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ABSTRACT OF THE THESIS

A Framework for Temperature Imaging using the Change in Backscattered

Ultrasonic Signals

by

Yuzheng Guo

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, 2009

Research Advisor: Professor R. Martin Arthur

Background Hyperthermia is a cancer treatment that elevates tissue temperature

to 40 to 44oC. It would benefit from a non-invasive, safe, inexpensive and convenient

thermometry to monitor heating patterns. Ultrasound is a modality that meets these

requirements. In our initial work, we proposed an approach to temperature imaging

(TI) using the change in the backscattered energy (CBE). The agreement between

predicted and measured CBE from in-vitro experiments showed that CBE is a po-

tential parameter for TI. To date, CBE has been computed in a straightforward, but

ad hoc manner. We developed and explored a mathematical representation for our

approaches to TI to optimize temperature accuracy and spatial resolution.

Methods Non-thermal effects of noise and motion confound the use of CBE. As-

suming additive white Gaussian noise, we looked at the dependence of CBE on SNR

and applied signal averaging and thresholding to images from both simulations and

experiments. Our motion compensation algorithms were also applied to simulated
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images and images obtained in null experiments with known motion. The effects of

interpolation methods and signal sampling rate on motion compensation were investi-

gated. In the development of the framework, temperature imaging was modeled as a

problem of estimating temperature from the random processes resulting from thermal

changes in signals. CBE calculated as the ratio of energies was formalized as a ratio

between two random variables. Mutual information (MI) was studied as an example

of the parameters for temperature imaging based on the joint distribution of the two

random variables in the ratio. Furthermore, a maximum likelihood estimator (MLE)

was developed. The MI and MLE approaches were applied both to simulated images

and to experimental data.

Results Results from both simulations and experiments showed that noise effects

were reduced by signal averaging. The motion compensation algorithms proved to be

able to compensate for motion in images and were improved by choosing appropriate

interpolation methods and sample rates. For images of uniformly distributed scatter-

ers, CBE and MI can be computed independent of SNR to improve the accuracy of

temperature estimates. The application of MLE also showed improvements in tem-

perature accuracy compared to the energy ratio from the signal mean in simulations.

Their application to experimental data requires more work to implement noise reduc-

tion approaches in 3D heating experiments with current imaging instrumentation.

Conclusions The framework identified ways in which we were able to reduce the

effects of both noise and motion. The framework formalized our approaches to tem-

perature imaging, improved temperature accuracy in simulations, and can be applied

to experimental data if the noise reduction approaches can be implemented for 3D

experiments.
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Chapter 1

Introduction

1.1 Non-invasive Thermometry for Hyperthermia

The interest in thermal therapies, such as hyperthermia and high intensity focused

ultrasound (HIFU), is growing in recent years. Hyperthermia is a treatment for tumor

which increases tissue temperature to 40 to 43oC [107]. It was also employed as an

adjunct treatment with traditional therapies, such as chemotherapy and radiotherapy,

to improve their performance [72, 68, 104]. During the hyperthermia treatment, it is

desired to deliver adequate heat to the target and keep normal tissue intact. It is,

however, difficult to control the heat delivery without enough information of tissue

temperature, because of the variation of the tissue properties and the diffusion [63, 28].

Temperature is currently measured invasively at sparse locations using thermocouples,

which does not provide continuous thermal distribution in tissue volumes [103].

In order to guide the delivery of the heat to the tumors, an accurate, non-invasive,

convenient, economical and safe thermometry is desired. Various non-invasive ther-

mometries have been developed based on electrical impedance tomography (EIT),

microwave, magnetic resonance imaging (MRI) and ultrasound. Among these modal-

ities, EIT based method is able to detect high temperature change, but is not accurate

enough in the hyperthermia range [78, 73]. Microwave radiometry type of methods

do not have good spatial resolution when applied to deep targets [78, 64]. MRI

based method is popular due to its good temperature accuracy and spatial resolution

[63, 28]. It is however constrained by its high cost[78], and the difficulty in cooper-

ation with heating instruments. Comparing to other methods, ultrasound is a safe,

cheap and convenient modality.
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Heating tissue leads to changes in the backscattered signals because of the tempera-

ture dependence of speed of sound (SOS), attenuation, and backscatter properties of

the tissue [4]. Several parameters have been used in ultrasound based thermometries

including attenuation, echo shift due to the change in SOS and the tissue thermal ex-

pansion, and the change in backscattered energy (CBE). It is found that attenuation

does not change significantly in the hyperthermia range [4]. Estimating temperature

from echo shift requires prior knowledge of the temperature dependence on the change

in SOS and tissue thermal expansion [93, 87, 74, 108, 47]. In addition, tissue motion

may lead to loss of the tracking of the echo shift [93]. Our group developed a method

using the change in backscattered energy.

Our long term goal is to develop a method to measure 3D temperature distribution

within 0.5oC in 1 cm3 volumes using backscattered ultrasonic signals [4]. In an initial

investigation, Straube and Arthur developed a theoretical CBE model for single scat-

terers by normalizing the backscattered power relative to the power reflected at the

reference temperature [85, 92]. It approximated the CBE for single scatters as ratio

between the backscatter coefficients at current and reference temperatures. Using

this model, Arthur etc predicted that CBE may increase or decrease monotonically

with temperature depending on scatterer type, denoted by positive CBE (PCBE) and

negative CBE (NCBE), respectively [92]. In later 1D and 2D experimental studies

with various types of tissue, CBE was computed as a ratio between images at cur-

rent and reference images [3, 7]. Monotonic variation of the measured PCBE and

NCBE with temperature confirmed the theoretical predictions [3, 7]. These initial

results demonstrated the temperature dependence of CBE and supported our idea of

developing CBE based non-invasive thermometry for hyperthermia.

Although the results in our initial work showed that CBE is a potential parameter

for temperature imaging, our approach is not formalized. To date, computation and

characterization of CBE are straight forward, but somewhat ad hoc. It is desired

to develop and exploit a mathematical representation for our approaches to temper-

ature imaging to optimize temperature accuracy and spatial resolution. We would

also pursue other possible approaches than estimating temperature directly from the

energy ratio. These works may form a framework for temperature imaging using the

change in backscattered signals. For simplicity, this first framework for TI considered

only thermal changes in the signals. To apply it to experimental data, non-thermal

2



effects in signals, such as that caused by noise and motion in the images, should be

reduced.

In our initial work, it was found that noise and motion in images led to spurious CBE,

which caused estimation error. A study using the simulation tool showed that the

slope of the CBE curves changed with noise level in the images [103]. We, however,

do not know how spurious CBE depends on signal to noise ratio (SNR) and if SNR

in images can be increased with current experimental setup. Similarly, we had no

information of how much spurious CBE may be caused by motion. Previously, the

apparent motion in images has been tracked and compensated for 2D images [7].

However, without the knowledge of the true motion and true CBE, we were not able

to evaluate how well the motion was compensated, how much spurious CBE was

left, and what are factors affecting spurious CBE reduction. Noise and motion are

common problems in temperature imaging. Application of the framework could also

be affected by noise and motion. We investigated, in this work, the approaches to

reducing the effects of noise and motion.

Our long term goal of measuring 3D temperature distribution within 0.5oC in 1 cm3

requires us to be able to acquire 3D images. This capability is also necessary for 3D

motion compensation. In this study, we will build a 3D imaging system for heating

experiments.

1.2 Objectives of the Dissertation

To our knowledge, there is no framework exists for temperature imaging using the

change in backscattered signals. The work in this dissertation is the first step of devel-

oping such a framework, and may be an important step towards the systematization

of temperature imaging using CBE. The objectives of this study are listed below.

1) To create a framework for temperature estimation with CBE. Here we

1) model temperature imaging via a probabilistic framework, 2) formalize computa-

tional methods for CBE, 3) develop procedures for precise computation of CBE and

accurate estimation of temperature, and 4) employ approaches using changes in the

backscattered signals other than the energy ratio.
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2) To Construct a 3D imaging platform for measuring CBE in heating

experiments. The capability of acquiring 3D data is important, since our goal is to

develop temperature estimator for 1cm3 volumes, and it would enable us to correct for

out-of-plane motion in the images. We will build the platform to: a) keep temperature

drifting < ±0.1oC and maintain thermo-equilibrium within the tissue during data

acquisition, b) reduce physical motion of the tissue and the thermocouples.

3) To Improve the CBE based temperature imaging by

a) Investigating the dependence of spurious CBE on SNR and approaches to noise

reduction by signal averaging using simulation tool,

b) Investigating the dependence of spurious CBE on motion, evaluating the motion

compensation algorithms, and studying factors affecting motion compensation.

4) To Verify the methods developed in Aim 3 for experimental data. a)

Verify the dependence of spurious CBE on SNR and noise reduction using loops of

tissue images acquired in null experiments (no temperature change). b) Conduct

null experiments and add known motion in images. Evaluate the performance of the

motion compensation algorithms and the factors affecting the performance as in Aim

3.

1.3 Organization of the Dissertation

Chapter 2 introduces the background of this work. Chapter 3 presents approaches

to reducing noise and motion effects for improving CBE based temperature imaging.

Chapter 4 introduce the development of our 3D heating experiment system. Then, the

approaches proposed in chapter 3 are verified using experimental data in Chapter 5.

In Chapter 6, we model the temperature imaging problem and develop mathematical

representation for our CBE based approaches to temperature imaging. Applications of

the mutual information and a maximum likelihood estimator for temperature imagign

are investigated in Chapter 7. Feasibility of applying the framework to experimental

data is discussed in Chapter 8. Chapter 9 concludes the work.
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Chapter 2

Ultrasonic Thermometry

Thermal therapies, such as hyperthermia and high intensity focused ultrasound (HIFU),

have attracted more interests in recent years. Hyperthermia is a tumor treatment

which increases tissue temperature to 40 to 43oC, which is cytotoxic to tumor cells due

to the lack of blood perfusion [107]. It also improved, when combined with chemother-

apy and radiotherapy, the performance of traditional treatments [72, 68, 104]. Tu-

mor temperature and treatment time are two important factors affecting the therapy

performance[68]. Therefore, a precise feedback of temperature distribution in tissue

is important for therapy control, such that enough heat can be delivered to tumor

while normal tissue is protected.

Tissue temperature is, however, currently measured invasively at sparse locations.

Practical clinic application of hyperthermia requires non-invasive, accurate, safe and

convenient thermometry. Researchers have proposed techniques using MRI [43, 19,

42], electrical impedance tomography (EIT)[73], microwave radiometry[64] and ultra-

sound. Although MRI based method has been proven to meet required temperature

accuracy and spatial resolution [28, 63], it is limited by its high cost and the difficulty

of being compatible with the heating equipments [78, 1, 65]. EIT method does not

have enough for temperature resolution[78]. Microwave radiometry type of methods

does not have good spatial resolution when applied to deep target[78].
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2.1 Ultrasound-Based Methods

Comparing to other approaches, ultrasound based methods are low-cost, portable

and safe with required temperature accuracy and spatial resolution and simple signal

processing[87, 1]. The ultrasound based thermometry can be ranged into three types

[4]: (1) those based on the acoustic attenuation, (2) those based on echo shift due to

the change in the speed of sound (SOS) and the thermal expansion in tissue, (3) those

based on the change in the backscattered energy (CBE). These methods make use of

the change in the backscattered signals caused by the thermal effect on attenuation,

SOS and the backscatter properties of the tissue [4].

Ultrasonic attenuation was reported to change with temperature. Damianou et al

studied the temperature dependence of ultrasonic attenuation in dog tissue over the

range from room temperature to 70oC [25]. Their result showed a significant change

in attenuation when temperature was above 50oC and reached the maximum at 65oC.

Similar results were found for human prostate at discrete temperature levels [113]. It

was also found that ultrasonic attenuation, measured at room temperature, changed

obviously before and after heating [23, 96]. Some researchers reported significant

changes in attenuation coefficient during 22 to 37oC [66, 98]. The change in at-

tenuation also varied with treatment duration and tissue type [106]. Straube and

Arthur found that the attenuation had little effect on backscattered energy over the

hyperthermia range [4].

The speed of sound has been studied as a primary temperature dependent ultra-

sound parameter [4, 11, 37, 65, 46, 70]. It was found to vary monotonically with

temperature depending on the tissue type [18, 76, 9]. Methods for measuring SOS

can be categorized as transmission based and pulse-echo based approaches [71]. They

required complicated implementation to achieve adequate accuracy [71, 58], such as

a good access from wide angles, or an identifiable target in the tissue, or usage of

cross-beam [71]. In addition, the change in SOS in some medium are not significant

for temperature estimation [65]. These difficulties might be the reasons for SOS not

being used for temperature estimation in clinics.
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Thermal effects, such as the change in SOS and tissue thermal expansion, lead to

displacement between the backscattered signals [4, 61, 77]. Seip and Ebbini intro-

duced a frequency domain technique to estimate temperature using the change in the

resonance frequency, which was assumed to be proportional to the average scatterer

spacing and vary linearly with temperature [77]. The power spectrum density (PSD)

was estimated by an auto-regressive (AR) model, whose order is difficult to be de-

termined [87]. Amini et al improved the estimation of the resonance shift using a

high-resolution spectral analysis technique [1].

Seip et al, then, proposed a time domain approach, which assumed that the echo

shift depends on the change in temperature nearly linearly [78, 79]. In a study of

temperature estimation for HIFU, Maass-Moreno and coworkers considered both the

change in SOS and the thermal expansion in tissue and modeled the echo shift as an

approximate linear function of the temperature [61, 62, 60]. They found that the effect

of thermal expansion is small. It may be ignored in the range of hyperthermia [2, 22].

The feasibility of echo shift based method was demonstrated in experiments with gel

phantom and in-vitro bovine liver in two-dimension [87, 86, 74], and with phantom in

three dimensions [2]. Temperature was also estimated during in-vivo radiofrequency

ablation (AFR) [108]. Sun and Ying pointed out that echo shift based methods

required prior knowledge of the temperature dependence of the change in SOS and

of the thermal expansion coefficients in tissue [93]. For accurate measurement of

temperature distribution, these parameters need to be estimated from calibrations

[87, 74, 108, 47]. Another difficulty was caused by the tissue motion during the

heating, which may lead to the loss of the tracks of echoes [93].

Our method belongs to the third type, which makes use of the temperature depen-

dence of the backscatter properties of the tissue. Details will be presented below.

2.2 Methods Based on Change in Backscattered

Energy

Our approach for temperature estimation uses the change in the backscattered en-

ergy. Straube and Arthur developed a theoretical model for the CBE from individual
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scatterers [92]. They normalized the backscattered power [85] from tissue with re-

spect to the power at a reference temperature and thus eliminated parameters that

do not depend on temperature. The backscattered power can be expressed as [85]

Pr(T ) =
2H2δ

8R4α(T )
η(T )S

(
1− e−2α(T )c(T )τ

)×
[
eα(T )c(T )δ − e−α(T )c(T )δ

2α(T )c(T )δ

]
, (2.1)

where H/R and δ are the amplitude and duration of the insonifying sinusoidal burst,

respectively [92]; R is the distance between the tissue and the transducer; α is the

attenuation; c(T ) is the speed of the sound and η(T ) is the backscattered coefficient.

The normalized backscattered power, i.e., the change in the backscattered power was

approximated as a ratio between backscatter coefficients at current temperature, T ,

and a reference temperature, T0. Since we usually compute the energy of a signal, the

change in the backscattered power, i.e., the energy per unit time, is denoted as the

change in backscattered energy, the CBE. The backscatter coefficient was assumed to

be proportional to the scattering cross section of a subwavelength scatterer. According

to this model, the temperature dependence of CBE is approximately due to the change

in SOS and the change in the density of the scatterers and the medium [92]

CBE(T ) = [α(T0)/α(T )][η(T )/η(T0)]
1− e−2α(T )x

1− e−2α(T0)x

∼= η(T )/η(T0)

=
(ρmc(T )2m−ρsc(T )2s

ρsC(T )2s
)2 + 1

3
(3ρs−3ρm

2ρs+ρm
)2

(ρmc(T0)2m−ρsc(T0)2s
ρsc(T0)2s

)2 + 1
3
(3ρs−3ρm

2ρs+ρm
)2

,

(2.2)

where ρm and ρs are density of the medium and scatter respectively, x the the length

of the tissue. Using this model, we predicted that CBE may increase or decrease

with temperature, depending on the type of scatterers. The increase and decrease in

CBE, denoted by positive and negative CBE, respectively, are shown in the left plot

of Fig.2.1.

