
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2007-41

2007

Distributed Allocation of Workflow Tasks in MANETs Distributed Allocation of Workflow Tasks in MANETs

Rohan Sen, Gruia-Catalin Roman, and Christopher Gill

When multiple participants work on a workflow that represents a large, collaborative activity, it is

important to have a well defined process to determine the portions of the workflow that each

participant is responsible for executing. In this paper, we describe a process and related

algorithms required to assign tasks in a workflow, to hosts that are willing to carry out the

execution of these tasks, and thereby contributing to the completion of the activity. This

problem is a stylized form of the multi-processor scheduling algorithm which has been shown

to be NP-Hard. Further complicating the issue is that... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Sen, Rohan; Roman, Gruia-Catalin; and Gill, Christopher, "Distributed Allocation of Workflow Tasks in
MANETs" Report Number: WUCSE-2007-41 (2007). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/141

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/141?utm_source=openscholarship.wustl.edu%2Fcse_research%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/141

Distributed Allocation of Workflow Tasks in MANETs Distributed Allocation of Workflow Tasks in MANETs

Rohan Sen, Gruia-Catalin Roman, and Christopher Gill

Complete Abstract: Complete Abstract:

When multiple participants work on a workflow that represents a large, collaborative activity, it is
important to have a well defined process to determine the portions of the workflow that each participant
is responsible for executing. In this paper, we describe a process and related algorithms required to
assign tasks in a workflow, to hosts that are willing to carry out the execution of these tasks, and thereby
contributing to the completion of the activity. This problem is a stylized form of the multi-processor
scheduling algorithm which has been shown to be NP-Hard. Further complicating the issue is that we are
targeting our approach to mobile ad hoc networks, where hosts are physically mobile, communication
links are frequently interrupted, and spatiotemporal considerations become increasingly important. We
describe a distributed approach to task allocation in mobile ad hoc networks that employs heuristics to
assign tasks in a workflow to mobile hosts based on their capabilities and their mobility patterns. We
have implemented our algorithms in the context of CiAN, a workflow management system (WfMS)
supporting collaborations in a mobile environment. In addition, we also present performance data of our
algorithm and compare it to naive and brute force approaches.

https://openscholarship.wustl.edu/cse_research/141?utm_source=openscholarship.wustl.edu%2Fcse_research%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/141?utm_source=openscholarship.wustl.edu%2Fcse_research%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2007-41

Distributed Allocation of Workflow Tasks in MANETs

Authors: Rohan Sen, Gruia-Catalin Roman, and Christopher Gill

Corresponding Author: rohan.sen@wustl.edu

Abstract: When multiple participants work on a workflow
that represents a large, collaborative activity, it is important to
have a well defined process to determine the portions of the
workflow that each participant is responsible for executing. In
this paper, we describe a process and related algorithms required
to assign tasks in a workflow, to hosts that are willing to carry
out the execution of these tasks, and thereby contributing to the
completion of the activity. This problem is a stylized form of
the multi-processor scheduling algorithm which has been shown
to be NP-Hard. Further complicating the issue is that we are
targeting our approach to mobile ad hoc networks, where hosts
are physically mobile, communication links are frequently interrupted,
and spatiotemporal considerations become increasingly
important. We describe a distributed approach to task allocation
in mobile ad hoc networks that employs heuristics to assign tasks
in a workflow to mobile hosts based on their capabilities and
their mobility patterns. We have implemented our algorithms in
the context of CiAN, a workflow management system (WfMS)
supporting collaborations in a mobile environment. In addition,
we also present performance data of our algorithm and compare
it to naive and brute force approaches.
Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Distributed Allocation of Workflow Tasks in
MANETs

Rohan Sen, Gruia-Catalin Roman, and Christopher Gill
Department of Computer Science and Engineering

Washington University in St. Louis
Campus Box 1045, One Brookings Drive

St. Louis, MO 63130, U.S.A.
Email: {rohan.sen, roman, cdgill}@wustl.edu

Abstract—When multiple participants work on a workflow
that represents a large, collaborative activity, it is important to
have a well defined process to determine the portions of the
workflow that each participant is responsible for executing. In
this paper, we describe a process and related algorithms required
to assign tasks in a workflow, to hosts that are willing to carry
out the execution of these tasks, and thereby contributing to the
completion of the activity. This problem is a stylized form of
the multi-processor scheduling algorithm which has been shown
to be NP-Hard. Further complicating the issue is that we are
targeting our approach to mobile ad hoc networks, where hosts
are physically mobile, communication links are frequently inter-
rupted, and spatiotemporal considerations become increasingly
important. We describe a distributed approach to task allocation
in mobile ad hoc networks that employs heuristics to assign tasks
in a workflow to mobile hosts based on their capabilities and
their mobility patterns. We have implemented our algorithms in
the context of CiAN, a workflow management system (WfMS)
supporting collaborations in a mobile environment. In addition,
we also present performance data of our algorithm and compare
it to naive and brute force approaches.

I. INTRODUCTION

Workflows are useful for modeling large, well-structured ac-
tivities that can be broken down into smaller tasks and require
the participation of multiple hosts (where a host is a mobile
device that is carried by a human user). Typically, there are
three stages in the life of a workflow: (1) Specification, which
is the formulation of the workflow in a machine parseable
language, (2) Allocation, which is the assigning of tasks in the
workflow to hosts that have the skills to perform those tasks,
and (3) Execution, which is the performing of those tasks by
the hosts that have been assigned to them and the collation
of results. Popular languages for specifying workflows today
are BPEL [1] and XLANG [19], among others. The process of
allocation and execution is handled by Workflow Management
Systems (WfMSs) such as ActiveBPEL [5], BizTalk [2],
Groove [3], and Oracle Workflow Engine [11], to name a few.
Most WfMSs today are designed to run on enterprise LANs
and the workflows they execute are relatively static, in the
sense that they have rigid semantics that do not change at
runtime. For example, business processes, which are arguably
the most popular application of workflows today, can have
their output influenced only by changes in input and not
any other contextual information. In addition, such processes

usually run in support of web-based applications and enterprise
level systems. However, there is no fundamental restriction in
the workflow model that prevents it from being used in more
dynamic contexts .

