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ABSTRACT OF THE DISSERTATION

Data Structures and Algorithms for Scalable NDN Forwarding

by

Haowei Yuan

Doctor of Philosophy in Computer Engineering

Washington University in St. Louis, 2015

Professor Patrick Crowley, Chair

Named Data Networking (NDN) is a recently proposed general-purpose network architecture

that aims to address the limitations of the Internet Protocol (IP), while maintaining its

strengths. NDN takes an information-centric approach, focusing on named data rather than

computer addresses. In NDN, the content is identified by its name, and each NDN packet

has a name that specifies the content it is fetching or delivering. Since there are no source

and destination addresses in an NDN packet, it is forwarded based on a lookup of its name

in the forwarding plane, which consists of the Forwarding Information Base (FIB), Pending

Interest Table (PIT), and Content Store (CS). In addition, as an in-network caching element,

a scalable Repository (Repo) design is needed to provide large-scale long-term content storage

in NDN networks.

Scalable NDN forwarding is a challenge. Compared to the well-understood approaches to

IP forwarding, NDN forwarding performs lookups on packet names, which have variable and

unbounded lengths, increasing the lookup complexity. The lookup tables are larger than

in IP, requiring more memory space. Moreover, NDN forwarding has a read-write data

xii



plane, requiring per-packet updates at line rates. Designing and evaluating a scalable NDN

forwarding node architecture is a major e↵ort within the overall NDN research agenda.

The goal of this dissertation is to demonstrate that scalable NDN forwarding is feasible

with the proposed data structures and algorithms. First, we propose a FIB lookup design

based on the binary search of hash tables that provides a reliable longest name prefix lookup

performance baseline for future NDN research. We have demonstrated 10 Gbps forwarding

throughput with 256-byte packets and one billion synthetic forwarding rules, each containing

up to seven name components. Second, we explore data structures and algorithms to optimize

the FIB design based on the specific characteristics of real-world forwarding datasets. Third,

we propose a fingerprint-only PIT design that reduces the memory requirements in the core

routers. Lastly, we discuss the Content Store design issues and demonstrate that the NDN

Repo implementation can leverage many of the existing databases and storage systems to

improve performance.
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Chapter 1

Introduction

The remarkable success of the Internet in the past few decades rests largely on its layered

architectural design. The simplicity of the Internet Protocol (IP) layer, which is the narrow

waist of the hourglass-shaped Internet protocol stack, has enabled global connectivity. To

date, although many new network protocols have been deployed at other layers, the IP layer is

largely unchanged: Every network element is assigned an IP address, and each packet carries

a source address and a destination address. In the IP layer, network devices need only to

support packet forwarding based on the destination addresses to be connected to the global

network. The design of the IP layer comfortably supports point-to-point communication,

the major use of the Internet in its early days. However, today’s Internet supports far more

functions than what it was originally designed for, and it has e↵ectively became a platform

for information dissemination.

The original IP layer has several important limitations. For instance, when a large number

of clients that are geographically close to each other request the same piece of content, such

as a movie, this piece of content has to be transferred across the network multiple times

so that every client receives it. To address this issue, web caching proxies and Content

Delivery Networks (CDNs) are deployed in the current Internet so that content is stored

1



geographically closer to users. The current Internet relies heavily on middleboxes and layers

of redirections, making the network less efficient. What is more, IP does not support secure

information transfer efficiently. The point-to-point conversation model requires securing the

communication channels, limiting the ability to cache and redistribute content by third-party

middleboxes.

Named Data Networking (NDN) [90] is a general-purpose network architecture that aims to

address the shortcomings of the Internet in its current usage, while maintaining its strengths.

Specifically, NDN maintains a similar hourglass-shaped protocol stack, where the narrow

waist supports a richer set of functions than IP, including efficient information dissemination

and embedded data security. Compared to IP, which relies on middleboxes to support content

distribution, NDN allows packets to be cached and redistributed by the forwarding nodes,

supporting efficient content distribution in the network layer. In addition, authentication

is also enabled in the network layer. Unlike IP, which secures communication channels,

NDN secures content. NDN packets that carry content are signed by publishers, thus each

packet can be validated individually. NDN also supports client-side mobility by design. The

goals of NDN are to support more secure communications, more efficient use of underlying

infrastructure, and simpler applications that enable new things. Despite these benefits,

it remains unclear how well the NDN narrow waist can scale up and whether it can be

implemented efficiently in practice.

This dissertation addresses these questions by exploring data structures and algorithms

to support scalable NDN packet forwarding. We have implemented the proposed designs

in software and demonstrated that 10 Gbps packet forwarding rates can be reached with

longest name prefix lookups on general-purpose multicore platforms, using 256-byte packets.

2



Purpose-built hardware, more sophisticated processor architectures, and advanced memory

technologies are expected to further improve the forwarding performance.

1.1 Named Data Networking

The Internet was originally designed to enable resource sharing between endhosts. Since its

inception, the Internet has expanded rapidly, and the services provided by the Internet have

grown explosively. We have observed the emergence of many popular Internet applications:

simple resource sharing is joined by Email, HTML webpages, voice over IP, content delivery,

and video streaming. Today, users are mostly interested in retrieving information from the

network, and the Internet has e↵ectively became an information dissemination platform.

The Internet infrastructure has also evolved towards an information-centric network with

a layered approach. The IP layer enables network connectivity, and its design resembles

conversations between endhosts. To forward an IP packet, the destination IP address is

used as the key to perform a longest prefix match (LPM) in the Forwarding Information

Base (FIB) of the network device. Today, the most commonly used method to retrieve

information is by requesting its Universal Resource Locater (URL) [57]. URLs cannot be

handled in the IP layer directly, but instead rely on redirections of the Domain Name System

(DNS), which maps domain names to IP addresses. Essentially, the current Internet relies

heavily on middleboxes and layers of redirections, making the network hard to configure and

less efficient.

A number of clean-slate Internet architectures have been proposed to address the limita-

tions of the current Internet by focusing on what the content is rather than where it is
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from [32, 33, 36], and these proposed network architectures can be categorized as information-

centric networking (ICN) [82]. NDN is a general-purpose network architecture that takes

the information-centric approach. Instead of naming endhosts in IP, in NDN names are as-

signed to content. Content names are hierarchically-structured human-readable names, just

like URLs we use today. Each name consists of multiple name components. For instance,

an NDN packet name may look like ndn:/wustl.edu/ndn/research, where wustl.edu,

ndn, and research are the name components. Compared to the forwarding plane functions

in IP, the enriched NDN forwarding plane requires more operations, some of which may

be challenging. Packets in NDN are forwarded based on name-lookup results. Each NDN

forwarding node contains three components: the Forwarding Information Base (FIB), the

Pending Interest Table (PIT), and the Content Store (CS). Two types of packets exist in

NDN networks, namely, Interest packets and Data packets. To fetch content, a content

consumer sends an Interest packet, which contains the name of the requested content. A

Data packet, which contains both the content and its name, will be returned if the requested

content is available in the network. Large files can be chunked and thus fetched, cached,

and redistributed at granularities smaller than the sizes of files and data objects. NDN Data

packets can be cached and redistributed by in-network caching elements, including both the

Content Store and Repository (Repo). The CS is a short-term content storage residing on

NDN forwarding plane, while the Repo is a long-term persistent content storage. A Repo

can serve as a database for a specific application and run on the same machine as the appli-

cation; it can also serve as a content distribution node and run on a dedicated machine or

even a cluster.

Figure 1.1 shows an example of retrieving content in NDN. Alice and Bob are connected

to the Internet via the same gateway router. The content they are interested in, with the

name ndn:/wustl.edu/ndn/1, resides in the server or the Repo that belongs to the content
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1. Interest from Alice arrives
Content Store miss
Pending Interest Table miss
Forwarded based on FIB lookup

Alice

Provider 
(Server or Repo)

2. Data Arrives
PIT entry removed
Packet forwarded to Alice 
and inserted into the CS Data

Interest

Router

Bob

Internet

3. Interest from Bob Arrives
Content Store hit
Data sent to Bob from CS directly

Figure 1.1: NDN Content Delivery Example

provider. In this example, Alice sends out the Interest packet first, and Bob waits until

Alice has received the Data packet to send his Interest packet. When the Interest packet

sent from Alice arrives at the gateway router, the router first queries the Content Store,

which essentially is a cache for Data packets, and sees if the requested content is already

cached. In this example, there is no such content in the CS. Then the router looks up the

Pending Interest Table to see if there is already a request on the fly for this content. In this

example, there is no such request either. As a result, the Interest packet is forwarded based

on the FIB lookup results, and the incoming interface and the name of the requested content

are recorded in the PIT. As there is no cached content for this request in the network, the

Interest arrives at the content provider, and the Data packet is sent back. When the Data

packet arrives at the gateway router, the router first checks whether a pending PIT entry is

waiting for this Data packet. If so, the Data packet is forwarded to the incoming interface(s)

and the PIT entry is removed. Then the Data packet is cached in the Content Store. When

Bob sends the Interest packet, there is a CS hit at the gateway router. As a result, the

Data packet is delivered from the gateway router to Bob directly. Obviously, in this simple

example, the requested content is sent from the content provider only once.
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Interest Data

FIB

PITCS

Figure 1.2: NDN Packet Operational Flow

The operational flows of the Interest and Data packet processing in the NDN forwarding

plane are shown in Figure 1.2. On the arrival of an Interest packet, the CS is looked up

first to see if this Interest request can be satisfied by a cached Data packet. If yes, the Data

packet is sent in reply immediately. Otherwise, the Interest packet is forwarded based on

the FIB lookup result if the content name is not found in the PIT, then the packet name

and the incoming interface of this Interest packet are recorded in the PIT. On the arrival of

a Data packet, the PIT is looked up to retrieve the outgoing faces, where the notion of face

in NDN defines a network interface. Then this Data packet is delivered, and also inserted

into the CS if it has not been cached.

A scalable NDN forwarding plane is a key to enabling large-scale NDN deployment and

demonstrating its feasibility. This dissertation focuses on issues in scalable NDN forwarding,

and we propose data structures and algorithms to support efficient name prefix lookup

mechanisms. We also implement the design in software and experimentally demonstrate

that scalable NDN forwarding is feasible.

It is important to note that NDN can be used today without requiring that all of today’s

IP infrastructure be discarded. When discussing any future Internet architecture, it is easy

to dismiss any new idea on the basis that there is no way to displace today’s Internet and

its protocols. IPv6 is a good example of how hard it is to replace IP. So, it is important to
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recognize that NDN does not need to completely replace IP in order to be helpful. In the

same way that IP operated initially as an overlay network atop the telephone system, NDN

operates well as an overlay atop IP. In today’s NDN deployments, including the global NDN

testbed [46], NDN runs over IP links because IP provides universal connectivity.

1.2 Contributions

Specifically, we make the following contributions in this dissertation.

• We propose a scalable FIB longest name prefix lookup design based on the binary search

of hash tables. We have implemented the proposed design in software and demonstrated

10 Gbps forwarding throughput with 256-byte packets and one billion synthetic longest

name prefix matching rules, each containing up to seven name components. At the

time of writing, this is still the largest dataset that has been studied for longest name

prefix lookup.

• As in IP FIB lookup, the NDN FIB lookup performance can be optimized based on

the characteristics of the specific forwarding rules. For real-world datasets, such as

the Alexa [2] and Dmoz [21] domain names, we first propose a general level-pulling

method to reduce the average number of lookups, and then propose memory-efficient

data structures to reduce the memory requirements of the FIB.

• We propose a fingerprint-only PIT design that reduces the memory requirements by

relaxing the Interest aggregation feature in the core networks.
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• As for in-network caching elements, we discuss the Content Store design issues and

evaluate the performance of a modified NDN Repo based on the Redis [59] key-value

store. We show that existing storage systems and databases can be employed in NDN.

1.3 Methodology

The research methodology employed in this dissertation involves a combination of analysis,

simulation, and empirical evaluation of software implementations.

To evaluate the proposed designs, we use the memory requirements of the data structures and

the forwarding throughput as the performance metrics. For single-threaded implementations,

we also use lookup latency as a metric because it is inversely proportional to the forwarding

throughput.

Unlike in IP forwarding, where real-world datasets are already available, large scale NDN

forwarding rules are not available yet. As a result, we first provide a reliable performance

baseline using large-scale synthetic datasets as the workload, and then propose optimization

methods based on characteristics of real-world datasets that have been reported in literature.

The proposed data structure and algorithm designs can be implemented in both software

and hardware. In this dissertation, we use software-based implementation to demonstrate

their performance.
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1.4 Organization

The rest of the dissertation is organized as follows. Chapter 2 provides more background on

the NDN forwarding plane and reviews existing technologies for scalable packet processing.

Chapter 3 presents a scalable longest name prefix lookup design based on the binary search

of hash tables. Chapter 4 focuses on FIB optimizations based on the specific characteristics

of real-world forwarding datasets. Chapter 5 focuses on the PIT design and presents the

proposed fingerprint-only PIT. Chapter 6 focuses on the design of in-network caching ele-

ments. Finally, Chapter 7 concludes the dissertation and discusses remaining research issues

in scalable NDN forwarding.
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Chapter 2

Background and Related Work

In this chapter, we discuss the challenges in scalable NDN forwarding, outline the research

problems and design considerations, and then review state-of-the-art high-performance packet

processing techniques for IP networks.

2.1 Challenges in Scalable NDN Forwarding

Each NDN forwarding node consists of three major components, the Forwarding Information

Base, Pending Interest Table, and Content Store. These three logically separated structures

have distinct performance requirements. In addition, the NDN Repo is also a key component

in NDN networks and requires scalable designs and implementations. In this section, we

discuss the challenges for the FIB, PIT, and in-network caching elements, which include

both the Content Store and NDN Repo.
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2.1.1 Forwarding Information Base

As in IP packet forwarding, the FIB in NDN stores the forwarding information for Interest

packets. In IP, the FIB table is keyed by IP prefixes, and each FIB entry stores only one

outgoing port. Each IP packet is forwarded based on the FIB longest prefix matching (LPM)

result, with the destination IP address as the lookup key. Because the content names in NDN

are hierarchically structured, the Interest packets are forwarded based on longest name prefix

matching (LNPM) results, with the requested content names as the lookup keys. The FIB

in NDN is keyed by name prefixes. In addition, because NDN intrinsically supports multi-

path forwarding for efficient content fetching, each FIB entry can store information about

multiple outgoing ports. As in IP, the FIB is populated by the Routing Information Base

(RIB), which is constructed based on the content availability information exchanged via

routing protocols. In this dissertation, we focus on efficient FIB lookup mechanisms and

assume the forwarding table has already been populated.

The longest name prefix matching problem is complex because name prefixes are longer

than IP addresses and the namespace is unbounded. First, NDN names are of variable

length and can be much longer than fixed-length IP addresses. The complexity of many IP

forwarding solutions is proportional to the length of prefixes. As a result, directly applying

those schemes yields lower performance. Second, the number of rules in the NDN FIB table

is expected to be much larger than seen with IP. The size of the IP FIB table was only about

530 thousand as of December 2014 [14]. For NDN, because real-world FIB datasets are not

available yet, we use the DNS, which is the largest namespace in the Internet, as an example

to show the potential size of the NDN FIB. For instance, there were already 271 million

registered domain names in the Internet in 2013 [73]. What is more, there were 968 million

host names in the network, and 181 million of them were active [28]. Although the number
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of rules in the FIB table is determined by the namespace design and the e↵ectiveness of

name prefix aggregation, millions of domain names are expected to be in the FIB in order

to handle a network on the scale of the current Internet.

In this dissertation, our goal is to demonstrate 10 Gbps forwarding throughput with one

billion (109) forwarding rules.

2.1.2 Pending Interest Table

The PIT keeps track of the currently unsatisfied Interest packets. Arriving Interest packets

are forwarded to the next hop based on a FIB lookup only if the PIT finds no pending

Interest packet with the same name. The PIT also records the unique incoming interfaces of

each requested content name so that it keeps the destination information for Data packets.

For each Data packet, the PIT is queried to find the incoming face(s) that requested the

content, and then the Data packet is delivered and its content name is deleted from the PIT.

Hence, the PIT requires per-packet updates, including memory writes. In the worst case,

every arriving packet, whether an Interest or Data packet, requires an update operation.

As the link speed keeps increasing, the processing time available for each packet at the PIT

is reduced. Moreover, the PIT memory size becomes larger as the link speed increases.

The content name needs to be stored in each PIT entry. The names are similar to URLs,

and today’s URLs typically require tens of bytes of storage. For example, the URLs for the

pictures and videos on popular social networking websites, which include long hash numbers,

are more than 80 bytes long. Moreover, there are websites that include the entire article

names in the URLs, making the URLs longer. Larger memory requirements limit the ability
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to employ high speed memory devices. As a result, a fast and scalable PIT design is also

demanded.

2.1.3 In-network Caching Elements

The In-network caching elements include both the Content Store, a temporary storage like

packet bu↵ers in IP networks, and the Repo, a long-term storage for the content.

The Content Store essentially stores packet bu↵ers, and it is equipped with a lookup structure

and supports cache replacement policies. Because cache replacement policies, such as least

recently used (LRU), can be implemented efficiently, the requirements of the CS are similar

to those of the PIT.

Unlike the CS, which resides in the data plane, the Repo is much larger in size and runs

as a service. The Repo registers name prefixes to neighboring NDN routers so that Interest

packets that match those name prefixes are forwarded to the Repo. The announced prefixes

also include control prefixes, and applications can send control commands to request the

specified content to be fetched and stored in the Repo. The Repo can serve as a database

for an application. Alternatively, it can serve as a content distribution node in the current

content delivery networks (CDNs). Because CDNs and large-scale key-value stores have been

shown to be scalable, in this dissertation, we focus on demonstrating that these techniques

can be used to implement the backend storage for the Repo.
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2.2 Research Problems and Design Considerations

2.2.1 Research Problems

Compared with IP forwarding, NDN forwarding is complicated and more difficult. Table 2.1

lists the di↵erences between IP packet forwarding and NDN packet forwarding. For these

reasons a scalable NDN forwarding node architecture is a considerable challenge.

Table 2.1: Packet Forwarding in IP and NDN

IP NDN

Forwarding Key IP address Content name
Key length 32 bits Variable
Forwarding rules LPM LNPM
Per-packet READ Yes Yes
Per-packet WRITE No Yes

Considering the above, we have identified two key research problems in scalable NDN for-

warding.

• Longest prefix matching for variable-length and unbounded names. In longest prefix

matching (LPM), there is a lookup key k and a set of strings Set. The problem is to

find a string s from Set such that s is the longest prefix of k among all the strings in Set.

Longest prefix match is performed in FIB lookups. Because generally the forwarding

rules are not updated very frequently, the implementation of LPM should mainly focus

on fast lookup of variable-length and unbounded names. Existing IP LPM solutions

cannot be readily applied since their complexity is generally proportional to the length

of the rules. In NDN, packet names are much longer than 32-bit long IP addresses.
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• Exact string matching with fast updates. In exact string matching, there is also a

lookup key k and a set of strings stored in Set. The problem is to verify whether k is

in Set, and then to perform operations such as insert, delete, or update values in Set.

In the NDN forwarding plane, exact string matching with fast updates is performed

in PIT lookups and CS lookups. A PIT lookup inserts a new Interest packet, updates

an existing PIT entry, or deletes a satisfied Interest packet. For a Data packet, a

Content Store lookup results in inserting this Data packet into the CS or updating the

expiration time of a stored Data packet. In the worst case, every packet requires an

update operation.

2.2.2 Design Considerations

Three design considerations guide our design.

• The characteristics of NDN name structures can be leveraged. NDN names contain

explicit delimiters that separate their components. The cardinality of name compo-

nents at each component level is infinite, which suggests that the number of name

components in the NDN forwarding rules may not be as large as the number of bits in

IP addresses. As a result, name prefix lookup algorithms can focus on processing one

name component in each step.

• Simple data structures allow fast updates. Simple data structures include hash tables,

d-left hash tables, and counting Bloom filters [34]. Tree- or Trie-like data structures

may need readjusting in order to balance the data structure following an update, and

thus may not be as efficient as hash-based solutions.
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• Edge routers and core routers have di↵erent requirements. Since edge routers are closer

to the content consumers, sophisticated PIT and CS lookups can be performed, such

as the all prefix match in the PIT and CS lookup, which performs lookups with all the

proper prefixes of the content name carried in the incoming Data packet and attempts

to consume as many pending Interests as possible [89]. However, in the core routers, the

PIT and CS have higher link rate requirements, and thus simple exact string matching

can be employed instead. The Content Store and other in-network caching elements

can be very large for edge routers, while the size of the CS in the core routers may

be small because intuitively the more mixed traffic in the core routers degrades the

e↵ectiveness of caching. A recent study also shows that performing only edge caching

could achieve the considerable benefit of information-centric network design [24].

2.3 High-performance Packet Processing Techniques

for IP Networks

Significant research has been devoted to scalable packet processing in IP networks.

In this section, we review state-of-the-art techniques for scalable packet processing,

including memory technologies, packet processing platforms, and packet processing

frameworks. The related work for each NDN forwarding structure is presented in the

later chapters that describe specific designs.

2.3.1 Memory Technologies

Memory technologies have considerable impact on packet forwarding performance be-

cause the lookup data structures and packet bu↵ers are stored in memory and they
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are frequently visited. In high-performance packet processing research, typically three

types of memory devices have been used, namely Dynamic Random-Access Memories

(DRAMs), Static Random-Access Memories (SRAMs), and Ternary Content Address-

able Memories (TCAMs).

DRAMs are the most commonly used memory devices. DRAMs cost significantly less

than TCAMs and SRAMs, but DRAMs have relatively higher memory access latencies.

Servers nowadays can be equipped with hundreds of gigabytes of DRAM. For packet

processing, DRAMs have been used as packet bu↵ers and to store lookup structures

when the structure cannot fit into high speed memory devices, such as SRAMs and

TCAMs.

SRAMs have shorter memory access latency, however, SRAM resources are limited:

The largest single-chip SRAM device has 9 MB [53]. In packet processing applications,

SRAMs have been typically used to store entire lookup structures or to store filters to

reduce the number of accesses to DRAMs, which store the complete lookup structure.

SRAMs are also used to implement L1 caches in general-purpose processors. Recent

works [5, 83] have focused on reducing the sizes of IP lookup data structures so that

they fit into CPU caches.

TCAMs support fast longest prefix match because the lookup key, i.e., the destination

IP address, is matched against all of the stored entries at once. TCAMs are used in

high-performance router implementations to support high-speed longest prefix match.

Similar to SRAMs, TCAMs have limited total storage space. Also, the width of each

TCAM entry is limited, thus multiple cycles are required to return the final lookup

result if the key is long. What is more, because overlapped prefixes have to be kept

in sorted order in TCAMs to support longest prefix matching, updates are relatively

slow [62].
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2.3.2 Packet Processing Platforms

Packet processing platforms can be categorized as either hardware-based or software-

based. Generally, hardware-based platforms support higher performance but are diffi-

cult to program, while software-based platforms are easier to program but sacrifice the

performance.

Hardware-based Platforms

Purpose-built hardware employs application-specific integrated circuits (ASICs), em-

bedded high-speed memory devices, and pipelined stages to improve packet processing

throughputs. In addition, the I/O can be configured to support higher link rates,

which generally is not possible in software-based platforms. Despite the performance

gains, the packet processing logic cannot be easily changed after the hardware is man-

ufactured, thus limiting its ability to support new applications. Moreover, the design

cycles of purpose-built hardware are long.

To address this issue, reconfigurable hardware devices, such as Field-programmable

Gate Arrays (FPGAs), have been employed for high-performance packet processing.

The ability to reconfigure the packet processing logic enables fast application proto-

typing.

In hardware-based designs, packet processing applications can be pipelined to improve

the throughput. As a result, the most time-consuming pipeline stage determines the

system throughput. In IP networking, memory accesses are typically the bottleneck

because the memory size, memory bandwidth, and the number of memory controllers

are limited on these platforms.
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Software-based Platforms

Compared to hardware-based platforms, network processors provide a more developer-

friendly programming environment to support configurable packet processing with ad-

vanced processor architectures. For example, the IXP network processor provides a

C-like programming environment and contains 16 micro engines for high-speed packet

processing. Each micro engine supports up to eight hardware threads, which take only

four cycles to perform a context switch. The highly parallel design makes it possible

to hide memory access latency. In addition, specialized hardware units, such as high-

speed memory devices, including SRAM and TCAM, and dedicated hashing units, are

available on network processors.