In their 1D study, Arthur and coworkers measured CBE with temperature from speci-

mens of bovine liver, turkey breast, and pork muscle [3]. Measured CBE varied almost

monotonically with temperature as predicted by the above model. In a subsequent

study, Arthur et al made 2D measurements of CBE from the same types of tissue
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Figure 2.1: (Left) Predicted CBE for single sub-wavelength lipid and aqueous
scatterers in an aqueous medium. (Right) Means of measured CBE in positive and
negative regions of images in four specimens of bovine liver, two of turkey breast,

and one of pork muscle.

specimens during in-vitro heating experiments [7]. CBE was calculated by taking ra-

tio at each pixel between images at each temperature and the reference. Positive CBE

(PCBE) was computed as mean of ratios larger than 1 and negative CBE (NCBE)

as mean of ratios less than 1. Variation of PCBE and NCBE were consistent with

the results of the prediction and the 1D study. These results confirmed the temper-

ature dependence of CBE and supported the idea of using CBE as a parameter for

temperature imaging.

Although there is no need for prior knowledge of tissue property and the change in

SOS with temperature [3], CBE needs to be calibrated to infer temperature [4]. This

calibration and thus CBE based temperature imaging are, however, limited by the

dependence of CBE on non-thermal factors, such as the noise and the motion in the

images [4, 103]. In a study using simulation tool, Trobaugh et al found that the slope

of CBE curves varied with signal to noise ratio (SNR). The variation of CBE slope

with SNR may impose difficulty in calibrating CBE. In this work, we studied the

dependence of the spurious CBE on SNR and motion.
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2.3 Motion in Images

The dependence of CBE on motion, is a limitation of CBE based method [4]. It is also

a common problem in other temperature imaging approaches [5, 41, 30, 44, 94, 27].

Various techniques have been developed for tracking motion in ultrasonic images.

Doppler based technique was popular in assessing tissue motion, especially for the

blood flow measurement [41]. Kasai et al estimated the mean Doppler frequency shift

using the autocorrelation method for measuring blood flow velocity [48]. Loupas et

al improved this method by evaluating both mean Doppler frequency and RF center

frequency[57]. Doppler based methods, however, require the tissue in motion during

data acquisition [41] and has difficulty in measuring lateral velocity due to its angle

dependence [111, 12, 95].

Time domain cross correlation based methods started to be widely used around mid

1980’s to early 1990’s [34, 36, 33, 15, 39, 40]. Underlining principle of cross correlation

based methods lies in the fact that, the echo shift or time delay can be determined by

the peak location of the cross correlation function between two successively received

signals. The peak usually falls between the grid due to sub-sample motion. Location

of true peak can be found by up-sampling the signal with intensive computation load

[30, 59], or fitting the curve near the peak of the discrete cross correlation function

[41, 36, 54, 56]. Motion in axial direction can also be estimated by examining the phase

information of the complex cross correlation between two analytical signals [57, 59].

Chen et.al extended this approach for lateral motion estimation by introducing a

synthetic phase in lateral [21]. Ferrara et al proposed a maximum likelihood estimator

for blood velocity considering the shifts in both time and frequency domain[35].

Non-rigid motion leads to signal de-correlation [114, 55]. Kybic and Unser modeled

non-rigid motion using B-spline functions [53]. Motion in the images was then de-

tected by finding the optimal estimation of the B-spline parameters that minimized

the sum of squared difference (SSD) between two images. Ledesma-Carbayo et al

used this method for estimating motion in 2D echo-cardiography images [55].

As introduced above, motion, or echo shift, was used for temperature inference. How-

ever, when tissue motion occurred, we may loss the track of thermal induced echo
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shift. Therefore, in our study, instead of estimating temperature from echo shift, we

compensated the motion in images such that CBE can be computed at each pixel over

the whole image. This enabled us to use statistical properties of CBE and improve

the temperature accuracy.

In our 1D study, strong scattering regions were manually isolated and CBE were

measured from the selected scattering sites [3]. In the 2D study, the apparent motion

was tracked and compensated by a block-matching approach. For each region, 2D

motion was estimated by maximizing the cross correlation between RF signals at

successive temperatures [7] and was accumulated relative to the reference image.

Shifted images were then transformed by the estimated motion [7]. This method

was successful for rigid motion in small regions. Later on, our group developed an

algorithm for estimating and compensating non-rigid motion over large regions. The

motion field was modeled to vary linearly over the region of interest and represented

as a linear function of the motion at the control points chosen as the points at the

corners of the region. Motion was estimated by searching the displacements at the

control points that maximizes the cross correlation of two images. For a sequence of

images obtained in experiments, motion was estimated for adjacent images using the

optimization functions in MATLAB and accumulated to the reference. We, however,

were not able to evaluate the performance of the motion compensation, since the true

motion and true CBE were unknown. We also had no information about the motion

dependence of CBE. More studies are desired and rely on the simulation platform.

2.4 Statistic Models of Ultrasonic Signals

To our knowledge, no work has been done for temperature imaging based on statis-

tical models of ultrasound images. We believe that thermal change in backscattered

ultrasonic signals must lead to changes in their statistical model. These models may

enable us to describe our problem in a mathematical form and to create a framework

for temperature imaging using the change in backscattered signals.

Various statistic models of ultrasound B-scans have been developed for tissue charac-

terization. These models made use of the complex representation the backscattered
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ultrasonic signals [110]. When the scatterers are uniformly distributed with high con-

centration, the backscattered signals contain fully-developed speckles [110]. Under

this situation, the number of phasors in the complex representation is large and the

phases of the element phasors are uniformly distributed between 0 and 2π. Accord-

ing to the central limit theorem, the real and imaginary components of the complex

model can be represented, approximately, by independent Gaussian random variables

with zero mean and the same variance. The envelope of the complex representation

follows Rayleigh distribution [110, 10].

When the backscattered signals contain specular echoes from periodically distributed

scatterers or isolated strong scatterers, the real and imaginary components of the

complex representation can be modeled as Gaussian random variables with different

means [109, 105]. Then, B-scan signals are known as post-Rayleigh and can be

described by Rician or generalized Rician distribution which encompasses Rayleigh

distribution [109, 105, 81].

The Gaussian assumption does not hold when: 1) the scattering cross sections vary

widely or scatterers are not uniformly distributed although the scatterers number is

large [69, 84, 80, 67]; 2) the scatterer population is low such that the resolution cell

of the transducer contains limited number of scatterers [69, 112, 84, 29]. Signal under

these conditions were modeled by the K distribution. It was generalized to more

complicated Homodyned K distribution to handle more general scattering situation

including periodically distributed scatterers [80, 29].

Shankar proposed a model based on Nakagami distribution for ultrasound B-scans

to account for more general scattering conditions [81, 82, 83]. Comparing to the K

distribution, parameters of Nakagami distribution can be easily estimated from the

moments of the envelope signals. A generalized Nakagami model was then proposed

including an additional parameter to Nakagami distribution for better fit to observed

data histograms [82]. It was in fact equivalent to the generalized Gamma distribu-

tion [82, 90]. Recently, Eltoft proposed a Rician inverse Gaussian (RiIG) distribution

for envelope-detected images based on similar physical motivation to that of the K

distribution [31, 32]. The real and imaginary components of the complex representa-

tion were considered to be normal inverse Gaussian(NIG). The RiIG model has four

parameters which provides more flexibility to fit the data histograms.

12



2.5 Significance

Our initial work has confirmed temperature dependence of CBE, which encouraged

the usage of CBE for temperature imaging. Our approaches may, however, be lim-

ited by CBE dependence on non-thermal changes in teh signals, e.g., those caused

by noise and motion. Reduction of non-thermal effects in signals, i.e., spurious CBE,

is significant for accurate temperature imaging. Furthermore, ultrasonic backscat-

tered signals are random signals, whose statistical properties are affected by thermal

change in the signals. Therefore, modeling temperature imaging via a probabilistic

framework will make us be able to investigate our problem using more developed

tools in signal processing. These tools could help us not only pursuing approaches

for estimating temperature but also see the insight of the problem. We could also

benefit from the framework in handling non-thermal effects, e.g., computing CBE

independent of SNR. On the other hand, when the effects of noise and motion can be

handled, we can assume that only thermal changes exist in signals. This assumption

makes the development of the framework easier, during which only thermal effects

are considered. In other words, the reduction of noise and motion effects and the

framework can benefit each other. In addition, estimating temperature using CBE

as a ratio suggested by Eq.2.2 is only one attempt to temperature imaging, which

may not be the optimal one. We believe building a framework could help us to seek

approaches other than the energy ratio and finally find an optimal thermometry for

hyperthermia.
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Chapter 3

Improvement of CBE-based

Temperature Imaging

As claimed in the first chapter, the main objective of this work was to create a

framework for temperature imaging using change in the backscattered signals. For

temperature imaging using CBE, it is desired that changes in backscattered signals

depend only on temperature. The framework developed in this work was based on

this assumption. Hence, before starting this framework, we will first evaluate the

reduction of non-thermal signal changes, such as that caused by noise or motion, in

backscattered ultrasonic signals, which was found to impact CBE measurement and

may impact the framework. CBE based temperature imaging can be improved by

limiting these non-thermal effects. In addition, reduction of these non-thermal effects

will also make our further development of the framework easier. For example, if signal

change due to motion after compensation is much less than the thermal effect, we

may ignore the impact of motion in the development of the framework.

In our initial work, it was found that the slope of CBE curves changed with noise

level, i.e. signal to noise ratio (SNR) [103]. We also observed a ”jump” at 37.5oC

in CBE curves computed from experiment data [7]. In this chapter, we investigate

how CBE varies with SNR and approaches to reducing noise by signal averaging and

thresholding. Noise reduction was performed on simulated images and real tissue

image corrupted by known noise.

Motion in images, due to the change in speed of sound or tissue movement, also

leads to spurious CBE [3, 7]. Dr. Trobaugh in our group developed a correlation

based algorithm to correct the apparent motion in the images, which was extended
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for 3D images. In this chapter, using the simulation tools, we also investigate how

large the spurious CBE may be caused by motion and what factors may influence the

performance of our motion compensation algorithm.

3.1 Use of the Discrete-Scatterer-Model Simula-

tion Tool for Ultrasonic Thermometry

To study the effect of noise and motion on CBE, it is necessary to have knowledge

of noise level and true motion. This information can not be obtained easily from

experimental data. In this study, we rely on the simulation tool described in [103],

which is based on a linear physical model for image formation and a discrete tissue

model. The image formation was represented as a convolution of the imaging system

point spread function (PSF) and the tissue model [103]

|i(r, T )| = |h(r) ∗ q(r, T )| (3.1)

where i(r, T ) is the complex representation of the temperature dependent RF image,

h(r) is the PSF of the imaging system, and q(r, T ) is the reflectivity of the tissue,

which was represented as a discrete model

q(r, T ) =
Nr∑

k=1

qi(T )δ(r− ri) , (3.2)

where qi(T ) is the reflectivity and ri is the position of the ith scatterer.

Simulations follow the approach as described in [101, 102]. The system point-spread

function (PSF) is assumed to be a spatially-invariant Gaussian pulse with 7M Hz

center frequency, 0.2mm and 1mm full-width half-maximum beam width in axial and

lateral respectively. Scatterers were uniformly distributed unless noted otherwise.

Baseline values of SNR, image size and population were 29dB, 1×3cm2 and 2:1 Na/Nl

ratio, where Na and Nl are the numbers of aqueous and lipid scatterers, respectively.

The scatterers were uniformly distributed over the image region. Images at various

SNR’s were generated by adding Gaussian noise at different levels to simulated tissue
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image. Motion in images was implemented by changing the location of the scatterers.

Rigid motion was implemented by moving all scatterers in the same direction by the

same distance. Non-rigid motion was implemented by changing scatterer position by

a distance linearly dependent on the scatterer’s initial positions.

3.2 Reduction of Spurious CBE due to Noise

3.2.1 CBE with SNR

In this work, noise was assumed to be Gaussian with zero mean additive to the RF

images. Suppose s1 and s2 are acquired RF images of the same tissue sample with

noise in two captures, then they can be represented as

s1 = irf + n1 , (3.3)

s2 = irf + n2 , (3.4)

where irf is the RF signal backscattered from the tissue, n1 and n2 are the noise in

the signals.

To illustrate variation of CBE with SNR, images of uniformly distributed scatterers

were simulated at SNR’s ranging from 15dB to 45dB at 1dB intervals, covering the

observed SNRs of experimental data. At each SNR, a tissue image without noise

was first created, then two noise images were generated at same level and added to

the tissue image. Ratio of the two resulting noisy images was computed and PCBE

& NCBE were calculated as the mean of ratio values larger than and less than one,

respectively. Twenty five trials were generated for all SNR’s. CBE curves from both

methods are plotted in Fig.3.1.

In the following chapters, the signal ratio is considered as the ratio between random

variables. The ratio distribution can be computed analytically for signals from uni-

formly distributed scatterers, which was assumed in the simulations. In this case, we

can show the dependence of the ratio distribution and thus CBE on SNR theoretically,
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Figure 3.1: CBE computed using the ratio PDF and from simulated images at
various SNRs.

when signal change is caused only by noise:

fZ(z) =
2 (µ1+1)(µ2+1)

µ1µ2

(
1− µ1µ2

(µ1+1)(µ2+1)

)(
µ2+1

µ2
+ µ1+1

µ1
z2

)
z

[(
µ2+1

µ2
+ µ1+1

µ1
z2

)2

− 4z2

] 3
2

, (3.5)

where z represents the ratio, fZ(z) is the probability density function of z, µ1 and

µ2 represent signal to noise ratio of s1 and s2, respectively. Details of the derivation

of this result can be found in Appendix D. CBE with SNR was predicted using the

above equation and plotted in Fig.3.1. It can be seen that CBE curves from simulated

images and the prediction are close to each other. Both curves decrease monotonically

to 0.1 ∼ 0.15dB for an SNR of 45dB.

Removal of Outliers in the Ratio

In Fig.3.1, PCBE from simulated images is slightly larger than the theoretical result

from PDF when SNR is less than 25dB. This outcome occurs because the influence of

noise is greater on weak signals and produces ”outliers” in the ratio computation. In

order to remove the ”outliers”, we developed a thresholding strategy. In the reference
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Figure 3.2: CBE with SNR computed using the ratio PDF and from simulated
images with and without thresholding.

envelope image, pixels with value below given threshold are regarded as weak signals

and ignored in the ratio computation. The threshold is determined according to

the mode of the image histogram, the value which occurs most frequently. Here, the

threshold was chosen to be 21dB below the mode. At this threshold value, CBE curves

from simulated images match the CBE curves based on the theoretical prediction as

seen in Fig. 3.2.

When ”weak signals” are removed by thresholding, CBE curves from simulated images

are consistent with the theoretical result. It is worth noting that ”thresholding” is an

ad hoc method because the determination of the threshold was done by trial and error.

From the above figures, we see that the ”outlier” effect is small when SNR is large.

Since noise is assumed to be additive white Gaussian noise, SNR can be increased

by signal averaging. Signal averaging and thresholding are discussed further in the

following sections.
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Figure 3.3: B-mode image of turkey breast from the Terason 3000 system.

3.2.2 Reduction of Noise via Signal Averaging and Thresh-

olding

In order to demonstrate the increase of SNR and thus decrease of spurious CBE by

signal averaging, we added known noise to an image of turkey breast, which was

considered as the ”true signal”, i.e., the signal without noise. Fig.3.3 shows an image

of the tissue sample.

In Chapter 5, noise effects are reduced by averaging frames in a loop obtained by

the Terason 3000 ultrasonic imaging system, described in Chapter 4. The typical

number of frames in a Terason loop is 156 for our experiments. To be consistent with

our experiments, the procedure for adding noise was repeated 156 times to generate

156 images with SNRs of 25dB, which were then averaged. It is expected that SNR

would increase and thus CBE would decrease with the number of frames used in the

average. Fig.3.4 shows SNR with the number of frames in the average, which can be

predicted by ”initial SNR + 10*log10(number of frames)”, as the noise is independent.

Measured SNR matched the prediction very well.

The corresponding decrease in CBE is illustrated in Fig. 3.5. Because of weak signals,

both positive and negative CBE are larger than the prediction in Fig.3.1. In addition,

the PCBE curve is not smooth. We removed the weak signals with the thresholding

procedure. Resulting CBE curves are smooth and closer to the prediction. We would

point out that the CBE computed with the thresholding procedure was not expected

to be the same as the prediction in Fig.3.1, because the prediction was made with the
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Figure 3.4: Increase of SNR with number of frames used in signal averaging.

assumption of uniformly distributed scatterers while the image of turkey breast was

from non-uniformly distributed scatterers. It is difficult to find the ratio distribution

of signals from non-uniformly distributed scatterers, which is necessary for predicting

CBE with SNR. Details are discussed in Chapters 6 and 8.

