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Abstract 9	

 10	

Mechanosensitive ion channels, transmembrane proteins that directly couple mechanical 11	

stimuli to ion flux, serve to sense and respond to changes in membrane tension in all 12	

branches of life. In plants, mechanosensitive channels have been implicated in the 13	

perception of important mechanical stimuli such as osmotic pressure, touch, gravity, and 14	

pathogenic invasion. Indeed, three established families of plant mechanosensitive ion 15	

channels play roles in cell and organelle osmoregulation and root mechanosensing—and 16	

it is likely that many other channels and functions await discovery. Inspired by recent 17	

discoveries in bacterial and animal systems, we are beginning to establish the conserved 18	

and the unique ways in which mechanosensitive channels function in plants. 19	

  20	
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Introduction 21	

 22	

The ability to sense intrinsic or extrinsic mechanical cues is as basal to the tree of life as 23	

the ownership of a cell membrane [1]. Several aspects of growth and development in land 24	

plants involve mechanical signals, including touch, osmotic stress, vibration, and gravity 25	

responses, the perception of pathogen invasion, and proprioception. One well-26	

established component of the mechanosensory apparatus of cells in every kingdom of 27	

life is the mechanosensitive (also called stretch-activated) (MS) ion channel [2-4]). These 28	

multimeric pore-forming proteins convert mechanical force into ion flux. In some cases, 29	

the flow of ions through an open MS ion channel is sufficient for the desired response to 30	

mechanical stimulation. For example, the canonical bacterial MS ion channel MscS acts 31	

as an osmotic safety valve to protect the cell from hypo-osmotic stress; passage of ions 32	

out of the cell through channel directly accomplishes the primary function of the channel 33	

[5]. In other cases, mechanosensitive ion flux generates bioelectric signals that in turn 34	

trigger organismal sensory perception. For example, the MS ion channel NOMPC 35	

mediates touch perception in Drosophila larvae [6]. The line between the two examples 36	

above may not be so clear, as a recent report demonstrated entry of the second 37	

messenger Ca2+ into the bacterial cell through MscS during hypoosmotic shock [7]. In this 38	

article, we summarize recent exciting developments in the field of plant MS channels, 39	

speculate on their evolution, describe a few areas of limited knowledge, and propose 40	

potential solutions to technical challenges.  41	

 42	

The Tip of the Iceberg: Known Families of Plant Mechanosensitive Channels  43	

 44	

The first MS channel activities in plant membranes were characterized by patch clamp 45	

electrophysiology [8,9] shortly after they were discovered in animal cells (see [10] for a 46	

historical perspective). Dozens of MS channel activities in the plasma and vacuolar 47	

membranes of a wide variety of cell types and species have been described over the past 48	

30 years (summarized in [11]), suggesting that they are used broadly in plants to respond 49	

to diverse signals. Despite this apparent ubiquity, the underlying genes/proteins and 50	

physiological function of only a handful of MS ion channel activities have been elucidated. 51	
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So far, three MS channel families have so far been characterized as membrane stretch-52	

activated in plant systems; as described in further detail below, these channels exhibit 53	

diverse, yet overlapping localization, structure, channel properties and proposed function. 54	

As a result, the activity of channels with different ionic affinities in the same or in different 55	

compartments is likely to result in crosstalk and have complex effects on ion flux into and 56	

out of the cytoplasm and apoplast (Figure 1). These three families are unlikely to provide 57	

all observed MS channel activities in plants, and a major challenge for the field will be the 58	

development of functional (rather that homology-based) screens capable of identifying 59	

additional MS channels. Intriguing candidates have been identified [12-14] but have not 60	

yet been shown to respond directly to membrane tension. 61	

 62	

MscS-Like (MSL) Channels. Escherichia coli MscS is one of the best-understood MS 63	

ion channels in any system. It is an essentially non-selective ion channel, gated directly 64	

by membrane tension, with a large conductance of 1.2 nS. The classic function of EcMscS 65	

is to serve as an osmotic safety valve, protecting cells from rupture during extreme hypo-66	

osmotic downshock. MscS-Like channels, or MSLs, are found throughout bacteria, 67	

archaea, some fungi, algae, and plants [15]. MSL gene families have been described and 68	

characterized to various degrees in Arabidopsis, papaya, rice, and common bean [16-69	