General-purpose multicore processors have recently regained popularity for high per-

formance packet processing research. The performance of general-purpose processors

has increased considerably: more cores are integrated within each processor, hyper-

threading is supported on each physical core, memory controllers are embedded in

the processors, and the traditional font-side bus has been replaced by more advanced

networks, such as the Intel QuickPath Interconnect [4]. In other words, the current

general-purpose multicore processor architectures have characteristics that once were

available only from network processors.

Graphics processing units (GPUs) have also been employed for packet processing [26].

Their massively parallel processing power and ample memory bandwidth permit con-

siderable performance improvement for memory-intensive applications.

In software-based designs, a hybrid of pipelining and thread-level parallelism is typically

applied to improve the system performance.
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2.3.3 Packet Processing Frameworks

Developing high-performance packet processing applications requires a concrete un-

derstanding of performance optimizations at multiple abstraction levels in the entire

system. Various platforms and frameworks have been proposed to reduce the complex-

ity of the development procedure and support rapid application prototyping.

NetFPGA is an FPGA-based packet processing platform. Multiple reference applica-

tions, such as an IPv4 router, are available to speed up the learning curve for developers.

The NetFPGA family includes multiple versions, supporting line rates at 1 Gbps, 10

Gbps, and 100 Gbps. The most advanced version, NetFPGA SUSE [92], is equipped

with a Xilinx Virtex-7 690T FPGA device, 27 MB of SRAM, and up to 32 GB of

DRAM.

With the advances in general-purpose multicore processors, several software-based

packet processing frameworks have been proposed, such as the netmap [61], the In-

tel Data Plane Development Kit (DPDK) [29], and the PF RING ZC developed by

ntop [50]. These frameworks support user-space packet processing and bypass the

generic but inefficient kernel stack. Hardware features provided by the network in-

terface card (NIC), such as zero copy and multi-queue (a.k.a. receive side scaling)

techniques, are also leveraged by these frameworks. Among these frameworks, DPDK

provides additional support for building multicore packet processing applications.

In this dissertation, DPDK is used as the packet processing framework because the

organization of the provided sample load balance applications suits our needs and the

platform is easy to program.
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Chapter 3

Establishing a FIB Lookup

Performance Baseline

FIB lookup is a core building block of the NDN forwarding plane. In IP, FIB lookup is a

well-studied problem, and several IP lookup solutions take advantage of FIB characteristics,

such as the prefix length distribution. Similarly, FIB characteristics should also be taken

into consideration when designing scalable NDN FIB lookup methods.

FIB characteristics are determined by namespace designs. In NDN, each application has its

own namespace, thus NDN FIBs will have characteristics based on applications. For example,

we can understand what a WWW-like namespace would look like because the web exists,

and therefore we can talk about a corresponding FIB with confidence. Other namespaces

are possible, however, like the one used in the authenticated lighting control application [11],

that may or may not be wide-area and may or may not look like the web. Most importantly,

we cannot anticipate what namespaces might be invented in the future; the goal for NDN

is to provide an architecture that will support them all, regardless of what they turn out to

be. As for scalable NDN forwarding, establishing a reliable FIB performance baseline that

supports any kind of namespace is desired at the current research stage.
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In this chapter, we present a longest name prefix matching (LNPM) design based on the

binary search of hash tables, which was originally proposed for IP lookup. With this design,

the worst-case number of string lookups is O(log(k)) for prefixes with up to k components,

regardless of the specific characteristics of the FIB. We implemented the design in soft-

ware and demonstrated 10 Gbps throughput with 256-byte packets and one billion synthetic

longest name prefix matching rules, each containing up to seven components.

3.1 Introduction

To achieve an efficient NDN narrow waist design, scalable name prefix lookup solutions are

required. In this chapter, we focus on the following question: Is it feasible to perform line-rate

longest name prefix matching with a large FIB table regardless of the specific characteristics

of the forwarding rules? When considering large-scale namespaces, for example at the scale

of the world-wide web, we make the assumption that the routing protocols that configure

NDN FIBs are similar to those that configure IP FIBs, so the rates of updates are expected

to be similar. As a result, we focus on the FIB lookup performance in this chapter. FIB

update issues, as well as a linear search method that supports FIB updates better, are also

discussed.

Various naming schemes have been proposed in ICN, such as flat self-certifying names and

hierarchical human-readable names [25]. We focus on NDN, which takes the latter approach,

as the targeting architecture for our name prefix lookup design, although the algorithms and

data structures can be applied to other ICN designs. Recall that each NDN name consists of

multiple variable-length name components. For instance, the name /a/b/c/ has three name

In this dissertation, we use terms “name component” and “component”, as well as “name prefix” and
“prefix”, interchangeably.
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components delimited by ‘/’, a/, b/, and c/; and its name prefixes are /a/, /a/b/, and

/a/b/c/.

Several recently proposed name prefix lookup solutions [54, 65, 79, 80] have demonstrated

encouraging performance results on CPU- or GPU-based multicore platforms. However, most

of these schemes are optimized for or evaluated with a limited number of URL datasets, such

as the Alexa [2], Dmoz [21] domain names, the URL blacklist [70], the IRCache traces [30], or

crawled URLs [79]. These URL datasets may not fully characterize the NDN forwarding rules

in the future. In particular, as namespace design and name assignment principles are still

being studied, the characteristics of the NDN FIB tables have not been determined, and it is

even possible that multiple namespaces with distinct characteristics may co-exist. Besides,

the experience with IP shows that the characteristics also evolve, like the transition from

classful forwarding to classless inter-domain routing (CIDR) in the early 1990s. Hence, it is

unclear if future FIBs will have characteristics similar to the URL datasets. What is more,

several schemes achieve good average-case performance, but the worst-case scenarios require

O(k) string lookups, where k is the number of components in each prefix. As a result,

the performance of the existing solutions is not guaranteed to be sustainable. Although

we believe efficient solutions can always be designed when real-world NDN FIBs become

available, we hope to provide a performance baseline that can comfortably support any

namespace, and thereby allow the naming schemes to be designed without concern for the

forwarding performance.

In this chapter, we present a scalable name prefix lookup design based on the binary search

of hash tables organized by prefix lengths, which was originally proposed for accelerating IP

prefix lookup 18 years ago [74]. With this idea, the number of hash lookups is reduced to

log(32) = 5 and log(128) = 7 for IPv4 and IPv6, respectively. NDN names are much longer
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than IP addresses in terms of bits, but these names contain explicit delimiters that separate

the name components. As a result, the hash tables can be organized by the numbers of

components in the prefixes. Applying binary search of hash tables, only log(k) hash table

lookups are required for rules that have up to k name components in each prefix, regardless

of their other characteristics.

The fact that the presented design is oblivious of FIB characteristics allows synthetic for-

warding rules to be easily constructed, so that the longest name prefix matching design can

be evaluated with large FIB tables, such as the one with one billion rules. To the best of

our knowledge, the FIB that contains one billion rules is the largest dataset that has been

studied for the longest name prefix matching problem as of this writing.

We have implemented the design in software on a general-purpose multicore platform. IP

lookup has successfully powered the ever-growing Internet because of efficient algorithms and

compact data structure designs. In addition, the IP FIB size is small so that purpose-built

hardware that employs high-speed memory devices, such as TCAM or SRAM, can be used.

In NDN, such hardware is not large enough to store the entire FIB when the number of

rules is large. Several recent works have demonstrated the e↵ectiveness of hash table-based

applications on multicore platforms [65, 91]. As a result, we propose a fingerprint-based

hash table to implement the idea of binary search of hash tables in software. Our evaluation

shows promising performance results with one billion names that have up to seven name

components. For the datasets with 15 name components, the performance degraded due to

the specific name parsing and hashing implementation, but the cost of hash table bucket

memory accesses was still bounded by O(log(k)). To demonstrate the performance with

real network traffic, we have developed an NDN name prefix lookup engine with DPDK as

the underlying packet I/O and multicore framework. We show that 10 Gbps forwarding
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throughput can be achieved with one billion synthetic longest prefix matching rules that

have up to seven name components.

Specifically, we make the following contributions in this chapter:

• Binary search of hash tables for name prefix lookup. We present a longest

name prefix lookup design based on the binary search of hash tables, which provides

a reliable forwarding performance guarantee for future NDN forwarding research and

development. We implemented the design with fingerprint-based hash tables and eval-

uated its performance.

• Name lookup engine. We developed a name lookup engine on a general-purpose

multicore platform, and we demonstrated that 10 Gbps throughput could be achieved

with 256-byte packets and one billion synthetic names that have up to seven name

components. We have released the source code of the name lookup engine on Github1.

3.2 Related Work

In this section, we review recently proposed name prefix lookup solutions and provide more

background on binary search of prefix lengths.

1https://github.com/WU-ARL/ndnfwd-binary-search
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3.2.1 Existing Name Prefix Lookup Solutions

Name prefix lookup methods can be classified into hash table-, Bloom filter-, and trie-based

solutions, and we present the most relevant works in each.

Hash table-based solutions. Most hash table-based methods [12, 65, 80] choose fingerprint-

based designs, because string comparison is required only if the fingerprints match. These

solutions di↵er mostly in the prefix-seeking strategy. The CCNx prototype [12] starts with

the full name and then eliminates one component each time if there is no match in the FIB.

Cisco’s solution [65] begins with querying a prefix with M components, where M is generally

the most populated component level. If no match is found, just as in CCNx, a shorter prefix

is queried. If there is a match, the deepest component level of that specific prefix, denoted

as MD, is queried. Then the same strategy as CCNx is used if there is no match at level

MD. Wang et al. [80] proposed a greedy prefix-seeking strategy, so that more populated

levels are looked up first. The solutions proposed in [65, 80] take advantage of the com-

ponent number distribution in the rules and achieve better average-case performance. The

worst-case scenarios require O(k) hash lookups, except the solution in [65] has a relatively

better guarantee, which requires either M or MD−M lookups. In addition, the hash table

in [80] stores only 32-bit long signatures, reducing the memory requirements at the cost of

forwarding packets incorrectly in case of false positives. Our design di↵ers from previous

hash table-based solutions in that the worst-case log(k) hash lookups is always guaranteed

regardless of the FIB characteristics.

Bloom filter-based solutions. Bloom filters are typically used to reduce hash table ac-

cesses in this context. In NDN, Bloom filters have to be stored in DRAM because the number

26



of rules is expected to be large. A naive Bloom filter design requires multiple memory ac-

cesses for each lookup. The prefix Bloom filter proposed by Alcatel-Lucent [54], aims to

store prefixes that share the same first-level component in the same cache-line sized Bloom

filter. The Bloom filter is expanded if the number of suffixes exceeds the Bloom filter ca-

pacity. As noted in [54], with the tested URL datasets, there were cases where multiple

Bloom filter expansions were required to store all the prefixes. Although unlikely to happen

in practice, a dataset that requires Bloom filter expansion at every name component level

can be generated, in which a certain number of prefixes have large numbers of suffixes.

Trie-based solutions. Linear search is typically performed in trie-based solutions, thus the

lookup complexity is at least O(k), where each step processes a name component. An encod-

ing method [77] has been explored to reduce the FIB memory requirement. Although being

relatively more memory-efficient, additional lookups are required to generate the encoded

name for each component, increasing the total number of string lookups in the system. The

trie-based lookup scheme has been implemented on GPUs to take advantage of their massive

parallel processing power [79]. The solution proposed in [79] employs a multi-striding trie,

where each step processes multiple characters rather than a complete component. As a re-

sult, the number of string lookups is expected to be increased. Previous work on URL-based

forwarding [44] has also employed trie-based solutions.

Besides the recently proposed name prefix lookup solutions, CuckooSwitch [91] is also closely

related to our work. CuckooSwitch exploits several software optimization techniques, such as

large page size and batched software prefetching, to improve the throughput of the Cuckoo

hash table. Although a FIB table that contains one billion entries was evaluated in [91], only

exact match was performed, and no string matching was involved because the lookup keys

were MAC addresses.
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3.2.2 Binary Search of Prefix Lengths

The original paper [74] presented binary search of hash tables organized by prefix lengths to

accelerate IP lookup. It also presented mutated binary search which takes advantage of the

prefix length distribution for each specific prefix. In particular, the algorithm makes branch-

ing decisions based on the characteristics of the suffixes of the visited prefix entry, reducing

the average number of memory references significantly. Binary search of prefix lengths has

also been used with distributed hash tables [58].

Existing solutions provide many insights on building efficient name prefix lookup systems,

although most of these systems have been evaluated with the URL datasets or synthetic

datasets that have characteristics similar to those of the original URLs. Our design benefits

from these works, while aiming at providing a worst-case performance baseline regardless of

the characteristics of the forwarding rules. In addition, the largest dataset used in previous

works contains 64 million rules [65], while the largest dataset evaluated in this dissertation

has one billion rules.

3.3 Binary Search of Hash Tables

In this section, we first describe how binary search of hash tables works for name prefix

lookup, and then present the proposed fingerprint-based hash table design.
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3.3.1 Binary Search for Name Prefix Lookup

Binary search of hash tables organized by prefix lengths was originally proposed for acceler-

ating IP lookup. Although we provide sufficient details about how to apply this idea to name

prefix lookup, more discussion about this method can be found in the original paper [74].

4
2 6

1 3 5 7

/comp1/comp2/comp3/comp4/comp5/comp6/comp7/

Figure 3.1: Binary Search for Name Prefix Lookup

Hash tables for name prefix lookup are organized by the numbers of their name components.

That is prefixes with the same number of name components are stored in the same table. For

names with up to k name components, k hash tables are created, and these hash tables form

a balanced binary search tree. To locate the longest matching prefix for each querying name,

binary search is performed on these k hash table nodes. At each node, if there is a matching

prefix in the corresponding hash table, then the algorithm proceeds to the right subtree to

search for a potential longer matching prefix; if there is no match, then the longest matching

prefix has to be in the left subtree. The lookup procedure terminates only when the bottom

binary search level is reached, or when a leaf FIB entry is reached. The total number of

hash tables visited is bounded by log(k). For each lookup, generally log(k) hash lookups

are required, because the lookup procedure has to access the hash table that stores prefixes

with one more name component, which is likely to be at the bottom level of the search tree,

to confirm that there is no longer matching prefix. For names that match leaf entries, the

lookup procedure can be terminated immediately if a matching leaf entry is encountered.

Figure 3.1 shows an example with rules that have up to seven name components, where up to
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three hash lookups are required for each query. Each lookup starts with the hash table node

4, and then if there is a match, it proceeds to node 6, otherwise, it backs o↵ to node 2. The

procedure continues until the termination condition is satisfied. Figure 3.2 shows an example

where seven forwarding rules are stored. The highlighted path shows the lookup procedure

for the query string /a/b/c/d/e/ndn, where the longest matching prefix is /a/b/c/d/e/ in

hash table node 5.

1: /a

2: /a/b

3: /a/b/c

4: /a/b/c/d

5: /a/b/c/d/e

6: /a/b/c/d/e/f

7: /a/b/c/d/e/f/g

Figure 3.2: Example with Seven Forwarding Rules Stored in the FIB

As shown in [74], additional marker entries are required to ensure that prefixes can find

shorter matching prefixes. For example, assume that /a/b/c/d/ and /a/b/c/ are both in the

FIB, but /a/b/ is not. With the binary search shown in Figure 3.1, a name /a/b/c/random

first visits hash table 4, and finds no match. In this case, it proceeds to the left subtree, and

then finds no match for /a/b/ at hash table 2. Eventually, /a/ is found to be the longest

matching prefix at hash table 1, however, the correct longest prefix should be /a/b/c/. To

resolve this issue, a marker entry /a/b/ needs to be added to hash table 2. Adding marker

entries increases the memory consumption, but the number of additional marker entries is

bounded by log(k) for each prefix [74]. For convenience, marker entries can be added when

the forwarding rules are inserted into the hash tables. Essentially, whenever a hash table is

visited during an insertion, if the number of name components in the name prefix is no less

than the number of components of the prefixes stored in this specific hash table, then either

a marker or the actual prefix entry has to exist afterwards. Recent proposals that change the

prefix seeking strategies [65, 80] also need to insert additional prefixes into the hash tables.
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It has also been noticed that adding markers directly introduces the backtracking problem

in [74]. We illustrate the problem with the same example again. Now assume that when

the name /a/b/random/ is looked up, the algorithm checks hash table 2 because the full

name has only three components. With the help of the marker entry /a/b/, it finds a match

at hash table 2 and then proceeds to hash table 3, where eventually no match is found.

In this case, backtracking is required: the algorithm needs to visit /a/ to find the correct

longest prefix matching results. As noted in [74], the worst-case backtracking could be k hash

lookups. To resolve this problem, each marker stores the longest prefix match information

inherited from its own longest matching prefix. In this case, for the same example, when it

is determined that /a/b/c/ is a mismatch, the algorithm can safely return the forwarding

information of /a/b/, which is inherited from /a/.

FIB Updates

The forwarding information base needs to be updated when the routing information changes.

For instance, when network links become up or down, or when new publishers become

available, the corresponding FIB entries need to be updated. Generally, the FIB update

information is determined by the Routing Information Base (RIB), which is maintained by a

Router Controller (RC) in modern routers. Here, we discuss issues related to FIB updates.

Updating the FIB for the binary search of hash tables is a known issue [75]. As with the

original binary search of hash tables designed for IP addresses, the primary challenge comes

from inserting or deleting name prefixes that are proper prefixes of marker entries. For

instance, assume that prefixes /a and /a/b/c are the forwarding rules that need to be stored

in the binary search of hash tables. Following the procedure described in Section 3.3, the

prefix /a is inserted into hash table 1, and the prefix /a/b/c is inserted into hash table 3.
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In addition, an additional marker entry /a/b needs to be inserted into hash table 2, and its

forwarding information is inherited from the prefix /a. If the forwarding information for the

prefix /a is updated, then the forwarding information stored for the prefix /a/b needs to be

updated. Similar requirements hold when a prefix that is a proper prefix of a marker entry

needs to be inserted or deleted. The key problem is how to find the related marker entries

efficiently.

The original paper first proposed several simple solutions which can be directly applied for

name prefix lookup [75]. The first solution requires no additional data structure: When

a FIB entry is updated, all of the entries that have longer prefixes can be enumerated to

find the matching marker entries, and the forwarding information of these marker entries

is updated. Obviously, this solution requires O(nlog(k)) complexity, where n is the total

number of FIB entries and k is the maximum number of name components, because all of

the entries need to be visited in the worst case. The second solution requires maintaining

an additional data structure to store the marker entries associated with each prefix. This

data structure, for instance, could be a trie maintained by the router controller as part of

the RIB. However, the worst-case complexity is still O(nlog(k)) because all of the marker

entries could be associated with a prefix, although this is unlikely to happen in practice.

The original paper also proposed a marker partition method [75] so that the forwarding

information can always be fetched correctly for the marker entries with at most one additional

memory access. Essentially, marker entries can store a memory address instead of the actual

forwarding information, and this memory address leads to the structure that holds the actual

forwarding information. The key optimization method is that, markers can be grouped into

partitions, and markers in the same partition can share the same memory address of the

forwarding information structure. This way, when the forwarding information of a prefix
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is updated, only the shared memory addresses of the partitions need to be updated. We

believe similar approaches can be explored for name prefix lookup, but the detailed design

is beyond of the scope of this dissertation.

In general, FIB update operations have looser latency requirements than FIB lookup op-

erations. As a result, when the number of marker entries associated with each prefix is

small, the simpler solutions discussed above could meet the requirements. When the FIB

update operations is extremely frequent, besides further exploring marker partition schemes

for name prefix lookup, other update-friendly FIB lookup schemes can be employed, such as

the linear search method to be presented in Section 3.4.2.

3.3.2 Fingerprint-Based Hash Table

In this subsection, we first present the hash table design, and then illustrate the string

matching strategies.

Hash Table Memory Layout

Hash tables have been widely used in network applications [34]. The original binary search

of hash tables organized by prefix lengths stores IP prefixes, which have a maximum of either

32 bits or 128 bits. Storing name prefixes requires much more memory space than IP prefixes

and potentially has larger memory footprint. Fingerprint-based hash tables have been used

to reduce the number of memory accesses, where fingerprints are hash values of the keys in

the table. Typically, fingerprint-based hash tables have cache-line sized buckets, where each

bucket stores a constant number, denoted as E, of fingerprint entries. Each fingerprint entry

33



contains a fixed-length fingerprint and also stores either the string address or an index that

eventually leads to the actual string. This way, each hash lookup requires one hash bucket

access, followed by one string comparison if there is a matching fingerprint in the bucket.

On the other hand, if a naive hash table is used with the same bucket setup, in the worst

case, E memory accesses are required.

The number of memory accesses is also a↵ected by hash table load factors. Higher load

factors result in more hash collisions, and therefore require additional memory accesses.

Hash tables with multiple choices, such as d-left hash tables [10] or Cuckoo hash tables [52],

support high load factors with a constant number of memory accesses for each hash lookup.

However, on average, (1+d)/2 or 1.5 hash bucket accesses are required for d-left hash tables

and Cuckoo hash tables, respectively. To keep the average number of memory accesses low,

we choose to trade memory space for speed. Similar as in [65], the hash table has a relatively

low load factor so that most hash lookups require only one hash bucket access, and chaining

is used to resolve bucket overflows. In our experiments, to store n items in a hash table,

n/4 hash buckets are allocated, and 10% ⇥ n/4 additional buckets are preallocated in case

of bucket overflows.
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Figure 3.3: Hash Bucket Memory Layout

Hash bucket design. The organization of the hash bucket is shown in Figure 3.3. Each

hash bucket takes one cache line, i.e., 64 bytes on our system, and contains up to seven

fingerprint entries, where each entry stores a 20-bit fingerprint and a 44-bit name prefix

34



entry pointer, which is the address where the forwarding information and the actual prefix

string are stored. Note that although each pointer takes 64 bits by default in 64-bit operating

systems, current processors support up to 48-bit virtual addresses. As a result, we need to

store only the lower 48 bits of the address. In addition, the address length can be reduced

by aligning the name prefixes on a 16-byte boundary, thereby saving four more bits. The

address size can be reduced further if name prefix entries are preallocated with a fixed size,

thus only an o↵set index needs to be stored, but the name prefix storage could be much

larger because the size is fixed and larger than the prefix lengths. To facilitate examining

the fingerprint entries, each entry has one Occupied bit indicating whether the entry is

taken, one Collided bit indicating whether there is a collision for this entry, and one Leaf bit

indicating whether this is a leaf entry. The hash bucket also stores a 42-bit memory pointer

that holds the address of the chained hash bucket in case of bucket overflow. We use 42-bit

pointers because hash buckets are aligned on a 64-byte boundary. Lastly, one bit in each

hash bucket is unused.

Fingerprint collisions during insertion are indicated by the Collided bits in the hash buckets.

In other words, there could be duplicate fingerprints in a bucket, while their corresponding

name prefixes are di↵erent. During a lookup, if a collided fingerprint is matched, then all

of the matched fingerprint entries must be visited to find the correct matching prefix. It

is possible to delay the string matching until the end with string matching strategies that

perform string matching at the end of the lookup as illustrated in the Section 3.3.2, in

the hope that a longer and collision-free prefix can be matched. In our implementation,

because fingerprint collisions during insertion are rare, we simply perform string matching

immediately if a collided fingerprint entry is visited.
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Figure 3.4: Name Prefix Entry Memory Layout

Name prefix entry. Each name prefix entry stores the forwarding information and the

actual name prefix string, which is compared with when a longest matching prefix candidate

is found. In the current implementation, the forwarding information stores an eight-bit index

that identifies the outgoing port and the destination MAC address. A naive name prefix entry

stores forwarding information for only one name prefix, thus the additional marker entries

also have their own name prefix entries, increasing the memory requirements. In our design,

as shown in Figure 3.4, each name prefix entry stores the forwarding information for up to

log(k) entries, so that when marker entries are inserted, only additional fingerprint entries

are added into the hash tables, and the name prefix string of a marker entry is shared with

the original name prefix. As mentioned before, the name prefix entries are aligned on a

16-byte boundary in our implementation.