In the above result, instead of 21dB, the threshold was set to 6dB below the histogram

mode. That is, the threshold is higher than the results from simulated images. This

change was necessary because in the true image of a tissue sample, scatterers are not

uniformly distributed, so that local SNR varies over the tissue region. As shown in

Fig. 3.3, top left and bottom right region contain large amount of weak signals that

need to be removed. In Fig. 3.6, a few of the weak signals can be identified when the

threshold was 21dB, while most of weak signals were found when threshold was 6dB.
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Figure 3.5: CBE with SNR when known noise is added to the image.
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Figure 3.6: Weak signals selected by different thresholds. Left: threshold is 21dB.
Right: threshold is 6dB.
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3.3 Reduction of Motion-induced Spurious CBE

Motion is a common confounding issue in non-invasive tissue temperature imaging

[5, 41, 30, 44, 94, 27]. In our group’s initial work, apparent motion in the 1D and

2D images was corrected manually and by a block-matching method, respectively

[3, 7]. These results are encouraging for reducing motion-induced spurious CBE. Dr.

Trobaugh developed a cross correlation based algorithm for tracking non-rigid motion

in 2D images which was extended for 3D motion estimation in this work. We were,

however, not able to evaluate the performance of motion compensation without the

knowledge of true motion and actual CBE in experiments. In this study, we relied

on the simulation tool developed by Dr. Trobaugh [100, 103] to examine the motion

correction algorithm. First, effects of motion on CBE, i.e. spurious CBE induced by

motion, was inspected. Performance of algorithms to reduce motion-induced CBE was

evaluated for simulated images with temperature change and using motion observed

in experiments.

3.3.1 Use of Motion Estimation Algorithms

The non-rigid motion compensation algorithm developed by Dr. Trobaugh is briefly

described below.

Let f1(x) and f2(x) = f1(x + ∆x) be the reference and shifted images respectively,

where x,∆x ∈ R2 or R3 are the coordinate and the motion in it. Our goal is to

find an estimate of the motion, ∆̂x, such that f1(x + ∆̂x) is as close to f2(x) as

possible. The similarity between the two images is measured by their correlation:

C(f1(x), f2(x)) =
∑

x f1(x)f2(x)√
(
∑

x f2
1 (x)

∑
x f2

2 (x))
.

∆̂x was modeled to vary linearly over the image region, such that it is a linear function

of the motion at the control points, which were chosen as the points at the corners of

the image: ∆̂x = g(∆x1, ...,∆xn), where n is the number of control points. Then, our

goal of finding ∆̂x is equivalent to searching for the best estimate of ∆x1, ...,∆xn to

maximize correlation. This procedure is a multi-variable optimization problem with
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the correlation as the cost function:

(∆̂x1, ..., ∆̂xn) = argmax(∆x1,...,∆xn)C(f1(x + ∆̂x), f2(x))

We used the build-in function in Matlab to solve it.

The above algorithm was used to correct for the motion in the images from 3D heating

experiments. In each experiment, a sequence of ultrasound RF images was obtained

at various temperatures, and motion between adjacent pair of images was estimated

and accumulated relative to the reference image. Fig. 3.7 shows 2D frames at various

temperatures from experiment TC111 before motion compensation. Apparent motion

can be seen between images. Fig. 3.8 shows the motion field in 3D by the arrows at

the control points of the tissue volume. The direction of the arrows represents the

direction of motion, the length of the arrows represents the magnitude of the motion.

It is clear that the motion was non-rigid and increased with temperature. Fig. 3.9

shows the same frames of Fig. 3.7 after motion compensation. The motion in the

images is seen to be compensated. These results visually proved that our motion

estimation is correct and can be used as true motion in simulations.

3.3.2 Motion-induced CBE

In this subsection, we investigate the effect of motion on CBE. In other words, how

much spurious CBE may be produced by motion. Rigid and non-rigid motion in both

axial and lateral directions were implemented in simulated images without tempera-

ture change. Motion-induced spurious CBE was then computed without compensat-

ing for the motion in these images. As shown in Fig.3.10, both PCBE and NCBE

increased to a limit with the rigid motion.

For signals from uniformly distributed scatterers such as those in the simulations,

work in following chapters shows that CBE is a function of the correlation between

two signals in the ratio. When changes in signals are caused only by motion, CBE with

motion can be studied as CBE with signal correlation that decreases with motion. Fig.

3.11 shows the prediction of CBE with correlation. When motion is large enough such

that the two signals are completely uncorrelated, PCBE and NCBE can be shown to
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Figure 3.7: Frames at various temperatures from TC111 before motion
compensation. Apparent motion can be seen clearly in the boxes.
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3D region is obviously non-rigid.
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Figure 3.9: Frames at various temperatures from TC111 after motion compensation.
The patterns in the boxes show that motion was compensated correctly.
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Figure 3.10: Left: CBE increases to a limit with rigid axial motion. Right: CBE
increases to a limit with rigid lateral motion.

be PCBE = 1 + π
2

or 8.2dB and NCBE = π
2
− 1 or -4.87dB. Details can be found in

Appendix E. This prediction is consistent with simulation and shows that the CBE

is caused by de-correlation due to motion.

As in Fig. 3.12, CBE also increased with the non-rigid motion. When the signals are

uncorrelated due to large motion, PCBE and NCBE keep changing slightly. This is

because non-rigid motion causes changes in the signal variance of the shifted image,

σ2
rf2, that is, the Rayleigh parameter y2 varies with motion.

3.3.3 Reduction of Motion-induced CBE

We have seen that motion may cause large spurious CBE since the signals are de-

correlated. In this section, we see that spurious CBE can be reduced after compensat-

ing for motion. In order to investigate the performance of spurious CBE reduction, we

simulated images with temperature change, along with non-rigid motion values seen

in heating experiments. As an example, Fig.3.13 shows non-rigid motion detected in

heating experiment TC111, which is the ”true” motion implemented in simulations.

Motion in both axial and lateral direction increased with temperature and varied with

location. Motion detected from other experiments was also simulated as true motion.
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Figure 3.11: CBE variation with correlation computed from the ratio distribution.

Simulations used the baseline settings from experiments as described above, except

for SNR which was set to 43dB so that we can ignore spurious CBE caused by noise.

Fig.3.14 shows the error in motion estimation from simulations based on TC111. CBE

computed before and after motion compensation was compared to the CBE without

motion, i.e., to CBE due to temperature change. This result is plotted in Fig.3.15.

Mean and standard deviation of the residual spurious CBE after motion correction

of all simulations is plotted in Fig.3.16.

As shown in the above figures, large spurious CBE was reduced to the level of CBE

without motion, after motion was compensated, although there was still residual

spurious CBE. An impression from Figs. 3.15 and 3.16 is that residual spurious

CBE was reduced with temperature, with its accompanying additional motion. The

increasing error in motion estimation shown in Fig. 3.14, however, implies an increase

in residual spurious CBE.

This conflict can be explained by thermal change in the signals, which overwhelms

other changes in the signals when temperature change is large, and thus CBE without

motion dominates spurious CBE. When temperature change is small, change in signals

mostly resulted from uncompensated motion effects, so that spurious CBE dominates.
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Figure 3.12: Top left: CBE increases with tissue expansion in the axial direction.
Top right: CBE increases with tissue expansion in the lateral direction. Bottom left:
CBE increases with tissue compression in the axial direction. Bottom right: CBE

increases with tissue compression in the lateral direction.
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Figure 3.13: Motion detected in heating experiment TC111.
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Figure 3.14: Error in motion estimation in simulations based on motion from TC111.
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Figure 3.15: CBE computed before and after motion compensation compared to
CBE without motion. The amount of motion introduced was based on TC111
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Figure 3.16: residual spurious CBE with cubic interpolation. Mean ± standard
deviation of all simulations.

To illustrate this interpretation, we simulated images with motion based on TC111 but

without temperature change. CBE computed before and after motion compensation

is plotted in Fig. 3.17. Notice that the x axis is ”pseudo” temperature since we did

not implement temperature change, but implemented the motion with temperatures

as detected in TC111 and shown in Fig.3.13. Residual spurious CBE after motion

compensation slightly increased with motion error as expected.

Effect of Interpolation and Sampling Rate on Motion Compensation

The above results show that motion-induced spurious CBE can be reduced by com-

pensating for motion. Residual spurious CBE after motion correction, however, may

still be as large as 1−1.5dB as shown in Fig. 3.16. Residual spurious CBE may result

from: 1) error in motion estimation and 2) inaccuracies in image transformation for

motion compensation. Previously, we have shown visually that motion in the images

can be estimated correctly. Here we consider another cause of residual spurious CBE,

the inaccuracy in image transformations.
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Figure 3.17: CBE before and after motion compensation with cubic interpolation
compared to CBE without motion. No temperature change was implemented. The

X-axis is the temperature at which the motion occurred.

Motion in the images is not measured in multiples of pixels but of sub-pixels. There-

fore, motion in images was compensated by transforming shifted images using in-

terpolation. Interpolation yields an approximation of the true image, and different

approaches vary in performance. In the above studies, cubic interpolation built into

Matlab was used for image transformation. Below, we compare performance of cubic

and spline interpolation of a sine wave in a simple test. In the left part of Fig. 3.18

shows a sine wave and the same wave shifted by half a sample. We interpolated the

shifted sine wave to restore it to the original one using both cubic and spline inter-

polations. The error in the restored signal is shown in the right part of Fig. 3.18.

Clearly, transformation with splines has better performance in this case.

Performance of interpolation methods is affected by the sampling rate of the signal.

If the sampling rate is high enough, even simple methods, such as linear interpolation

may have good performance. In Fig. 3.19, we doubled the sampling rate of the

original and shifted signals. Performance of both cubic and spline interpolations was

improved and their difference was reduced.
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Figure 3.18: Effect of interpolation on image transformation. Left: Original and
shifted sine waves. Right: Error in estimation of the original wave from the shifted

one using cubic and spline interpolations.
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Figure 3.19: Effect of interpolation on image transformation with double the sample
rate. Left: Original and shifted sine waves. Right: Error in estimation of the

original wave from the shifted one using cubic and spline interpolations.
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The above discussion implies that reduction of spurious CBE may be improved by

employing appropriate transformation methods, such as spline interpolation, or by

increasing the sampling rate. We repeated the simulations with motion and tempera-

ture change and used spline interpolation in motion compensation. Mean ± standard

deviation of residual spurious CBE after motion compensation is plotted in Fig.3.20.

As expected, residual spurious CBE with spline interpolation is much smaller than

that with the cubic method in Fig. 3.16.
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Figure 3.20: residual spurious CBE with spline interpolation. Mean ± standard
deviation of all simulations.

In order to examine whether or not increasing the sampling rate reduces spurious

CBE, the above simulations were repeated with doubled sampling rate in the axial

direction. Residual spurious CBE is plotted using both cubic and spline interpolation

in Fig. 3.21.

As shown in Fig. 3.21, when the axial sampling rate is doubled, cubic interpolation

has similar performance as spline interpolation. Both of them produce less residue

spurious CBE, about 0.1dB, at lower temperatures than spline interpolation at the

original sampling rate. Of course, higher the sampling rate implies more computa-

tional load. A problem of increasing sampling rate, however, is that it may require a

change in hardware.
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Figure 3.21: Residual spurious CBE with double the axial sampling rate. Mean ±
standard deviation of all simulations. Left: Cubic interpolation. Right: Spline

interpolation.

Alternatively, we may up-sample the image taken with the original sampling rate

instead of increasing the sampling rate during image formation. We simulated images

with motion and temperature change at the original sampling rate and for images

up-sampled in the axial direction for motion estimation and compensation. Fig.3.22

shows residual spurious CBE with up-sampling in the axial direction, which is similar

to the results with doubled axial sampling rate.

We also repeated the simulations with up-sampling in both axial and lateral direc-

tions. The result shown in Fig. 3.23 also shows less residual spurious CBE than the

result with spline interpolation at the original sampling rate.

Effect of Signal to Noise Ratio

In the above simulation study, signal-to-noise ratio (SNR) was set at 43dB, so that

noise effects could be ignored. In contrast, to see the effect of noise on motion

detection, we simulated images with motion at 23dB of SNR and estimated motion

with cubic interpolation. Error in motion detection is shown in Fig. 3.24.

Comparing Fig. 3.24 to Fig. 3.14, it can be seen that motion detection at SNR=23dB

is almost the same as that at SNR=43dB. This result implies that our motion detec-

tion algorithm is robust to noise. This may be because we use cross correlation as

the cost function, for which noise may change the magnitude of its peak but not its
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Figure 3.22: residual spurious CBE with cubic interpolation axial up-sampling.
Mean ± standard deviation of all simulations.
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Figure 3.23: residual spurious CBE with cubic interpolation and up-sampling in
both directions. Mean ± standard deviation of all simulations.
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Figure 3.24: Error in motion estimation in simulations based on motion from TC111
at 23dB of SNR.
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Figure 3.25: CBE after motion compensation at SNR = 23 and 43dB. Mean ±
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peak location. CBE after motion compensation with up-sampling in both directions

is plotted in Fig. ??. Obviously, CBE after motion compensation at 43dB of SNR is

much closer to the CBE without noise. This comparison is unfair since most of the

residual spurious CBE at 23dB of SNR was caused by noise. Nevertheless, this result

reminds us that effects of noise and motion need to be handled together.

3.4 Summary and Conclusions

In this section, we showed that motion in the images can produce large spurious CBE.

Spurious CBE, however, can be reduced by our motion compensation algorithm. In-

terpolation approaches and sampling rates have a big impact on image transform and

are important to the performance of motion compensation algorithms. In addition,

we showed that motion compensation is more important at small temperature devia-

tions from the reference temperature, because CBE due to thermal change in signals

dominates when the temperature change is large. These observations will be verified

in experiments described in the following chapters.
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Chapter 4

System for In-vitro 3D Image

Acquisition

In order to validate our CBE based thermometry, we constructed an imaging system

for 2D&3D in-vitro experiments. In this study, 2D images were acquired in null

experiments, during which the temperature was consistent. For heating experiments,

the capability of acquiring 3D images is significant since: 1) our ultimate goal is to

measure temperature in a 1cm3 volume; 2) apparent motion should be corrected in

3D.

As shown in left of Fig.4.1, our imaging system consists several components: a speci-

men and thermocouple holder, a heating and circulating device, temperature sensors,

an image formation system, and a transducer positioning device. These components

are connected, through serial ports, to a dedicated laptop. A Matlab program is used

for control of the components.

4.1 Specimen and Thermocouple Fixture

Fig.?? shows the arrangement of tissue specimen and the thermocouples. For uniform

heating experiments and null experiments, tissue specimen is in a tank filling with

deionized and degassed water, which is used as coupling media. A metal plate is fixed

in a slot at the bottom of the tank by a screw. Position of tissue specimen is kept by

four pins on the plate and an plastic holder. There are two thermocouple positioning
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Figure 4.1: Left: System for 3D image acquisition. Right: Specimen and
thermocouple fixture.

holes on each of the long edges of the holder. Therefore, temperature distribution

over the specimen can be roughly measured by four thermocouples.

4.2 Uniform Heating of Tissue

Haake Phoenix II Circulator from Thermo Electron Corporation (Thermo Fisher

Scientific Inc., Waltham, MA) is used for heating and circulating water. It can be

operated using the panel board or by a Matlab program by sending ASCII commands

through RS232C serial interface. On/off of heating and circulating is controlled by

sending ”GO” and ”ST” to serial port respectively. Target temperature is defined by

”set temperature”, which can be set by sending command ”W SW xx”, where ”xx” is

the desired temperature. During heating, set temperature is compared to the reading

of an internal thermistor, which is used to measure water temperature in our study.

When internal thermistor reading is equal to or higher than the set temperature,

heating stops while circulating continues. Measurement of internal thermistor can be

read by sending ” F1 ” to serial port and then read response from the circulator. The

speed of circulating pump can be set by command ” W PF xx ”, where ”xx” is the

percentage of maximum speed varying from 5 to 100.
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4.3 Temperature Measurement

Tissue temperature was monitored by thermocouples (OMEGA Industrial Hypoder-

mic Probe, Hyp-3, OMEGA Engineering INC., Stamford, Connecticut) connected to

computer through Dataq DI-1000TC data acquisition box (DATAQ Instruments Inc.

Akron, OH). Installation information can be found in its manual [26].

