
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2007-44

2007

Configuring Low Cost Metanetworks on A Shared Substrate Configuring Low Cost Metanetworks on A Shared Substrate

Jing Lu and Jonathan Turner

In a diversified internet, meta-networks (“metanets?for short) share a common substrate and

offer value-added services to millions of users around the globe. Therefore, configuring low-cost

metanets with links having enough bandwidth to accommodate all anticipated user traffic is

critical to the success of the metanets. In this paper, we propose a novel pruning algorithm that

configures metanets on any given substrate in a cost-efficient way. In contrast to other testbed

configuration systems, we solve the metanet configuration problem from a higher level

specification and produces a network that is dimensioned to handle the specified traffic. To the

best of... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Lu, Jing and Turner, Jonathan, "Configuring Low Cost Metanetworks on A Shared Substrate" Report
Number: WUCSE-2007-44 (2007). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/144

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/144?utm_source=openscholarship.wustl.edu%2Fcse_research%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/144

Configuring Low Cost Metanetworks on A Shared Substrate Configuring Low Cost Metanetworks on A Shared Substrate

Jing Lu and Jonathan Turner

Complete Abstract: Complete Abstract:

In a diversified internet, meta-networks (“metanets?for short) share a common substrate and offer value-
added services to millions of users around the globe. Therefore, configuring low-cost metanets with links
having enough bandwidth to accommodate all anticipated user traffic is critical to the success of the
metanets. In this paper, we propose a novel pruning algorithm that configures metanets on any given
substrate in a cost-efficient way. In contrast to other testbed configuration systems, we solve the metanet
configuration problem from a higher level specification and produces a network that is dimensioned to
handle the specified traffic. To the best of our knowledge, our work is also the first one that tries to
automatically determine the best metanet topology while considering network switching costs and
propagation delays. We study how the best topology changes on different substrate networks as traffic
conditions vary. In general, we find that as pair-wise traffic constraints and delay bounds are relaxed, the
least-cost metanet topology becomes increasingly “tree-like? We also show the impact of delay bounds
on the network costs under different traffic conditions. Our algorithm produces metanet configurations
that are demonstrably close to the computed lower bound and is fast enough to handle substrate
networks of practical size.

https://openscholarship.wustl.edu/cse_research/144?utm_source=openscholarship.wustl.edu%2Fcse_research%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/144?utm_source=openscholarship.wustl.edu%2Fcse_research%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2007-44

Configuring Low Cost Metanetworks on A Shared Substrate

Authors: Jing Lu, Jonathan Turner

Corresponding Author: jl1@arl.wustl.edu

Web Page: http://www.arl.wustl.edu/~jl1

Abstract: In a diversified internet, meta-networks (“metanets?for short) share a common substrate and offer
value-added services to millions of users around the globe. Therefore, configuring low-cost metanets with links
having enough bandwidth to accommodate all anticipated user traffic is critical to the success of the metanets.
In this paper, we propose a novel pruning algorithm that configures metanets on any given substrate in a
cost-efficient way. In contrast to other testbed configuration systems, we solve the metanet configuration
problem from a higher level specification and produces a network that is dimensioned to handle the specified
traffic. To the best of our knowledge, our work is also the first one that tries to automatically determine the best
metanet topology while considering network switching costs and propagation delays. We study how the best
topology changes on different substrate networks as traffic conditions vary. In general, we find that as pair-wise
traffic constraints and delay bounds are relaxed, the least-cost metanet topology becomes increasingly
“tree-like? We also show the impact of delay bounds on the network costs under different traffic conditions. Our
algorithm produces metanet configurations that are demonstrably close to the computed lower bound and is fast
enough to handle substrate networks of practical size.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Configuring Low Cost Metanetworks on A Shared
Substrate

Jing Lu and Jonathan Turner
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130

Email: {jl1, jst}@arl.wustl.edu

Abstract— In a diversified internet, metanetworks (“metanets”
for short) share a common substrate and offer value-added
services to potentially large numbers of users around the
globe. Therefore, configuring low-cost metanets with links having
enough bandwidth to accommodate all anticipated user traffic
is crucial to the success of the metanets. In this paper, we
propose a novel pruning algorithm that configures metanets on
any given substrate in a cost-efficient way. In contrast to other
testbed configuration systems, we solve the metanet configuration
problem from a higher level specification and produce a network
that is dimensioned to handle the specified traffic. To the best
of our knowledge, our work is also the first one that tries
to automatically determine the best network topology while
considering network switching costs and propagation delays. We
study how the best topology changes on different substrates
as traffic conditions vary. In general, we find that as pair-
wise traffic constraints and delay bounds are relaxed, the least-
cost metanet topology becomes increasingly “tree-like”. We also
show the impact of delay bounds on the network costs under
different traffic conditions. Our algorithm produces metanet
configurations that are demonstrably close to the computed
lower bound and is fast enough to handle substrate networks
of practical size.

I. I NTRODUCTION

Virtualization has been widely recognized as a vehicle
to overcome Internet ossification [1]. Virtualized network
testbeds, such as Planetlab [2], GENI [3] and VINI [4], provide
an early indication of how a diversified internet might be
implemented and used to deliver novel network services. Virtu-
alized infrastructures typically consist of both high bandwidth
links and flexible network platforms and serve as the physical
substrate shared by multiple diverse metanets.

