
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2007-4 

2007 

Configurable Component Middleware for Distributed Real-Time Configurable Component Middleware for Distributed Real-Time 

Systems with Aperiodic and Periodic Tasks Systems with Aperiodic and Periodic Tasks 

Yuanfang Zhang, Christopher Gill, and Chenyang Lu 

Many distributed real-time applications must handle mixed periodic and aperiodic tasks with 

diverse requirements. However, existing middleware lacks flexible configuration mechanisms 

needed to manage end-to-end timing easily for a wide range of different applications with both 

periodic and aperiodic tasks. The primary contribution of this work is the design, 

implementation and performance evaluation of the first configurable component middleware 

services for admission control and load balancing of aperiodic and periodic tasks in distributed 

real-time systems. Empirical results demonstrate the need for and effectiveness of our 

configurable component middleware approach in supporting different applications with periodic 

and aperiodic tasks. 

... Read complete abstract on page 2. Read complete abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Zhang, Yuanfang; Gill, Christopher; and Lu, Chenyang, "Configurable Component Middleware for 
Distributed Real-Time Systems with Aperiodic and Periodic Tasks" Report Number: WUCSE-2007-4 
(2007). All Computer Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/139 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/139?utm_source=openscholarship.wustl.edu%2Fcse_research%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/139 

Configurable Component Middleware for Distributed Real-Time Systems with Configurable Component Middleware for Distributed Real-Time Systems with 
Aperiodic and Periodic Tasks Aperiodic and Periodic Tasks 

Yuanfang Zhang, Christopher Gill, and Chenyang Lu 

Complete Abstract: Complete Abstract: 

Many distributed real-time applications must handle mixed periodic and aperiodic tasks with diverse 
requirements. However, existing middleware lacks flexible configuration mechanisms needed to manage 
end-to-end timing easily for a wide range of different applications with both periodic and aperiodic tasks. 
The primary contribution of this work is the design, implementation and performance evaluation of the 
first configurable component middleware services for admission control and load balancing of aperiodic 
and periodic tasks in distributed real-time systems. Empirical results demonstrate the need for and 
effectiveness of our configurable component middleware approach in supporting different applications 
with periodic and aperiodic tasks. 

https://openscholarship.wustl.edu/cse_research/139?utm_source=openscholarship.wustl.edu%2Fcse_research%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/139?utm_source=openscholarship.wustl.edu%2Fcse_research%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages


Department of Computer Science & Engineering

2007-4

Configurable Component Middleware for Distributed Real-Time Systems
with Aperiodic and Periodic Tasks

Authors: Yuanfang Zhang, christopher Gill and Chenyang Lu

Corresponding Author: {yfzhang, cdgill, lu}@cse.wustl.edu

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160



Configurable Component Middleware for Distributed Real-Time Systems with
Aperiodic and Periodic Tasks

Yuanfang Zhang, Christopher Gill and Chenyang Lu
Washington University, St. Louis, MO, USA

Abstract

Many distributed real-time applications must handle
mixed periodic and aperiodic tasks with diverse require-
ments. However, existing middleware lacks flexible config-
uration mechanisms needed to manage end-to-end timing
easily for a wide range of different applications with both
periodic and aperiodic tasks. The primary contribution of
this work is the design, implementation and performance
evaluation of the first configurable component middleware
services for admission control and load balancing of ape-
riodic and periodic tasks in distributed real-time systems.
Empirical results demonstrate the need for and effective-
ness of our configurable component middleware approach
in supporting different applications with periodic and ape-
riodic tasks.

1 Introduction

Many distributed real-time systems must handle a mix
of periodic and aperiodic tasks. Some aperiodic tasks have
end-to-end deadlines whose assurance is critical to the cor-
rect behavior of the system. For example, in an industrial
plant monitoring system, an aperiodic alert may be gener-
ated when a series of periodic sensor readings meets cer-
tain hazard detection criteria. This alert must be processed
on multiple processors within an end-to-end deadline, for
example to ensure that an industrial process is put into a
fail-safe mode. User inputs and sensor readings may trigger
various other real-time aperiodic tasks.

While there exist significant theoretical results on ape-
riodic scheduling [18], there is an increasing need to ap-
ply those results to the standards-based middleware that
is increasingly being used for developing distributed real-
time applications. In previous work we developed the first
middleware-layer online admission control service support-
ing both aperiodic and periodic end-to-end tasks [24]. How-
ever, an admission controller with a single fixed acceptance
strategy can not serve all applications well. Moreover, it is
difficult to configure our earlier middleware to support dif-

ferent admission control strategies. Changing the supported
strategy requires manually changing the code of the mid-
dleware, which is a challenging task due to the complex-
ity and rich features of standard-based middleware such as
TAO [11]. The lack of flexibility makes one implementation
suitable for a specific set of applications (i.e., our previous
implementation was targeted at a particular type of ship-
board computing environment), but not for others. This is
an important limitation given the extreme diversity of dis-
tributed real-time applications.

For an admission control service supporting, e.g., aperi-
odic utilization bounds [1], there are many possible strate-
gies, the effectiveness of which depends significantly on
workload characteristics and application requirements. For
end-to-end periodic tasks, one common strategy for admis-
sion control is to perform an admission test the first time a
periodic task arrives. Once a periodic task passes the admis-
sion test, all its jobs are allowed to be released immediately
when they arrive. This is the traditional reservation model
which is proper for critical periodic safety tests, such as oil
tank leak detection.

However, this strategy improves middleware efficiency
at the cost of increasing the pessimism of the admission test
when the aperiodic utilization bound analysis is used for
schedulability analysis, as the system effectively reserves a
portion of the utilization for each periodic task. If a periodic
task supports job skipping, such as when displaying non-
critical sensor data, so as to reduce that pessimism we may
perform the admission test for each job of the periodic task.
Making this choice configurable allows system developers
to choose the strategy that best suits their particular applica-
tion requirements. Another configurable strategy is whether
load balancing is performed. If more than one processor
can execute a task, we can assign tasks to different proces-
sors at run time to distribute the workload adaptively, which
may effectively increase the number of accepted tasks, but it
requires replicating application code (and possibly mecha-
nisms to maintain consistent states during task reallocation)
on multiple processors.