In CiAN [18], we developed a specification that allowed a
programmer to formulate workflows that were dynamic, i.e.,
their semantics could change based on context. We also devel-
oped a runtime system to execute these dynamic workflows in
the setting of a mobile ad hoc network (MANET). However,
the algorithm for allocating tasks to hosts that is used by CiAN
has two key shortcomings: (1) the algorithm is centralized,
which imposed the requirement that all hosts be co-located
initially for successful allocation of tasks in the workflow and
(2) the algorithm is designed to be run before the execution
of the workflow begins, thereby requiring a priori allocation
of all tasks.

In this paper, we describe a distributed allocation algorithm
that addresses these two shortcomings. We take a monolithic
workflow and fragment it into smaller “sub-workflows” using
a set of pre-defined rules. Each fragment is then assigned
to a local coordinator, a special host that is responsible for
allocating the subset of tasks assigned to it. The allocation
process is designed to work in a “just-in-time” manner, with
tasks being allocated just before they need to be performed.
In addition, we have put in place policies that attract hosts
that are not working on a task to the local coordinators which
can then assign additional tasks to those hosts from the set of
tasks that have yet to be allocated.

This approach is especially beneficial in the dynamic setting
of a MANET because: (1) the decentralized approach mitigates
the problem of a single point of failure, (2) the just-in-time
nature of the algorithm removes the requirement that all tasks
be assigned a priori, and (3) the policy for attracting available
hosts to the coordinators eliminates the need for co-location
of all hosts at a single time for allocation of tasks. The
remainder of the paper is organized as follows: Section II
describes previous work in this area while Section III describes
our computational model and the characteristics of MANETs.
Section IV desribes our allocation strategy while Section V
is a discussion of our assumptions and approach. Section ??
covers implementation details and performance results before
we offer conclusions in Section VI.

II. RELATED WORK

A workflow management system (WfMS) has two func-
tions: (1) deciding who does each task in the workflow and
(2) transferring data and results between participants in the
workflow. The work presented in this paper deals with the
first function, i.e., the process of task allocation. Current
deployments of WfMSs, such as ActiveBPEL [5] and Oracle
Workflow Manager [11], almost always run in a corporate
LAN environment or across the Internet where reliable wired
connections permit the use of centralized workflow manage-
ment architectures and instantaneous access to workflow par-
ticipants. Even WORKPAD [15], which is designed for mobile
networks uses a centralized WfMS. Given this environment,
the process of allocation is typically handled as follows: the
WfMS selects a task to execute. It then looks up a central
directory for a suitable software service to perform the task
(in some cases even this is not necessary as the services may
be hardcoded, e.g., BPEL’s partnerLinks). Once a service
has been found, the WfMS sends the input data to the service
and waits for a response. When the response arrives, it selects
a service for the next task and repeats the procedure.

In MANETs however, there is neither the opportunity to
have a centralized management architecture, nor are the partic-
ipants always accessible due to wireless links that might break
frequently due to host mobility. Hence the allocation process
is much more opportunistic in nature, allocating tasks when a
priori, whenever hosts are within communication range, which
is a different approach from those in use today.

In a sense, our task allocation problem is similar to the Job
Shop Scheduling problem. In Job Shop Scheduling, a set of
jobs is scheduled on a set of machines such that no machine
executes more than one job at a time and the total duration for
executing the jobs is minimized. In our work, the tasks and
hosts are analogous to the jobs and machines respectively. The
difference lies in the fact that our primary objective function
is to maximize allocation. Minimizing the time required to
complete the jobs is only a secondary objective. Also, in
addition to jobs being admitted during the scheduling process
(the entire workflow is not available for scheduling up front),
we also have to accommodate the possibility of additional ma-
chines being admitted during the scheduling process. Finally,
our approach must also take into consideration the constraints
imposed by the physical mobility of hosts and the fact that all
jobs cannot be scheduled on all machines.

Job Shop Scheduling has receieved a fair amount of atten-
tion from the research community. In [7], the authors describe
a heuristic-based method for solving the basic Job Shop
Scheduling problem while [6] describes a genetic approach
to solving the same problem. More pertinent to our work is
[14], which considers the job shop problem with availability
constraints. In other words, the set of available machines on
which to schedule jobs changes over time. This is analogous
to the reachability of hosts changing over time. Another piece
of work that is closely related to our effort is reactive Job
Shop Scheduling [12] where the schedule is not computed a

priori but over a period of time. More recently, researchers
have considered the use of neural nets to solve the Job Shop
problem [20].

Another area from which we draw inspiration is the robot
task scheduling. In [9], the authors propose a taxonomy of
multi-robot task assignment problems. Our work is closest to
the extended time assignment variants of the problem proposed
therein. Solutions to this problem involve using a market-based
economic model [21], an auction-based approach [8] that uses
concept of task utility and fitness of a robot to perform a task
to make allocations. Incorporation of spatiotemporal consider-
ations including the formation of organizations and a reward
scheme is described in [4] while a scheme for fault tolerant
coalition formation is described in [16]. Similar approaches
have also been used to allocate resources in wireless sensor
networks [13].

In our work, we drew inspiration from each of these bodies
of work and developed a scheme that was suited best to our
unique environment and requirements. We also ensured that
the resulting approach is not overly complex as it is intended
for use in MANETs where devices are typically resource
constrained. The next section describes our computational
model in more detail followed by the description of our
algorithm.

III. COMPUTATIONAL MODEL

Before we describe our algorithms, we present a motivating
example, and briefly describe our computational model.