19]. There are 10 MSL proteins in Arabidopsis, most of which are predicted to localize to 70	

the plasma membrane. Unexpectedly, MSL1, MSL2, and MSL3 were found to localize to 71	

the inner membrane of plastids and mitochondria (Figure 1, [20-23]).  72	

 73	

Electrophysiological analyses of MSL9 and MSL10 in plant cells [22], MSL10 and MSL8 74	

expressed heterologously in Xenopus oocytes [23,24], and MSL1 expressed 75	

heterologously in giant E. coli spheroplasts [21] all revealed channel characteristics that 76	

are similar (though not identical) to EcMscS. MSLs are anion-preferring (e.g. 2 to 6 anions 77	

pass for every cation) MS ion channels with conductances ranging from ~0.1 to 1 nS, 78	

depending on buffer conditions. Several lines of evidence support the model that, like 79	

EcMscS, AtMSLs function to relieve osmotic stress. This was first demonstrated with 80	

MSL2 and MSL3, two plastid-localized channels that directly maintain plastid 81	

osmoregulation. Plastids in msl2 msl3 mutants exhibit altered size, shape and fission 82	
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[20,25,26]. The loss of MSL2/3 also leads to stress responses associated with drought 83	

and the development of callus tissue at the apex of the plant [27,28]. While the pleiotropic 84	

phenotypes associated with this mutant have illustrated the importance of plastid 85	

osmoregulation during normal plant growth and development, any mechanistic insights 86	

await the electrophysiological analysis of MSL2 and MSL3—a challenging prospect for 87	

plastid-localized proteins. Adding to the complexity is a recent report demonstrating that 88	

mitochondria-localized MSL1 is required to ameliorate the oxidative burden imposed upon 89	

mitochondria during abiotic stress [21]. The potential role of membrane tension, redox 90	

state, and transmembrane voltage in regulating MSL1 channel activity in vivo remains to 91	

be determined. For plasma membrane-localized MSLs, recent reports both support their 92	

role as osmotic safety valves and suggest more complex function, as discussed below. 93	

 94	

Two-Pore Domain K+ (TPK) Channels. TREK1, TREK2, and TRAAK are MS channels 95	

from the TPK family that are expressed in the mammalian nervous system and are 96	

proposed to modulate mechanical, heat and cold-associated pain perception [29]. 97	

AtTPK1 is a voltage-independent K+ channel required for normal guard cell closure 98	

kinetics [30], and, along with homologs from rice and barley, has been demonstrated to 99	

be mechanosensitive [31]. Whether the mechanosensitive activity of AtTPK1 is important 100	

for its function in guard cells, and how it is integrated with other regulatory signals such 101	

as low pH, Ca2+ and binding to 14-3-3 proteins is not yet understood [30].  102	

 103	

Mid1-Complementing Activity (MCA) Channels. The Mid1-Complementing Activity 104	

(MCA) proteins were identified based on their ability to rescue the mating-induced lethality 105	

of the yeast mid1 mutant [32]. MCA proteins are plant-specific and show no homology to 106	

the yeast Mid1 channel. In fact, MCA proteins have only 1 transmembrane (TM) domain 107	

[33], placing them outside the norm for ion channel subunits. Cryo-EM imaging followed 108	

by single particle reconstruction of a MCA2 tetramer did not reveal a pore [34]. However, 109	

heterologously expressed MCA1 and 2 produce increased current in response to osmotic 110	

swelling in whole cells and to membrane stretch in excised patches [35], providing 111	

evidence that they directly form a MS ion channel. MCA expression is correlated with 112	

enhanced Ca2+ influx in response to hypoosmotic shock and mechanical stimulus in 113	
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several plant species [32,36,37]. Arabidopsis MCAs are required for normal rates of root 114	

penetration into hard agar and for proper response to cellulose biosynthesis inhibition, 115	

implying a role in the maintenance/response to extracellular mechanical stress [32,38]. 116	

MCAs may be involved in the perception of developmentally imposed mechanical signals, 117	

as a maize MCA homolog was recently identified in a screen for leaf patterning mutants 118	

[39].  119	

 120	

Getting our Sea Legs: Recent Advances in Understanding Plasma Membrane 121	

Localized MSL Channels 122	

 123	

MSL8 Fully Meets the Criteria for a Mechanoreceptor. A recent analysis of MSL8, a 124	

MS ion channel expressed exclusively in mature pollen grains and tubes, advanced our 125	

understanding of the function of plasma membrane-localized MSL channels and 126	

underscores the essential role of osmoregulation during fertilization. The correct level of 127	

MSL8 activity appears critical for pollen to survive hydration and germination and for full 128	

male fertility. Disruption of MSL8 results in high rates of bursting during pollen hydration 129	

and germination, but the overall rate of in vitro germination is higher than the wild type. 130	

