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Safely and capacity fade are the key issues that restrict the use of the lithium-ion battery for many 

applications. These issues are being tackled in a variety of ways. This dissertation focuses on using 

detailed continuum-level electrochemical models to study transport, kinetics, and mechanical 

processes in the lithium-ion batteries. These models can be used to quantify the effect of capacity 

fade mechanisms (side reactions and mechanical degradation) and improve the safety aspects of 

the lithium ion batteries. Three capacity-fade mechanisms—solid electrolyte interface side 

reaction, lithium-plating side reaction and mechanical degradation due to intercalation-induced 

stresses—are considered in the dissertation. Monitoring and control of plating side reaction is also 

very critical for battery safety. 

Two main focus areas of the dissertation are:  

1) Optimal battery operation (design of charging/discharging protocols) considering three 

capacity fade mechanisms mentioned previously along with safety issues 

2) Rational battery design (choice of porosity, thicknesses of electrodes, etc.) considering 

discharge capacity and capacity fade mechanisms 
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Chapter 1 

Introduction 

 

The fuel cell is just a fundamentally inferior way of delivering electrical energy to an 

electric motor than batteries. 

Elon Musk 
 

Energy is critical to sustain life. Demand for energy is constantly on the rise, increasing the carbon 

footprint of fossil fuels. The implications of global climate change have motivated and accelerated 

research in renewable sources of energy. Most of the renewable sources of energy are intermittent 

in nature (e.g. solar, wind energy, etc.), which limits their penetration in the grid power supply and 

also their reliability for many other applications. This challenge can be addressed by using cheap 

energy storage technologies, where electrochemical energy storage can be of significant 

importance. On the other hand, innovation and breakthroughs in electrochemical energy storage 

technologies will significantly affect many applications such as electrification of cars, reliability 

of mobile electronics, etc. 

1.1 Electrochemical Energy Storage 

Electrical energy storage (EES) technologies can be divided into four broad categories based on 

power and energy densities: capacitors, electrochemical double layer capacitors (EDLC), batteries, 

and fuel cells. A qualitative picture of EES systems is presented in Figure 1-1. Electrical capacitors, 

which offer high power density and long life, find limited use in applications which require higher 

energy densities. EDLC have lower power densities as they have narrower voltage window and 

additional transport resistances compared to capacitors. Both, in capacitors and EDLC, the energy 

is stored in an electric field, but EDLC have higher energy density they take the advantage offered 
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by high surface area of the nanomaterials (e.g. graphene). EDLC involve non-faradic surface 

storage where no electron transfer occurs, and opposite charges cling to each other without 

crossing the interface. Batteries, on the other hand, stores energy in the bulk of the materials. In 

capacitors and EDLC, charges are restricted to surfaces causing smaller energy density compared 

to batteries which utilize the bulk of the material. The non-faradic nature of the storage mechanism 

in an EDLC makes them highly reversible (~10,000 cycles) compared to batteries (~1000 cycles). 

Batteries involve faradic reactions where charge transfer kinetics plays a major role. In 

intercalation batteries (e.g. lithium-ion battery), the charge is stored in the bulk of the material, 

hence they offer high energy density. The bulk of the intercalation batteries is accessible only by 

diffusion transport, which offers additional resistance to the kinetic resistance. These additional 

resistances (diffusion and kinetic resistances) reduce the power density of intercalation batteries 

compared to EDLC. For applications where high energy capacity is required, flow batteries and 

fuel cells can be used. Flow batteries store energy in the electrolyte with electroactive materials 

held externally (in tanks) and get introduced in the system depending on the demand for electricity. 

 

Figure 1-1: Power and energy density of electrical energy storage systems, (figure adapted from Nguyen and 

Savinell.1 Reproduced by permission of The Electrochemical Society) 
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Progress in nano-engineered materials has enabled batteries with high energy and high power 

density. Though batteries and EDLC have distinct mechanisms of storing energy, the line between 

batteries and supercapacitors (EDLC) is blurred at nano-scale as both mechanisms contribute 

significantly to the energy storage. Simon et al.2 have presented a clear picture of intercalation and 

capacitance storage phenomena in the article titled “Where Do Batteries End and Supercapacitors 

Begin?” 

1.2 Comparison of Rechargeable Battery Technologies 

Lithium-ion chemistries are attractive for many applications due to the high cell voltage, high 

volumetric and gravimetric energy density (100 Wh/kg), high power density (300 W/kg), good 

temperature range, low memory effect, and relatively long battery life compared to other 

rechargeable battery technologies.3 A comparison of various rechargeable batteries is shown in 

Figure 1-2 with the focus on future goals to address the challenges of the transportation sector. 

 

Figure 1-2: Theoretical specific energy of various rechargeable battery systems compared to their practical specific 

energies and the energy density requirement for transportation (figure reproduced by the permission of The Royal 

Society of Chemistry (RSC), 2012 from Thackeray et al.4) 
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Compared to the conventional rechargeable batteries such as lead-acid (Pb-acid), nickel-metal 

hydride (Ni-MH) and nickel-cadmium (Ni-Cd), lithium-ion batteries have higher energy density 

but are more expensive. 

1.3 Working Principle of the Lithium-ion Battery 

In a lithium-ion battery, energy is stored by converting electrical energy into chemical energy 

(specifically, by storing lithium in host materials). Solid materials which can host the guest lithium 

in their interstitial spaces are called insertion materials. Lithium stored in some host materials (e.g. 

graphite) have more energy compared to other host materials (e.g. LiMnO2). While discharging, 

lithium moves from a high energy configuration to a low energy configuration. This spontaneous 

movement of lithium produces useful work. These materials are engineered to react with lithium 

ions reversibly which is essential for rechargeable batteries. Winter et al.5 describe the electro-

insertion process (which includes intercalation as a special case) as follows: 

“The term electroinsertion refers to a host/guest solid-state redox reaction involving 

electrochemical charge transfer coupled with insertion of mobile guest ions from an 

electrolyte into the structure of a solid host, which is a mixed electronic and ionic 

conductor. The major structural features of the host are kept after the insertion of the 

guests.”5 

Lithium-ion battery is also known as rocking chair, swing, and shuttlecock battery as lithium 

moves between the anode and the cathode while charging and discharging (Figure 1-3). Lithium 

ions can easily be inserted in the interstitial spaces of the solid host due to its small size. During 

discharge, lithium deintercalates from the anode by giving up an electron and converting into a 

lithium ion. At the other end, the lithium ion accepts an electron and intercalates in the cathode as 

lithium. Depending on the insertion materials, lithium can exist as neutral lithium or a lithium ion 

and an electron pair where the electron may reside with the host elements. The electrolyte—

typically consists of ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate 
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(PC) with lithium salt—facilitates the transportation of lithium ions between the anode and the 

cathode. The entire process, including electrochemical reactions, diffusion in the electrode 

materials, and diffusion in the electrolyte needs to be highly reversible for a good cycle life (1,000 

to 10,000 cycles). Even 99% reversibility per cycle is very bad for practical use of batteries.  

As progress in materials for the lithium-ion batteries has progressed, various intercalation 

pathways have been observed for different materials. Lithium can be stored in host materials using 

different (or combinations of) mechanisms at different intercalation levels. From Figure 1-4, it is 

clear that the intercalation process is a complicated phenomenon as the materials can go through 

various types of transformations. Some materials may go through homogeneous insertion, where 

lithium is distributed in the solid matrix of the host uniformly, while others may undergo 

heterogeneous insertion where the host material will phase separate into a lithium-rich phase and 

a lithium-poor phase. For example, LiFePO4 is one material of great technological importance 

which is being investigated extensively for its strong phase separation behavior and its dependence 

on particle size.6,7 

 

Figure 1-3: Basic working of the lithium-ion battery, Left: Negative electrode: dimensionally unstable insertion host 

(Li alloy, LixM); positive electrode: dimensionally stable insertion host. Right: Both negative and positive electrodes 

are dimensionally stable insertion hosts (Figure reproduced with permission from Winter et al.,5 Copyright 1998, 

Wiley) 
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Flux expressions based on Fick’s law can model homogeneous insertion (and to some extent 

alloying) reasonably well, but may find limited applicability for other pathways such as 

heterogeneous intercalation (LiFePO4), conversion (lithium intercalation in Fe3O4), etc. 

Intercalation of lithium ion in tin and silicon can be categorized as alloying. While these materials 

give large capacity (Li4.4Sn), they suffer from high volume expansion (300–400%). For accurate 

modeling of intercalation in such materials, a moving boundary formulation is required. In 

‘conversion’ process, the transition metal is completely reduced to its metallic state creating 

nanoparticles (e.g. Fe3O4 gives metallic Fe nanoparticles) embedded in a Li2O matrix (Figure 1-4). 

Material dependent thermodynamic approach is necessary in order to model the behavior of the 

electrode materials accurately. It should be noted here that for nanomaterials, surface storage can 

also contribute significantly as compared to intercalation capacity (such behavior is observed in 

anatase TiO2 nanoparticles8), which makes the differentiation between electrochemical capacitors 

and batteries difficult.2 

 

Figure 1-4: Different pathways to host lithium in host matrix, Black circles: voids in the crystal structure, blue circles: 

metal, yellow circles: lithium. (figure reproduced by the permission of The Royal Society of Chemistry (RSC), 2009 

from Palacin9) 
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Figure 1-5 shows the schematic of lithium ion battery with three sections: anode, separator and 

cathode. Cathode and anode are porous structures made up of small particles to increase the surface 

area for reaction and reduce the diffusion resistance of solid particles. The electrolyte is present in 

all three regions and helps in facilitatating the transport of lithium ions.  

 

Figure 1-5: Schematic of a porous electrode lithium-ion battery cell sandwich 

1.4 Materials for the Lithium-ion Battery  

Figure 1-6 shows the electrode materials that are actively being considered for next generation 

lithium-ion battery technology. Ideally, one would like to have a large difference in potential 

between the anode and cathode so as to make a battery that offers high voltage. Charging and 

discharging an array of cells (in series and parallel configuration) requires a cell 

balancing/equalizing system for efficient and uniform use. Having large voltage difference per cell 

is advantageous as it reduces the number of cells to be used to produce the desired power output. 

Hence system level losses are reduced. Finding electrolytes that work well in large voltage window 

can be a challenge. Figure 1-6 shows voltage and energy densities associated with cathode and 

anode materials, which correspond to their thermodynamic limits. The voltage obtained during 

finite rate of discharging will always be smaller than the thermodynamic voltage due to ohmic, 

diffusion (both in solid phase and electrolyte phase) and kinetic losses inside the battery.  
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Figure 1-6: Potential versus charge capacity of electrode materials for the lithium-ion battery relative to 

thermodynamic window of stability of the electrolyte (Eg of electrolyte, explained later in this chapter) 1 M LiPF6 in 

EC/DEC (1:1). (Figure reproduced with permission from Goodenough and Kim,10 Copyright 2010 American 

Chemical Society.)  

The four components of a battery: anode, cathode, separator, and electrolyte are discussed briefly 

in the next section. 

1.4.1 Anode 

The use of lithium metal as an anode material is desired for two reasons: 1) wide electrochemical 

potential window and 2) high gravimetric and volumetric energy density. However, deposition 

(and dissolution) of lithium ions on (and from) the lithium anode is usually not uniform, which 

create safety issues. Dendrite structures are also formed during deposition of lithium ions on 

lithium foil,11 which can puncture the separator and potentially cause short circuits (see Figure 

1-7). Due to safety concerns associated with dendrite formation, lithium metal is not used for 

rechargeable batteries. Insertion materials, like graphite, provide an excellent alternative to lithium 

metal anode from a safety and cyclability point of view with small compromises on the cell 

voltage, specific charge, and rate capability.5,12 Though, graphite is preferred compared to lithium 
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metal as the former stores lithium in its interstitial spaces between graphite planes, it also suffers 

from plating side reaction (deposition of lithium in metallic form on the surface of anode particle). 

The slightly more positive potential of lithiated graphite (LiC6) compared to Li metal, inherits the 

problem of lithium plating during charging11 at high rates and even at low rates if the temperature 

is low (0.2 C at  o20 C ).13,14 Alternative materials to graphite such as TiO2 and SnO2 are actively 

being investigated and improved upon, as they are much less vulnerable to plating reactions.15 

 

Figure 1-7: Dendrite formation on lithium metal which makes the lithium-metal batteries unsafe (figure adapted from 

Xu,16 Copyright 2004 American Chemical Society) 

Graphite and its disordered forms are most commonly used as anode materials for the lithium-ion 

batteries. Carbon black is one of the most common carbonaceous anode materials for lithium ion 

batteries. Carbon black is a form of paracrystalline carbon.17 Paracrystalline structures have short 

to medium range of ordering in their lattice. Figure 1-8 (left) shows the ordering of a layered 

structure in a carbon black particle. Different manufacturing methods are employed to produce 

variants of carbon black (channel black, furnace black, lamp black, thermal black and acetylene 

black). Figure 1-8 (right) shows a model of a cutaway of a single carbon black particle. The 

ordering is prominent at the outer layer of the particle, but the ordering is diminished in the 

center.17 The ordering of these synthetic materials can be improved by heat treatment. The 

transport properties such as the diffusivity of lithium and the initial capacity loss due to the 

formation of an inert layer surrounding the particle (solid electrolyte interface (SEI) layer) are 
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strongly affected by the heat treatment of these materials Particles in which the ordering of the 

lattice is not very strong can be modeled using Fick’s law assuming homogeneous insertion (see 

Figure 1-1).  

 

        

Figure 1-8: Left: Crystalline (a) and amorphous (b) graphite based carbonaceous material and Right: Model showing 

cutaway of single carbon black particle (Image reproduced with permission from Wissler et al.,17 Copyright 2006, 

Journal of Power Sources) 

1.4.2 Cathode 

Insertion material for positive electrodes can be divided into three categories: 1) inorganic 

transition-metal oxides and chalcogenides, 2) organic molecules and 3) polymers. Transition-metal 

oxides or sulfides are common in modern-day batteries. Storage in transition-metals depends on 

the type of void available. Figure 1-9 shows different types of void spaces and an example cathode 

material corresponding to the void spacing. The interstitial spaces in cathode materials are 

accessible to only lithium ions as these materials develop passivating layers during the first few 

cycles. LiFePO4, a phase change material with one-dimensional channel for lithium transport, is 

one of the best candidates for a cathode in the lithium-ion batteries (Figure 1-9) Though being 

introduced as low power materials,18 due to several technological advancements, LiFePO4 is now 

one of the best cathode materials for high-power lithium-ion batteries.  

Zigzag

Armchair

Basal Plane

A

B

A

Edge plane

a b



11 

 

 

Figure 1-9: One, two and three-dimensional void spaces in transition-metal oxides and chalcogenides (figure adapted 

and reproduced with permission from Winter et al.,5 copyright 1998, Wiley and materialsproject.org19) 

1.4.3 Electrolyte 

The lithium-ion battery voltage window is around 3–5 V depending on the specific chemistry. 

Aqueous and most non-aqueous electrolytes do not have a wide enough thermodynamic potential 

window (difference between HOMO and LUMO orbital of electrolyte) to sustain such an 

aggressive environment.5 Ideally, one would like to have an electrolyte which has a HOMO level 

lower than the electrochemical potential of cathode and a LUMO level higher than the 

electrochemical potential of anode,20 in order to prevent the electrolyte from being oxidized or 

reduced. This configuration favors the intercalation reaction over side reactions and improves 

reversibility of battery (see left plot of Figure 1-10). If the thermodynamic window is not wide 

enough, the electrolyte will react and form a passivating film which will prevent further 

oxidation/reduction of electrolyte. The passivating film effectively widens the stability windows 

and makes the efficient working of the lithium ion battery possible (right plot of Figure 1-10).  

e.g. LiFePO4 e.g. LiMO2 M = V, Cr, Fe, Co, Ni e.g. LiMn2O4
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Figure 1-10: Left: ideal electrolyte having broader thermodynamic window, Right: formation of passivating layer due 

to smaller thermodynamic window of electrolyte (figure adapted with permission from Goodenough and Park,20 

Copyright 2013, American Chemical Society) 

Three categories of electrolytes are used in the lithium-ion batteries: liquid, solid and polymer. In 

liquid electrolyte, three families of liquid solvents (ethers, esters and alkyl carbonates) are used in 

Li-ion battery with ethylene carbonate (EC) as the mandatory component. Since these electrolytes 

operate far beyond the thermodynamic stability range (right plot of Figure 1-10), they decompose 

at voltages that are typical for the lithium-ion batteries. The products from the decomposition of 

the salt (e.g. LiPF6) and the electrolyte form a passive layer (SEI layer). The SEI layer allows the 

transport of lithium ions but suppresses the transport of solvent molecules (e.g. EC, PC, and DMC) 

slowing down further oxidation/reduction of the solvent molecules. The choice of solvent is also 

determined by the desired properties of the SEI layer. Solvents with high polarity, wide 

temperature range, sufficiently low toxicity and acceptable safety features are preferred. Common 

lithium based salts are: LiPF6, LiBF4, LiN(SO2CF2CF3)2, (LiBETI), LiBC4O8(LiBOB), 

LiPF3(CF2CF3)3(LiFAP), and LiN(SO2CF3)2(LiTFSI). Figure 1-6 shows the thermodynamic 

stability of 1 M LiPF6 in EC/DEC (1:1) mixture with different electrode materials. Note that 1 M 

LiPF6 in EC/DEC (1:1) will not be thermodynamically stable with graphite, leading to the SEI 

layer formation around solid graphite particles. It must be noted that Figure 1-6 shows the stability 
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limit when the battery is at thermodynamic equilibrium (net zero current). At nonzero current, the 

voltages of the anode and cathode may be pushed beyond the stability limit of the electrolyte 

causing further SEI layer growth.  

1.4.4 Separator 

A microporous separator separates the insertion material based anode and cathode. The separator 

is placed to facilitate ionic transport and prevent electronic current. The separator is designed to 

sustain wide temperature ranges, aggressive mediums (potential range of a typical lithium-ion 

battery), and stress generated by battery operations. With the recent advancements in the 

separators, the two most interesting developments are: 1) shutdown and 2) high-temperature 

integrity.21 Due to short circuiting or overcharging, the temperature inside the battery can increase 

significantly. Shutdown refers to the increase in the impedance of the battery at high temperature. 

Moreover, the separator material should not lose mechanical integrity in order to be able to provide 

shutdown functionality at high temperature. These two features are essential in the high powered 

lithium-ion batteries as safety features. The design and selection of separator vary from high-power 

to the high-energy battery. The high-power batteries require thinner electrodes with large surface 

area compared to the high-energy batteries; hence they require more separator layers to deliver the 

required energy. In the case of a high-power battery, sometimes the cost of the separator dominates 

the cost of the battery. Usually polypropylene (PP) and polyethylene (PE) are used as separator 

materials. A tri-layer of PP/PE/PP can provide a durable and thermally stable separator with 

shutdown functionality.21  
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1.5 Transport and Kinetics of the Lithium-ion Battery 

1.5.1 Transport in the Solid Phase 

Figure 1-4 outlines different pathways for intercalation of lithium in the solid phase. Graphite 

intercalation compounds (GIC) show staged phenomena, in which intercalated layers are 

periodically arranged between empty graphene layers (instead of a uniform distribution of lithium 

between all graphene layers). Thermodynamically, periodic layers of lithium are preferred over 

the uniform distribution of lithium due to the high energy requirement in overcoming van der 

Waals forces between graphene layers. The number of graphene layers between two intercalate 

layers is called the stage index (n = 1 to 4). The stage index depends on the concentration of lithium 

(higher concentration leads to tighter packing and hence less free graphene sheets). The voltage 

plateau observed in Figure 1-11 for a range of concentration can be ascribed to the coexistence of 

two phases.5 

 

Figure 1-11: Stages formed during intercalation of lithium into graphite (constant current charging). (Image 

reproduced with permission from Winter et al.5 copyright 1998, Wiley) 
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After a lithium ion (in electrolyte) reacts at the surface of the electrode, the ‘lithium ion-electron’ 

entity may reside as a lithium ion in the interstitial sites of crystal structure and an electron may 

bind to either the transition metal sites (as in the case of LiFePO4
22) or oxygen sites (as in the case 

of LixCoO2
23). Materials in which homogeneous insertion occurs during intercalation, the transport 

of electrons and lithium ions in the solid phase can be modeled22 either by Fick’s law (assuming 

lithium ion and electron as one neutral entity) or Poisson-Nernst-Planck equation22 (treating 

transport of both electrons and lithium ions separately). For materials with strong phase separation 

behavior (e.g. LiFePO4), shrinking core models24 or phase field models can be used.25 In materials 

with high volume expansion (alloying phenomena), moving boundary formulation needs to be 

adapted to capture the increasing/decreasing radius of the particle. 

1.5.2 Transport in the Electrolyte Phase 

Typical electrolytes for a lithium-ion battery consist of some combination of Ethyl carbonate, 

dimethyl carbonate, propylene carbonate (EC/DMC/PC) with a lithium based salt (e.g. LiPF6, 

typically 1 M). While charging and discharging at high rates, the local concentration of lithium 

ions can range from 0–5 M. Simulation of the charge/discharge of a lithium-ion battery using the 

infinitely dilute solution theory was published by West et al.26 in 1982 where the Nernst-Planck 

equations and electroneutrality was assumed to model diffusion and migration of lithium ions in 

the electrolyte. Newman et al.27 used the concentrated solution theory for the flux expressions to 

model diffusion and migration in the electrolyte. For the case of a binary salt, the final form of the 

equations derived by the concentrated solution theory can be simplified significantly to look 

similar to the equations for infinitely dilute solution theory and offers minimal additional 

computational burden,28 hence treatment based on concentrated solution theory are very common 

in battery modeling and simulation literature. The equations associated with the transport of 



16 

 

lithium ions with concentrated solution theory are listed in Chapter 2 and the derivation of 

equations for transport of lithium ions in electrolyte using dilute solution theory is given in 

Appendix B. 

1.5.3 Heterogeneous Reaction Kinetics 

The reversible faradic reaction occurring at the surface of electrodes are usually modeled as Butler-

Volmer kinetics, where the rate of reaction has exponential dependence on surface overpotential 

(difference between electrode potential ( )s  and electrolyte potential ( )e , denoted by symbol 

s e    ). For intercalation reactions, surface overpotential also includes the open circuit voltage 

of the electrode ( )U , which is dependent on the lithium concentration at the surface of the solid 

particles. The lithium intercalation reaction from a liquid electrolyte and a solid host can be 

described as27  
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 (1.2) 

Where s e U   ,   is the apparent transfer coefficient, which relates to how the applied 

potential difference favors either of the reactions, oi is the exchange current density that depends 

on lithium ion concentration in the electrolyte and lithium concentration at the surface of the solid 

particle. The derivation of Butler-Volmer kinetics is presented in Appendix A. Since intercalation 
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is a reversible reaction, the first term in equation (1.2) represents the reaction rate in the anodic 

direction (i.e. oxidation, not to be confused with the reaction at the anode) and the second term 

represents reaction rate in the cathodic direction. At equilibrium, the net rate of reaction is zero. 

Positive over-potential ( 0)   leads to positive current (net oxidation and release of electrons) as 

the rate in the anodic direction dominates the rate in the cathodic direction. For phase change 

materials (like LiFePO4), where it is shown that reactions mainly occur at the interface between 

two phases (phase boundary), the expressions for reaction kinetics is modified and presented in 

Bazant.6 Figure 1-12 shows the schematic of one pathway of intercalation phenomena where the 

lithium ion diffuses through the SEI layer and reacts at the graphite-SEI interface.  

 

Figure 1-12: Intercalation in the graphite particle, note that lithium ion diffuses through SEI layer, and faradic reaction 

occurs at the graphite-SEI interface (SEI layer is considered part of the electrolyte) 

1.6 Issues and Challenges with the Lithium-ion Batteries 

Though lithium-ion battery technology is better in terms of energy density, power density, and 

cycle life when compared to other battery technologies; there is still a lot of scope for improvement 

of these batteries. Capacity fade and safety remain critical areas which need to be addressed for 

expanded applications of the lithium-ion battery technology.  
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One factor that affects the safety of lithium-ion batteries is the lithium plating reaction. As 

mentioned before, the shift from the lithium-metal anode to the lithiated-graphite anode was 

motivated by safety issues associated with dendrite formation on lithium metal. Graphite offers a 

good alternative to lithium metal but at the cost of energy density. Though, graphite avoids the 

problem of dendrites formation, at higher charging rates or lower temperatures14 the plating 

reaction can still occur.13,14 Figure 1-13 shows the conceptual diagram of plating reaction 

consuming active materials and causing capacity fade. Plating reactions not only pose safety issues 

but also cause capacity loss as they are only partially reversible.14  

 

Figure 1-13: Conceptual diagram of the plating reaction at the surface of solid particle during charging 

Capacity fade is another important issue that limits the applicability of lithium-ion batteries. Three 

main factors that affect the capacity of a battery are thermal degradation of electrolyte, SEI layer 

growth and cracking of particles due to intercalation induced stresses. Electrolytes have a safe 

operating temperature and potential range beyond which capacity fade can be accelerated.29 A 

critical review of thermal issues for lithium-ion batteries can be found in Bandhauer et al.29  

Even though the SEI layer slows down the oxidation of the electrolyte by restricting the transport 

of solvent molecules, its continuous formation consumes active material consistently over the life 

span of the battery. As mentioned earlier, charging/discharging of batteries at higher rates increases 
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the rate of SEI layer formation. Formation of the passive layer introduces an additional voltage drop 

along with the consumption of active materials. The dual impact of the SEI layer limits the 

reversibility of lithium-ion batteries. Figure 1-14 shows a graphite particle with short-range 

ordering in graphene planes (left) and a comparison between intercalation and new SEI layer 

formation at anode-SEI interface.30 Note that the new SEI layer is formed at the graphite electrolyte 

interface and not at the SEI-electrolyte interface. 