A. Motivating Example

Consider a scenario where a bridge is being constructed in
a remote area. Workers on the project carry mobile devices
(hosts) on their person, on which they receive instructions and
task assignments from a sophisticated workflow management
system that is responsible for the overall project. Since the
project site is in a remote area, the WfMS runs in a distributed
fashion over a MANET. Currently, there is only one host that
performs task allocations which leads to problems because the
host is not always accessible to everyone. Also, because all
tasks are allocated a priori, the allocation process is not ac-
commodating of emergent events. Realizing the problems with
the current approach, the IT support team for the project de-
velops a WfMS that handles task assignments in a distributed
fashion. Rather than have one host handle all the allocations,
the process is spread out over multiple hosts, with the result
that each “subproject” has a coordinator that is responsible
for allocating and managing the execution of that subproject.
In addition, the coordinators allocate the tasks at the latest
possible time so that emergent events are accounted for during
the allocation process. With the upgrade to the distributed
allocation process, tasks allocated more effectively and the
just-in-time behavior ensures that the allocation process is
responsive to the environment of the project.

B. Computational Model

For the work presented in this paper, we assume that there
exists a dynamic workflow, encoded using the CiAN specifi-
cation, which needs to be allocated and subsequently executed
in a well-defined physical space. Each task in the workflow
has an earliest start time, a deadline, a duration, the location
at which it is to be performed, and a set of qualifications that
an host must have in order to perform it. We also assume
that there is a closed set of hosts, each of which have a set
of qualifications. Since we define hosts to be a combination
of a human user and a mobile device, the capabilities of
a host is the combination of the software capabilities of
the user’s PDA and human skills of the user, e.g., a metal
worker has welding skills. In addition, hosts have a maximum
velocity at which they can move, and a schedule. Entries in
a host’s schedule indicate its commitments. A host’s schedule
includes commitments related to workflow tasks or external
commitments (presumably of a personal nature). Each entry in
the schedule consists of a start time, end time, and the location
of the host at each of these times. While a host’s schedule
may not contain workflow-related commitments initially, it
may contain personal commitments which must be taken into
account when assigning tasks.

A small subset of hosts undertake the function of coordina-
tors. Each coordinator is responsible for allocating a part of
the overall workflow. Coordinators differ from “worker” hosts
in the following ways: (1) they broadcast their schedule so
that all worker hosts know where a coordinator is at all times,
(2) they advertise a “home” location, which is the location at
which they remain unless their schedule requires them to be
elsewhere, (3) they do not execute any tasks, instead running
the allocation algorithm as their permanent “task”. The hosts
that serve as coordinators are chosen a priori.

Worker hosts in our system can move freely as long as they
do not violate certain mobility constraints. During time periods
where there is an entry in their schedule, they are required to
be at the location dictated by that schedule entry. An entry
in the schedule is, in other words, a commitment by the host
to be at a particular place at a particular time. When they
have no entry in the schedule, they are required to gravitate
towards the nearest coordinator in search for more work. In
other words, we compel the worker host to occupy itself to
the maximum possible degree (this is analogous to a human
worker completing a task and then returning to a supervisor
to be assigned another task.) If a task is allocated to a worker
host, it blocks off the time required to perform the task on its
schedule, so that it is not assigned another conflicting task.

An host is considered to be qualified to perform a task if it
has all the qualifications and is available during the time that
the task must be performed. In addition, it must have sufficient
time to travel to and from the location of the task without
exceeding its maximum velocity and without encroaching on
any of its other previously scheduled appointments.

C. MANETs and Related Considerations

A novel feature of the algorithms described in this work is
the fact that they are designed to operate in the environment
of MANETs, a special class of networks that do not rely on
any external or fixed infrastructure. The network infrastructure
is borne by the hosts that comprise the network. Due to the
physical mobility of hosts, the network topology is dynamic,
with communication links being available only intermittently.
The transient nature of the links makes multi-hop routes
expensive to maintain and prone to failure. Hence, the most
reliable way to communicate is by having hosts directly
connect to each other when within communication range of
each other. This opportunistic style of communication fosters
a decoupled style of computing.

Decoupled computing means that hosts may not be reach-
able at all times. Hence, it is not possible to interact with
the host on-demand, as is the case with current WfMSs that
run in wired networks and have a reliable link to every host.
Rather, we are forced to adopt an approach where we develop
a short term plan for the host. This plan is then transferred
to the host when it is reachable, and is carried out by the
host subsequently (including times when it is not reachable).
The results are transferred during a subsequent communication
opportunity. This makes only a very coarse grained control
possible over the host’s activities and behavior.

IV. ALLOCATING TASKS TO MOBILE HOSTS

Having presented our computational model and the chal-
lenges associated with a MANET environment, we now
present our approach for distributed allocation. Our approach
can be divided into three main phases: 1) preprocessing steps,
which occur prior to the actual allocation process, 2) the core
allocation process that is agnostic to whether it is run in a
centralized or distributed fashion, and 3) additional resources
that distribute the core process and manage the mobility of
participating hosts. We describe each phase in turn.

A. Preprocessing Steps

Computing the utility of tasks. Each task in the workflow
is assigned a time-dependent utility value that represents how
critical it is that the task be allocated. For a task T at
time t, its utility UT (t) depends on (PT , ET , t) where PT

indicates how many tasks are in parallel with task T , ET is
the earliest starting time for task T , and t is the current time.
The remaining time until a task must be started (ET − t) is
needed to determine the utility so that tasks that start earlier
are allocated with higher priority. Similarly, tasks that have
no others executing in parallel must be allocated with higher
priority since they represent a “bottleneck” in the workflow
that must be allocated and completed for the remainder of the
workflow to progress. The quantity PT is a fraction in the
range 0 < PT ≤ 1 and is the inverse of the number of tasks
that execute in parallel with task T . To determine the number
of parallel tasks, we use a breadth-first search algorithm shown
in Figure 1 to mark each task with its depth in the workflow, a
number that represents the number of preceding tasks that must