Dataq DI-1000TC has 8 channels (inputs) for 8 thermocouples and allows high accu-

racy of ±0.2% of the span and resolution of 0.08oC . It is connected to PC through

USB to RS-422 adapter. Temperature readings from thermocouples can be acquired

by either Windaq Data Acquisition Software provided by DATAQ Instruments Inc

or Active X Control which is installed when Windaq is installed. In order to read

temperature measurement into Matlab program, we use Active X control to access

data stream being acquired by WinDaq Data Acquisition software, which should run

in the background. The control is created in Matlab by:

windaqhdl = actxcontrol(’WINDAQ.WindaqCtrl.1’);

where ”WINDAQ.WindaqCtrl.1” is program ID of the control and windaqhdl is the

handle of the control. Access of data can be started by execute ”windaqhdl.Start”.

Temperature of nth channel is read calling the function below:

temperature = GetScaledData(windaqhdl, channel number);

where sample rate is fixed at 5 samples/second/channel. The control is ended and

removed by executing ”windaqhdl.Stop” and ”windaqhdl.delete”

The thermocouples were calibrated with respect to the internal thermistor of Haake

circulator. Fig.4.2 shows the the difference between thermocouple readings and ther-

mistor readings with temperature from three calibration heating experiment. It is

seen that, for each thermocouple, the slopes of the difference curves from the three

experiments are consistent, but the offsets are different. Therefore, we adjust thermo-

couple reading by a linear model determined by the slope and offset of the difference

curve. The slope is measured in the calibration experiments and stored for later use.

The offset will be measured at the beginning of each experiment.
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Figure 4.2: Errors between thermocouple and ThermoHakke thermistor readings.
Errors had the same slope, but different offsets over the set of calibration

experiments.

4.4 Image Acquisition

Ultrasonic RF images of specimen are acquired using Terason 3000 system (Teratech

Corp., Burlington, MA) with a 128-element, 7MHz linear array transducer(12L5).

Terason 3000 (T3000) can work in 4 mode: B-mode, M-mode, color Doppler and

power Doppler. In this study, we monitored specimen in B-mode from Terason GUI

interface during experiments.

In general, an exam is loaded after T3000 starts, which defines parameters such as

mode, gain, depth, and focus distance. When image is ready for acquisition, it is

frozen and saved as either a 2D image or a loop (an array of 2D images). By default

RF images are saved in T3000 format with extension ”.ult”, which can be converted

to Matlab data file (”.mat”) using program ”ult2matlab.exe” provided by Teratech.

Images can also be saved in BMP, JPEG and TIFF format.

In order to acquire images automatically during experiments, the above acquisition

procedure should be performed in our Matlab control program. It was first done

using AutoIt 3 which is a language for automating Windows GUI. AutoIt commands
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can be executed in Matlab by running an AutoIt script named with extension ”.au3”

or directly calling AutoIt functions defined in a shared library ”AutoItX3.dll”. We

created an AutoIt script, ”OpenTerason.au3”, to start T3000 GUI and load an exam

denoted by ”cbe”, as described in Appendix A.

Although automatic image saving was achieved by using AutoIt, we have to wait

between commands to ensure they are finished. It also happened, although only

occasionally, that T3000 can not return to live image for new scans. This may be

because there is delay or error in the communication between AutoIt and Windows

operation system . In addition, we found that, after saving a set of images, T3000

has to be closed and saved images have to be moved from default folder to other

folders. Otherwise, further image saving will be slowed down. In order to make more

reliable imaging, we recently implement control of Terason imaging using the software

development kid (SDK) from TeraTech.

The SDK allows us to access Terason image stream via AcitveX control in our Matlab

control program. Before create ActiveX control, 3 .ocx files should be registered:

Regsvr32 TTFrameReceiver.ocx Regsvr32 TTAutomate.ocx Regsvr32 TTSimpleIm-

ageWnd.ocx

We created 3 functions for acquiring images using the SDK:

1. hTTauto = StartTerasonActx(exam)

This function starts Terason Imaging system, creates TTAUTOMATE control, at-

taches the control to a running instance of Terason and load the exam defined by

”exam” which is a character string of exam name. It returns a handle of the ActiveX

control.

2. savesglimage ttauto(hTTauto,filename)

This function freezes current Terason scan, save a 2D image to the folder and file

name defined in ”filename”, and then unfreeze the image. Since images can be saved

to assigned folder, we do not have to remove saved file from default folders.

3. saveloop ttauto(hTTauto,filename)
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This function freezes current Terason scan, save a loop of images to the folder and

file name defined in ”filename”, and then unfreeze the image. Unfortunately, number

of frames in a loop can not be changed by control program. It is determined by the

image size and the frame rate, which depends on computer OS.

The scripts of these function can be found in appendix A. By using the ActiveX

control to access the image stream, acquisition procedure is more reliable and faster.

The above 3 functions are simple applications only for our current experiments. The

SDK provides many other functions for more complicated applications. For example,

we can change depth or focus distance after loading the exam. It gives us more

flexibility in future experiments. More capability of data processing, such as online

signal averaging, is desired. But this requires cooperation with TeraTech Inc and

more resource.

4.5 Transducer Positioning

To position the transducer, we use 3 Newport IMS300PP stages, for 3 axes in axial,

lateral and elevation directions, controlled by ESP300 controller (Newport Co., Irvine

CA). IMS300PP stages can reach maximum speed of 100mm/s and resolution of

1.25µm. ESP300 controller integrates both controller and motor driver for up to 3

axes. It can work in 3 operation modes: 1) local mode: use front panel 2) remote

mode: execute command from computer 3) program execution mode: execute stored

program. In our study, it works in remote mode and is connected to computer via

serial port with parameters: baud rate 19200, data bits 8, stop bit 1, terminator ’CR’.

The commands are in format of:

xxAAnn

where ”AA” is 2-character command, ”xx” is preceding parameters and ”nn” is fol-

lowing parameter. For example, ”1VA20” set speed of axis 1 to be 100unit/second.

Each command should end with a carriage return. For the purpose of moving trans-

ducer in 3 directions, following commands are used:
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xxSNnn or xxSN? – set or report current unit for axis xx

xxVUnn or xxVU? – set or report maximum speed for axis xx

xxVAnn or xxVA? – set or report speed for axis xx

xxMO or xxMO? – turn motor on or report if motor is on for axis xx

xxMF or xxMF? – turn motor off or report if motor is off for axis xx

xxPRnn – move axis xx by nn units from current position

xxMD? – report if move of axis xx is done

Functions for initializing serial port and sending command are built in a shared li-

brary: ESP232.dll. It can be loaded into Matlab by executing ”loadlibrary(’ESP232.dll’)”.

Three functions in the library are called in our Matlab control program:

calllib(’ESP232’,’esp 232 open’, command)

calllib(’ESP232’,’esp 232 send ascii’, command)

calllib(’ESP232’,’esp 232 read ascii’, command)

For convenience, we constructed several Matlab functions for moving the axes:

newport sendcmd(axNum,cmd,varargin) – send command ”cmd” for axis ”axNum”

with optional parameter. e.g. newport sendcmd(1,’PR’,10)

output = newport read(axNum,cmd) – read information of axis ”axNum” ac-

cording to command ”cmd”. e.g. newport read(1,’MD?)

newport motorOn(axNum) – turn on motor for axis ”axNum”

newport initial(axNum,unit,speed,spdMax,serialport) – open serial port, set

unit, speed and maximum speed for axes defined in array ”axNum”. Notice that unit

change requires changing configuration file and downloading the controlling in ESP

utility provided with Newport software.

newport mv(axNum,dir,dist,wait,varargin) – move axis ”axNum” for ”dist”

units in ”dir” direction. Do not execute next command until motion done if ”wait”

is ”1”. ”varargin” defines speed other than that set in newport initial().

newport motorOff(axNum) – turn axis ”axNum” off.
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4.6 Configuration of Heating Experiments

In homogenous heating experiment, specimen is placed in deionized and degassed

water heated by Haake circulator. Images are acquired at each of the preset tem-

peratures, usually 37 − 45oC with 0.5oC intervals. Water temperature is measured

by Haake internal thermistor and specimen temperature is measured by 4 calibrated

thermocouples. When water temperature reaches current preset temperature, heat-

ing stops while circulating continues until the specimen reaches thermal equilibrium.

Specimen is regarded in thermal equilibrium when difference between all 4 thermo-

couple measurements and water temperature is less than 0.3oC.

Transducer is usually focused at 4.5cm in axial, around the center of the specimen.

In 3D heating experiment, at each temperature, a set of 30 frames are captured with

0.6mm in elevation. These images are acquired in a ”stop and shoot” manner. The

control program first freeze the Terason scan, then starts to move the transducer in

elevation direction for 0.6mm using Newport stage 1. Newport stage 1,2and 3 cor-

respond to elevation, lateral and axial direction respectively. During the motion of

transducer, a 2D image is saved and Terason scan is unfrozen. When transducer mo-

tion is finished, image of specimen at new position is frozen and the above procedure

is repeated until all 30 frames are acquired.

4.7 Null Experiments

To study non-thermal change in backscattered signals, we need to conduct null ex-

periments, during which tissue temperature does not change. Basic experiment setup

is same as above. Changes are made according to the purpose of the study. For

example, when studying effect of noise, we acquire loops of images at same position

instead of 30 frames at different positions. Details will be described in the following

chapter.
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Chapter 5

Verification of Reduction in

Spurious CBE Induced by Noise

and Motion

In chapter 3, we evaluated approaches to reducing spurious CBE caused by noise and

motion in the images using simulation tools. In this chapter, we verify the results of

chapter 3 using experimental data.

5.1 Verification of Noise Reduction Method

In order to verify the approaches to reducing noise effects developed in Chapter 3,

signal averaging and thresholding are applied to loops of images acquired in null

experiments. CBE was computed for frames within and between loops. Variations of

SNR and CBE with frame averaging and thresholding are compared to the results in

Chapter 3.

5.1.1 Noise in Images of Real Tissue

We assumed noise is additive to the RF images as before: s = irf + n. If two images

are acquired successively for the same target, s1 = irf + n1 and s2 = irf + n2, their

difference contains only the difference of the noise. Furthermore, if n1 and n2 are
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Figure 5.1: RF images of turkey breast acquired in loop 1 of a null experiment. Top:
frame 1 of loop 1. Bottom: frame 2 of loop 1.

independent, identically distributed Gaussian, n1, n2 ∼ N(0, σ2
n), their difference is

also Gaussian, 4s = n1 − n2 ∼ N(0, 2σ2
n).

We acquired a set of 2D images (frames) of the same piece of turkey breast sample

using ”save loop” function of Terason 3000 imaging system. Because a loop was

captured in a couple of seconds, true signal irf can be regarded unchanged within

the loop. Fig. 5.1 shows two frames in a loop. They can not be distinguished by eye

inspection. Fig. 5.2 shows the histogram and fitted Gaussian distribution for frame

one. The mismatch of signal histogram and Gaussian distribution may be due to the

scatterers in real tissue do not distribute uniformly. Signal distribution is discussed

in detail in following chapters.

To obtain noise information, we subtracted the second frame from the first one as-

suming the noise is additive. As shown in left part of Fig. 5.3, the difference of two

RF images behaves as random noise. The histogram of the difference image and fitted

Gaussian distribution are plotted in right part Fig. 5.3. This histogram matches a

Gaussian distribution very well since the backscattered signal from tissue was nearly

48



−2000 −1000 0 1000 2000
0

500

1000

1500

2000

2500

Pixel Values

N
um

be
r 

of
 P

ix
el

s

Histogram of RF Image and Fitted Gaussian Distribution

 

 
Data Histogram
Estimated Gaussian

Figure 5.2: Histogram and fitted Gaussian distribution for an RF image of turkey
breast.
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Figure 5.3: Left: Image of the difference between two RF images in a loop. Right:
Histogram and fitted Gaussian distribution for the difference of RF images of turkey

breast.
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eliminated and the difference image contained only the difference between noise. Ac-

cording to this result, it is reasonable to assume, as in Chapter 3, that the noise in

RF images of real tissue is additive Gaussian noise with zero mean.

5.1.2 Reduction of Noise-Induced Spurious CBE

We have demonstrated that noise causes spurious CBE which can be reduced by in-

creasing SNR. Here, we study the feasibility of increasing SNR and thus reducing

noise-induced spurious CBE in experimental data by signal averaging and thresh-

olding. Experimental data were collected from null experiments during which tissue

sample was kept at room temperature and desired CBE was 0dB.

Null experiment

In the null experiments, Terason 3000 imaging system, with a 128-element, 7MHz

transducer(12L5), was used to acquire ”loops” of 2D frames of turkey breast. The

number of frames in each loop was determined automatically by the Terason 3000

according to frame size and frame rate. Tissue sample was fixed in a holder and left

in de-ironized, de-gased water for 3 hours, so that both water and tissue reached room

temperature which was then assumed invariant during the experiment.

Tissue temperature was monitored by four thermocouples. Fig. 5.4 shows variation

of tissue temperature during null experiment NL002 measured by 4 thermocouples.

Tissue temperature dropped with time for less than 0.2oC, whose effect on CBE was

ignored. It was also assumed that all possible tissue movements, such as swelling, was

absent during the 3 hours so that no motion induced CBE appeared in our compu-

tation. In a heating experiment, data sets are typically acquired at 17 temperatures.

To mimic this procedure, 17 loops, with 156 frames in each loop, were acquired with

2 minute intervals in the null experiments.

Intra-loop CBE

Since it took only 2-3 seconds to acquire a loop depending on the frame rate, we

assumed that there was no change in tissue temperature, backscattered signals and

noise variance within a loop. CBE was computed between frames within each loop,

50



0 5 10 15 20
23.24

23.26

23.28

23.3

23.32

23.34

23.36

23.38

23.4

T
em

p
er

at
u

re
 (o

C
)

Loop Index

Variation of Tissue Temperature in NL002

Figure 5.4: Variation of tissue temperature during null experiment NL002.
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denoted as intra-loop CBE, by comparing each frame to the first frame in the loop.

In experiment NL002, a loop contained 156 frame and therefore 155 CBE values can

be calculated for each loop. The mean and standard deviation of intra-loop CBE over

17 loops are shown in Fig. 5.5. As expected, both PCBE and NCBE are non-zero

due to noise, but are consistent within a loop. PCBE has larger variation among

loops, because, as discussed in Chapter 3, ”weak” signals were affected by the noise

significantly and generated ”outliers” in the ratio computation. The ”outliers” in the

ratio region less than 1 are constrained to be larger than zero, while those larger than

1 could be arbitrary large, so that PCBE varied more than NCBE.

In order to see how SNR and CBE changes with signal averaging, we computed SNR

and CBE when averaging 1,2,...,10,20,30,40,50,60, and 70 frames for each loop. Notice

that, to obtain information of noise in averaged images, at most seventy eight frames

can be used in averaging for each loop. Noise variance was computed as described

in the beginning of this section. Fig. 5.6 shows that SNR increasing with number

of frames in averaging by about 20dB (25 ∼ 45dB), which is close to, but a little

higher than theoretical prediction. The corresponding reduction of CBE with signal

averaging is plotted in Fig. 5.7. Magnitudes of both PCBE and NCBE decreased to

0.1 ∼ 0.15dB when 70 frames were averaged.

The above results illustrate that SNR can be increased and thus spurious CBE can

be decreased by averaging frames in a loop. We wish to see how CBE changes with

SNR, which is shown in Fig. 5.8. PCBE reduced from 1.25dB to 0.15dB and NCBE

increased from −0.8dB to −0.15dB when SNR was increased from 25dB to 45dB.

Comparing Fig. 5.8 to Fig. 3.1, CBE computed from experimental data is close

to prediction when SNR is high. CBE from experimental data is, however, larger

than the prediction when SNR is low. As found in Chapter 3, larger CBE from

experimental data was resulted from corruption of small signals by noise. In addition,

signal backscattered from tissue varied largely. In regions of small signals, SNR

was extremely low such that spurious CBE was very high as shown in the previous

subsections. The black rectangle in Fig. 5.9 shows the region from which above CBE

was computed. The right bottom part of this region looks more like noise. At the left

top corner, even a small portion of noise signal was involved in CBE computation.

As a rough selection of ”strong” signals, we computed CBE again from a region with
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Figure 5.8: Variation of CBE with SNR for all 17 loops in null experiment NL002.

less noise and weak signals as shown by the blue rectangle in Fig. 5.9. The CBE from

this ”strong” signal region, shown in the Fig. 5.10, is closer to the predictions than

previous result.

Although the CBE computed from the strong-signal region is closer to the prediction,

weak signals still exists in this region which may be the cause of the spike in Fig.

5.10. Previously, we have eliminated weak signals by thresholding. We followed the

same procedure to choose strong signals for computing CBE, which is shown in Fig.

5.11.

CBE from selected signals in Fig. 5.11 is close to prediction. Again, the threshold,

which was 10dB less than histogram mode, was chosen by try and error. Although

thresholding helps to reduce effect of ”outliers”, it is not the optimal way to do so.