To enhance the flexibility of middleware support for di-
verse applications with aperiodic and periodic tasks, we



have developed a set of new admission control services and
load balancing services as configurable middleware compo-
nents. QoS-aware component middleware platforms, such
as CIAO [10], can be used to integrate these components to-
gether to form a component assembly for a particular appli-
cation with its own requirements. Furthermore, we provide
a new configuration pre-parser to help application develop-
ers easily configure these services to obtain desired behav-
ior.
Research Contributions: In this paper, we have (1) clas-
sified applications with both aperiodic and periodic end-to-
end tasks according to their characteristics and related them
to suitable admission control and load balancing strategies;
(2) developed what is to our knowledge the first example of
component middleware supporting multiple admission con-
trol and load balancing strategies for both aperiodic and pe-
riodic end-to-end tasks; (3) developed a novel component
configuration pre-parser and interfaces to select and config-
ure services and attributes flexibly at system deployment;
and (4) conducted empirical evaluations on a Linux testbed
which demonstrate the effectiveness of our approach in sup-
porting configurable services for both aperiodic and peri-
odic end-to-end tasks, efficiently in middleware. Our work
thus significantly enhances the flexibility and generality of
distributed real-time middleware for aperiodic and periodic
tasks.

Section 2 provides background information on aperi-
odic scheduling approaches and introduces the services pro-
vided by the CIAO and DAnCE middleware frameworks
which our work extends. Section 3 presents our component
middleware architecture, configurable strategies, and con-
figurable component implementations for supporting ape-
riodic task scheduling end-to-end in distributed real-time
systems. Section 4 describes our new configuration engine,
which can flexibly configure different strategies for our ser-
vices according to each application’s requirements. Sec-
tion 5 evaluates the performance of our approach. Finally,
we offer concluding remarks in Section 6.

2 Background

Aperiodic Scheduling: Schedulability analysis is essen-
tial for achieving predictable real-time properties. Aperi-
odic scheduling has been studied extensively in real-time
scheduling theory. Earlier work on aperiodic servers has in-
tegrated scheduling of aperiodic and periodic tasks [22, 19,
12, 20, 16, 17, 13, 4, 21], and new schedulability tests based
on aperiodic utilization bounds [1] and a new admission
control approach [3] were introduced recently. In [24], we
implemented and evaluated services for two suitable aperi-
odic scheduling techniques (aperiodic utilization bound [1]
and deferrable server [22]). Since aperiodic utilization
bound (AUB) has a comparable performance to deferrable

server, and requires less complex scheduling mechanisms
in middleware, we focus on the AUB scheduling technique
in this paper. Our experience with AUB shows how config-
urability of other scheduling techniques can be integrated
within real-time component middleware in a similar way.

We assume each aperiodic task has only one job, while
a periodic task releases jobs periodically. According to
AUB analysis [1], a system achieves its highest schedulable
synthetic utilization bound under the End-to-end Deadline
Monotonic Scheduling (EDMS) algorithm. Under EDMS,
a subtask has a higher priority if it belongs to a task with
a shorter end-to-end deadline. The subtasks of a given task
are synchronized by a greedy protocol, because AUB does
not require their inter-release times to be bounded. Note that
AUB does not distinguish aperiodic from periodic tasks. All
tasks are scheduled using the same scheduling policy. In
AUB, the set of current tasks S(t) at any time t is defined as
the set of tasks that have been released but whose deadlines
have not expired. Hence, S(t) = {Ti|Ai ≤ t < Ai + Di},
where Ai is the release time of the first subtask of task Ti,
and Di is the deadline of task Ti. The synthetic utilization
of processor j at time t, Uj(t), is defined as the sum of indi-
vidual subtask utilizations on the processor, accrued over all
current tasks. Under EDMS task Ti will meet its deadline if
the following condition holds [1]:

ni∑

j=1

UVij
(1 − UVij

/2)

1 − UVij

≤ 1 (1)

where Vij is the jth processor that task Ti visits.
To reduce the pessimism of the AUB analysis, a resetting

rule is introduced in [1]. When a processor becomes idle,
the contribution of all completed aperiodic subtasks to the
processor’s synthetic utilization is removed.

Component Middleware: Component middleware plat-
forms are an effective way of achieving customizable reuse
of software artifacts. In these platforms, components are
units of implementation and composition that collaborate
with other components via ports. Groups of related com-
ponents are connected together via their ports to form com-
ponent assemblies. The ports define components’ collabo-
rations in terms of provided and required interfaces, event
sources and sinks, or attributes. The ports isolate the com-
ponents’ contexts from their actual implementations. Com-
ponent middleware platforms configure and deploy compo-
nent assemblies, and provide execution environments and
common middleware services.

Conventional component middleware platforms do not
provide real-time quality of service (QoS) support. There
have been several efforts to introduce of QoS in distributed
systems. The FIRST Scheduling Framework (FSF) [2] pro-
poses to compose several applications and to schedule the



available resources flexibly while guaranteeing hard real-
time requirements. A real-time component type model [5],
which integrates QoS facilities into component containers
also was introduced based on the EJB and RMI specifica-
tions. A schedulability analysis algorithm [14] for hierar-
chical scheduling systems has been introduced for depen-
dent components which interact through remote procedure
calls. None of these approaches provides the configurable
services for mixed periodic and aperiodic end-to-end tasks
offered by our approach.

The Component-Integrated ACE ORB (CIAO) [10] is a
CORBA Component Model (CCM) implementation built
atop the TAO [11] real-time CORBA object request bro-
ker (ORB). CIAO supports real-time QoS by combin-
ing the flexibility of component middleware with the pre-
dictability of Real-time CORBA. CIAO abstracts DRE-
critical systemic aspects such as real-time policies, as in-
stallable/configurable units. However, CIAO does not sup-
port aperiodic task scheduling, admission control and load
balancing. We base our approach on CIAO to make config-
uring and managing aperiodic task support easier.