The substrate not only provides network resources to the
metanets, but it also provides access to the end hosts that
are served by the metanets. Therefore, one big challenge that
faces metanet planners is to design a cost-efficient metanet
within the substrate that is capable of handling all anticipated
traffic generated by millions of geographically distributed end
hosts. This involves choosing the right metanet topology,
mapping it onto the substrate and dimensioning each metanet
link (“metalink” for short) with sufficient capacity to handle
the expected traffic while achieving the minimum network
cost. The inter-dependencies among the metanet topology,
mapping and dimensioning metalinks have made the metanet
design problem intractable. One common way to tackle the
problem is to try different topologies and mappings and pick

the one that yields the lowest cost. In [5], we presented
an iterative approach that automates the mapping and link
dimensioning processes, allowing quick evaluation of different
metanet topologies. Since it is infeasible to try out all possible
topologies, the essential drawback of such methods is that
the quality of the design highly depends on the choice of the
candidate metanet topologies under evaluation.

To address this issue, we have designed a network planning
tool that automatically determines the topology for a cost-
efficient metanet configuration and provisions the metalinks
with sufficient bandwidth to accommodate any traffic pattern
allowed by a general set of traffic constraints. Our planning
tool accepts general information about the substrate network,
the metanet user locations and the traffic demands expressed
by a set of constraints. Time-sensitive metanets may also
specify propagation delay bounds between user locations. The
core of the planning tool is a novel pruning algorithm that
identifies the cost-efficient metanet topology and configures it
on the given substrate in a systematic way.

We conduct extensive experiments on three substrates span-
ning the 20 and 50 largest metropolitan areas in the United
States and western Europe. We vary the traffic constraint
parameters and study how the least-cost metanet topology
is related to the traffic constraints. Our results indicate that
the system of traffic constraints has a profound influence
on the least-cost network structure. In particular, tight pair-
wise constraints favor network topologies in which all pairs
of nodes are directly connected by links with just the right
capacity. As constraints get looser, “tree-like” topologies are
better at reducing network costs. Our planning tool also makes
it easy to study the impact of different latency constraints
on metanet topologies and costs, allowing planners to better
evaluate the cost/latency tradeoffs. Overall, the costs of the
metanet configurations found by our tool are no more than
1.55 times the computed lower bound.

II. RELATED WORK

The problem of configuring a metanet on a common
physical infrastructure has been addressed in several differ-
ent contexts. PlanetLab [2] is a virtualized overlay network
testbed. It supports multiple resource discovery and allocation
services includingAssign[6], NetFinder[7] and SWORD[8],
which seek to balance the load across PlanetLab nodes, while

satisfying users’ objectives. To find a good match between
the user’s stated resource needs and the available testbed
resources, these services all require network providers to
submit detailed resource needs for their overlay networks,
such as the number of nodes in the overlay, the network
topology, the minimum bandwidth per link, and the minimum
free computation resource per node. These resource require-
ments may be suitable for controlled network experiments in
which networks are configured for particular testing purposes
with traffic generated mainly by the experimenters, but less
suitable for configuring long-lived global-scale metanets that
are intended to serve large number of real users. With substrate
networks capable of provisioning metalinks with guaranteed
bandwidth, it is more appropriate to have metanet planners
provide higher level traffic specification as the driving force
in metanet configuration and let the tool determine the best
choice of nodes and links to satisfy the specification.

Our work bears similarities with prior work on conven-
tional constraint-based network design[9]–[13], in which a
network is dimensioned to satisfy constraints on the traffic
between designated sets of network nodes. However, our work
extends the prior work in several ways. First, it is able to
automatically determine the best network topology, while the
previous studies left it to the human network planners to
choose the topology through an interactive process. Second,
this work accounts for the switching costs of the network
nodes which were neglected in the previous work. Finally, our
work incorporates user-specified bounds on network latency,
allowing network planners to ensure acceptable delays on all
network paths.

III. C ONSTRAINT-BASED METANET DESIGN

The metanet design problem starts with a substrate network
represented by a single undirected graph, in which each node
has resources for implementing metanet routers and is usually
viewed as a traffic aggregation point for the users to access a
particular metanet; each edge has an associated length equal to
the physical distance spanned by the substrate link. Similarly, a
metanet can be represented as a directed graph with metanodes
that route traffic among user locations and metalinks that
connect metenodes. A metanode can perform either local
switching which routes traffic among users who access the
metanet at that location or transit switching that routes traffic
passing through the metanode. To distinguish the two types of
metanodes based on their switching characteristics, we adopt
the terminologyaccess nodefor the metanode performing
local switching andbackbone nodefor the metanode per-
forming transit switching. A metalink between an access node
and a backbone node allows users to communicate with the
rest of the metanet users through a designated access node.
Although we find it convenient to refer to the local switching
and transit switching functions as two distinct elements, in
practice they will often be implemented as part of a single
system. Therefore, when an access node and a backbone node
are hosted at the same substrate node, the cost of the metalink
between them is ignored. Fig. 1 illustrates a portion of a

Local users

Local users

A
B

C

Substrate
node

Access
node

Backbone
node

Metalink
connecting

backbone nodes
Metalink

connecting access
and backbone nodes

Substrate
link

Fig. 1. A metanet embedded in a substrate. Four metanodes including two
access nodes and two backbone nodes are mapped to three substrate nodes.

metanet embedded in a substrate with four metanodes on three
substrate nodes. Each of the two access nodes connects to its
local users and a backbone node through a metalink.