It reduces the number of samples in the calculation and may throw away samples

that are not outliers. Robust reduction of noise-induced spurious CBE depends on

increasing SNR. In fact, as shown in Fig. 5.8, CBE computed from experiment NL002

is close to the prediction when SNR is higher than 40dB. Therefore, the capability

of increasing SNR, as illustrated in this section, is significant for reducing spurious

CBE caused by noise.
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null experiment NL002.

Inter-loop CBE

We have demonstrated that, for our imaging system, noise-induced spurious CBE can

be reduced by averaging frames in a loop. Recall that, in heating experiments, CBE

is computed between images obtained at different temperatures. Correspondingly,

we wish to inspect the CBE between frames of different loops, denoted as inter-loop

CBE, in the null experiment.

Inter-loop CBE was computed for both single frames and averaged frames. For single

frames, the first frames from loop2-17 and the second frame from loop one were

compared to the first frame of loop1. For averaged frames, we averaged the first and

second half of each loop. Hence, there are two averaged frames for each loop. The

first averaged frames from loop2-17 and the second averaged frame from loop one

were compared to the first averaged frame of loop one. According to the results of

Chapter 3, we expected to see non-zero inter-loop CBE from single frames, which

should be invariant with time and can be reduced by signal averaging. Inter-loop

CBE from the averaged frames was expected to be close to 0.1 ∼ 0.15dB, as shown

by the intra-loop CBE when seventy frames were averaged.
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Figure 5.12: Inter-loop CBE from individual and averaged frames of null experiment
NL002.

Contrary to our expectation, inter-loop CBE’s shown in Fig. 5.12 are not invariant

as the intra-loop CBE, but increase monotonically with loop number, i.e., with time.

In addition, magnitude of inter-loop CBE from averaged frames was not reduced

to 0.1 ∼ 0.15dB as the intra-loop CBE. Because we have shown that SNR can be

increased by averaging frames for all loops, the lack of expected reduction in inter-loop

CBE of averaged images presumably results from changes in the backscattered signals

between loops. The monotonic variation in inter-loop CBE implies that changes in

the signals were systematic.

In order to check if signals changed over time without heating, we took the difference

between the first frames in loop 17 and loop 1. The envelope of the difference image

is shown in the upper part of Fig. 5.13. The shape of the tissue is clearly depicted

in the image, which indicates that there was a difference between the backscattered

signals in loop 17 and loop 1. As a reference, we also took the difference between the

last and first frame of loop 1, whose envelope is shown in the lower part of Fig. 5.13.

It can be seen that the difference between frames within a loop contains mostly noise,

that is, there was almost no change in the backscattered signal within a loop.
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Figure 5.13: Upper: Difference between the first frames in loop 17 and loop 1, which
shows changes in backscattered signals over loops. Lower: Difference between the

last and first frames in loop 1, which shows that little change occurred in
backscattered signals within individual loops.

Although there was 0.2oC change in the tissue temperature, it was not large enough to

produce the observed increase of 0.4dB in PCBE. The change in signals among loops

could be caused by non-thermal factors. A possible explanation is that backscatter

properties of the tissue, such as its density, changed when it is left in water, such that

its backscatter properties varied during the experiment. To examine this hypothesis,

a null experiment, NL004, was conducted during which turkey breast was left in

Ringer’s solution, with 0.9% sodium chloride by volume, to prevent change in the

tissue. Inter-loop CBE was computed as for NL002 as shown in Fig. 5.14.

Fig. 5.14 shows that inter-loop CBE from experiment using Ringer’s solution has

similar behavior as the previous results from NL002. It still increased monotonically

and cannot be reduced to 0.1 ∼ 0.15dB. The absolute value of CBE is about 0.4dB

less than that in the previous experiment, because the SNR of this experiment was

about 5dB higher than before, which led to approximately 0.4 − 0.5dB decrease in

CBE as illustrated in Fig. 3.1. It again proved that increasing SNR will reduce

spurious CBE. However, the change in the tissue backscatter property cannot be

prevented using Ringer’s solution.
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Figure 5.14: Inter-loop CBE from individual and averaged frames of null experiment
NL004 using Ringer’s solution.
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Figure 5.15: Inter-loop CBE from individual and averaged frames of null experiment
NL009 using a CIRS phantom.
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In order to eliminate the effect of the change in tissue property, we repeated the

previous null experiment using a CIRS ultrasound phantom, model 054. The phantom

was sealed in a housing and sat at room temperature for hours. Gel was used as

coupling medium. As shown in Fig. 5.15, inter-loop CBE from CIRS phantom was

consistent during the experiment and thus confirmed that the monotonic increase

of inter-loop CBE from turkey breast resulted from the change in tissue backscatter

property. Notice that, inter-loop CBE still cannot be reduced as intra-loop CBE

can by averaging signals. This condition indicates there were still changes in the

backscattered signal. Since these change did not come from the phantom, we believe

it was caused by the imaging system.

Noise is a major source of error in CBE computation and temperature estimation. In

this section, we showed that noise effects can be reduced by signal averaging. Since

SNR in the image can be manipulated by varying the number of frames in averaging,

it is possible for us to maintain all experiments at the same SNR. However, it was

also found that signals may change due to the imaging system and the variation of

tissue. Since living tissue stays in a stable environment, its backscatter property

varies little without temperature change. The later problem may not happen in

clinical applications. For the change caused by the imaging system, it may require

modification of the instrument, which requires more resource and cooperation with

the instrument provider.

5.2 Experimental Verification of Motion Compen-

sation

Previously, we have shown that motion induced b spurious CBE in simulated images

can be reduced using our motion estimation and compensation algorithms. Perfor-

mance of motion compensation, in terms of residual spurious CBE after compensa-

tion, can be improved by choosing appropriate interpolation approach or increasing

the sampling rate during image transformation. In this section, we verify these results

using real images of tissue from experiments. Since true motion is unknown in heat-

ing experiment, we conducted null experiments. Motion was introduced by moving
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the transducer in both axial and lateral directions so that true motion in images was

known.

5.2.1 Null Experiments with Motion

As in the null experiment described in preceding section, the Terason 3000 imaging

system was used to acquire 17 loops of 2D frames of turkey breast, corresponding

to 17 temperatures in heating experiments. The number of frames in each loop was

determined automatically by Terason according to frame size and frame rate. The

tissue specimen was fixed in a holder and left in de-ironized, de-gased water for

3 hours, such that both water and tissue reached room temperature. Motion was

introduced between adjacent loops by moving the transducer in 30µm steps in both

axial and lateral directions for a total shift of 0.48mm in each direction over 17 loops.

This amount of motion covered the range observed in heating experiments. Fig. 5.16

shows the first frame of the loops with shifts of 0, 0.24 and 0.48mm.

Before taking the images with motion, a set of 17 loops was acquired without chang-

ing transducer position. Therefore, there was no motion in the images of this set.

CBE between each loop and the first loop was computed as the reference CBE. As

discussed in previous section, the reference CBE was not zero due to noise, tissue

degradation etc. CBE computed from the image set with motion was computed after

motion compensation and compared to the reference to evaluate the performance of

the motion compensation algorithm. Fig. 5.17 shows reference CBE measured from

single frames. As discussed before, the jump in CBE curves was due to noise and

signal changes caused by the Terason system. Variation caused by tissue degradation

was small (< 0.1dB) during data acquisition which took only 5 minutes.

5.2.2 Motion Compensation and Spurious CBE Reduction

CBE from Single Frames

In order to evaluate our algorithms at the original SNR, which is 34dB, we first

estimated and compensated for motion in single frames, i.e., between the first frame
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Figure 5.16: Images with motion from experiment NL012. Top: image without
motion. Center: image shifted by 0.24mm. Bottom: image shifted by 0.48mm.

Shifts were upwards and to the right.
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Figure 5.17: Reference CBE from single frames in experiment NL012.

of loop 2-17 and that of loop 1 (reference loop). Cumulated error in estimation was

avoided by comparing loop 2-17 to loop 1. Motion compensation for images at higher

SNR from averaged frames is considered in the succeeding section. Images with

motion were compensated with cubic interpolation. Estimated motion was compared

to the true motion and the error is shown in Fig. 5.18, which is up to 40µm in the

axial and 50µm in the lateral directions, respectively. To see if this amount of error in

motion estimation is acceptable, we first looked at compensated images in Fig. 5.19

corresponding to those in Fig. 5.16.

No obvious motion appears in Fig. 5.19, indicating that error in motion estimation

does not produce visible motion in compensated images. However, our goal is to

reduce motion induced spurious CBE. Therefore, we computed CBE from images

before and after motion compensation as shown in Fig. 5.20.

As seen in the above figure, spurious CBE induced by motion was reduced, but the

residual spurious CBE after motion compensation is still 0.75− 1dB. Two phenom-

ena should be noted. First, CBE before motion compensation converges to some

limit that is larger than what we saw in the previous chapter for rigid motion. This
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Figure 5.18: Error in motion estimation in experiment NL012 with cubic
interpolation. Left: Axial direction. Right: Lateral direction.

difference occurs because the previous result was obtained assuming uniformly dis-

tributed scatterers and Rayleigh signals, but current results were from non-uniformly

distributed scatterers and non-Rayleigh signals. Second, the residual spurious CBE

did not increase monotonically, but showed some kind of ”period”. This period is

related to the cubic interpolation and the experimental protocol. Recall that, in the

preceding chapter, we showed that cubic interpolation did not work well when shift

was not an integer multiple of the sample interval, in this case, around half a sample.

In this experiment, motion between adjacent images was consistent and therefore ac-

cumulated motion was close to or far away from a multiple of the sample interval.

Thus, CBE after compensation varied ”periodically”.

In Chapter 3, motion compensation can be improved by using spline interpolation.

Here, we repeated motion compensation for NL012 with spline interpolation. Mo-

tion estimation error and residual spurious CBE are plotted in Figs. 5.21 and 5.22,

respectively.

Comparing results in Fig. 5.21 to that in Fig. 5.18, it is seen that error in motion

estimation did not vary periodically by using spline interpolation for image trans-

formation. In addition, residual spurious CBE with spline interpolation shown in

Fig. 5.22 is much less than that with cubic interpolation in Fig. 5.20. This result

verifies that, the method of image transformation has significant impact on spuri-

ous CBE reduction. This conclusion is consistent with the conclusion made in the
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Figure 5.19: Motion compensated images from experiment NL012. Top: image
without motion. Center: image shifted by 0.24mm. Bottom: image shifted by

0.48mm. Shifts were upwards and to the right.
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Figure 5.20: CBE in experiment NL012 with cubic interpolation. Left: CBE before
and after motion compensation and reference CBE. Right: Difference between CBE

after motion compensation and reference CBE.

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

35

40
Axial Motion with Spline Interpolation

True Motion (mm)

E
rr

o
r 

in
 E

st
im

at
ed

 M
o

ti
o

n
 (µ

 m
)

 

 

left top
right top
left bottom
right bottom
center point

0 0.1 0.2 0.3 0.4 0.5
−10

0

10

20

30

40

50
Lateral Motion with Spline Interpolation

True Motion (mm)

E
rr

or
 in

 E
st

im
at

ed
 M

ot
io

n 
(

µ 
m

)

 

 
left top
right top
left bottom
right bottom
center point

Figure 5.21: Error in motion estimation in experiment NL012 with spline
interpolation. Left: Axial direction. Right: Lateral direction.
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Figure 5.22: CBE in experiment NL012 with spline interpolation. Left: CBE before
and after motion compensation and reference CBE. Right: Difference between CBE

after motion compensation and reference CBE.

previous simulation studies. As discussed in the simulation studies, instead of using

spline interpolation, the performance of image compensation can also be improved

by increasing the sampling rate. Since the hardware settings of the Terason imaging

system can not be changed, we up-sampled the original images and applied motion

estimation and compensation with cubic interpolation. Up-sampling was first done in

axial direction. Error in motion estimation and spurious CBE after compensation are

shown in Figs. 5.23 and 5.24, respectively. Again, the estimation of lateral motion

was slightly better than the result with spline interpolation. The residual spurious

CBE was slightly less but close to the result with spline interpolation.

Similar to the results in the simulations, performance of spurious CBE reduction with

up-sampling in the axial drection is close to that found using spline interpolation.

We further up-sampled images in both axial and lateral directions. Error in motion

estimation and the spurious CBE after compensation are shown in Figs. 5.25 and

5.26, respectively.

The above results confirm that our motion estimation and compensation algorithms

are able to reduce motion-induced spurious CBE from images of real tissue specimens.

In addition, performance of motion-compensation algorithms can be improved either

by using spline interpolation or up-sampling the data. As shown in the simulation

67



0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

35

40
Axial Motion with Up−sampling in Axial

True Motion (mm)

E
rr

or
 in

 E
st

im
at

ed
 M

ot
io

n 
(

µ 
m

)

 

 

left top
right top
left bottom
right bottom
center point

0 0.1 0.2 0.3 0.4 0.5
−20

−10

0

10

20

30

40

50
Lateral Motion with Up−sampling in Axial

True Motion (mm)

E
rr

or
 in

 E
st

im
at

ed
 M

ot
io

n 
(

µ 
m

)

 

 
left top
right top
left bottom
right bottom
center point

Figure 5.23: Error in motion estimation in experiment NL012 with up-sampling
axially. Left: Axial direction. Right: Lateral direction.
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Figure 5.24: CBE in experiment NL012 with axial up-sampling. Left: CBE before
and after motion compensation and reference CBE. Right: Difference between CBE

after motion compensation and reference CBE.
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Figure 5.25: Error in motion estimation in experiment NL012 with up-sampling in
both directions. Left: Axial direction. Right: Lateral direction.
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Figure 5.26: CBE in experiment NL012 with up-sampling in both directions. Left:
CBE before and after motion compensation and reference CBE. Right: Difference

between CBE after motion compensation and reference CBE.
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Figure 5.27: Error in motion estimation from averaged frames in experiment NL012
with cubic interpolation. Left: Axial direction. Right: Lateral direction.

study, the performance of spurious CBE reduction algorithms over small tempera-

ture changes that cause less motion, is more important than for large temperature

changes. The results in this section show that, by choosing appropriate interpola-

tion methods or by up-sampling the data, spurious CBE for small motions can be

essentially removed.

CBE from Averaged Images

In order to see the effect of SNR on motion estimation and compensation, we averaged

78 frames (half a loop) in each loop. SNR was increased by about 19dB by averaging

78 frames, which is consistent with the result in Chapter 3. Motion was estimated and

compensated and CBE computed from averaged frames as it was for single frames.

Error in motion detection with cubic interpolation in Fig. 5.27 was similar to the

error from single frames. This result confirms, as in simulation studies, SNR does not

have significant impact on motion estimation.

Since reference CBE for single and averaged frames were different, instead of com-

paring residual spurious CBE, we compared CBE after motion compensation without

subtracting the reference CBE. Results from different interpolation approaches and

up-sampling methods are shown in Figs. 5.28, 5.29, 5.30 and 5.31.

In all situations, further spurious CBE reduction can be obtained by averaging frames,

that is by increasing SNR. The improvement, about 0.1 − 0.15dB, was however not
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Figure 5.28: Residual spurious CBE from averaged frames of NL012 with cubic
interpolation.

0 0.1 0.2 0.3 0.4 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

True Motion (mm)

C
B

E
 (

dB
)

CBE after Compensation with Spline Interpolation

 

 

single frame
averaged frame

Figure 5.29: Residual spurious CBE from averaged frames of NL012 with spline
interpolation.
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Figure 5.30: Residual spurious CBE from averaged frames of NL012 with axial
up-sampling.
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Figure 5.31: Residual spurious CBE from averaged frames of NL012 with
up-sampling in both directions.
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Figure 5.32: Error in motion estimation in experiment NL012 with cubic
interpolation at 37oC. Left: Axial direction. Right: Lateral direction.

significant as we saw in the noise reduction study. This result is again because,

although SNR is increased by averaging frames, the signal over loops may change

slightly due to the Terason imaging system and thus result in spurious CBE. This

change can be regarded as a kind of noise with properties that cannot be reduced by

signal averaging.

Experiment at 37oC

The above experiment was conducted at room temperature. We also conducted an

experiment at 37oC. The tissue sample was heated to 37oC in a water tank as in

the heating experiments. Water temperature was held at 37oC for 20 minutes to

ensure thermal equilibrium in the tissue. The error in motion estimation with cubic

interpolation is shown in Fig. 5.32. Estimation error in the axial direction wa up

to 15µm, which is less than the result at room temperature, while the error in the

lateral direction was about 10µm larger than at room temperature. Nevertheless, the

residual spurious CBE in Fig. 5.33 is close to the result in Fig. 5.20.