DAnCE [6] is a QoS-enabled component deployment
and configuration engine which is compliant with the OMG
Deployment and Configuration specification [15]. DAnCE
parses component configuration and deployment descrip-
tions and automatically configures ORBs, containers, and
component server resources at system initialization time, to
enforce end-to-end QoS requirements. DAnCE also sim-
plifies the configuration, deployment, and management of
common services used by applications and middleware,
such as naming and event services. However, DAnCE does
not provide tools to easily configure our admission control
and load balancing services.

3 Component Middleware Approach

3.1 Architecture Overview

To support end-to-end aperiodic and periodic tasks, we
have developed a new middleware architecture which ex-
tends CIAO to provide task management, and a front-end
configuration engine for DAnCE. The key feature of our ap-
proach is a configurable service framework that can be cus-
tomized for different sets of critical/non-critical and aperi-
odic/periodic tasks. Our framework is composed of admis-
sion controller (AC), idle resetting (IR) and load balancer
(LB) components which interact with application compo-
nents. The admission controller component provides on-
line admission control and schedulability tests for tasks that
arrive dynamically at run time. The load balancer compo-
nent provides a task assignment plan to the admission con-
troller, to which the admission controller applies its schedu-
lability analysis. The IR component reports all completed

subtasks on one processor to the AC component, so the AC
component can remove their expected utilization to reduce
the pessimism of the AUB analysis.

Figure 1 illustrates our distributed configurable compo-
nent middleware architecture. All processors are connected
by TAO’s federated event channel [9]. We deploy one AC
component and one LB component on a central task man-
ager processor, and one IR component and one task effector
(TE) component on each of multiple application processors.
As an example, Figure 1 shows an end-to-end task Ti com-
posed of 3 consecutive subtasks, Ti,1, Ti,2 and Ti,3, execut-
ing on other processors. Ti,1 and Ti,2 have duplicates on
different application processors. When task Ti arrives at an
application processor, the task effector component on that
processor pushes a “Task Arrived” event to the AC compo-
nent and holds the task until it receives an “Accept” com-
mand from the AC component. The AC component and
LB component decide whether to accept the task, and if so,
where to assign its subtasks. The solid line and the dashed
line show two possible assignments of subtasks. If the first
subtask Ti,1 is not assigned to the processor where Ti ar-
rived, we call this assignment Task Reallocation.

Task Manager

EC/ORB

AC

LB

Application
Processor 1

EC/ORB

T1,1

TE IR

Application
Processor 2

EC/ORB

T1,2

TE IR

Application
Processor 3

EC/ORB

T1,1

TE IR

Application
Processor 4

EC/ORB

T1,2

TE IR

Application
Processor 5

EC/ORB

T1,3

TE IR

Original
Component

Duplicate
Component

Original Task
Allocation

Task
Reallocation

Figure 1. Distributed Middleware Architecture

A key advantage of the centralized architecture is that it
does not require synchronization among distributed admis-
sion controllers. In contrast, in a distributed architecture the
AC components on multiple processors may need to coordi-
nate and synchronize with each other in order to make cor-
rect decisions, because admitting an end-to-end task may
affect the schedulability of other tasks located on the af-
fected processors. A potential disadvantage of the central-
ized architecture is that the AC component may become a
communication bottleneck and thus affect scalability. How-
ever, this is not a concern in systems in which processors
are connected by high-speed real-time networks. Further-
more, the computation time of the schedulability analysis is



significantly lower than task execution times in many high
performance real-time applications. In summary, while our
Admission Control component approach can be deployed in
a centralized or distributed fashion, we have focused first on
a centralized approach that has lower complexity and over-
head. As future work we plan to examine the benefits and
costs of decentralized admission control.

3.2 Applications Categories and Middle-
ware Strategies

Three criteria distinguish how different applications with
aperiodic tasks should be supported. C1: whether applica-
tion components are replicated on multiple processors. C2:
whether persistent state must be preserved between jobs.
C3: whether the application can tolerate job skipping.

According to these different application categories, the
AC, IR and LB components can be configured to use differ-
ent strategies. For each component, which strategy is more
suitable depends on these criteria and the application’s over-
head requirements. As we discuss in Section 5, experiments
we have run under different combinations of strategies can
provide valuable configuration guidance to application de-
velopers. Moreover, we have designed all strategies as con-
figurable component attributes, and provide a configuration
pre-parser and a component configuration interface, to al-
low developers to select and configure the service’s mecha-
nisms and attributes flexibly, according to each application’s
specific needs. We now examine the different strategies for
each component and the trade-offs among them.

3.2.1 Admission Control Strategies

Admission control offers significant advantages for
scheduling systems with aperiodic and periodic tasks, by
providing online schedulability guarantees to tasks arriv-
ing dynamically. Our AC component supports two differ-
ent strategies: AC per Task and AC per Job. AC per Task
performs that test whenever a task arrives while AC per Job
performs the admission test whenever a job of a task arrives.
AC per Task: Considering the admission overhead and the
fixed interarrival times of periodic tasks, one strategy is to
perform an admission test only when a periodic task first
arrives. Once a periodic task passes the admission test, all
its jobs are allowed to be released immediately when they
arrive. This strategy improves middleware efficiency at the
cost of increasing the pessimism of the admission test. In
the AUB analysis [1], the contribution of a job to the syn-
thetic utilization of a processor can be removed when the
job’s deadline expires (or when the CPU idles if the reset-
ting rule is used and the job has been completed). If admis-
sion control is performed only at task arrival time, however,
the AC component must reserve the synthetic utilization of

the task throughout its lifetime. As a result, it cannot reduce
the synthetic utilization between the deadline of a job and
the arrival of the subsequent job of the same task, which
may cause pessimistic admission decisions [1].
AC per Job: If it is possible to skip a job of a periodic task,
the alternative strategy to reduce pessimism is to apply the
admission test to every job of a periodic task. This strategy
is practical for many systems, since the AUB test is highly
efficient when used for AC, as shown in Section 5.3 for our
experiment results.