 

Figure 1-14: Left: graphite particle with SEI layer, Right: conceptual diagram of the formation of the SEI layer vis-à-

vis intercalation, figure adapted from Pinson and Bazant30 

Intercalation induced stress generation in electrode particles is another reason for capacity fade, 

which affects the capacity in two ways: 1) fracture due to stress (electrical isolation) that reduces 

the effective capacity of the electrode and 2) reduced electrical connectivity due to fractures.31 

When lithium is inserted into the interstitial space of host materials, local lattice spacing changes 

to accommodate the guest lithium. The presence of a concentration gradient causes a gradient in 

lattice spacing within the particle, which creates stresses in the particle (see Figure 1-15).  
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Figure 1-15: Stresses in solid particle during intercalation and deintercalation. 

Intercalation induced stresses, estimated using various modeling approaches31-35 with varying 

degree of sophistications, are explained later in Chapter 2. Figure 1-16 shows the anode particles 

after the first five cycles (SEI formation cycles) and after 100 cycles at 10 C rate at low 

temperature.36 

 

Figure 1-16: Left: anode particle after five SEI formation cycles. Right: fractured anode particles after cycling test at 

10 C at -10 ºC. Reproduced by permission from Takahashi and Srinivasan,36 (open access article). 

1.7 Scope of the Dissertation 

The work presented in this dissertation can broadly be categorized into two parts: optimal 

operation (charging/discharging) and rational design. Chapter 2 presents quantitative treatment of 

transport and kinetic processes associated with the lithium-ion battery along with capacity fade 

reactions (such as SEI layer and lithium-plating side reactions) and intercalation induced stresses. 

Chapter 3 presents the analytical solution for diffusion in composite materials using Fick’s law 

Intercalation

De-intercalationCompressive stresses 
tensile stresses
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where each region has different lithium solubility and diffusivity. The analytical solutions for 

concentration profiles in composite materials are used to derive expressions for intercalation-

induced stresses under certain simplifying assumptions. 

Chapter 4, 5, and 6 focus on optimal operation for lithium-ion batteries. While Chapter 4 and 5 use 

a simplified battery model (single particle model), Chapter 6 uses a detailed battery model based 

on porous electrode theory along with concentrated solution theory (pseudo-2dimensional model).  

Chapter 4 begins with the comparison of different models to quantify intercalation induced stresses 

in single particle under constant lithium intake boundary condition followed by an optimal 

charging problem formulation. The optimization problem undertaken in Chapter 4 tries to 

maximize charge stored in a given time in a single particle while restricting stresses to a specified 

bound. Chapter 5 follows the similar methodology of maximizing charge stored in a battery using 

single particle model while restricting overpotential for lithium-plating side reaction.  

Chapter 6 uses an isothermal pseudo-2dimensional model to estimate stress distribution across the 

thickness of the anode to underline the importance of detailed models. The optimization problem 

of maximizing charge storage in a lithium-ion battery is solved numerically while restricting the 

peak stress values attained at the anode-separator interface. 

Chapter 7—second part of the dissertation—presents the use of the isothermal pseudo-

2dimensional model to investigate the effect of design parameters on battery capacity and capacity-

fade mechanisms. Chapter 7 consists of two cases. Case 1 evaluates the effect of thickness-porosity 

combination (while maintaining constant anode capacity) on total capacity and capacity-fade 

mechanisms. Case 2 evaluates the effect of porosity distribution on capacity-fade mechanisms. 

Chapter 8 presents conclusions and future directions.  
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The dissertation contains three appendixes. Appendix A outlines the derivation of Butler-Volmer 

kinetics expression. Appendix B presents the mathematical treatment of the transport of lithium 

ions in electrolyte using infinitely dilute solution theory for binary salt. Appendix C derives the 

equations for intercalation-induced stresses using infinitesimally strain theory (for low volume 

expansion materials), an approach traditionally used for mathematical treatment of stresses due to 

thermal gradients.  
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Chapter 2 

Continuum Models for the Lithium-ion 

Battery 

 

“The sciences do not try to explain, they hardly even try to interpret, they mainly make 

models. By a model is meant a mathematical construct which, with the addition of certain 

verbal interpretations, describes observed phenomena. The justification of such a 

mathematical construct is solely and precisely that it is expected to work - that is correctly 

to describe phenomena from a reasonably wide area. Furthermore, it must satisfy certain 

esthetic criteria - that is, in relation to how much it describes, it must be rather simple.”  

John von Neumann 

 

2.1 Motivations for Modeling and Simulation 

There are two main aspects of the lithium-ion battery modeling and simulations with the 

continuum-level models. One aspect relates to the accurate estimation of usable capacity at 

different stages of battery life under various charging/discharging rates, temperatures, etc. Other 

aspect relates to rational design and operation of the lithium-ion battery to minimize system-level 

inefficiencies and capacity fade to ensure safe and long battery life.  

Accurate estimation of battery capacity: Lithium-ion batteries require airtight seals to function 

safely. This requirement places significant restrictions for putting sensors to measure the variables 

of interest (concentration, current and potential distributions). Moreover, it is well established that 

using a lithium-ion battery beyond its prescribed voltage limit can degrade the battery or can cause 

safety issues due to side reactions such as lithium-plating or SEI growth (Figure 1-10). Unlike 

electrochemical double layer capacitors (EDLC) where voltage profile follows monotonic (almost 

linear) change with capacity, typical rechargeable batteries show a voltage plateau. The voltage 
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plateau makes the estimation of capacity from voltage measurement very difficult and unreliable 

although the plateau is desirable from the energy density point of view.  

 

Figure 2-1: Constant current charging and discharging behavior of a battery vs. an EDLC. Note that the voltage 

plateau makes the estimation of battery capacity difficult solely based on voltage measurements (Figure adapted from 

http://en.wikipedia.org/wiki/File:Charge-Discharge-Supercap-vs-Battery.png) 

Figure 2-1 shows the charge and discharge of a battery and an EDLC. The estimation of capacity 

is easier for an EDLC compared to a battery as there is a one-to-one correspondence between 

voltage and capacity for an EDLC. The situation is much worse when the charging and discharging 

is subject to variable current for the battery. The battery voltage behavior is highly nonlinear with 

respect to load current and estimation of remaining capacity based on voltage profile under variable 

current becomes much more difficult, and hence there is scope for detailed models to contribute. 

Rational design and operation: The design variables for a lithium-ion battery are very high, as 

the battery consists of the anode, separator, and cathode, with the current collector and electrolyte. 

Large number of combinations for design parameters such as the thicknesses and porosities of 

different regions, concentration of lithium salt, choice of electrolyte, particle sizes of anode and 

cathode structure etc., make the optimization of the design parameters quite challenging. Chemical 

engineering based principles can be used to model the battery that can guide the design of the 
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lithium-ion battery. To illustrate the point, one can think about choosing the thickness-porosity 

combination and its effect on various capacity fade mechanics vis-à-vis energy density as given in 

Figure 2-2.  

 

Figure 2-2: Different choices of porosities and lengths for the anode  

Detailed battery models can also be used to identify parts of battery structure that are most 

vulnerable to capacity fade at different charging/discharging conditions. For example, it is 

estimated that regions near electrode-separator interfaces are most vulnerable (anode-separator 

interface and cathode-separator interface) to SEI layer and plating side reactions.37 Also, at the 

beginning of every charge/discharge process, the battery is most vulnerable to cracking due to 

intercalation induced stresses.37 These insights can be put to good use in deriving better design and 

charging/discharging protocols for the lithium-ion battery. 

2.2 Continuum Models for the Lithium-ion Battery 

The models for lithium ion batteries can be divided into three categories: equivalent circuit-based 

models, continuum models, and atomistic models. Atomistic models are not commonly used to 

simulate entire charge/discharge behavior of a battery, and their applications are limited to 

simulating specific physics or specific processes in the battery (Figure 2-3).  
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Figure 2-3: Some modeling frameworks for the lithium-ion battery 

Equivalent circuit-based models fit a network of resistors and capacitors to estimate the 

charge/discharge behavior of a battery. These models are computationally efficient but ignore the 

physics of the battery hence find limited use in rational design or operation of the battery. This 

chapter focuses on the continuum level battery models. Lithium-ion battery involves transport in 

the solid phase and the electrolyte phase, along with charge transfer kinetics at the interface of the 

electrodes. Different models can be generated based on various approximations related to 

processes or structure as described in subsequent sections.  

2.2.1 Single Particle Model (SPM) 

The SPM assumes that the porous nature of the solid phase in the anode and the cathode can be 

approximated by the dynamics of a single particle in each electrode. The SPM also ignores the 

dynamics and variation of lithium-ion concentration in the electrolyte phase.38,39 The flux of 

lithium ion at the surface of the particles is determined by the total surface area of the electrodes. 

The radius of this hypothetical particle is representative of the particle size distribution of the 

electrode material. 
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Figure 2-4: Schematic and processes considered in the SPM for the lithium-ion battery 

The SPM for the lithium-ion battery—developed by Dr. White’s group—uses Fick’s law and the 

continuity equation for diffusion and Butler-Volmer kinetics for charge-transfer reaction (see 

Appendix A for the derivation of Butler-Volmer type reaction kinetics). Table 2-1 shows the Fick’s 

second law for the diffusion of neutral lithium entity in the solid phase (equations (2.1) and (2.2)

). The assumption of neutral lithium in solids may not be valid for many cathode materials (such 

as LiFePO4
40 and LiCoO2

41) where electron prefers to be with either transition metal or oxygen 

compared to lithium ion.40,41 Equation for temperature is derived based on lumped energy balance 

in the battery (equation (2.4)). 

Table 2-1: Governing equations for the single-particle thermal model 
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Table 2-2: Additional expressions used in the SPM 
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Reaction rate 
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Various other models are also reported for the transport of lithium (lithium ion-electron entity) in 

the solid phase. Christensen et al.32 presented detailed treatment of diffusion in a solid particle 

considering two species: lithiated substrate and empty substrate rather than lithium as guest species 

along with other features such as volume change, pressure-induced diffusion and non-ideal 

behavior. Modeling of intercalation based on Generalized Poisson-Nernst-Planck (PNP) equations 

where lithium ions and electrons are treated separately is considered by Lai.22 Different 

thermodynamics can be incorporated in SPM framework by replacing Fick’s law with valid 

expressions for different materials.22 For low charging/discharging rates at normal temperatures, 

SPM works very well but starts to drift at higher charging/discharging rates or low temperatures. 
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2.2.2 Pseudo Two-dimensional (P2D) Model  

A porous electrode is made of electrode particles, binders, and fillers with electrolyte in the pores. 

Modeling at the pore-scale accounting for the shape of individual particles is very computationally 

demanding. The P2D model comes under the category of macro-homogeneous models where the 

porous electrodes can be approximated with the help of various macroscopic parameters28 such as 

porosity, tortuosity, average surface area per unit volume, volume-averaged resistivity and so 

forth. It must be pointed out here that these macro-homogeneous models are conceptually different 

from a structure with one-dimensional straight pores perpendicular to the face of the electrode, 

although both approaches lead to similar mathematical equations.28,42 In P2D model, the electrode 

is treated as a superposition of an electrolyte phase and a solid phase at any point in space.28 

Equations for isothermal porous electrode pseudo two-dimensional (P2D) model are given in 

Table 2-3. Table 2-4 presents various expressions used in this model. Equations derived for lithium 

ion transport in electrolyte phase (equation (2.12)) consider diffusion and migration but for binary 

lithium salt, the electrolyte equations can be simplified by eliminating electrolyte potential from 

the governing equation (see Appendix B for derivation of ionic transport equation based on dilute 

solution theory).  

The P2D model provides a very general framework to incorporate different type of physics. 

Equation (2.15) shows Fick’s law type relation for diffusion of neutral lithium ion-electron entity 

in the solid host. Transport laws for different materials can be significantly different (and/or 

function of particle size) and can be incorporated into the P2D model framework by replacing 

equation (2.15) with appropriate expressions.  
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Table 2-3: Governing PDEs for the P2D model (see Appendix B for derivation of equation like 2.12 and 2.13) 
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Table 2-4: Additional expressions used in the P2D model (see Appendix A for derivation of equation 2.22). 
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2.2.3 Model Reformulation 

Simulation of P2D model using finite difference or finite element method tends to be 

computationally expensive, which has prohibited their use in the control and monitoring of internal 

states of battery in real time. Several simplified/reduced electrochemical models have been 

proposed, and control-relevant studies performed to try to address these issues.43-48 Efforts in 

optimal control and nonlinear model predictive control, incorporating the SPM and other reduced 

order models have been published.49,50 A mathematical reformulation method51-54 gives rise to a 

computationally efficient model that can be solved in milliseconds without compromising on 

accuracy. These reformulation techniques consist of spectral methods (specifically orthogonal 

collocation) where, depending on number of collocation points in the anode, separator, and 

cathode, models can be generated with varying degree of accuracy. The model used in the 

dissertation is derived using the reformulation methodology outlined in Northrop et al.51 with a 

change in basis (trial) functions in order to achieve better convergence properties at higher 

charging/discharging rates of battery operations. The change of trial functions to Chebyshev form 

compared to trigonometric form provides more robustness albeit at a slightly more cost.  

2.3 Models for the Capacity Fade Mechanisms 

The loss of capacity with time in lithium-ion batteries is attributed to many factors such as 

mechanical degradation or breaking of solid particles due to intercalation induced stresses, loss of 

active material in SEI layer growth, loss of lithium in plating side reactions, irreversible phase 

change in solid particles, electrolyte decomposition at high temperature, etc. In addition to these 

capacity fade mechanisms, there exist material-dependent fade mechanisms as well, for example, 

pulverization of silicon particle during lithium intercalation. The contribution of each factor will 

depend on cell chemistry and operating conditions. This section introduces mathematical treatment 
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for quantifying the effect of individual capacity fade mechanisms. How these capacity fade 

mechanisms collectively affect the battery is still being investigated.  

2.3.1 Intercalation-induced Stresses 

As briefly discussed in Chapter 1 that when lithium is inserted into interstitial space of host 

materials, local lattice spacing changes to accommodate the guest lithium. The presence of 

concentration gradient causes a gradient in lattice spacing within the particle, this gradient in lattice 

spacing creates stresses in the particle (see Figure 2-5). Assuming spherical symmetry, these 

stresses can be broken into two components: radial and tangential for the spherical particle. During 

intercalation, for the materials with a positive volume expansion, the radial stresses remain tensile 

throughout a particle (assuming zero external pressure at the surface) whereas the tangential stress 

becomes compressive at the surface and tensile at the center.  

 

Figure 2-5: Nature of stresses during intercalation and de-intercalation 

The peak (tensile) radial stress occurs at the center of the particle and peak (compressive) 

tangential stress occurs at the surface of the particle.32 During deintercalation, the nature of stresses 

changes (i.e. tensile stresses become compressive and compressive stresses become tensile), but 
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the location of peak stresses remains the same for both. Therefore, the peak radial stresses at the 

center of the particles and peak tangential stresses at the surface of the particles are monitored in 

the simulations. 

Review of models for intercalation induced stresses: If the stress exceeds the yield stress of a 

given material, the particle can break and lose contact with the matrix resulting in reduced capacity 

of the battery. Different models have been developed to quantify the stress developed in a particle 

with varying degree of sophistications. These modeling efforts can be divided into two categories: 

strain splitting33-35 and stress splitting.31,32 The theory of the strain splitting approach has been 

developed by Timoshenko55 where thermal stresses have been modeled using strain splitting, with 

these models being called thermal analogy models. Here, the intercalation-induced stresses are 

treated in similar way as the temperature-induced stresses. On the other hand, a very detailed and 

rigorous model that used stress splitting was developed by Christensen et al.,31,32,55 In both 

categories, different models can be obtained depending upon the inclusion of pressure-induced 

diffusion. The effect of pressure-induced diffusion (PID) becomes prominent once the 

concentration profile starts to develop. The inclusion of pressure-induced diffusion in the model 

may not have a large effect on the concentration profiles as shown by Zhang et al.,34 but since the 

stress development depends upon the difference in concentration at different points inside the 

particle, the inclusion of PID does significantly affect the stress profiles. During intercalation 

(charging/uptake of lithium by graphite electrode), PID acts in parallel to concentration gradient-

induced diffusion to make the concentration profile flatter, which relaxes the particle.34  

In the first modeling category of strain splitting where intercalation-induced stresses are treated 

analogous to temperature-induced stresses (thermal analogy models), Zhang, et al.34 presented a 

model that incorporated pressure-induced diffusion. In this model, the partial molar volume and 
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diffusion coefficient were assumed to be independent of the lithium concentration. Additionally, 

hydrostatic stress was assumed to be same as the thermodynamic pressure to simplify the pressure-

induced diffusion term in the Stefan-Maxwell diffusion equation. These aforementioned 

assumptions enable decoupling of stress and concentration variables, resulting in a single partial 

differential equation for concentration. Stress profiles can then be calculated during post-

processing from the lithium concentration profile. This approach makes the model very simple 

while capturing the basics of volume expansion in the particle within a lithium-ion battery. In this 

model, if pressure-induced diffusion is ignored then analytical results can be obtained for constant-

current charging.33  

Table 2-5: Governing equations for stresses given in Cheng and Verbrugge33 (see Appendix C for derivation) 

Governing Equation 
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Here r  is the radial stress, t  is the tangential stress, n  is the partial molar volume of the 

solute, nE  is the Young’s modulus, n  is the Poisson’s ratio, max,
s

nc  is the maximum lithium 

concentration in solid,   is the scaled radial coordinate, and nx  is the mole fraction of lithium in 

solid. The derivation of equations given in Table 2-5 is given in Appendix C. 

In the second modeling category, the stress is divided into two components: elastic and 

thermodynamic. A very detailed and rigorous model had been developed by Christensen and 

Newman32 to model volume expansion and contraction of lithium insertion compound that 
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calculates stresses due to intercalation and deintercalation of lithium. This model incorporates 

dependence of partial molar volume on the state of charge (SOC) as well as an experimentally 

measured thermodynamic factor that is again a function of the state of charge. Also, the model 

includes a moving boundary with non-ideal binary diffusion. Figure 2-6 compare stress profiles 

predicted by the different models available in the literature. The thermodynamic factor is assumed 

to be 1 in the model developed by Christensen and Newman32 (that is, the open-circuit potential is 

purely Nernstian). 

Comparison of different stress values obtained from different modeling approaches: 

Numerical simulation was done for the intercalation of lithium in a carbon electrode for constant 

flux condition (Figure 2-6).  

 

Figure 2-6: Simulation results of various models for intercalation induced stresses in a solid particle (intercalation) 

Both radial and tangential stresses developed in the particle reach maxima and minima respectively 
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and then stay at that value when no pressure-induced diffusion is assumed in the first category of 

models (see blue curves in Figure 2-6). If pressure-induced diffusion is included in the model, 

magnitude of both stresses decrease (grey-blue curves in Figure 2-6). This decrease is due to the 

fact that during charging, PID works in parallel to the concentration gradient-induced diffusion 

and hence tries to make the concentration profile flatter, which in turn relaxes the particle. It is 

important to note that the peak stress occurs when the concentration at the center of the particle 

starts to change (that is, the concentration profile develops fully). Hence, the location of the peak 

will be majorly affected by the diffusion coefficient and the radius of the particle. The model 

developed by Christensen et al.32 also shows similar results, but the difference becomes prominent 

as time passes. In the case of PID, magnitude of both the stresses attains extreme and then 

decreases but in the end the stress profiles flattens out (green curves in Figure 2-6) due to the 

incorporation of variable partial molar volume. In the case when PID is ignored, stress values 

decrease slightly after attaining maxima (red curves in Figure 2-6).  

Equations shown in Table 2-5 will be used in each solid particle in P2D model to estimate the 

stresses at different locations of the anode and the cathode.  

Due to the finite thickness of the anode, the pore wall flux becomes non-uniform except at very 

small rates of charging and discharging. This non-uniformity of the pore wall flux changes with 

time as well. In general, the pore wall flux is higher at the anode separator interface at the onset of 

charge/discharge of the battery; afterwards, the pore wall flux decreases at the anode-separator 

interface and increases at the anode-current collector interface. Due to the time-varying and 

thickness-dependent non-uniformity of the pore wall flux, different maximum peak stresses are 

observed at different times during charge/discharge. Usually, the anode-separator interface faces 

largest pore wall flux resulting in maximum peak stresses at that point compared to other locations 
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of the anode. Figure 2-7 shows the distribution of peak radial ( r ) and tangential stresses ( t ) at 

different locations in anode with time.  

 

Figure 2-7: Distribution of radial and tangential stresses during charging at 4C at 25 C (x = 0 represent anode-

separator interface and x = 1 represent anode-current collector interface) 
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amount of lithium intake will remain same (flux will also remain same if volume expansion is 

ignored). Constant flux case will lead to saturation of stresses for SPM as can be seen for the case 

when pressure induced diffusion is ignored (Figure 2-6, dashed curves). The stress profiles in solid 

particles in P2D model shows variation as the flux at different points in time at different locations 

across the thickness of anode varies significantly. The anode-separator interface is most vulnerable 

to capacity fade due to stress as can be seen from Figure 2-7. Use of P2D model gives the advantage 

here compared to SPM model in quantifying the variation in stresses, while the SPM only gives 

average behavior, the P2D model quantifies the most vulnerable part of anode and cathode. 

2.3.2 SEI Growth 

As explained in the previous chapter (Figure 2-8), that the thermodynamic window of electrolyte 

is usually narrow than the anode and cathode electrochemical potentials. In that case, electrolyte 

(typically EC/PC/DMC with lithium salt) will decompose and form a passivating layer.  

 

Figure 2-8: Left: ideal electrolyte having broader thermodynamic window, Right: formation of passivating layer due 

to smaller thermodynamic window of electrolyte (figure adapted from Goodenough and Park,20 Copyright 2013, 

American Chemical Society) 

The electrolyte for a typical lithium-ion battery consists of various carbonates (e.g. EC, PC, DMC, 

etc.). SEI formation due to the decomposition of EC by Safari et al.56 is given in equations (2.34) 

and (2.35). The model assumes that EC molecule diffuses through the SEI layer to the SEI-
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electrode interface where it may accept electron and react with lithium ion and form SEI layer. 

Note that the first step is only feasible when the LUMO level of EC is lower than the 

electrochemical potential of anode. 

 -EC e EC   (2.34) 

  2 2 2 42
2EC 2Li CH OCO Li C H     (2.35) 

Figure 2-9 shows the conceptual diagram of the formation of SEI layer compared to intercalation 

in graphite anode particle. During the first few cycles, charging and discharging of a battery is 

controlled to get desired SEI layer properties. As the thickness of SEI layer increases, diffusion of 

solvent molecules across it become more difficult, this leads to self-limiting growth in SEI layer.  

 

Figure 2-9: Left: graphite particle with SEI layer, Right: conceptual diagram of the formation of the SEI layer vis-à-

vis intercalation, figure adapted from Pinson and Bazant30 

Though, the growth in SEI layer is self-limiting; its magnitude is higher at higher charging rates 

or low charging rates at low temperatures. During the charging of a battery, the over-potential for 

SEI layer growth varies significantly. The variation is also predicted across the thickness of the 

electrodes. Similar to the case for stresses, the electrode-separator interface remains most 

vulnerable to SEI layer side reaction.  
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The overpotential for SEI reaction is given as57  

        
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Here, SEI  is the resistance of SEI layer formed during the initial cycles and ( , ) / SEIx t   refers 

to the increase in resistance during the fresh buildup of SEI layer, ( , )s
n x t  is solid phase potential, 

( , )e x t  is the electrolyte phase potential, SEIU  is open circuit potential for SEI reaction (value 

ranges between 0.4 to 0.8 V), ( , )SEIj x t  is current density for SEI reaction and ( , )nj x t  is the current 

density for intercalation reaction. Various expressions are given for current density for SEI 

reaction.30,56,57 Pinson and Bazant30 gave the following expression for current density for SEI 

reaction on the anode side 
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FRT


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, (2.37) 

while Ramadass, et al.57 gave expression based on kinetically limited model for anode side 

 expSEI SEI SEIj k
FRT




 
   

 
. (2.38). 