Part of the metanet configuration problem is to decide the
metanet topology and embed it in the given substrate, with
each metanode mapped to a substrate node and each metalink
mapped to a simple path in the substrate with a length equal to
the path length. Once an embedding is decided, each metalink
can be dimensioned with a capacity that is big enough to
handle any traffic pattern allowed by the specified traffic
constraints. In this section, we discuss in detail the metalink
dimensioning method given a set of traffic constraints and a
known metanet embedding, and answer the question of how
to find the least-cost embedding in Section IV.

A. Traffic Constraints

In general, traffic constraints can be expressed as upper
bounds on the traffic between arbitrary subsets of the access
nodes. Although our approach can be applied to metanets
described by arbitrary constraints, there are certain types of
constraints that are particularly appropriate for describing
network traffic. By imposing some structure on the system
of constraints, we can make it easier for network planners
to define appropriate constraints, while also reducing the
computational effort required for link dimensioning. For these
reasons, we focus on three classes of constraints that are
suitable for describing traffic flows in networks.

1) Termination constraintsspecify the total traffic termi-
nating at the metanet access nodes and are described by
two functionsα andω, whereα(u) is an upper bound
on the outgoing traffic from an access nodeu andω(u)
is an upper bound on the incoming traffic tou. When
termination constraints are the only constraints specified,
we have an instance of the so-called hose model [14].

2) Pair-wise constraintsare specified by a functionµ(u, v)
which bounds the traffic from access nodeu to ac-
cess nodev. The pair-wise constraints are considered

tight when
∑

v µ(u, v) is close toα(u) for all u and∑
u µ(u, v) is closeω(v) for all v.

3) Distance constraintsare used to limit the amount of
traffic between an access node and its more distant peers.
For each access nodeu, γ(u) is the local neighborhood
of u, andαF (u) is an upper bound on the total traffic
from nodeu to nodes outside ofγ(u) and ωF (u) is
an upper bound on the total traffic going to nodeu
from nodes outside ofγ(u). (The subscript ‘F ’ stands
for “far”.)

Although our algorithm accepts all three classes of traffic
constraints, it is up to the metanet planners to decide which
type(s) of constraints best characterize the traffic in their
metanets. In particular, the three classes of constraints are not
completely independent, which means the metanet planners
must consider them as a whole while selecting the parameters
associated with each constraint. In Section VI, we provide
details on how we derive the constraint parameters in our
experiments.

B. Dimensioning metalinks

The pruning algorithm described in Section IV finds a
candidate embedding of a metanet on a given substrate in each
step and evaluates its quality by dimensioning each metalink
and computing the cost of the resulting intermediate metanet
configuration. Here, we describe the metalink dimensioning
method, which guarantees that the provisioned bandwidth
capacity is sufficient to handle any traffic pattern allowed by
the traffic constraints. This is an extension to the method used
in the extensible network design [12]. The problem is formally
stated as follows:

Given: A metanet, represented as a directed graphG =
(V, E), a link ` ∈ E, a deterministic routing functionR(u, v)
specifying the path used by traffic fromu to v, a set of traffic
constraints defined by the functions[α, ω, γ, αF , ωF , µ], and
a collection of access nodesA ⊆ V .

Find: a set oftraffic flowsf(u, v) that maximizes
∑

u,v∈A,`∈R(u,v)

f(u, v)

subject to the following inequalities:

f(u, v) ≤ µ(u, v) ∀u, v ∈ A∑

v∈A

f(u, v) ≤ α(u) ∀u ∈ A

∑

v∈A,v/∈γ(u)

f(u, v) ≤ αF (u) ∀u ∈ A

∑

u∈A

f(u, v) ≤ ω(v) ∀v ∈ A

∑

u∈A,u/∈γ(v)

f(u, v) ≤ ωF (v) ∀v ∈ A

The value of the objective function is the capacity needed
at metalink` to ensure that̀ has enough capacity to handle
any traffic pattern allowed by the constraints. While we could
solve this problem using linear programming, it can also be

formulated as a maximum flow problem, allowing for a much
faster solution. Details about how we construct the maximum
flow problem can be found in [15].

C. Metanet Cost

To account for the substrate resources taken by a metanet,
we define the following cost metric:

Cnet = Clink + Cnode

= ρl ·
∑

metalink l

length(l) · bw capacity(l)

+ρn ·
∑

backbone node u

sw capacity(u) (1)

The metanet costCnet includes two parts: the metalink cost
Clink and metanode costCnode. For each metalink, a metanet
is “charged” with an amount proportional to the product of the
link length and the provisioned bandwidth capacity. Since the
switching capacity of a metanode is a good indication of the
amount of computational resources needed by the node, we
“charge” a metanet with the switching capacity provisioned to
all backbone nodes. We do not include the switching cost of
the access nodes in the metric since this cost is not related
to the backbone configuration and is highly dependent on the
degree of traffic concentration at the access nodes.ρl andρn

are cost scaling factors for the two substrate resources.

IV. PRUNING ALGORITHM

Traffic constraints have a direct impact on the choice of
network topology. So the objective of the pruning algorithm
is to find a network topology and its embedding in a given
substrate to best reflect the traffic constraints. The pruning
algorithm starts with a metanet that includes an access node
at each user location (represented by a substrate node at the
location) and a backbone node at each substrate node, and
uses all the substrate links to route its traffic. It then proceeds
to reduce the network cost by first pruning substrate links and
then pruning backbone nodes.