Hash Table String Matching Strategy

String matching is performed when there is a fingerprint match. With 20-bit fingerprints,

the chances of getting a false positive are low with normal network traffic. For instance,

when E fingerprint entries are visited, the expected false positive rate is E ⇥ 2−20. As a

result, it appears to be possible to perform string matching only at the end, after a longest

matching prefix has been determined by looking up solely fingerprints. Unfortunately, when

a non-cryptographic hash function is used to generate fingerprints, names that always cause

false positives can possibly be generated, degrading the name prefix lookup performance.
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Because we are interested in the worst-case performance, to address the issue, cryptographic

hash functions can be employed [65]. We present the detailed analyses of two string matching

strategies below.

Always perform string matching when fingerprints match. In this approach, string

matching is performed whenever there is a fingerprint match. Hence each fingerprint-matched

hash lookup involves retrieving the hash bucket and fetching the name prefix entry. As we

need up to log(k) hash lookups for each name query, in the worst case, log(k) hash buckets

and log(k) name prefix entries are accessed. Note that we assume each hash lookup requires

one bucket access, because the chances of getting a bucket overflow are rare. Names that

always trigger false positives cause the worst-case behavior. In addition, the worst case could

also happen with normal traffic. For instance, for rules that have up to seven components,

when the longest matching prefix is at hash table 7, string matching is always required at

hash tables 4, 6, and 7. As described later in Section 3.4.1, the worst case happens when

the visited entries have di↵erent name prefix entries. The advantage of this approach is that

it allows fast software-based non-cryptographic hash functions, such as CityHash [15], to be

employed.

Perform string matching only at the end of the search. The longest name prefix

matching can be divided into two stages. The first stage determines the matching prefix

length, and the second stage verifies the matching prefix and retrieves the forwarding infor-

mation [54, 65]. If string matching is performed only at the end, the longest matching prefix

length is determined solely by the fingerprint lookups. This way, in the worst case, log(k)

hash buckets and one name prefix entry are accessed. In case of false positives, a back-

tracking must be performed. In our implementation, a binary search that always performs

string matching is required when false positive happens. To provide a reliable performance

37



baseline, cryptographic hash functions are required. As pointed out in [65], SipHash [63] is

one such hash function that can be employed.

3.4 Performance Evaluation

The performance study aims to demonstrate that the presented design supports large FIB ta-

bles efficiently in software with modest performance optimization. In this section, we present

the performance micro-benchmarking of the hash table-based implementation, compare the

performance of binary search to that of linear search, report the name lookup performance on

a general-purpose multicore platform, and then demonstrate 10 Gbps forwarding throughput

with real network traffic in the end.

3.4.1 Hash Table Performance

Experimental Setup

The experiments in this chapter were performed on a Dell PowerEdge R620 rack server

equipped with two six-core Intel Xeon E5-2630 processors and 192 GB of DDR3 memory. The

detailed architecture and configuration of the system are shown in Figure 3.5 and Table 3.1.

All of the experiments were performed within the DPDK environment, which provided huge

page memory allocation supports.

We focus on evaluating the worst-case performance, and study both the case that always

performs string matching in case of fingerprint match using CityHash, denoted as CityA,

and the case that performs string matching at the end using SipHash, denoted as SipE. For
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Figure 3.5: System Architecture

Table 3.1: System Configuration

CPU 2⇥Intel Xeon E5-2630, 2.30 GHz
L1d cache 32 KB
L2 cache 256 KB
L3 cache 2⇥15 MB
DRAM 2⇥96 GB DDR3, 1333 MHz
OS Ubuntu 12.04 LTS

the CityA case, the worst-case scenario may not be obvious. For instance, n forwarding rules

that all have k components do not represent the worst case, because although the number of

hash table fingerprint entries is increased to log(k)⇥n due to the additional marker entries,

the name prefix entries are shared by the marker entries and the actual name prefixes. Thus,

during a lookup, although log(k) string matching operations are required, the name prefix

entry is fetched from memory only in the first time, subsequent string matching operations

are expected to get cache hits. The worst case is when string matching is always required and

the visited name prefix entries have di↵erent memory addresses. To emulate this situation,

we populated the hash tables in two phases. We illustrate the procedure using the dataset

with seven name components as an example. In the first phase, n−n/log(k), i.e., 2n/3 names
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with seven components are inserted, where marker entries are inserted into hash tables 4,

6, and 7, without storing the name prefix entries. In the second phase, n/log(k), i.e.,n/3,

names with seven components are inserted into the hash tables, where marker entries are

inserted into hash tables 4 and 6, and their prefix entries are also stored. This way, the

hash tables 4, 6, and 7 store 3n fingerprints in total, and n name prefix entries are stored

in memory, representing the worst-case scenario. It is worth noting that in phase two, name

entries with the same number of components are inserted together in batches, so that the

memory locations of all the prefix entires of the same name are separated. Modern computer

systems employ non-uniform memory access (NUMA), and local memory accesses are faster

than remote memory accesses. As our system has two NUMA nodes, in the experiments,

hash tables are allocated first, and then name prefix entries are allocated. This way, hash

tables are always located at NUMA 0, and name prefix entry storage may include memory

from NUMA 1 when no memory is available from NUMA 0.

With the above worst-case scenario, synthetic rules can be easily generated. We developed

a Python program to generate name prefixes. Each prefix has k name components, where

each name component has six to ten random ASCII characters. The range of numbers of

characters in each name component is based on the URL characteristics presented in [77, 65].

Each dataset contains n names, where the first n/log(k) names are inserted in the second

phase, and the rest n − n/log(k) names are inserted in the first phase. The lookup traces

are generated by randomizing the first n/log(k) names using the shuf program.

In the rest of this chapter, we always present performance results of datasets with up to

seven name components, except in Section 3.4.1, which includes performance results with

datasets containing 15 components. In most figures, we show the performance with both

512 million names (512M) and one billion (1B) names, because 512M is the largest dataset
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that can fit into one NUMA node in our experiments, and 1B requires allocating memory

from both NUMA nodes. The memory requirements of 512M and 1B are 57.3 GB (27.0 GB

of hash tables and 30.2 GB of name prefix entries) and 111.8 GB (52.8 GB of hash tables

and 59.0 GB of name prefix entries), respectively.

Page Sizes

Computer systems employ the virtual memory system, thus whenever a memory is referenced,

a virtual memory address is translated to a physical memory address. The translation

lookaside bu↵er (TLB) is employed to accelerate the address translation procedure. However,

for applications require large memory space and expose scarce memory access locality, the

page-based virtual memory system consumes a considerable amount of CPU cycles due to

TLB misses [6]. To reduce the amount of TLB misses, large pages can be employed.

We evaluated the lookup performance with three di↵erent page sizes: the default 4 KB pages,

2 MB pages, and 1 GB pages. Both the CityA and SipE string matching strategies were

used with datasets 512M and 1B. In the experiments, we allocated 128 GB for large page

memory, which was equally distributed between two NUMA nodes. We ran each experiment

five times, and the average lookup latencies together with 95% confidence intervals are shown

in Figure 3.6. It is worth noting that lookup latency is used as the metric here because it

is the time, in terms of CPU cycles, spent for processing each packet, and it is inversely

proportional to the forwarding throughput.

In all of the presented cases, the lookup latency was reduced significantly (about 31% to 48%)

when the page size was increased from 4 KB to 2 MB. When the page size was increased

from 2 MB to 1 GB, only a small latency reduction (about 4% to 8%) was observed, which is
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Figure 3.6: Impact of Page Sizes

likely due to the small number of TLB entries when 1 GB pages are used. The cases with 1B

had longer lookup latencies, because a large portion of the name prefix entries were allocated

in NUMA 1, incurring higher-cost remote memory accesses. In the rest of this chapter, the

experiments were always performed with 1 GB pages.

Precomputed Hash Values. To quantify the impact of hash computation, we measured

the lookup latency with precomputed hash values. In the experiment, hash values were

stored in an array following the prefix lookup order, thus minimizing the hash value memory

access overhead. Due to the memory size constraint, we measured only the results for the

512M dataset. The average lookup performance is shown in Figure 3.6. For the CityA and

SipE cases, the lookup latency is reduced by 21% and 45%, respectively. In addition, SipE

outperforms CityA, which is expected because of less memory accesses.

Although SipHash is expected to be slower than CityHash, the measured numbers of cycles

spent on hash computation depend on the specific implementation. In our design, we used

the original CityHash reference implementation [15], and we modified the SipHash reference

implementation [63] so that all of the k hash values can be computed in one pass, as suggested
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in [65]. The performance of CityA and SipE can be improved if more efficient hash functions

are used. For instance, purpose-built hardware may include hardware-based hash units that

compute hash values efficiently. We have released our source code online, so that more

efficient hash implementation or optimization can be evaluated by others.

Software Prefetching

Software prefetching has been demonstrated to be e↵ective for accelerating hash lookups.

In [65], the hash buckets corresponding to the prefixes of the querying name are all prefetched.

In [91], prefetching is batched for every 16 packets, therefore higher hash table throughput

is achieved because sufficient delay is placed between prefetching and the actual data access.

Figure 3.7: Impact of Prefetching Strategies

We studied the impact of prefetching strategies on the lookup latency. In the experiments,

hash values were always computed for all of the prefixes together because of better perfor-

mance. The hash values were also computed in the case in which no prefetch was performed,

thus only the prefetching strategy was varied. In this experiment, we evaluated two prefetch-

ing strategies: prefetch only the first visited hash bucket, which is guaranteed to be accessed;
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and prefetch all of the hash buckets, where log(k) out of k buckets are eventually accessed.

The software prefetching instruction was issued once the hash value was computed for each

prefix. All of the experiments were performed on a single core with 1 GB pages. For each

configuration, the experiment repeated five times. The average performance results and 95%

confidence intervals are shown in Figure 3.7. For CityA, prefetching the first visited bucket

achieved about 3% and 2% latency reduction for 512M and 1B, respectively. Prefetching all

of the buckets reduced the lookup latency by 13% and 6% for 512M and 1B, respectively.

For SipE, the performance improvements of prefetching only the first visited bucket and all

of the buckets are comparable, which is about 9% for both 512M and 1B.

Performance with Various Datasets

In this section, we present the name prefix lookup performance with di↵erent dataset sizes

and longer names.

Figure 3.8: Lookup Performance for Datasets with Seven Components
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Various dataset sizes We present the performance of both CityA and SipE with di↵erent

dataset sizes and prefetching strategies in Figure 3.8. As before, we ran each experiment five

times, and the average lookup latencies together with 95% confidence intervals are shown.

For the cases where hash values were precomputed, no prefetching was performed. The

average number of cycles increases as the dataset becomes larger. When all the memory are

allocated from NUMA 0, i.e., no more than 512 million forwarding rules are used, CityA

performs better than SipA, and the performance with di↵erent prefetching strategies for

various datasets is consistent with our previous observation with the dataset 512M. For

the case with 1B, the lookup latencies increase considerably in both CityA and SipE. The

performance gap between these two approaches becomes smaller, this is likely due the fact

that CityA requires two more memory accesses for each lookup, and that name prefix entires

are mostly allocated in the remote NUMA node.

Figure 3.9: Lookup Performance for Datasets with 15 Components

Datasets with 15 name components. We present the performance with name prefixes

that have 15 name components in Figure 3.9. Ideally, since at most log(k) hash lookups

are required for datasets with up to k components, the lookup latencies with 15 name
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components would be about 25% and 33% longer than the ones with seven components

for SipE and CityA, respectively. However, the measured lookup latencies are considerably

higher, which is largely due to the increased hash computation cost, where although only

log(k) buckets are eventually accessed, k hash values are always computed together in the

current implementation. Computing hash values together is not only required for prefetching

all the buckets, but also has better performance with the seven-component datasets. As a

result, the number of hash operations is proportional to k. In addition, the cost of performing

parsing, hashing, and string comparison also increased as names became longer. To improve

the performance, purpose-built hardware hash units can be employed.

The benefits of prefetching also diminished with 15 components. As shown in Figure 3.9,

performing prefetching for SipE did not improve the performance. When only the first

visited bucket was prefetched right after its hash value was computed, the performance was

even worse than the case without prefetching. We measured the number of cycles spent on

prefetching and binary search using the RDTSC instruction. Our preliminary results indicate

that the hash bucket might be prefetched too early, where seven more hash values still need

to be computed, thus reducing the e↵ectiveness of prefetching. A more efficient prefetching

strategy could issue the prefetching instruction at a later time in the process. When all

the buckets were prefetched, the increased cost of prefetching related operations, such as

deriving the memory addresses from the hash values, o↵set the reduced number of cycles

in binary search. The prefetching performance with CityA was better than SipE, but the

benefits of prefetching all buckets still diminished due to excessive prefetching.

Thus, more efficient name parsing and hash implementation as well as prefetching strategies

are needed. Nevertheless, as shown at the bottom of Figure 3.9, when hash values were
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precomputed, the lookup latencies were much closer to the expected values, determined by

log(k) number of hash lookups.

3.4.2 Performance Comparison with Linear Search

It is not easy to perform a head-to-head comparison between the proposed longest name

prefix lookup design and existing solutions proposed by others, because none of the existing

solutions have performed experiments on datasets with up to one billion forwarding rules,

and they do not focus on worst-case performance. To demonstrate the e↵ectiveness of the

proposed design, we have measured the longest name prefix lookup latency with linear search,

which requires O(k) string lookups in the worst case.

In our implementation, we start from looking up the first name component at hash table 1,

which stores name prefixes with only one name component. Then we increase the number of

name component in the lookup key by one and query the hash table that stores prefixes with

the same number of name components. We continue this process until there is a mismatch

or a leaf entry is visited. Note that it is possible to reduce the number of string comparisons

by starting from the last hash table, and then reduce the number of name components by

one each time, but it requires generating lookup names that match only the first name

component. The performance results are shown in Figure 3.10.

According to Figure 3.10, the performance of linear search is worse than that of binary

search, because more memory addresses need to be visited. The performance di↵erence

between linear search and binary search is greater when CityHash is used, and less when

SipHash is used. This is expected because CityHash requires performing string matching
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Figure 3.10: Lookup Latency with Linear Search

whenever there is a match, while SipHash requires performing string matching only at the

end.

Comparing Figure 3.8 and Figure 3.10, when all of the hash buckets are prefetched, for the

case with SipHash, the performance di↵erences between linear search and binary search are

small because all of the visited memory locations have already been prefetched. Although

all of the hash buckets are prefetched into the cache, the lookup algorithm still needs to go

through the cache line to validate if there is a match or not. Similarly, when hash values are

precalculated, the performance di↵erences between binary search and linear search are also

small for the case with SipHash.

In addition, as mentioned in Section 3.3.1, the linear search method supports FIB updates

better. There are two lookup schemes for linear search: First, if the linear search scheme

starts from the first hash table, i.e., from the shortest prefix, then additional marker entries

are still required to ensure a longer matching prefix can always be found. But the marker

entries do not store inherited forwarding information because the backtracking problem no
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longer exists. A reference counter can be maintained for each name prefix, so that a prefix

is deleted only if it is not a matching prefix or a marker entry. Second, if the linear search

scheme starts from the last hash table, i.e., from the longest prefix, then marker entries are

no longer required. Name prefixes can be inserted into or deleted from the corresponding

hash table directly. As a result, if FIB updates become very frequent, the linear search

method assisted by hardware-accelerated hash computation and memory prefetching can be

applied.

In summary, the lookup performance of binary search of hash tables is still better than the

that of the linear search method, although the performance di↵erences become smaller when

aggressive memory prefetching strategies are applied.

3.4.3 Multicore Performance

In this section, we present the performance of the design on the multicore platform. In the

experiments, similar as in [65], a dedicated core loaded names from a local file, and then

each name was copied into a packet bu↵er, which was then distributed to worker threads

via software rings provided by DPDK. The worker threads performed name lookup and then

released the bu↵ers.

Each experiment was repeated five times, the average performance results and the 95%

confidence intervals are shown in Figure 3.11. In the experiments, each worker thread ran

on a dedicated core, and hyper-threading was disabled. We ran up to four worker threads on

one NUMA node, because each node had six cores. As shown in Figure 3.11, the throughput

increases proportionally to the number of threads.
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Figure 3.11: Multicore Performance (Prefetch All)

To evaluate the e↵ect of NUMA architecture, we also ran four worker threads on NUMA 1,

but all the data structures and the core that generated names, were allocated on NUMA 0.

For 512M, all the data structures were in NUMA 0, as a result, the throughput with four

worker threads on NUMA 1 was degraded by 20% and 8% for CityA and SipE, respectively.

For 1B, the hash tables were allocated on NUMA 0, but a majority of name prefix entries

were on NUMA 1, therefore the throughputs of running four threads on NUMA 0 and NUMA

1 were comparable.

In the end, eight threads were ran on NUMA 0 and 1, and we expected to see further

throughput increase. However, the performance improved only to about 6 MPPS, which was

also achieved by running four threads on NUMA 0 with the 512M dataset using CityA. A

plausible explanation is that some resource contention happened between NUMA nodes.
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3.4.4 System Evaluation

To evaluate the name prefix lookup performance with real network traffic, we developed an

NDN forwarding engine on top of the DPDK packet I/O and multicore framework [29]. The

forwarding engine performed only longest name prefix lookup.

8 bits
Packet Type Name16 bits

Packet Length
16 bits

Name Length (Data)

Figure 3.12: Simplified Packet Format

In the experiments, we measured the forwarding throughput of one billion synthetic forward-

ing rules that have up to seven components. To evaluate the worst-case performance, the

same experimental setup in the previous two subsections was used. For fast prototyping,

we employed a simplified NDN packet format, as shown in Figure 3.12. The Packet Type

field, which takes eight bits, indicates if this is an Interest packet or a Data packet [90]. In

our experiments, only Interest packets are generated. The Total Length and Name Length

fields store the length of the packet and the name field, respectively. The Name field stores

the packet name and has variable length. The Data field, existing only in Data packets,

holds the carried content. In our implementation, NDN packets are transmitted on top of

UDP. When a packet arrives at the forwarding engine, its name is looked up, and the MAC

addresses of this packet are updated according to the lookup results before the packet is

delivered.

DPDK supports zero-copy packet I/O and a multicore framework for fast packet processing

applications. We modified the existing DPDK load balancer sample application [22], whose

original structure was suitable for our needs. In this design, packets arrived at NIC are

fetched by the I/O threads, and then packets are distributed to worker threads via the RTE
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rings provided by DPDK. The specific worker thread is determined based on hash values of

the full packet name, which is required for designs that support dedicated PIT for each worker

thread because packets with the same name need to be processed by the same thread. If a

centralized PIT is employed, the I/O thread can simply distribute packets to worker threads

in a round-robin fashion.

The experiments were performed in the Open Network Laboratory [81], which provided

isolated performance evaluation environments. We used the DPDK-based Pktgen applica-

tion [55] to generate NDN traffic. The Pktgen application can both transmit and receive

packets. In our experiments, we configured an eight-core machine as the receiver, and a

12-core machine as the sender, because the 12-core machine had larger memory space that

could hold the entire lookup traces. The sender was directly connected to the name lookup

engine, and the receiver was connected with the lookup engine via a 10 Gbps switch.

Core 4

Core 6

Core 8

Core 10

Core 0

Core 2

Core 2

Queue 0

Queue1

NIC 
Port 0

NIC 
Port 1

Processor 0

RTE Rings RTE Rings

Figure 3.13: Experiment Configuration

Figure 3.13 shows the experiment configuration with four worker threads (Core 4, 6, 8,

and 10) allocated on the same NUMA node to perform name prefix lookup. Due to the

limited performance of the I/O thread, which fetches the packets and computes hash values

to distribute the packets, two I/O threads (Core 0, 2) were employed in the experiments.

Packets received at NIC Port 0 were distributed to these two I/O threads using the multi-

queue feature provided by the NIC. Current multi-queue support typically distributes packets
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based on the IP five tuples, as our NDN traffic were on top of UDP, the source IP addresses

of the generated packets were randomized. When the outgoing port and destination MAC

address were determined, packets were sent to the I/O thread (Core 2) and then delivered

at NIC port 1. For simplicity, the NIC and Core 2 are shown twice in Figure 3.13.

Table 3.2: Throughput with 256-Byte Packets

CityA SipE
MPPS Gbps MPPS Gbps

None 4.1 9.1 3.8 8.4
First 4.2 9.4 4.0 8.9
All 4.4 9.7 4.1 9.1

The forwarding throughput was reported by the Pktgen program on the receiver side. The

observed forwarding throughputs with 256-byte packets are listed in Table 3.2. When all

of the hash buckets were prefetched, 9.7 Gbps and 9.1 Gbps throughputs were achieved for

CityA and SipE, respectively.

When eight worker threads were employed using both processors, 10 Gbps throughput was

achieved for all of the cases listed in Table 3.2.

3.5 Discussion

Although the presented design has demonstrated 10 Gbps forwarding throughput with 256-

byte packets and one billion forwarding rules, each containing up to seven name components,

the following questions remain in longest name prefix matching.

First, the presented name prefix lookup design consumes much memory. For large datasets,

the prefix strings already occupy considerable memory, and our hash table design uses more
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memory to achieve speed with relatively low load factor. Moreover, the nature of binary

search requires additional marker entries, which further increases the hash table size. Al-

though servers are capable of supporting a larger amount of memory now and the cost of

memory keeps dropping, it is always desirable to have a more compact FIB representation.

Smaller memory space reduces the cost of power, and also enables data structure replication

among NUMA nodes to improve performance.

Second, the FIB lookup is just one component of the NDN forwarding plane. When other

components, such as the Pending Interest Table (PIT) and Content Store (CS) are integrated,

the overall system performance can be further optimized. For example, cryptographic hash

functions are required for the PIT [65], therefore an efficient combination of hash functions

is needed.

3.6 Summary

In this chapter, we present a longest name prefix lookup design based on binary search of

hash tables organized by the numbers of name components in the prefixes. For forwarding

rules that have up to k name components in each prefix, regardless of their specific char-

acteristics, this design always guarantees at most log(k) hash lookups. Taking advantage

of the recent advances in multicore packet processing platforms, we implemented the design

with fingerprint-based hash tables in software and demonstrated that 6 MPPS can be sup-

ported with one billion synthetic forwarding rules that have up to seven name components.

We prototyped the forwarding engine design, and demonstrated that 10 Gbps forwarding

throughput could be achieved with 256-byte packets. NDN might not reach billions of

names in the next few years, but we hope that by demonstrating the feasibility of line-rate
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name-based forwarding for large FIBs, researchers and application developers can comfort-

ably choose the most efficient namespace design, without concern for the packet forwarding

performance.
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Chapter 4

FIB Optimizations

In this chapter, we continue to focus on scalable forwarding information base design. As

in IP forwarding, the longest name prefix matching performance in NDN can be optimized

by leveraging the specific characteristics of the forwarding rules stored in the FIB. In this

chapter, we present two approaches to improve FIB lookup performance.

First, we note the existence of prefixes that have large numbers of next-level suffixes in the

available URL datasets, and thus propose a generic level pulling method, which stores a

small number of prefixes in the cache or SRAM so that more prefixes can be promoted to

the hash table that is accessed first, thus reducing the average number of hash lookups. We

evaluate the e↵ectiveness of level pulling with the available URL datasets is via simulation.

Second, we focus on reducing the memory requirements of forwarding rules that contain

large numbers of name prefixes that have only one name component. We first briefly review

speculative forwarding, which has been proposed to reduce the memory requirements of the

FIB in core routers, and then present fingerprint-based methods to further improve name-

based forwarding performance. The proposed fingerprint-based hash table design requires
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only 3.2 GB of memory to store one billion names, and the measured lookup latency of the

software-based single-threaded implementation is 0.29 microseconds.

4.1 Level Pulling

In this section, we still focus on hash table-based longest name prefix lookup and present

level pulling, a generic method that reduces the average number of hash lookups for each

LNPM query.

Like in IP, prefix lookup can be optimized according to the specific characteristics of the

forwarding rules. Such optimization normally focuses on improving the average-case per-

formance because routers have bu↵ers that can tolerate temporal long latency. Ideally,

optimization should be based on usage, i.e., rules that are looked up more frequently have

better performance. However, NDN traffic patterns are not currently available because it

has not yet been widely deployed. Recent prefix lookup optimizations are generally based on

name component number distribution [65, 80], so that the hash tables that store more pre-

fixes are visited early on. As noted in [80], most entries in the URL datasets are leaf entries.