Thus, only applications satisfying criterion C3 are suit-
able for the second strategy. Moreover, the second strategy
reduces pessimism at the cost of increasing overhead. The
application developer thus needs to consider the tradeoff be-
tween overhead and pessimism when they decide the proper
configuration.

3.2.2 Idle Resetting Strategies

As presented in [1, 24], the use of a resetting rule can reduce
the pessimism of the AUB schedulability test significantly.
There are three ways to configure IR components in our ap-
proach.
No IR: The first strategy is to use no resetting at all, so that
if the subtasks complete their executions, the contribution
of completed jobs to the processor’s synthetic utilization is
not removed until the task deadline. This strategy avoids the
resetting overhead, but increases the pessimism of schedu-
lability analysis.
IR per Task: The second strategy is that each IR compo-
nent records completed aperiodic subtasks on one proces-
sor. Whenever the processor is idle, a lowest priority thread
called an idle detector begins to run. Its main job is to report
the completed aperiodic jobs to the AC component through
an “Idle” event. To avoid reporting repeatedly, the idle de-
tector only reports when there is a new completed aperiodic
job whose deadline has not expired.
IR per Job: The third strategy is that each IR component
records and reports not only the completed aperiodic sub-
tasks but also the completed jobs of periodic subtasks.

The first of these three strategies avoids the resetting
overhead, but is the most pessimistic. The third strategy re-
moves the contribution of completed aperiodic and periodic
tasks more frequently than other two strategies. Although
it has the least pessimism, it introduces the most overhead.
The second strategy is a tradeoff between the first and the
third strategies.

3.2.3 Load Balancing Strategies

Under AUB-based AC, Load balancing can effectively im-
prove system performance in the face of dynamic task ar-
rivals [1]. We use a heuristic algorithm to assign subtasks
to processors at run-time, which always assigns a subtask



to the processor with the lowest synthetic utilization among
all processors with its replicas. 1 Since migrating a subtask
between processors introduces extra overhead, when we ac-
cept a new task, we only decide the load balancing issue for
this new task and do not change the assignment plan for any
other task in the current task set. This service also has three
strategies.
No LB: The first strategy does not perform load balancing.
Each subtask is assigned to particular processor.
LB per Task: Each task will only be assigned once at its
first arrival time. This strategy is suitable for applications
which must maintain persistent state between any two con-
secutive jobs of a periodic task.
LB per Job: The third strategy is the most flexible one.
All jobs from a periodic task are allowed to be assigned to
different processors when they arrive.

The first strategy is more suitable for applications which
can not satisfy criterion C1. The second strategy is most
applicable for applications which only satisfy C1, but can
not satisfy criterion C2. The third strategy is most suitable
for applications which satisfy both C1 and C2.

3.2.4 Combining AC, IR and LB Strategies

When we use the AC, IR and LB components together,
their strategies can be configured in 18 different combina-
tions. However some combinations of the strategies are in-
valid. The AC-per-Task/IR-per-Job combination is not rea-
sonable, because per job idle resetting means the synthetic
utilizations of all completed jobs of periodic subtasks are
to be removed from the central admission controller, but
per task admission control requires that the admission con-
troller reserves the synthetic utilization for all accepted peri-
odic tasks, so an accepted periodic task does not need to go
through admission control again before releasing its jobs.
These two requirements are thus contradictory, and we can
exclude the corresponding configurations as being invalid.
Removing this invalid AC/IR combination means remov-
ing 3 invalid AC/IR/LB combinations, so there are only 15
reasonable combinations of strategies left. The advantage
of our middleware architecture and configuration engine is
that they allow application developers to configure middle-
ware services to achieve any combination of strategies.

3.3 Component Implementation

Configurable component middleware standards, such as
the CORBA Component Model (CCM), can help to re-
duce the complexity of developing large distributed ap-
plications by defining a component-based programming

1The focus here is not on load balancing algorithms. Our configurable
middleware may be easily extended to incorporate other load balancing
algorithms according to each application’s needs.

paradigm. They also help by defining a standard configura-
tion framework for packaging and deploying reusable soft-
ware components. The Component Integrated ACE ORB
(CIAO) [23] is an implementation of CCM that is specifi-
cally designed and optimized for distributed real-time em-
bedded (DRE) systems. To support the different strate-
gies described in Section 3, and to allow flexible config-
uration of suitable combinations of those strategies for a
variety of applications, we have integrated admission con-
trol, idle resetting and load balancing into CIAO as con-
figurable components. Each component provides a specific
service with configurable attributes and clearly defined in-
terfaces for collaboration with other components, and can
be instantiated multiple times with the same or different at-
tributes. Component instances can be connected together
at run time through appropriate ports to form a distributed
real-time application. As shown in Figure 2, we have de-
signed and implemented 6 configurable components to sup-
port distributed real-time aperiodic and periodic tasks end-
to-end in CIAO. The implementation using C++ language
is based on ACE/TAO/CIAO version 5.5.1/1.5.1/0.5.1.
Task Effector: holds the arriving tasks, waits for the AC
component decision and releases tasks.
First/Intermediate Subtask: executes the first or an inter-
mediate subtask at a given priority.
Last Subtask: executes the last subtask at a given priority.
Idle Resetting: records and reports the completed subtasks
when a processor goes idle.
Admission Control: decides whether to accept tasks.
Load Balancing: computes task allocations so as to bal-
ance the processors’ synthetic utilizations.

Each component may have several configurable at-
tributes, so that it can be instantiated with different prop-
erties, like its criticality and execution time (for applica-
tion components) or its strategy (for AC, IR and LB com-
ponents). Our admission control and load balancing ap-
proaches adopt a centralized architecture, which employs
one instance of an Admission Control component and one
instance of a Load Balancing component running on a cen-
tral processor (called the “Task Manager”).