A. Link Pruning

Given the traffic constraints and a substrate graphGs =
(Vs, Es), the goal of the link pruning stage is to identify a
subset of substrate linksEr ⊆ Es to be used by metanet
traffic and a subset of substrate nodesVb ⊆ Vs to host metanet
backbone nodes. The algorithm starts withEr = Es andVb =
Vs. In each pruning step, for eache in Er, if removing e
does not make the corresponding metanet disconnect or violate
the predefined delay bounds, the cost of the metanet withe
omitted is computed. We then “prune” the link that yields the
largest cost reduction relative to the current cost, permanently
removing it fromEr. The pruning step is repeated until no
further improvement in network cost is possible.

The pseudo-code for the link pruning stage is shown in
Algorithm 1. Some of the function calls are explained below:

1) meta topology() constructs a metanet topology based
on the access node setVa, the current backbone node set
Vb and the remaining substrate linksEr. Metalinks are

Algorithm 1: Link Prunning
Input:

Substrate topology:Gs = (Vs, Es);
Metanet access node set:Va ⊆ Vs;
Metanet traffic constraint parameters:α, ω, γ, αF , ωF , µ;
Metanet delay bound function:f(u, v) ∀u, v ∈ Va andu 6= v;

Output:
Er ⊆ Es andVb ⊆ Vs;

Er = Es; Vb = Vs;
Gm = meta topology(Va, Vb, Er);
link dimension(Gm, α, ω, γ, αF , ωF , µ);
Cnet = cost(Gm);
while TRUE do

Cneti = ∞; ei = φ;
for e ∈ Er do

Er = Er − e;
Vb = update Vb(Er);
Gm = meta topology(Va, Vb, Er);
if violate delay bounds(f, Gm) = TRUE

Er = Er ∪ e;
continue;

end if
link dimension(Gm, α, ω, γ, αF , ωF , µ);
Cnete = cost(Gm);
if Cnete < Cneti

ei = e; Cneti = Cnete ;
end if
Er = Er ∪ e;

end for
if Cneti ≤ Cnet

Er = Er − ei; Cnet = Cneti ;
continue;

else
break;

end if
end while
Vb = update Vb(Er);

established among metanodes using the shortest paths in
the portion of the substrate defined byEr. Specifically,
each access node inVa has a metalink connecting it to
the closest backbone node inVb. Two backbone nodes
u andv have a metalink connecting them if and only if
no other node inVb lies on the shortest path betweenu
and v. This method is simple and intuitive. It reduces
link redundancy and lowers link cost.

2) link dimension() dimensions each of the metalinks to
handle the traffic defined by the traffic constraints.

3) cost() computes the metanet cost using Formula (1).
4) update Vb() removes nodes fromVb after links are

pruned fromEr. A node v is removed either whenv
is no longer connected by any link inEr, or whenv is
also an access node and has only one link inEr incident
to it. In the first case,v is removed because no traffic
can reachv. In the second case,v is removed to achieve
a lower node cost without increasing the link cost.

5) violate delay bounds() checks to see if the metanet
violates the predefined delay bounds. It also serves as a
check that the metanet graph is connected.

B. Node Pruning

The second stage of the pruning algorithm works on the
pruned substrate graph defined byEr and successively re-

Algorithm 2: Node Prunning
Input:

Substrate link set after link pruning:Er ;
Metanet backbone node set after link pruning:Vb;
Metanet access node set:Va ⊆ Vs;
Metanet traffic constraint parameters:α, ω, γ, αF , ωF , µ;
Metanet delay bound function:f(u, v) ∀u, v ∈ Va andu 6= v;

Output:
Metanet topology :Gm = (Vm, Em, C) with Vm = Va ∪ Vb.

∀(u, v) ∈ Em, (u, v) is a simple path defined onEr between
u andv, andC(u, v) is the provisioned bandwidth capacity;

Metanet cost:Cnet;

Gm = meta topology(Va, Vb, Er);
link dimension(Gm, α, ω, γ, αF , ωF , µ);
Cnet = cost(Gm);
while TRUE do

Cneti = ∞; vi = φ;
for v ∈ Vb do

Vb = Vb − v;
Gmv = meta topology(Va, Vb, Er);
if violate delay bounds(f, Gmv) = TRUE

Vb = Vb ∪ v;
continue;

end if
link dimension(Gmv , α, ω, γ, αF , ωF , µ);
Cnetv = cost(Gm);
if Cnetv < Cneti

vi = v; Cneti = Cnetv ; Gmi = Gmv ;
end if
Vb = Vb ∪ v;

end for
if Cneti ≤ Cnet

Vb = Vb − vi; Cnet = Cneti ; Gm = Gmi ;
continue;

else
break;

end if
end while

moves backbone nodes fromVb, until no further improvement
in network cost is possible. In each node pruning step, for each
nodev in Vb, we compute the metanet cost withv removed and
select the node that yields the largest cost reduction relative
to the current cost, and permanently remove it fromVb. The
pseudo-code is shown in Algorithm 2. When the node pruning
stops, we obtain a low-cost metanet configuration that satisfies
both the traffic constraints and delay bound constraints.

We illustrate the pruning algorithm in the following exam-
ple. Fig. 2 shows a substrate network that spans 10 metropoli-
tan areas in the western United States. A metanet provider
wants to construct a metanet to connect users in Seattle,
San Francisco, Phoenix, St. Louis and Minneapolis, and also
specifies a set of traffic constraints that must be satisfied by
the metanet.