Hence, optimizations based on name component number distribution can be approximately

solved by minimizing the weight of a binary search tree, where the weight of each node is

the number of leaf entries in the corresponding hash table. Our goal is to further reduce the

average number of hash lookups by exploring new characteristics in the URL datasets.

We propose the level pulling idea based on the observation that some prefixes have large

numbers of next-level suffixes in the URL datasets. For instance, in the Alexa dataset,

which contains the top one million visited domain names, 3, 363 URLs share the prefix
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Figure 4.1: Level Pulling Concept

http://youtube.com/user/ and 208 URLs share the prefix http://sites.google.com/.

If these URLs could be stored in the first-visited hash table, the average name prefix lookup

performance could be improved. This characteristic does not exist in IP because each IP

prefix length level is only one bit, but in NDN, the cardinality of each name component level

is infinite.

We propose to store prefixes with large numbers of next-level suffixes in a cache-like structure.

Hence, in addition to reordering the hash table lookup sequence, we modify the starting point

of each lookup. The key challenge is to keep the data structure compact so that it can be

stored in the CPU cache, or in SRAM or TCAM with hardware-based solutions. The size of

the data structure is largely determined by the number of prefixes being stored. Figure 4.1

shows the concept of level pulling with a name-component trie as the cache-like structure.

In this dissertation, we evaluate the percentage of hash lookup reduction via simulation. A

Python program was developed to measure the reduced number of hash lookups.

Table 4.1: Existing Name Conversion Schemes

URL http://www.named-data.net/project/
TLD [65, 80] /net/named-data/www/project/
Site [32] /named-data.net/www/project/
Host [54] /www.named-data.net/project/
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Various ways of converting URLs to NDN names have been used in research literature, as

listed in Table 4.1. The first scheme reverses the domain name, i.e., it starts with the top

level domain (TLD) name as the first component, followed by all the subsequent components;

the second scheme starts with the site name as the first component; and the third uses the

entire host name as the first component. Using all of these three schemes, we generated

nine NDN name datasets for the Alexa, Dmoz, and Blacklist URL datasets, which has one

million, 3.69 million, and 1.39 million URLs, respectively.

Table 4.2: Hash Lookup Reduction Percentages

TLD Site Host
↵ (%) Size ↵ (%) Size ↵ (%) Size

Alexa 12.08 214 4.43 122 0.49 19
BlackL. 9.94 461 6.52 437 4.77 271
Dmoz 11.58 1,781 8.13 1,742 8.60 1,639

We then evaluate hash lookup reduction percentage with level pulling. For each dataset, all

of the prefixes are inserted into a name-component trie, and then the prefixes whose name-

component trie nodes have more than a threshold, denoted as T , number of child nodes are

stored in the cache-like structure, namely C-Trie. The corresponding next-level suffixes of

the stored prefixes are promoted to the first-visited hash table. Smaller T values improve

the hash lookup reduction percentage, but also increase the C-Trie size. Just as an example,

we set T as 64 to show the e↵ectiveness of level pulling. During a lookup, the C-Trie is

visited first. If there is no match in the C-Trie, the name is then looked up in hash tables; if

there is a match, then the next-level suffix of the matching prefix is looked up in hash tables.

To measure the required number of hash lookups with level pulling, the same datasets were

looked up, where each name in the datasets was appended with three additional random

components. Because we focus on the average-case performance, each name was looked up

only once. We collected the number of hash lookups that were performed on the hash tables.
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The measured percentages of reduction, denoted as ↵, and the number of prefixes stored in C-

Trie for these nine datasets are listed in Table 4.2. For both the Alexa and Blacklist datasets,

the hash lookup reduction is higher with the TLD scheme, followed by the Site and Host

schemes, because the TLD approach has more aggregated prefixes for these two datasets. For

the Alexa dataset with the Host first scheme, the hash lookup reduction percentage is only

0.49%, this is because 98.94% of the prefixes have only one name component in that dataset.

For the Dmoz dataset, the numbers of prefixes stored in the C-Trie for the presented three

name conversion schemes are close to each other. This is because a significant portion of the

prefixes stored in the C-Trie contain the components corresponding to the host names of the

URLs. Although the number of reduced hash lookups in the Site first scheme is greater than

the one in the Host first scheme for the Dmoz dataset, the Host first scheme has slightly

higher hash lookup reduction percentage because it requires less number of hash lookups

originally. In all of these cases, the largest C-Trie contains only 1, 781 prefixes, requiring a

small amount of storage.

4.2 Speculative Forwarding

In this section, we briefly review the speculative forwarding method proposed in our col-

laborative work [67]. The next section presents our second FIB optimization method that

further improves speculative forwarding performance.

The speculative forwarding method reduces the memory requirements of name-based for-

warding for datasets that have large numbers of prefixes with only one name component.

Speculative forwarding employs a Patricia-trie like data structure, which performs the path

compression as the original Patricia-trie [35]. The original Patricia-trie still has large memory
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cost because names are stored to support prefix matching. In speculative forwarding, only

the information di↵erences among the rules are stored in the speculative Binary Patricia-

trie (sBPT). Thus, the name prefixes that have only one component are no longer stored

in sBPT. To support longest prefix matching, suffix strings still need to be stored. For ex-

ample, if both /a and /a/b/c are in the FIB, the suffix /b/c needs to be stored. Hence,

the memory requirements of names that have only one component, such as domain names,

can be reduced significantly. Although the matching prefixes are not verified in core routers,

the packets that truly have matching prefixes in the FIB are guaranteed to be forwarded

correctly. Eventually packets are verified in edge routers.
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Figure 4.2: Speculative Forwarding Illustration

Figure 4.2 shows speculative forwarding in the core router and traditional forwarding in the

edge router. In the sBPT shown on the left, only the bit positions that hold the information

di↵erences are stored. The name prefixes, as shown in parenthesis, are not stored. The edge

router, shown on the right, stores the complete name prefixes. As shown in the figure, for a

forwarding table that contains facebook and google, packets with name facebook, which

is in the FIB, are forwarded correctly in the core router and are verified in the edge router.

Packets with name googoo, which is not in the FIB, are also forwarded by core routers but

eventually get dropped in edge routers. For the Alexa top one million domain names [2], the

61



sBPT requires only 5.58 MB of memory. The memory requirement of one billion synthetic

name prefixes that have similar characteristics is 7.32 GB.

4.3 Fingerprint-based Solutions to Enhance Scalable

Name-based Forwarding

In this section, we present the second FIB optimization method. Our goal is to further

improve the name-based forwarding performance. To achieve this, we formulate the string

di↵erentiation (SD) problem, which is based on the speculative forwarding behavior in core

networks, and identify the advantages that allow us to find efficient solutions to the problem.

We focus on exact string di↵erentiation (ESD), a special case of the string di↵erentiation

problem where no proper prefixes exist in the rule set. Unlike exact string matching, strings in

ESD only need to be di↵erentiated rather than matched. Following the information-theoretic

di↵erence approach, we propose fingerprint-based methods to improve the forwarding per-

formance. In essence, by transferring the information di↵erences among name prefixes to

fixed-length fingerprints, the di↵erences are expressed more concisely, reducing the lookup

latency of Patricia trie-based methods. In terms of memory requirements, fingerprints are

more compact than name prefixes, giving opportunities for memory-efficient solutions to

name-based forwarding. We propose a fingerprint-based hash table (FHT) that stores only

the fingerprint of the name, reducing the memory requirements considerably. When the

physical resources on a single machine cannot meet the requirements of large datasets, a

distributed forwarding scheme is needed. We study the distributed string di↵erentiation

problem, and evaluate the memory requirements of applying the proposed data structures

to support distributed name-based forwarding.
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4.3.1 Information-theoretic Di↵erence Approach

Given a set of strings, what is the minimum information required to di↵erentiate them? A

simpler question would be to give you two names, facebook and google, and ask what is

the minimum information that can di↵erentiate them. The answer would be 1 bit, since at

bit position 7 of their ASCII binary bit strings, facebook has the value of 0 and google

has the value of 1. Hence, bit position 7 can be used to di↵erentiate these two names. In

addition, if given that the query is either facebook or google, we could identify which name

it is by examining bit position 7. Similarly, in order to di↵erentiate n names, at least log(n)

bits are needed. In practice, the number of bits required depends on how the information

di↵erences are distributed among these names.

There are two practical methods, Patricia-trie and fingerprint, that follow the information-

theoretic di↵erence approach. Patricia-trie examines the information di↵erences among the

input strings. The original Patricia-trie does not maintain the minimum amount of infor-

mation di↵erences because it greedily splits at a node whenever there is di↵erence among

the rules. A better splitting approach would always select the bit that has the maximum

entropy, which is similar to a decision tree. However, generating a minimum-height decision

tree has been proven to be NP-complete [60]. Fingerprints follow the information-theoretic

di↵erence approach by encoding the information di↵erences in a more compact form. When

there are no fingerprint collisions, the minimum fingerprint length is log(n). Although fin-

gerprints can be generated efficiently using hash functions, fingerprint collision is a primary

challenge in practice.
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4.3.2 The String Di↵erentiation Problem

In this subsection, we define the string di↵erentiation problem and propose fingerprint-based

methods.

Problem Statement

The string di↵erentiation problem can be defined as: Given a set of strings R, for any query

string rq 2 R, how to di↵erentiate rq from the strings in R − rq? The string di↵erentia-

tion problem is similar to the restricted candidate string problem [19]. Compared to the

traditional string matching, string di↵erentiation is in a more relaxed form because all the

querying strings are assumed to be from the set R. In this chapter, we focus on the exact

string di↵erentiation (ESD) problem, which is a special case of the SD problem, where there

are no proper prefixes in R. The proper prefix is defined as follows, when a string ra is a

prefix of string rb, and ra 6= rb , then ra is a proper prefix of rb. Traditional longest prefix

matching methods can be used to support proper prefixes, as shown in Section 4.2. Thus,

combining ESD and longest prefix matching e↵ectively solves the SD problem.

Fingerprint-based Solutions

Fingerprints are compact representation of variable-length strings. We propose fingerprint-

based solutions to the exact string di↵erentiation problem. For each string ri 2 R, a fin-

gerprint fi is generated via hashing. We discuss both perfect and non-perfect hashing, and

focus on non-perfect hashing in the rest of this section.
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Perfect Hashing In perfect hashing, each string ri is mapped to a unique fingerprint

fi. Figure 4.3(a) shows how perfect hashing-based fingerprints can be used in the sBPT. It

can be seen that using only the fingerprints is sufficient to di↵erentiate the querying names.

Although perfect hash functions can be found [80, 45], it is challenging to support fast

updates efficiently and requires additional storage to generate perfect hash values.
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Figure 4.3: Perfect Hashing and Non-perfect Hashing

Non-perfect Hashing Non-perfect hashing can be computed more efficiently, but finger-

print collisions occur. We present two collision resolution methods to address this issue. The

first method employs a separate collision table (CT) to store the fingerprint-colliding strings.

If inserting a string causes a fingerprint collision, this string is inserted into the collision ta-

ble. As a result, each lookup requires querying the collision table. The size of the collision

table is determined by the fingerprint collision rate. The second approach stores additional

information for the fingerprint-colliding strings in the original data structure. Each colliding

string is assigned a local fingerprint generated by a di↵erent hash function, so that colliding

strings can be di↵erentiated by examining the local fingerprints. In a special case, the local

fingerprint can be the original strings, as shown in Figure 4.3(b). As can be seen, facebook
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and google share the same 4-bit fingerprint, and they are di↵erentiated by examining the

11th bit position in the input string, i.e., bit position 7 in the original strings.

4.3.3 Fingerprint-based Patricia-trie

In this subsection, we present the fingerprint-based Patricia-trie (FPT), which leverages

fingerprints to enhance the Patricia trie-based name prefix lookup design.

The FPT Design

Using fingerprints rather than name strings does not a↵ect the Patricia-trie memory require-

ments because the number of nodes in the trie is always proportional to the number of the

rules. Hence, we focus on reducing the lookup latency of the Patricia trie-based designs.

The lookup performance of trie-based data structures is determined by the number of nodes

visited during each query. As a result, decreasing the height of the trie could reduce the

lookup latency. As for hardware-based pipelined implementations, the number of pipeline

stages can also be reduced with smaller trie height values. The original Patricia-trie does not

generate a minimum-height trie because it scans from the beginning of the strings and split

whenever there is a di↵erence among the rules at a bit location. Consequently, the original

sBPT may work well for randomly generated synthetic rules but not for real-world datasets,

because the information di↵erences may not be distributed evenly in practice.

Table 4.3: Real-world Dataset Characteristics
Dataset Rules Domain Names File Size

Alexa 1,000,000 990,821 15 MB
Dmoz 3,707,458 2,887,847 95 MB
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We measured the leaf-node depths in the sBPT with the real-world Alexa [2] and Dmoz [21]

domain name lists. Because we focus on the exact string di↵erentiation problem, only the

unique domain names were extracted from the datasets. The major characteristics of these

two datasets are listed in Table 4.3. The average depths of the Patricia-trie structures with

the Alexa and Dmoz datasets are 30 and 52 levels, respectively. Both are much larger than

the optimal value log(n), where n is the number of unique domain names.

Fingerprints are expected to have more balanced information di↵erence distribution. To

resolve fingerprint collisions, we could either use a collision table or prepend fingerprints to

the names. For Patricia-trie, prepending fingerprints to the names is the simplest approach.

It is worth noting that prepending a hash value to a fixed-length flow ID has been explored

to reduce the average depth of level-compression tries [51], while we take the same approach

on variable-length names to improve name-based forwarding performance. The height of the

Patricia trie can also be reduced by dividing the complete datasets into smaller groups via

hashing and then construct a subtrie for each group [67], however, prepending fingerprints is

an orthogonal approach and can be applied to reduce the depth of each individual subtrie.

Experiments with Real-World Datasets

The original speculative Patricia-trie data structure can be used directly as a fingerprint-

based Patricia-trie (FPT). The di↵erence is that, in each insertion, deletion, and lookup

operation, a fingerprint is prepended to the original name. Fingerprints are computed using

the CityHash function [15].
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Figure 4.4: Impact of Fingerprint Length on the Trie Depth

We measured the impact of the fingerprint length on the leaf-node depth distribution. The

entire Alexa or Dmoz domain names were inserted into the FPT, and the average Patricia-

trie depth are shown in Figure 4.4. As the fingerprint length increases, the average leaf-node

depth decreases. When the fingerprint length is greater than log(n), the average depth be-

comes stable. Take the Dmoz dataset for example, after prepending 20-bit long fingerprints,

the average depth is reduced from 52 to 24.

Figure 4.5: Patricia Trie-based Solution Lookup Performance
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We have also evaluated the lookup performance of fingerprint-based Patricia-trie in software.

The experiment was performed on the same machine used in Chapter 3, which was equipped

with 12 Intel Xeon E5-2630 cores operating at 2.3 GHz, 15 MB of L3 cache, and 192 GB of

DDR3 memory. To measure the lookup latency, the entire Alexa or Dmoz domain names

were inserted into the FPT, and then the names in the same dataset were looked up. The

lookup latency was measured using the RDTSC instruction, which provides high precision

and low processing overhead. We started with looking up 1, 024 names, then doubled the

number of names each time, and eventually half a million names were looked up for Alexa

and one million names were looked up for Dmoz. Each experiment run 100 times, and the

average latency per lookup is shown in Figure 4.5. As can be seen, the lookup latency of the

FPT outperforms the sBPT, which is expected because the number of memory references

is reduced. Note that only the small-scale experimental results with real-world datasets are

presented here, and the large scale experiments, which require further software optimizations,

are presented in Section 4.3.7.

4.3.4 Hash Table-based Methods

The Patricia trie-based solutions can possibly be implemented in purpose-built hardware

with pipelining, but for processor-based platforms, trie-based schemes require considerable

numbers of memory references. In this subsection, we present hash table-based designs for

the exact string di↵erentiation problem. The presented collision free fingerprint-based hash

table (FHT) can be used in both software-based and hardware-based implementations.
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The FHT Design

Hash tables have been used widely in network applications [34], but traditional hash tables

store the entire key strings, consuming a large portion of the memory. Fingerprint-only hash

tables [7, 23], which store only fingerprints of the keys, have been proposed for approximate

membership querying and tolerate a small number of fingerprint collisions, i.e., false positives.

Unlike fingerprint-only hash table-based approximate membership querying designs, finger-

print collisions need to be resolved for the exact string di↵erentiation problem. We propose a

collision free fingerprint-based hash table (FHT), which has small memory requirements and

there are no false positives. Because the query strings in the ESD problem are from a known

string set R, thus employing a collision table to store the colliding strings resolves fingerprint

collisions. In addition, the collision table also stores overflowed keys from the hash table,

increasing the hash table load factors. Note that when the query string is not in R, i.e.,

packets with names that do not have any matching prefixes in the FIB, false positives could

occur. This is a common issue faced by packet forwarding solutions that do not store the

complete forwarding rules [86]. What is more, in name-based forwarding, the false positives

can be eliminated by the edge routers, which store the full name prefix strings [67].
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Hash Collision Table (CT)

Figure 4.6: Fingerprint-based Hash Table

The collision-free fingerprint-based hash table is a simple modification of the original fingerprint-

based hash tables [7]. The only di↵erence is that a collision table is introduced. During an

70



insertion, if there is a fingerprint collision, then the complete string of the inserting key is

stored in the CT. During a lookup, the CT is queried first, and then the hash tables are

looked up only if there is no match in the CT. Figure 4.6 shows the collision-free fingerprint-

based hash table design. The FHT is based on a d-left hash table [34], where there are d

subtables. Each subtable has B buckets, and each bucket has E entries. In our experiments,

d = 4 subtables are used, and each hash bucket holds E = 8 entries. The load factor ld of

the hash table is set to 93% to accommodate our largest experiment configuration where one

billion (109) names are stored in a hash table with 230 entries. Each entry stores a fingerprint,

an eight-bit outgoing port, and one more bit to indicate if it is occupied or not. The size of

the CT, denoted as SCT , is determined by the fingerprint collision rates and bucket overflow

rates.

Because large-scale NDN forwarding rules are not available yet, the workload used in this

section is randomly generated. The workload contains one billion names, and each name

has only one name component as we focus on the exact string di↵erentiation problem. The

average length of the name is about 30 bytes. We calculated the memory requirements of

storing one billion names with di↵erent fingerprint lengths w. The measured SCT , and the

calculated collision table memory requirements (MCT ), hash table memory size (MHT ), and

total memory requirements of the FHT (MT ) are listed in Table 4.4. The fingerprint-based

hash table requires less memory storage than the fingerprint-base Patricia trie because it

also stores only the information di↵erence among the rules, and what’s more, there is no

pointer storage.

From Table 4.4, even in the case where 16-bit fingerprints are used, there are only 324K

items stored in the collision table. The CT is also implemented as a 4-left hash table, and it

is configured with 75% load so that no CT overflow occurs. Each CT entry stores a 64-bit

71



Table 4.4: FHT Memory Requirements

w 12 16 20 24

SCT 3.69E+6 3.24E+5 1.13E+5 1.01E+5
MCT (MB) 1.81E+2 1.59E+1 5.55E+0 4.94E+0
MHT (GB) 2.63 3.13 3.63 4.13
MT (GB) 2.80 3.14 3.63 4.13

fingerprint, a 48-bit name prefix pointer (only the lower 48 bits of 64-bit memory addresses

are used as virtual addresses in current processors [88]), and an eight-bit outgoing port.

Because each name is about 30 bytes long, the estimated CT memory requirements is about

16 MB, thus it can be stored in SRAM. Using 16-bit fingerprints, the total memory size

of the FHT is 3.14 GB, which reduces the memory requirements of the original speculative

Binary Patricia-trie (7.32 GB) by 57%.

For one billion names, the d-left hash table requires approximately 3 to 4 GB of storage,

which needs to be stored in DRAM. In a hardware-based implementation, each query first

visits the on-chip SRAM-based collision table, and then looks up the DRAM-based main d-

left hash table. In the worst case, each lookup requires d number of DRAM memory accesses;

and the average case requires (1 + d)/2 accesses. Because the d-left hash table is already

a compact data structure that stores only fingerprints, previous works [38] on employing

on-chip filters to reduce memory accesses cannot be applied. In a hardware-based design,

with sufficient resources, it is possible to store each subtable into a separate DRAM module,

so that these d memory accesses can be pipelined or parallelized. In software-based designs,

general purpose processors can maintain multiple memory requests to hide the access latency,

and we present the impact of two known software optimization techniques in Section 4.3.7.
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Experiments with Real-World Datasets

To evaluate the performance of software-based FHT, we used the same experimental setup

as what we did with FPT to measure the lookup latency. Since the FHT load factor is kept

as 93%, we started with looking up 1024⇥93% ⇡ 954 names, then the number of names were

doubled each time, and eventually 976, 562 names were queried. The performance results

are shown in Figure 4.7. Because the collision table lookup can be o✏oaded in a hardware-

assisted design, we present the FHT lookup latency with both querying the CT (denoted as

w/ct) and skipping the CT (denoted as w/oct). We also include the previous FPT results

for comparison.

Figure 4.7: Hash Table Lookup Performance

From Figure 4.7, the hash table-based design outperforms the fingerprint-based Patricia-trie

considerably. Although the CT size is small, there is still overhead associated with querying

the CT before looking up the main d-left hash table.
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4.3.5 Distributed Forwarding

When datasets are large, the memory requirements of a string di↵erentiation problem may

exceed the physical resources available on a single device. Hence, it is required to support a

distributed scheme that solves the string di↵erentiation problem collectively using a cluster

of devices. In such schemes, each device stores a subset of the complete set R, and the subset

is denoted as RS.

Name 1;
Name 2;
Name 3;
...
Go to specified ports

Default-Free Table

Name 1;
...

Go to specified ports

Stored Table

Name 2;
Name 3;
...

Go to the default port

Default Table

Figure 4.8: Distributed Name-based Forwarding

Figure 4.8 illustrates the distributed name-based forwarding application. In this example,

the complete FIB table, i.e., the default-free table, is divided into two tables, a stored table

and a default table. The stored table contains the forwarding rules stored in the router,

and each rule has a specific outgoing port. The default table contains the rules that are

not stored, and packets with these name prefixes need to be recognized and forwarded to a

default port. The distributed string di↵erentiation problem is about di↵erentiating any string

ri 2 RS, and recognizing strings in R−RS, i.e., membership testing. To reduce the memory

requirements, the data structure is typically built with only strings in RS. However, when

only the information di↵erences among RS are stored, strings in R − RS is not guaranteed

be recognized. Our approach is to store a small amount of additional information to support

membership testing. We use the Patricia-trie to illustrate the approach.
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Figure 4.9: Distributed Forwarding Memory Optimization

In Figure 4.9, a Patricia-trie is built with the strings in the stored table, therefore, Name1 is

stored and Name2 is not. When a packet with prefix Name2 arrives, it is possible for Name2

to reach the matching node of Name1 if the bit values of the examined positions happen to

match. For a FIB of size m, and a stored table of size n, the average number of collisions is

expected to be m/n. Thus, m/n−1 strings need to be recognized from the owner string of a

matching node. In Figure 4.9, the least number of bits required to recognize the owner name

are stored in the matching node. In this example, the first two bits of Name1’s fingerprint

are stored.

Patricia Trie-based Approach

In distributed forwarding, additional information, such as local fingerprints, is stored in the

Patricia-trie leaf nodes to recognize the owner name prefix. Because the size of the trie and

the number of nodes visited in each query are not a↵ected in distributed forwarding, we

focus on the memory overhead of the additional information.

Figure 4.10 shows the memory overhead for distributed forwarding with the Alexa dataset.

In our design, local fingerprints were generated by up to two hash functions. In the One
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Figure 4.10: Memory Overhead of Distributed Forwarding

Hash case, only one fingerprint was generated, and the number of bits to be stored at each

node was noted. In the Two Hash case, two fingerprints were generated for each name, and

then the fingerprint that required less number of additional bits is chosen. In addition, one

more bit is required to indicate which hash function to use. We present both the average

and the maximum number of additional bits. From Figure 4.10, as the number of colliding

names per leaf node increases, the number of additional bits increases. Although the average

number is close to log(m/n), the maximum number is much larger and it determines the

memory overhead if all of the leaf nodes have the same memory layout. To reduce the

memory requirements in practice, as most of the leaf nodes require close to log(m/n) of

bits, a threshold can be set, such as log(m/n) + k, where all the leaf nodes can store up to

log(m/n) + k bits, and then the names that require more bits would be inserted into the

FPT so that they are di↵erentiated by the trie structure.
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Hash Table-based Approach

For distributed forwarding, the fingerprint-based hash table can be more memory-efficient

because a fingerprint is already stored in each entry. We use the dataset with one billion

randomly generated names to evaluate the memory requirements of the distributed FHT.