For a workflow W with initial task s

DETERMINEPARALLELTASKS(s)
pending ← ⊥
children← ⊥
depth← 0
done← FALSE
ENQUEUE(pending, s)
while ¬(done) do

while ¬EMPTY(pending)do
ptr ← DEQUEUE(pending)
if depth[ptr] = ⊥ then

depth[ptr]← depth
else

depth[ptr]← MAX(depth, depth[ptr])
for each c ∈ children[ptr]

if c 3 children then
ENQUEUE(children, c)

if LENGTH(children) = 0 then
done← TRUE

pending ← children
children← ⊥
depth← depth + 1

Fig. 1. Algorithm to determine the value of PT for tasks

be completed before it is ready to execute. Tasks having the
same depth in the workflow can execute in parallel. From this,
we can determine how many tasks are at a particular depth in
the workflow by using a simple graph traversal algorithm. Thus
if we know the depth in the workflow of a task, we can easily
look up the number of other tasks with the same number and
compute PT The value of ET is part of the task specification
and the value of t can be obtained from the system clock.

Fragmenting the workflow. Since our allocation process
is distributed, we must fragment the monolithic workflow we
receive as input and allocate each piece in parallel. The number
of fragments needed is determined by the number of available
coordinators, with each coordinator being assigned one piece
of the workflow. We describe two methods for fragmenting
the workflow. The user can choose which method is used by
way of a parameter to the allocation algorithm.

k-Minimum Cut. We assume that k coordinators are avail-
able to allocate tasks. From the algorithm to compute PT ,
we know the depth of each task in the workflow and can sort
tasks into buckets by their depth. The k-minimum cut approach
considers the combined size of adjacent buckets in turn. Cuts
are made between the k bucket pairs that have the lowest
combined value. The exception to this rule is if any of these
cuts result in a fragment having lower than n tasks, where n
is a parameter set by the user and has a value less than N/k
where N is the total number of tasks in the workflow. In such
a case, the next higher cutting point is chosen.

Geographic Cut. Once again, we assume that k coordinators
are available. The area in which the workflow is to be executed
is divided into k zones. Using a graph traversal algorithm, we
examine the task location and put the task specification in
a bucket that corresponds to the zone containing the task’s
location. Thus, the tasks in any fragment are geographically
related, i.e., they are in a subset of the total area.

The benefit of the k-Minimum Cut is that it keeps blocks

of contiguous tasks under the responsiblity of one coordinator,
which is useful when recovering from localized errors (not
covered in this paper). However, the geographic cut allows
geographically related tasks to be handled by one coordinator.
Since each coordinator is responsible for a sub-area of the total
area in which the workflow is being executed, the geographic
cut allows correlation between the location of the coordinator
and the tasks they are allocating.

B. Core Allocation Process

The core allocation process is executed continuously by
the coordinator until all tasks have been allocated. Prior to
the start of the process, the coordinator sorts the tasks in
descending order of utility. Once this is done, it begins the
allocation process by formulating and advertising solicitations
for each task. Interested hosts submit bids to perform a task.
The coordinator examines the bids and makes a provisional
allocation of the task to the host that submits the most
competitive bid. It then periodically revisits this decision until
it is temporally constrained to commit to a particular allocation
decision. These steps are described in detail below.

Sorting tasks according to utility. We sort the tasks in
ascending order of the difference between the current time
and the task’s earliest start time. We break ties between tasks
having the same difference between the current time and their
earliest start time by choosing the task with the higher value
of PT . This sorted list of tasks is placed in a data structure
that allows removals only from the head of the list but allows
insertions at arbitrary locations provided that they do not
violate the utility-based ordering of the tasks.

Formulating and distributing solicitations. Once the
tasks are sorted by utility, the coordinator formulates a
solicitation for each task which is a 6-tuple of the form
< String : taskName,List : capabilities, Location :
taskLocation, T ime : duration, T ime : start, T ime :
deadLine >. Each of the six pieces of information in the
solicitation can be obtained from the task specification. More
details on this may be found in [18]. The solicitations are
placed in a dynamic task directory, which is context-aware
in the sense that it is notified whenever a worker host comes
within range of the coordinator. When such an event occurs,
the dynamic task directory creates a direct connection to the
worker host that triggered the event, and transmits all the
available task solicitations to that host.

Analyzing solicitations and submitting bids. When a
worker host receives the list of solicitations from the coor-
dinator, it analyzes them to determine whether it is suited to
perform any of the tasks advertised. If so, it submits bids for
the tasks it can perform as shown in Figure 2.

For each solicitation, the algorithm checks whether the
capabilities required by the task is a subset of the host’s
capabilities. If so, it checks that host’s schedule to ensure that
the host does not have any previously scheduled commitments
at the time that the task described in the solicitation needs to
be performed. This is done using the AVAILABLE function on
the host’s schedule which returns a boolean value. If this check

Given an host with capabilities C, schedule SC, and capable of a maximum
velocity maxV that is analyzing a solicitation list S:

ANALYZESOLICITATIONS(C, SC, maxV, S)
B ← ⊥
for each s ∈ S

if capabilities[s] ⊆ C then
if AVAILABLE(SC, start[s], deadline[s]) then

precT ← GETPRECEDINGTASK(SC, start[s])
succT ← GETSUCCEEDINGTASK(SC, deadline[s])
precV ← (|location[precT]− location[s]|)/

(start[s]− deadline[precT])
succV ← (|location[s]− location[succT]|)/

(start[succT]− deadline[s])
if precV ≤ maxV and succV ≤ maxV then

capFrac← |capabilities[s]|/|C|
bid← {capFrac, precV, succV, maxV,

GETDEADLINE(SC, succT)}
INSERT(B, bid)

TRANSMIT(B)

Fig. 2. The process by which a host submits a bid for a task

is successful, then the host is qualified and available to do the
task. Finally, we factor in travel time. For this, we get the tasks
that would immediately precede and succeed the task under
consideration, were it to be assigned to this host. This is done
using the GETPRECEDINGTASK and GETSUCCEEDINGTASK
functions respectively. We then compute the velocity at which
the host would need to travel from the location of the preced-
ing task to the location of the task under consideration, and
then on to the location of the succeeding task. If both these
velocities are lower than the maximum velocity capability of
the host, then it is eligible to submit a bid for that task.