As shown in Fig 3, the link pruning stage starts with a
metanet having an access node on each user location and a
backbone node on each substrate node. Red and light blue
colors are used to distinguish backbone nodes from access
nodes. We also draw the metalinks between backbone nodes
using red solid lines and those between an access node and
a backbone node using blue dashed lines. Fig. 4 shows the
embedded metanet when the link pruning stops. As a result, we
have five backbone nodes located at five substrate nodes and

Fig. 2. A substrate network spanning 10 metropolitan areas.

Fig. 3. The embedded metanet before link pruning. Cost = $32,000.

Fig. 4. The embedded metanet after link pruning. Cost = $20,000.

Fig. 5. The embedded metanet after node pruning. Cost = $14,000.

Fig. 6. The least-cost metanet configuration on the original substrate in
Fig. 2. Cost = $14,000, Lower bound = $12,600.

each of the access nodes connecting to the closest backbone
node through a metalink defined on the remaining substrate
links. Fig. 5 shows only two backbone nodes remain when the
node pruning stops. We also show the final least-cost metanet
configuration on the original substrate in Fig. 6. Note that
the final metanet cost is reduced significantly as the result of
pruning, and is only11% higher than the lower bound.

V. L OWER BOUND ON METANET COST

In this section, we show how a general lower bound is
computed on the metanet cost defined in Formula (1).

A. Lower bound onClink

The idea of computing a lower bound on link cost is to find
the most expensive traffic configuration on the given substrate
that satisfies all the traffic constraints [9], [12]. To compute the
lower bound, we are given a substrate networkH = (W,F)
with shortest path distancesd(u, v) between any two nodesu
andv in W , a set of access nodesA ⊆ W , and a set of traffic
constraints defined by the functions[α, ω, γ, αF , ωF , µ]. Our
goal is to seek a set of traffic flowsf(u, v) that maximizes
the link cost

ρl ·
∑

u,v∈A

d(u, v)f(u, v)

subject to the following inequalities:

f(u, v) ≤ µ(u, v) ∀u, v ∈ A∑

v∈A

f(u, v) ≤ α(u) ∀u ∈ A

∑

v∈A,v/∈γ(u)

f(u, v) ≤ αF (u) ∀u ∈ A

∑

u∈A

f(u, v) ≤ ω(v) ∀u ∈ A

∑

u∈A,u/∈γ(v)

f(u, v) ≤ ωF (v) ∀u ∈ A

This linear program can be formulated as a maximum cost
flow problem, defined on a flow graph similar to the one used
in the link dimensioning problem. In [15], we have the detailed
description on how we construct the equivalent maximum cost
flow problem.

B. Lower bound onCnode

The lower bound on the node switching cost is derived from
a simple observation. For each access node, its termination
traffic is switched by at least one backbone node, so the total
traffic switched by all backbone nodes is at least the total
termination traffic at all access nodes. Therefore, the lower
bound onCnode is simply ρn ·

∑
access node u

(α(u) + ω(u)).

Because the lower bounds onClink and Cnode are inde-
pendent of each other, we can add them together to obtain
a general lower bound on the metanet costCnet. Note that
this general lower bound is also independent of the metanet
topology and can be used to evaluate candidate metanet
configurations.

(a) us_metro_20

(b) us_metro_50

(c) eu_metro_20

Fig. 7. Substrate networks

VI. EVALUATION

A. Experiment Setup

In this section, we describe a set of experiments carried out
using our metanet planning tool. We consider three substrate
topologies taken from [12].

• Us metro20 spans the 20 largest metropolitan areas in
the United States.

• Us metro50 spans the 50 largest metropolitan areas in
the United States.

• Eu metro20 spans the 20 largest metropolitan areas in
western Europe.

The substrate network topologies are shown in Fig. 7. For
a metanet to be configured on a substrate, we assume its users
are at all substrate nodes. We defineα andω to be proportional
to the populations of the associated metropolitan areas, and
let α(u) = ω(u) for each access nodeu. For the distance
constraints, we let the local neighborhood of each access node
be its three closest neighboring nodes, and limit the total

traffic leaving its neighborhood to be a fixed percentage of
its total termination traffic. That is, we letαF (u) = θ·α(u)
and ωF (u) = θ·ω(u), for a distance factorθ ≤ 1.0. In our
experiments, we letθ take on values 0.25, 0.5, 0.75 and 1.0.

Distance constraints complicate the derivation of the pair-
wise constraints somewhat. We now describe the precise
method used to compute the pair-wise constraints.

For any two nodesu andv, let




f1(u, v) = ω(v)∑
t∈γ(u)

ω(t)
· (α(u)− αF (u)) if v ∈ γ(u)

f2(u, v) = ω(v)∑
t/∈γ(u),t 6=u

ω(t)
·αF (u) if v /∈ γ(u)

When v ∈ γ(u), f1(u, v) representsv’s fair share ofu’s
local outgoing traffic among all nodes withinu’s neighborhood
γ(u). When v /∈ γ(u), f2(u, v) is v’s fair share ofu’s non-
local outgoing traffic amongu’s non-neighbors outside of
γ(u). f1 and f2 are the traffic constraints fromu to v from
u’s perspective. Similarly, we derive the traffic constraintsg1

andg2 from v’s perspective, and we have




g1(u, v) = α(u)∑
t∈γ(v)

α(t)
· (ω(v)− ωF (v)) if u ∈ γ(v)

g2(u, v) = α(u)∑
t/∈γ(v),t 6=v

α(t)
·ωF (v) if u /∈ γ(v)

Depending on whether or notu andv are neighbors, traffic
from u to v is bounded by the following four cases:

µ(u, v) =

δ·





max(f1(u, v), g1(u, v)) if v ∈ γ(u), u ∈ γ(v)
max(f1(u, v), g2(u, v)) if v ∈ γ(u), u /∈ γ(v)
max(f2(u, v), g1(u, v)) if v /∈ γ(u), u ∈ γ(v)
max(f2(u, v), g2(u, v)) if v /∈ γ(u), u /∈ γ(v)

whereδ is called therelaxation factor. By settingδ = 1.0 we
tightly constrain the pair-wise traffic. Having aδ larger than
1.0 allows more flexibility in the traffic distribution. In our
experiments,δ varies from 1.0 to 1.6.