Each application processor contains one instance of a
Task Effector component and one instance of an Idle Re-
setting component. The Task Effector component on each
processor reports the arrival of tasks on that processor to
the Admission Control component which then releases or
rejects the tasks based on the admission control decision.
The Idle Resetting component on each application proces-
sor records and reports the completed subtasks on that pro-
cessor to the Admission Control component, whenever that
processor goes idle. Each end-to-end task is implemented
by a chain of First/Intermediate Subtask components and
one Last Subtask component. Figures 1 and 2 show the
structure of, and relationships among, these components.



Location

Complete

Complete

Release

Accept

Task
Arrive

Real-Time ORB

Federated EC Federated EC

AC
Effec

tor
F/I

Subt
Last
Subt

IR

LB

Component

Container

Event
Source/Sink

Receptacle/Facet

Release Trigger

Idle Resetting

Figure 2. Component Implementation

Task Effector Component: When a task arrives, the Task
Effector component puts it into a waiting queue and pushes
a “Task Arrival” event to the AC component. When it re-
ceives an “Accept” event from the AC component, a task
waiting in the queue will be released immediately. The Task
Effector component has two configurable attributes. One is
a processor ID, which is used to distinguish Task Effector
component instances deployed on different processors. The
other is the AC-per-job/AC-per-task attribute, which indi-
cates whether periodic tasks are admitted per job or per task.
If the periodic tasks are admitted per job, then before releas-
ing any job of a periodic task the Task Effector component
will hold it until receiving an “Accept” event from the AC
component. Otherwise, once a job of a periodic task is ad-
mitted, the AC component reserves CPU capacity for it, so
all subsequent jobs from that same periodic task can be re-
leased immediately without going through the AC compo-
nent again. These attributes can be set at the creation of the
component instances and may be modified at run time.
First/Intermediate (F/I) Subtask Component and Last
Subtask Component: Both the F/I and Last Subtask com-
ponents execute application subtasks. The only differ-
ence between these two kinds of components is that the
First/Intermediate Subtask Component has an extra port that
publishes “Trigger” events to initiate the execution of the
next subtask. The Last Subtask Component does not need
this port, since the last subtask does not have a next sub-
task. Both of these kinds of components contain a dispatch-
ing thread which executes a particular subtask at a spec-
ified priority. Both kinds of components have three con-
figurable attributes. The first two attributes are execution
time and priority level, which are normally set at the cre-
ation of the component instances as specified by applica-
tion developers. The third attribute is No-IR, IR-per-task,
or IR-per-job, which means the resetting rule either is not
enabled or is enabled per task or per job respectively. Per-
task means the Idle Resetting Component will not be no-
tified when periodic subtasks complete. Since each job of
an aperiodic task can be treated as an independent aperi-
odic task with one release, the idle resetting component is

notified when aperiodic subtasks complete. The dispatch-
ing threads in a First/Intermediate Subtask Component or
a Last Subtask Component are triggered by either a “Re-
lease” method call from the Task Effector Component or a
“Trigger” event from a previous First/Intermediate Subtask
Component. Both First/Intermediate Subtask and Last Sub-
task components call the “Complete” method of the local
Idle Resetting component when a subtask completes.
Idle Resetting (IR) Component: It receives “Complete”
method calls from local First/Intermediate or Last Subtask
components, and pushes ”Idle Resetting” events to the Ad-
mission Control component. It has one attribute, the proces-
sor ID, which is used to distinguish the component instances
sitting on different processors.
Admission Control (AC) Component: It consumes “Task
Arrival” events from the Task Effector components and
“Idle Reset” events from the Idle Resetting components.
It publishes “Accept” events to the Task Effector compo-
nents to allow task release. It makes “Location” method
calls on the Load Balancing component to ask for proposed
task assignment plans. The Admission Control component
has an No-LB/LB-per-task/LB-per-job attribute, which in-
dicates whether load balancing is turned on or off, and if it
is enabled whether it is per task or per job. If that attribute is
set to T, once a periodic task is admitted, its subtask assign-
ment is decided and kept for all following jobs. However,
aperiodic tasks do not have this restriction as they are only
allocated at their single job arrival time. A value of J means
the subtask assignment plan can be changed for each job of
an accepted task.
Load Balancing (LB) Component: It receives “Location”
method calls from the AC component, which ask for as-
signment plans for particular tasks. The Load Balancing
component tries to balance the synthetic utilization among
all processors, and may modify a previous allocation plan
when a new task is accepted. It returns an assignment plan
that is acceptable and attempts to minimize the difference of
synthetic utilizations on all processors after accepting that
task. Alternatively, the LB component may tell the AC com-
ponent that the system would be unschedulable if the task
were accepted.

4 Deployment and Configuration

Although we have designed our configurable compo-
nents specifically for developers who want middleware sup-
port for aperiodic scheduling, it is still not easy for an ap-
plication developer to assemble and deploy those compo-
nents correctly by hand. Therefore, we have automated
the deployment and configuration of these components us-
ing standards-based component middleware techniques in
CIAO. CIAO’s realization of the OMG’s Deployment and
Configuration specification [15] is called the Deployment



and Configuration Engine (DAnCE) [6]. DAnCE can trans-
late an XML-based assembly specification into the execu-
tion of deployment and configuration actions needed by an
application. Assembly specifications are encoded as de-
scriptors which describe how to build distributed applica-
tions using available component implementations. Infor-
mation contained in the descriptors includes the number of
processors, what component implementations to use, how
and where to instantiate components, and how to connect
component instances in an application.

It is error prone for an application developer to write
those descriptors by hand. Although tools such as CoS-
MIC [8] are provided to help generate those XML files,
those tools do not consider the configuration requirements
of the new services we have created. We therefore provide
a specific configuration engine that acts as a front-end to
DAnCE, to configure our aperiodic scheduling services for
application developers who require configurable aperiodic
scheduling support in component middleware.