Figs. 5.34 and 5.35 show the results of motion estimation and spurious CBE reduction

with spline interpolation. As seen at room temperature, motion detection was slightly

better than the estimation with cubic interpolation, but the residual spurious CBE

was much less. The residual spurious CBE with spline interpolation was also close to

that obtained at room temperature.

73



0 0.1 0.2 0.3 0.4 0.5

−5

0

5

10

True Motion (mm)

C
B

E
 (

dB
)

Reduction of Spurious CBE at 37 oC 

 

 

before Compensation
after Compensation
without motion

0 0.1 0.2 0.3 0.4 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

True Motion (mm)

S
pu

rio
us

 C
B

E
(d

B
)

Spurious CBE after Motion Compensation

Figure 5.33: CBE in experiment NL012 with cubic interpolation at 37oC. Left:
CBE before and after motion compensation and reference CBE. Right: Difference

between CBE after motion compensation and reference CBE.
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Figure 5.34: Error in motion estimation in experiment NL012 with up-sampling in
both directions at 37oC. Left: Axial direction. Right: Lateral direction.
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Figure 5.35: CBE in experiment NL012 with spline interpolation at 37oC. Left:
CBE before and after motion compensation and reference CBE. Right: Difference

between CBE after motion compensation and reference CBE.

Reduction of spurious CBE with up-sampling in both axial and lateral directions is

shown in Figs. 5.36 and 5.37. Up-sampling did not produce a significantly different

result from that at room temperature.

5.3 Summary and Conclusions

In this chapter, we applied the approaches to reducing noise and motion effects de-

veloped in Chapter 3 to experimental data. The results verified that noise effects can

be reduced by signal averaging and thresholding as in the simulations. Spurious CBE

caused by tissue degradation and variation in the imaging system, however, remain.

Our motion compensation algorithms were proved to be able to correct motion in

real images and reduce motion-induced spurious CBE. We also showed for experi-

mental data that motion compensation and spurious CBE reduction can be improved

by choosing appropriate interpolation methods or by up-sampling. This conclusion

verified the observations of the simulation study.
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Figure 5.36: CBE in experiment NL012 with axial up-sampling at 37oC. Left: CBE
before and after motion compensation and reference CBE. Right: Difference

between CBE after motion compensation and reference CBE.
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Figure 5.37: CBE in experiment NL012 with up-sampling in directions at 37oC.
Left: CBE before and after motion compensation and reference CBE. Right:

Difference between CBE after motion compensation and reference CBE.
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Chapter 6

Framework for Temperature

Imaging with CBE

In our initial work, a theoretical model was developed for CBE from single scatterers,

which predicted increasing or decreasing of CBE depending on scatterer type [92].

Monotonic variation of CBE measured in various types of tissue in 1D and 2D in-intro

experiments confirmed the prediction of the model. CBE was computed by taking

the ratio of images at current and reference temperatures. It was characterized as

positive CBE (PCBE) and negative CBE (NCBE), which are the mean of the ratio

over values larger than and less than 1, respectively. Although these results showed

that CBE is a potential parameter for temperature imaging and CBE computation

was straightforward, this procedure was somewhat ad hoc in the sense of lacking

mathematic formality.

In this chapter, we model the problem of temperature imaging via a probabilistic

framework and formalize computational methods of CBE. Based on the framework, we

developed procedures for more careful calculation of CBE and thus better temperature

estimation under certain conditions. This development was based on the extension of

the well known random phasor-sum representation of ultrasonic backscattered signals

to encompass the thermal dependent tissue properties. In the development of the

framework, we assume changes in backscattered signals are temperature dependent

only.
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6.1 Modeling the Problem of Temperature Imag-

ing

In this section, we model the problem of temperature imaging as estimating temper-

ature from random processes resulting from thermal changes in ultrasonic backscat-

tered signals. The marginal and joint distributions associated with the random pro-

cesses are discussed.

6.1.1 Random Phasor Sum Model for Temperature Depen-

dent Signals

Ultrasonic signals result from constructive or destructive superposition of scattering

within a resolution cell of the transducer [110, 50], and may be approximated by a

linear image formation model [100]

i(r) = h(r) ∗ q(r) ,

where r is the coordinate vector of the position, h(r) is the point spread function of the

imaging system, q(r) =
∑N

k=1 qkδ(r− r0) is the discrete tissue model and qk’s are the

reflectivity of individual scatterers. The resulting complex envelope representation of

the ultrasound signal is a random phasor sum [100]

i(r) =
N∑

k=1

Ake
jφk , (6.1)

where i is the complex envelope of the signal, N is the number of scatterers, Ak and

φk are the magnitude and phase of element phasor associated with each scatterer. Ak

is determined by the reflectivity, qk, and the position of kth scatterer. φk relates only

to the scatterer position. In this study, we assumed N is large and φk is uniformly

distributed over [0, 2π]. Motion in the images due to the change of speed of sound

and tissue movement may cause variation of φk. In our theoretical analysis using the

random phasor sum model, we assumed that variation in φk can be compensated by

our motion compensation algorithm.
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According to our CBE model for single scatterers, the reflectivity of individual scat-

terers, qk is temperature dependent and the discrete tissue model can be written as

[92, 7, 103]

q(r, T ) =
N∑

k=1

qk(T )δ(r− r0) , (6.2)

where T is the temperature. Since Ak is proportional to qk, Ak is also a function of

temperature. The random phasor sum in Eq. 6.1 becomes

iT (r) =
N∑

k=1

Ak(T )ejφk , (6.3)

where r, N are the same as in Eq. 6.1, the subscript ”T” in iT represents the temper-

ature dependence of i, the complex envelope. Eq. 6.3 is the temperature dependent

random phasor sum model for the complex envelope of ultrasonic backscattered sig-

nals. For simplicity, we drop r in the remaining part of this dissertation.

Because the scatterers are randomly distributed over the tissue region, Ak, φk and

thus iT are also random [100]. In addition, since iT is temperature dependent, it can

be represented as a collection of random variables indexed by temperature, resulting

in random processes. In our case we can obtain ultrasonic RF signals from our Terason

imaging system. Envelope detected images, ien, can be computed from irf using the

Hilbert transform. Both irf and ien can be represented by random processes.

Random processes are statistically characterized by finite dimensional joint distribu-

tions, p(xT0, xT1, ..., xTn), where x can represent any of the above random processes.

In this study, we tried to estimate temperature from the variation between images

at current and reference temperatures. The corresponding joint distribution we were

interested in was p(xT0, xT ). Therefore, the problem of temperature imaging can be

modeled as estimating temperature from random processes resulting from thermal

changes of tissue. In the next section, we discuss the marginal and joint distributions

for the RF and envelope detected images.

Because we were interested in the change in the backscattered signals, it is helpful

to express iT in a form relative to the reference signal. From the CBE model for

single scatterers, Ak can be expressed relative to its value at reference temperature
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by introducing a coefficient, βk(T ). Eq. 6.3 can then be modified as

iT (r) =
N∑

k=1

βk(T )Ak(T0)e
jφk , (6.4)

where Ak(T0) and φk are the magnitude and phase of the kth phasor at the refer-

ence temperature, and βk(T ) represents the change of the scatterer reflectivity, with

βk(T0) = 1. The reference temperature T0 was chosen to be 37oC in our study.

6.1.2 Marginal and Joint Distributions of Ultrasonic Signals

In the last subsection, we modeled the problem of temperature imaging as estimat-

ing temperature from collections of random variables. Knowledge of the joint and

marginal distributions of the random variables are important for studying statistical

properties of ultrasonic signals. As mentioned above, we usually obtained RF signals

and compute their envelopes (B-scans). Distributions for these signals are discussed

below.

Because the randomness of the signal is due to the random position of scatterers, sta-

tistical properties of the signals are determined by how the scatterers are distributed.

A uniform distribution of the scatterers is a common and simple assumption that

leads to a simple signal model and allows for straightforward theoretical analyses.

Real tissue may not satisfy this assumption, or may include additional variances.

Below, we first discuss signal distributions assuming uniformly distributed scatterers,

then discuss distributions of signals from real tissue.

In order to discuss distributions of the signals, it is helpful to write Eq. 6.3 in the

following form

iT =
N∑

k=1

Ak(T )ejφk = R + jI , (6.5)

where R and I are random variables representing real and imaginary parts of the

complex envelope iT .

80



Signals from Uniformly Distributed Scatterers

RF signals

RF ultrasonic signal can be expressed as [100]

irf = Re{iT ej2k0z} , (6.6)

where iT is the complex envelope, k0 is the wavenumber corresponding to the center

frequency, f0, and z corresponds to the axis in axial direction. Details of the derivation

of Eq. 6.6 can be found in [100]. From Eq. 6.5, RF signal can also be written as

irf = R cos 2k0z − I sin 2k0z .

When scatterers are uniformly distributed over the region, R and I can be approxi-

mated by independent Gaussian random variables with zero mean and same variance

[110, 81], i.e.,

R, I ∼ N(0, σ2) .

Since R and I are independent, irf is also Gaussian with

E(irf ) = E(R) cos 2k0z − E(I) sin 2k0z = 0 ,

V ar(irf ) = E(i2rf ) = V ar(R) cos2(2k0z) + V ar(I) sin2(2k0z) = σ2 .

Let x represents the pixel in RF images, we have

fX(x) =
1√
2πσ

e−
1
2

x2

σ2 . (6.7)

In order to estimate temperature, we are interested in the relation between images

at reference and current temperatures, T0 and T . For simplicity, we represent RF

signals at T0 and T by x0 and xT with x0 ∼ N(0, σ2
0) and xT ∼ N(0, σ2) respectively.

Let ρ be the correlation coefficient between x0 and xT . Their joint distribution is

f(x0, xT ) =
1

2πσ0σ
√

1− ρ2
exp

[
−1

2
(x0, xT )Σ−1(x0, xT )T

]
, (6.8)

81



or

f(x0, xT ) =
1

2πσ0σ
√

1− ρ2
exp

[
− 1

2(1− ρ2)

(
x2

0

σ2
0

+
x2

T

σ2
− 2ρx0xT

σ0σ

)]
, (6.9)

where

ρ =
E(x0xT )

σ0σ
,

and

Σ =

[
σ2

0 ρσ0σ

ρσ0σ σ2

]
.

Parameters σ0, σ and ρ can be estimated from the signals.

Envelope detected signals

The envelope detected signal (B-scans) is usually used for better visualization and

was used in our computation of CBE. It may be expressed by

ien = |iT | = |R + jI| =
√

R2 + I2 . (6.10)

When R and I are independent Gaussian as described above, R, I ∼ N(0, σ2), ien is

Rayleigh signal [110]. Let ien be represented by random variable y. The distribution

for the pixels in envelope detected images is

f(y) =
y

σ2
e−

y2

2σ2 . (6.11)

Similar to our description of RF signals, we denote the envelope detected images at

T0 and T by y0 and yT , with

f(y0) =
y0

σ2
0

e
− y2

0
2σ2

0 ,

f(yT ) =
yT

σ2
e−

y2
T

2σ2 .

The joint density function of (y0, yT ) can be written in form [91]

f(y0, yT ) =
4y0yT

(1− r2)σ2
1σ

2
2

exp

[
− 1

1− r2

(
y2

0

σ2
1

+
y2

T

σ2
2

)]
I0

( −2ry0yT

(1− r2)σ1σ2

)
, (6.12)
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where σ2
1 = 2σ2

0, σ2
2 = 2σ2, I0() is modified Bessel function of 0th order and r is a

correlation parameter with 0 ≤ r ≤ 1. Eq. 6.12 is in fact a special case of the joint

probability density function of correlated Weibull random variables [13]. σ2
1 and σ2

2

can be estimated from y0 and yT . r can be estimated by [91, 13]

r̂ =

√
Cov(y2

0y
2
T )√

V ar(y2
0)V ar(y2

T )
.

Distributions for Signals from Real Tissue

The assumption of uniformly distributed scatterers leads to Gaussian RF and Rayleigh

envelope signal descriptions. Parameters of their density functions can be easily es-

timated and used for further analysis, which we will see in later sections. This as-

sumption, however, may not be satisfied in reality.

In this study, real RF ultrasound signals backscattered from turkey breast were col-

lected in in-vitro experiments. Fig. 6.1 shows the histogram of real RF signals from

null experiment NL002 and estimated Gaussian distribution from the signal. The

estimated distribution does not match data histogram well. By observing the data

histogram, we found that the Laplace distribution, also known as bi-exponential dis-

tribution fits the histogram better as shown in Fig. 6.2.

Again, let x be the random variable representing RF signals. The density function of

x is

f(x) =
1√
2σ

exp

(
−
√

2|x− µ|
σ

)
, (6.13)

where µ = E(x) and σ = V ar(x). A possible joint distribution between two Laplace

RF signals x0 and xT is given in [49]

f(x0, xT ) =
1

πσ0σ
√

1− ρ2
K0




√√√√2
(

x2
0

σ2
0
− 2ρx0xT (σ0σ) +

x2
T

σ2

)

1− ρ2


 , (6.14)

where σ0 and σ are Laplace parameters of x0 and xT , ρ is a correlation coefficient,

and K0() is the Bessel function of the 3rd kind. Here, E(x0) and E(xT ) are assumed
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Figure 6.1: Histogram and fitted Gaussian distribution of RF signals obtained in
experiment NL002. The specimen is turkey breast.
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Figure 6.2: Histograms and fitted Laplace distribution of RF signals obtained in
experiment NL002. The specimen is turkey breast.
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to be zero according to the observed data. It is seen that the joint density function

of two Laplace random variables has a complex form, which may limit its application

in temperature estimation.

It was also found that the histograms of the envelope detected images from the exper-

iment were not Rayleigh. Statistical models proposed for describing real ultrasonic

signals were reviewed in the previous chapter. In this study, we found that the gen-

eralized Gamma distribution fits our data histogram. Let y be the random variable

representing the envelope detected images. Then,

f(y) =
pypm−1 exp

(−(y
a
)p

)

apmΓ(m)
, (6.15)

where p > 0. p and m are shaping parameters, and a is a scaling parameter [14]. De-

tails of parameter estimation can be found in [90]. The generalized Gamma distribu-

tion is in fact equivalent to the generalized Nakagami model proposed by Shankar [82].

The histogram of B-scans from experiment NL002 was compared to fitted Rayleigh

and generalized Gamma distributions in Fig. 6.3. Obviously, the generalized Gamma

fits the histogram better than the Rayleigh distribution.

We denoted the B-scans at temperatures T0 and T by y0 and yT , which follow the

generalized Gamma distribution given by

f(y0) =
p0y

p0m0−1
0 exp

(
−( y0

a0
)p0

)

ap0m0

0 Γ(m)
,

and

f(yT ) =
pypm−1

T exp
(−(yT

a
)p

)

apmΓ(m)
.

The joint probability density function of (y0, yT ) is given by [75]

f(y0, yT ) = p0p(1− ρ)m

[ ∞∑

k=0

(m0)kρ
k

k!

(
m2

0

ap0

0 (1− ρ)

)(m0+k) (
m2

ap(1− ρ)

)(m+k)
y

p0(m0+k)−1
0

Γ(m0 + k)

y
p(m+k)−1
T

Γ(m + k)

]

exp

{
− 1

1− ρ

(
m2

0y
p0

0

ap0

0

+
m2yp

T

ap

)}
1F1

{
(m−m0,m + k;

ρ2yp
T

ap(1− ρ)

}
, (6.16)
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Figure 6.3: Histogram and fitted Rayleigh and generalized Gamma distribution of
envelope detected images obtained in experiment NL002. The specimen is turkey

breast.

where ρ =
cov(yT

0 ,y2
T )√

var(y2
0)var(y2

T )
is the correlation parameter and 1F1(a; b; z) =

∑∞
n=0

(a)nzn

(b)nn!

is the confluent hypergeometric function. (u)k = u(u + 1)(u + 2)...(u + k − 1) is the

rising factorial.

The deviation of data histograms from Gaussian/Rayleigh distributions may be due to

non-uniformly distributed scatterers or the existence of isolated strong scattering, for

example. In our case, we believe that non-uniformly distribution of the scatterers is a

major cause of the deviation of data histogram. Fig. 6.4 shows a simulated ultrasound

envelope detected image, where 3/4 of the scatterers distributes in left half and one

fourth in right half of the image. Figs. 6.5 and 6.6 show the histograms and fitted

distributions of the simulated RF image and envelope detected image, respectively.

These results demonstrate that, when the scatterers are distributed non-uniformly,

RF and envelope detected images deviate from Gaussian and Rayleigh distributions,

but may be described as Laplace and generalized Gamma signals.