On the other hand, overexpressing MSL8 inhibits pollen germination and no bursting is 131	

observed [23]. These opposing effects can be attributed to the inability to relieve excess 132	

turgor during hydration (in msl8 mutants) or to maintain necessary turgor during 133	

germination, and tube growth (in lines that overexpress MSL8) (Figure 2). Lesions that 134	

disrupt the ion conducting properties of MSL8 also disrupt its ability to accomplish these 135	

functions in pollen [40], providing further evidence that it serves directly as an osmotic 136	

mechanosensor in pollen membranes. MSL8 is thus the first plant protein to fill the stated 137	

criteria for a mechanoreceptor [2]. 138	

 139	

Links Between MSLs and Stress Responses. The role or roles of MSLs at the plasma 140	

membrane in cells other than pollen grains has remained stubbornly opaque. Both MSL 141	

and MCA gene expression responds to vibration [41] and nodulation [42], but the 142	

physiological relevance of these observations have yet to be demonstrated. While a 143	

mutant harboring lesions in 5 MSL genes (msl4 msl5 msl6 msl9 msl10) ablated the 144	



 7 

primary MS channel activity in Arabidopsis root protoplasts, the quintuple mutant does 145	

not produce an observable mutant phenotype in response to a wide range of mechanical, 146	

touch or osmotic stimuli [22]. However, overexpression of MSL10 results in dwarfing, 147	

ROS accumulation, and ectopic lesions, and all of these effects are negatively regulated 148	

by phosphorylation of the N-terminus [43]. Dwarfing and ectopic lesions are also observed 149	

in response to a single EMS-induced point mutation in the C-terminus of MSL10 [44], 150	

suggesting that these overexpression phenotypes reflect some aspect of the normal gene 151	

function. In addition, a recent study implicated MSL4 in pathogen-triggered immunity [45], 152	

and MSL6 phosphorylation was observed in response to oligo-galacturonide treatment 153	

[46]. We propose that plasma membrane-localized MSLs serve as sensors of cellular 154	

mechanical homeostasis, or “mechanostasis”. This idea is supported by a recent meta-155	

analysis of Arabidopsis microarray datasets wherein MSL10 expression levels were 156	

altered in a wide range of mutant backgrounds [47].  157	

 158	

An intriguing aspect to the MSL10 study was the discovery that the soluble N-terminus of 159	

MSL10 is on its own able to trigger cell death in an overexpression system, indicating that 160	

the protein harbors at least one function independent of the production of a channel pore 161	

[43]. Determining if this non-conducting function is regulated by membrane tension is an 162	

important next step. If so, MSLs (and possibly other MS channels or MS channel 163	

homologs [39]) may have evolved to couple changes in membrane tension to a wide 164	

range of signaling outputs beyond ion flux.  165	

 166	

Beyond the Horizon: Innovations in MS Channel Studies 167	

 168	

Plant MS Channel Structure and Gating Dynamics. Structural information about 169	

bacterial and animal MS channels derived from a multiplicity of approaches has led to a 170	

rapid uptick in our understanding of the structural and biophysical basis of 171	

mechanosensitivity. A number of recent reports utilizing crystallography, EPR 172	

spectroscopy, PELDOR, and/or molecular dynamics add exciting and provocative new 173	

detail to the force-from-lipid concept/principle [1], see Box 1, and suggest that lipid acyl 174	

chains filling voids or pockets in the channel surface could “drag” MS channels open 175	
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under increased membrane tension [48,49] or even block the permeation pathway 176	

[50](but see [51]). While these new ideas are sparking a great deal of discussion in the 177	

field, MS channels from plants have yet to contribute to the conversation. The cryo-EM 178	

structure of MCA2 provides only low resolution information (26 Å) [34], and nothing is yet 179	

known about the structure or even oligomeric state of any MSL channel.  180	

 181	

Solving the structure of plant MSLs would do more than contribute to our view of MS 182	

channel gating dynamics. Arabidopsis MSL family members differ substantively from 183	

EcMscS (and from each other) not only in terms of the number of TM helices, but in the 184	

presence of soluble domains at the N- and C-termini and in inter-TM loops [11,52]. We 185	

have previously proposed that this diversity in structure within the MscS family implies 186	

that MSL channels in plants may have functions and regulatory mechanisms that are 187	

specific to multicellular eukaryotes [53]. A three-dimensional structure of these channels 188	

would reveal the spatial relationship between the regions thought to serve as tension 189	

sensors, the channel pore, and soluble domains. This would help us determine how 190	

membrane tension is transmitted from the channel-membrane interface to the channel 191	

pore—and potentially to other domains within the protein (see non-conducting functions, 192	

above). 193	

 194	

Closing the Gap between Channel Behavior in the Patch Pipette and in the Intact 195	