The work presented in the dissertation shows a comparison of overpotentials wherever SEI layer 

is discussed. As can be seen from Figure 2-10, the overpotential for SEI reaction is higher in 

magnitude at x = 0 which is anode-separator interface, making it the most vulnerable part of anode 

for SEI reaction. At higher charging rate (or lower temperature) or at higher tortuosity, the 

variation between different points in anode is larger (see chapter 7 for more details)  



42 

 

 

Figure 2-10: Distribution of overpotential for the SEI side reaction across the thickness of the anode during charging 

at 4C rate (x = 0 represents the anode-separator interface and x = 1 represents the anode-current collector interface) 

2.3.3 Lithium-Plating Reaction 

The lithium-plating side reaction not only causes capacity fade but also poses a significant safety 

issue.11 As discussed briefly in Chapter 1 that lithium-ion batteries are inherently safer than lithium-

metal batteries, as the former redueces dendrites formation during charging. The slightly more 

positive potential of LiC6 compared to Li/Li+ inherits the problem of lithium plating during 

charging11 at high rates and even at low rates if the temperature is low (0.2 C at  o20 C ).13,14  

The driving force for the partially irreversible14 lithium plating side reaction at the anode can be 

expressed by the overpotential58 
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nplating platinge nx t x t x Ut     , (2.39) 

where plating  is the overpotential for lithium plating side reaction, ( , )s
n x t  is the solid phase 

potential in negative electrode, , ( , )e n x t  is the electrolyte-phase potential in anode, ,plating nU  is the 

open-circuit potential for the plating reaction which is taken to be zero, and x is the distance across 

0 200 400 600 800 1000

-0.45

-0.4

-0.35

-0.3

Time (s)

O
v

e
rp

o
te

n
ti

a
l 

fo
r 

S
E

I 
(V

)

 

 

x = 0

x = 0.5

x = 1



43 

 

the electrode. The expression for plating  given in equation (2.39) ignores the voltage drop across 

the solid electrolyte interface (SEI) layer. For a uniform porosity anode, the anode-separator 

interface becomes most vulnerable to plating side reaction. Figure 2-11 shows the typical evolution 

of  ,( , ) ( , )s
n e nx t x t   during charging.  

Only when ,( , ) ( , )s
n e nx t x t   less than zero, the plating reaction is favored. Figure 2-11 shows 

that at anode-separator interface, the plating side reaction becomes feasible sooner and achieves 

larger magnitude compared to other parts of the anode 

 

Figure 2-11: Distribution of overpotential for lithium plating side reaction across length during charging at 4C rate (x = 

0 represent anode-separator interface and x = 1 represent anode-current collector interface) 

2.4 Summary and Conclusions 
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absence of consensus over the expressions for current density for the SEI reaction is also an issue. 

The plating reaction is partially reversible14 hence a reliable way to predict the buildup and 

depletion of plated lithium is also needed. This will require incorporating two or more competing 

reactions (e.g. intercalation, the SEI and the plating reaction, etc.) in the overall current density 

with the accurate expression for associated current densities. 
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Chapter 3 

Diffusion and Stress in Core-shell materials 

 

If people do not believe that mathematics is simple, it is only because they do not realize 

how complicated life is. 

John von Neumann 

 

3.1 Introduction to the Core-Shell Materials  

Core-shell composite structures are potential candidates for Li-ion battery electrodes as they can 

take advantage of materials with higher energy density and materials with higher cyclability. In 

order to meet energy demands and address environmental concerns, researchers are actively 

working on novel energy storage materials of which a significant fraction is dedicated to 

developing insertion materials for lithium ion batteries.59-61 One way to achieve higher energy 

densities in lithium ion batteries is by replacing currently used graphite (theoretical storage 

capacity of 372 mAh/g) based anode with materials like silicon (theoretical storage capacity of 

4200 mAh/g). While materials such as silicon and tin have high energy density compared to 

graphite, they suffer from high volumetric expansion (~400%) during intercalation/ deintercalation 

which results into pulverization and electrical isolation of the electrode materials. A change in 

volume of such magnitude causes delamination of the solid electrolyte interface (SEI) from the 

active material. Delamination and formation of new SEI layer at the exposed surface continuously 

consumes active materials resulting in faster capacity fade.62 One way to take advantage of higher 

energy density materials is to develop core -shell composite materials where the shell materials 

have more favourable mechanical properties than the core. Si/C composite material in which 
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silicon is dispersed/coated in porous carbon has been made by several researchers.60,62-67 To our 

knowledge, intercalation in core-shell materials has not been modelled and reported in the 

literature. Previous efforts by Subramanian and White68 only included analysis of composite 

materials with two different diffusivities. However, if two different materials, such as Si/C, are 

used in core-shell configuration, interfacial dynamics cannot be ignored. 

Subramanian and White68 derived analytical solution under galvanostatic conditions for composite 

materials having concentration and flux continuity at the interface. This chapter extends the 

method adopted by Subramanian and White68 for a general treatment at the interface of composite 

materials in order to make it useful for a wide variety of materials and configurations (e.g. core-

shell configuration with flexibility of electrochemically active and inert core, hollow materials, 

etc.). We derive and present an analytical solution for isotropic diffusion in 1-dimension for 

rectangular, cylindrical and spherical core-shell particles. The results reported here can be used for 

Si, Ti or any core-shell or hollow material. 

Section 2 gives a brief introduction to the diffusion problem in composite materials and 

intercalation induced stresses. Section 3 presents the solution methodology using the separation of 

variables approach for planar geometry and lists solutions for cylinder and sphere. Intercalation 

dynamics for several sets of transport parameters are presented in section 4. Section 5 illustrates 

the use of analytical solution for diffusion in quantifying intercalation induced stresses for 

spherical composite particle. Section 6 presents conclusion and future directions. 

3.2 Background 

Diffusion in heterogeneous media is an extensively studied problem in many branches of 

engineering. Heat conduction through heterogeneous media is typically studied where temperature 
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is continuous across interfaces.69 Models for heat and mass transfer in biological tissues result in 

similar problems with discontinuous interface conditions.70,71 Subramanian and White68 presented 

analytical solution for composite material for galvanostatic boundary conditions with continuous 

concentration and flux at the interface. To our knowledge, none of the previous work considers 

the problem of diffusion in heterogeneous media with inhomogeneous boundary condition 

(constant flux arising from galvanostatic boundary condition at the surface where the 

electrochemical reaction occurs) and discontinuous interfacial concentration with associated 

kinetics, which is of the practical importance for novel composite battery materials. We consider 

the problem of diffusion in heterogeneous media composed of two different materials with 

different transport properties (diffusion coefficients, iD ) and associated interfacial dynamics 

(Figure 3-1). 

 

Figure 3-1: Composite geometries under consideration 

Diffusion in composites with two materials can be classified into 4 possible scenarios depending 

on the ratio of diffusivity and equilibrium concentration (Figure 3-2). Cases A ( 2 1 1D D  ) and B 

( 2 1 1D D  ) in Figure 3-2 with 
* *

1 2 1c c   , are very similar to the diffusion in sphere with single 

domain where the concentration in the inner core will always be smaller compared to the outer 

shell during intercalation. Interesting diffusion dynamics are observed in cases C ( 2 1 1D D  ) and 
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D ( 2 1 1D D  ) with 
* *

1 2 1c c   which may cause the inner core of the particle to become more 

concentrated than the other shell.  

In order to quantify the intercalation induced stresses for the four cases above, even the very basic 

treatment of stress will require three additional material properties: Young’s modulus, Poisson’s 

ratio and partial molar volume. Using a thermal analogy model for intercalation induced stresses 

assuming concentration independent material properties and ignoring volume expansion, 

decoupling of concentration and stress is possible.33-35,72,73 Having all the parameters (diffusivity, 

equilibrium concentration, thickness, Young’s modulus, Poisson’s ratio, and partial molar volume) 

in a unified analytical framework to quantify stress will help guide the design of next generation 

energy storage materials. 

             

              

Figure 3-2: Possible diffusion dynamics in 2-region composite geometry 

3.3 Model and Solution Methodology  

Considering unsteady state diffusion, a material balance yields the following equation for 

concentration. 
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i

i

c
N

t


 


 (3.1) 

Here i = 1 and 2 for region 1 and region 2, ic  is the concentration (mol/m3), t is time (s) and iN  is 

molar flux (mol/s/m2) which can be treated according to Fick’s laws as 

 i i iN D C   (3.2) 

where iD  is diffusion coefficient (m2/s). For simplicity, the model and method are illustrated for 

planar geometry. Assuming constant diffusivity and considering 1-dimensional diffusion of 

lithium for planar geometry, Eq. (3.1) can be written as 

 

2

2

i i
i

c c
D

t r

 


 
 (3.3) 

where r is axial distance. Transient diffusion in composite planar sheet consisting of two regions 

of different thicknesses and different diffusion coefficients (as described in Figure 3-1) can be 

described using the following equations 

    
2

1 1 1 12
, , ,c r t D c r t r R

t r

 
   

 
 (3.4) 

    
2

2 2 2 1 22
, , ,c r t D c r t R r R

t r

 
  

 
 (3.5) 

where 1R  is the thickness of first region and 2 1R R  is the thickness of second region, 1D  and 2D  

are the diffusion coefficients of the two regions. Initially both the regions are considered empty, 

i.e. species concentration is zero. 
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    1 2,0 0, ,0 0 for all c r c r r   (3.6) 

Symmetry boundary condition (zero flux) can be used at the center  

  1 1 0, 0, 0D c t t
r


  


 (3.7) 

and galvanostatic boundary condition is considered at the surface  2r R  where electrochemical 

intercalation and de-intercalation of lithium occurs. 

  22 2 , , 0sI
D c R t t

r nF


  


 (3.8) 

Here, Is is the current density (A/m2) which is a constant in case of galvanostatic charge/discharge 

condition, F is the Faraday’s constant and n is the charge associated with the single ion of guest 

molecule (1 in case of lithium ion). At the interface  1r R  between two regions, flux continuity 

condition is used. 

    11 1 2 2 1, , , 0D c R t D c R t t
r r

 
   

 
 (3.9) 

For the other boundary condition at the interface, Subramanian and White68 considered continuity 

in concentration. This chapter considers a more general boundary condition which is relevant for 

core-shell composite materials having different capacities for lithium ions. Difference in interfacial 

concentration  1 2c c  is related to local flux,70,71 where   is the ratio of equilibrium 

concentration (
* *

1 2c c ). 
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      1 1 1 1 2 11 , , , , 0D c R t c R t c R t t
r




    
 (3.10) 

Where  represents interfacial dynamics (m/s). Introducing dimensionless variables  

 
1

1

0

c
x

c
 ; 

2
2

0

c
x

c
 ; 

2

r
X

R
 ; 

2

2

2

R
t

D


 
  

 
 (3.11) 

and the dimensionless parameters 

 
2 2

1

D

D
  ; 

1

2

R

R
  ; 

2

1

R

D
  ; 

2

2 0

sI R

D nFc
   (3.12) 

The equations governing transport of lithium can be represented in the following nondimensional 

forms 

    
2

1 12 2

1
, , , 0x X x X X

X
  

 

 
  

 
 (3.13) 

    
2

2 22
, , , 1x X x X X

X
  



 
  

 
 (3.14) 

with initial and boundary conditions 

    1 2,0 ,0 0 for all x X x X X   (3.15) 

  1 0, 0, 0x
X

 


 


 (3.16) 

  2 1, , 0x
X

  


  


 (3.17) 
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       1 1 2, , , , 0x x x
X

        


  


 (3.18) 

    1

2

2, , , 0x x
X X

     
 

 
 

 (3.19) 

 

Extending the methodology adopted by Subramanian and White68, the following solution is 

proposed for this problem: 

        1 1 1 1, ,x X g X w X v      (3.20) 

        2 2 2 2, ,x X g X w X v      (3.21) 

Let 1g  and 2g  satisfy the homogeneous boundary conditions and remaining terms satisfy the 

nonhomogeneous boundary conditions. Boundary conditions (Eqs. (3.16), (3.17), (3.18), and 

(3.19)) in terms of iv , iw  and ig  can be written as 

    1 10, 0,  and 0 0, 0g w
X X

 
 

  
 

 (3.22) 

    2 21, 0 and 1 , 0g w
X X

  
 

   
 

 (3.23) 

 

      

           

1

1

1 2

1 1 2 2

, , , ,  and 

0

g g g
X

w w v w v
X

       

      


 




    



 (3.24) 

        1 2

2

1 2

2, , ,  and , 0g g w w
X X X X

        
   

  
   

 (3.25) 



54 

 

Substituting Eq. (3.20) into Eq. (3.13), the following equation is obtained. 

        
2 2

1 1 12 2 2 2

1 1
, 1 ,

d d
g X v g X w X

d X dX
  

   

 
  

 
 (3.26) 

As 1g  satisfies the homogeneous part and, 1v  and 1w  satisfy nonhomogeneous parts, the following 

equations can be extracted from Eq. (3.26). 

    
2

1 1 12 2

1d d
v w X k

d dX


 
   (3.27) 

    
2

2

1 1 12 2

1
, ,g X g X

X
  

 

 
  

 
 (3.28) 

Here, 1k  and 1  are arbitrary constants. Solving Eq. (3.27) and (3.28) with boundary condition 

given by Eq. (3.22) gives the following solution  

     2 2

1 1 1 1 1

1

2
v w X k X k a       (3.29) 

    
2

1

11 1, cos eg X B X
    

  (3.30) 

where 1a  and 1B  are integration constants. Similar equations can be derived for concentration in 

region 2 using Eq. (3.23) as boundary condition (using two arbitrary constants, 2  and 2k ) as.  

      2

2 2 2 2 2 2

1

2
v w X k X k X k a         (3.31) 

  
 

 

2
2

2

2 2

2

cos 1
, e

sin

X
g X B  







    (3.32) 
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where 2a  and 2B  are integration constants. Eqs. (3.29), (3.30), (3.31), and (3.32) have eight 

constants ( 1a , 2a , 1k , 2k , 1 , 2 , 1B and 2B ) to be determined using the initial condition and 

remaining boundary conditions at the interface ( X  ). Using expressions for 1w , 2w , 1v , 2v , 

1g  and 2g  (Eqs. (3.29), (3.30), (3.31), and (3.32)) to solve for the interfacial boundary condition 

given by Eq. (3.24), gives rise to the following relations 

 1 2     (3.33) 

 1 2k k  (3.34) 

 
2 2 2

2 2 2 1 1 1

1 1
0

2 2
k k a k a k                  (3.35) 

 
        

1 2

cos sin cos s n
 

i
 

B B
A

        






 (3.36) 

The constant A is introduced to simplify the expressions. Second boundary condition at the 

interface (Eq.(3.25)) can be used to obtain the following relation 

 1 2

1
1k k



 

 
   
 

 (3.37) 

and the equation for obtaining eigenvalues ( n ) 

 0
tan tan

n

n n

 

  


    (3.38) 

where n n  , ( 1)n n    . The solution takes the form of infinite series 
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    
2

2 2

1 1 1 1

1

, c
1

os cos e
2

n

n n n

n

x X A X k X k a
        






     (3.39) 

       
2

2

2 2 2 2 2

1

1
, cos sin cos 1 e

2
n

n n n n

n

nx X A X k X k X k a
        






         

 (3.40) 

In order to get one more equation for constants 1a  and 2a , initial conditions are used in integral 

form as 

    
1

1 2

0

,0 ,0 0x X dX x X dX





    (3.41) 

which gives rise to the following equation. 

      2 3 2

2 1 2 2 2

1 1 1 1
1 1

6 2 2 3
0a a k k k                (3.42) 

Eqs. (3.37) and (3.34) can be used to solve for 1k  and 2k , while Eqs. (3.35) and (3.42) can be 

used to solve for 1a  and 2a . 

  

 

 

 

3 2 3 2 3 2 2 2

2 21

(1 ) (1 )3 6 3 1 2 3 1 11

6 1 1 1 1
a

            

   

          
 

 

       

 (3.43) 

 
    

   

23 3 2 3 3 2
2

22 2

6 1 2 6 3 1 2 1(

6 1 1 1

)

1

1 1
a

           

   

       
  

  



       

 (3.44) 
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 1 2
( 1) 1

k k



 







 (3.45) 

For Sturm-Liouville problem of this type where the eigenfunctions are quasi-orthogonal, a constant 

is required to be multiplied in order to make the resultant system orthogonal. In this case  serves 

the purpose.74 The quasi-orthogonal eigenfunctions for this problem are as follows. 

    1 cos cosn nf x X      (3.46) 

      2 cos sin cos 1n n n nf x X          (3.47) 

Initial conditions can be used to find the coefficients nA  using   to make the eigenfunctions 

orthogonal. 

        1 1 2 2

0 0

,0 ,0 0x X f x dX x X f x dX

 


 

  
 

   (3.48) 

The expression for nA  can be expressed as 

 

 
2

2

1 2 3 42

2 cos cos

1
cos

n n
n

p p p p

n n

A
  

      



 

 
 

 (3.49) 

using the following relations 

 1 cos sinp

n n n       (3.50) 

 2 cos sinp

n n n      (3.51) 

 3 cos sinp

n n n      (3.52) 
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 4 cos sinp

n n n       (3.53) 

Eqs. (3.39) and (3.40) are the analytical solution for diffusion in planar electrode where the 

constituents are given by equations (3.38), (3.43), (3.44), (3.45), (3.49), (3.50), (3.51), (3.52), and 

(3.53). 

Cylindrical geometry 

The governing equations for composites in non-dimensional form in cylindrical coordinates 

are  

    1 12

1 1
, , , 0x X X x X X

X X X
  

 

   
   

   
 (3.54) 

    2 1

1
, , , 1x X X x X X

X X X
  



   
   

   
 (3.55) 

The initial and boundary conditions in this case can be expressed using Eqs. (3.6), (3.7), (3.8), 

(3.9), and (3.10). Using similar approach, the solution for cylindrical coordinate system can be 

represented as: 

    
2

2 2

1 2 0 1 1 1

1

1
e

4
0, nc

n n

n

x X A J X k X k a X
      






      (3.56) 

 

           
2

2

2 2
2 1 1 0 1 0 2 2

1

, e ln
4 2

n tc

n n n n n n

n

k X k
x X A J Y X Y J X X k a

        






 
       


 




 (3.57) 

Here ( )J  and ( )Y  are the Bessel functions of first and second kind respectively. The 

eigenvalues are the positive roots of following equation 
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          
1

2 2 2
2 0 1 0 1 0 0c c

n n n n n nJ Y J J Y


           


 
     

 
  (3.58) 

where n n  . The summation coefficient is given as 

 

 
             

1

2
2

12 2 2 2 2 2 2

0 1 1 2 1 4 1 1 3 1

2

2

n

n
c

c c c

n n n n n n n n n

J
A

J J J Y J Y J

 

 
             


 
           
 

              (3.59) 

where 

        1 1 1 1 1

c

n n n n nY J J Y            (3.60) 

       2 2 2 2

2 0 1 0

1

2

c

n n nJ J J         
   (3.61) 

       2 2 2 2

3 0 1 0

1

2

c

n n nY Y Y         
   (3.62) 

            2

4 0 0 1 1 0 0

c

n n n n n nY J J Y Y J                (3.63) 

and the constants are given as 
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Spherical geometry 

As described in detail for the rectangular core-shell, one can derive the solution for isotropic 

radial diffusion for spherical composite particle. For spherical system the governing equations are 
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The initial and boundary conditions can be expressed using Eqs (3.6), (3.7), (3.8), (3.9), and (3.10)

. The solution for spherical geometry can be derived as  
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where eigenvalues are the roots of following equation (using n n  , and ( 1)n n    ). 
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The summation coefficients are given as follows: 
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where the constituents are given as 
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Values of constants ( 1a , 2a , 1k , and 2k ) in this case turn out to be  
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3.4 Results and Discussion 

This section presents transient concentration profiles for spherical core-shell particle. Though the 

solution is general enough to describe slower interfacial dynamics, for illustration purposes, only 

cases with very fast interfacial kinetics ( 1 ) are discussed. Three different sets of parameter 

values are chosen to visualize the diffusion dynamics that resemble to cases B, C and D in Figure 

3-2. 

 

Figure 3-3: (Left) concentration at t = 0, (Right) concentration profiles during intercalation 

Figure 3-3 presents concentration profiles for  >1 and  >1 (equivalent to case C in Figure 3-2). 

For =2, the interfacial concentration in the core will be twice compared to the interfacial 

concentration in the shell. Moreover two orders of magnitude difference in diffusivity (

2
2 1 100D D   ) will create steep concentration gradients in the core which will lead to 
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significant stress development in the particle. The initial concentration at t =0 (Gibb’s Phenomena), 

is also shown in following Figs. 3-8. 

Figure 3-4 describes the concentration profiles for  =1 and  >1 (close to case D in Figure 3-2). 

The choice of above parameters leads to interesting situation of having the inner core more 

concentrated than the shell. This situation can never occur in single domain spherical charging 

with nonnegative current. One interesting difference in the current case versus the previous case 

is that despite having   greater than one, the average concentration in inner core is smaller than 

the shell for the previous case. This phenomenon will alter the stress dynamics discussed in the 

following section. 

 

Figure 3-4: (Left) concentration at t = 0, (Right) concentration profiles during intercalation at different time 

Figure 3-5 describes the concentration profiles for  <1 and  <1 (equivalent to case B in Figure 

3-2). As the inner core has higher diffusion coefficient than the outer shell, a flat concentration 

profile is expected in the inner core.  

Cases with 1   are similar to diffusion in a sphere with single domain as the inner core will 

always have lower concnetration than the outer core. But interesting stress profiles can be seen in 
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these cases depending on the values of partial molar volume ( ). For example, three cases can be 

visualized for /core shell    , /core shell    , /core shell     that will generate different 

stress profiles. 

 

Figure 3-5: (Left) concentration at t = 0, (Right) concentration profiles during intercalation at different time 

 

Figure 3-6: (Left) concentration profiles at t = 0, (Right) concentration profiles during intercalation at different time 

in a hollow sphere (inert core) 

Next, we demonstrate the use of derived solution to describe transport in special cases. For 

example, choice of 1  can mimic the transport of lithium in hollow spherical particle or particle 

with inert core, Figure 3-6 shows the concentration profiles in a hollow sphere using 1010  , 

and 
410  . 
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Similarly, using 2  , 1  , 1 , the solution derived by Subramanian and White68 can be 

constructed (Figure 3-7) suggesting the validity and flexibility of the model developed. Lastly, 

using 1  , 1  , and 1 , solution for diffusion in a sphere with single domain can be 

obtained (Figure 3-8). The model developed shows that while very little changes may be observed 

in the charge discharge curves (qualitatively), situation deep inside the core shell material can be 

very different from the spherical particle case with the same material. 

 

Figure 3-7: (Left) concentration at t = 0, (Right) concentration profiles during intercalation at different time in sphere 

with continuous concentration at the interface 

 

Figure 3-8: (Left) concentration at t = 0, (Right) concentration profiles during intercalation at different time with core 

and shell having exact same material properties  
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3.5 Stress Estimation in Core-Shell Composite Particles 

One of the reasons for designing core-shell type composite electrode materials is to circumvent 

the pulverization of high energy materials with high volumetric expansion. Intercalation induced 

stress generation is one of the main reasons for capacity fade. Models to quantify intercalation-

induced stress can be divided into two categories: strain splitting33-35,73 and stress splitting.31,32 The 

theory of the strain splitting approach has been developed by Timoshenko75 where thermal stresses 

have been modeled using strain splitting, with these models being called thermal analogy models. 

Here, the intercalation-induced stresses are treated in similar way as the temperature-induced 

stresses. A very detailed model that used stress splitting was developed by Christensen et al.,31,32 

which was shown to be equivalent to the former approach (strain splitting) by Timoshenko.75 In 

both categories, different models can be obtained depending upon the inclusion of pressure-

induced diffusion. Inclusion of pressure induced diffusion results in nonlinear partial differential 

equations (PDEs). It is very difficult to apply analytical treatment to such PDEs, hence this chapter 

focuses on stress calculation ignoring pressure induced diffusion and using strain splitting method. 

Detailed description of strain-splitting method to model intercalation induced stresses in spherical 

geometry with isotropic radial diffusion can be found in literature.33-35,73 Deshpande et al.73 

presented analytical expressions for the intercalation-induced stresses developed in a spherical 

particle with moving phase boundary assuming lithium concentration independent material 

properties (Young’s modulus (E), partial molar volume ( ), Poisson’s ratio ( ) and neglecting 

volume expansion. These assumptions may not give accurate description for systems with high 

volume expansion (e.g. Silicon), but they allow analytical treatment of the problem and decouple 

concentration and stresses. Expressions are listed in dimensionless form for radial ( r ) and 
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tangential stresses ( t ) in both regions of the isotropic spherical particle with only radial diffusion, 

derivation of these equations can be found in Deshpande et al.73 Defining following expressions 
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the dimensionless radial and tangential stress can be expressed as 
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where 
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0 2 22 2 1 1        ,   3

1 0 12 1 2 1     ,   3

2 0 11 1      , 

 3 2 12 1 1 2     , and    4 2 11 2 1 2       

Three scenarios are discussed using 0.25    (intercalation). First, a core-shell particle with 

continuous concentration profiles using 1  , and 1  is considered (Figure 3-7 and 3-8). Then, 

stress generation in core-shell particles with discontinuous concentration (specifically 1  ) are 

presented (Figure 3-3 and Figure 3-4) followed by hollow sphere (Figure 3-6) 

Core-shell sphere with continuous concentration at the interface ( 1  , 1 ): 

If transport and mechanical properties of both the regions are assumed to be equal with fast 

interfacial dynamics (i.e. 1  , 1  , 1  , 1  , and 1 2  ), the resultant configuration will 

denote diffusion and stress generated in a sphere with single domain. Figure 3-8 shows the 

concentration distribution and Figure 3-9 shows the radial and tangential stresses. Such a 

simplification gives rise to the basic understanding of intercalation induced stresses in a particle. 