Before the submission, it calculates the fraction of its
capabilities that it will use in performing the tasks. It then
creates a bid, which is a 5-tuple of the form < double :
capabilityFraction, double : precedingV elocity, double :
succeedingV elocity, double : maxV elocity, T ime :
deadline >. The deadline is computed by the GETDEADLINE
function of the schedule, which determines the latest time at
which the host must leave the current location so as to have
sufficient time to travel to the designated location of a given
task before its earliest start time. This bid information is then
added to a set. Once all the solicitations are considered, the
TRANSMIT function sends all the bids to the coordinator.

Provisional allocations and reallocations. When a co-
ordinator receives a bid, it is placed in the “bucket” that
corresponds to the task that it was submitted for. The bids
in each bucket are sorted in descending order of the capability
fraction of the bid. The capability fraction indicates whether
a host is specialized for the task or not. A “jack of all trades”
would use fewer of its capabilities for a task than an host that
is specialized for the task in question. Sorting the tasks in this
manner biases the algorithm to choose more specialized hosts
before choosing hosts with broader capabilities, the rationale
being that it is desirable to have hosts with broader capabilities
available for tasks which may not have specialized hosts. To
break ties between bids, we use the average of ratios of the
preceding velocity and suceeding velocity to the maximum

Coordinators order tasks according to:
 - how soon they need to be executed
 - whether there are other tasks that can be executed in parallel

Hosts submit a bid for a task if:
 - they have the skills/qualifications to perform the task
 - they can be present at the task location without going back
 on any previous commitments
 - they can travel to and from the task location without going
 back on any previous commitments

Coordinators provisionally allocate a task to a host if:
 - the host is using the highest fraction of its capabilities (among
 the hosts that have submitted bids)
 - the average of its velocity to travel to and from the task is the
 highest among those hosts that have submitted bids and are
 using the same fraction of their capabilities

Coordinators bindingly allocate a task to a host if:
 - all the conditions for provisional allocation are met
 - the time remaining until the start time of the task is below
 a pre-specified threshold

Fig. 3. Summary of the allocation process

Given a set of sorted buckets with bids B and a sorted list of tasks T ,
a minimum threshold minT , and re-evaluation parameter of n

ALLOCATE(T, B, minT, n)
while T 6= ⊥ do

t← REMOVEFIRST(T)
bid← REMOVEFIRSTBLACK(B, t)
if bid 6= ⊥ then

if alloc[t] = ⊥ then
alloc[t]← bid
COLORASGRAY(B, host[bid])

else
COLORASGRAY(B, host[MAX(alloc[t], bid)])
COLORASBLACK(B, host[MIN(alloc[t], bid)])
alloc[t]← MAX(alloc[t], bid)

if start[t]− GETSYSTEMTIME() ≤ minT and alloc[t] 6= ⊥ then
NOTIFYHOST(alloc[t])

else
notify ← MIN(deadline[alloc[t]], start[t])
nextCheck[t]← (1/r)(notify− GETSYSTEMTIME())
INSERT(T, t)

Fig. 4. The allocation algorithm

velocity which gives an indication of how good a fit the
task is in the schedule of the host. Higher ratios indicate a
more constrained time slot and therefore a better fit in the
schedule. When bids are initially inserted into the buckets, they
are marked as “black” indicating that the host that submitted
the bid is not provisionally allocated to a conflicting task. In
the future, as hosts are provisionally allocated for a task, the
other bids belonging to the host that are in conflict with that
particular provisional allocation are marked as gray.

In parallel with receiving bids, the coordinator runs the
allocation algorithm as shown in Figure 4. The algorithm takes
the first task from the list of tasks. Due to the ranking of
tasks by utility, this task, if allocated, will have the highest
effect on the progression of the workflow. It chooses the
first bid for that task that is marked black. Since the buckets
are sorted, the first bid that is marked as black is the best
qualified host that has no other conflicts. This host is then
provisionally allocated to perform the task and all other bids

Given a coordinator C, solicitation s, host schedule SC and maximum
velocity capability maxV

COMPUTETRAVELTIME(C, s, SC, maxV)
dist← |location[C]− location[s]|
time← dist/maxV
if AVAILABLE(SC, deadline[s], deadline[s] + time) then

succT ← GETSUCCEEDINGTASK(SC, deadline[s] + time)
succV ← (|location[C]− location[succT]|)/

(start[succT]− (deadline[s] + time))
if succV ≤ maxV then

return true
return false

Fig. 5. Factoring in host mobility for task allocations

submitted by the host that conflict with this allocation are
marked “gray”. If the task under consideration already has
a provisional allocation, the algorithm chooses the better bid
using the same criteria that we use to rank bids. If there is a
change in the provisional allocation, the conflicting bids are
updated accordingly with the new bid’s conflicts being marked
as “gray” and the old bid’s conflicts reinstated as “black”. At
this point, the coordinator checks whether the current time
is within some minT (a parameter to the algorithm) of the
earliest starting time of the task. If this is the case, then it
makes the allocation final by notifying the host of its newly
allocated task. If the current time does not fall within the
minT of the earliest start time, the coordinator computes D,
the minimum of the deadline advertised by the host in its bid
and the earliest start time of the task. It then computes the
reevaluation period as (1/r)(D − t) where r is a parameter
that controls how often a provisionally allocated task is re-
evaluated and t is the current time. This task is then re-inserted
into the task queue, except this time, its utility is computed as
if the difference between earliest start time and the current time
is the computed reevaluation period. However, it is considered
to be of lower utility than another task that may have an
actual difference between its earliest start time and the current
time that is of the same value. Note that in the process of
reinsertion, we may have the value of the reevaluation period
be negative, indicating an unallocated task which has passed
its earliest start time. These tasks are reinserted at the head of
the list of the tasks as top priority potentially starving other
tasks. However, this is acceptable because per the workflow
model, without completion of the task, subsequent downstream
tasks cannot make progress.