Plant Cell. While patch clamp electrophysiology has proven a powerful way to identify 196	

and characterize MS ion channels, in plants takes place in the absence of a cell wall, 197	

sometimes in an isolated membrane patch, in tightly regulated and non-physiological ionic 198	

conditions, and in the case of heterologous expression, not in the native lipid environment. 199	

Thus, the next great challenge for the field will be developing approaches that allow the 200	

analysis of MS ion channel action in their native context. Controlled activation of MS 201	

channels from inside a plant cell might be possible through the application of focused 202	

ultrasound, as was recently demonstrated for animal TPKs expressed in oocytes [54]. 203	

Integration of localized extracellular ion flux measurements with genetically encoded ion 204	

or voltage biosensors may allow the study of MS channel function in some cellular 205	

contexts, such as pollen tubes [55]. To date, the genetically encoded sensors for 206	
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transmembrane voltage used extensively in animal systems to monitor ion channel 207	

activity in vivo [56] do not yet function well in plants [57].  208	

 209	

Conclusion  210	

 211	

Membrane tension is a force intrinsic to all cells, and every branch of life expresses ion 212	

channels that serve specifically to sense and respond to it. In plants, MS ion channels are 213	

widely distributed across multiple species, cell types, and intracellular compartments. In 214	

Arabidopsis, MS ion channels are required for roots to penetrate hard agar and mediate 215	

osmoregulation of pollen and plastids during normal growth and development. Future 216	

work should reveal the physiological function of channels we know, add more channel 217	

genes and proteins to our short list, and develop the methodologies that will allow in vivo 218	

analysis of ion channel function, regulation, and mechanism.  219	

 220	
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 230	

Box 1: The force-from-lipid principle 231	

According to the force-from-lipid principle, anisotropic forces inherent to the lipid bilayer 232	

impinge on the conformation of membrane-embedded proteins. Ion channels classified 233	

as mechanosensitive allow the passage of ions when forces directly transmitted from the 234	

lipid bilayer are transduced into conformational rearrangements of the protein. This 235	

concept is proposed to underlie the mechanosensitivity of channels from multiple 236	

kingdoms and evolutionarily unrelated families. It follows from this principle that all 237	
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channels are to some degree mechanosensitive; enhanced sensitivity, dynamic range, 238	

and spatio-temporal control are accomplished through structural arrangement and/or by 239	

tethering to cytoskeletal elements or extracellular matrix. 240	

 241	

Figure Legends 242	

 243	

Figure 1. Subcellular Localization and Ionic Preference for Known Plant 244	

Mechanosensitive Ion Channels. 245	

The subcellular localization of MS ion channel proteins so far identified in land plants is 246	

indicated [20-23,32,58]. The outer membrane of the chloroplast is permeable to ions [59], 247	

and Voltage-dependent Anion Channels (VDACs) are thought to mediate flux across the 248	

outer mitochondrial membrane [60]. MSL, MscS-Like; TPK, Two-pore K+; MCA, Mid1-249	

Complementing Activity. Note that only general ion permeability preferences are 250	

indicated; these channels are likely to be permeable to additional species.  251	

 252	

Figure 2. Proposed Role of MSL8 in Controlling Turgor During Pollen Hydration, 253	

Germination, and Tube Growth. 254	

Wild-type pollen grains successfully survive hydration in distilled water, germinate 255	

effectively in germination media, produce intact pollen tubes, and are optimally fertile. 256	

Pollen grains from msl8-4 null mutants, or null mutants expressing the MSL8F720L allele, 257	

display reduced viability upon hydration in distilled water, and we propose that this is due 258	

to an inability to relieve turgor pressure by releasing ions upon hypoosmotic shock. 259	

Excess turgor after hydration leads both to germination at a rate higher than the wild type, 260	

but also to frequent bursting, and an overall loss of fertility. When MSL8 is overexpressed 261	

from the pollen-specific, strong LAT52 promoter, pollen grains survive hydration but are 262	

unable to maintain the threshold turgor pressure required for pollen germination or tube 263	

elongation. Green arrows, optimal turgor; red arrows, excessive turgor; blue arrows, 264	

insufficient turgor. 265	
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