The radial and tangential stresses are mainly dependent on some representation of the gradient of 

concentration profiles (difference between average concentration up to the point of interest and 

total average concentration). As the short time dynamics start to fade out (around   =0.2 in Figure 

3-8), the stress profiles start to saturate reaching a maxima (Figure 3-9), which is expected as the 

steepness of profiles remains constant afterwards. Positive values of stress represent tensile stress 
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and negative values denote compressive stress. The concentration profiles make the outer layers 

expand more compared to inner layers resulting in tensile radial stress during intercalation at every 

point in X. Tangential stresses on the other hand are compressive at the surface and tensile at the 

center. The peak compressive stress occurs at the surface and peak tensile stress at the center of 

the particle and the locations for peak stresses do not change during intercalation.  

  

Figure 3-9: Radial and tangential stresses during galvanostatic intercalation in spherical particle of single domain 

  

Figure 3-10: Radial and tangential stresses during galvanostatic intercalation in spherical particle with higher partial 

molar volume for the core 
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Saturation of stresses to a maximum value is due to uniform partial molar volume for both 

materials. If partial molar volume of the inner core is assumed to be larger than the outer shell (i.e. 

1  ) keeping other parameters same, the stress profiles will change drastically even though the 

concentration profiles will remain the same. After the short time dynamics die out, the inner core 

will have to face more expansion due to higher partial molar volume facing resistance from the 

shell while expanding, which will result in compressive nature of radial and tangential stresses at 

the center. As can be seen from Figure 3-10, the peak radial and tangential stresses at the center 

go through a maxima and then change from tensile to compressive. Location and nature of peak 

stresses for the inner core also changes from the center to the interface and from tensile to 

compressive. 

Similarly, if the partial molar volume of the core is small compared to the shell (i.e. 1  ), the 

radial stress will remain positive (tensile stress) at every point in X and keep increasing. Tangential 

stress in the core will also remain positive but at the interface, it will go through a maxima and 

then change from tensile to compressive.  

  

Figure 3-11: Radial and tangential stresses during galvanostatic intercalation in spherical particle with lower partial 

molar volume for the core 
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Though having different values of diffusivity in both regions ( 1  ) will affect the magnitude of 

stress developed as steepness of concentration profiles is affected by the values of   (Figure 3-7), 

the shape of underlying profiles remains more or less similar.  

Core-shell sphere with discontinuous concentration at the interface ( 1  , 1 ): 

The parameters in this section are chosen to represent the core-shell behavior of Si/C type core-

shell material with Si/Sn as the core and graphite as the shell to illustrate the utility of the model 

for newer generation materials. It is beyond the scope of this chapter to include volume changes 

and plasticity, however in our opinion the importance of interface dynamics needs to be addressed 

for the newer materials and hence this analysis is included. The diffusion coefficient of the inner 

core (Si) is assumed to be two orders of magnitude smaller than that of the outer shell (

2

2 1 100D D   ) and Young’s modulus of the core is assumed to be one order of magnitude 

larger than the shell (    =10).   and   are also chosen to approximately represent the 

mechanical properties of these materials ( 2   and 1.5  ). As the inner core has higher 

magnitudes of stresses compared to the outer shell, a different kind of scaling (  
1/4. .sgn ( ) ( ) , here 

sgn is a signum function) is done to represent the stresses in Figure 3-12. This scaling takes care 

of both positive and negative values and maintains continuity of radial stresses (also the reason for 

the amplification in the Gibb’s phenomenon). As the diffusivity of the core is very small compared 

to the shell, more time is required for transient behavior to fade out hence stress profiles are plotted 

up to 1.2  .  

In this configuration, the radial and tangential stresses at the center keep rising and remain tensile 

for all time. This is due to very small diffusion coefficient in the core compared to the shell which, 
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in effect, restricts the core to have enough concentration that can swell the core despite higher 

partial molar volume and higher interfacial concentration. Even though the concentration in the 

core is small compared to the shell, the interface on the core side will have double the concentration 

and partial molar volume compared to the interface on the shell side. This causes the core side 

interface to swell significantly compared to its nearby region, developing compressive stress at the 

interface ( 1.2   in Figure 3-12). 

  

Figure 3-12: Radial and tangential stresses during galvanostatic intercalation in Si/C type core-shell particle; 

oscillations are amplified due to scaling 

 

Figure 3-13: Radial and tangential stresses during galvanostatic intercalation in Si/C type core-shell particle for equal 

diffusivities  
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If the ratio of diffusivity (
2 ) is changed to 1 keeping other parameters constant, that will make 

the core more concentrated than the shell (after the short time transient dies out, Figure 3-4), in 

that case expansion of the core aided with higher partial molar volume will lead to compressive 

radial and tangential stresses in the core (Figure 3-13).  

The magnitude of peak stresses in the particle also depends on the ratio of core and shell 

thicknesses ( ). For Si/C type core-shell configuration, as the thickness of the core (silicon type 

material) is decreased, stress generated will be smaller due to flatter concentration profiles in the 

core (less diffusion resistance). This situation conflicts with the objective of having increased 

energy density compared to graphite particle. On the other hand, if the value of   is chosen close 

to 1, the stress generated will be significantly higher, which may lead to breaking of the outer shell. 

Hence a careful selection of material properties is needed in order to deliver efficient energy 

storage material. As seen earlier, changes in one or two parameters can drastically change the stress 

behavior which gives an opportunity to carefully tune the transport parameters for better material 

properties to address issues relating to capacity fade. Our future efforts will address optimization 

of these design parameters based on the model reported here. 

Hollow Sphere or Sphere with Inert Core:  

As discussed earlier (Figure 3-6), solution derived in this chapter can be used to mimic the 

transport behavior of a hollow spherical particle or a particle with inert core. Stress profile for the 

same is plotted in Figure 3-14. Absence of the inner core will result in the absence of radial stresses 

at the inner surface of the particle. This can equivalently be represented as very small Young’s 

modulus for the core ( =10-10) with equal partial molar volume ( =1). Following plots were 

obtained by choosing 0.3  , 0.25   , 1 0.3  , and 2 0.3  . As the radial stress is zero on 
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both the surfaces, the radial stress in the particle goes through a maxima for 1X   . Moreover, 

the peak radial stress and tangential stress saturate to a maximum value for large  . Figure 3-14 

also shows that the location of peak radial stress shifts towards the center from surface under these 

charging conditions. 

  

Figure 3-14: Radial and tangential stresses for hollow sphere 

Similar stress calculations can be performed for radial isotropic diffusion in core-shell and hollow 

cylindrical geometry. The above analysis does not incorporate volume expansion, pressure induced 

diffusion and concentration dependent material properties. As there can exist a significant stress 

difference at the interface (Figure 3-10, Figure 3-11, Figure 3-12, and Figure 3-13), pressure 

induced diffusion may play a significant role and alter the dynamics. 

3.6 Conclusions 

Intercalation of lithium in core-shell material is modeled with a very general treatment at the 

interface including interfacial dynamics. The model is solved using a modified separation of 

variables method developed earlier. It was shown that diffusion in core-shell particles can be 
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slower interfacial dynamics do play a role in concentration profiles and stress behavior specially 

at short times. 

 

List of symbols 

nA    Coefficients in infinite series 

,  i ia k    Constants used to represent solution 

     Fractional coverage of region 1 (R1/R2) 

Bi   Constants 

2     Ratio of diffusivity (D2/D1) 

*
ic    Equilibrium concentration, mol/m3 

ic    Concentration, mol/m3 

j

m    Eigenvalues dependent constants  

Di   Diffusion coefficient, m2/s 

i    Dimensionless groups to represent stress in compact form 

    Dimensionless current density 

E   Young’s modulus, Pa 

F    Faraday’s constant, 96487 C/g equivalent 

 if x    Eigenfunctions 

n , n    Eigenvalues dependent constants 

ig    Variable to present Homogeneous solution 

s    Dimensionless interfacial kinetics 

Is    Current density, A/m2 

    Ratio of equilibrium concentration 

    Interfacial dynamics, m/s 

i    Constant 

n    Eigenvalues 

iN     Molar flux, mol/s/m2 

n    Charge associated with the single ion of guest molecule 

    Ratio of partial molar volume 

    Ratio of Young’s Modulus 
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r   Axial distance/radial distance, m 

1R     Thickness of first region , m 

2R    Total thickness of the geometry, m 

ir
    Radial stress, Pa 

it
    Tangential stress, Pa 

ˆ
ir

     Dimensionless radial stress 

ˆ
it

    Dimensionless tangential stress 

t   Time, sec 

     Dimensionless time 

     Poisson’s ratio 

iw , iv ,  Variables to present nonhomogeneous solution 

ix    Dimensionless concentration 

X    Dimensionless axial/radial distance 

    Partial molar volume, m3/mol 

 

Subscripts used in list of symbols 

i   i = 1 or 2, for region 1 (0 < r < R1) and region 2 ( R1 < r < R2) 

n   n=1..  , positive eigenvalues 

m   Constants used to make the expression compact (used in 
j

m ) 

   

List of superscript 

p, c, s   Denote planar, cylinder and sphere respectively (used in 
j

m ) 
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Chapter 4 

Optimal Charging using the SPM: 

Stress Effects 

 

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk. 

John von Neumann 

 

4.1 Motivation 

As discussed in previous chapters (chapters 1 and 2), intercalation-induced stress generation in 

electrode particles is one of the main reasons for capacity fade, which affect the capacity in two 

ways; fracture due to stress (electrical isolation) that reduces the capacity and the effect of loss in 

the connectivity of the particles.31 To the best of our knowledge, none of the optimal charging 

profile reported in the literature includes the intercalation-induced stresses while deriving optimal 

charging profiles. The progress made in understanding the capacity fade mechanisms32,76-80 has 

paved the way for inclusion of that knowledge in deriving optimal controls. In this chapter, we 

have incorporated the particle-level stress-strain effect with a single-particle model to derive an 

optimal charging profile that restricts the peak stresses inside a particle. This chapter illustrates 

that almost the maximum possible amount of charge can be stored within a given time (one hour), 

if the current profile is optimally derived, with significantly lower stress being developed within 

the particle. Section 2 reviews various stress models reported in the literature for battery models 

(detailed discussion is presented in chapter 2). Section 3 provides a brief description of the model 

used to perform the optimization. Section 4 defines the optimal control problem. Section 5 presents 

results and discussion, which are followed by conclusions and future directions. 
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4.2 Review of Stress Models 

Although, a detailed review of stress models in single particle is presented in chapter 2 along with 

framework to incorporate it with P2D model, a brief review is presented here for the sake of 

completeness of this chapter. Readers who are familiar with stress models can skip this section 

and may directly go the next section. 

During intercalation of lithium into a graphite particle, significant stress is developed inside the 

particle. In particular, higher rates of charging yield to higher stress. If the stress exceeds the yield 

stress of a given material, the particle can break and lose contact with the matrix resulting in 

reduced capacity of the battery. Different models have been developed to quantify the stress 

developed in a particle with varying degree of sophistications. These modeling efforts can be 

divided into two categories: strain splitting33-35 and stress splitting.31,32 The theory of the strain 

splitting approach has been developed by Timoshenko75 where thermal stresses have been modeled 

using strain splitting, with these models being called thermal analogy models. Here, the 

intercalation-induced stresses are treated in similar way as the temperature-induced stresses. A 

very detailed and rigorous model that used stress splitting was developed by Christensen et al.,31,32 

which was shown to be equivalent to the former approach (strain splitting) by Timoshenko.75 In 

both categories, different models can be obtained depending upon the inclusion of pressure-

induced diffusion. The effect of pressure-induced diffusion (PID) becomes prominent once the 

concentration profile starts to develop. The inclusion of pressure-induced diffusion in the model 

may not have a large effect on the concentration profiles, but since the stress development depends 

upon the difference in concentration at different points inside the particle, the inclusion of PID 

does significantly affect the stress profiles. During intercalation (charging/uptake of lithium by 
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graphite electrode), PID acts in parallel to concentration gradient-induced diffusion to make the 

concentration profile flatter, which relaxes the particle.  

In the first modeling category of strain splitting where intercalation-induced stresses is treated 

analogous to temperature-induced stresses (thermal analogy models), Zhang et al.34 presented a 

model that incorporated pressure-induced diffusion. In this model, the partial molar volume and 

diffusion coefficient were assumed to be independent of the lithium concentration. Additionally, 

hydrostatic stress was assumed to be same as the thermodynamic pressure to simplify the pressure-

induced diffusion term in the Stefan-Maxwell diffusion equation. These aforementioned 

assumptions enable decoupling of stress and concentration variables, resulting in a single partial 

differential equation for concentration. Stress profiles can then be calculated during post-

processing from the lithium concentration profile. This approach makes the model very simple 

while capturing the basics of volume expansion in the particle within a lithium-ion battery. In this 

model, if pressure-induced diffusion is ignored then analytical results can be obtained for constant-

current charging.33 The same model formulation was implemented in a pseudo-2D model of a dual 

porous insertion electrode cell sandwich comprising lithium cobalt oxide and carbon electrode, 

where a moving boundary formulation was used to address two phases involved inside the lithium 

cobalt oxide electrode by Renganathan et al.35 

In the second modeling category, the stress is divided into two components: elastic and 

thermodynamic. A very detailed and rigorous model had been developed by Christensen et al.32 to 

model volume expansion and contraction of lithium insertion compound that calculates stresses 

due to intercalation and de-intercalation of lithium. This model incorporates dependence of partial 

molar volume on the state of charge (SOC) as well as an experimentally measured thermodynamic 

factor that is again a function of the state of charge. Also, the model includes a moving boundary 
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with non-ideal diffusion. Figure 4-1 and Figure 4-2 compare stress profiles predicted by the 

different models available in the literature. The thermodynamic factor is assumed to be 1 in the 

model developed by Christensen et al.32 (that is, the open-circuit potential is purely Nernstian).  

Comparison of different stress values obtained from different modeling approaches 

For the current study, we have focused our attention on single particle representation of the 

electrode81. In this modeling approach, the behavior of entire porous electrode is simplified by 

replacing it with a solid spherical particle. The current density that goes inside this particle is 

determined by the total surface area of the electrode. The radius of this hypothetical particle is 

representative of the particle size distribution of the electrode material. This representation of 

lithium ion battery simulates the behavior of real battery with reasonable accuracy at lower rates 

of charge and discharge. For the present case, we have not incorporated state of charge dependent 

diffusivity and thermodynamic factor. Including these will make the following analysis material 

specific. Moreover, in order to handle such a large variation in diffusion coefficient with SOC (2 

order of magnitude), different numerical discretization schemes may be needed for efficient 

simulation and optimization.52,82,83 Numerical simulation was done for intercalation of lithium in 

a carbon electrode (charging) for the parameter values presented in Table 1. Both radial and 

tangential stresses developed in the particle reach maxima and minima respectively and then stay 

at that value when no pressure-induced diffusion is assumed in the first category of models (see 

dashed curves in Figure 4-1 and Figure 4-2). If pressure-induced diffusion is included in the model, 

magnitudes of both stresses decrease (solid curves in Figure 4-1 and Figure 4-2).  
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Figure 4-1: Radial stresses during intercalation 

 

Figure 4-2: Tangential stress during intercalation 

Table 4-1: Parameters and dimensionless groups used to generate simulation results 

Parameter Symbol and dimensions Value 

Radius of particle  Rn 12.5×10−6 m  

Stoichiometric Maximum concentration 
max
nC  31833 mol/m3 b 

Total surface area of anode Sn 0.7824 m2 

Diffusion coefficient Dn 3.9×10−14 m2/s 

Faraday’s constant F 96487 C/mol 

Young’s Modulus En
 15×109 Paa 

Poison’s ratio nv  0.3a 

Molecular weight nMw  78.64 g/molb 

Density n  2.1×106 g/cca 

Partial Molar volume n  4.08×10−6 

Applied current appi  1.656 A (1C) 

Time scaling   3600 sec 
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a values obtained from Christensen et al.32 b Values obtained from Renganathan et al.35 
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gradient-induced diffusion and hence tries to make the concentration profile flatter, which in turn 

relaxes the particle. It is important to note that the peak stress occurs when the concentration at the 

0 1000 2000 3000 4000
0

1

2

3

4

5
x 10

7

Time (sec)

R
a
d

ia
l 
S

tr
e
s
s
 (

P
a
)

 

 

Cheng+, Zhang+ without PID

Christensen+ without PID

Christensen+ with PID & Thermo factor=1

Zhang+ & Renganathan+

2

1

3

4

0 1000 2000 3000 4000
0

1

2

3

4

5
x 10

7

T
a
n

g
e
n

ti
a
l 
S

tr
e
s
s
 (

P
a
)

Time (Sec)

 

 

Cheng+, Zhang+ without PID

Chritensen+ without PID

Christensen+ with PID & Thermo factor=1

Zhang+ & Renganathan+

1

2

3

4



82 

 

center of the particle starts to change (that is, the concentration profile develops fully). Hence the 

location of peak will be majorly affected by the diffusion coefficient, and the radius of the particle. 

The model developed by Christensen et al.32 also shows similar results but the difference becomes 

prominent as time passes. In the case of PID, magnitude of both the stresses attains extreme and 

then decreases but in the end the stress profiles flattens out (dotted curves in Figure 4-1 and Figure 

4-2) due to the incorporation of variable partial molar volume. In the case when PID is ignored, 

stress values decrease slightly after attaining maxima (dash-dotted curves in Figure 4-1 and Figure 

4-2). 

While the difference between the predicted stress values becomes prominent with time, the initial 

development of stress profiles is similar in all the cases. Also, the time at which peak stress occurs 

does not vary too much between all the models. In the following optimization study, we have used 

two variants of the model developed by Zhang et al.34 to derive at the optimal charging profile. 

The first variant includes pressure-induced diffusion and the second version does not. In our 

opinion, this captures both the worst case and the best case. In addition, the moving boundary 

model involves index-2 Differential Algebraic equations (DAE) and is computationally 

challenging to use for optimization.  

4.3 Model Description 

The detailed description and derivation of the model equations were given by Zhang et al.34 The 

final equations are summarized here. The mole fraction is governed by a single partial differential 

equation that is decoupled from the stress equations, 

  2

2 2
( , ) ( , )n

n n

n

D
x x t x N x t

t x R x

 


 
 (4.1) 
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where ( , )nx x t  is the mole fraction of lithium in the LiC6 electrode, x is dimensionless length, t is 

dimensionless time, and  

 ( , ) 1 ( , ) ( , )n nN x t x x t x x t
x




 


 

is the dimensionless flux. The description of parameters, their values and units are given in Table 

4-1. The boundary conditions are 

  1
1

( , ) 1 ( , ) ( , )
n app

n nx
nmax n nx

R I
N x t x x t x x t

x c D FS






  


 (4.2) 

 
0

( , ) 0n
x

x x t
x 





 (4.3) 

with initial condition of uniform mole fraction: 

 ( ,0) 0.0078nx x    (4.4) 

The pressure-induced diffusion effect can be ignored by setting the value of   to be 0. Radial stress 

( ( , )r x t ), tangential stresses ( ( , )t x t ), and hydrostatic stress ( ( , )h x t ) are given by 

 
max 1

2 2

3

0 0

2 1
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Radial stress at the surface of the particle is equal to the external pressure, which is assumed to be 

zero. From equation Error! Reference source not found. it is clear that maximum radial stress 

will occur at the center while charging, so a bound on the stress at the center can ensure the bounds 

hold at all the points in the particle. Similar logic can be extended to equation (4.6) so that stress 

at the surface of the particle will be considered for bounds on the tangential stress. From Figure 

4-1 and Figure 4-2 it is clear that stress development occurs at very short times, which poses a very 

interesting challenge since most of the reformulation and global polynomial approximations 

performed to make the simulation faster are not accurate at very short times.52,85 Initially, while 

the battery is at rest, the concentration profile in the particle is flat. This kind of behavior is difficult 

to capture with lower order polynomials. Hence in this work, no solid-phase reformulation is 

performed to carry out the optimization. The finite difference method is applied to discretize the 

governing partial differential equation along the radius of the particle x. A fourth-order accurate 

O(h4) finite difference scheme was implemented at the internal node points with second-order 

finite difference schemes at the boundaries. Maximum percentage relative error for 40 and 60 node 

points compared to 100 node points in spatial dimension was found to be 1.4% and 0.6% at t = 0, 

this error goes to order of 0.001 very fast (before the stress hits the maxima). 40 internal node 

points were used to discretize in the spatial dimension. In the finite difference form, the index i 

goes from 1 to N + 2: 

  
2 1 1 2

2

2 2
( ( ( ( (

1
( , ) ) 16 ) 30 ) 16 ) )

12 i i i i in n n n n nx x t x t x t x t x t x t
x x    


     

 
, i = 3 to N (4.8) 

  
2 1 1 2

1
( , ) ( ) 8 ( ) 8 ( ) ( )

12 i i i in n n n nx x t x t x t x t x t
x x    


   

 
, i = 3 to N, (4.9) 

Points adjacent to boundaries: 
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, i = 2 and N + 1, (4.11) 

The left boundary condition is approximated using 3-point forward difference for the derivative: 
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, i = 1. (4.12) 

The right boundary condition is approximated using 3-point backward difference for the 

derivative:  

 2 1
( ) 4 ( ) 3 ( )1

( , )
2

i i in n n

n

x t x t x t
x x t

x x

 
 


 

 
 
 

, i = N+2. (4.13) 

After discretization in x, the resultant set of equations was discretized using the third-order Euler 

backward difference formula (BDF) in time. A total of 100 node points in time were used with a 

fixed final time of 1 hour. The complete discretization resulted in a system of [(2 boundary 

condition + 40 equations for internal node points) + (1 equation for average mole fraction + 1 

equation for radial stress at the center + 1 equation for tangential stress at surface)] × 100 (node 

points in time) = 4500 algebraic equations. 

4.4 Problem Formulation 

The maximization of charge transferred is equivalent to maximization of the average mole fraction 

(Q) in a limited time with voltage, surface mole fraction, and stress constraints considered with a 

single-particle model. Numerous methods are available for solving constrained dynamic 

optimization problems, including (i) variational calculus, (ii) Pontryagin’s maximum principle, 
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(iii) control vector iteration, (iv) control vector parameterization, and (v) simultaneous nonlinear 

programming.86-88 Control vector parameterization (CVP) and simultaneous nonlinear 

programming are commonly used strategies that employ nonlinear programming (NLP) solvers. 

This paper uses the simultaneous nonlinear programming approach. The optimal control problem 

under consideration is: 

 
1 1

( )
0 0

max
( )

app

app n

nmax n
i t

n

Q i
i t R

c D F
dt

S
dt    (4.14) 

subject to: PDE model, BCs, and IC (4.1) to (4.6) with constraints: 

 0 ( ) 2 Cappi t     (4.15) 

 0 (1, ) 0.6nx t    (4.16) 

 
max( , )r rx t   (4.17) 

 
max( , )t tx t   (4.18) 

where i is the dimensionless current, iapp is the applied current (A), Q is the average mole fraction, 

max
r  and 

max
t  can take the values of yield stress of the material, and (1, )nx t  is the mole fraction 

at the surface, which should not exceed the value of 0.6, as this value determines the voltage of 

the lithium-ion battery. 

The discretized form of this problem statement takes the form 

 
( )

1

( )
max
app

n

i k
k

i k
Q

n


  (4.19) 
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such that 

  ( 1), ( ), ( ), ( ) 0k appF z k z k y k i k   (4.20) 

  ( ), ( ), ( ) 0k appG z k y k i k   (4.21) 

initial conditions:
 

0( 1)z k z  and bounds: 

 

min max

min max

min max

( ) ,

( ) ,

( )

appi i k i

y y k y

z z k z

 

 

 

 (4.22) 

where Fk represents differential equation constraints (converted to algebraic form using BDF), Gk 

represents algebraic equation constraints, n represents the number of discretization points in time, 

z represents differential states, and y represents algebraic states with an applied current of iapp. The 

differential state constraints include physically meaningful bounds on the solid-phase lithium. A 

bound was placed on the mole fraction at any point in the particle as well as on the maximum 

radial and the minimum tangential stresses at the center and the surface respectively.  

In simultaneous nonlinear programming,86-88 both the control variables and state variables are 

discretized, which results in a large set of nonlinear equations to be solved simultaneously for 

obtaining the optimum profile. The resultant system had 4600 variables (4500 states variables with 

100 control variables) and hence 100 degrees of freedom. The nonlinear system of 4500 equations 

was solved using the nonlinear programming (NLP) solver IPOPT89 with constraints on the control 

variables (2C rate), mole fraction (0.6), radial stress at the center, and tangential stress at the 

surface. 
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4.5 Results and Discussion 

Case 1: Charging for one hour 

The yield stress for LiC6 is 30 MPa; however, a slightly more relaxed bound on the stress (37.5 

MPa) was placed with maximum allowable current of 2C (3.312 A in this case). Below are the 

results from the optimization study.  