<instance id="Central-AC">
   .......
   <configProperty>
      <name>LB_Strategy</name>
      <value>
         <type>
            <kind>tk_string</kind>
          </type>
          <value>
             <string>PT</string>
          </value>
      </value>
      </configProperty>
  </instance>

Config

Workload

Configuration
Engine

XML-based
deployment

plan

Parse the
plan

Component Repository

Deploy components on each node

Select

Create
component

server

Create
Container

Deployment::
NodeImpleme
ntationInfo

AC PT
IR  PT
LB PT

Deployment::
DeploymentPlanDAnCE

Plan
Launcher

DAnCE
Execution
Manager

Front End

DAnCE
Node

Manager
Node

Application
Manager

set_configura
tionDAnCE

Node
Application

Container

Figure 3. Dynamic Configuration Process

Front-end Configuration Engine: As is shown in Fig-
ure 3, the application developer first provides two text files.
One is a configuration file, which consists of the configu-
ration requirements for the admission control, idle resetting
and load balancing services. The other is a workload file
which describes each end-to-end task and where its sub-
tasks execute. Our front-end configuration engine parses
these two files, then generates an XML-based deployment
plan, which can be recognized by DAnCE. As an exam-
ple, Figure 3 shows a configuration file which sets the AC,
IR and LB services to per-task (PT). Figure 3 also shows a
part of the XML file generated by our configuration engine,
which shows the LB strategy (LB Strategy) as PT.

To enforce end-to-end deadline monotonic scheduling,
the First/Intermediate Subtask and Last Subtask compo-
nents both expose an attribute called “priority”. When our
configuration engine reads the workload file, it assigns pri-
orities in order of tasks’ end-to-end deadlines, and writes
this priority information into the generated XML deploy-
ment plan, to be parsed by DAnCE later. Our front-end
configuration engine not only generates well formed assem-
bly specifications, according to the application developers’
instructions, but it also performs a feasibility check on the
configuration file, to ensure correct handling of dependent
constraints. For example, per task admission control with
per job idle resetting would be contradictory as we men-
tioned in Section 3. Since a developer might specify incom-
patible service configuration combinations, our approach
can detect and disallow them. Finally, if no configuration
file is provided or it omits configuration information, the
system will use default configuration settings, i.e., per task
admission control, idle resetting and load balancing.
DAnCE: We have used the <configproperty> feature of
DAnCE to extend the set of attributes configured flexibly
according to other configuration settings. For example, if
the load balancing service is configured using the per-task
strategy, the corresponding property of the AC component
should also be set to per-task.

DAnCE’s Plan Launcher parses the XML-based deploy-
ment plan and stores the property name (LB Strategy) and
value in a data structure (Property) which is a field of the
AC instance definition structure. The definitions of the AC
instance and all other component instances comprise a de-
ployment plan (Deployment::DeploymentPlan) that is then
passed to DAnCE’s Execution Manager for execution. The
Execution Manager propagates the deployment plan data
structure to DAnCE’s Node Application Manager, which
parses it into an initialization data structure (NodeImple-
mentationInfo). Finally, the Node Application Manager
passes the initialization data structure to the Node Appli-
cation. When the Node Application installs the AC compo-
nent instance, it also initializes the LB Strategy attribute of
the AC component through a standard Configurator inter-
face (set configuration), using the initialization data struc-
ture it received.

5 Experimental Results

To validate our approach, and to evaluate the perfor-
mance, overheads and benefits resulting from it, we con-
ducted a series of experiments which we describe in this
section. The experiments were performed on a testbed con-
sisting of six machines connected by a 100Mbps Ethernet
switch. Two are Pentium-IV 2.5GHz machines with 1G
RAM and 512K cache each, two are Pentium-IV 2.8GHz
machines with 1G RAM and 512K cache each, and the other



two are Pentium-IV 3.40GHz machines with 2G RAM and
2048K cache each. Each machine runs version 2.4.22 of
the Redhat Linux operating system. One of the Pentium-IV
2.5GHz machines is used as a central task manager where
the admission control and load balancing components are
deployed. The other five machines are the application pro-
cessors on which task effector, subtask and idle resetting
components are deployed.

5.1 Random Workloads

We first randomly generated 10 sets of 9 tasks, each in-
cluding 4 aperiodic tasks and 5 periodic tasks. The number
of subtasks per task is uniformly distributed between 1 and
5. Subtasks are randomly assigned to 5 application proces-
sors. Task deadlines are randomly chosen between 250 ms
and 10 s. The periods of periodic tasks are equal to their
deadlines. The arrival of aperiodic tasks follows a Poisson
distribution. The synthetic utilization of every processor is
0.5, if all tasks arrive simultaneously. Each subtask is as-
signed to a processor, and has a duplicate sitting on a dif-
ferent processor which is randomly picked from the other 4
application processors.

In Section 3, we showed 15 reasonable combinations of
strategies. In this experiment, we only evaluated the five
most representative combinations of strategies, ran 10 task
sets using each combination and compared them. The other
10 reasonable combinations can be evaluated in a similar
way using our configurable components. In the following
figures, a three element tuple denotes a combination of set-
tings for the three configurable services. The first element
refers to the admission control service. The second element
refers to the idle resetting service. The third element refers
to the load balancing service.

0

0.2

0.4

0.6

0.8

1

T_N_N T_T_N T_T_T T_T_J J_J_J

A
ve

ra
g

e 
ac

ce
p

te
d

 u
ti

liz
at

io
n

 r
at

io
 o

f 
al

l a
cc

ep
te

d
 t

as
ks

Figure 4. Accepted Utilization Ratio

The performance metric we used in these evaluations is
the accepted utilization ratio, i.e., the total utilization of
jobs accepted by the admission controller divided the total
utilization of all jobs requesting admission. To be concise,
we use capital letters to represent strategies.