The FHT is configured with 4 subtables, 8 entries per bucket, 16-bit long fingerprints, and

the load factor is kept at 93%. The FHT stores Sp percent of the one billion dataset, and the

hash table size N was varied from 64M to 512M. In the first phase, Sp⇥N⇥93% names were

randomly chosen and inserted. In the second phase, the rest of the names were queried, and

names with fingerprints matched in the FHT are stored in the collision table. The memory

requirements of this distributed table (M) and the percentage of total memory (Mp) are

listed in Table 4.5.

Table 4.5: Distributed Forwarding for One Billion Names

N 64M 128M 256M 512M

Sp(%) 6.25 12.50 25.01 50.01
Mp(%) 6.88 13.09 25.51 50.34
M(MB) 221.33 420.96 820.23 1619.69

From Table 4.5, the memory requirement of the subtable is always proportional to the number

of rules stored in the table. As a result, the FHT can be employed to support distributed

name-based forwarding with large datasets.

4.3.6 FIB Updates

The FIB table needs to be updated when routes change. When lossy data structures such

as sBPT, FPT, and FHT are used, the FIB does not have sufficient information to process
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route updates directly. This problem also occurs in today’s IP network when FIB compres-

sion schemes are used [71]. In practice, the FIB table can be incrementally updated with

the assistance of a route controller (RC), which is employed in modern router architectures.

The RC maintains the Routing Information Base (RIB), handles route updates, and gener-

ates FIB tables. The forwarding engines are distributed to multiple line cards, where they

download the FIB table from the RC and then perform fast packet forwarding [13]. On the

arrival of route update messages, the RC updates the RIB following the routing protocol and

generates the new FIB tables. In general, the RC generates a sequence of update instructions

to incrementally update the FIB structures in each forwarding engine. In this section, we

describe the required instructions for both trie- and hash table-based FIB structures, and

present the measured RIB update performance.

Patricia-trie Updates

The original Patricia-trie maintains the complete information for the forwarding entries and

supports online updates. Updating the forwarding information for an existing entry requires

performing a lookup in the trie and modifying the related fields. Insertions and deletions

are relatively complicated since nodes need to be allocated or deallocated in the process.

Because Patricia-trie is a full binary trie, each insertion or deletion always requires creating

or deleting two nodes.

The instruction generation for the lossy Patricia-trie (sBPT, FPT) needs to consider the

node memory layouts. Each Patricia-trie node has two children, and maintaining both child

pointers has a high memory cost. Thus optimized methods have been proposed [67], such as

the single-memory address. In addition, internal nodes and leaf nodes have di↵erent memory

layouts, so if the node type is changed, both this node and its sibling need to be reallocated,
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and their parent must be updated with the child’s new address. Here, we use the single-

memory address scheme because it reduces the memory cost. Each node stores the left child

pointer, and the right child always stays next to the left child in memory.

A

CB

D E
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CB

F DG E
split

updated allocatedinternal leaf

(a) Splitting a leaf node

F

A

CB

D E

A
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G

D E
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(b) Splitting an internal node

Figure 4.11: Patricia-trie Update

Figure 4.11 shows the two cases of inserting an entry into the Patricia-trie. In Figure 4.11(a),

Node B needs to be split because the inserted entry di↵ers from the entry stored in Node B.

As a result, leaf nodes F and G are allocated to store these two entries. Node B now becomes

an internal node, thus it needs to be reallocated. Because siblings always stay next to each

other, Node C is also reallocated. In the end, Node A is updated with the Node B’s new

address. In Figure 4.11(b), Node C needs to be split, although its node type is unchanged.

In this case, Node F and G are created first: Node F copies the information from Node C,

and Node G stores the inserted entry. Node C is then updated with the new bit position

and child’s address.

Hash Table Updates

Hash tables can be updated easily. The route controller maintains a similar hash table that

stores the entire names for the occupied hash buckets. The RC generates the instructions to

update the hash buckets or the collision table. When a new entry is inserted into the FHT,

the entry eventually is stored either in a previously empty hash bucket or in the collision
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table. Deletions and updates have similar e↵ects: either a hash bucket or a collision table

entry is updated.

Update Performance

We use the insertion latency as the metric to evaluate the update performance. To see the

trend of the latency as datasets become larger, we started with approximately one million

(220 ⇥ 93% ⇡ 9.77⇥ 105) names, then doubled the dataset size at each step, and eventually

reached one billion (109) names. The experiment was repeated three times, Figure 4.12

shows the measured average insertion latency with 95% confidence intervals.

Figure 4.12: RIB Insertion Performance

For one billion names, the FHT requires 1, 991 cycles to insert a name. As the frequency of

the processor is 2.3GHz, thus FHT supports processing approximately 1.2 million packets

per second (MPPS). Our Patricia-trie implementation is not yet heavily optimized. The

FPT has a much higher latency due to more memory accesses, and with the largest dataset,

on average 13, 838 cycles are required for each insertion. Obviously, FHT supports faster
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updates, while a single FPT structure has limited scalability in terms of updates. In practice,

large datasets can be split into smaller ones to be constructed independently for FPT.

4.3.7 Experimental Evaluation

In this section, we evaluate the performance of the proposed data structure designs with

large datasets in software.

Software Optimization for Large Datasets

The characteristics of general-purpose multicore processors allow further optimizations for

applications that require frequent memory accesses and large amount of memory storage.

Specifically, software memory prefech instructions and large page sizes have been exploited to

improve packet forwarding performance [23, 65, 88, 91]. We apply both software prefetching

and large page sizes for the experiments with large datasets. Software memory prefetch

instructions can be employed when the locations of future memory references can be known.

Thus, it is straightforward to improve the performance of hash tables but not trie-based

designs. With memory prefetching, all of the d subtables in the FHT are fetched at the same

time, and the processor is able to handle multiple memory requests efficiently. Larger page

sizes reduce translation lookaside bu↵er (TLB) misses, and we use both the 4KB pages and

2MB pages for FPT and FHT.
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Lookup Latency

We measured the lookup latency of the proposed data structures with one billion synthetic

names. Similar as the FIB update experiments, we started with approximately 1 million

names, then the number of names in the dataset was doubled at each step. At each step,

the forwarding data structure was built, and then all the names were looked up. We ran

each experiment three times and recorded the average lookup latency with 95% confidence

intervals. The measured results for the FPT are shown in Figure 4.13 and the results for

FHT are shown in Figure 4.14.

Figure 4.13: Fingerprint-based Patricia Trie Lookup Performance

According to Figure 4.13, the lookup latency of FPT increases linearly as the number of

names doubles each time. When the datasets are small, i.e., less than 64 million names, the

performance with 4KB pages performs slightly better than the one with 2MB pages. As the

datasets become larger, the lookup latency with 2MB pages outperforms the one with 4KB

pages. With one billion names, 5, 112 cycles are required for each lookup. The processor’s

frequency is 2.3 GHz, thus roughly 0.44 million packets can be processed in each second. It

is obvious that when the datasets are large, the software-based implementation of the FPT
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does not yield impressive results, and therefore, FPT would likely rely on hardware-based

implementations.

Figure 4.14: Fingerprint-based Hash Table Lookup Performance

As expected, the FHT performs much better than FPT in software. As shown in Figure 4.14,

each lookup requires only 1, 126 cycles without any additional optimization. With 4KB

pages, the lookup latency increases sharply when the datasets become large, e.g., 256 million

names or more, due to more TLB misses. With 2MB pages, the lookup latency increases

moderately. Regardless of the configuration, querying the collision table always introduce

additional latency. An interesting observation is that, when either only software prefetching

or only 2MB pages is employed, the performance with software prefetching outperforms the

one with 2MB pages when the datasets are relatively small, i.e., less than 512 million names.

Eventually, the performance with 2MB pages outperforms the one of software prefetching

with one billion names. This is what we expected as more TLB misses are likely to occur

when the memory size becomes large.

The best performance is achieved when both software prefetching and large pages are used.

When the CT is queried, each lookup requires 654 cycles (0.29µs); when the CT lookup is
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o✏oaded, each lookup requires 437 cycles (0.19µs). Correspondingly, the single-threaded

program is expected to be able to process 3.5 MPPS and 5.2 MPPS, respectively. Assuming

each packet is 256 bytes long, the single-thread packet forwarding throughput is expected

to achieve 7 Gbps and 10 Gbps, receptively. Because the FIB is used mostly for lookup

operations, the throughputs of software-based implementations are expected to be improved

further with multi-threading on multicore platforms.

4.3.8 Related Work

Previous studies have explored both trie-based and hash-based data structures to reduce

the memory requirements of name-based forwarding. Trie-based approaches reduce memory

requirements as prefixes are shared, but the memory requirements of storing the shared

name prefix are still considerable. Encoding methods [77] have been explored to reduce the

memory requirements, with the cost of additional lookups to generate the encoded names. As

for the designs that employ compact but lossy data structures, the bloom filter-based design

proposed in [78] may introduce false positives even when there is only one name component

in the name. The design proposed in [80] stores only fingerprints in the hash table using

perfect hashing, however, the structure that used to generate perfect hash values requires

additional storage. In addition [78, 80] do not guarantee to di↵erentiate name prefixes with

di↵erent numbers of name components, thus they may introduce false positives as hash

collisions could occur between name prefixes with di↵erent numbers of components. In the

recently proposed speculative forwarding method [67], the string verification requirement in

the core routers is relaxed, and thus the memory requirement is reduced considerably. In our

work, we focus on exact string di↵erentiation and only names with one name component are
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considered. Names with multiple name components can be looked up in a separate structure

that supports traditional longest name prefix match with no false positives.

4.4 Summary

Name-based forwarding is a core component in information-centric networking. The for-

warding information base design can be optimized based on the specific characteristics of

the forwarding rules.

First, we have identified the existence of prefixes with large number of next-level suffixes in

the URL datasets, so that when practical NDN forwarding rules are available, the proposed

level-pulling method can be applied to optimize the lookup procedure.

Second, the speculative forwarding method reduces the name-based forwarding memory size

significantly by relaxing the string verification requirement in core networks. We define

the string di↵erentiation problem and propose fingerprint-based solutions to enhance the

name-based forwarding performance. The fingerprint-based Patricia-trie e↵ectively reduces

the lookup latency of sBPT, and its performance can be improved further with pipelining

techniques in practice. The fingerprint-based hash table reduces the memory size and lookup

latency further. The FHT requires only 3.2 GB to store 1 billion names, with a lookup

latency of 0.29 µs. Hence, the single-threaded software implementation of the FHT design

supports packet processing rate at 3.5 MPPS, and its throughputs can be improved further

via parallelism on multicore or hardware-accelerated platforms.
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Chapter 5

Pending Interest Table

In the previous two chapters, we have focused on the Forwarding Information Base design.

In this chapter, we focus on the design of the Pending Interest Table.

A Pending Interest Table (PIT) is a core component in Named Data Networking. Scalable

PIT design is challenging because it requires per-packet updates, and the names stored in

the PIT are long, requiring more memory. As the line speed keeps increasing, e.g., 100 Gbps,

traditional hash table-based methods cannot meet these requirements. In this chapter, we

propose a novel Pending Interest Table design that guarantees packet delivery with a compact

and approximate storage representation [87]. To achieve this, the PIT stores fixed-length

fingerprints instead of name strings. To overcome the classical fingerprint collision problem,

the Interest aggregation feature in the core routers is relaxed. The memory requirement and

network traffic overhead are analyzed, and the performance of a software implementation of

the proposed design is measured.

Our results show that 37 MB to 245 MB are required at 100 Gbps for a single router case, so

that the PIT can fit into SRAM or RLDRAM chips. When multiple core routers are used,

the memory requirements are twice of that of a single core router. As a result, 74 MB to
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490 MB are required in the worst case, which is still slightly more memory-efficient than a

standard hash table-based design.

5.1 Introduction

The PIT keeps track of the currently unsatisfied Interest packets. Arriving Interest packets

are forwarded to the next hop based on a FIB lookup only if the PIT finds no pending

Interest packet with the same name. The PIT also stores the destination information for

Data packets. For each Data packet, the PIT is queried to find the incoming face(s) that

requested the content, and then the Data packet will be delivered and its content name

is deleted from the PIT. Hence, the PIT requires per-packet updates, including memory

writes. At 100 Gbps, a 100-byte packet could have an arrival rate of eight nanoseconds. In

the meantime, the PIT memory size becomes larger as the link speed increases, which makes

space-limited high speed memory devices infeasible to use. In each PIT entry, the content

name needs to be stored. The names are similar to URLs, and today’s URLs typically

require tens of bytes of storage. For example, the URLs for the pictures and videos on

popular social networking websites, which include long hash numbers, are more than 80

bytes long. Moreover, there are websites that include article names in the URLs, making the

URLs longer. As a result, designing a fast and scalable Pending Interest Table is challenging.

Based on the PIT memory requirements analysis in Section 5.4.5, we focus on the PIT design

for 100 Gbps links because it is more challenging, although the proposed data structures can

be applied with other link rates.

Our approach is to reduce the PIT memory size for core routers, so that fast memory chips,

such as SRAM or RLDRAM, can be employed to support per-packet updates. Uniquely, our
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design guarantees packet delivery with a compact and approximate storage representation.

We propose a network-wide solution to the scalable Pending Interest Table problem. In our

design, we classify network routers as either core routers or edge routers, just as in today’s

Internet. The edge routers function as usual, but the core routers store a fingerprint instead

of the full name string for each Interest packet. As a result, the core router PIT memory

requirement is greatly reduced. However, fingerprint collision, a classical problem, arises. To

guarantee packet delivery, we relax the Interest aggregation requirement in core routers, i.e.,

every Interest packet received by the core router PITs will be forwarded. To provide enough

time for potential multiple Data packets to arrive, a colliding fingerprint entry will not be

deleted until it has expired. Another problem is that the proposed system cannot di↵erentiate

fingerprint collisions from duplicate Interest requests. Thus, for duplicate fingerprints, we

leverage the idea that most Interest aggregation happens at the edge routers, and also use

the Content Store in the core routers to help prevent receiving duplicate Interest requests.

The proposed design introduces additional network traffic, but it will be dropped by the

edge routers. Hence, the entire packet processing procedure is transparent to the users and

content providers.

Specifically, we make the following contributions in this chapter.

• We propose a PIT design that takes advantage of a compact storage representation

and the edge router filtering e↵ect, so that the memory requirement of the Pending

Interest Table in core routers is reduced.

• We use analytical modeling to analyze the memory requirement and demonstrate the

network traffic overhead is acceptable. Our results show that 36.77 MB to 244.44 MB

are required at 100 Gbps for the case with a single router. When multiple core routers

are used, the memory requirements are doubled.
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• We have implemented the PIT design in software, and measured the fingerprint collision

rate and update latency. At 1 Gbps, the measured latency is 1.2µs. The update

latency can be improved further using software optimization techniques such as memory

prefetching.

5.2 Background

In this section, we review the functionality and design considerations of the Pending Interest

Table, and then consider general hash-based techniques.

5.2.1 Design Considerations

The Pending Interest Table provides two major functions in the NDN architecture, namely

Interest packet aggregation and Data packet multicast. Each incoming Interest name is

looked up in the PIT, and duplicate Interest requests are aggregated, i.e., the Interest packet

will be forwarded only if its name is not found in the PIT. The PIT keeps track of which

face has requested what content, and each PIT entry stores a list of its Interest incoming

faces. When a Data packet arrives, the PIT is queried to fetch all the outgoing faces, and

then the Data packet is delivered. The PIT design has been recognized as a flow table

management problem [89]. In IP networks, generally a five-tuple rule is used to define a

flow. Likewise, we could define each NDN flow using a content name. Each flow has its

expiration time and a list of incoming faces. NDN packets have hierarchically structured

names, while in this chapter we use exact string matching for PIT name lookup. While

our approach provides the essential functionality, it is worth noting that the PIT lookup
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in the NDN reference implementation has additional features [12]. It is also suggested in

[89] that the core and edge routers should have di↵erent features. Indeed, our proposed

design leverages the di↵erences between these two types of routers. The detailed di↵erences

between the edge and core routers are presented in Section 5.3.

5.2.2 Hash-based Techniques

Hash tables have been studied extensively in the past decade for high-speed packet processing

[34]. Hash table designs generally aim at a constant number of o↵-chip DRAM references.

Previous studies [38, 40, 66] show that storing filters on a small SRAM chip greatly reduces

the number of DRAM accesses. The filters stored in SRAM are typically Bloom filters, or

counting Bloom filters. It has also been proven that storing fingerprints in a hash table

provides the same filtering function [7]. However, applying these designs directly for PIT

still requires at least one DRAM access to write the content name and other information

for each insertion. Since a long content name exceeds the DRAM bus capacity, each PIT

entry access requires multiple cycles, or can be optimized as one or two burst accesses. Our

approach seeks to eliminate the DRAM accesses. Hash tables are preferred to Bloom filters

because the expiration time and the face list can be easily stored for each entry.

5.3 Pending Interest Table Requirements

In this section, we discuss the di↵erences between edge and core routers, and then highlight

their requirements.
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Table 5.1: Pending Interest Table Requirements

Line Rates Edge(1 G) Core(10 G) Core(100 G)

Interfaces thousands hundreds tens
Best Case 0.156 Mpps 1.563 Mpps 15.625 Mpps
Worst Case 1.25 Mpps 12.5 Mpps 125 Mpps
Best Mem 0.625 MB 6.25 MB 62.5 MB
Worst Mem 5 MB 50 MB 500 MB

Edge routers connect consumers to ISP networks, and therefore the numbers of interfaces

on edge routers are typically large, reaching 64 thousand [53]. The throughput is not high

for edge routers, so in this chapter, we select 1 Gbps as the link rate. Network traffic

aggregates at edge routers and then enters the backbone networks. Core routers are deployed

in backbone networks, where the throughput rather than the number of interfaces is the

primary concern. A high-end router may contain multiple line cards, and therefore its

bandwidth can reach 10 Gbps, 100 Gbps, or more. In this case, the number of entries in the

PIT is large, and the PIT needs to be updated efficiently. Generally, there are not as many

features on core routers as on edge routers, and the number of faces is small, ranging from

a few interfaces to tens of interfaces [16].

The number of packets arriving at each face is also a↵ected by the packet sizes. Since NDN

can run on top of Ethernet directly, the packet size could be as small as 64 bytes, or as large

as 1500 bytes. Generally, Interest packets are relatively small, and Data packets are large.

In a flow balance mode, one Data packet is transferred for one Interest packet. The best case

can be configured as 100-byte Interest packets and 1500-byte Data packets. In the worst

case, the Data packets can be as small as the Interest packets; therefore, we set 100 bytes

for both of them. Table 5.1 lists both the operation frequency and memory requirements,

assuming the round trip time Trtt = 80 ms [53], SI = 100 Bytes, the best case SD = 1500
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Bytes, and the worst case SD = 100 Bytes. We are not considering the case where most of

the Interest packets cannot be satisfied and have to wait for expiration, because this behavior

could happen only when the PIT is under a flooding attack. PIT security issues are discussed

in Section 5.7. From Table 5.1, for low-end routers, the memory size in the worst case can

be easily fit into SRAM. Even for the 10 Gbps case, it is possible to fit them into RLDRAM.

However, for the 100 Gbps case, its memory size cannot be fit into RLDRAM, thus DRAM

has to be used. It is worth noting that we are designing the PIT for the worst case (i.e.,

SD = 100 bytes), since we believe the PIT should be capable of handling the worst-case

traffic. Moreover, even under other operation modes, our design could still save considerable

memory space.

5.4 Fingerprint-only Pending Interest Table

In this section, we present the proposed fingerprint-only Pending Interest Table design in

detail.

5.4.1 Design Overview

Our design is based on the ideas that storing fingerprints saves memory space, and that edge

routers can aggregate most of the duplicate Interest packets. Thus, our system-wide solution

to scalable PIT can relax the Interest aggregation requirement for the core routers. Figure

5.1 shows the system design. A wider arrow denotes a larger number of packets. In the

figure, Interest packets are aggregated at the edge routers and then enter the core network.

The core routers simply forward all the received Interest packets. Eventually, duplicate core
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Interest packets are aggregated at the edge router before reaching the content provider. The

content provider receives only one Interest request. Then one Data packet is replied and

distributed to the users. The entire packet processing procedure is transparent to the users

and content providers.

edge

contentedge

edgeedge

edge

edge core core

Data
Interest

Figure 5.1: System Design

The PITs in edge routers operate as described in the NDN design [32], where name strings are

stored, and Interest aggregation is supported. The PITs in the core routers store fixed-length

fingerprints instead of name strings. Two challenges arise with this approach: fingerprint

collisions and duplicate Interest requests. To guarantee packet delivery, Interest aggregation

is not supported in the core routers when fingerprint collisions occur. Colliding fingerprints

are not deleted from the PIT until they reach the expiration time Texp, giving enough time to

wait for potential multiple Data packets. To achieve this, each PIT entry in the core routers

records if duplicate fingerprints have been received. The PIT entry expiration time and

face list information are managed in the same fashion in edge and core routers. The second

challenge is duplicate Interests. Although a duplicate Interest packet from a di↵erent face

would make its PIT entry stay longer, we leverage the idea that most Interest packets are

aggregated in the edge routers, and we will analyze the e↵ect of duplicate Interest requests

in Section 5.4.5.
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While the edge routers follow the original operational flows as illustrated in [89], the oper-

ational flows of the core routers are modified. When an Interest packet arrives at the core

router, the Content Store is queried to see if the content is cached. If the requested content

is not cached, the PIT is consulted to see if it has already been requested. The lookup key

is the fingerprint of the content name. If there is no match in the PIT, then this fingerprint

is inserted, its expiration time is set, and its incoming face is recorded. If there is a match

for this fingerprint in the PIT, then additional information about the collision is updated,

the expiration time is refreshed, and the incoming face is added. In the end, the Interest

packet is forwarded to the appropriate outgoing face by performing a FIB lookup, regardless

of whether there is a PIT match or not. On the arrival of a Data packet, the packet will

be selectively cached based on the Content Store caching policy. Then, the packet is looked

up in the PIT, with the content name fingerprint as the key. If the fingerprint is found,

then the Data packet is delivered to the face(s) stored in the face list. If this fingerprint has

been received only once, it is removed from the PIT immediately; otherwise, it stays until

the expiration time is reached. There are three operation situations, as shown in Figure 5.2,

that could occur in this design.
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(c) Fingerprint Collisions

Figure 5.2: System Operations
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Normal Operation. In the normal case, di↵erent Interest names map to di↵erent finger-

prints. For example, name A maps to fingerprint A0, and name B maps to B0. As a result,

the operation is the same as the case where name strings are stored. No traffic overhead is

introduced.

Duplicate Interest Requests. When duplicate Interest requests arrive at the core router

from di↵erent faces, the fingerprint stays in the PIT longer. Hence, there is memory overhead

compared with the normal operation, and there is Interest traffic overhead since duplicate

requests are not aggregated.

Fingerprint Collisions. If two content names share the same fingerprint, then these two

Interest packets take one PIT entry, rather than two, reducing the number of stored PIT

entries. Still, the colliding PIT entry stays longer in the PIT, which introduces memory

overhead compared with the normal case. Since the two Data packets are delivered to both

faces, Data traffic overhead is also introduced. In a special case, if one Interest has been

requested by many faces, then the absolute value of the additional traffic is much larger.

5.4.2 Data Structures

Our proposed PIT design is based on a d-left hash table [34], where the hash buckets are

grouped to d subtables. To insert an item, all of the d subtables are visited and the item

is inserted to the least loaded subtable. Figure 5.3 shows the PIT architecture with d = 2

and also a PIT entry example. Each hash table has a capacity of N/d entries, and it has

B buckets, where each bucket holds up to E entries. The architecture also has an overflow

table to store the items that cannot fit into the hash tables. The hash function determines
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Figure 5.3: PIT Data Structures

the bucket location of a name string and also its fingerprint. As described in [7], the d hash

functions in the PIT have to use permutation to generate the bucket indexes and fingerprints.