The charging profile starts at the maximum allowable C rate. Very soon the tangential stress hits 

its bound, and from that point onwards, the charging current starts to decrease (see Figure 4-3). In 

the case of regular diffusion (with no PID), the current takes a value around 1C which ensures 

proper bounds on the stress. In the case of PID, the value of the current ramps up slowly until the 

surface mole fraction reaches the value of 0.6 (see Figure 4-3). This behavior is observed since 

pressure-induced diffusion helps the particle relax during intercalation and optimized charging 

profile utilizes this phenomenon to enable an aggressive storage policy. In both the cases, as soon 

as the surface mole fraction reaches the value of 0.6 (the upper bound on mole fraction at the 

surface of particle), the current starts decreasing to make sure this bound is not violated. This part 

is similar to constant voltage charging.  

In the case of pressure-induced diffusion during intercalation, the optimized current profile takes 

advantage of the relaxation of the profiles inside the particle and can enable more charge to be 

stored. Figure 4-4 shows that the average concentration stored in the particle at the end of charging 

is more when PID is taken into account in the optimization. 

Figure 4-5 shows profiles for the tangential stresses. From Figure 4-5 it is clear that tangential 

stress hits its maximum sooner than the radial stress. Hence it will act first as active constraints. It 

can be noted that the maximum tangential stress is negative (compressive stress) at the surface of 
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the particle. Figure 4-6 shows the radial stress profiles at the center (which in case of charging is 

the maximum radial stress). The notch in the current profile in Figure 4-3 after which it starts to 

ramp up is attributed to the radial stress bounds becoming active at that time (see Figure 4-6). 

 

Figure 4-3: Optimal charging profile 

 

Figure 4-4: Average mole fraction with PID and without PID 
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Figure 4-5: Negative minimum tangential stress (at the particle surface) 

 

Figure 4-6: Maximum radial stress (at center) 

Table 4-2 shows the computational matrix for both cases, with the objective function being the 

average mole fraction that has the maximum value of 0.6. Since the problem without PID is a 

linear problem, the time taken to solve that is lesser compared to the case with PID.  

Table 4-2: Computational matrix 
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Case 2: Charging for one hour with varying bounds on the maximum stress 

The optimum profile for an unconstrained charge maximization problem mimics the traditionally 

used constant current followed by constant voltage (CC-CV), (though the value of constant current 

is optimized and not 1C). The addition of stress-based constraints will limit the charge stored in a 

given period of time compared to the CC-CV. The rate of increase of SOC decreases in the later 

part of the CC-CV profile (while maintaining constant voltage) and that is when the optimized 

profile can compensate for the charge not stored due to the constraints. In this study, we have 

enforced the constraints on the radial and tangential stresses while optimizing for charge stored in 

a given time. Depending on the value of the permitted peak stress the optimal charging profile 

changes. As the stress constraints are relaxed, the SOC stored gets closer to the SOC stored during 

CC-CV protocol. To obtain a Pareto-optimal curve between peak stress and SOC stored, the peak 

stress allowed was varied from 22.5 MPa to 85 MPa. 

Figure 4-7 is the Pareto-optimal profile, which indicates that an optimum charging profile can 

significantly reduce the stress generation with very little or no compromise on the amount of 

charge stored. For the case in which pressure-induced diffusion is incorporated, the compromise 

in SOC stored is even smaller. Since the model that we have considered represents the most 

conservative (without PID) and most aggressive (with PID) cases, all of the Pareto efficiency 

curves derived by using different models should lie between the two Pareto optimality curves 

obtained. Table 4-3 shows values of the objective function (average mole fraction at the end of 

one hour) with corresponding values of bounds on the stress in both cases. From the table, it is 

clear that if we strictly follow the 30 MPa stress limit (which is the yield stress for a carbon-based 

electrode), the optimized profile can only give up to 0.456 average mole fraction (0.573 for the 

PID model).  
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Figure 4-7: Pareto efficiency of optimized charging current 

Relaxing this constraint to 40 MPa gives much better results (more that 99% of the maximum 

possible SOC for PID and more than 96.6% for without PID). If the constraints on the radial and 
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values grow significantly. 
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The optimal profile with constraints performed in this simulation suggest that, for more than 99% 

of the SOC in one hour, the 6th and 12th curves from the bottom in case of PID and without PID, 

respectively, are well suited. These curves correspond to 35 MPa (with PID) and 50 MPa (without 

PID) peak stress development in both cases. 

Figure 4-9 represents the optimized charging profiles for both cases. As the bounds are relaxed, 

the optimized charging current takes the shape of constant current followed by constant voltage 

profile (CC-CV) for both models. The optimized charging profile for the model with PID shows 

an interesting trend where the current values drop from the 2C rate and then again reaches the 2C 

rate. As explained earlier, the positive slope in the charging current is proportional to the pressure-

induced diffusion effect. Figure 4-11 shows the minimum tangential and maximum radial stress 

profiles for both cases. The dynamics of the minimum tangential stress and maximum radial stress 

will determine the active stress constraints with time. When PID is included, the tangential stress 

hits its extremum before the radial stress but the extremum attained by the radial stress has a higher 

magnitude than for the tangential stress (see Figure 4-10). When PID is not modeled, the tangential 

and radial stresses reach the same maximum magnitude but the tangential stress reaches the 

extremum faster. 

In the case of PID, it is clear from Figure 4-10 that tangential stress acts as an active constraint 

initially (until the dimensionless time goes to about 0.15, perfectly flat tangential stress values are 

observed in Figure 4-11) and later the radial stress governs the maximum possible value of the 

current (the flat portion of the stress in Figure 4-12 after the dimensionless time of about 0.15). In 

the case without PID, the tangential stress act as an active constraint for the entire time of charging 

(Figure 4-11). 
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Figure 4-8: SOC stored vs. time (arrows indicate relaxed stress constraints) 

   

Figure 4-9: Optimal charging profile (arrows indicate relaxed stress constraints) 

 

Figure 4-10: Maximum radial and negative of minimum tangential stress in both cases with constant charging current 
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Figure 4-11: Negative maximum tangential stress (arrows indicates relaxed stress constraints) 
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Figure 4-12: Maximum radial stress (arrow indicates relaxed stress constraints) 

Table 4-3: Bound on stress and values of objective function 

Sr. 

No. 

Bound on 

Stress 
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PID 

With 

PID 
 

Sr. 

No. 

Bound on 

Stress 

Without 

PID 
With PID 

1 22.5 0.344316 0.409451  10 45.0 0.591480 0.599635 

2 25.0 0.381707 0.462722  11 47.5 0.593965 0.599763 

3 27.5 0.419097 0.517975  12 50.0 0.595556 0.599839 
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7 37.5 0.565492 0.598041  16 70.0 0.599061 0.599965 

8 40.0 0.580106 0.598962  17 80.0 0.599310 0.599964 

9 42.5 0.587358 0.599406  18 85.0 0.599388 0.599964 
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estimation algorithms to be used for predicting these internal states. Future work includes 

developing semi-empirical laws based on observed states to mimic optimal profiles obtained 

through offline optimization or developing model predictive control schemes.90-92  

4.6 Conclusion and Future Directions 

The stress-strain effect (mechanical fracture) is a dominant mechanism in capacity fade, in 

particular for new high capacity materials like germanium and silicon. The need to have safe and 

smarter use of batteries requires us to incorporate capacity fade mechanisms so that appropriate 

charging strategies can be devised that can reduce capacity fade. Various models developed to 

quantify the effect of capacity fade due to mechanical stress-strain effects were reviewed. Two 

models were chosen that represent the extremes of the stress effect in this particular case. The most 

conservative (with PID) and most aggressive stress profiles (without PID) lead to different 

charging protocols and different Pareto efficiency curves. Since the chosen models represent the 

extremes of the available stress models, the Pareto efficiency curve derived by other models should 

lie between them. The optimal charging profile was derived for varying the limit of the peak 

allowable stress generated in the particle. It was found that the optimal charging profile in both 

cases were able to reduce the stress developed significantly with very little compromise on the 

charge stored. The compromise on the charge stored was lesser in the case when PID was modeled. 

The CPU time reported in this study also suggests that real-time control schemes can be developed 

that utilize sensors for pressure and strain measurement to arrive at improved charging schemes. 

The results reported in this chapter are based on a single particle model for mechanical-

electrochemical behavior without volume expansion. However, the method of deriving optimal 

profiles based on robust optimization approaches that can handle nonlinear state and path 
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constraints can be used to satisfy any relevant objective (e.g. minimizing capacity fade, efficient 

utilization of electrode) given a physically meaningful model that can quantify those effects. 

For example, possible extensions of the proposed approach include  

 SOC dependent diffusion coefficient: Use of diffusion coefficient varying with SOC has been 

reported in the literature93 which suggests around 2 orders of magnitude change with change 

in SOC. The model addressed here solves nonlinear spherical diffusion and hence can adapt 

to this change very easily. When diffusion coefficient exhibit strong dependency on SOC, 

additional number of node points or more efficient algorithms for spatial discretization may 

be needed.82 

 Volume expansion: To address significant volume expansion, SPM should be modified to 

accommodate moving boundaries. Such systems after spatial discretization results in an 

index-2 DAE system. Special numerical schemes are being studied to simulate these models 

efficiently.84 

 Porous Electrode: SPM needs to be integrated with pseudo 2D model in order to model the 

porous electrode and obtain non-uniform current distribution and reaction rate.94 This will 

then enable us to accommodate other capacity fade mechanisms (e.g. side reaction). 

 The changing properties (degradation) of the battery material with time make the electrode 

more vulnerable to mechanical failure. Use of degradation as an internal state which can be 

propagated in time will help improve the accuracy in predicting the health of a battery. 

Inclusion of different physical mechanisms to get close to real system requires more advances 

in modeling, simulation and optimization. Many researchers are pursuing dynamic 

optimization framework to derive smart operating protocols.50,95-98 Continued research in 

fundamental understanding of underlying physics (e.g. fracture, capacity fade, hot spot 
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formation), with parallel efforts in efficient simulation and reformulation of these detailed 

models will help define and solve a more realistic optimization problem to guide the way for 

model based designs for the next generation of energy storage devices.99 Note that, providing 

a robust software framework that can work for detailed nonlinear models is very difficult. 

This chapter provides a first step towards the same.  
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Chapter 5 

Optimal Charging using the SPM: Li-Plating  

 

No amount of experimentation can ever prove me right; a single experiment can prove me 

wrong. 

Albert Einstein 

 

5.1 Introduction 

A lithium-plating side reaction at the lithiated graphite (LiC6) anode leads to poor safety of the 

lithium-ion battery. Faster charging at normal temperature may lead to a plating side reaction 

during the end of charging at the anode-separator interface. At lower temperature, the lithium-

plating side reaction may become thermodynamically favorable during almost the entire charging 

period, even at low rates. This chapter presents an approach using an electrochemical engineering 

model and dynamic optimization framework to derive charging profiles to minimize lithium 

plating at low temperatures. Transport parameters for lithium-ion battery are very sensitive at low 

temperatures. This chapter shows the derivation of the optimal charging profile considering strict 

lower bounds on the plating reaction depending on various thermal insulation conditions 

(adiabatic, isothermal, and normal heat transfer coefficient) surrounding the battery. 

Lithium-plating side reaction not only causes capacity fade but also poses a significant safety 

issue.11 Though lithium-ion batteries are inherently safer than lithium-metal batteries, because the 

former avoids dendrite formation during charging, the slightly more positive potential of LiC6 

compared to Li/Li+ inherits the problem of lithium plating during charging11 at high rates13 and 
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even for low rates at low temperature. The driving force for the lithium-plating side reaction at the 

anode can be expressed by the overpotential:58 

 ,( , ) ( , )s

plating n e n sx t x t U      (5.1) 

Where plating  is the plating overpotential, ( , )s
n x t  is the solid-phase potential which is defined 

for the porous electrode, , ( , )e n x t  is the electrolyte-phase potential, sU  is the open-circuit potential 

for the plating reaction which is taken to be zero, and x is the distance across the electrode. The 

expression for plating  in (5.1) ignores the voltage drop across the solid-electrolyte interface (SEI) 

layer. The lithium-plating side reaction becomes feasible only when plating  is negative as the 

plating reaction is irreversible in nature. Detailed electrochemical engineering-based models 

incorporating concentrated solution theory and porous electrode theory that can simulate the 

potential distribution inside porous structures are available.27,94,100-102 

A single-particle model38,39 (SPM) is used to derive the optimal charging profiles. The SPM 

ignores the distribution of concentration and potential across the thicknesses of the electrodes and 

separator. At low temperature, plating  (the x dependency does not appear in the SPM) shifts down 

due to increased temperature-dependent transport resistance and may become negative even for 

the beginning of charging, which makes the battery vulnerable to lithium plating even at low 

charging rate for these temperatures.  

Section 2 discusses the SPM along with its equations and presents simulation results for charging 

a battery at low temperature (268 K). Section 3 discusses the optimal charging problem 
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formulation. The results and discussion are in Section 4 and the conclusions and future directions 

are in Section 5. 

5.2 Model Description 

Detailed models that incorporate electrochemical, transport, and thermodynamic processes along 

with the geometry of the underlying system can be used to monitor and control the internal states 

of a battery.27,94,100-102 Simplifications of these models have been proposed that preserve the 

important features of detailed models. The SPM assumes that the porous nature of the solid phase 

in the anode and cathode can be approximated by the dynamics of a single particle. The SPM also 

ignores the dynamics and variation of lithium-ion concentration in the electrolyte phase. 

 

Figure 5-1: Conceptual diagram of the plating side reaction. 

Figure 5-1 is a conceptual diagram of the plating side reaction in the SPM framework. Table 5-1 

shows the governing equations for the SPM,38,39 which models Fickian diffusion in the solid 

particle, where ( , )s
ic r t   is the solid-phase lithium concentration (i = n and p for anode and cathode 

respectively) which has radial and time dependence, V is the voltage across the battery, T is the 

temperature of the battery, and 
s
i  refers to the potential of the solid particles. The equation for 

the temperature is derived from the general energy balance. A simplified energy balance equation 

ignoring the reversible heat caused by the reaction entropy change is used in this study. These 

simplifications may lead to less accurate prediction of the variables at the cell level. The solid-
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phase diffusivities (Di) of both anode and cathode particles are assumed to follow an Arrhenius-

type relationship, as shown in Table 5-2, which also shows the additional expressions used in the 

SPM. A list of parameters and their values used in this chapter are in given in Table 5-3 and Table 

5-4. 

Table 5-1: Governing equations for the single-particle thermal model 

 Governing equation Boundary conditions
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Voltage ( )V t : (( )) ) (s s
p nt tV t    (5.4) 

Temperature: 

( )T t (Energy 

balance) 
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Table 5-2: Additional expressions used in the SPM 
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Solid phase 

diffusivity    ,ref refexp 1 1 , ,
s
iDs s

i i aD D E R T T i p n     (5.11) 

Reaction rate 

constant 
   ,ref refexp 1 1 , ,ik

i i ak k E R T T i p n     (5.12) 

Before considering an optimal control formulation, it is useful to evaluate the potential for lithium 

plating at low temperatures. Three different cases (isothermal, h = 25 W/m2-K and adiabatic) are 

considered to understand the internal state evolution during charging at 268 K. Figure 5-2 shows 

the simulation results (current, voltage, plating overpotential, and temperature profiles) with the 

SPM at three different heat transfer coefficients for a 1.5 C rate of constant current charging 

followed by constant potential charging (CC-CV). This type of charging is considered the 

traditional charging protocol. The time evolution of plating overpotential at room temperature 

follows similar trends but the values remains around 0.03 to 0.1 V at 2C rate with a normal heat 

transfer coefficient.13  

 

Figure 5-2: SPM simulation at different heat transfer coefficients with CC-CV at 1.5 C at 268 K. 
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For the adiabatic case, the battery temperature increases faster leading to reduced transport 

resistance (diffusion and kinetic), which will lead to a lower observed voltage across the battery 

during charging. The battery in this case is less vulnerable to the plating side reaction with the 

plating side reaction being feasible  ,( ) ( ) 0s s
n e nt t    only for small and intermediate times (see 

Figure 5-2, solid green curves). Isothermal charging (dashed black curves in Figure 5-2) is the 

worst-case scenario, with the plating reaction being feasible for a longer period of time. For a 

normal heat transfer coefficient (dotted red curves in Figure 5-2), the situation is in between the 

two cases (isothermal and adiabatic charging). In the next section, the optimal charging problem 

is formulated to obtain charging profiles that restrict the overpotential for plating at 0 V. 

5.3 Optimal Control Formulation 

This chapter considers the maximization of charge transferred in a limited time with constraints 

placed on current, voltage, and plating overpotential using the SPM. Previous efforts in this 

direction include the derivation of optimal charging profiles considering other capacity fade 

mechanics (side reaction during charging,50 thermal degradation,95 and intercalation-induced stress 

using SPM103). Numerous methods are available for solving constrained dynamic optimization 

problems, including (i) variational calculus, (ii) Pontryagin’s maximum principle, (iii) control 

vector iteration, (iv) control vector parameterization, and (v) simultaneous nonlinear 

programming.86-88 Control vector parameterization (CVP) and simultaneous nonlinear 

programming are commonly used strategies that employ nonlinear programming (NLP) solvers. 

IPOPT, which implements an interior point primal-dual method is used in this work.89 
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Consider the optimal charging profile with fixed final time (3300 s) and with the objective of 

maximizing stored charge. The optimal control problem of interest can be formulated as (in 

discretized version): 
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 (5.13) 

with Fk differential equation constraints, Gk algebraic equation constraints, N time discretizations, 

z differential states, y algebraic states, and an applied current of Ioverall(k). The differential state 

constraints include physically meaningful bounds on the solid-phase lithium concentration in the 

anode and cathode solid particle. Meaningful bounds are also provided for the algebraic states 

(e.g., 2.8 ( ) 4.1V k  , 0 ≤ ( )plating k ) and the control variable (0  Ioverall(k) Imax). 

5.4 Results and Discussion 

A fourth-order accurate finite difference method (third-order accurate at the boundaries) is used to 

discretize the diffusion equation in the solid particles in the radial direction to generate system of 

differential algebraic equations (DAEs). The discretized version of the partial differential equation 

(5.2) at the  th internal node point in the radial direction in the solid particles of the anode and 

cathode (  starts at 2) is 
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A similar discretization was performed to convert the PDE (2.2) to a set of ordinary differential 

equations (ODEs). These ODEs along with the equation for temperature (an ODE), voltage (an 

algebraic equation), and boundary conditions for the solid particles (algebraic equations) lead to a 

system of DAEs. The first-order Euler backward scheme was used to discretize the resulting 

system of DAEs into algebraic equations. The nonlinear program was solved using IPOPT.89 

Figure 5-3 shows the optimization results for Imax set to 1.5C. For isothermal charging (black 

dashed curves), the charging profile is mostly governed by the plating overpotential and overall 

voltage. During isothermal charging, the temperature-dependent transport parameters do not vary 

and the stored charge in a given time is lowest compared to the other cases where the transport 

resistance decreases. 

Charging in the adiabatic and normal cases (heat transfer coefficient = 25 W/m2-K) show very 

interesting profiles. In both cases, the charging profiles are controlled by different active 

constraints at different times. The optimal charging current consists of five segments, each being 

governed/ controlled by an active constraint. Initially, the maximum charging current (Imax) acts 

as the active constraints for a very small time followed by the plating overpotential ( plating ) 

constraint. Later, the dynamics of ,( ) ( )s s
n e nt t   play a significant role in determining the shape of 

the optimal charging profile. As plating  recovers  ,( ) ( ) 0s s
n e nt t   , the current takes the 
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maximum value followed by plating  becoming the active constraint. The end of charging is then 

controlled by the voltage drop (V) across of the battery. 

 

Figure 5-3: Optimization results at 268 K at Imax = 1.5C with minimum bound on plating (SOC refers to state of 

charge). 

The optimal charging profiles for different values of Imax can be generated in a similar fashion. As 

can be seen from Figure 5-4 for Imax = 1C, the charge stored or state of charge (SOC) in adiabatic 

charging is significantly higher compared to other cases. In the case of adiabatic charging, 

,( ) ( )s s
n e nt t   remains positive throughout charging, hence plating  never becomes an active 

constraint, which gives rise to the traditional CC-CV charging profile (green solid curves in Figure 

5-4). For a normal heat transfer coefficient and isothermal charging, plating  becomes the active 

path constraint during the charging process. 
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It is clear from the two cases that, at lower temperature, even the 1C rate of CC-CV charging is 

not the best charging protocol when plating  is considered. The dynamics of plating  dominates the 

charging profile and hence model-based optimal charging profiles are advised when charging 

batteries at lower temperatures. Use of electrochemical engineering model-based charging profiles 

requires robust estimation of transport parameters and their temperature dependence. 

 

Figure 5-4: Optimization results at 268 K at Imax = 1C with minimum bound on 
plating . 

These optimization studies performed using the SPM may not be very accurate at lower 

temperature. Use of a porous pseudo-two dimensional (P2D) model will be pursued for identifying 

the charging protocol because of the expected non-uniform current density. 

5.5 Conclusions 

This chapter addresses lithium plating during charging at low temperature, which is closely related 

to the safe operation of a lithium-ion battery. A single-particle model, which makes significant 
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simplification in transport processes, is used with a general energy balance equation with 

additional simplification. Although this model has some limits on its applicability for prediction 

of the internal variables when used at the cell level, the optimal control problem formulated here 

places a lower bound on plating  in addition to voltage and current bounds. The dynamic 

optimization framework is used to quickly predict the optimal charging profiles for different 

environmental conditions and bounds. Accurate prediction as well as a P2D model for modeling 

spatial variation of plating  can be used to further refine the charging protocol, which will be 

performed in the future. The proposed framework offers an alternative of calculating real-time 

optimal charging profiles, provided that temperature-dependent transport parameters are known. 

Table 5-3: List of parameters and values 

 Cathodea Separatora Anodea Units 

cross

i

i

a

A l  354000  144720 m2/m3 

,max
s
ic  51554  30555 mol/m3 

,0
s
ic  48976.3  3208.27 mol/m3 

 ce 1000 mol/m3 

 Cp 823 J/kg-K 

,ref
s
iD  1×10−14  3.9×10−14 m2/s 

s
iD

aE  29000 b  35000 b J/mol 

i
a
k

E  58000 b  20000 b J/mol 

 F
 

96487 C/mol 

,0ik
 

2.33×10−11  5×10−10 m2.5/(mol0.5s) 

 li 
80×10−6 25×10−6 88×10−6 m 

 m 44×10−3 kg 

,p iR

 

5×10−6 b  10×10−6 b m 

 R 8.314 J/mol-K 

 Tref 298.15 K 

,f i

 

0.025  0.0326  
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i  0.385 0.724 0.485  

HThA  0.02 W/K 

a Unless otherwise noted, all parameters used for the electrodes and separator are from Subramanian et al.53 
b Assumed value 

 

 

Table 5-4: List of variables 

ai 
Total surface area of electrode (m2)  N Time discretizations 

s
ic  Solid-phase concentration  NTotal Total intercalated lithium 

,max
s
ic  Maximum solid-phase concentration  NPlating Lithium lost in the plating reaction 

,0
s
ic  Initial solid-phase concentration   Overpotential  

 ce electrolyte concentration 
s
i  Solid-phase potential 

 Cp Heat capacity ,e i  Electrolyte-phase potential 

,ref
s
iD  Solid-phase diffusivity ,p iR

 

Particle radius 

s
iD

aE  Activation energy for diffusivities  R Gas constant 

i
a
k

E  Activation energy for the reaction rate  Rcell 
Effective resistance of the 

electrolyte 

 F
 

Faraday’s constant  R Radial coordinate 

Ioverall Current (A) ref amb,  T T  Reference and ambient temperature 

,refik
 

Reference reaction rate constant  U Open-circuit potential 

 k Discretization index in time domain ,f i  Filler fraction 

   Discretization index in radial direction i  Porosity 

 li 
Region thickness crossA  

Cross-sectional area of the 

electrode 

 m Total mass of the battery HThA  Heat transfer coefficient × area 
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Chapter 6 

Optimal Charging using the P2D Model: 

Intercalation Induced Stresses  

 

If I have been able to see further, it was only because I stood on the shoulders of giants 

Isaac Newton 

 

6.1 Introduction 

This chapter illustrates the application of dynamic optimization in obtaining the optimal current 

profile for charging a lithium-ion battery by restricting the intercalation-induced stresses to a pre-

determined limit estimated using a pseudo two-dimensional (P2D) model. This chapter focuses on 

the problem of maximizing the charge stored in a given time while restricting capacity fade due to 

intercalation-induced stress. Conventional charging profiles for lithium-ion batteries (e.g., 

constant current followed by constant voltage or CC-CV) are not derived by considering capacity 

fade mechanisms, which are not only inefficient in terms of lifetime usage of the batteries but are 

also slower by not taking into account the changing dynamics of the system.  

The use of physically meaningful models in deriving these strategies has received attention. 