N: a service is not enabled in this configuration.
T: a service is enabled for each task.
J: a service is enabled for each job of a task.

The bars in Figure 4 show the average results over the 10
task sets. As is shown in Figure 4, enabling either the idle
resetting service or the load balancing service can increase
the utilization of tasks admitted. Moreover, the experiment
shows that enabling all three services per job (J J J) sig-
nificantly outperforms the configuration which enables the
three services per task (T T T), even though the J J J con-
figuration introduces more overhead. We also notice the
difference is small when we only change the configuration
of the load balancing component from per task to per job
and keep the configuration of other two services the same.
This is because when we randomly generate these 10 task
sets, the synthetic utilization of each processor is similar.
That feature of our first experiment greatly reduced the im-
provement due to the load balancing component since the
original task set is well balanced. To show the potential
benefit of the Load Balancing component, we designed an-
other experiment which we describe in the next section.

5.2 Imbalanced Workloads

In the second experiment, we use an imbalanced work-
load. It is representative of dynamic systems in which a
subset of the system may experience heavy load. For ex-
ample, the arrival of a large number of targets may cause
sharp increase of the load on the target recognition subsys-
tem. In this experiment, we divided the 5 application pro-
cessors into two groups. One group contains 3 processors
hosting all tasks. The other group contains 2 processors
hosting all duplicates. 10 task sets are randomly generated
as in the above experiment, except that all subtasks were
randomly assigned to 3 application processors in the first
group and the number of subtasks per task is uniformly dis-
tributed between 1 and 3. The synthetic utilization for any
of these three processors is 0.7. Each subtask has one du-
plicate sitting on one processor in the second group.

For the experimental runs represented by the three bars
in the middle of Figure 5, we kept the admission control and
the idle resetting strategies the same (per task), but changed
the load balancing strategy from none to per task, then to
per job. 10 task sets were run 3 times for the 3 different
combinations, and for each combination we then averaged
the utilization acceptance ratio over the 10 results. As fig-
ure 5 shows, load balancing per task provides a significant
improvement when compared with the results without load
balancing. However there is not much difference between
load balancing per task and load balancing per job.

From the above two experiments, we found that appli-
cation characteristics can really impact the performance of
different strategies. Our design of the AC, IR and LB ser-



0

0.2

0.4

0.6

0.8

1

T_N_N T_T_N T_T_T T_T_J J_J_J

A
ve

ra
g

e 
ac

ce
p

te
d

 u
ti

liz
at

io
n

 r
at

io
 o

f 
al

l a
cc

ep
te

d
 t

as
ks

Figure 5. Load Balancer Strategy Compari-
son

vices as easily configurable components allows application
developers to select configurations based on the characteris-
tics and requirements of their applications, and these results.

5.3 Overhead of Services

To evaluate the efficiency of our component-based mid-
dleware services, we used 3 processors to run applications
and another processor to run the admission control service
and load balancing components. The workload is randomly
generated in the same way as described in Section 4, except
that the number of subtasks per task is uniformly distributed
between 1 and 3. Each experiment ran for 5 minutes. We
examined the different sources of overhead that may occur
when a task arrives at Task Effector component TE1, af-
ter which AC and LB components run it from component
TE1 or re-allocate it to Task Effector component TE2. Fig-
ure 6 shows how the total delay for each service includes the
costs of operations located in several components. Table 1
lists the operation numbers shown in Figure 6 to provide
a detailed accounting of the delays resulting from different
combinations of services.

TE1

1

5

AC
LB

3

4

2

2

IR
7

8

TE2

6

2

2

1. hold the task, push event
2. communication delay
3. generate the deployment plan
4. apply the admission test

5. release the task
6. release the duplicate task
7. report completed subtask
8. update synthetic utilization

Figure 6. Sources of Overhead/Delay

mean max
AC without LB (1+2+4+2+5) 1114 1248
AC with LB (1+2+3+4+2+5) 1116 1253
(no re-allocation)
AC with LB (1+2+3+4+2+6) 1201 1327
(re-allocation)
LB (no re-allocation) (1+2+3+2+5) 1113 1250
LB (re-allocation) (1+2+3+2+6) 1198 1309
IR (on AC side) (8) 17 18
IR (other part) (7+2) 662 683
Communication Delay (2) 322 361

Table 1. Overhead of Services (µs)

To calculate the delays for AC without LB, AC with LB
without re-allocation and LB without re-allocation, we can
simply calculate the interval between when one task arrives
on a processor and when the task is released on the pro-
cessor. However, if the load balancing service re-allocates
the first subtask on a different processor using its duplicate,
as in the case of AC with LB, it is difficult to determine a
precise time interval between when one task arrives on one
processor and when it is released on another processor, be-
cause like many of the systems for which our approach is
suitable, our experiment environment does not provide suf-
ficiently high resolution time synchronization among pro-
cessors. We therefore measure the overheads on all involved
processors individually, then add them together plus twice
the communication delays (step 2 in Figure 6) between the
processors. Three processors are involved: the processor
where the task arrives (step 1), the central admission con-
trol processor (steps 3 and 4) and the other processor where
the duplicate task is released (step 6). We ran this exper-
iment on KURT-Linux [7] version 2.4.22, which provides
a CPU-supported timestamp counter with nanosecond reso-
lution. By using instrumentation provided with the KURT-
Linux distribution, we can obtain a precise accounting of
operation start and stop times and communication delays.
To measure the communication delay between the applica-
tion processor and the admission control processor on our
experimental platform, we pushed an event back and forth
between the application processor to the admission control
processor 1000 times, then calculated the mean and max
value among 1000 results. We then divided the round trip
time by 2 to obtain the approximate mean and maximum
communication delays between the application processor
and the admission control processor.