Each PIT entry consists of five parts: the Occupy bit, the Collision bit, the fingerprint, the

expiration time, and the face list. The Occupy bit indicates whether this PIT entry space is

occupied or not. It also enables lazy deletion, since deleting an entry requires only setting

this bit to 0. The Collision bit shows whether more than one Interest requests have been

received for this fingerprint. The fingerprints have fixed lengths, w-bit long. The expiration

times also have a fixed length of t bits. The value of t is determined by the configured

expiration time support and its granularity. In our design, t = 10 and its unit is 16 ms, thus

the timer counts up to 16 seconds. The face list stores the incoming faces. In our design, it

is a bit-vector of length n, where n is the number of faces. The bit vector is initialized to 0s,

and the ith bit is set to 1 when an inserted Interest comes from face i. In our analysis, we

assume a core router with 16 ports. When the number of ports is larger, bit vector may not

be the best face list representation, thus memory-efficient alternatives need to be explored,

but it is beyond the scope of this dissertation.
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Algorithm 1: Insert an entry into the PIT

Input: PIT T , Name name, Incoming face fi
loc  H(name) mod B
fp  ShiftRight(H(name), log(B)) mod 2w

foreach entry in T(loc) do
if entry.occupy = 1 then

if entry.expiration < current then
Reset(entry)

else
if fp = entry.fp then

fp is found

if fp is found at entry in T (loc) then
entry.collision  1

else
entry  empty entry in T [loc], or overflow table
entry.occupy  1
entry.fp  fp

entry.facelist[fi]  1
entry.expiration  current+ Texp

Algorithm 1 shows the steps for inserting an item into the PIT, while the method that

handles timer rollover is not included here. We use a lazy expiration time check scheme, so

the expiration time will not be examined unless it is visited during some operation. The

deletion algorithm, which employs the lazy deletion method, is not shown here due to space

limits.

5.4.3 Segregated Pending Interest Table

Although our fingerprint-only PIT significantly reduces the memory requirement, it may still

exceed the size of a single memory chip when the link rates are high. We propose a segregated

Pending Interest Table to address this problem. In this design, the single PIT is divided
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into s segregated PITs in the router. Each segregated PIT keeps track of the unsatisfied

Interest packets from n/s faces. As a result, the e↵ective bandwidth of each segregated PIT

is 1/s of the full link rate, and thus the required memory is much smaller. The Interest

packets are sent to the appropriate segregated PIT based on their incoming faces, and the

rest of the packet processing stays the same. In contrast, on the arrival of Data packets, all

of the segregated PITs are queried to find the incoming face(s) of the corresponding Interest

packets.

5.4.4 Popular Content Optimization

In this subsection, we first discuss the challenges of popular content, and then present opti-

mization methods that address these problems.

Popular Content

Our fingerprint-only Pending Interest Table is based on the idea that most Interest packet

aggregation happens at the edge routers, and therefore the core routers are more likely

to receive unique Interest requests. We have two observations that further support this

assumption. The first observation is that the e↵ective Interest waiting time is short, generally

equivalent to a packet round trip time Trtt. In today’s Internet, Trtt is around 80 ms on

average [53], thus the chance of receiving a duplicate Interest during such short period is

low for general content. The second observation is that highly accessed pieces of content, as

time goes on, are gradually cached in edge networks, so subsequent Interest requests can be

satisfied locally and will not enter the core networks. Thus, the chance of receiving duplicate

Interest requests during Trtt is further reduced. However, certain types of content could still
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be requested multiple times during Trtt. For instance, live sports games and concerts could

possibly be watched by millions of people from di↵erent edge networks at the same time.

These Interest requests are more likely to be synced and arrive within Trtt. In this case,

the PIT entry stays at least Texp long since a colliding entry cannot be removed until it has

expired. In theory, the worst case could be that another Interest packet arrives right before

the current entry expires, causing this entry to stay for at least another Texp amount of time.

Thus the entry could stay for approximately Texp ⇥ (n− 1) long in the worst-case scenario.

Interest requests like this increase the PIT memory requirement and therefore need to be

mitigated.

Optimization

We present three orthogonal methods to mitigate the popular content problem.

Content Store The worst case presented earlier assumes the requested Interest packets

cannot be satisfied by the Content Store (CS), which caches Data packets in an NDN router.

Interest packets do not query the PIT if they are satisfied by the Content Store. Storing

popular content in the Content Store not only prevents colliding PIT entries being refreshed

once the Data packets are cached, but also reduces the content delivery time for the users.

Hence, a dynamic selective Content Store that gets invoked when a PIT entry becomes hot

can be employed to mitigate the popular content problem. For instance, the Content Store

can be configured to cache Data packets that have been requested more than once. Under

this policy, each PIT entry stays at most Trtt + Texp long. The size of the Content Store is

determined by the number of duplicate Interest requests received.
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Adaptive PIT The proposed PIT is designed for the worst case, where minimal-size Data

packets are used. In practice, network traffic does not stay at peak all the time. As a

result, we propose an adaptive PIT design, where fingerprints are stored under heavy traffic

load, and full name strings are stored under light traffic load. Storing the names supports

Interest aggregation, therefore the popular content problem would not occur. This idea is

conceptually similar to the dynamic bit assignment method for fingerprint-based hash tables

[8], which adjusts the fingerprint length based on the number of occupied entries in a hash

bucket.

Segregated PIT The segregated PIT design can also be used in this context. Since the

incoming traffic is divided into multiple sub-streams, the chance of getting duplicate Interest

requests is reduced. In a special case, a smaller PIT can be deployed for each face. There are

no duplicate Interest requests at each face due to Interest aggregation at the edge routers.

Approaches that deploy a Bloom filter for each face [84][85][86] have been studied.

In addition, application-level optimizations, such as designated broadcast names, can be

explored to help mitigate the popular content problem.

5.4.5 Analysis

Memory size and network traffic overhead are the two major metrics for evaluating the

proposed Pending Interest Table design, and both of them are a↵ected by the fingerprint

distribution in the PIT. In this section, we first analyze the fingerprint-based hash table

and derive an upper bound of the number of names that have duplicate requests, and then

we present a detailed analysis of the memory size and network traffic overhead. Since the
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actual characteristics of the traffic in the NDN core networks is not known, we use analytical

modeling and Zipf-like fingerprint distributions instead. It is worth noting that relaxing

Interest aggregation changes the dynamics in the core networks, and there are more Interest

packets when duplicate Interest requests occur. For instance, when every content is requested

twice, there are two Interest packets for every Data packet, so that 66.7% of the network

packets are Interest packets. Also note that we assume there is only one core router in

the network in this subsection, which is connected with multiple routers that perform both

Interest aggregation and Data multicast. The case with multiple core routers is analyzed in

Section 5.5.

Fingerprint-Based Hash Tables

Our analysis di↵ers from previous studies: We are more interested in the fingerprint dis-

tribution than in the hash table false positive rates, which are typically considered because

fingerprint-based hash tables are used as a membership query tool [7]. In these studies,

duplicate items have no e↵ect on how long the corresponding fingerprint is kept in the table.

In contrast, our design uses hash tables to manage a stateful flow table. Duplicate Interest

requests will cause the PIT entry to be recognized as collided and to be retained longer in

the table.

The fingerprint distribution problem can be formulated as follows: Given an Interest name

distribution function F for a hash table with capacity N , and w-bit long fingerprints, what

is the corresponding fingerprint distribution function f? The value of Fi in function F is

defined as the number of names that have exactly i duplicate copies (including itself) during

Trtt. For instance, there are F1 number of Interest names being requested only once. Hence,
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the total number of unique Interest names is Ntotal =
Pn

i=1 Fi, where n is the number of faces

corresponding to this PIT. The total number of Interest packets is Ptotal =
Pn

i=1 Fi ⇥ i.

Collisions a↵ect the fingerprint distribution. A fingerprint collision occurs if and only if both

the hash bucket locations and the fingerprints are identical. The average number of keys

stored in each bucket is determined by the hash table load factor. In our design, each bucket

has eight entries, and the load factor is 75% as this configuration provides good performance

[7]. As analyzed in [7], the fingerprint collision rates are bounded by E ⇥ d ⇥ ld ⇥ (1/2w),

where E is the number of entries per bucket, d is the number of subtables, and ld is the

load factor of the hash tables. In our case, when d = 4, E ⇥ d ⇥ ld = 24, thus the average

fingerprint collision rates are bounded by 24/2w. As a result, the ratio of the names that

involve fingerprint collisions is 24/2w−1. In addition, we derive that the probability of having

i names collide is bounded by
⇣

24
i−1

⌘
/2w⇥(i−1).

Deriving the entire fingerprint distribution function f seems possible, but requires complex

mathematical work. Instead, we derive an upper bound on the number of duplicate finger-

prints rather than seeking an accurate distribution function. The upper bound is sufficient

for performing the worst-case analysis. The number of fingerprints that appear exactly once

is

f1 ≥ F1 ⇥ (1− 24/2w−1). (5.1)

In the worst case, each duplicate Interest name is requested exactly twice. Thus the number

of duplicate fingerprints is
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1X

i=2

fi  (Ptotal − f1)/2. (5.2)

Memory Size

The PIT memory size is determined by the number of entries and the lifetime of each entry.

Given a fingerprint distribution f , the total number of Interest packets is Ptotal =
P1

i=1 fi⇥ i.

The PIT memory size is

Mtotal =

 

f1 +
1X

i=2

(fi ⇥
Ti

Trtt

)

!

⇥ Mbucket

ld
, (5.3)

where ld is the load factor of the hash table, and Ti is the average Interest lifetime of

the names that have exactly i duplicate Interest requests. In our design, 10-bit expiration

timestamps, 16-bit fingerprints, and 16-bit face list bit vectors are used, therefore Mbucket =

2 + 10 + 16 + 16 = 44 bits.

Worst Case Analysis When there is no Content Store, the worst-case lifetime of an entry

can be as long as Texp ⇥ (n− 1) in theory, where n is the number of interfaces in the router.

The traffic pattern that causes this worst-case behavior should rarely happen for general

content. In the case where they might occur, such as a live sports broadcasting, the Content

Store should be deployed as we have discussed in Section 5.4.4. To make the worst case

manageable, we assume there is a Content Store. With a proper CS caching policy, Data

packets corresponding to duplicate fingerprint entries are cached. Thus the duplicate Interest

requests that arrive during Trtt will be inserted into the PIT and then forwarded, while the

ones arriving after Trtt will be satisfied by the CS. The content needs to be cached for at least
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Texp long, so that the PIT entry can expire and get deleted. In this case, the Content Store

size is r ⇥ Texp/Trtt, where r is the number of names that have duplicate requests during

Trtt. In this scenario, each duplicate fingerprint entry stays for at most Trtt + Texp long in

the PIT. The worst case is that every content is requested by exactly two faces. Thus we

have the memory size as

Mtotal =

 

f1 +
Ptotal − f1

2
⇥ Trtt + Texp

Trtt

!

⇥ Mbucket

ld
. (5.4)

Figure 5.4: Memory Requirement

We define Tlife = Trtt + Texp as the Interest lifetime for the collided fingerprint. In addition,

we let Tlife = k ⇥ Trtt and call k the lifetime factor. Figure 5.4 presents the memory

requirement with di↵erent numbers of subtables, lifetime factors, and duplicate request traffic

percentages. In Figure 5.4, we use a 100 Gbps link, assuming the Interest and Data packet

sizes are SI = SD = 100 bytes, Trtt = 80 ms, load factor ld = 75%, the lifetime factor k is

increased from 6 to 10, and the duplicate request percentage is increased from 0% to 100%.

The fingerprint length is set to 16 bits, and the number of subtables d is set to 2 and 4. In

both cases, the memory size increases almost linearly as the percentage of duplicate traffic
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increases. The memory requirement of 4-left hash tables is slightly higher than the one of

2-left hash tables due to a higher fingerprint collision rate. The lifetime factor k increases

the memory requirement linearly at each duplicate traffic percentage. With k = 10, in the

ideal case when there is no duplicate Interest traffic, the memory requirement is 5.34% of

the original hash table that stores name strings with the same 75% load factor; in the worst

case that all traffic is duplicate, the memory requirement could be as high as 35.51% of the

original. At 100 Gbps, the ideal case requires 36.77 MB, which can be stored in SRAM; and

the worst case needs 244.44 MB, which can be implemented using RLDRAM.

Zipf-like Fingerprint Distributions Zipf-like distributions have been observed in many

network activities, such as the content request patterns to web caching proxies [9]. We

use Zipf-like distributions to simulate the Interest fingerprint distribution. Zipf-like dis-

tributions are configured with an exponent characterizing parameter, S. And we have

fi ⇥ i = Ptotal/(H ⇥ iS), where H =
P16

i=1 1/i
S. Four Zipf distributions are used so that

we could see the trend of the memory requirement, and the real-world cases are more likely

to be covered. Table 5.2 lists the percentage of unique fingerprints and the memory require-

ment with d = 4 and k = 10 at 100 Gbps. The memory sizes are also compared with the

original hash table and the ideal case. From Table 5.2, when S = 1, which yields the largest

memory requirement, the memory size is 14.7% of the original hash table. Thus in practice,

Table 5.2: Memory Requirement of Zipf-like Fingerprint Distributions

S 1 2 3 4

Unique (%) 29.6 63.1 83.3 92.4
Memory (MB) 101.1 79.1 58.6 47.4
vs. Original (%) 14.7 11.5 8.5 6.9
vs. Ideal 2.7x 2.2x 1.6x 1.3x
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the PIT is lightly loaded when the worst-case memory size, 35.51% of the original hash table,

is configured.

Dynamic Expiration Time Management Configuring an appropriate expiration time

Texp is important in practice since it has a linear e↵ect on the memory requirement. A

longer Texp increases the memory requirement, while it provides a stronger guarantee to

receive potential multiple Data packets. The lifetime factor k is set to 10 in Figure 5.4 and

Table 5.2 because we believe Texp = (10 − 1) ⇥ Trtt is long enough for the Data packets

to arrive. In practice, the values of Trtt vary for packets that going to di↵erent websites.

Popular websites usually support reliable short response times, and Texp = 9⇥ Trtt could be

overkill. To optimize the PIT memory requirement, Texp can be dynamically configured for

each PIT entry. The strategy layer introduced in NDN [32] could provide Trtt for each name

prefix, thus each name prefix could maintain a recommended Texp. For instance, Texp can be

reduced to 2 or 3 times of Trtt for popular websites. In the case where the content cannot

be fetched quickly on the server, the pending Interest would expire, but the application will

resend an Interest request. And this time, the object could be retrieved quickly by the server

since it has just been requested.

Network Traffic Overhead

Network traffic overhead is introduced due to the relaxation of Interest aggregation and

fingerprint collisions. Since the Interest packets are always forwarded, the Interest traffic

overhead is TI = Ptotal −Ntotal. It should be noted that the Interest traffic never exceeds the

link capacity, since the link rates are configured to support the case where every Interest is

unique. The Data traffic could exceed the link capacity, but as we will show, the overhead
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is very small. The Data traffic overhead is caused by fingerprint collisions. Assuming each

Interest name is requested by p faces, and that q packets collide, then the total traffic

overhead for these q packets is bounded by p⇥ (q− 1)⇥ q. To provide an estimation, we use

the average number of duplicate Interest requests, Ptotal/Ntotal, for each name. As described

earlier, the probability of having i colliding fingerprints is
⇣

24
i−1

⌘
/2w⇥(i−1), thus we have

TD ⇡ Ptotal ⇥
1X

i=2

⇣
24
i−1

⌘
⇥ (i− 1)⇥ i

2w⇥(i−1)
. (5.5)

When 16-bit long fingerprints are used, the equation is reduced to TD = 7.3281⇥10−4⇥Ptotal.

The total amount of additional traffic in the network compared with the ideal design is

Ttotal = TI ⇥ SI + TD ⇥ SD, where SI is the Interest packet size and SD is the Data packet

size.

Figure 5.5: Network Traffic Overhead

Figure 5.5 shows the normalized network traffic of the proposed design and the ideal case,

where Interest aggregation and Data multicast are supported by storing name strings. The
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traffic is normalized to the Internet traffic for delivering the same amount of content, and

neither Interest aggregation nor Data multicast is supported in the Internet case. The

di↵erence between the traffic of the proposed design and the ideal case shows the overhead.

From Figure 5.5, the traffic overhead increases as ↵ increases, mostly due to the Interest

traffic overhead. In the worst case, when ↵ = 16 and SD = 100 bytes, the normalized traffic

of the proposed design (53.16%) is 8.51 times of the ideal case (6.25%). The traffic overhead

decreases as SD increases. When ↵ = 16 and SD = 1500, the traffic is 1.95 times of the ideal.

The Data traffic overhead increases as ↵ or SD increases, and the peak Data traffic overhead

is 1.10%, where ↵ = 16 and SD = 1500. When ↵ = 1 and SD = 1500, the normalized

traffic of our design is 100.069%, which exceeds the link capacity by 0.069% due to Data

traffic overhead. It is worth noting that the average number of requests ↵ generally is very

low, thus the traffic overhead would be small. Moreover, the proposed design overloads the

link capacity by at most 0.069%, because the ideal design also needs to support the case

where every Interest is unique. When the Interest traffic overhead is a concern, optimization

methods, such as storing names for popular requests, can be applied.

Table 5.3: Traffic Overhead of Zipf-like Fingerprint Distributions

S 1 2 3 4 Data

Unique (%) 29.6 63.1 83.3 92.4 NA
100 B (%) 56.8 16.1 5.5 2.2 0.078
200 B (%) 37.9 10.7 3.7 1.5 0.104
300 B (%) 28.5 8.1 2.8 1.2 0.117
1500 B (%) 7.2 2.1 0.8 0.3 0.147

We again use Zipf-like distributions to study the traffic overhead in general networks. Table

5.3 lists the percentage of the traffic overhead compared with the ideal case using multiple

Zipf distributions and Data packet sizes. The maximum Data traffic overhead is also listed in

Table 5.3. When the exponent characterizing factors S is greater than 2, the traffic overhead
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is always less than 16.1%. The overhead is always small with large Data packets. In addition,

the peak Data overhead is 0.147%, which is negligible in most network environments.

Segregated PIT Analysis

The segregated PIT design reduces the memory requirement for each smaller PIT since the

number of entries is only 1/s of the single PIT. Moreover, the entry size of the segregated

PITs is also smaller because the face list length is reduced to dn/se. However, the fingerprint

length needs to be increased slightly. Assuming the fingerprint collision rate of a single PIT

is fp, then the fingerprint collision rate of the segregated PITs is 1− (1− fp)
s ⇡ s⇥ fp. To

maintain the same overall fingerprint collision rate, the length of the fingerprints stored in

the smaller PITs needs to be dlog(s)e bits longer. Thus, each PIT entry size is reduced by

n− (dlog(s)e + dn/se) bits. For instance, when a 16-face router is divided into two smaller

PITs, the PIT entry size is reduced by seven bits. On the other hand, the memory bandwidth

of the segregated PITs needs to be increased by s times, because all s segregated PITs are

queried when Data packets arrive.

5.5 The Case with Multiple Core Routers

Previous sections have presented the design and analysis with the assumption that there is

only one core router in the network, which is connected with multiple routers that perform

both Interest aggregation and Data multicast. In this section, we discuss the issues with

supporting multiple core routers in a network and analyze on the memory requirements and

network traffic overhead.
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5.5.1 Supporting Multiple Core Routers

The issues with supporting multiple core routers arise because routers are aware of only local

fingerprint collisions and have no knowledge of remote fingerprint collisions that happen at

other forwarding nodes along the path. For example, consider an Interest packet with name

A that does not have a collision at the current core router 1, but collides with another Interest

packet with name C at the next hop core router 2. In this case, both Data packets A and

C are delivered to the core router 1 because the PIT entry is marked as collided. If the

same hash function is used at core router 1, then the first arriving packet removes the PIT

entry right away because there is no known collision locally. However, this Data packet

is not necessarily the one that is actually requested, and the requested packet will not be

delivered to the consumers because the PIT entry has already been removed when the Data

packet finally arrives. Figure 5.6(a) shows an example that Data packet with name C is never

delivered.

core

core

core

I: A, A'
D: A, A'

I: C, A'
D: A, A'

I: A, A'D: A, A'

I: C
, A'

D: A, A'

I: A, A'

D: A, A'
I: C, A'

D: C, A'

D: C, A'

D: C, A'

(a) Data packet C is not delivered

core

core

core

I: A, A'
D: A, A'

I: C, A'
D: A, A'

I: A, A'D: A, A'

I: C
, A'

D: A, A'

I: A, A'

D: A, A'
I: C, A'

D: C, A'

D: C, A'

D: C, A'

fingerprintname

Data
Interest

type

D: C, A'

D: C, A'

(b) Data packet C is delivered because
packets A and C are marked

Figure 5.6: Supporting Multiple Core Routers

To solve this issue, essentially each router needs to be aware of collisions that occur on

upstream paths. As a result, one solution is that, when a Data packet is delivered from

a core router, whenever its corresponding PIT entry is being marked as collided, a special

flag needs to be marked in the Data packet to indicate that this packet has encountered a
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collision. When a Data packet is marked as collided, the core router keeps the corresponding

PIT entry until it expires, regardless of whether it has been marked as locally collided or not.

Thus, if a fingerprint collision happens on a core router, then all of the downstream routers

keep the corresponding PIT entries for the colliding packets until they expire, in case there

is potentially another Data packet being delivered. Figure 5.6(b) shows that Data packets

with name A and C are both delivered because the corresponding flags are marked in the

packets.

5.5.2 Analysis

Memory requirements The PIT memory requirements for multiple core routers are

higher that those for a single core router case. Two factors contribute to the increased

memory requirements.

The first factor is the fingerprint collision rate. The e↵ective fingerprint collision rate is higher

because an Interest packet may experience collisions at every core router it goes through. To

mitigate this issue, the fingerprint length can be increased to reduce the fingerprint collision

rates. But overall, the additional memory required to handle this type of collision is small.

The second factor, duplicate traffic, has a larger impact on memory size, especially in the

worst case. In the worst case, every Interest has a duplicate request in the core network, and

it is likely that the collision would happen closer to the content publisher. For most of the

downstream routers, the returned Data packet is marked with an additional flag indicating

that it has encountered a collision. Hence, every entry in the PIT will be marked as collided.
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Recall that the worst case for the single core router is that, each arriving Interest packet

has exactly two copies: Hence, the number of entries occupied in the PIT is 50% of its

full capacity. In the case with multiple core routers, the worst-case memory requirement is

double that of the single core router case.

In reality, because of Interest aggregation at edge routers, the duplicate traffic in the core net-

work is expected to be reasonably low. As a result, it is likely that the memory requirement

can be lower in the worst-case analysis.

Traffic overhead The additional traffic is introduced by only Data packets. The reason is

that Interest traffic is not a↵ected, because all of the Interest packets are already forwarded

in the core network.

As the case with a single core router, the additional duplicate Data traffic is caused by

fingerprint collisions. The duplicate Interest requests are still aggregated by edge routers

before they reach the content publishers. As a result, the Data traffic entering the core

network is not a↵ected, but the additional Data traffic is determined by the hash collision

rates. Although the hash collision rate is higher when more hops are went through, the

overall impact is expected to be small. In addition, additional bits can be allocated for each

entry to reduce the hash collision rates.

5.6 Performance

In this section, we evaluate the performance of the proposed Pending Interest Table design.
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5.6.1 Experimental Setup

We implemented the fingerprint-only Pending Interest Table in C++. The hardware platform

used was a machine equipped with eight Intel Xeon E5540 cores, 8 MB of L3 cache, and

12 GB of DDR3 memory. Because real-world NDN core router traces were not available, a

synthetic Interest trace was generated by appending a number ranging from 0 to 999 to each

domain name in the Alexa top 1 million websites [2].

5.6.2 Simulation

Wemeasured the fingerprint collision rates and the number of overflowed names with di↵erent

PIT size N , and di↵erent numbers of subtables d. Each bucket has E = 8 entries, the PIT

load factor ld was set to 75%, 16-bit fingerprints were used, and the lifetime factor k was set

to 10. In the experiment, m names were inserted in the first phase. A certain percentage,

denoted as dp, of the names are not unique (requested twice), and dp was set to 0%, 20%,

40%, 60%, 80%, and 100%. The value of m was adjusted accordingly for each dp so that the

targeted number of occupied entries in the PIT was always close to ld ⇥ N . In the second

phase, names were updated; and the ith name was deleted and then the (i+m)th name was

inserted, where i 2 {0...25⇥m}. In the simulation, we use the Interest name index, i, as a

timing tool. The Tlife is configured to be the number of names, m10, inserted during 10⇥Trtt.