The reevaluation of the allocation decision occurs when the
a task that is not allocated the first time they are considered
is reinserted into the task queue using the scheme described.
These tasks eventually come up to the beginning of the task
queue where they are considered again. This process continues
until a deadline from a host or the constraint of the earliest
start time of the task compels a final allocation decision.

C. Accomodating Physical Mobility

Thus far, we have described the algorithm that allocates
tasks to interested and qualified hosts. However, given that we

operate in a MANET, our algorithm has to be considerate of
the physical mobility of participating hosts. When allocating
tasks to hosts, we evaluated the suitableness of an host based
not only on its qualifications but also on whether it met the
spatiotemporal requirements of the task. However, there is
one other aspect that we must consider when allocating tasks
to hosts–the ability to transfer results after it has finished
the task to the host(s) that have been assigned subsequent
tasks in the workflow. The preferred method is to transfer
the results directly to the intended recipient via a publish-
subscribe based protocol described in [18]. However, this may
not always be possible due to the lack of a disconnected
route [10] (a spatiotemporal series of store and forward hops)
between the two hosts in question. In such cases, the source
host can attempt to transmit the results to the coordinator
using the same publish-subscribe based protocol. If this too
is not possible, the source host must physically return to
the coordinator and transfer results. The coordinator, once it
receives results, stores them until the recipient of those results
is within range and then transmits the results to that host.

Since we cannot know of the existence of disconnected
routes between hosts a priori without knowing their motion
profile [17], in our allocation planning, we always assume that
the worst case scenario will occur, i.e., the host will need
to return to the coordinator. To factor this additional travel
during the allocation process, each host adds an additional
check in the process for submitting bids, shown in Figure 5.
This check is performed just before a bid is added to the list of
potential bids that is eventually submitted to the coordinator
(see Figure 2). If the check is positive, the bid is added to the
list, otherwise the bid is considered invalid and is not added.
The additional task simply ensures that the host has sufficient
free time to travel back to the coordinator and deposit results
without causing a conflict with any other commitments. In this
way, we ensure that even while hosts are physically mobile,
there is a reliable way for them to exchange data between each
other.

D. Distributing the Allocation Process

The final step is to move from what is essentially a cen-
tralized allocation process that accounts for mobility to a truly
distributed allocation process. This is made possible by using
multiple coordinators to allocate a workflow. The transition
from one coordinator to multiple coordinators requires three
key changes: 1) splitting the workflow into discrete pieces, 2)
modifying the behavior of the coordinators, and 3) modifying
the behavior of the hosts. These are described in detail below.

Dividing the workflow among coordinators. By definition,
the workflow for any activity is a monolithic entity. We assume
that initially, a single coordinator has the specification of
this monolithic workflow. We refer to this coordinator as the
initiating coordinator. The initiating coordinator is responsible
for fragmenting the workflow using either the k-min-cut or
the geographic cut approach. If the k-min-cut approach is
used, fragments are assigned randomly to the coordinators.
If the geographic cut is used, fragments are assigned such

T

T

F

T

A A

A
A A

F

T

F

Initiating Coordinator

Local Coordinator

T Worker Agent
(working on task)

F Worker Agent
(free - not
working on task)

A Worker Agent
(waiting for task
allocation)

Fig. 6. Hosts during workflow execution

that the coordinators are responsible for allocating tasks in the
geographic area in which they operate. Each coordinator, in
addition to receiving a fragment of the workflow also receives
a table of tasks in the workflow that are not in the fragment
allotted to it along with the name of the coordinator respon-
sible for assigning each of those tasks. Once a coordinator
receives its fragment of the workflow, it can immediately begin
executing the core allocation process as described earlier.

Changes in coordinator behavior. From the coordinator’s
point of view, the transition from a single coordinator to mul-
tiple coordinator requires only two relatively minor changes.
The first relates to the bid submission process. If a coordinator
has a bid from another host that is better, it immediately
rejects the host’s bid, which allows it to leave the locality
(described in the next paragraph). Second, when calculating
the travel time of hosts to return results to the coordinator, the
coordinator now has to be aware as to whether the subsequent
task that the results are destined for will be allocated by itself
or another coordinator. If the task is allocated by the same
coordinator, there is no change from the case of the single
coordinator. If the task is allocated by a different coordinator,
the destination of the travel is changed to be the coordinator
that is allocating the subsequent task.

Changes in host behavior. When multiple coordinators
are in use, hosts must subtly change their behavior. When
hosts have time slots in their schedule that are free, they
gravitate towards the nearest coordinator. Upon coming within
range of a coordinator, they check the solicitations as before.
However, if there are no tasks for which they are suited, they
immediately leave and go to the next closest coordinator that
it has not yet visited. If they do submit bids, the coordinator
checks whether the bid is better than the current best choice. If
not, the coordinator notifies the host immediately of the failed
bid. This ensures that a host is not waiting at a coordinator
while other coordinators have tasks that it could perform.

When the system is operating in a fully distributed manner,
the distribution of hosts and coordinators may look like Figure
6. Coordinators are essentially stationary and responsible for
a fragment of the workflow. Worker hosts gravitate towards
a coordinator and remain there if there is a task that needs
to be allocated that it can perform competently. If the task is
allocated to the host, it leaves, performs the task and then
returns to the coordinator. If the task is not allocated, the

host may move to another coordinator in search of tasks. The
process of searching for tasks and then performing them goes
on until all the tasks are completed. At this point worker
hosts have no more work to do and they gather around
the coordinators. Coordinators then transmit a termination
signal that indicates that its portion of the workflow has been
completed and shuts down. Eventually all coordinators shut
down, indicating to the hosts that the workflow is complete.