Methekar et al.98 looked at the problem of energy maximization for a set time with constraints on 

voltage using Control Vector Parametrization (CVP). Klein et al.49 considered the minimum-time 

charging problem while including constraints on temperature rise and side reactions. Rahimian et 

al.50 calculated the optimal charging current as a function of cycle number for a lithium-ion battery 

experiencing capacity fade using a single-particle model (SPM).38 Hoke et al.97 used a lithium-ion 

battery lifetime model to reduce battery degradation in a variable electricity cost environment 
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using the SPM. Previous efforts included the derivation of optimal charging profiles considering 

various phenomena that account for capacity fade separately (plating overpotential at the anode,5 

side reaction during charging,6 thermal degradation,95 intercalation-induced stress using SPM,103 

etc.). Fracture of solid electrode particles due to intercalation induced stresses is one of the 

dominant capacity fade mechanics which affect the battery capacity in two ways80: (1) It leads to 

loss of solid phase due to isolation from the electronically conducting matrix of electrode. (2) It 

also increases the surface area, which lead to SEI layer formation at the newly exposed area 

resulting in capacity fade. In addition, past efforts to minimize capacity fade using SEI layer or 

other mechanisms are reported elsewhere.13,50 Work done in Suthar et al.103 used the single-particle 

representation for a porous electrode to derive an optimal charging profile considering 

intercalation-induced stresses. This chapter extends that work for higher charge/discharge rates by 

determining optimal charging profiles using the isothermal pseudo 2-dimensional model with 

stress-strain effect.  

Section 2 gives a brief introduction to the pseudo two-dimensional (P2D) model and model 

reformulation. Section 3 describes the stress-related problems associated with high rate charging. 

The optimal control problem is formulated in Section 4. Section 5 discusses two scenarios of 

optimal charging profiles derived by placing constraints on the stresses developed. Section 6 

presents conclusions and future directions. 

6.2 Model Description 

Detailed models that incorporate electrochemical, transport, and thermodynamic processes along 

with the geometry of the underlying system can be used to monitor and control the internal states 

of a battery.27,94,100-102 The isothermal porous electrode P2D model is one such model which is 

given in Table 6-1. Various expressions used in the model are presented in Table 6-2. 
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Table 6-1: Governing PDEs for the P2D model 

Governing Equations Boundary Conditions

 

 

Positive Electrode 

 p eff,p p pε 1  
c c

D a t j
t x x



   
      

 
eff,p eff,s

0

0 , 

p px x l x l

c c c
D D

x x x   

  
   

  
 (6.1) 

 

1
,

eff,p2
eff,p

2κ ln
κ 1

eff p
x

RT c
t I

x F x









 

   
 

 

2

0

2 2
eff,p eff,s

0, 

p p

x

x l x l

x

x x
 

 



 






 


 
 

(6.2) 

1
eff,p p pa Fj

x x


  
   

 1 1
,

0

,  0  

p

eff p
x x l

I
x x


 

 
  

 
 (6.3) 

2

2

1
 

s s
p ps

p

c c
r D

t r rr

  
  

    

 

0

0,  

P

s s
p ps

p p

r r R

c c
D j

r r
 

 
  

 
 (6.4) 
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Table 6-2: Additional expressions used in the P2D model 
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These electrochemical models tend to be computationally expensive, which has prohibited their 

use in the control and monitoring of internal states in real time. Several simplified/reduced 

electrochemical models have been proposed and control-relevant studies performed to try to 

address these issues.43-48 Efforts in optimal control and nonlinear model predictive control, 

incorporating a SPM and other reduced order models have been published.49,50 A mathematical 

reformulation method51-54 gives rise to a computationally efficient model that can be solved in 

milliseconds without compromising on accuracy. These reformulation techniques consist of 

spectral methods (specifically orthogonal collocation) where, depending on number of collocation 
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points in the anode, separator, and cathode, models can be generated with varying degree of 

accuracy. The model used in the present study is derived using the reformulation methodology 

outlined in Northrop et al.51 with a change in basis (trial) functions in order to achieve better 

convergence properties at higher charging/discharging rates of battery operations. The change of 

trial functions to Chebyshev form provides more robustness albeit at a slightly more cost. This 

study uses a reformulated model derived based on Chebyshev polynomials104 as trial functions 

with 4 collocation points in both the anode and cathode, 2 collocation points in the separator, and 

4 collocation points in the radial direction inside the solid particles (see Figure 6-1).  

 

Figure 6-1: Collocation points across the electrodes (zeroes of Chebyshev-Gauss-Lobatto (CGL) polynomials, 

locations (approximate) in anode and cathode: 0.038, 0.309, 0.691, 0.962 and in separator: 0.146, 0.853). 

The resulting system of equations, along with equations to represent radial and tangential stresses 

in solid particles of the anode, consists of 88 differential algebraic equations (DAEs). This system 

of DAEs is developed by discretizing the spatial derivatives using orthogonal collocation to ensure 

the time remains as the only independent variable. This allows for optimized time stepping 

algorithms to be used and results in 50 ordinary differential equations (ODEs) and 38 algebraic 

equations. Variables involved in the current study are summarized in Table 6-3. These variables 

(other than peak radial and peak tangential stresses) also act as coefficients of the polynomials that 

express the profiles across x and radial directions. 

 

Cathode Separator Anode

P1 P2 P3 P4

Pi
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Table 6-3: Summary of variables involved in this present study (Pi refers to separator-anode interface) 

Variable Collocation points No. of 

Equations ODE Anode Separator Cathode Radial 

Solid Phase concentration 4 N/A 4 4 32 

Average solid phase 

concentration 
4 N/A 4 N/A 8 

Electrolyte concentration 4 2 4 N/A 10 

Algebraic      

Voltage across battery     1 

Electrolyte potential 4 2 4  10 

Solid phase potential 4 N/A 4  8 

Local pore wall flux 4 N/A 4  8 

Radial stress 4+1(Pi)    5 

Tangential stress 4+1(Pi)    5 

Plating overpotential 1 (Pi)    1 

Total Equations     88 

 

Various models, varying in their sophistication, have been proposed to quantify the intercalation-

induced stresses in the solid particles. These models are divided in two categories: stress 

splitting31,32 and strain splitting.33-35 In this chapter, a model presented by Cheng and Verbrugge33 

is used. This stress model does not incorporate a moving boundary formulation and ignores 

thermodynamic factors and pressure-induced diffusion. These simplifications restrict its use to 

materials with very low volumetric expansion. The resulting equations describing radial stress (

r ) and tangential stress ( t ) generated in spherical particles are given in Table 6-4. The tensile 

stress is taken as positive and compressive stress is taken as negative.  

Table 6-4: Governing equations for intercalation-induced stress 
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 
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Here n  is the partial molar volume of the solute, nE  is the Young’s modulus, and n  is the 

Poisson’s ratio. Parameters values used in this study are listed in Table 6-5. 

Table 6-5: List of parameters 

Symbol Parameter 
Positive 

Electrodea Separatora Negative 

Electrodea Units 

ai
 Particle Surface Area to 

Volume 
354000  144720 m2/m3 

Brugg Bruggeman Coefficient 1.5 b 1.5 b 1.5 b  

,max
s
ic  

Maximum solid phase 

concentration 
51554  30555 mol/m3 

,0
s
ic  

Initial solid phase 

concentration 
48976.3  3208.3 mol/m3 

0c  
Initial electrolyte 

concentration 
1000 1000 1000 mol/m3 

D  Electrolyte diffusivity 7.5×10−10 7.5×10−10 7.5×10−10 m2/s 

s
iD  Solid Phase Diffusivity 1×10−14  3.9×10−14 m2/s 

F  Faraday’s Constant  96487  C/mol 

ik  Reaction Rate constant 2.33×10−11  5×10−10 
m2.5/(mol0.5 

s) 

il  
Region thickness 80×10-6 25×10-6 88×10-6 m 

,p iR

 

Particle Radius 5×10-6 b  10×10-6 b m 

R  Gas Constant  8.314  J/mol/ K 

refT  Temperature  298.15  K 

t

 

Transference number  0.364   

,f i

 

Filler fraction 0.025  0.0326  

i  Porosity 0.385 0.724 0.485  

i  
Solid phase electronic 

conductivity 
59  48.24 S/m 

  Partial molar volume 4.0815×10-6 c   m3/mol 

E  Young’s modulus 15×109 d   Pa 

  Poisson’s ratio 0.3 d    

 
a Unless otherwise noted, all parameters used for the electrodes and separator are from Subramanian et al.53 
b Assumed value 
c Values obtained from Renganathan et al.35 
d Values obtained from Christensen et al.80 
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6.3 Stress-related Problems with High Charging Rate 

Factors that may cause capacity fade include thermal degradation, side reactions (lithium plating, 

etc.), and mechanical degradation due to intercalation-induced stresses. This chapter focuses on 

addressing the capacity fade associated with high anode stresses. Simulation results (voltage, 

current and radial and tangential stresses) of CC-CV charging with three different maximum 

charging rates (2C, 3C and 4C) are plotted in Figures 6-2, 6-3 and 6-4.  

 

Figure 6-2: Voltage and current profiles during CC-CV charging with different C rate. 

 

Figure 6-3: Radial stresses (tensile) at the center of the particles at the separator anode interface (Pi) and 4 collocation 

points are plotted for CC-CV charging at 2C, 3C, and 4C. 
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During intercalation, for the materials with positive volume expansion, radial stresses remain 

tensile throughout a particle (assuming zero external pressure at the surface) whereas tangential 

stress becomes compressive at the surface and tensile at the center. The peak (tensile) radial stress 

occurs at the center of the particle and peak (compressive) tangential stress occurs at the surface 

of the particle,32 hence peak (tensile) radial stresses at the center of the particles and peak 

(compressive) tangential stresses at the surface of the particles are monitored and controlled. As 

shown by Christensen and Newman32 and also clear from the formulas given in Table 6-4 that the 

peak (tensile) tangential stresses and the peak (tensile) radial stresses are same at the center of the 

particles, hence controlling and monitoring one of them will be sufficient. Figure 6-2 shows the 

voltage and current profile for CC-CV charging with three different maximum currents. 

 

Figure 6-4: Tangential stresses (compressive) at the surface of the particles at the separator-anode interface (Pi) and 

4 collocation points are plotted CC-CV charging at 2C, 3C, and 4C. 
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collocation points). Peak tangential stress at the surface of the particle has a compressive nature 

(the negative of tangential stress is plotted). Figure 6-4 shows the peak (compressive) tangential 

stresses at the surface of the particles in three different CC-CV protocols at different points in the 

anode (separator-anode interface and 4 collocation points). 

The stress profiles predicted using the P2D model differs significantly from the stress profiles 

predicted using a SPM. For the set of parameters used in the current study, the separator-anode 

interface achieves maximum current density at the beginning of charging. Figure 6-5 shows the 

distribution of pore wall flux across the anode at different points in time during CC-CV charging 

with maximum current of 2C. As charging proceeds, the intake from at the separator-anode 

interface reduces and other parts of the anode start to contribute more. This decrease in flux gives 

rise to relaxation of stress at the anode-separator interface at a later time. This relaxation is due to 

a decrease in the pore wall flux and not due to pressure-induced diffusion.  

 

Figure 6-5: Pore wall flux for CC-CV charging with 2C. The separator-anode interface is at 0 on the horizontal axis. 
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It is clear from the above simulation that the peak radial stresses at the center of the particles and 

peak tangential stresses at the surface of the particles goes through extrema in time. The extremum 

values of these stresses occur at the anode-separator interface. This study focuses on restricting the 

extremum value of peak radial stresses and tangential stresses. Also, the tangential stresses at the 

surface of the particle show faster dynamics compared to radial stresses at the center. 

6.4 Problem Formulation 

This chapter focuses on the maximization of charge transferred in a limited time with constraints 

placed on current, voltage, and stresses predicted with the reformulated P2D model. Numerous 

methods are available for solving constrained dynamic optimization problems, including (i) 

variational calculus, (ii) Pontryagin’s maximum principle, (iii) control vector iteration, (iv) control 

vector parameterization, and (v) simultaneous nonlinear programming.86-88 Control vector 

parameterization (CVP) and simultaneous nonlinear programming are commonly used strategies 

that employ nonlinear programming (NLP) solvers. This study uses the simultaneous nonlinear 

programming approach. 

Consider the optimal charging profile with fixed final time under the objective of maximization of 

the charge stored ( Q ). The optimal control problem of interest can be formulated as:  

 
( ) 0

max ( )

f

app

t

app
i t

Q i t dt   (6.21) 

subject to:    

 PDE model,  BCs,  and ICs  (6.22) 
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x r t

 
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 



 

 

 (6.23) 

Where iapp is the applied current (A), ft  is the final time (s), ( )V t  is voltage across the battery (V), 

( , , )r x r t  and ( , , )t x r t  are radial and tangential stresses (dimensionless), and 
max
r  and 

max
t  

are restrictions on the extremum stress. Using mathematical reformulation techniques, the PDE 

model is converted to a system of DAEs which is then converted to a system of nonlinear algebraic 

equations by performing temporal discretization. An Euler backward discretization scheme is used 

to convert the reformulated P2D model into a system of nonlinear algebraic equations. Moreover, 

bounds on only the peak radial stresses at the center and peak tangential stresses at the surface of 

the particles are placed. The discretized form of this problem statement takes the form 

 
( )

1

1
max ( )
app

n

app
i k

k

Q i k
n 

   (6.24) 

such that: 

  ( 1), ( ), ( ), ( ) 0k appF z k z k y k i k   (6.25) 

  ( ), ( ), ( ) 0k appG z k y k i k   (6.26) 

 0initial conditions:  ( 1)z k z   (6.27) 
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( )

( )

( )

appliedi i k i

y y k y

z z k z

 

 

 

 (6.28) 

where Fk represents differential equation constraints, Gk represents algebraic equation constraints, 

N represents the number of discretization points in time, z represents differential states, and y 

represents algebraic states with an applied current of iapp. The differential state constraints include 

physically meaningful bounds on the solid-phase lithium.  

In simultaneous nonlinear programming,86-88 both the control variables and state variables are 

discretized, which results in a large set of nonlinear equations to be solved simultaneously for 

obtaining the optimum profile. 150 steps are used for time discretization resulting in a nonlinear 

system of  13200 88 150 equations. The nonlinear program was solved using the nonlinear 

programming solver IPOPT.89 

6.5 Results and Discussion 

In this study, different upper bounds on the radial and lower bounds on tangential stresses are 

placed and optimal charging profiles are derived. As mentioned before, during charging, the peak 

(compressive) tangential stress occurs at the surface of the particle and peak (tensile) radial stress 

occurs at the center of the particle. For graphite-based anode material, the fracture threshold for 

the tensile stress is much lower compared to compressive stress.80 Two scenarios are considered: 

(1) charging a fully discharged (0% SOC) battery for 1800 s, (2) charging a half-discharged (50% 

SOC) battery for 900 s. 
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6.5.1 Charging a Fully Discharged Battery for 1800 s 

Figure 6-2 shows the voltage and current profiles of charging a fully discharged battery for 1800 

s using CC-CV with three different maximum charging rates. Figure 6-3 shows the peak radial 

stress in three cases of CC-CV where the maximum values attained by peak radial stresses 

(dimensionless) are 0.24, 0.199, and 0.146 (4C, 3C, and 2C respectively).  

Two cases are considered initially. In Case 1, the upper bound on peak (tensile) radial stresses (at 

anode-separator interface and 4 collocation points) is restricted to the maximum value of the peak 

radial stresses obtained during CC-CV charging with 3C (
max
r = 0.199). Similarly, Case 2 

corresponds to maximum value of peak radial stresses in case of CC-CV charging with 2C (
max
r

= 0.146). Figure 6-6 shows the results of optimal charging problem. The green (dash dot) curve 

represents optimal charging profile and voltage for Case 1 and the blue (dash) curve represents 

Case 2.  

 

Figure 6-6: Optimal charging profiles and corresponding cell voltage for Cases 1 and 2 (upper bounds on peak radial 

stresses corresponds to CC-CV with 3C and 2C). 
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Figure 6-7: Peak radial stresses corresponding to optimal charging profiles for Cases 1 and 2 (Scenario 1). 

 

Figure 6-8: Peak tangential stresses corresponding to optimal charging profiles for Cases 1 and 2 (Scenario 1). 

The optimal charging profiles derived for Cases 1 and 2 compromise very little on the charge 

stored compared to CC-CV with 4C but provide stress profiles that are as good as CC-CV with 3C 
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the anode. Due to the faster dynamics of the tangential stresses, the maximum peak tangential 

stresses near the anode-separator interface do not see much decrease in the new charging profiles 

(see Figure 6-8). 

 

Figure 6-9: Optimal charging profiles and corresponding cell voltage for Cases 3 and 4 (Scenario 1). 

 

Figure 6-10: Peak tangential stresses corresponding to optimal charging profiles for Cases 3 and 4 (Scenario 1). 

Since the fracture threshold can vary between materials, it may be important to put bounds on the 

peak (compressive) tangential stresses for some materials. Additional bounds can be placed on 

peak (compressive) tangential stresses and optimal charging profiles can be derived. The minimum 

values attained by peak tangential stresses at the surface of the particles during charging with CC-

0 500 1000 1500
3.7

3.8

3.9

4

4.1

4.2

Time (Sec)

V
o

lt
a
g

e
 (

V
)

 

 

Case 3

Case 4

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (Sec)

C
u

rr
e
n

t 
(C

 r
a
te

)

 

 

Case 3

Case 4

0 500 1000 1500
0

0.05

0.1

0.15

0.2

0.25

Time (Sec)

- 
D

im
e
n

s
io

n
le

s
s
 t

a
n

g
e
n

ti
a
l 
s
tr

e
s
s

Case 3

 

 

0 500 1000 1500
0

0.05

0.1

0.15

0.2

0.25

Time (Sec)

- 
D

im
e
n

s
io

n
le

s
s
 t

a
n

g
e
n

ti
a
l 
s
tr

e
s
s

Case 4

 

 

P
i

P
1

P
2

P
3

P
4



128 

 

CV at 4C, 3C, and 2C are −0.296, −0.234, and −0.16 (dimensionless), respectively (see Figure 

6-3). Cases 3 and 4 (considered below) have upper bounds on peak radial stress and lower bound 

on peak tangential stress that corresponds to extreme values of stresses during CC-CV at 3C (

max
r = 0.199, 

max 0.234t  ) and 2C (
max
r = 0.146, 

max 0.16t  ) respectively. Figure 6-9 shows 

the optimal charging profiles for Cases 3 and 4. The specific shape of the optimal charging profile 

is created because different constraints become active at different points in time during the 

charging: maximum current followed by tangential stresses, followed by radial stresses, and finally 

maximum voltage.  

 

Figure 6-11: Peak radial stresses corresponding to optimal charging profiles for Cases 3 and 4 (Scenario 1). 
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The results are summarized in Table 6-6 based on charge stored during CC-CV at 4C. The 
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degradation). Moreover, the percentage of SOC compromise strongly depends on the final time 

chosen for optimization scheme.  

Table 6-6: Summary of results for Scenario 1 

Cases 
Maximum peak 

radial stress 

Minimum peak 

tangential stress 

Charge stored (compared 

to CC-CV at 4C) 

 

CC-CV (4C) 

 

0.24 

 

−0.296 

 

- 

Case 1 0.199 - 99.73% 

Case 3 0.199 −0.234 99.61% 

CC-CV (3C) 0.199 −0.234 99.00% 

Case 2 0.146 - 98.65% 

Case 4 0.146 −0.16 98.34% 

CC-CV (2C) 0.146 −0.16 94.55% 

 

6.5.2 Charging a Battery at Different SOC 

In this scenario, optimal charging of a half-discharged battery is considered for 900 s. CC-CV 

charging with three different rates (2C, 3C, and 4C) results in different voltage, current, and stress 

profiles. Simulation results of CC-CV charging with different charging current are plotted in 

Figure 6-12 (voltage and current), Figure 6-13 (peak radial stresses), and Figure 6-14 (peak 

tangential stresses). 

Similar to the previous scenario, four cases are considered here: 

1. 
max 0.1452r   (corresponds to maximum peak radial stress of CC-CV with 3C) 

2. 
max 0.109r   (corresponds to maximum peak radial stress of CC-CV with 2C) 
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3. 
max 0.1452r  , 

max 0.173t  (corresponds to maximum peak radial and tangential stress of 

CC-CV with 3C) 

4. 
max 0.109r  , 

max 0.123t  (corresponds to maximum peak radial and tangential stress of 

CC-CV with 2C) 

 

Figure 6-12: Voltage and current profiles during CC-CV charging with different C rate. 

 

Figure 6-13: Radial stresses (tensile) at the center of the particles at the separator-anode interface (Pi) and 4 collocation 

points are plotted for CC-CV charging at 2C, 3C, and 4C. 
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Figure 6-14: Tangential stresses (compressive) at the surface of the particles at the separator-anode interface (Pi) and 

4 collocation points are plotted CC-CV charging at 2C, 3C, and 4C. 

The optimal charging profile for Cases 1 and 2 are plotted in Figure 6-15, which restricts the peak 

(tensile) radial stresses that develop in the anode.  

 

Figure 6-15: Optimal charging profiles and corresponding cell voltage for Cases 1 and 2 (Scenario 2). 
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plotted in Figure 6-18 and corresponding peak radial and tangential stresses are plotted in Figures 

6-19 and 6-20. Table 6-7 summarizes the results associated with Scenario 2 which again suggest 

that a very small compromise on the SOC stored can yield improved charging profiles. 

 

Figure 6-16: Peak radial stresses corresponding to optimal charging profiles for Cases 1 and 2 (Scenario 2). 

 

Figure 6-17: Peak tangential stresses corresponding to optimal charging profiles for Cases 1 and 2 (Scenario 2). 
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Figure 6-18: Optimal charging profiles and corresponding cell voltage for Cases 3 and 4 (Scenario 2). 

 

Figure 6-19: Peak tangential stresses corresponding to optimal charging profiles for Cases 3 and 4 (Scenario 2). 

 

Figure 6-20: Peak radial stresses corresponding to optimal charging profiles for Cases 3 and 4 (Scenario 2). 
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Table 6-7: Summary of results for Scenario 2 

Cases 
Maximum peak 

radial stress 

Minimum peak 

tangential stress 

Charge stored (compared to 

CC-CV at 4C) 

CC-CV (4C) 0.153 −0.215 - 

Case 1 0.145 - 99.73% 

Case 3 0.145 −0.173 99.21% 

CC-CV (3C) 0.145 −0.173 99.0% 

Case 2 0.109 - 97.3% 

Case 4 0.109 −0.123 95.8% 

CC-CV (2C) 0.109 −0.123 94.8% 

6.6 Conclusions and Future Directions 

This chapter shows the use of a dynamic optimization framework to derive optimal charging 

profiles using a reformulated P2D model considering intercalation-induced stresses. It is very clear 

from the analysis that the local pore wall flux varies significantly from the average current density, 

hence a P2D model is necessary to correctly capture the peak radial and tangential stresses. Since 

the anode-separator interface faces more stress compared to the rest of the anode (see Figure 6-5), 

smarter charging profiles can be derived which can reduce the mechanical damage due to stress. 

It should be noted here that single particle model accounts for the average behavior and hence 

gives lower values for intercalation-induced stresses (Chapter 4).  

A limitation of this study is its use of an isothermal model. A thermal model may be used to 

broaden the scope of this work. It should be noted that the nonlinear thermal dependencies of 

material properties make the optimization problem more difficult to solve. Moreover, at higher 

rates, for certain chemistries and parameter values, the plating side reaction becomes possible near 

the anode-separator interface which can also be handled using a dynamic optimization 

framework.13 The model used to represent intercalation induced stresses in this study is applicable 
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only for materials with small volumetric expansion (up to 10%) and ignores any thermodynamic 

factor. Efforts will be made in the future to incorporate additional capacity fade mechanics 

(thermal degradation, plating side reaction, etc.) into a single optimization framework and to use 

better models to describe intercalation-induced stresses. Use of a reformulated P2D model can also 

help place physically meaningful voltage constraints. In this study, 4.15 V is chosen as the upper 

bound for voltage, which can be replaced by some meaningful constraints that minimizes side 

reactions and electrolyte decomposition. 

List of Variables and Parameters 

a   Surface area per volume of electrode 

Brugg Bruggeman Coefficient 

c Electrolyte concentration 

sc   Solid Phase Concentration 

D  Electrolyte phase Diffusion coefficient 

effD   Effective Diffusion coefficient 

sD   Solid phase diffusion coefficient 

E Young’s modulus 

F
 

Faraday’s Constant 

I
 

Applied Current 

j
 

Pore wall flux 

k
 

Reaction rate constant 

l
 

Length of region 

pR  

 

Particle Radius 

R  Gas Constant 

refT   Reference Temperature 

t  
 

Transference number 

T Temperature 

U
 

Open Circuit Potential 

   Poisson’s ratio 


  

Porosity 

f   
Filling fraction 

  
 

State of Charge 


  

Liquid phase conductivity 
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
  

Solid Phase Conductivity 

1
 

Solid Phase Potential 

2
 

Liquid Phase Potential 

  Partial molar volume 

nx  
solid phase concentration in anode particle /Maximum solid phase concentration in 

anode (
s

nc / ,max

s

nc ) 

   
Scaled radial distance in anode particle ,( / )p nr R  

 

List of Subscripts 

eff Effective, as for diffusivity or conductivity 

n Related to the negative electrode—the anode 

P Related to the positive electrode—the cathode 

S Related to the separator 

 

List of Superscripts 

s
 

Related to Solid Phase 

/   Pertains to the boundary conditions from right and left side of the interface (e.g. 

pL
, pL

, etc.) 
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Chapter 7 

Effect of Porosity, Thickness and Tortuosity 

on Capacity Fade of Anode  

 

The fewer moving parts, the better. Exactly. No truer words were ever spoken in the 

context of engineering. 