It is natural to ask: ”Why do the histograms of RF and B-scan images deviate from

Gaussian/Rayleigh when scatterers are not uniformly distributed?”. Here, we provide
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Figure 6.4: Simulated B-scans of non-uniformly distributed scatterers. Three
fourths of the scatterers are located in the left half and one fourth in the right half

of the image.
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Figure 6.5: Histogram and fitted distributions of a simulated RF image.
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Figure 6.6: Histogram and fitted distributions of simulated envelope detected image.

a possible explanation. In fact, with the assumption of a large number of scatterers

in the resolution cell of the transducer array, each pixel can still be described by a

Gaussian distribution. Within the resolution cell, the scatterers are approximately

uniformly distributed. Thus, each pixel in the RF image is still Gaussian with zero

mean. When the scatterers are not uniformly distributed over the whole region,

however, each pixel of the RF image follows a Gaussian distribution with a different

variance. That is, we may still assume independent pixels, but they are not identical.

When, the histogram of these non-identical pixels is fitted to a distribution, they

are treated as independent identically distributed. Thus, it can not be matched

by a Gaussian anymore. Correspondingly, the envelope detected image from non-

uniformly distributed scatterers contains non-identically distributed Rayleigh pixels.

Its histogram too no longer matches a Rayleigh distribution.

In order to illustrate this explanation, we generated 10000 Gaussian random variables

with zero mean and different variance in Matlab. Data histogram and fitted distribu-

tions are shown in Fig. 6.7. The data histogram is not Gaussian, but is matched by a

Laplace distribution. Similarly, we generated Rayleigh random variables with differ-

ent parameters and match the data histograms to Rayleigh and generalized gamma
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Figure 6.7: Histogram and fitted distributions of independent non-identically
distributed Gaussian random variables.
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Figure 6.8: Histogram and fitted distributions of independent non-identically
distributed Rayleigh random variables.
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distributions as shown in Fig. 6.8. These simulations demonstrate that, when non-

uniformly distributed scatterers lead to non-identically distributed image pixels, RF

and B-scan histograms deviate from Gaussian and Rayleigh distributions respectively.

The above interpretation of mismatch between real image histogram and Gaus-

sian/Rayleigh distribution may not be complete or general enough for tissue. More

studies are needed for a comprehensive understanding of realistic signal statistical

properties.

6.2 Formalization of CBE Computation

In this section, CBE calculation and characterization are formalized based on the dis-

cussion in the previous section. An approach to computing CBE independent of SNR

is developed assuming uniformly distributed scatterers. It was used for temperature

imaging in simulations and showed improvement in estimation accuracy.

6.2.1 CBE as a Ratio of Random Variables

In our initial work, CBE from backscattered signals was computed as ratios at each

pixel in the envelope detected images at temperature T and T0 [7]. CBE was char-

acterized by averaging ratios larger than and less than 1, denoted as positive CBE

(PCBE) and negative CBE (NCBE), which describe the increase and decrease in the

backscattered energy respectively.

When ien is represented as a random process as in the previous section, computation

of the ratio can be modeled as a ratio between two random variables, yT and y0

z =
yT

y0

. (6.17)
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Ratio, z, is also a random variable whose probability density function (PDF) is fZ(z).

Computation of PCBE can be written as

PCBE =
1

N+

∑

k∈{k|zk>1}
zk =

1
N

∑
k∈{k|zk>1}

zk

N+

N

,

where N is the number of pixels in image and N+ is the number of pixels with

value larger than 1. Assuming zk’s are independent, identically distributed random

variables, the nominator approximates the integral
∫∞

1
zfZ(z)dz. The denominator

approximates the probability of z being larger than 1. Thus, PCBE is defined as the

normalized mean of z over z ∈ [1,∞)

PCBE =

∫∞
1

zfZ(z)dz∫∞
1

fZ(z)dz
. (6.18)

Similarly, NCBE is defined as normalized mean of z over z ∈ (0, 1)

NCBE =

∫ 1

0
zfZ(z)dz∫ 1

0
fZ(z)dz

, (6.19)

where the PDF of z is determined by the joint distribution of (y0, yT ) [52]

fZ(z) =

∫ ∞

−∞
|y0|fY0YT

(y0, y0z)dy0 , (6.20)

where y0, yT and z > 0. Since fZ(z) depends on σ0, σ and r, PCBE and NCBE also

depend on these parameters.

6.2.2 Calculation of PCBE and NCBE using Backscattered

Signals from Uniformly Distributed Scatterers

In order to compute PCBE and NCBE, we need to know fZ(z). When scatterers

are uniformly distributed, y0 and yT are Rayleigh random variables with parame-

ters σ0 and σ respectively. If the two signals involved in the ratio computation are
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uncorrelated, that is y0 and yT are independent, Eq. 6.20 reduces to

fZ(z) =

∫ ∞

−∞
|y0|fY0(y0)fYT

(y0z)dy0 =
2σ2

0σ
2z

(σ2
0z

2 + σ2)2
. (6.21)

Then PCBE and NCBE can be computed as

PCBE =

σ2

σ2
0+σ2 + σ

σ0
[π
2
− arctan(σ0

σ
)]

σ2

σ2
0+σ2

, (6.22)

NCBE =

σ
σ0

arctan(σ0

σ
)− σ2

σ2
0+σ2

σ2
0

σ2
0+σ2

. (6.23)

When y0 and yT are dependent, fZ(z) will be derived from the joint distribution given

in Eq. 6.12. We computed fZ(z) by substituting Eq. 6.12 into Eq. 6.20

fZ(z) =

∫ ∞

0

|y0| 4y2
0z

(1− r2)σ2
0σ

2
exp

[
− 1

1− r2

(
y2

0

σ2
0

+
y2

0z
2

σ2

)]
I0

( −2ry2
0z

(1− r2)σ0σ

)
dy0

=
2σ2

0σ
2(1− r2)(σ2 + σ2

0z
2)z

[(σ2 + σ2
0z

2)2 − 4r2σ2
0σ

2z2]
3
2

,

(6.24)

where r is same as in Eq. 6.12. Details of the derivation can be found in Appendix

B. The same result, but without details of the derivation, was shown in [13]. It is

easy to show that, when y0 and yT are independent, i.e., r = 0, Eq. 6.24 becomes

Eq. 6.21. Closed form solutions for PCBE and NCBE are difficult to find since the

computation of integrals in Eq. 6.18 and 6.19 is not trivial. They can, however,

be calculated numerically. In this study, we used function ”quad” in Matlab for

computing PCBE and NCBE.

Estimating Ratio PDF from Noisy Signals

Previously, when we computed CBE as ratios of B-scans, noise effects were not re-

moved. Noise levels will impact the slope of CBE curves [103], and thus will introduce

errors in calibration and temperature estimation. Fig. 6.9 shows PCBE and NCBE

curves calculated by taking the ratio of simulated images at various signal to noise

ratios (SNR) for a reference temperature of 37oC. It can be seen that the dynamic
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Figure 6.9: CBE from simulated images at different SNRs. They have different
slopes.

ranges of PCBE and NCBE were reduced due to the jump at 37.5oC, which is related

to the noise level.

In previous chapters, we demonstrated approaches to reducing noise effects. However,

noise can not be completely removed. We wish to compute CBE independent of SNR,

which may be achieved by calculating CBE from the ratio PDF. Below, we show that

the parameters of the ratio PDF σ0, σ and r in Eq. 6.24 can be estimated from noisy

signals. Therefore, CBE can be computed from estimated signal distributions such

that noise effects are minimized.

Assuming additive Gaussian noise in RF signals

s = irf + n ,

where s is the received RF signal, irf is the true signal, and n ∼ N(0, σ2
n) is the

noise. When irf is Gaussian with zero mean, irf ∼ N(0, σ2), s is also Gaussian,

s ∼ N(0, E(s2)). Then,

σ2 = E(s2)− σ2
n ,
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where σ2
n is assumed to be known. From Eq. 6.7 and 6.11, corresponding Rayleigh

parameter is the same as σ. σ2
0 and σ2 in Eq. 6.24 can be estimated as in the above

equation. From Eq. 6.12, r =

√
Cov(y2

0y2
T )√

V ar(y2
0)V ar(y2

T )
. Let σ2

n0 and σ2
n be the variance of

noise in images at T0 and T respectively. Let ỹ0 and ỹT denote noise corrupted y0

and yT . In appendix C, it is shown that Cov(y2
0y

2
T ), V ar(y2

0) and V ar(y2
T ) can be

estimated from ỹ0 and ỹT

Cov(y2
0y

2
T ) = Cov(ỹ0

2ỹT
2) ,

var(y2
0) = var(ỹ0

2)− 8σ2
0σ

2
n0 − 4σ4

n0 ,

var(y2
T ) = var(ỹT

2)− 8σ2σ2
n − 4σ4

n .

(6.25)
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Figure 6.10: CBE from simulated images at SNR = 17dB. CBE computed using the
PDF is very close to the CBE without noise. CBE computed from the signal ratio

directly is much different from CBE without noise.

Thus, all the three parameters in Eq. 6.24 can be estimated from received signals

with varying noise levels, given information about the noise. Figs. 6.10 and 6.11

show CBE curves computed from simulated images at 17dB and 29dB of SNR. In

both figures, CBE computed from ratio PDF is consistent with CBE without noise.

In other words, CBE from the ratio PDF is independent of SNR. Notice that, noise

reduction studied in Chapters 3 and 5 is critical in two senses: 1) Even when CBE
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Figure 6.11: CBE from simulated images at SNR = 29dB. CBE curves computed
from the distribution is very close to CBE without noise.

can be computed from the PDF, estimation of PDF parameters is more accurate at

higher SNR, 2) CBE computed from the signal ratio directly should be close to CBE

value without noise when SNR is high.

6.2.3 Temperature Imaging using CBE

In our initial work, in order to estimate temperature, CBE curves were calibrated

from multiple trials and fitted to polynomials [103]. Here, we repeat the same ap-

proach with CBE curves computed using the ratio distribution. Ultrasonic images

were simulated at SNR of 17dB and 29dB, which are typical low and high SNR of

experimental data. Figs. 6.12 and 6.13 show errors in temperature estimation using

PCBE.

When CBE was computed from the ratio probability density function, where noise

effect was taken into account, mean error in estimation is less than the error when

CBE is computed directly from the ratio. When the temperature change is not large,

e.g., δT < 5oC, estimation using CBE from the ratio PDF has smaller variance
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Figure 6.12: Error in temperature estimation using PCBE at SNR of 17dB.

than CBE directly from the ratio because CBE from the PDF has a larger dynamic

range at lower temperatures as seen in Fig. 6.10. When the temperature change is

high, CBE at successive temperatures has more overlap, independent of how CBE is

calculated. Hence, estimation variance from both methods are similar and larger at

high temperature than at low temperatures.

Similar conclusions can be drawn from temperature estimation using NCBE curves

shown in Figs. 6.14 and 6.15. As expected, estimation error is less when SNR is higher

for both approaches. The larger error at lower SNR indicates that CBE computed

from the ratio PDF is not completely independent of SNR. Hence, the best way for

removing noise effects is to increase SNR, which was discussed in Chapters 3 and 5.

A problem in the calibration of CBE curves and temperature estimation is that,

signal to noise ratio may not be consistent over experiments. When calibration curves

and curves for estimation have different SNR, large error may occur in temperature

imaging. In order to achieve accurate estimates, we may have to create calibration

curves at all possible SNR levels, or make all experiments run at the same SNR.

One benefit resulting from being able to use the ratio PDF is that calculated CBE is

independent of SNR and thus the effect of the variation in SNR is largely reduced.
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Figure 6.13: Error in temperature estimation using PCBE at SNR of 29dB.
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Figure 6.14: Error in temperature estimation using NCBE at SNR of 17dB.
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Figure 6.15: Error in temperature estimation using NCBE at SNR of 29dB.

In the following simulation, we generated calibration curves at SNR= 29dB and test

data at SNR= 17dB. Estimation errors from both approaches are shown in Figs. 6.16

and 6.17. The difference in SNR between calibration and estimation data leads to

large error in temperature estimation when CBE is computed from the ratio directly.

In practice, there is always uncertainty in temperature measurement, even using our

calibrated thermocouples. In addition, the reference temperature and the tempera-

ture intervals may be different from experiment to experiment. If CBE is calibrated

with respect to a specific value of temperature, the error may be greater than tem-

perature estimation with respect temperature differences. The difference between

CBE curves generated with different reference temperatures was simulated as shown

in Fig. 6.18. In this study, CBE was calibrated with respect to the change in the

temperature. Thus, the effect of different temperature references and intervals was

reduced. This scheme can be seen in Fig. 6.18.

Characterization of CBE beyond PCBE and NCBE

From the computation of PCBE and NCBE, it is obvious that both contain only part

of the data. Intuitively, involving more data in CBE characterization may provide
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Figure 6.16: Error in temperature estimation using PCBE. Calibration curves were
generated at SNR = 29dB. Test data were generated at SNR = 17dB.
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Figure 6.17: Error in temperature estimation using NCBE. Calibration curves were
generated at SNR = 29dB. Test data were generated at SNR = 17dB.

99



36 38 40 42 44 46
−3

−2

−1

0

1

2

3

4

Temperature ( oC)

C
B

E
 (

dB
)

CBE Curves with Different Reference Temperatures

 

 

reference at 36.5 oC

reference at 37 oC

−2 0 2 4 6 8 10
−3

−2

−1

0

1

2

3

4

Change in Temperature ( oC)

C
B

E
 (

dB
)

CBE Curves with Different Reference Temperatures

 

 

reference at 36.5 oC

reference at 37 oC

Figure 6.18: CBE curves with different reference temperatures simulated at SNR =
29dB. Left: CBE curves with respect to specific temperatures. Right: CBE curves

with respect to temperature change.

more information of temperature change. For this purpose, the standard deviation

(STD) of the ratio image was also examined in our initial work [7, 103]. In a more

recent work based on 3D in-vitro experiments, it was found that estimation using the

standard deviation results in less error than using PCBE and NCBE.

Better performance by using CBE STD may be because variation in CBE STD is less

than the variation of PCBE and NCBE over experiments. CBE STD curves from

simulated images at SNR=29dB are shown in Fig. 6.19. Compared to PCBE and

NCBE curves in Fig. 6.11, the µ ± σ range of CBE STD curves over 25 trials is

less, especially when temperature change is small. This smaller variance of CBE STD

presumably is the result of using more data (pixels) in the computation.

When signal to noise ratio is low, if CBE is computed directly from the ratio signals

with noise, the advantage of the smaller variance of CBE STD may be reduced since

its dynamic range over temperature is reduced by noise as shown in Fig. 6.20. More

error in estimation is expected when SNR is low.

Figs. 6.21 and 6.22 show error in temperature estimation from simulated images using

CBE STD at SNR = 17 and 29dB. As expected, when SNR=29dB, the estimation

error is less than the error of using PCBE and NCBE in Figs. 6.13 and 6.15. However,

comparing Fig. 6.21 to Figs. 6.12 and 6.14, it can be seen that the estimation
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Figure 6.19: CBE STD computed simulated images at SNR = 29dB. Curves of STD
with noise is close to the curves without noise at this SNR level.
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Figure 6.20: CBE STD computed from simulated images at SNR = 17dB. The
curve of STD with noise has less dynamic range over temperature than the one

without noise.
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Figure 6.21: Error in temperature estimation using CBE STD at SNR = 17dB.

performance of using CBE STD is not better than that of using PCBE and NCBE

when SNR is low.

We would point out that, the standard deviation here is not the standard deviation

of the ratio, z. In stead of computing 20 ∗ log10(STD(z)), 20 log10(z) was calculated

first and then the STD of the new variable was computed. In other words, we are

looking at the STD of

u = 20log10(z) ,

whose distribution can be derive analytically when the scatterers are uniformly dis-

tributed over the region

fU(u) =
(ln(10))σ2

0σ
2(1− r2)(σ2 + σ2

010u/10)(10u/10)

10 [(σ2 + σ2
0(10u/10))2 − 4r2σ2

0σ
2(10u/10)]

3
2

. (6.26)

As for the parameters for ration PDF, σ2
0, σ2 and r2 can be estimated independent of

SNR assuming uniformly distributed scatterers. Thus, the CBE STD discussed can

also be computed independent of SNR.
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Figure 6.22: Error in temperature estimation using CBE STD at SNR = 29dB.