We also study the impact of the traffic propagation delay
bounds on the cost of metanet configurations. For simplicity,
we use the distance travelled by the traffic instead of the
time to bound the propagation delay. We define the acceptable
delay betweenu andv to be within its default minimum delay
min d(u, v) which is the shortest path distance between them
in the substrate and its maximum allowed delaymax d(u, v)
defined as follows:

max d(u, v) = (1 + l2 − l1) ·min d(u, v) + l1 · dm (2)

l1 andl2 are scaling factors used to adjust the delay bounds,
and dm is the largestmin d among all node pairs. Fig. 8
shows the acceptable delay bounded by the functionsmin d
andmax d. Whenl1 andl2 are small, delay bounds are tight.
Increasingl1 allows longer delays between node pairs that are
closer in the substrate, while increasingl2 loosens the delay
bounds for node pairs that are far away in the substrate.

Fig. 8. Acceptable delays between the default minimum delay and the
maximum delay defined in Formula (2)

Finally, for illustration purpose, we set cost scaling factors
ρl andρn to the values that are equivalent to charging$1 per
100km metalink of 1Mbps provisioned bandwidth and$1 per
1Mbps switching capacity.

B. Evaluation Results

1) Least-cost metanet topology:In the conventional
constraint-based network design, finding the optimal topology
for an arbitrary set of traffic constraints is a hard problem.
However, it’s well known that the complete graph is the opti-
mal topology for networks with tight pair-wise constraints, and
the best star topology is no more than twice as expensive as
the optimal topology given only termination constraints [10].
Interestingly, the least-cost metanet topologies found by our
pruning algorithm exhibit similar characteristics, even though
the embedded metanets are restricted by the underlying sub-
strate topologies and the more complex constraints.

Our first set of experiments focus on the impact of the tight-
ness of the pair-wise constraints on the metanet topologies.
To do so, we place no delay constraints on the access node
pairs and no restriction on traffic locality. Fig. 9 shows the
least-cost metanet topologies on the three substrates with tight
pair-wise constraints (δ = 1.0). We color a substrate node in
red to indicate that a backbone node is mapped to it. We also
use red solid lines to highlight metalinks connecting backbone
nodes (we call them backbone links), and blue dashed lines for
metalinks connecting access nodes and backbone nodes (we
call them access links). If a substrate link is shared by both
a backbone link and an access link, we distinguish it using a
thicker red line. Note that the metanet topologies in Fig. 9 are
very close to complete graphs, in which backbone nodes are
well connected by mostly directed backbone links.

As we loosen the pair-wise constraints by setting the re-
laxation factorδ to 1.6, it’s equivalent to having only the
termination constraints. Fig. 10 shows the least-cost metanet
topologies on the three substrates. The topologies clearly
exhibit the star structure with all access nodes connected to a
centrally located backbone node.

Next, we study the role that the distance constraints play in
determining the least-cost metanet topologies. This time we
keep loose pair-wise constraints in our experiments. Compared

to Fig. 10, Fig. 11 shows dramatic topology changes as we
allow no more than25% of a node’s total traffic to leave
its local neighborhood. With most traffic kept local, we see
the least-cost metanet topology tends to have many backbone
nodes that spread across the substrate. These backbone nodes
are also located close to the access nodes to provide good local
connectivity.

Comparing Fig. 9 with Fig. 11, we see that the tight pair-
wise constraints have a similar effect in shaping the least-
cost metanet topologies as the tight distance constraints. In
both circumstances, the least-cost metanet topology tends to
have many backbone nodes and directly connected backbone
links. However, there are also noticeable differences in the
topologies. In the case of the tight pair-wise constraints, more
backbone nodes are needed to provide shorter routing paths
between all node pairs. In Fig. 11, there are two forces that
determine the topology of the metanet. On the one hand, the
loose pair-wise constraints favor aggregation of traffic using
fewer backbone links and nodes just as we see in Fig. 10.
On the other hand, the tight distance constraints and small
local neighborhood “drag” backbone nodes close to the access
nodes to provide good local connectivity. Because of these two
opposing forces, some star-like clusters appear at the edges of
the network and fewer backbone nodes are needed in Fig. 11
compared to Fig. 9.

2) Metanet Costs:Fig. 12 shows how the lower bound on
the metanet cost varies as a function of the relaxation factor
and distance factor for the three substrates. Because looser
constraints allow more expensive traffic configurations, the
lower bound grows as either factor increases. We also see
in Fig. 13 that the metanet cost grows in a similar fashion as
the lower bound. However, we notice that in Fig. 13(a) and
Fig. 13(c), the growth of the metanet cost slowly levels off
as the relaxation factor gets bigger. This is because when the
pair-wise constraints get looser, their impact on the metanet
topology as well as the metanet cost diminishes. Fig. 14
shows the ratio of the metanet cost to the corresponding lower
bound. Overall, the cost of the metanet configuration is no
more than 1.55 times the lower bound, and the quality of
the configurations improves dramatically as the constraints get
weaker.