The total delay for the load balancing service, when re-
allocation happens, is measured in the same way as for the
case of AC with LB with reallocation. To calculate the de-
lay from the idle resetting service, we divide its execution
into two parts. The small overhead on the admission con-
trol processor must be counted in the overall delay. How-



ever, the large overhead on the application processor and the
communication delay only happen during CPU idle time,
and although it represents an additional overhead induced
by the IR service, it does not affect performance, which is
why we report the two parts separately in Table 1. From the
results in Table 1, we can see that all of the delays induced
by our configurable components are less than 2 ms, which
is acceptable to many distributed real-time system environ-
ments. However for applications with tight schedules, a de-
veloper can make decisions on how to configure the services
based on this delay information as well as on the effects of
the different configurations on task management, which we
discussed in Section 3.2.3.

6 Conclusions

The work presented in this paper represents a promis-
ing step toward developing configurable admission control
and load balancing support for different kinds of distributed
applications with aperiodic and periodic tasks in real-time
component middleware. We have designed and imple-
mented effective configurable middleware components that
provide online admission control and load balancing and
can be easily configured and deployed on different proces-
sors. Our configuration engine can automatically process
the user’s configuration file and generate a corresponding
deployment plan for DAnCE, thus making it easier for de-
velopers to select suitable configurations, and to avoid in-
valid ones. Empirical results we obtained showed that (1)
our configurable component middleware are well suited for
satisfying different applications with a variety of alterna-
tive characteristics and requirements and (2) our component
middleware services are highly efficient on a Linux plat-
form.

References

[1] T. F. Abdelzaher, G. Thaker, and P. Lardieri. A Feasible
Region for Meeting Aperiodic End-to-end Deadlines in Re-
source Pipelines. In ICDCS, 2004.

[2] M. Aldea, G. Bernat, I. Broster, A. Burns, R. Dobrin, J. M.
Drake, G. Fohler, P. Gai, M. G. Harbour, G. Guidi, J. J.
Gutiérrez, T. Lennvall, G. Lipari, J. M. Martı́nez, J. L. Med-
ina, J. C. Palencia, and M. Trimarchi. FSF: A Real-Time
Scheduling Architecture Framework. In RTAS, 2006.

[3] B. Andersson and C. Ekelin. Exact Admission-Control for
Integrated Aperiodic and Periodic Tasks. In RTAS, 2005.

[4] R. I. Davis, K. Tindell, and A. Burns. Scheduling slack time
in fixed priority preemptive systems. In RTSS, 1993.

[5] M. A. de Miguel. Integration of QoS Facilities into Compo-
nent Container Architectures. In ISORC, 2002.

[6] G. Deng, D. C. Schmidt, C. Gill, and N. Wang, editors. QoS-
Enabled Component Middleware for Distributed Real-Time
and Embedded Systems. CRC Press. to appear.

[7] Douglas Niehaus, et al.. Kansas University Real-Time
(KURT) Linux. www.ittc.ukans.edu/kurt/, 2004.

[8] A. Gokhale. Component Synthesis using Model Integrated
Computing. www.dre.vanderbilt.edu/cosmic,
2003.

[9] T. H. Harrison, D. L. Levine, and D. C. Schmidt. The design
and performance of a real-time CORBA event service. In
Proceedings of OOPSLA, 1997.

[10] Institute for Software Integrated Systems.
Component-Integrated ACE ORB (CIAO).
www.dre.vanderbilt.edu/CIAO/, Vanderbilt University.

[11] Institute for Software Integrated Systems. The ACE ORB
(TAO). www.dre.vanderbilt.edu/TAO/, Vanderbilt Univer-
sity.

[12] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced ape-
riodic responsiveness in a hard real-time environment. In
RTSS, 1987.

[13] J. P. Lehoczky and S. R. Thuel. An optimal algorithm for
scheduling soft-aperiodic tasks in fixed-priority preemptive
systems. In RTSS, 1992.

[14] J. L. Lorente, G. Lipari, and E. Bini. A Hierarchical
Scheduling Model for Component-Based Real-Time Sys-
tems. In WPDRTS, 2006.

[15] Object Management Group. Deployment and Configuration
Specification, OMG Document ptc/2003-07-02 edition, July
2003.

[16] S. Ramos-Thuel and J. P. Lehoczky. On-line scheduling of
hard deadline aperiodic tasks in fixed-prioriry systems. In
RTSS, 1993.

[17] S. Ramos-Thuel and J. P. Lehoczky. Algorithms for schedul-
ing hard aperiodic tasks in fixed priority systems using slack
stealing. In RTSS, 1994.

[18] L. Sha and et. al. Real Time Scheduling Theory: A Histori-
cal Perspective. The Journal of Real-Time Systems, 10:101–
155, 2004.

[19] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions for some
practical problems in prioritizing preemptive scheduling. In
RTSS, 1986.

[20] B. Sprunt, L. Sha, and L. Lehoczky. Aperiodic task schedul-
ing for hard real-time systems. The Journal of Real-Time
Systems, 1(1):27–60, 1989.

[21] M. Spuri and G. Buttazzo. Scheduling Aperiodic Tasks in
Dynamic Priority Systems, Real-Time Systems. The Journal
of Real-Time Systems, 10(2), 1996.

[22] J. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable
server algorithm for enhanced aperiodic responsiveness in
real-time environments. IEEE Transactions on Computers,
44(1):73–91, 1995.

[23] N. Wang, C. Gill, D. C. Schmidt, and V. Subramonian. Con-
figuring Real-time Aspects in Component Middleware. In
Proc. of the International Symposium on Distributed Objects
and Applications (DOA’04), Agia Napa, Cyprus, Oct. 2004.

[24] Y. Zhang, C. Lu, C. Gill, P. Lardieri, and G. Thaker. Middle-
ware Support for Aperiodic Tasks in Distributed Real-Time
Systems. In RTAS, 2007. to appear.


	Configurable Component Middleware for Distributed Real-Time Systems with Aperiodic and Periodic Tasks
	Recommended Citation
	Configurable Component Middleware for Distributed Real-Time Systems with Aperiodic and Periodic Tasks

	tmp.1415913124.pdf.YGn0L