V. ANALYSIS AND DISCUSSION

Having presented our approach for distributed allocation
of workflow tasks in a MANET, we now analyze the com-
putational complexity of our approach and then offer a few
comments on our assumptions and design choices.

A. Analysis of computational complexity

In the interest of simplicity, we analyze the computational
complexity of our algorithms in three separate stages. The first
stage is the preprocessing of the workflow. During this stage,
we first compute the number of tasks that execute in parallel
with a given task. For this, we start at the root of the workflow
graph, and move through it visiting each node exactly once (a
check ensures that if two nodes have a common child, the
child is not checked twice. Hence this step has a worst case
complexity of O(n) where n is the number of tasks. Next, we
organize tasks into buckets that correspond to their depth in the
workflow. This can be done with a standard traversal algorithm
that has complexity O(n+ e) where e is the number of edges
in the graph. Finally, the minimum cuts are determined by
iterating over the buckets organized by depth which in the
worst case will be O(n). Thus the overall complexity for the
preprocessing is O(n + e).

The next stage is the core algorithm execution. Here, the
first step is to sort tasks by utility which in the worst case can
take O(n2) time. The formulation of solicitations is constant
time per task and hence has complexity O(n). When hosts
submit bids, they are inserted into the correct bucket (the
buckets themselves are sorted). In the worst case, searching for
the bucket takes O(n) time and inserting it takes O(h) time
where h is the number of hosts yielding a total complexity
of O(hn). For the actual allocation, each task is reevaluated
periodically as per the formula given in Section IV. In the
worst case therefore, each task gets reevaluated logr(T) times
where 1/r is the fraction of time between the current time
and the start time of the task and T is the total time of
execution of the workflow. In addition, each time a task is
allocated, the algorithm must gray out other bids which takes
O(h) time. Hence, the complexity of the allocation algorithm
is O((logr(T))nh) and the total complexity for this stage is
O((logr(T))n2h).

On the worker hosts, the analysis of each solicitation and
the computation of travel can be achieved in constant time
with the use of proper data structures and multiple indexes
and hence the analysis of solicitations takes O(n) time. It
should be noted that the worst case complexities presented
are extremely unlikely to occur as the scenarios captured by

Step Comp-
lexity Total

PREPROCESSING

 Determining Parallel Tasks
 - The algorithm visits each node in the
 workflow exactly once.

 Fragmenting the graph
 - Graph traversal to make buckets
 - Choosing minimum cuts

O(n)

O(n + e)
O(n)

O(n + e)
CORE ALGORITHM

 Sorting Tasks by Utility
 - Sorting of tasks using BubbleSort (once
 by T - t and then by parallelism

 Formulating solicitations
 - One solicitation for every task

 Collecting bids and keeping them sorted
 - The list of bids is always maintained in
 sorted form. Only correct insertion is
 required

 Allocation and re-allocation
 - Each task is evaluated atleast once and
 re-evaluated based on the value of 'n' that
 is an input to the algorithm

2 * O(n2)

O(n)

O(hn)

O((logr(T))
hn)

PROCESSING BIDS

 Analyzing solicitations + submitting bids
 - With proper choice of data structure for
 host schedules

 Computing travel time
 - With proper choice of data structure for
 host schedules

O(n)

O(n)
O(n)

O((logr(T)

hn2)

Fig. 7. Complexity of the allocation process

those cases would make essentially nonsensical workflows. In
the sorting of tasks by utility, sequential tasks are already in
utility order. The only tasks that may need re-arranging are the
ones that occur in parallel, which in most cases is lower than
the total number of tasks n. In the bid collection, the analysis
is done based on the assumption that every host will submit
a bid for every task, an unlikely thing to happen given hosts
may not have the capabilities to do all tasks. On the allocation
and re-evaluation, the logr(T) component is an overestimation
because it assumes that each task will start at the end of
the time interval during which the workflow is going to be
executed. In reality, the value of T would be replaced by the
start times of tasks which would be half the value of T on
average. Also, the h component assumes that all hosts submit
a bid for all tasks which is unlikely to occur in practice.

Finally, it should be noted that most of the stages with
higher time complexity occur before the core allocation pro-
cess. The core process itself has a high time complexity but
it executes over the duration of the workflow and hence will
not suffer from bottlenecks in processor capability.

B. Analysis of our approach and design decisions

The task allocation problem is a stylized version of the
multi-processor scheduling algorithm which is NP-Hard. Ac-
commodating ad hoc mobility increases the complexity even

further. In order, to keep the problem tractable, we had to make
some assumptions and decisions which we discuss here.

Algorithm complexity vs. optimality. For our core alloca-
tion algorithm, we adopted a greedy approach with a periodic
greedy re-evaluation, which is computationally much simpler
but does not always yield an optimal result. The reason for
choosing the greedy approach was its “choose and forget”
nature, i.e., once we decide to allocate a task, we cannot
roll it back. More complex approaches involving rolling back
decisions are extremely difficult to achieve in a MANET since
hosts may not be reachable and cannot be kept up to date
with their allocation and commitment status without the use
of distributed transactions which ultimately degrades system
performance due to locking of resources and data for extended
periods of time.

Contextual information vs. performance. It is generally
acknowledged that the motion of hosts participating in a
MANET may be completely arbitrary, and as such, it is
difficult to compute when hosts will be within communication
range of each other unless they advertise their motion pattern.
In [17], the authors assume that hosts provide motion profiles
that describe their location over time. However, in most situ-
ations, it is unlikely that we would have access to a complete
motion profile a priori. Hence, we chose a more practical
abstraction for motion information - a personal schedule.
However, the downside of using a schedule is that it does not
capture opportunistic meetings between hosts while they are
in between tasks. Hence, our algorithm cannot exploit these
meetings. We chose to reduce the dependence on accurate
motion information (which is hard to come by in practice)
over an optimization to our approach.