3) Impact of Delay Bounds on Metanet Costs:We see in
Section VI-B.1 that loose traffic constraints favor metanet
topologies with only a handful of backbone nodes located
near the center of the substrate. Even though such topologies
minimize the network cost and have negligible impact on the
communication latencies between far-away nodes, they can
dramatically increase the delay between close-by nodes, which
may not be acceptable to time sensitive applications.

To study the influence of the delay bounds on the metanet
costs, we first focus on the metanets with loose traffic con-
straints. Given the results in Section VI-B.1, we expect to see
that relaxing the delay bounds on close-by nodes will allow
cheaper metanet configurations. In Fig. 15, not surprisingly,
as we fix the delay parameterl2 at 0.2 and gradually increase
l1 from 0.2 to 1.4 to allow bigger delays between access

(a) US metro 20, cost/lb =1.12 (b) US metro 50, cost/lb =1.16 (c) EU metro 20, cost/lb =1.16

Fig. 9. The least-cost metanets on three substrates withδ = 1.0 andθ = 1.0

(a) US metro 20, cost/lb =1.07 (b) US metro 50, cost/lb =1.15 (c) EU metro 20, cost/lb =1.08

Fig. 10. The least-cost metanets on three substrates withδ = 1.6 andθ = 1.0

(a) US metro 20, cost/lb =1.38 (b) US metro 50, cost/lb =1.51 (c) EU metro 20, cost/lb =1.50

Fig. 11. The least-cost metanets on three substrates withδ = 1.6 andθ = 0.25

θ = 0.25

θ = 1.0

θ = 0.75

θ = 0.5

(a) US metro 20

θ = 0.25

θ = 1.0

θ = 0.75

θ = 0.5

(b) US metro 50

θ = 0.25

θ = 1.0

θ = 0.75

θ = 0.5

(c) EU metro 20

Fig. 12. The lower bound on the cost of metanet configurations on the three substrates

θ = 0.25

θ = 1.0

θ = 0.75
θ = 0.5

(a) US metro 20

θ = 0.25

θ = 1.0

θ = 0.75
θ = 0.5

(b) US metro 50

θ = 0.25

θ = 1.0

θ = 0.75

θ = 0.5

(c) EU metro 20

Fig. 13. The cost of the least-cost metanet configurations on the three substrates

θ = 1.0

θ = 0.25

θ = 0.5

θ = 0.75

(a) US metro 20

θ = 1.0

θ = 0.25

θ = 0.5 θ = 0.75

(b) US metro 50

θ = 1.0

θ = 0.25

θ = 0.5

θ = 0.75

(c) EU metro 20

Fig. 14. The ratio of the least-cost metanet configurations to the lower bound ratio on the three substrates

US_metro_50

US_metro_20

EU_metro_20

Fig. 15. Metanet cost vs.l1 with l2 = 0.2 under loose traffic constraints
with δ = 1.6 andθ = 1.0

nodes that are close on the substrate, we see the metanet
costs decrease steadily for all three substrates. Whenl1 is
1.4, the metanet cost is cut by22% on US metro 20, 16%
on EU metro 20 and 14% on US metro 50, respectively.
Clearly the results indicate that, for the metanets with loose
traffic constraints, tradeoffs can be made between lowering
network costs and reducing propagation delays. However, the
relatively small effect also suggests that we can afford to
tighten the delay bounds without having huge impact on the
network cost.

Next, we study the impact of the delay bounds on the

l1,l2=1.2,0.2
l1,l2=0.2,0.2

l1,l2=1.2,1.2

θ=1.0

θ=0.5

θ=0.25

Fig. 16. Metanet costs onUS metro 20 under various traffic conditions
with tight to loose delay bounds

metanet costs under various traffic conditions. In particular,
we select three sets of delay parameters to see to what extent,
the metanet cost is affected by the delay bounds. Fig. 16
shows three groups of curves with each group associated with
a distance factor. Within a group, the blue solid line indicates
the metanet cost under tight delay bounds withl1 = 0.2 and
l2 = 0.2, the red dashed line is forl1 = 1.2 andl2 = 0.2 which
loosen the delay bounds for close-by nodes, and the pink
dotted line is forl1 = 1.2 and l2 = 1.2 that also allow longer
delays among far-away nodes. Apparently, the tightest delay

bounds always yield the most expensive configuration of the
three. However, in the presence of stronger traffic constraints,
the difference in costs becomes smaller or even negligible.
This is because tight traffic constraints force backbone nodes
to be near the access nodes so that delays become less an
issue. The results forUS metro 50 andEU metro 20 look
very similar to what we see in Fig. 16. They are not shown
due to the limited space.

4) Running time:Using Dinic’s algorithm and the dynamic
trees data structure [16] to solve maximum flow problems,
we can configure a low-cost metanet withn access nodes
on a substrate withm links in O(m3n3logn) time. Even
though the time grows as the cube ofm and n in the worst
case, the actual running time is fairly reasonable for practical-
sized substrates. We ran our experiments on a Linux 2.6.9
machine with a 2.4 GHz AMD Opteron processor. On average,
it takes1.02 seconds to configure a metanet with20 access
nodes onUS metro 20, 2.61 seconds onEU metro 20, and
107.2 seconds to configure a metanet with50 access nodes on
US metro 50.

