiodic responsiveness in a hard real-
time environment. In: RTSS. (1987)

12. Sprunt, B., Sha, L., Lehoczky, L.: Aperiodic task scheduling for hard real-time systems. The
Journal of Real-Time Systems 1(1) (1989) 27–60

13. Ramos-Thuel, S., Lehoczky, J.P.: On-line scheduling of hard deadline aperiodic tasks in
fixed-prioriry systems. In: RTSS. (1993)

14. Ramos-Thuel, S., Lehoczky, J.P.: Algorithms for scheduling hard aperiodic tasks in fixed
priority systems using slack stealing. In: RTSS. (1994)

15. Lehoczky, J.P., Thuel, S.R.: An optimal algorithm for scheduling soft-aperiodic tasks in
fixed-priority preemptive systems. In: RTSS. (1992)

16. Davis, R.I., Tindell, K., Burns, A.: Scheduling slack time in fixed priority preemptive sys-
tems. In: RTSS. (1993)

17. Spuri, M., Buttazzo, G.: Scheduling Aperiodic Tasks in Dynamic Priority Systems, Real-
Time Systems. The Journal of Real-Time Systems 10(2) (1996)

18. Andersson, B., Ekelin, C.: Exact Admission-Control for Integrated Aperiodic and Periodic
Tasks. In: RTAS. (2005)

19. Harrison, T.H., Levine, D.L., Schmidt, D.C.: The design and performance of a real-time
CORBA event service. In: Proceedings of OOPSLA. (1997)

20. Object Management Group: CORBA Components. OMG Document formal/2002-06-65
edn. (June 2002)

21. Wang, N., Gill, C., Schmidt, D.C., Subramonian, V.: Configuring Real-time Aspects in Com-
ponent Middleware. In: Proc. of the International Symposium on Distributed Objects and
Applications (DOA’04), Agia Napa, Cyprus (October 2004)

22. Gokhale, A.: Component Synthesis using Model Integrated Computing. www.dre.
vanderbilt.edu/cosmic (2003)

23. Volter, M., Schmid, A., E.Wolff: Server Component Patterns – Component Infrastructures
illustrated with EJB. Wiley & Sons, New York (2002)

24. Volter, M., Schmid, A., Wolff, E.: Server Component Patterns: Component Infrastructures
Illustrated with EJB. Wiley Series in Software Design Patterns, West Sussex, England (2002)

25. Alur, D., Crupi, J., Malks, D.: Core J2EE Patterns: Best Practices and Design Strategies.
Prentice Hall (2001)

26. Universite des Sciences et Technologies de Lille, F.: The OpenCCM Platform. corbaweb.
lifl.fr/OpenCCM/ (2003)

27. iCMG: K2 Component Server. www.icmgworld.com (2003)
28. MICO: The MICO CORBA Component Project. www.fpx.de/MicoCCM/ (2000)
29. Qedo: QoS Enabled Distributed Objects. qedo.berlios.de (2002)
30. Clarke, M., Blair, G.S., Coulson, G., Parlavantzas, N.: An efficient component model

for the construction of adaptive middleware. In: Middleware 2001: Proceedings of the
IFIP/ACM International Conference on Distributed Systems Platforms Heidelberg, Springer-
Verlag (2001) 160–178

31. Jordan, M., Czajkowski, G., Kouklinski, K., Skinner, G.: Extending a J2EE. Server with
Dynamic and Flexible Resource Management. In: Middleware. (2004)

32. Schantz, R., Loyall, J., Atighetchi, M., Pal, P.: Packaging Quality of Service Control Behav-
iors for Reuse. In: Proceedings of the 5

th IEEE International Symposium on Object-Oriented
Real-time Distributed Computing (ISORC), Crystal City, VA, IEEE/IFIP (April/May 2002)
375–385

33. Zinky, J.A., Bakken, D.E., Schantz, R.: Architectural Support for Quality of Service for
CORBA Objects. Theory and Practice of Object Systems 3(1) (1997) 1–20

34. Kon, F., Costa, F., Blair, G., Campbell, R.H.: The Case for Reflective Middleware. Commu-
nications of the ACM 45(6) (June 2002) 33–38

35. Gordon S. Blair and Geoff Coulson and Anders Andersen and Lynne Blair and Michael
Clarke and Fabio Costa and Hector Duran-Limon and Tom Fitzpatrick and Lee Johnston and
Rui Moreira and Nikos Parlavantzas and and Katia Saikoski: The Design and Implementation
of Open ORB 2. IEEE Distributed Systems Online 2(6) (June 2001)

36. Zhang, C., Jacobsen, H.A.: Resolving Feature Convolution in Middleware Systems. In:
OOPSLA. (2004)

37. R. Schantz and J. Loyall and D. Schmidt and C. Rodrigues and Y. Krishnamurthy and I.
Pyarali: Flexible and Adaptive QoS Control for Distributed Real-time and Embedded Mid-
dleware. In: Proceedings of Middleware 2003, 4th International Conference on Distributed
Systems Platforms, Rio de Janeiro, Brazil, IFIP/ACM/USENIX (June 2003)

38. Conan, D., Putrycz, E., Farcet, N., DeMiguel, M.: Integration of Non-Functional Properties
in Containers. Proceedings of the Sixth International Workshop on Component-Oriented
Programming (WCOP) (2001)

39. de Miguel, M.A.: QoS-Aware Component Frameworks. In: The 10
th International Workshop

on Quality of Service (IWQoS 2002), Miami Beach, Florida (May 2002)
40. FOKUS: Qedo Project Homepage. http://qedo.berlios.de/
41. Aldea, M., Bernat, G., Broster, I., Burns, A., Dobrin, R., Drake, J.M., Fohler, G., Gai, P.,

Harbour, M.G., Guidi, G., Gutiérrez, J.J., Lennvall, T., Lipari, G., Martı́nez, J.M., Medina,
J.L., Palencia, J.C., Trimarchi, M.: FSF: A Real-Time Scheduling Architecture Framework.
In: RTAS. (2006)

42. de Miguel, M.A.: Integration of QoS Facilities into Component Container Architectures. In:
ISORC. (2002)

43. Lorente, J.L., Lipari, G., Bini, E.: A Hierarchical Scheduling Model for Component-Based
Real-Time Systems. In: WPDRTS. (2006)

	Customizing Component Middleware for Distributed Real-Time Systems with Aperiodic and Periodic Tasks
	Recommended Citation
	Customizing Component Middleware for Distributed Real-Time Systems with Aperiodic and Periodic Tasks

	tmp.1415913124.pdf.oZjXs