Reasonable behavior of host. In our work, we assume that
the host can mark off time on its schedule when it is busy,
and must return to the coordinator when it has nothing on its
schedule. This is very similar to a workers returning to their
supervisor for additional work when they have completed a
task, with the rationale being that a worker does not get paid
if they do not work a certain number of hours. In addition,
the idea that a supervisor may have a degree of control over
where a worker goes during work hours is not beyond the
realm of possibility. A second assumption we made is that the
schedule of the coordinators is known a priori and that the
coordinators are relatively static as compared to the worker
hosts. Once again, this is analogous to common command
and control structures where the supervisor is always reachable
and usually does not participate extensively in the actual work,
instead managing the activity from a static location. We chose
this model because we have targeted our system to support
collaboration among humans as well as software services.
Thus the mobility of the hosts is controlled by the human user
to which the mobile device belongs and the mobility of the
user is dictated by standard command and control protocols.
Thus, in developing our algorithms, we can rely on certain
basic behavior patterns which makes the problem much more
tractable and allows solutions targeted to reasonable mobility
patterns as opposed to completely arbitrary ones.

VI. CONCLUSION

Due to the volatility of MANETs and the lack of centralized
infrastructure, it is desirable to have key processes within a
WfMS operate in a distributed fashion. We have described
a process by which a monolithic workflow is divided into
smaller pieces and then allocated in a distributed fashion
by multiple coordinators in a MANET setting. Our approach
combines a bidding scheme with measures of utility and fitness
to make allocation decision. Our algorithm also supports
revision of previous decisions as long as a commitment has
not been made for a host to perform a particular task.

REFERENCES

[1] WSBPEL Committee. Web services business process execution lan-
guage v2.0. http://www.oasis-open.org/\\committees/download.php/
18714/wsbpel-specification-draft-May17.htm, 2006.

[2] Microsoft Corp. The biztalk server. http://www.microsoft.com/biztalk/.
[3] Microsoft Corp. Groove virtual office. http://www.groove.net/home/

index.cfm.
[4] T. S. Dahl, M. J. Matarı́c, and G. S. Sukhatme. Adaptive spatio-temporal

organization in groups of robots. In Proc. of the Intl. Conf. on Intelligent
Robots and Systems, pages 1044–1049, 2002.

[5] Active Endpoints. ActiveBPEL engine. http://www.active-endpoints.
com/active-bpel-engine-overview.htm.

[6] H.-L. Fang, P. Ross, and D. Corne. A promising genetic algorithm
approach to job-shop scheduling, rescheduling, and open-shop schedul-
ing problems. In Proc. of 5th Intl. Conf. on Genetic Algorithms, pages
375–382, 1993.

[7] A. Garrido, M.A. Salido, F. Barber, and M.A. López. Heuristic methods
for solving job-shop scheduling problems. Technical report, Universidad
Politécnica Universidad Politécnica de Valencia, 2000.

[8] B. P. Gerkey and M. J. Matarı́c. Sold!: Auction methods for multirobot
coordination. IEEE Transactions on Robotics and Automation, 18(5),
October 2002.

[9] B. P. Gerkey and M. J. Matarı́c. A formal analysis and taxonomy of
task allocation in multi-robot systems. International Journal of Robotics
Research, pages 939–954, September 2004.

[10] R. Handorean, C. Gill, and G.-C. Roman. Accommodating transient
connectivity accommodating transient connectivity in ad hoc and mobile
settings. In Proc. of Pervasive 2004, number 3001 in LNCS, pages 305–
322, 2004.

[11] Oracle Inc. Oracle workflow. http://www.oracle.com/technology/
products/integration/workflow/workflow fov.html.

[12] N. Liu, M. A. Abdelrahman, and S. Ramaswamy. A multi-agent model
for reactive job shop scheduling. In Proc. of the 36th Southeastern
Symposium on System Theory, pages 241–245, 2004.

[13] G. Mainland, D. C. Parkes, and M. Welsh. Decentralized, adaptive
resource allocation for sensor networks. In Proc. of the 2nd Symposium
on Networked Systems Design and Implementation, pages 23–33, 2005.

[14] P. H. Mauguiere, J.-C. Billaut, and J.-L. Bouquard. New single machine
and job-shop scheduling problems with availability constraints. Journal
of Scheduling, 8:211–231, 2005.

[15] M. Mecella, T. Catarci, M. Angelaccio, B. Buttarazzi, A. Krek, and
S. Dustdar. Workpad: an adaptive peer-to-peer software infrastructure for
supporting collaborative work of human operators in emergency/disaster
scenarios. In Proc. of the IEEE Intl. Symposium on Collaborative
Technologies and Systems, May 2006.

[16] L. E. Parker. Alliance: An architecture for fault tolerant multi-robot co-
operation. IEEE Transactions on Robotics and Automation, 14(2):220–
240, 1998.

[17] R. Sen, R. Handorean, G.-C. Roman, and G. Hackmann. Knowledge
driven interactions with services across ad hoc networks. In Proc. of the
2nd Intl. Conference on Service Oriented Computing, pages 222–231,
2004.

[18] R. Sen, G.-C. Roman, and A. Frank. Cian: A language and middleware
for collaboration in ad hoc networks. Technical Report WU-CSE-2006-
51, Washington University in St. Louis, 2006.

[19] S. Thatte. Xlang: Web services for business process design. http://www.
gotdotnet.com/team/xml\ wsspecs/xlang-c/default.htm, 2001.

[20] S. Yang. Job-shop scheduling with an adaptive neural network and local
search hybrid approach. In Proc. of Intl. Joint Conf. on Neural Networks,
pages 2720–2727, 2006.

[21] R. Zlot, A. Stentz, M. Dias, and S. Thayer. Multi-robot exploration
controlled by a market economy. In Proceedings of the IEEE Interna-
tional Conference on Robotics Proceedings of the IEEE International
Conference on Robotics and Automation, 2002.

	Distributed Allocation of Workflow Tasks in MANETs
	Recommended Citation
	Distributed Allocation of Workflow Tasks in MANETs

	tmp.1415913124.pdf.eCrf0