VII. C LOSING REMARKS

In this paper, we address the metanet configuration problem
in a diversified internet and propose a pruning algorithm
for configuring low-cost metanets on any given substrate
network. The resulting metanet is guaranteed to have sufficient
bandwidth to accommodate any traffic pattern allowed by user-
specified traffic constraints. Through extensive studies on the
metanet configuration problems with various traffic constraints
and delay constraints on three different substrates, we found:

1) The system of traffic constraints has a profound influ-
ence on the least-cost metanet structure. In particular,
tight pair-wise constraints favor metanet topologies in
which backbone nodes are directly connected by links
with just the right capacity. As constraints get looser,
“tree-like” topologies with fewer backbone nodes near
the center of the network are better at reducing the
network costs.

2) The least-cost network structure is also affected by the
underlying substrate topology. AlthoughUS metro 50
is only a larger version ofUS metro 20 with the ma-
jority of users having the same geographic distribution,
the least-cost metanet topologies are quite different even
when the constraints are the same.

3) The delay bounds affect the metanet costs and the impact
grows when the traffic constraints get relaxed. However,
the delay bounds do not affect the metanet costs in a
significant way, especially when traffic constraints are
strong, which indicates that we can afford tighter delay
bounds without having major impact on network costs.

In contrast to other testbed configuration systems, our work
starts from a higher level specification and produces a network
that is dimensioned to handle the specified traffic. Traffic-
based specification is more suitable for designing large-scale
metanets that aim at long-term deployment. To the best of our

knowledge, this work is the first one that tries to automati-
cally determine the best network topology while considering
network switching costs and propagation delays. The empirical
results show that our algorithm produces metanet configura-
tions that are demonstrably close to the lower bound and is
fast enough to handle substrate networks of practical size.

We recognize that there are limitations in our work. We
assume that substrate links have sufficient capacity not to con-
strain the configurations of the metanets. Since substrates are
typically designed to have enough resources to accommodate
multiple metanets, this assumption is appropriate when the
substrate is not operating close to its capacity limit. However,
adding substrate link capacity constraints is a natural and
useful extension. One way to realize this in our algorithm is to
ensure, during the pruning process, that the total provisioned
bandwidth of the metalinks is no greater than the capacity of
any substrate link they use. If this condition is violated, we
can penalize the insufficient substrate link with a higher cost,
which can force some traffic to be re-routed to other paths.
We will explore this issue further in our future work.

REFERENCES

[1] L. Peterson, S. Shenker, and J. Turner, “Overcoming the Internet Impasse
through Virtualization,” inACM Workshop on Hot Topics in Networks
(HotNets), 2004.

[2] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, “PlanetLab: An Overlay Testbed for Broad-Coverage
Services,”ACM Computer Communications Review, vol. 33, no. 3, 2003.

[3] (2006) Global environment for network innovations. [Online]. Available:
http://www.geni.net/

[4] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In
VINI Veritas: Realistic and Controlled Network Experimentation,” in
ACM SIGCOMM, 2006.

[5] J. Lu and J. Turner, “Constraint-driven Virtual Network Design on A
Shared Substrate,” inPoster in 14th IEEE Internation Conference on
Network Protocols, 2006.

[6] R. Ricci, C. Alfeld, and J. Lepreau, “A Solver for the Network Testbed
Mapping Problem,”SIGCOMM Computer Communications Review,
vol. 33, no. 2, pp. 65–81, 2003.

[7] Y. Zhu and M. Ammar, “Overlay Network Assignment in PlanetLab
with NetFinder,”College of Computing, Georgia Institute of Technology,
Technical Report GT-CSS-06-11, 2006.

[8] Sword. [Online]. Available: http://sword.ucsd.edu/
[9] A. Fingerhut, S. Suri, and J. Turner, “Designing Least-Cost Nonblocking

Broadband Networks,”Journal of Algorithms, pp. 287–309, 1997.
[10] A. Fingerhut, “Approximation Algorithms for Configuring Nonblocking

Communication Networks,”Doctoral Dissertation, Washington Univer-
sity in St. Louis, May 1994.

[11] H. Ma, I. Singh, and J. Turner, “Constraint Based Design of ATM
Networks, an Experimental Study,”Technical Report, Washington Uni-
versity, Apr. 1997.

[12] S. Y. Choi, “Resource Configuration and Network Design in Extensible
Networks,”Doctorial Dessertation, Washington University in St. Louis,
Dec. 2003.

[13] A. Fingerhut, S. Suri, and J. Turner, “Designing Minimum Cost Non-
blocking Communication Networks,” in5th International Conference on
Telecommunication Systems Modelling and Analysis, Mar. 1997.

[14] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan,
and J. E. van der Merive, “A Flexible Model for Resource Management
in Virtual Private Networks,” inACM SIGCOMM, 1998, pp. 95–108.

[15] J. Lu and J. Turner, “Efficient Mapping of Virtual Networks onto A
Shared Substrate,”Department of Computer Science and Engineering,
Washington University in St. Louis, Technical Report WUCSE-2006-35,
2006.

[16] R. E. Tarjan,Data Structures and Netowrk Algorithms. Philadelphia,
PA: Society for Industrial and Applied Mathematics, 1983.

	Configuring Low Cost Metanetworks on A Shared Substrate
	Recommended Citation
	Configuring Low Cost Metanetworks on A Shared Substrate

	tmp.1415913124.pdf.js4Xq