The time at any point was set to the index of the latest inserted name. Thus, an Interest

with index i would be considered as expired once the (i + m10)
th name was inserted. The

largest measured fingerprint collision rates, denoted as f 0
p, and the number of the overflowed

names, denoted as M , are listed in Table 5.4. When the PIT has d = 4 subtables, it never
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overflowed, thus its overflow size is not listed. In the table, the PIT with size 1, 048, 576 is

denoted as 1M .

Table 5.4: Fingerprint Collision Rates and Overflow Sizes

Type d 1M 2M 4M 8M 16M

f 0
p(10

−4)
2 1.79 1.78 1.77 1.77 1.75
4 3.55 3.53 3.56 3.57 3.53

M(105) 2 0.08 0.17 0.34 0.67 1.32

From Table 5.4, the fingerprint collision rates in both d = 2 and d = 4 cases are close to the

theoretic values, which is expected. When there are d = 4 subtables, overflow never occurs

as each inserting name has 32 choices. But when d = 2, each inserting name has only 16

choices, overflow occurs as names being updated. The overflow size increases linearly as the

PIT table size increases. When the PIT size N = 16 million, 12.53 million names are stored,

and the overflow size is 132.23K. Even in this case, the overflow table memory requirement

is less than 0.73 MB, which can be stored on SRAM or TCAM.

5.6.3 Latency Measurement

We measured the PIT operation latency of the software implementation of the proposed PIT.

The experimental setup was the same except that we fixed dp at 0% since this case required

the highest update frequency. Hash values were computed using the 64-bit CityHash function

[15]. Figure 5.7 shows that the average latency of each operation increases as the PIT size

increases. The average latency with 4 subtables is approximately twice of the case with 2

subtables, since the number of memory accesses is doubled. In hardware designs, multiple

words can be read from SRAM chips in parallel, which reduces the latency. At 1 Gbps, the

PIT size is close to N = 65, 536, and the measured latency is about 1.2µs.
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Figure 5.7: PIT Operation Latency

Note that the performance can be improved further using software optimization techniques,

such as memory prefetching and large pages, that we have explored in the previous two

chapters. As pointed out in [65], secure hash functions are better to be employed for the

PIT and CS. Employing secure hash functions in software increases the update latency, but

the performance can be improved via hardware-based hashing units.

5.7 Discussion

In this section, we discuss the modification of the proposed Pending Interest Table when

false positives are allowed, and also consider the PIT security issues.

5.7.1 Allowing False Positives

In networks where a small number of false positives are allowed, the proposed fingerprint-

only Pending Interest Table can be modified to support Interest aggregation, just like name
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strings are being stored. This way, only one of the colliding Interest names is forwarded and

the rest are dropped. The false positive rates of the fingerprint-only PIT in this case are

the same as the previous analysis on the case with no duplicate Interest requests. At 100

Gbps, with the same configuration, the memory requirement of the modified PIT is 36.65

MB, slightly less than 36.77 MB, because collided fingerprints do not stay longer in the table.

Bloom filters have also been considered to implement PIT when false positives are allowed

[84][85]. In these designs, a Bloom filter is deployed for each face, therefore the Interest

aggregation is not supported. Overall, when false positives are allowed, the fingerprint-only

PIT is preferred because Interest aggregation can be supported, and the expiration time and

face list can be easily stored for each entry.

5.7.2 Pending Interest Table Security

The proposed Pending Interest Table is designed for the worst-case flow balance mode, but

it will not be able to handle an Interest flooding attack, where every Interest packet stays

for Texp. In this case, statistics collected on the routers should be able to detect the attacks

and then apply countermeasures. In addition, our proposed architecture could potentially

address the Interest flooding problem by designing a fingerprint-only PIT that is large enough

to hold all the flooded packets. The memory requirement may still be acceptable since only

a fixed-length fingerprint is stored for each Interest.
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5.8 Related Work

Prior hash-table based works on scalable PIT designs all support Interest aggregation in

both the edge and core networks, while our solution is the only one that relaxes the Interest

aggregation feature. The principles of scalable PIT designs are highlighted in [89]. The hash-

based methods in [65] store both fingerprints and name strings in the PIT. Although string

comparison can generally be avoided by checking their fingerprints, at least one DRAM write

operation is required to store the content name. Encoding methods [17] have been proposed

to reduce the PIT memory size, while additional lookups that encode the content name are

required before querying the PIT. Moreover, the transition arrays need to be dynamically

updated, increasing the complexity of the system. The performance of the encoding methods

and hash-based methods are compared in [72]. When false positives are allowed, our design

can be modified and supports Interest aggregation as described in Section 5.7; Distributed

Bloom filters [84] [85] have also been used as PITs in this context.

5.9 Summary

Fast and scalable Pending Interest Table design is a challenge in Named Data Networking.

In this chapter, we propose a Pending Interest Table design that guarantees packet delivery

and significantly reduces the memory requirement by storing fingerprints rather than name

strings. The Interest aggregation feature in the core routers is relaxed so that packets are

guaranteed to be delivered even when fingerprint collisions occur. We have studied the

memory requirement and network traffic overhead analytically, and demonstrated that the
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additional network traffic is acceptable. We have also measured the performance of a software

implementation of the proposed design.

Our results show that 37 MB to 245 MB are required at 100 Gbps for a single router case, so

that the PIT can fit into SRAM or RLDRAM chips. When multiple core routers are used,

the memory requirements are twice of that of a single core router. As a result, 74 MB to

490 MB are required in the worst case, which is still more memory-efficient than a standard

hash table-based design.
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Chapter 6

In-network Caching Elements

In this chapter, we focus on discussing the feasibility of implementing in-network caching

elements in NDN.

The Content Store (CS) is a temporary packet storage residing in the NDN forwarding plane.

Its basic functions are similar to those of the packet bu↵ers in current IP routers and to web

caching proxies. The CS is equipped with an indexing structure that supports efficient lookup

methods and cache replacement policies. Based on our experience with the FIB and PIT

designs, the CS indexing data structure can be implemented efficiently using hash tables. As

a result, in the first part of this chapter, we discuss the requirements of the Content Store

and present data structure designs to support CS lookups and cache-replacement policies,

including both Least Recently Used (LRU) and Least Frequently Used (LFU) policies.

In contrast to the CS, the NDN Repository (Repo) is a long-term persistent content storage.

A Repo can be deployed for a specific application, where the Repo acts like a database; it can

also be analogous to a content distribution node in current content delivery networks (CDNs)

to server large Interest requests. Thus, the Repo is required to support fast content retrieval
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and needs to be scalable to store large numbers of pieces of content. As a result, the Repo re-

quires efficient storage systems, which already exist in IP networks, such as NoSQL databases

and CDN storage systems. Thus, in the second part of this chapter, we demonstrate how

existing storage systems can be employed by the NDN Repo implementations. Specifically,

we present the performance results of the open-source NDN Repo implementation, Repo-ng,

using Redis [59], a popular key-value store, as the backend storage.

6.1 Content Store

Devices with network interfaces must maintain a set of packet bu↵ers to receive incoming

frames and to prepare outgoing frames for transmission. The Content Store in NDN utilizes

these packet bu↵ers for these reasons, but also maintains an index over the data names

associated with each packet bu↵er. While traditional networking stacks empty each packet

bu↵er after receipt, the Content Store in NDN keeps the content until the packet bu↵er

needs to be repurposed to hold other data. Compared to IP routers, in which packet bu↵ers

merely hold the frames while packets are being processed, the additional Content Store index

in NDN enables serving Interest requests with the stored packet bu↵ers in forwarding nodes,

improving the efficiency of network infrastructure.

Improving packet bu↵er performance in IP networks has been studied extensively [3, 20, 31,

39]. Previous studies focused on reducing the memory requirements and more efficient use

of the memory bandwidth. These techniques can be applied directly in NDN forwarding

designs. Cache-replacement policies have also been studied extensively in contexts such as

web caching. We focus on LRU or LFU policies because they can be implemented efficiently

in software. Existing NDN router designs mostly choose to implement the Content Store in
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memory [54, 65], just like the packet bu↵ers in IP. Recent designs that leverage solid state

drives (SSDs) to provide a larger secondary storage space have also been proposed [43, 64].

In the aforementioned designs, the lookup structures are typically implemented as hash

tables because they are simple and efficient. In addition, analytical modeling of the CS has

also been studied to characterize the caching behavior and benefits [18]. Our work in this

chapter focuses on designing an efficient indexing structure that supports both fast lookups

and cache-replacement policies.

In the rest of the section, we first discuss the memory requirements of the Content Store,

and then discuss the Content Store lookup data structure design. Finally, we present the

designs that support cache-replacement policies.

6.1.1 Requirements

The two major requirements for Content Store designs are memory size and line-rate opera-

tion support. We follow the design principle that core routers and edge routers should have

di↵erent goals, and we focus on Content Store design for the core routers in this disserta-

tion. Intuitively, the odds of getting a cache hit in core routers should be smaller than in

edge routers, because duplicated requests are aggregated and possibly satisfied in the edge

networks. In addition, as we have mentioned in Chapter 1, a recent study [24] reported that

the benefits of ubiquitous caching in information-centric networking can be largely realized

by caching content in edge networks, which supports our intuition. As a result, the Content

Store size in core routers can be small, and the routers could even operate without a Content

Store. In general, a small Content Store is still preferred because popular content distribu-

tion, such as live streaming, can be supported more efficiently. In addition, to support our
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fingerprint-only PIT design presented in Chapter 5, the core routers need to employ a small

Content Store to cache the Data packets that have been requested multiple times.

Memory Size. The Content Store includes packet bu↵ers and a lookup structure that

indexes the cached packets. The memory requirements of both the packet bu↵ers and lookup

structure are proportional to the number of packets in the Content Store. When all the Data

packets are cached, the memory requirement is determined by the link rate and how long each

packet is cached. Assuming the link bandwidth capacity is C and the average packet caching

time is Tcache, the memory of the packet bu↵ers is close to C⇥Tcache because Interest packet

sizes are relatively small. The memory requirement of the lookup structure is much smaller

than that of the packet bu↵ers, because the packet names stored in the lookup structure are

much shorter than the entire Data packets. Moreover, the lookup structure can store the

memory address of the name string in the packet bu↵er for each packet, reducing the lookup

structure memory requirement further.

Assuming the fingerprint-only PIT design is employed, then Tcache should be at least Trtt⇥k

long, so that a duplicated fingerprint PIT entry is guaranteed to expire as discussed in

Chapter 5. In the worst case, when all the traffic is duplicated, all the Data packets must

stay in the Content Store. Hence, the memory requirement is C ⇥ Trtt ⇥ k. When C = 100

Gbps, Trtt = 80 ms, and k = 10, the memory requirement is 10 GB. This requirement is

about k times larger than the current IP router packet bu↵er, whose size is usually C⇥Trtt [3].

Designing a scalable packet bu↵er for IP routers has been investigated [20, 31, 39], and the

results can be applied to the Content Store design. What is more, the worst case discussed

above is unlikely to happen in the core routers, and k can be dynamically configured to

smaller values for prefixes with reliable Trtt. Hence, the minimum Content Store memory

size can be smaller in practice.
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The actual Content Store size eventually is determined by the availability of the physical

resources and the benefits of having a larger CS. In addition, the required memory size is

also related to how packet bu↵ers are allocated. For instance, if the same packet bu↵er size

is used, then the memory requirements are larger than what is calculated here, because a

large amount of memory is wasted if the packets are small.

Line Rate Operation Support. The Content Store is part of the packet processing

pipeline and therefore needs to support line rate operations, including name lookups and

cache replacements. It is worth noting that the original Content Store in the NDN refer-

ence design supports additional features such as lexicographical-order lookups, which allows

multiple versions of a content be stored and indexed with the same name. Supporting this

feature increases design complexity and the benefit is not obvious in core networks; thus, we

consider only exact name lookup in the Content Store for core routers. An e↵ective cache-

replacement policy and its implementation are also crucial for the Content Store design. On

the arrival of a Data packet, the cache-replacement policy determines if this Data packet

should be cached. During an insertion, if the Content Store is full, then a packet needs to

be evicted to make space.

6.1.2 Content Store Data Structures

Packet Bu↵ers. When the link speed is 1 Gbps, following the previous worst-case analysis,

the packet bu↵er size is 100 MB, which can be implemented with a single DRAM module

because DRAM access time (around 50 nanoseconds) is shorter than the packet inter-arrival

time. If the line rate is higher than 10 Gbps, the packet bu↵er size is more than 1 GB,

and has to be implemented using DRAM because SRAM is too small. However, the DRAM
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access time is longer than the packet inter-arrival time. As a result, parallel DRAM accesses

must be employed. For general-purpose multicore processor platforms, multiple memory

controllers and channels provide sufficient bandwidth for packet bu↵ering.

The di↵erences between packet bu↵ers in NDN and the ones in IP are twofold. First, packet

bu↵ers are not immediately released when packets are transmitted: Packet bu↵ers cannot

be recycled if they are cached in the Content Store. When a Data packet is evicted from the

Content Store, its packet bu↵er is also released. Second, packet bu↵ers are indexed and can

be used to satisfy Interest packets.

Lookup Structure. The lookup structure indexes the cached packets and maintains the

statistical information required by the cache-replacement policies. We call this lookup struc-

ture the Content Table. The Content Table needs to support fast lookups and updates,

similar to the design goals of the Pending Interest Table. Our fingerprint-based PIT has

shown good performance results; hence, we propose a Content Table design based on the

d-left hash table.

Pktbuf Addr Statistical InformationName OffsetFingerprintOccupied

Figure 6.1: Content Table Entry

Figure 6.1 shows that in each Content Table entry, an Occupied bit denotes that this entry

is occupied, so that only occupied entries are visited during a lookup. A fingerprint of

the packet name is stored to avoid unnecessary and expensive string matching operations.

When there is a fingerprint match, the name of the stored packet can be retrieved using the

packet bu↵er memory address and the Name o↵set fields. The Statistical info field stores
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the information, such as last reference time and number of references, required by the cache-

replacement algorithms. The lengths of these fields depend on the configuration used in

practice.

Fingerprint-collisions are allowed in the d-left hash table based design, and multiple entries

sharing the same fingerprint within a hash bucket is possible. Overflow can be handled

by introducing an additional overflow table, as in the PIT design discussed in Chapter 5.

In addition, a packet that belongs to the same hash bucket as the inserting packet can be

evicted to make space.

6.1.3 Supporting Cache Replacement Policies

Fast and efficient cache-replacement policies have already been studied extensively [56]. In

this section, we present the design of two simple caching-replacement policies as examples

that can be implemented efficiently in software.

Least Recently Used (LRU) Policy. The LRU cache-replacement policy can be imple-

mented with O(1) operation complexity using a doubly linked list and a hash table. In an

LRU cache, whenever there is a cache hit, the corresponding node is moved to the head of

the doubly linked list. When a Data packet needs to be inserted, it either becomes the head

node or the current tail node is evicted from the hash table and the newly inserted Data

packet becomes the head of the linked list. Figure 6.2 shows a Content Table entry and a

doubly linked list that implements the LRU policy.

The hash table is keyed by fixed-length fingerprints of Data packet names, and each hash

table entry stores the packet bu↵er memory address, the o↵set of the name field, and the
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Figure 6.2: Doubly Linked List for the LRU Policy

memory address of the corresponding node in the linked list. The hash table can be imple-

mented as either a low-load factor hash table with chaining to resolve hash collisions, or a

d-left hash table. For software-based implementations, similar to our proposed FIB and PIT

design, each hash bucket has the size of a cache line, e.g., 64 bytes.

During a lookup, the Data packet names are compared only when fingerprints match. To

insert a Data packet into the Content Store when it is full, the Data packet corresponding

to the tail node is evicted from the CS, and then the new Data packet is inserted into the

hash table. The hash table entry and the tail node are updated accordingly. The tail node

then becomes the head of the linked list. All of these procedures require constant number of

operations.

Least Frequently Used (LFU) Policy. To support the LFU policy, each hash table entry

is associated with a counter. When a Data packet needs to be evicted to make space for a

new packet, the Data packet with the smallest counter value is evicted. When the number

of items stored in the Content Store is large, finding the hash table entry with the smallest

counter value is challenging. As a result, we present a design that performs LFU cache-

replacement within a small number of candidates. For instance, the search range can be
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restricted to the items visited during a hash table insertion operation. We call this scheme

as local searching.

Hash d

CounterOccupied Fingerprint Pktbuf Addr Name Offset
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Figure 6.3: Data Structures for the LFU Policy

As an example, with the d-left hash table design, for each insertion, d⇥E entries are visited,

where E is the number of entries in each hash bucket. If the Content Store is full, the

entry with the smallest reference count among these d ⇥ E entries is evicted. In fact, local

searching can also be applied to support LRU policies where each entry stores a timestamp

of the most recent visit. Similarly, the local searching scheme can be extended to other

performance metrics.

In addition to the two replacement policies, selective caching can be employed. The infor-

mation stored in the PIT can be used to select the packets to be cached. For example, only

packets that have been requested more than k times can be cached.
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6.2 Repo

In this section, we present performance studies of a reference NDN Repo implementation,

named Repo-ng, and of a modified Repo-ng that leverages Redis [59], a popular key-value

store, as the backend storage. We demonstrate that existing large-scale key-value stores

can be employed for NDN Repo implementation. Employing key-value stores directly as the

backend storage not only reduces the burden of developing a scalable NDN Repo from scratch

but also enables a smooth transition from IP network storage systems to NDN in-network

caching elements.

An NDN Repo is a long-term persistent content storage, and applications can push content

into the Repo. A Repo can be a process that runs in the same node as the application, or

it can be a dedicated machine or a cluster of machines. The Repo registers name prefixes

to neighboring NDN routers so that Interest packets that match those name prefixes are

forwarded to the Repo. The content stored in the Repo can serve Interest requests from

consumers directly. For instance, the NDN video application [37]and its successors, NDNlive

and NDNtube [76], stream both live and prerecorded video by pushing the video content into

a Repo. Content consumers fetch the video from the Repo directly, and the video content is

stored in the Repo until it is deleted. As video content sizes are large, a large persistent in-

network storage element, i.e., a Repo, is required to support video distribution. The Content

Store, because of its limited size and temporary nature, is only able to help distribute Data

packets when they become popular.

The Repo has two fundamental requirements. First, the NDN Repo protocol [47] needs to

be supported so that applications are able to send commands to the Repo. For instance, to

store a piece of content, an application sends a signed Interest packet to the Repo, then the
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Repo processes this command and sends Interest packets to the application to fetch Data

packets. These fetched Data packets are then stored in the Repo. Second, the Repo needs

to be scalable to store a large amount of content. When a Repo is employed for a specific

application that does not publish much content, a Repo with a small capacity may work

fine; but if a Repo is used as a content distribution node in IP networks to deliver massive

amount of content, then it needs to have a large storage space and support high bandwidth.

The Repo supports read and write operations. The read operations fetch Data packets from

the Repo to satisfy Interest requests, and the write operations push Data packets into the

Repo. The performance requirements for these two operations depend on the specific use

cases, and in general a more frequently used operation should have better performance. For

a general-purpose Repo implementation, we expect that read and write operations would

have comparable performance. If the Repo is used as a content distribution node, then

the read performance requirement should be higher, because the write operations are less

frequent. Take the video application as an example, assuming a 4K resolution video is

streamed, because the bitrate is 24-35 Mbps [27], about 2-3K write operations are required

every second with 1500-byte packets. The read performance requirement is similar for a

single stream, but the performance requirements increase linearly when multiple videos are

streamed. In general, the NDN Repo performance requirements should be comparable to

those of the databases and storage systems used in today’s web.

A reference implementation of the NDN Repo, namely Repo-ng, has been implemented by

the NDN team. Repo-ng supports the Repo protocol and provides a flexible framework to

experiment with di↵erent types of backend storage systems. In other words, Repo-ng handles

control messages and provides interfaces to handle operations related to the backend storage

systems. The Repo-ng implementation employs SQLite, a self-contained, server-less SQL
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database engine [68]. In addition, like the CS, the Repo supports advanced Interest selector

schemes so that the most suitable Data packet is returned when multiple candidates can

satisfy the request. If the Interest request is directly queried in the database, supporting the

Interest selector scheme requires multiple database accesses when more than one candidates

exist, thus increasing the processing time. To reduce the database operation overhead, Repo-

ng maintains an indexing data structure that keeps the names of the stored Data packets.

This way, the Interest selectors can be processed without requiring database operations,

and only the most suitable Data packet is fetched from the database. Repo-ng has been

deployed for several NDN applications, however, its performance has not been discussed in

the literature. Thus, we present the performance of the original Repo-ng in this section.

NoSQL databases, such as Redis, Cassandra, MongoDB, and Memcached, have become used

widely as caching or storage elements in popular web services [49]. Due to the simple lookup

operations required for the backend storage of Repo-ng, NoSQL databases can be employed.

Compared to SQLite, used in the original Repo-ng, NoSQL databases can perform better

because they run as stand-alone programs and support non-blocking I/O operations by

design. In this section, Redis is used as an example to demonstrate the performance of a

NoSQL-based Repo-ng implementation. We first measure the performance of a Redis-based

Repo-ng on a single node, where the performance bottleneck is the NDN Forwarding Daemon

(NFD) [1] and the original Repo-ng interface. To demonstrate its scalability, we measure

the aggregated throughput from multiple clients to the single Redis backend storage server.

We also benchmark the Redis key-value store to understand its maximum throughput.

Our key findings in this subsection are:
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• Redis-based Repo-ng implementation performs slightly better than SQLite-based Repo-

ng using a single node. With one million packets being processed by a single client

thread, the read throughputs for SQLite-based and Redis-based Repo-ng are 5.3K and

5.8K operations per second, respectively. The optimized Redis-based Repo-ng, which

removes the in-memory indexing data structure, supports about 6.0K read operations

per second. The write throughputs for SQLite-based, Redis-based, and optimized

Redis-based Repo-ng are 7.1K, 8.2K, and 11.8K operations per second, respectively.

As can be seen, both the read and write performance are low, and the read perfor-

mance is worse than the write performance due to the performance limits of the client

program that fetches data from the Repo. With two client threads, the read and write

throughputs are comparable, and the performance bottlenecks for the read and write

throughputs are the NFD daemon and the Repo-ng interface, respectively.

• We have benchmarked the single-node Redis performance and 160K read or write oper-

ations can be performed every second. We have also demonstrated that the measured

Repo throughput can be improved by using multiple clients, each with its own NFD and

Repo-ng. Using three clients, each running five client threads, we have demonstrated

that the optimized Redis-based Repo-ng supports 15K read and 24K write operations

per second. However, to achieve 160K read or write performance, many more clients are

required, which is unacceptable in practice. As a result, these performance issues with

Repo-ng may hinder NDN application development, and performance optimization is

a near-term concern.
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6.2.1 Performance Evaluation

We first compare the performance in a single node, where SQLite and Redis reside on the

same node as the Repo-ng interface. To demonstrate the scalability of Redis-based Repo-ng,

we evaluate its performance with multiple client nodes.

Performance with a Single Node

In the single node scenario, all of the programs reside on the same node. The machine used

for the experiments was equipped with two six-core Intel Xeon E5-2630 processors and 64

GB of DDR3 memory.

For both the original Repo-ng and the Redis-based Repo-ng, the same NFD daemon (version

0.3.3) was used, and the Content Store size was configured to be one, so that the CS lookup

time could be minimized. For the Redis-based Repo version, the Redis server (version 3.0.2)

was connected with the Repo-ng interface via a Unix socket, which has better performance

than a TCP connection. The Repo-ng was configured with a capacity of 10 million entries.

To study the impact of the additional in-memory indexing data structure, we also restricted

the lookup scheme to exact string matching, and thus the indexing data structure could be

removed. This way, the backend storage system essentially became a large hash table.