Christian Cantrell 

 

7.1 Introduction 

The graphite anode in lithium-ion batteries is vulnerable to capacity fade due to several 

mechanisms. Advancement in understanding of such capacity fade mechanisms has paved the way 

for selecting design parameters that consider these effects. Present chapter shows the effect of 

porosity, thickness, and tortuosity of the anode on capacity fade mechanisms. Three main capacity 

fade mechanisms are analyzed in this chapter: (1) solid electrolyte interface (SEI) side reaction, 

(2) lithium plating side reaction and (3) mechanical degradation due to intercalation induced 

stresses. Moreover, for a given thickness and porosity of anode, the effect of porosity variation on 

capacity fade mechanisms is also presented. 

Research on various fronts is underway to address the issues mentioned above. While finding 

better materials and improving their properties is one approach, the use of system level approach 

to reach better efficiency in existing and emerging systems is another approach. The true potential 

of battery materials cannot be realized due to system level inefficiencies, especially where 

transport effects become limiting (e.g. higher rates of charging/discharging at normal temperature 

or low temperatures operations). 
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One of the many problems that can be addressed by continuum level modeling approaches is 

finding the thicknesses and porosities of anode and cathode materials while keeping various 

processes and objectives in mind. These objectives may be discharge capacities at higher rates, 

charging time, mechanical degradation due to intercalation induced stresses, loss of active lithium 

due to parasitic side reaction (SEI layer and lithium plating), safety, etc. While one would like to 

maximize energy density by packing the solid phase material compactly with larger thickness; rate 

capacity, safety and capacity fade may cause such an approach to be impractical.  

How should one choose the porosity and length of anode and cathode is an interesting research 

problem. Design optimization (porosity and thickness) for lithium-ion battery can be traced back 

to the work done by Prof. Newman using the reaction zone model105 and with the pseudo two 

dimensional model.94 Work on determining the optimal porosity distribution by considering the 

ohmic drop has been done by Ramadesigan et al.106 Effect of low temperature and porosity on the 

performance of lithium-ion batteries is also studied by Ji et al.107 While these works are based on 

maximizing the energy/power density of lithium-ion batteries by choosing optimal design 

parameters, no work has been done in quantifying the effect of design parameters on capacity fade 

mechanisms. With the advances made in understanding capacity fade reactions and intercalation 

induced stresses in intercalation materials, proper treatment can be given in selection of the 

porosity and the thicknesses of electrode materials based on detailed electrochemical engineering 

models augmented with capacity fade mechanisms. 

One of the practical problems that can be addressed by continuum level models can be summarized 

in a question: “How should one choose the design parameters (thicknesses, porosities, area etc) 

so that high rate capacity and energy density can be achieved considering the effect of capacity 

fade mechanisms?” Although this is a problem of practical importance, the large number of design 
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parameters prevent a full understanding to be developed here. Rather, we choose a simpler problem 

of selecting the porosity and thickness of the anode and their effect on capacity fade mechanisms, 

while maintaining all other parameters constant.  

Section 2 briefly introduces the continuum level model used to simulate battery charge/discharge 

behavior and explains intercalation induced stress and overpotentials for parasitic side reactions. 

Section 3 describes the problem statement of selecting design parameters for improved battery 

design. Section 4 discusses simulation results which highlight the effect of porosity and length of 

the anode as well as porosity variation in anode on capacity fade and cell capacities, followed by 

conclusion. 

7.2 Model description 

Detailed models that incorporate electrochemical, transport, and thermodynamic processes along 

with the geometry of the underlying system can be used to monitor and control the internal states 

of a battery.27 The isothermal porous electrode pseudo-two dimensional (P2D) model is one such 

model which is given in Table 6-1.  

Table 6-2 presents various expressions used in this model. The P2D model is general enough to 

incorporate various capacity fade mechanisms. This chapter focuses on three main sources of 

capacity fade and safety issues in batteries: intercalation induced stresses, SEI layer side reaction 

and lithium plating side reaction. 
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Table 7-1: Governing PDEs for the P2D model 

Governing Equations Boundary Conditions
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Table 7-2: Additional expressions used in the P2D model 
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7.2.1 Intercalation induced stresses 

Various models, varying in their sophistication, have been proposed to quantify the intercalation-

induced stresses in the solid particles. These models are divided in two categories: stress 

splitting31,32 and strain splitting.33-35 In this chapter, a model presented by Cheng and Verbrugge33 

is used. This stress model does not incorporate a moving boundary formulation and ignores 

thermodynamic factors and pressure-induced diffusion. These simplifications restrict its use to 

materials with very low volumetric expansion. The resulting equations describing radial stress (

r ) and tangential stress ( t ) generated in spherical particles are given in Table 6-4. In this study, 

tensile stress is taken as positive and compressive stress is taken as negative. Here n  is the 

partial molar volume of the solute, nE   is the Young’s modulus, and n  is the Poisson’s ratio. 

Parameters values used in this study are listed in Table 7-4. 

Table 7-3: Governing equations for intercalation-induced stress 
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Table 7-4: List and values of parameters 

Symbol Parameter 
Positive 

Electrodea 
Separatora 

Negative 

Electrodea 
Units 

Brugg Bruggeman coefficient 1.5 /2.5 1.5 b 1.5 b  

,max
s
ic  

Maximum solid phase 

concentration 
51554  30555 mol/m3 

0c  Initial electrolyte concentration 1000 1000 1000 mol/m3 

,
s
i oD  Reference solid phase diffusivity 1×10−14  3.9×10−14 m2/s 

sD
iE  Activation energy for diffusivity 5000 b  5000 b J/mol 

k
iE  

Activation energy for reaction 

rate 
5000 b  5000 b J/mol 

F
 

Faraday’s constant  96487  C/mol 

,i ok
 

Reference reaction rate constant 2.33×10−11  5.03×10−11 
m2.5/(mol
0.5 s) 

il  
Region thickness 80×10−6 25×10−6 88×10−6 m 

,p iR

 

Particle radius 2×10−6 b  10×10−6 b m 

R  Gas constant  8.314  J/mol/ K 

refT  Temperature  298.15  K 

t

 

Transference number  0.364   

,f i

 

Filler fraction 0.025  0.0326  

i  Porosity 0.385 0.724 0.485  

  Density 2500 1100 2500 kg/m3 

i  
Solid phase electronic 

conductivity 
59  48.24 S/m 

  Partial molar volume 4.0815×10−6 c   m3/mol 

E  Young’s modulus 15×109 d   Pa 

  Poisson’s ratio 0.3 d    

SEI  Resistance  0.00215 b     

e  Density of electrolyte 2000 b   kg/m3 

 
a Unless otherwise noted, all parameters used for the electrodes and separator are from Subramanian et al.53 

Porosity, length, surface area for anode is given for base case. 
b Assumed value 
c Values obtained from Renganathan et al.35 
d Values obtained from Christensen et al.80 
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During intercalation, for the materials with a positive volume expansion, the radial stresses remain 

tensile throughout a particle (assuming zero external pressure at the surface) whereas the tangential 

stress becomes compressive at the surface and tensile at the center. The peak (tensile) radial stress 

occurs at the center of the particle and peak (compressive) tangential stress occurs at the surface 

of the particle.32 During deintercalation, the nature of stresses changes (i.e. tensile stresses become 

compressive and compressive stresses become tensile), but the location of peak stresses remains 

the same for both. Therefore, the peak radial stresses at the center of the particles and peak 

tangential stresses at the surface of the particles are monitored. As shown by Christensen and 

Newman32 and also clear from the equations given in Table 6-4, the peak tangential stresses and 

the peak radial stresses are same at the center of the particles, and so monitoring one of the either 

stresses would be sufficient for our analysis. 

Due to the finite thickness of the anode, the pore wall flux becomes non-uniform except at very 

small rates of charging and discharging. This non uniformity of the pore wall flux changes with 

time as well. In general, the pore wall flux is higher at the anode separator interface at the onset of 

charge/discharge of the battery; afterwards, the pore wall flux decreases at the anode-separator 

interface and increases at the anode-current collector interface. Due to the time-varying and 

thickness-dependent non-uniformity of the pore wall flux, different maximum peak stresses are 

observed at different times during charge/discharge. Usually, the anode-separator interface faces 

largest pore wall flux resulting in maximum peak stresses at that point compared to other locations 

of the anode. Figure 7-1 shows the distribution of peak radial ( r ) and tangential stresses ( t ) at 

different locations in anode with time. In this study, we will focus on peak stresses and their 

maximum values in the solid particle at the anode-separator interface (solid curves in Figure 7-1). 
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One more thing to note here is that the dynamics of peak tangential stresses (which occurs at the 

surface) is faster compared to peak radial stresses (which occurs at the center). 

 

Figure 7-1: Distribution of radial and tangential stresses during charging at 4C at 25 C (x = 0 represent anode-

separator interface and x = 1 represent anode-current collector interface) 

7.2.2 Lithium plating side reaction 

As mentioned earlier, lithium plating side reaction not only causes capacity fade but also poses a 

significant safety issue.11 Though lithium-ion batteries are inherently safer than lithium-metal 

batteries, as the former avoids dendrite formation during charging, the slightly more positive 

potential of LiC6 compared to Li/Li+, inherits the problem of lithium plating during charging11 at 

high rates and even low rates at low temperature (0.2 C at  o20 C ).13,14  

The driving force for the partially irreversible14 lithium plating side reaction at the anode can be 

expressed by the overpotential:58 
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open-circuit potential for the plating reaction which is taken to be zero, and x is the distance across 

the electrode. The expression for plating  given in (7.23) ignores the voltage drop across the solid 

electrolyte interface (SEI) layer. For a uniform porosity anode, the anode-separator interface 

becomes most vulnerable to plating side reaction. Figure 7-2 shows the typical evolution of 

,( , ) ( , )s
n e nx t x t   during charging.  

 

Figure 7-2: Distribution of overpotential for lithium plating side reaction across length during charging at 4C rate (x 

= 0 represent anode-separator interface and x = 1 represent anode-current collector interface) 

Only when ,( , ) ( , )s
n e nx t x t   less than zero, the plating reaction is favored. Figure 7-2 shows that 

at anode-separator interface, the plating side reaction becomes feasible sooner and achieves larger 

magnitude compared to other parts of the anode.  

7.2.3 Overpotential for SEI Layer 

In this simulation the voltage drop across the SEI layer is not modeled in rigorous sense as given 

in equation (7.24),57  
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Here, SEI  is the resistance of SEI layer formed during the initial cycles and ( , ) / SEIx t   refers 

to the increase in resistance during the fresh buildup of SEI layer. Simplified expression given in 

equation (7.25) is used to approximate the overpotential for SEI layer assuming that the increase 

in SEI layer thickness is very small per cycle. In our opinion this is justified as the magnitude of 

voltage drop across the SEI layer and current density associated with SEI layer ( ( , )SEIj x t ) are 

small, hence equation (7.25) should give a good approximation to equation (7.24) for any 

reasonable operation.  

      , , , ), (SEI SEI E
s
n ne S Ix t x t x t U j x t F       (7.25) 

Figure 7-3 shows the evolution of overpotential for SEI layer as approximated by equation (7.25)

. The magnitude is larger for anode-separator interface for this case as well and hence will be the 

focus of this study.  

 

Figure 7-3: Distribution of overpotential for SEI side reaction across length during charging at 4C rate (x = 0 represent 

anode-separator interface and x = 1 represent anode-current collector interface) 
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7.3 Problem Statement 

While various factors (thickness of electrode and current collector, particle radius, filler fractions, 

porosity, etc.) can be varied to get the optimal battery design, here we focus on the porosity and 

length of anode and its effect on battery performance. The porous solid phase structure in the anode 

and cathode consists of networks of interconnected and irregular pores or channels. Usually the 

electrode materials are designed as porous structures made up of solid particles. One way to reduce 

the complexity of these structures and avoid pore scale modeling is to use macro homogeneous 

models27 where tortuosity is used to obtain effective transport properties.108,109 A Bruggeman 

relationship is often used to relate tortuosity   with porosity as 1 nbrugg   where bruggn is the 

Bruggeman coefficient. Effective conductivity and diffusivity in the porous anode can be 

expressed as follows: 

 
,

nbruggn
eff n n


  


   (7.26) 

 
,

nbruggn
eff n n

D
D D





   (7.27) 

Here   (S/m) and D (m2/s) are intrinsic conductivity and diffusivity of the electrolyte, and both 

are function of lithium-ion concentration and temperature, whereas ,eff n  and ,eff nD  are the 

effective conductivity and diffusivity taking the porous nature into account. The increase in 

porosity would improve the conductivity and diffusivity of lithium-ions in the electrolyte. The 

solid phase conductivity is given in equation (7.28), which denotes the porosity correction of the 

intrinsic conductivity of solid phase material. 

  , ,1eff n n n f n       (7.28) 
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here n  and ,eff n  are the intrinsic electronic conductivity (S/m) and the effective electronic 

conductivity of solid phase of anode respectively. As porosity increases, the electronic 

conductivity will decrease as less volume is available for charge transport in the solid phase. 

Assuming spherical shape and uniform particle size, the specific area can also be written as 

follows: 

  ,
,

3
1n n f n

P n

a
R

     (7.29) 

na  is the specific area (m2/m3) and, ,p nR  is radius of anode particles and ,f n  is filler fraction. An 

increase in porosity will lead to decrease in area. In this study, two scenarios are analyzed with 

respect to discharge capacity and effect on capacity fade mechanisms during both charge and 

discharge. 

 Varying porosity and length with fixed total capacity 

 Varying porosity across thickness for fixed length and average porosity 

7.3.1 Varying porosity and length with fixed total capacity 

As mentioned before, the problem treated in this work assumes a given loading of the anode and 

cathode material. We allow the variation of length and porosity such that the total capacity of 

anode remains constant. In other words, choice of low porosity will lead to smaller thickness of 

anode and high porosity will lead to larger thickness of anode. Figure 2-2 illustrate the same.  

Table 7-5 shows the capacity of cathode and anode as well as initial concentration for discharge 

simulation. For safety and capacity fade related issues, the anode is not allowed to be completely 

discharged or completely charged. 



150 

 

 

Figure 7-4: Different choices of porosities and lengths for fixed anode capacity 

Table 7-5: Capacities and initial concentration (charged condition) of both electrodes  

Electrode Initial concentration Capacity of electrodes 

Cathode ,0 ,max0.5s s
p pc c     ,0 ,min1 s s

p fp p p pl c c     1.217 mol/m2 

Anode ,0 ,max0.95s s
n nc c     ,max ,01 s s

n fn n n nl c c     1.232 mol/m2 

 

The problem at hand is to vary porosity and length such that the material loading in anode remains 

the same, i.e., 

    , ,1 1n new fn n new n fn nl l         (7.30) 

Base values of anode length  nl  and porosity  n  are taken as 88×10−6 m and 0.485 respectively 

which corresponds to anode capacity given in Table 7-5. Different thicknesses  ,n newl  and 

porosities ( ,n new ) will be chosen based on the constraint given by equation (7.30).  

The maximum theoretical capacity of the battery will be determined by the smaller of the capacities 

of two electrodes. Depending on the initial lithium concentration in anode and cathode, the 

maximum theoretical capacity of battery will differ. Initial concentration and corresponding 

capacities of the base case undertaken are listed in Table 7-5. List of porosities and corresponding 

lengths constrained by equation (7.30) used in this study are given in Table 7-6. Note that some of 

the porosity values may not be experimentally feasible due to negligible mechanical strength of 

Increasing

,  n nl

Decreasing

,  n nl

Less 

Porous

Highly 

Porous
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highly porous electrode (i.e. porosity 0.55). Filler fraction is also assumed to be the same for all 

the porosity and length combination. The electrodes with smaller porosity and thickness are 

referred to as thinner, less-porous electrode and electrode with larger porosity and thickness are 

referred as thicker, more-porous electrode. 

Table 7-6: List of porosities and lengths used 

Length ,n newl  (m) 59.5×10-6 63.9×10-6 69×10-6 75×10-6 88×10-6 101.4×10-6 

Porosity ,n new  0.25 0.30 0.35 0.40 0.485 0.55 

 

7.3.2 Varying porosity across thickness for fixed average porosity and length 

The second scenario considered in this study tries to quantify the effect of inhomogeneity of 

porosity in a given electrode. It has been shown by Chen et al.111 that electrodes are not uniform 

in porosity distribution and contain patches of small and large porosities due to manufacturing 

limitations. In this scenario, one such example of varying porosity and its effect on capacity fade 

mechanics is studied. The problem statement is simplified by taking a linearly varying porosity 

distribution of the form given in equation (7.31).  

 ,

1
( )

2
n avg nx s x 

 
   

 
 (7.31) 

Here ,avg n  is the average porosity of the anode, s is the slope of porosity distribution, and x 

represents the scaled thickness of the anode which goes from 0 (anode-separator interface) to 1 

(anode-current collector interface). This form of porosity variation across anode will make sure 

that the average porosity remains the same which in turn will ensure that the material loading does 

not vary when the porosity distribution is changed (see Figure 7-5). To see the effect of local 
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porosity variation on side reactions, we choose the anode thickness to be 63.9×10−6 m and average 

porosity to be , 0.30avg n  .  

For the case when s is negative, the anode-separator interface has maximum porosity and anode-

current collector has least porosity. On the other hand when s is positive, the reverse is true. Then 

case when s is positive could be understood by assuming a patch of low porosity at the anode-

separator interface.  

 

Figure 7-5: Linear porosity distribution in anode 

7.4 Result and Discussion 

Battery charge and discharge are simulated at isothermal conditions. A voltage cutoff of 2.8 V is 

used for discharging and 4.2 V is used for charging. The following definitions of energy and 

average power density are used. 

Energy density 
0

1 ( )
ft

cell appm V t I dt   

Average power density 
0

1 ( ) ( )
ft

f cell appt m V t I dt   

where mcell is the mass of the cell sandwich per unit area (only accounts for the mass of the 

electrodes, electrolyte and separator; mass of the current collectors and other accessories are not 

used in this calculation). tf is the final time when the cell reaches 2.8 V while discharge, and Iapp is 

0s 

0s 

0s ( )n x
( )n x( )n x
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the applied current (A/m2). Since the energy density and power density used here excludes the 

contribution from current collector and other accessories, a factor of 0.33 is used to estimate the 

capacity of entire cell.94 For scenarios mentioned previously, different values of Bruggeman 

coefficient and temperature are used, resulting in three cases: 1) bruggn 1.5, T 298 K, 2) bruggn 

2.5, T 298 K, 3) bruggn 1.5, Low temperature (288 K for discharge and 278 K for Charge). The 

Ragone plots are generated with discharge current up to 14C rate. Higher discharge current and 

lower temperature leads to very high electrolyte concentration in thinner, less-porous electrode 

configurations ( 4000 mol/m3) for which the expression for concentration dependent intrinsic 

conductivity and diffusivity are not applicable. This is why during discharge a temperature of 288 

K is used for simulation but during charging (where only 4C rate is considered), a relatively lower 

temperature of 278 K is used.  

7.4.1 Varying porosity and length with fixed total capacity 

During discharging, the effect of length-porosity is analyzed for battery capacities (Ragone plots) 

and intercalation-induced stresses. The effect of length-porosity on parasitic side reactions (plating 

and SEI reactions) in the anode is only relevant during charging hence their effect is studied during 

charging alone. 

Discharging: Ragone plots and intercalation-induced stresses 

For the given initial conditions and cell parameters, the discharge curves were simulated at 

different rates and Ragone plots were generated for all six combination of length-porosity given 

in Table 7-6 (Figure 7-6). It is to be noted that difference in energy density at lower power density 

is strictly due to the change in the weight of the electrolyte in the anode as the weight of the solid 

phase of the anode is constant for every choice of length and porosity. The time to reach 2.8 V (tf) 

at low rate of discharge is almost equal for all porosity-length choices (which is expected).  
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The simulated points in Figure 7-6 show the effect of length and porosity on battery performance. 

For a smaller Bruggeman coefficient (bruggn = 1.5) the thinner, less-porous electrodes give rise 

to higher energy density even at low temperature of 278 K due to less electrolyte weight (left and 

right subplots of Figure 7-6). At very high rates of discharge, the final time  ft  starts to shrink 

down for thinner, less-porous electrodes compared to thicker, more-porous electrodes but less 

electrolyte weight in thinner, less-porous still dominates the energy density. 

 

Figure 7-6: Simulated Ragone plot for different thicknesses of anode 

The Bruggeman coefficient value is usually taken as 1.5 for porous structures made by uniform 

size spherical particles.108,112 For other shapes and variation in particle size, higher values of 

Bruggeman coefficient can be used. As can be seen from Figure 7-6 (middle subplot), the discharge 

capacity for thinner electrodes at high power density decreases significantly when the Bruggeman 

coefficient is higher. In other words, tf for thinner, less-porous electrodes is very short at higher 

discharge rates as compared to thicker, more-porous electrodes. 
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During deintercalation, the peak radial stresses are compressive at the center and peak tangential 

stresses are tensile at the surface. Figure 7-7 and Figure 7-8 show the extremum values obtained 

for peak tangential stresses (surface of the particle) and peak radial stresses (center of the particle) 

in the solid particle at the anode-separator interface during the discharge period. As mentioned 

before, the anode-separator interface is most likely to face the largest magnitude of stresses during 

charging/discharging (Figure 7-1).  

For case 1 (bruggn 1.5, room temperature, left subplots of Figure 7-7 and Figure 7-8) maxima for 

each type of peak stresses increases monotonically with the discharge rate. For thinner electrodes, 

the maximum values for both radial and tangential stresses are higher compared to thicker 

electrodes. At low temperature (case 3, right subplots), the maximum value of peak tangential 

stresses reaches higher values compared to room temperature case. On the other hand, the 

maximum values achieved by radial stresses seem to decrease at higher discharge rates. This 

apparent decrease happens simply because the cell does not last long enough for radial stresses to 

reach their maximum (as mentioned earlier, the peak radial stresses have slower dynamics, see 

Figure 7-1). 

For higher Bruggeman coefficients, thinner, less-porous electrodes lead to significant increase in 

maximum values of both peak tangential stresses and peak radial stresses. For thinner, less-porous 

electrode, the maximum value of peak radial stresses decreases at higher rate of discharge because 

the tf is not long enough for radial stresses to reach their maximum. It is clear that the thinner 

electrodes with smaller porosities lead to higher stresses in the particle and the stress effect 

becomes critical if the anode tortuosity is higher. It is worth mentioning here that for few cases for 

thinner, less-porous electrodes with high Bruggeman coefficients, the electrolyte concentration at 

the very end of discharge shoots up to as high as 5 molar (note that the diffusivity and conductivity 
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expressions used here may not be very accurate). This is the reason why temperature lower than 

288 K is not used for discharge simulation. 

 

Figure 7-7: Maximum peak tangential stresses during discharging at different C rates 

 

Figure 7-8: Maximum peak radial stresses during discharging at different C rates 

Charging: intercalation-induced stresses 

The anode is vulnerable to parasitic side reactions (SEI layer and plating side reaction) during 

charging. The intercalation induced stresses during charging are also studied here although 
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Takahashi and Srinivasan36 suggest that fracture during lithiation is not likely. Initial anode 

concentration 961 mol/m3 and initial cathode concentration 51022 mol/m3 is used to simulate the 

battery charging. 

Here, a charging rate of 4C is used to analyze the battery performance. The effective resistance 

during charging and discharging are different due to the asymmetrical nature of open circuit 

potentials of anode and cathode. Unlike the case for discharge, here we focus on only 4C rate of 

charging to illustrate the capacity fade mechanics during charging. During discharging, the final 

time to reach 2.8 V at 4C rate is almost same for all the cases (around 10 s difference between 

thinner, less-porous and thicker, more-porous electrodes for bruggn 2.5 and T 298 K), but during 

charging, the time to reach 4.2 V is significantly different especially for higher Bruggeman 

coefficient (a difference of 200 s for bruggn 2.5 and T 298 K).  

For the charging rate of 4C for different cases, Figure 7-9 shows voltage profile and effect of 

length-porosity combination on final time to reach 4.2 V. For thinner, less-porous anodes, the 

charging capacity drops down significantly for the higher Bruggeman coefficient.  

 

Figure 7-9: Voltage profiles during charging at 4C rate for different anode thicknesses 
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During charging, the effect of porosity-length combination on the peak radial and peak tangential 

stresses is shown in Figure 7-10 and Figure 7-11. Peak tangential stress (at the surface of the solid 

particle) is now compressive and peak radial stress (at the center of the particle) is tensile. Figure 

7-10 shows the peak tangential stress at the surface of the solid particle at anode-separator 

interface. Since, only a single charging rate is used here (4C rate), time evolution of stress profiles 

are plotted for different thickness-porosity combinations unlike the discharging case (Figure 7-7 

and Figure 7-8) where only the maximum values of these peak stresses are plotted. Figure 7-11 

show peak radial stresses and at the anode-separator interface. Both peak radial and peak tangential 

stresses at anode-separator interface go through maxima during charging at 4C. The porosity-

length combination has significant effect on the extremum values reached by peak radial and 

tangential stresses. For thicker, more-porous anode, the stress values remain similar as can be seen 

from Figure 7-10 and Figure 7-11 (curves for thicker, more-porous electrodes are virtually 

indistinguishable), but for thinner, less-porous anode peak stresses are significantly higher at 

higher Bruggeman coefficient (around 50% increase in the stress!). 

 

Figure 7-10: Peak tangential stresses (compressive) at anode-separator interface during charging at 4C rate 
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Figure 7-11: Peak radial stresses (tensile) at anode-separator interface during charging at 4C rate 

 Charging: parasitic reactions 

The anode-separator interface remains the most vulnerable part of the battery with respect to 

parasitic side reactions (see Figure 7-2 for distribution of overpotential with anode thickness), 

Figure 7-12 shows the overpotential for plating at anode-separator interface. As mentioned earlier, 

the plating side reaction becomes feasible only when the overpotential is negative. Similar to 

previous cases, the overpotential for plating reaction is higher for thinner, less-porous electrode 

irrespective of the Bruggeman coefficient and temperature. The effect is more severe with a higher 

Bruggeman coefficient (middle subplot, Figure 7-12). Lower temperature with smaller Bruggeman 

coefficient (i.e. 1.5) does lead to higher driving force for plating side reaction.  
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Figure 7-12: Overpotential for plating side reaction during charging at 4C rate (note that plating reaction in feasible 

only when overpotential is negative) 

 

Figure 7-13: Overpotential for SEI side-reaction during charging at 4C rate 

Similarly, the overpotential for the SEI side reaction is plotted in Figure 7-13. The SEI side reaction 

is irreversible and becomes feasible only during intercalation in anode. The overpotential for SEI 

reaction follows the similar trends as overpotential for plating side reactions. For thinner, less-

porous anode, overpotential for SEI side reactions is higher compared to other cases, and for higher 

Bruggeman coefficient, the effect is more pronounced. It should be mentioned here that the current 

density for both the SEI side reaction and the lithium plating reaction has exponential dependence 

on the overpotentials.  
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7.4.2 Varying porosity across thickness for fixed average porosity and length 

Due to manufacturing limitations, the electrode structure may not have a uniform porosity 

distribution. In order to mimic the inhomogeneity of porosity in simplest fashion, a linear varying 

porosity is assumed. Three values of slopes (0.2, 0 and −0.2) are used to carry out simulation with 

average porosity ( ,avg n ) of 0.30 and thickness of 63.9×10−6 m (Table 7-6, case 2). Steeper porosity 

distribution ( 0.2s  ) leads to very small porosities at either end or causes electrolyte concentration 

to shoot up significantly above 4 molar during the end of charge/discharge.  

Discharging: Ragone plots and intercalation-induced stresses 

Figure 7-14 shows the simulate Ragone plot for different porosity gradients. Since the average 

porosity is constant ( , 0.30avg n  ) for all the cases, the energy and power densities are identical 

at very small rate of discharge. Even at higher rates of discharge, a smaller Brugemann coefficient 

(bruggn = 1.5) does not lead to much change in energy density. On the other hand, higher 

Bruggeman coefficient with positive slope of 0.2 (less porousity at the anode-separator interface) 

leads to significant reduction in discharge capacity. Though the discharge capacities are not much 

affected by the porosity gradients for a smaller Bruggeman coefficient, the maximum peak 

tangential stresses (tensile during deintercalation) at the anode-separator interface are influenced 

by the gradients (see Figure 7-15). Maximum peak radial stresses also follow trends similar to the 

maximum peak tangential stresses, except at the high discharge rates for higher Bruggeman 

coefficient where battery voltage drops below 2.8 V before the peak radial stresses could reach 

their maxima (middle subplot of Figure 7-16). A slope of 0.2  (more porosity at anode-separator 

interface) gives rise to better capacity and less stresses compared to zero and positive porosity 

gradient. Similarly, to the previous scenario of discharging, the electrolyte concentration shoots 
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above 5 molar concentration near the end of discharge for a very few cases for higher Bruggeman 

coefficient. 

 

Figure 7-14: Simulated Ragone plot for different porosity gradient of anode 

 

Figure 7-15: Maximum peak tangential stresses during discharging at different C rates 
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Figure 7-16: Maximum peak radial stresses during discharging at different C rates 

Charging: intercalation-induced stresses 

Figure 7-17 shows the charging profiles with porosity gradient. In each case the voltage rise is 

faster when slope is positive. Here also, in each case, negative porosity gradient (more porosity at 

anode-separator interface) gives favorable capacity fade behavior compared to zero and positive 

slope. Positive porosity gradient turns out to be very critical for higher Bruggeman coefficient 

(middle subplots).  

 

Figure 7-17: Voltage profiles during charging at 4C rate corresponding to different porosity gradient 

Figure 7-18 and Figure 7-19 shows the peak radial (tensile) and peak tangential (compressive) 

stresses respectively.  
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Figure 7-18: Peak radial stresses during charging at 4C rate at anode-separator interface 

 

Figure 7-19: Peak tangential stresses during charging at 4C rate at anode-separator interface 
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Figure 7-20 and Figure 7-21 shows the overpotential for SEI and plating side reactions. These 

curves also follow similar trends in which positive slopes lead to higher magnitude of overpotential 

and negative slope give rise to smaller overpotential for capacity fade.  
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electrode with less porosity at anode-separator interface leads to higher magnitude of stresses and 

overpotential for parasitic side reactions. For the parameters values used in the current simulation 

and the base case anode (0.485 porosity with 88 10−6 m thick electrode), the thinner, less-porous 

electrode generate larger variation in current density across anode thickness compared to thicker, 

more-porous electrodes. While the trends of Overpotential for SEI side reaction and plating side 

reaction are similar, SEI side reaction remain feasible for entire charging process, which is not the 

case for plating side reaction during charging.  

 

Figure 7-20: Overpotential for SEI side reaction during charging at 4C rate 

 

Figure 7-21: Overpotential for plating during charging at 4C rate 
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The model used in the current study has certain limitations and shortcomings which are 

summarized below. 

 The concentration dependence of the factor  1 ln lnd f d c  is not taken into account. 

 The stress model used to estimate intercalation induced stresses is valid only for materials with 

small volume expansion. 

 Overpotentials for parasitic side reactions and lithium plating reactions are approximate but 

this approximation should be good enough, as the magnitude of current density due to parasitic 

side reactions are usually very small. 

 For very few cases (especially with higher Bruggeman coefficient and thinner, less-porous 

electrode), the electrolyte concentration shoots beyond the validity of the expressions for 

conductivity and diffusivity at the very end of discharge. Charging simulation has no such 

issues as the charging current is small (4C) compared to discharging currents. This effect is 

mainly due to concentration dependent diffusivity for lithium-ion concentration in electrolyte. 

Such high concentration of lithium-ion is not observed if concentration dependence of lithium-

ion in electrolyte phase is dropped. 

7.5 Conclusions and Future Directions 

The problem of porosity-length optimization for lithium-ion batteries is examined from a different 

perspective where the porosity and length are varied with a constraint of fixed theoretical capacity. 

First, thinner, less-porous and thicker, more-porous electrode are compared for discharge capacity, 

peak stresses and overpotentials for parasitic side reactions at different temperature and different 

Bruggeman coefficients. Low temperature charge and discharge follow trends very similar to room 
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temperature, except for the fact that all the capacity fade effects are more pronounced and reduction 

in discharge capacity is more drastic at low temperature. 

The Bruggeman coefficient has a significant effect on every aspect of the capacity and capacity-

fade mechanisms. Smaller porosity with a larger tortuosity give rise to a significant reduction in 

discharge capacity despite having smaller thickness and the cell becomes more susceptible to all 

capacity fade mechanisms discussed here.  

The manufacturing difficulty of forming a uniform porosity anode is considered in a simple way 

where porosity is varied linearly in the anode, keeping the average porosity constant. The discharge 

capacity of less tortuous anode is not much affected by the porosity gradients but the capacity fade 

mechanics are. For the more tortuous anode (burggn = 2.5), the discharge capacities as well as 

capacity fade mechanisms are severely affected by a positive porosity gradient (less porosity at 

anode-separator interface). Interestingly a negative porosity gradient (more porosity at anode-

separator interface) leads to better discharge capacity and smaller driving force for capacity fade 

mechanisms in all the cases. This suggests that thinner, less-porous electrodes may give rise to 

better discharge capacity and acceptable capacity fade behavior if the tortuosity is near unity 

(columnar electrodes). 

In this study, for a fixed value of anode and cathode loading, the effect of porosity, thickness is 

observed at different charging/discharging conditions. The complete problem would be to derive 

design parameters (length, porosity and porosity distribution) for a fixed ratio of anode to cathode 

loading (instead of fixed value) in order to get good rate-capacities and favorable capacity fade 

behavior. Such problem statement will require use of an optimization framework, as the possible 

design combinations are large, and will be the focus of future work. 
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List of Variables and Parameters 

a Surface area per volume of electrode 

brugg Bruggeman coefficient 

c Electrolyte concentration 
sc   Solid phase concentration 

   Thickness of SEI layer 

D  Intrinsic diffusivity of lithium ion in electrolyte 

effD  Effective diffusivity of lithium ion in porous electrode 

sD   Solid phase diffusion coefficient 

sD
iE ,

k
iE  Activation energy (for diffusivity and reaction rate) 

E  Young’s modulus 

F
 

Faraday’s constant 

I
 

Applied current 

j
 

Pore wall flux 

  
 

Liquid phase conductivity (intrinsic) 

k
 

Reaction rate constant 

l
 

Length of region 

  SEI layer resistance  

PR

 

Particle radius 

R  Gas constant 

refT  Temperature 

t  
Transference number 

Tref Reference temperature (298.16 K) 

T Temperature 

U
 

Open circuit potential 

   Poisson’s ratio 


  

Porosity 

f  
Filling fraction 


  

State of Charge 


  

Solid phase conductivity 

  Density 

1  
 

Solid phase potential 

2  
 

Liquid phase potential 

  Partial molar volume 

   Scaled radial distance in anode particle
,/ P nr R  
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List of Subscripts 

eff Effective, as for diffusivity or conductivity 

e Related to electrolyte 

n Related to the negative electrode—the anode 

p Related to the positive electrode—the cathode 

P Related to particle (e.g. RP radius of particle) 

s Related to the separator 

SEI Related to SEI 

 

List of Superscripts 

s
 

Related to Solid Phase 

+/− Pertains to the boundary conditions from right and left side of the interface (e.g. pL
,

pL
, etc.) 

 

  



170 

 

Chapter 8 

Conclusions and Future Directions  

 

Engineers like to solve problems. If there are no problems handily available, they will 

create their own problem. 

Scott Adams 

 

8.1 On the Lithium-Insertion Mechanism 

The P2D model is a very general framework that can incorporate various solid phase insertion 

mechanisms. Traditionally, Fick’s law is used to model the transport of lithium as electro-neutral 

entity inside the solid phase.27 For some materials, Fick’s law may give reasonable results, most 

materials do not follow homogeneous insertion. Materials such as LiFePO4, TiO2, etc. show strong 

phase separation behavior depending on particle size hence they require different modeling 

approach.7 The reaction site for such materials is also under debate.40 Chapter 1 (Figure 1-11) 

shows the staging phenomena in graphite anode, but such details are missing in the existing P2D 

model. Adopting material specific intercalation mechanism in P2D framework is very critical in 

order to accurately model the physical processes inside lithium-ion battery so that the P2D model 

can be extended to model the capacity fade mechanisms accurately. 

8.2 On the Capacity Fade Mechanisms 

The P2D model is capable of incorporating various capacity-fade mechanisms such as:  

 SEI layer formation at the electrode surfaces 

 Plating side reactions at the graphite anode  

 High volumetric expansion in Si and Sn (around 400%) 
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 Mechanical degradation due to intercalation-induced stresses 

 Thermal degradation of electrolyte at high temperature. 

However, expressions to quantify the effect of each capacity-fade mechanism are not well 

understood. For example, Plating reaction on graphite anode is mentioned as an irreversible 

reaction in the literature (Perkins et al.58). Recently Zinth et al.14 suggested lithium-plating as 

partially reversible reaction based on experimental evidence. It is also suggested that the plated-

lithium intercalate in the graphite anode when the battery is allowed to rest for a sufficient time. 

Such slow dynamics makes the estimation of the state of charge (SOC) and the state of health 

(SOH) very difficult. 

 Similarly, various expressions for SEI layer current density have been proposed depending on the 

assumptions of diffusion-limited growth vs. reaction rate-limited growth. Experimental 

determination of rate laws for SEI layer formation is also very difficult. 

 Intercalation-induced stresses also pose a challenge in quantifying the effect of stress on particle 

cracking. Particle cracking require probabilistic treatment dependent on the magnitude of stress. 

The probabilistic nature of mechanical degradation causes additional challenges in quantifying the 

capacity fade. What are the criteria and probability of particle cracking at a certain level of stress? 

How long is the crack? How much area is created when the particle cracks facilitating the 

formation of fresh SEI layer? All these questions require quantitative treatment in order to predict 

the capacity fade.  

Experimentally validated expressions for above-mentioned capacity-fade mechanisms is critical 

in order to derive optimal charge/discharge profiles or derive design parameters for long lasting 

lithium-ion battery.  
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8.3 On the Optimization Algorithm and Problem Definition  

The derivation of optimal charging/discharging profiles is based on simultaneous optimization 

approach86 where the battery model and associated constraints are discretized in time and space to 

generate a large system of algebraic equations (see Figure 8-1). In most cases, Euler Backward 

(EB) method and higher order backward difference formulas are used to discretize the battery 

model in time. Although, EB discretization performs reasonably well and is robust, the accuracy 

offered by EB discretization is not satisfactory (at most 1st order accurate). Implicit Runge-Kutta 

(IRK) based discretization schemes give rise to computationally efficient optimization problem,87 

and will be the focus of future research. 

 

Figure 8-1: Schematic of simultaneous optimization approach 

The optimization problem considered in Chapters 5 places lower bounds on plating over-

potentials. A better problem (also more physically meaningful) formulation would be to minimize 

the amount of plated lithium, rather than to restrict the plating over-potential. It is to be noted here 

that the SEI layer growth depends on both exchange current density (a function of lithium and 

electrolyte concentrations) and plating over-potential. The lack of confidence in expressions for 

plating reaction prevents such analysis.  
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The optimization problem of practical importance will be to derive charging/discharging profiles 

such that the life of the battery is maximized. To address this problem, all capacity-fade 

mechanisms need to be incorporated and solved with thermal P2D model. Such optimization 

problems are poorly scaled problems as time scale of capacity-fade mechanisms is very large 

compared to the time scale of some of the variables such as potentials. Solving such optimization 

problem is numerically challenging and will be pursued in future.  

8.4 On the Model Driven Battery Design 

Chapter 7 presents the problem of porosity-length optimization for lithium-ion batteries where the 

porosity and length are varied with a constraint of fixed theoretical capacity. Thinner, less-porous 

and thicker, more-porous electrodes are compared for discharge capacity, peak stresses and 

overpotentials for parasitic side reactions at different temperature and different Bruggeman 

coefficients. The manufacturing difficulty of forming a uniform porosity anode is considered in a 

simple way where porosity is varied linearly in the anode, keeping the average porosity constant. 

As mentioned in Chapter 7, the complete problem would be to derive design parameters (length, 

porosity and porosity distribution, see Figure 8-2) for a fixed ratio of anode to cathode loading 

(instead of fixed value) for good rate capacities and favorable capacity fade behavior. The equation 

(8.1) shows the constraint to be obeyed by the design variables.  

 
  

  
max, min,0

max, min,0

1 ( )
Constant

1 ( )

n

p

l s s
n fn n n

l s s
p fp p p

x c dx

x c dx

 

 

  


  




 (8.1) 

Here ( )n x , ( )p x , (porosity distributions in anode and cathode respectively), nl  and pl  

(thicknesses of anode and cathode respectively) are the design variables.  
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Such problem statement will require the use of an optimization framework, as the possible design 

combinations are large, and will be the focus of future work.  

 

Figure 8-2: Design variables considering both anode and cathode 

Work done in Chapter 7 involves isothermal P2D model. Usually, the charging/discharging of 

lithium-ion battery at high rates (up to 14C rate) will have a significant temperature rise due to 

limited heat transfer. Thermal model with a normal range of the heat transfer coefficient should be 

considered in order to derive the design parameters which assure good battery capacity and 

minimize capacity fade.  

For the battery architecture discussed in chapter 1 and 2 (Anode, separator and cathode sandwich), 

usually the electrode-separator interfaces turn out to be the most vulnerable to capacity fade 

mechanisms compared to other parts of electrodes. As shown in Chapters 6 and 7, the effects of 

three capacity-fade mechanisms considered are most severe at the electrode-separator interface. 

Multiple active materials can be used113,114 to design electrodes with variation in relative loading 

across the thickness of anode and cathode. Such variation in relative loading of multiple active 

materials may be useful in providing uniform capacity fade across the thickness of electrodes.   
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Appendix A 

Butler-Volmer Kinetics 

Sketch of derivation for Butler-Volmer kinetics is adapted from Bard and Faulkener115 and 

Newman and Thomas-Alyea.28 

One electron transfer reaction with species O and R can be expressed as 

 
 

 forward 

backward 

O e       R
f

b

k

k





  . (A.1) 

 

Figure A-1: Change in standard free energy of forward and backward reaction due to potential change 

Left plot of Figure A-1 shows the standard free energy vs. reaction coordinates at some reference 

potential V1, and the right plot shows the standard free energy curve at some other potential V2.  

From Figure A-1, the standard free energy at V2 ( ,2fG  and ,2bG ) can be written in terms of 

standard free energy at V1 ( ,1fG and ,1bG ) using a factor of   as follows: 
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    ,2 ,1 2 11b bG G F V V       (A.3) 

Assuming rate constant for forward and backward reaction follows Arrhenius form given by 

following equations: 

 exp
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f f

G
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RT
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, (A.4) 
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  

 
. (A.5) 

Here Af and Ab are frequency factors and fG  and bG  are activation barrier for forward and 

backward rate of reaction. The net rate of reaction at some voltage V2 wrt. some reference potential 

V1 can be written as: 

 
f O b R
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r k c k c

nF
    (A.6) 

Using equations (A.2) and (A.3), the expression for net rate of reaction can be expanded as  
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. (A.7) 

The potential dependence of rate constant can be separated as follows: 
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At some potential U, there will be zero net rate of reaction leading (i.e. equilibrium). 
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Solving equation (A.9) gives 
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The potential difference between V2 and V1 can be expressed in terms of surface over-potential (

V U   ) as follows: 

      2 1 2 1 1V V V U U V U V         (A.11) 

Using equation (A.11), equation (A.8) can be rewritten as: 
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Using equation (A.10), this can be rewritten as: 
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The equation (A.16) is also known as Butler-Volmer equation.   
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Appendix B 

Dilute Solution Theory for Ionic Transport in 

Electrolyte 

The following derivation is adapted from Newman and Thomas-Alyea28 and Ramos and Please.116 

The continuity equation in any infinitesimal region can be written as for positively or negatively 

charged species of concentration ci  

 
           

Accumulation 

       

   net input             Re

      .        

action

i i i

d
c N R

dt
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. (B.1) 

Here, Ni is the flux of species and Ri the rate of formation/depletion of ith species. Electroneutrality 

will give rise to the following equation with zi are number of charges carried by a cation or an 

anion: 

 0i i

i

z c   (B.2) 

Assuming that dissociation of one molecule leads to  and   number of anions and cations: 

 0ii

i

z   (B.3) 

One can define electrolyte concentration as for binary salt as  
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Assuming dilute solution theory and ignoring convective transport, the flux expression takes the 

following form 

 i i i i i iN z u Fc D c    . (B.5) 

ui is mobility (average velocity of species in a solution when force 1N/mol is applied), F is 

Faraday’s constant,   is electrostatic potential (V), ci is concentration (mol/m3), Di is diffusion 

coefficient (m2/s). For Binary salt (i = + and ), following equations can be obtained for cation 

and anion concentrations. 
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Using, equation (B.4), equations (B.6) and (B.7) can be expressed in electrolyte concentration. 
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Difference of above equations will yield 
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using which, the potential variable can be eliminated from equation (B.8) resulting in 
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Current density (A/m2) flowing in the electrolyte is due to ions transport only; hence the net current 

can be expressed in terms of fluxes: 

  e i i

i

i FF z N z N z N       (B.14) 

Using flux expressions (equation (B.5)), equation (B.14) can be expanded as  

    2 2 2
ei F z u c z u c F z D c z D c                . (B.15) 

Using ionic conductivity  2 2 2F z u c z u c         and Nernst-Einstein relationship ( i iD RTu ), 

equation (B.15) can be rewritten as 

  ei RTF z u z u c            . (B.16) 

Using the definition of conductivity and transference number   t z u z u z u        for 

positive and negative ions, the mobility for positive and negative ions ( u and u  respectively) can 
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be replaced from equation (B.16) to generate equation (B.22) via a number of simplification steps 

described below.  

Using equation (B.3) ( 0z z      ), equation (B.16) can be rearranged as 
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or 
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here  
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Charge balance will yield the following equation 
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Using equation (B.22) for expression for ie, following equation can be obtained 
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For typical lithium salt (LiPF6), 1z   , 1z   , 1   , 1    and the fact that anion does not 

take part in reaction following simplified expressions can be obtained: 

  
1

. ' '
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c D c j
dt F


    (B.26) 

      2 1 . ln '
RT

t c j
F

        . (B.27) 

Here . e ej FR i i x
       (for one dimensional case) has unit of A/m3/s and different from 

pore wall flux ji (mol/m2/s). 

Note that these equations are given for ionic transport in electrolyte only, in porous structure 

current is carried by both solid phase and electrolyte phase. The total current will be given by 

following equation 

 e si i I  . (B.28) 

Where is is current in the solid phase (see (2.13)).  

  



188 

 

Appendix C 

Derivation of Equations for Stresses 

(adapted from Timoshenko,75 Prussin,117 and Cheng and Verbrugge33) 

Hook’s law establishes relationship between stress ( ) and strain ( ) in one direction namely 

 r
r

E


  . (C.1) 

Where E is the Young’s modulus. Extension in radial direction due to radial stresses is 

accompanied by contractions in lateral directions, i.e. 

 ,  r rv v
E E

 

 
     . (C.2) 

Here v is the Poisson’s ratio. Similarly, stresses in other direction (   and  ) will also create 

strain in all directions. As long as the strains are small enough, they can be superimposed to 

calculate net strain due to all stresses as follows: 
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1
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         (C.4) 

  
1

rv v
E

         (C.5) 

Assuming spherical symmetry (     and    ), we have the following equations: 
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In the presence of the guest molecule, the composition dependent strain can be modeled in a similar 

fashion as temperature induced stresses.75 
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
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Here   is partial molar volume and c is the solute concentration (lithium, in case of lithium-ion 

battery).  

Infinitesimal strain theory can be used to derive the relationship between local displacement u and 

strain in radial and tangential direction assuming spherical symmetry. (i.e. r u r     and 

u r  )  

 

Figure C-1: Infinitesimal element method for relation between displacement and strain 
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Consider the ad branch of abcd loop (Figure C-1). The radial displacement of ad branch is u(r), 

whereas for bd it is  u u r dr   . Hence radial strain can be calculated as: 
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r

u u r dr u u

dr r


       


 (C.10) 

Similarly, ad branch can be considered to calculate tangential strain. The original length of ad 

branch is rd , after displacement u in the radial direction it is  r u d . Hence the tangential 

strain is 
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rd r
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 
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      (C.11) 

The condition of mechanical equilibrium without the presence of any body force is considered for 

polar coordinates in Figure C-2 (for spherical coordinates, the final form will differ by a factor of 

2), for simplicity, only normal stresses are considered here.  

 

Figure C-2: Mechanical equilibrium without body force in polar coordinates 

In the radial direction the mechanical balance will give rise to the following equation: 
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Assuming infinitesimally small element, the equation will simplify to 

 

   
2 41 3 2 2

0

d d
r d r d dr dr

drd

 

 
     



 
   

    (C.13) 
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 

0
rr

r r

  
 


 (C.15) 

For spherical coordinates, the equation is 

 
 

2 0
rr

r r

  
 


. (C.16) 

Equation (C.8), (C.9), (C.10), (C.11), and (C.16) constitute second order differential equation in u 

(given by equation (C.17)) which can be solved by posing two boundary conditions that u is zero 

at center and radial stress is zero at the radius of the particle (hint: substitute 2/u u r  to 

simplify).  

 

2

2 2

2 1
2

1 3

d du u v dc
u

r dr v drdr r

 
  


 (C.17) 

Following expressions are obtained for radial and tangential stresses after solving the equation 

(C.17). 
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