We measured the Repo-ng write and read throughputs separately. To measure the write

throughput, we modified the ndnputfile program to generate Data packets with random

payloads and then insert them into the Repo. The generated Data packets share the common

prefix ndn:example/data/1/hello, which is the default prefix in the sample Repo-ng con-

figuration file, and each Data packet has its own segment number as the suffix. We started
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by inserting one million Data packets, and then doubled the number of packets in each ex-

periment until eight million entries were inserted each time. The size of the content bu↵er

to be written into the Repo is 100 bytes. The read throughput experiments were measured

after the write throughput tests. Similarly, we modified the ndngetfile program to fetch

the Data packets from the Repo. The fetched Data packets were discarded immediately to

reduce the client software overhead. For each configuration, the experiment was repeated

three times. The average throughputs in terms of numbers of operations per second are pre-

sented in Figure 6.4 with 95% confidence intervals. The performance results of the Repo-ng

that without the indexing structure are labeled as SQLite-opt and Redis-opt. In addition,

the read performance of SQLite-opt is not reported because the in-memory data structure

in Repo-ng maps packet names to internal IDs. In the optimized SQLite-based Repo-ng, the

packets were still stored using the IDs as the lookup keys. Thus, without the indexing data

structure, it was impossible to perform read operations with the SQLite-based Repo-ng.

(a) Write (b) Read

Figure 6.4: Single-node Repo-ng Throughput Performance (Single Thread)

According to Figure 6.4(a), the performance of the optimized version that eliminates the in-

memory indexing data structure improved the performance of both the original Repo-ng and
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the modified Redis-based Repo-ng. In both cases, the Redis-based Repo-ng outperformed

the original Repo-ng. As can be seen, the single-threaded Redis-based Repo-ng can support

about 11.8K write operations per second.

The read performance is shown in Figure 6.4(b). Similarly, the throughput of Redis is higher

than the one of SQLite, and the optimized Redis version further improves the performance.

As can be seen, about 6K read operations per second was achieved. The reason that the read

performance is slower than the write performance is that the throughput is limited by the

performance of the client program ndngetfile. Running more client threads can improve

the read throughput, but eventually the throughput will be limited by the performance of

the NFD forwarding daemon.

We have also evaluated running two client threads in each experiment. Each client thread

runs on a dedicated processor core and handles half of the workload, i.e., 500K packets when

one million packets are requested. The processing time is the di↵erence between the earlier

starting time and the later ending time of these two client threads.

(a) Write (b) Read

Figure 6.5: Single-node Repo-ng Throughput Performance (Two Threads)
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Figure 6.5 shows the measured throughputs when running two client threads in each experi-

ment. As can be seen, the read throughputs are much higher than in the single-thread case,

and are comparable to the write throughputs. In addition, the write throughputs are slightly

lower than in the single-thread case, which is likely due to the overhead introduced when the

Repo-ng interface handles multiple client threads. According to the CPU utilization infor-

mation, the write throughput is limited by the Repo-ng interface, and the read throughput

is limited by the NFD throughput. Hence, read operations are faster than write operations

in Repo-ng. In addition, the overall write throughput is expected to be higher if a dedicated

Repo-ng process is available for each client thread.

In summary, we demonstrate that employing Redis as the backend storage improves the

performance of a single-node Repo-ng. The performance bottlenecks include the Repo-

ng interface, the NFD daemon, and the client program, which deserve more optimization.

Nonetheless, our experience shows that the Repo-ng can incorporate other storage systems

easily.

Performance with Multiple Nodes

In the above experiments with a single node, the performance bottleneck was the Repo-ng

interface, the NFD daemon, or the client programs when Redis was used as the backend

storage. To explore the scalability of Redis-based Repo-ng, we used multiple client nodes to

generate enough requests.

The experiments with multiple client nodes were performed in the ONL. The Redis server

ran on the same machine as before. The clients were machines equipped with two four-core

Intel Xeon E5520 processors and 12 GB of DRAM. The client nodes ran the NFD daemon
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and the Repo-ng interface. The Redis server was connected to each Repo-ng interface via a

TCP connection because they resided on di↵erent physical machines. The network latency

between the Redis server and the client nodes was much larger than that of a Unix socket,

so the throughput of the single-threaded Redis-based Repo-ng became much lower. As a

result, each client node ran five Repo-ng processes and five client programs to saturate the

NFD daemon. It is worth noting that we measured only the optimized Redis-based Repo-ng,

i.e., the indexing data structure was removed, because otherwise an additional Redis query

is required to get the number of items stored in the database and this number will be the

internal ID for the next inserting item. In the optimized Redis-based Repo-ng, the Redis

database is keyed by the packet names directly rather than the internal numerical IDs.

As in the single-node experiments, the write and read throughputs were measured separately.

For each test, all of the clients had the same configuration, and each client node reads or

writes one million packets. Scripts were organized so that the clients started the process at

the same time, and the processing time were recorded in each client. When the experiments

were done, the longest processing time among all the clients was taken as the processing

time. The measured throughputs with multiple clients are shown in Figure 6.6.

Clearly, higher operation throughputs can be achieved with a larger number of client nodes.

In Figure 6.6, the performance bottleneck is the NFD implementation because the in-memory

index structure in Repo-ng has been removed and each client program is connected to a ded-

icated Repo-ng process. In addition, the CPU core that runs the NFD process is saturated.

The aggregated read throughput is less than the write throughput, thus the cost of process-

ing packets for the read tests is higher than that of the write test in the NFD daemon, which

is consistent with our findings in the single-node experiments.
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Figure 6.6: Repo-ng Performance with Multiple Client Nodes

Redis Benchmark

To understand the maximum throughput of Redis, we have measured the throughput of

the GET and SET operations using the benchmark tool distributed with Redis. Similarly,

the number of keys stored in the Redis server was configured to be one, two, four, and

eight million. The size of the value, i.e., content size, was set to be 100 bytes. The Redis

server ran on the same machine as before, and the benchmark tool ran on either the same

machine as the Redis server or as the client node. In the experiments, the benchmark tool

was connected to the Redis server via a Unix socket, a local TCP connection, and a remote

TCP connection. In addition, the benchmark tool provides a pipelining feature to improve

performance, in our experiments, this feature was disabled. The performance results are

shown in Figure 6.7.

As can be seen, the maximum throughput of Redis was about 160K operations per second

when a Unix socket was used. When TCP connections were used, the throughput was about

90K operations with a local connection and about 80K with a remote connection. The read

137



Figure 6.7: Redis Benchmark

and write throughputs were comparable for all of the cases. Obviously, NoSQL key-value

stores such as Redis provide much higher throughput. As a result, we need more efficient

Repo-ng and NFD implementations that leverage multi-threading, event-driven program-

ming, and non-blocking I/O operations to improve performance.

Future Directions

The Redis-based Repo-ng stores Data packets in memory; thus, its capacity is limited by

the memory available on a machine or on a cluster of machines. The available memory

can possibly satisfy the requirements of specific applications, but is unlikely to meet the

needs of large-scale content distribution. In the latter case, disk storage must be employed.

Fortunately, existing IP content distribution nodes are already capable of supporting 100+

TB of content at 10+Gbps throughput. For example, Table 6.1 lists the characteristics of

the OpenConnect content distribution node provided by Netflix [48].
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Table 6.1: Netflix OpenConnect System Specification

Rev. A Rev. C Rev. D
Operational Throughput 7 Gbps 9 / 12 Gbps 13-17 Gbps
Storage Capacity 100 TB 120 / 160 TB 14 TB (SSD)
Rack Space 4U 4U 1U

As can be seen, these disk storage capacities are significantly larger than what we have exper-

imented with. We expect future NDN Repo implementations can apply the techniques used

in existing content distribution nodes. In addition, high-performance key-value stores [41, 42]

can also be employed.

6.3 Summary

This chapter reviewed the design issues for in-network caching elements, including both

the Content Store and the Repo. We discussed the requirements of the Content Store and

presented data structure designs that support LRU and LFU cache-replacement policies. As

a persistent content storage, the NDN Repo needs to be scalable. We showed the limitations

of the existing Repo-ng implementation and demonstrated that the Redis-based Repo-ng

outperformed the original implementation. In addition, the measured Redis benchmark

shows the potential for much better performance once the Repo-ng and NFD are improved.

As a result, future research e↵orts should focus on a scalable Repo-ng implementation that

efficiently handles Repo commands and content requests. Once these front-end throughput

problems are solved, we can use scalable web technologies like Redis to more easily implement

large-scale NDN Repos.
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Our work in this chapter represents only a first step in exploring scalable in-network caching

elements design. Because the CS and IP caching proxies are similar, as are the Repo and

content distribution nodes, the NDN in-network caching elements can take advantage of

more efficient implementations of caching proxies, key-value stores, and file systems.
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Chapter 7

Conclusion

Recent years have witnessed the explosive growth of Internet services. However, the original

design goals of the Internet Protocol (IP) do not align well with how the Internet is currently

being used. Named Data Networking (NDN) is a clean-slate network architecture that has

been proposed to address the shortcomings of IP networks and leverage their advantages.

As a core building block of the NDN architecture, name-based packet forwarding is believed

to be more difficult than in IP. This dissertation focuses on data structure and algorithm

designs for scalable NDN forwarding. Because the performance of packet forwarding on

general-purpose multicore platforms has been improved considerably due to advances in

both processor architectures and memory technologies, we implement the proposed designs

in software and demonstrate their performance.

Forwarding Information Base

The FIB requires longest name prefix lookup with a larger number of name prefixes than

in IP. We have proposed a reliably scalable name prefix lookup design based on the binary

search of hash tables. By leveraging large pages, memory prefetch instructions, and the
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DPDK packet I/O framework, we have demonstrated 10 Gbps FIB forwarding throughput

on a general-purpose multicore platform with 256-byte packets and one billion longest name

prefix rules, each containing up to seven name components.

We have also explored new characteristics in real-world name prefix datasets. First, we note

that a large number of prefixes have many suffixes, and therefore, we have proposed level

pulling, a general method to improve the average hash-based longest name prefix matching

performance by reducing the number of required hash lookups. Second, in collaborative

work, we have proposed the speculative forwarding method, in which the core routers relax

the string matching requirements, and thus the memory requirements are reduced signifi-

cantly for datasets that contain mostly name prefixes with only one name component. In this

dissertation, we have proposed fingerprint-based methods to further improve name-based for-

warding throughput for these datasets. The proposed fingerprint-based Patricia trie reduces

the average depth of the trie, and thus e↵ectively decreases the number of pipeline nodes in

hardware-based designs. We have proposed a fingerprint-based hash table design that stores

only fingerprints, and requires only 3.2 GB to store 1 billion names, with a lookup latency

of 0.29 µs in the single-threaded implementation.

Pending Interest Table

The Pending Interest Table (PIT) keeps track of the forwarded Interest packets and stores

the forwarding information for the replied Data packets. The PIT requires fast updates. Our

fingerprint-only PIT design takes the approach that by reducing the memory requirements,

high-speed memory devices, such as SRAM, can be employed.
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The fingerprint-only PIT design relaxes the Interest aggregation feature in the core routers,

and therefore a PIT entry needs to be retained longer if there is a fingerprint collision. We

have studied the memory requirements and the introduced additional network traffic. When

there are multiple core routers, the memory requirement is doubled because remote finger-

print collisions also cause PIT entries to be retained longer. The benefits are diminished, but

the memory requirements are still less than the one required by a standard hash table-based

design.

In-network Caching Elements

The Content Store and Repo are both in-network caching elements. We have discussed the

Content Store design and demonstrated that existing key-value stores, such as Redis, can

be employed as the backend storage of the Repo. We also show that Redis-based Repo-ng

outperformed the original Repo-ng, although the performance of the existing Repo-ng and

NFD require more optimization.

7.1 Future Research Directions

We present the following four research directions to further improve scalable NDN forwarding.

7.1.1 A Full-fledged Forwarding Engine

In this dissertation, we studied the design of the FIB, PIT, and CS individually. A complete

NDN forwarding engine requires efficiently integrating these components.
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For software-based implementations, the key to achieving higher performance is leveraging

both pipelining and parallelism. As in [65], multiple processes were used to leverage pipeline

and parallelism. In our FIB implementation, pipelining and thread-level parallelism were

also used. The full-fledged forwarding engine can be implemented by extending our existing

FIB lookup engine. Multiple worker threads, each residing on a dedicated processor core,

process packets in parallel. The PIT and CS support only exact matching and are distributed

to each worker thread, thus locking is not required. The FIB, which is read-heavy, is shared

among the worker threads. The entire packet processing procedure is divided into three

stages. First, packets are received by I/O threads, and then they are distributed to worker

threads based on the hash values of their full names. After the lookup, packets are sent to

the I/O threads for transmission. This three-stage packet forwarding pipeline has also been

applied in our FIB performance study, as shown in Figure 3.13.

As pointed out by [65], secure hash functions are desired for the PIT and CS. Secure hash

values can be computed either in a dedicated I/O thread or using dedicated hardware cryp-

tography units. The computed hash values can be sent to the worker threads using ring

bu↵ers together with the original packets. Regarding the FIB, the same secure hash func-

tion employed in the PIT and CS can be used. It is also possible to use a non-secure but

more efficient hash function for the FIB because it is read-heavy.

Another question deserves more exploration is whether the PIT and CS can be combined as

one structure. The CS is a cache for Data packets, and the PIT essentially is a cache for Inter-

est packets, so they do share some common characteristics. Combining these two structures

together reduces the number of lookups [65] for each packet. The research challenge arises

from the fact that the update frequency for the PIT and the CS can be di↵erent depending

on CS cache-replacement policies, and thus may a↵ect the hash table performance.
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Overall, based on our experience with designing each individual component, the measured

longest name prefix lookup performance of the FIB with real network packets, and the

forwarding performance reported in [65, 54], we believe 10 Gbps can be achieved in software

with large forwarding datasets.

7.1.2 Forwarding Information Base

We have implemented the proposed designs only on general-purpose multicore platforms.

Hardware-based and hardware-assisted implementations are expected to improve the lookup

performance. For instance, hardware-based hash functions or dedicated hash units can

o✏oad the CPU-intensive hash computation functions. Finer-grained control over memory

accesses and deeper pipeline stages can also improve the performance.

Our FIB designs are based on the assumption that FIB updates are relatively less frequent

than FIB lookups, and that FIB updates are managed by the control plane based on the

Routing Information Base. When FIB updates become very frequent, di↵erent and more

efficient solutions that better support FIB updates can be explored.

When the name prefix strings are stored in the FIB, the required memory size is large.

Although the server machine we used in the experiment already supports up to 768 GB

of memory, it is always beneficial to have compact FIB representations. Compact FIB

implementations not only reduce the cost, but also enable duplicating data structures across

NUMA nodes.
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Lastly, we believe more efficient FIB designs can be engineered based on the specific char-

acteristics of the datasets. When large-scale NDN forwarding rules become available, more

options can be explored to exploit their characteristics.

7.1.3 Pending Interest Table

Our approach to designing a scalable PIT focuses on reducing the memory requirements and

supports only exact matching to leverage parallelism. An alternative approach, a centralized

PIT shared by all the threads, can be explored. The centralized PIT requires locking to

avoid race conditions. But a centralized PIT supports the all-prefix lookup scheme, which

was proposed in the original NDN design.

Another interesting aspect is that the PIT can be viewed as a cache for Interest packets, thus

its implementation can also be similar to the Content Store. Specifically, if full packet names

are recorded in the PIT, the entire Interest packet bu↵er can be retained in the PIT instead

of copying the packet names from packet bu↵ers. The Interest packet bu↵er is released when

the corresponding PIT entry is removed.

7.1.4 In-network Caching Elements

A thorough performance evaluation of the Content Store would be helpful in more fully

understanding its performance. In addition, there may be new and interesting problems

in bu↵er management, such as whether Interest bu↵ers and Data bu↵ers can be designed

di↵erently.
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Our study demonstrated that Repo-ng, as a framework, supports integrating other backend

storage types. However, we also discovered inefficiency in the current Repo-ng implementa-

tion. The research challenge is designing a Repo-ng interface that efficiently handles NDN

Repo commands and translates NDN packets to database operations.
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[56] Stefan Podlipnig and Laszlo Böszörmenyi. A Survey of Web Cache Replacement Strate-
gies. ACM Comput. Surv., 35(4):374–398, December 2003.

[57] Lucian Popa, Ali Ghodsi, and Ion Stoica. HTTP As the Narrow Waist of the Fu-
ture Internet. In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks, Hotnets-IX, pages 6:1–6:6, New York, NY, USA, 2010. ACM.

[58] Sriram Ramabhadran, Sylvia Ratnasamy, Joseph M. Hellerstein, and Scott Shenker.
Brief Announcement: Prefix Hash Tree. In Proceedings of the Twenty-third Annual
ACM Symposium on Principles of Distributed Computing, PODC ’04, pages 368–368,
New York, NY, USA, 2004. ACM.

[59] Redis. https://www.redis.io.

152



[60] Ronald L Rivest. Inferring Decision trees Using the Minimum Description Length Prin-
ciple. Inform. Comput, 80:227–248, 1989.

[61] Luigi Rizzo. netmap: A Novel Framework for Fast Packet I/O. In 21st USENIX
Security Symposium (USENIX Security 12), pages 101–112, Bellevue, WA, August 2012.
USENIX Association.

[62] Devavrat Shah and Pankaj Gupta. Fast Updating Algorithms for TCAMs. IEEE Micro,
21(1):36–47, January 2001.

[63] SipHash. https://131002.net/siphash/.

[64] Won So, Taejoong Chung, Haowei Yuan, David Oran, and Mark Stapp. Toward
Terabyte-scale Caching with SSD in a Named Data Networking Router. In Proceedings
of the Tenth ACM/IEEE Symposium on Architectures for Networking and Communi-
cations Systems, ANCS ’14, pages 241–242, New York, NY, USA, 2014. ACM.

[65] Won So, Ashok Narayanan, and David Oran. Named Data Networking on a Router: Fast
and Dos-resistant Forwarding with Hash Tables. In Proceedings of the Ninth ACM/IEEE
Symposium on Architectures for Networking and Communications Systems, ANCS ’13,
pages 215–226, Piscataway, NJ, USA, 2013. IEEE Press.

[66] Haoyu Song, Sarang Dharmapurikar, Jonathan Turner, and John Lockwood. Fast Hash
Table Lookup Using Extended Bloom Filter: An Aid to Network Processing. In Proceed-
ings of the 2005 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, SIGCOMM ’05, pages 181–192, New York, NY, USA,
2005. ACM.

[67] Tian Song, Haowei Yuan, Patrick Crowley, and Beichuan Zhang. Scalable Name-Based
Packet Forwarding: From Millions to Billions. In Proceedings of the 2nd International
Conference on Information-centric Networking, ICN ’15, 2015.

[68] SQLite. https://www.sqlite.org.

[69] The Squid Project. http://www.squid-cache.org.

[70] URL Blacklist. http://urlblacklist.com/.

[71] Zartash Afzal Uzmi et al. SMALTA: Practical and Near-optimal FIB Aggregation.
In Proceedings of the Seventh COnference on Emerging Networking EXperiments and
Technologies, CoNEXT ’11, pages 29:1–29:12, New York, NY, USA, 2011. ACM.

[72] Matteo Varvello, Diego Perino, and Leonardo Linguaglossa. On the Design and Im-
plementation of a Wire-Speed Pending Interest Table. In Computer Communications
Workshops (INFOCOM WKSHPS), 2013 IEEE Conference on, pages 369–374, April
2013.

153



[73] Domain Name Industry Brief. http://www.verisigninc.com/.

[74] Marcel Waldvogel, George Varghese, Jon Turner, and Bernhard Plattner. Scalable High
Speed IP Routing Lookups. In Proceedings of the ACM SIGCOMM ’97 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communication,
SIGCOMM ’97, pages 25–36, New York, NY, USA, 1997. ACM.

[75] Marcel Waldvogel, George Varghese, Jon Turner, and Bernhard Plattner. Scalable High-
speed Prefix Matching. ACM Trans. Comput. Syst., 19(4):440–482, November 2001.

[76] Lijing Wang, Ilya Moiseenko, and Lixia Zhang. NDNlive and NDNtube: Live and
Prerecorded Video Streaming over NDN. Technical Report NDN-0031, NDN Technical
Report, 2015.

[77] Yi Wang et al. Scalable Name Lookup in NDN Using E↵ective Name Component En-
coding. In Proceedings of the 2012 IEEE 32Nd International Conference on Distributed
Computing Systems, ICDCS ’12, pages 688–697, Washington, DC, USA, 2012. IEEE
Computer Society.

[78] Yi Wang et al. NameFilter: Achieving Fast Name Lookup with Low Memory Cost
via Applying Two-Stage Bloom Flters. In INFOCOM, 2013 Proceedings IEEE, pages
95–99, April 2013.

[79] Yi Wang et al. Wire Speed Name Lookup: A GPU-based Approach. In Presented as
part of the 10th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 13), pages 199–212, Lombard, IL, 2013. USENIX.

[80] Yi Wang et al. Fast Name Lookup for Named Data Networking. In IEEE 22nd Inter-
national Symposium of Quality of Service (IWQoS), May 2014.

[81] Charlie Wiseman et al. A Remotely Accessible Network Processor-based Router for
Network Experimentation. In Proceedings of the 4th ACM/IEEE Symposium on Ar-
chitectures for Networking and Communications Systems, ANCS ’08, pages 20–29, New
York, NY, USA, 2008. ACM.

[82] G. Xylomenos, C.N. Ververidis, V.A. Siris, N. Fotiou, C. Tsilopoulos, X. Vasilakos, K.V.
Katsaros, and G.C. Polyzos. A Survey of Information-Centric Networking Research.
Communications Surveys Tutorials, IEEE, 16(2):1024–1049, Second 2014.

[83] Tong Yang, Gaogang Xie, YanBiao Li, Qiaobin Fu, Alex X. Liu, Qi Li, and Laurent
Mathy. Guarantee IP Lookup Performance with FIB Explosion. SIGCOMM Comput.
Commun. Rev., 44(4):39–50, August 2014.

[84] Wei You, B. Mathieu, P. Truong, J. Peltier, and G. Simon. DiPIT: A Distributed
Bloom-Filter Based PIT Table for CCN Nodes. In Computer Communications and
Networks (ICCCN), 2012 21st International Conference on, pages 1–7, July 2012.

154



[85] Wei You, B. Mathieu, P. Truong, J. Peltier, and G. Simon. Realistic Storage of Pending
Requests in Content-Centric Network Routers. In Communications in China (ICCC),
2012 1st IEEE International Conference on, pages 120–125, Aug 2012.

[86] Minlan Yu, Alex Fabrikant, and Jennifer Rexford. BUFFALO: Bloom Filter Forwarding
Architecture for Large Organizations. In Proceedings of the 5th International Conference
on Emerging Networking Experiments and Technologies, CoNEXT ’09, pages 313–324,
New York, NY, USA, 2009. ACM.

[87] Haowei Yuan and Patrick Crowley. Scalable Pending Interest Table Design: From
Principles to Practice. In Proc. of the 33rd Annual IEEE Conference on Computer
Communications (INFOCOM’14), 2014.

[88] Haowei Yuan and Patrick Crowley. Reliably Scalable Name Prefix Lookup. In Pro-
ceedings of the Eleventh ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, ANCS ’15, pages 111–121, 2015.

[89] Haowei Yuan, Tian Song, and Patrick Crowley. Scalable NDN Forwarding: Concepts,
Issues and Principles. In Computer Communications and Networks (ICCCN), 2012 21st
International Conference on, pages 1–9, July 2012.

[90] Lixia Zhang et al. Named Data Networking (NDN) Project. Technical Report NDN-
0001, NDN, 2010.

[91] Dong Zhou, Bin Fan, Hyeontaek Lim, Michael Kaminsky, and David G. Andersen.
Scalable, High Performance Ethernet Forwarding with CuckooSwitch. In Proceedings
of the Ninth ACM Conference on Emerging Networking Experiments and Technologies,
CoNEXT ’13, pages 97–108, New York, NY, USA, 2013. ACM.

[92] N. Zilberman, Y. Audzevich, G.A. Covington, and A.W. Moore. NetFPGA SUME:
Toward 100 Gbps as Research Commodity. Micro, IEEE, 34(5):32–41, Sept 2014.

155


	Data Structures and Algorithms for Scalable NDN Forwarding
	Recommended Citation

	Data Structures and Algorithms for Scalable NDN Forwarding