6.3 Summary and Conclusions

In this chapter, we modeled the problem of temperature imaging via a probabilistic

framework and formalized our computational approach of CBE. As an example, we

assumed uniformly distributed scatterers and showed that CBE can be computed

independent of noise to improve temperature accuracy. More studies are needed to

extend the results of this chapter to realistic experimental data. We would also like

to explore approaches other than the energy ratio used in our initial work and in this

chapter. These studies are presented in the next chapter.
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Chapter 7

Examples of Temperature Imaging

Beyond the Energy Ratio

In the previous chapter, temperature imaging was modeled as a problem of estimating

tissue temperature from random processes or collection of random variables resulting

from the thermal change in signals. A mathematical representation was developed for

the energy ratio, which was shown as a potential parameter of temperature imaging

for hyperthermia. As shown in the last chapter, this formalization for CBE based

approach improved temperature accuracy under certain conditions. We, however, do

not know if the energy ratio is the optimal choice for a thermometry. Here we explore

other possible parameters and approaches to temperature imaging.

As mentioned before, distribution of the energy ratio is determined by the joint dis-

tribution of the two random variables involved in the ratio computation. Thus, the

joint distribution should also contain temperature information. In this chapter, mu-

tual information is explored as an example of parameters extracted from the joint

distribution for temperature imaging. It shows the possibility of estimating temper-

ature based on the change in the joint distribution.

It was seen that the ratio computation may lead to outliers that may affect CBE

computation. In this chapter, instead of ratio, we also look at the difference between

images. A maximum likelihood estimator is derived based on image difference by

linearizing the random phasor sum representation.
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7.1 Temperature Imaging based on the Joint Dis-

tribution of Signals at Reference and Current

Temperatures

Previously, temperature imaging was modeled as estimating temperature from the

random processes resulting from thermal effects of tissue on ultrasonic signals. The

random processes are collections of random variables indexed by temperature. In

this study, we pursue approaches to estimating temperature given measured random

variables, (x0, xT ) and (y0, yT ) which represent RF and B-scan signals at reference

and current temperatures, respectively. Information of thermal change of the tissue

is contained in the joint distributions fX(x0, xT ) or fY (y0, yT ). Therefore, temperature

may be estimated from fX(x0, xT ) or fY (y0, yT ).

Previously, the distribution of ratio z between yT and y0, fZ(z), is determined by

the joint distribution of (y0, yT ), f(y0, yT ). Variation of fZ(z) with temperature cor-

responds to the change in f(y0, yT ). To illustrate this relation, joint histograms of

simulated B-scans at various temperatures and the corresponding ratio histograms

are plotted in Fig. 7.1.

When temperature increases, the joint histogram is less concentrated around the

diagonal because signals are more uncorrelated. Accordingly, more ratio values fall

in the regions larger than and less than 1 in the ratio histogram, which correspond

to the left-top and right-top of the joint distribution, respectively. In other words,

temperature information contained in the joint distribution is transferred to the ratio.

In this section, we estimate temperature directly from the joint distribution.

7.1.1 Temperature Imaging using Mutual Information (MI)

When computing CBE, we took the ratio between signals, which may be regarded

as a similarity measure of the signals. When temperature increases, more ratio val-

ues fall in regions larger than or smaller than 1, indicating that the signals are less

alike. Alternatively, a straightforward similarity measure based on joint distribution
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Figure 7.1: Ratio PDF and joint distribution of Simulated B-scans. Upper-left:
Ratio PDF at various temperatures. Upper-right and Bottom: Joint histograms of

current and reference simulated B-scan at various temperatures.
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is mutual information (MI). In this section, we study the potential of using mutual

information for temperature imaging.

Mutual information of two random variables, a1 and a2, is defined as [24]

I(a1; a2) =

∫
f(a1, a2) log

f(a1, a2)

f(a1)f(a2)
da1da2 ,

where f(a1) and f(a1) are probability density functions of a1 and a2, f(a1, a2) is

the joint density function of a1 and a2. Alternatively, mutual information can be

computed by

I(a1; a2) = h(a1) + h(a2)− h(a1, a2) ,

where h(a1) and h(a2) are differential entropies of a1 and a2, h(a1, a2) is the joint

entropy of a1 and a2.

We first consider the situation of uniformly distributed scatterers. Computation of

mutual information involves the logarithm of the density functions, which raises dif-

ficulties in computing mutual information from the joint distribution of the envelope

detected signals shown in Eq. 6.16. Consequently, we considered mutual information

of RF signals instead of B-scans. RF signals are Gaussian with joint density shown

in Eq. 6.8, and mutual information from RF signals can be computed by [24]

I(x0; xT ) = −1

2
log(1− ρ2) , (7.1)

where x0 and xT are random variables representing RF signals at reference and current

temperatures, ρ is the correlation coefficient defined in Eq. 6.8. Clearly, calculation

of MI for RF signals depends simply on the correlation coefficient, ρ, which can

be estimated accurately from noisy signal. Hence, given noise information, mutual

information may be estimated independent of SNR.

Fig. 7.2 shows the mutual information estimated from ultrasonic RF signals simulated

at various SNRs. Because noise has been taken into account, mutual information

curves with temperature at various signal to noise ratios are consistent to each other.

These consistencies in MI at different SNRs make it feasible to estimate temperature

without calibrating MI for all SNRs or making all experiments at same SNR.
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Figure 7.2: MI with temperature computed from simulated RF images at various
SNR levels.

Notice that MI curve at SNR=17dB has large variance at 37.5oC. This large variance

occurred because images at 37 and 37.5oC are highly correlated, i.e., ρ −→ 1, so that

I(x0; xT ) −→ ∞. When SNR is low, there could be small errors in the estimation of

ρ, which leads to large error in MI. Consequently, I(x0; xT ) varies dramatically due to

error in estimating ρ at low SNR. For accurate temperature estimation, we are again

required to increase SNR in the images as described in chapter 3.

Fig. 7.3 shows the error in temperature estimation using mutual information in sim-

ulations. MI curves from simulated images at SNR=29dB were calibrated and fitted

to an 3rd order polynomial. MI for temperature estimation was then computed from

simulated RF images at SNR=17, 23 and 29dB. Estimation error is less than 0.35oC

for all SNRs, except for that at 37.5oC at SNR=17dB, which resulted from the large

variance of MI at this point. The above results show that, assuming uniformly dis-

tributed scatterers, MI is a potential parameter for temperature imaging. Application

of MI to experimental data is discussed in the next chapter.
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Figure 7.3: Error in temperature estimation using MI. Calibration was at SNR =
29dB. Test data for temperature estimation was simulated at SNR = 17, 23 and

29dB, respectively.

7.1.2 Temperature Imaging using Cross Correlation

From Eq. 7.1, it is seen that mutual information for RF signals depends only on

the correlation coefficient ρ. Therefore, instead of computing mutual information,

similarity of signals can also be measured by their cross correlation coefficient. The

advantage of using cross correlation is that, when SNR is low, estimation of mutual

information of highly correlated signals has large variance as seen in Fig. 7.2, but

the correlation coefficient converges to 1. Hence, it does not have large variance at

37.5oC as does the mutual information.

For Gaussian RF signal, ρ can be estimated accurately from different SNR levels given

noise information. ρ curves estimated from simulated RF images at various SNRs are

shown in Fig. 7.4. Errors in temperature estimation using ρ are shown in Fig. 7.5.

Again, to illustrate the benefit gained by accurately estimating ρ from noisy signals,

calibration of ρ was at SNR=29dB and temperature estimation was at SNR=17, 23

and 29dB.

109



36 38 40 42 44 46
0.94

0.95

0.96

0.97

0.98

0.99

1

Temperature (oC)

C
o

rr
el

at
io

n
 C

o
ef

fi
ci

en
t

Correlation Coefficient of Simulated RF Images

 

 

SNR:17dB
SNR:23dB
SNR:29dB

Figure 7.4: Correlation coefficients of simulated RF images at various SNRs.
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Figure 7.5: Error in temperature estimation using correlation coefficient.
Calibration SNR=29dB.
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Figure 7.6: Correlation coefficient of squared simulated B-scans at various SNRs.

Alternatively, the correlation coefficient may be computed between envelope detected

images. It is, however, not easy to estimate the B-scan correlation from noisy signals.

Fortunately, we were able to compute correlation coefficient for the square of envelope-

detected images, which is considered equivalent to the correlation between B-scans.

This correlation coefficient is in fact r2 in Eq. B.3 and can be estimated as in Eq.

6.25, where noise effect is taken into account. Fig. 7.6 shows r2 from simulated B-

scans of various SNRs. The r2 curves of the B-scans in Fig. 7.6 are similar to the

ρ curves of RF images in Fig. 7.4. Therefore, r2 may also be used for temperature

estimation.

7.2 A Maximum Likelihood Estimator for Tissue

Temperature

In the previous study, CBE computation was formalized as a ratio between random

variables and characterized as PCBE and NCBE which were formally defined as

statistics of the ratio. During this procedure, temperature, however, did not show up
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explicitly in PCBE and NCBE computation. That is, PCBE and NCBE were implicit

functions of temperature. We fitted PCBE and NCBE curves to polynomials to find

their dependence on temperature. The same problem existed in estimation based on

the joint distributions between random variables.

The lack of an explicit relation between computed statistics and temperature resulted

from the joint distribution which is generic for two random variables. For example,

the joint distribution of two Rayleigh variables in Eq. B.3 is valid for any two de-

pendent Rayleigh random variables including that used in our study. We know that

temperature information must be contained in the joint distribution. Hence, it should

be contained in the parameters of the generic joint distribution in an implicit way.

In this section, based on the CBE model for individual scatterers, we look at the effect

of thermal change in backscattering on the signal model. We explore an approximate

dependence of data distribution on temperature change, from which, a maximum

likelihood estimator can be derived. In order to overcome the problem of ”outliers”

in ratio computation, we investigate the change in signals in the difference between

images.

7.2.1 Envelope of the Image Difference

The ultrasonic signal at a given location is a coherent addition of the scattering within

the resolution cell, which can be described by a sum of random phasors[110, 100].

Recall the random phasor sum of temperature dependent backscattered signals in

Eq. 6.3 is

iT (r) =
N∑

k=1

Ak(T )ejφk .

In [92], Straube and Arthur proposed a model for the change in the backscattered

energy from single scatterers relative to the reference temperature. Consequently, the

discrete tissue model is also temperature dependent as shown in Eq. 6.2[103], which

may be further modified in form

q(r, T ) =
N∑

k=1

qk(T )δ(r− r0) =
N∑

k=1

βk(T )qk(T0)δ(r− r0) ,
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where βk(T ) represents the change in reflectivity for individual scatterers at T and

βk(T0) = 1. Since Ak(T ) is proportional to qk(T ), Eq. 6.3 becomes

iT (r) =
N∑

k=1

βk(T )Ak(T0)e
jφk , (7.2)

where βk is the same as in the preceding equation. In order to measure the change

in signals, we looked at the magnitude of difference between the complex envelopes

at T and T0

z = |i∆T | = |iT − iT0|

=

∣∣∣∣∣
N∑

k=1

(βk(T )− βk(T0))Ak(T0)e
jφk

∣∣∣∣∣ ,
(7.3)

where ∆T = T − T0 is the change in temperature. Eq. 7.3 shows that the difference

of the complex envelopes can still be represented by a random phasor sum and z is

the magnitude of the sum

z = |Rz + jIz| , (7.4)

where Rz and Iz are real and imaginary components of i∆T , Rz⊥Iz. When scatterers

are uniformly distributed over the region, Rz, Iz ∼ N(0, σ2). Then, z is simply a

Rayleigh random variable

fZ(z) =
z

σ2
e−

z2

2σ2 , (7.5)

For experimental data which is not Rayleigh, we may model z by a generalized Gamma

distribution:

fZ(z) =
pzpm−1 exp

(−( z
a
)p

)

apmΓ(m)
, (7.6)

It is, however, not clear how the parameters of the generalized Gamma relate to

parameters of distributions of Rz and Iz.

7.2.2 Maximum Likelihood Estimator

We first derive the maximum likelihood estimator (MLE) assuming the scatterers are

uniformly distributed, i.e., z in Eq. 7.3 is Rayleigh. Furthermore, the pixels in the

images were assumed to be i.i.d. Therefore, the likelihood function of the difference
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magnitude image is

L(T ) = p(z|T ) =
M∏

l=1

zl

σ2
e−

z2
l

2σ2

=

M∏
l=1

zl

σ2M
exp

(
− 1

2σ2

M∑

l=1

z2
l

)
,

(7.7)

where z = {z1, z2, ..., zM} is the set of random variables representing the pixels, M is

the number of pixels in the image. The likelihood function is a function of temper-

ature, although temperature does not appear in Eq. 7.7 explicitly but imbedded in

parameter σ2. In order to introduce temperature to the likelihood function, we look

at the random phasor sum of i∆T in Eq. 7.3, where βk(T ) is the term associated with

temperature. We assumed that βk(T ) can be approximated linearly by the first two

terms of its Taylor expansion at T0

βk(T ) ∼= βk(T0) + ∆Tβ′k(T0) , (7.8)

where β′k(T0) is the first order derivative of βi(T ) evaluated at T0. We regarded Eq. 7.8

as a linear approximation of βk(T ) because it contains only the first two terms in βk’s

Taylor expansion and it is a linear function of the temperature change. Substituting

Eq. 7.8 into Eq. 7.3, z can be approximated as

z = |Rz + jIz| ∼=
∣∣∣∣∣∆T

N∑

k=1

β′k(T0)Ak(T0)e
jφk

∣∣∣∣∣ = ∆T

∣∣∣∣∣
N∑

k=1

β′k(T0)Ak(T0)e
jφk

∣∣∣∣∣ , (7.9)

where z is a Rayleigh random variable with parameter σ2 as shown in Eq. 7.5.

∣∣∣∑N
k=1 β′k(T0)Ak(T0)e

jφk

∣∣∣ is in fact the approximation of z(∆T = 1), which is denoted

as

z1 ≡ z(∆T = 1) ∼=
∣∣∣∣∣

N∑

k=1

β′k(T0)Ak(T0)e
jφk

∣∣∣∣∣ = |R1 + I1| , (7.10)

where R1, I1 ∼ N(0, σ2
1) are independent Gaussian random variables. z1 is also a

Rayleigh random variable with parameter σ2
z1
∼= σ2

1. From Eq. 7.9, Rz
∼= ∆TR1,

Iz
∼= ∆TI1 and

σ2 ∼= ∆T 2σ2
1 .
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Eq. 7.5 is approximated as

fZ(z) =
z

σ2
e−

z2

2σ2 ∼= z

∆T 2σ2
1

e
− z2

2∆T2σ2
1 . (7.11)

Consequently, the likelihood function becomes

L(T ) = p(z|T ) ∼=

M∏
l=1

zl

∆T 2Mσ2M
1

exp

(
− 1

∆T 2σ2
1

M∑

l=1

z2
l

)
. (7.12)

Corresponding log likelihood function is

ln L ∼=
∑

ln(zl)− 2M ln ∆T −M ln σ2
1 −

1

∆T 2σ2
1

M∑

l=1

z2
l . (7.13)

Differentiating ln L with respect to ∆T and setting the result to zero lead to

∂lnp(ρ|∆T )

∂∆T
= 0 .

The maximum likelihood estimator for temperature change is then

∆̂T =

√√√√√
1

2M

M∑
l=1

z2
l

σ2
1

, (7.14)

where 1
2M

M∑
l=1

z2
m is in fact the maximum likelihood estimator for σ2. In order to apply

Eq. 7.14, σ2
1 should be known. Here, we assume the image at ∆T = 1, i.e., z1 is

known, then σ2
1 can be estimated as

σ̂2
1
∼= σ̂2

z1 =
1

2M

M∑

l=1

(z1
l )

2 .

Notice that the MLE is for the change in temperature and not for a specific temper-

ature. This makes sense because all images were compared to a reference.

Noise Effects
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As shown before, the noise in RF signals can be assumed to be additive white Gaus-

sian, i.e., s = irf + n, where s is observed RF signals, n ∼ N(0, σ2
n) is the noise.

We assume σ2
n is known or can be estimated from signals. Accordingly, magnitude of

difference image, z in Eq. 7.9 becomes

z̆ = |(Rz + nR) + j(Iz + nI)| , (7.15)

where z̆ is the observed z with noise, nR⊥nI , nR, nI⊥Rz, Iz, nR, nI ∼ N(0, σ2
nz), and

σ2
z̆ = σ2 +σ2

nz. Since nR and nI resulted from the difference of two images, σ2
nz = 2σ2

n.

Therefore, σ2 = σ2
z̆ − 2σ2

n. When these parameters are estimated from data

σ̂2 = σ̂2
z̆ − 2σ̂2

n =
1

2M

M∑

l=1

z̆2
l − 2σ̂2

n .

Similarly, σ̂2
1 = 1

2M

M∑
l=1

(z̆1
l )

2 − 2σ̂2
n. The maximum likelihood estimator in Eq. 7.14

becomes

∆̂T =

√√√√√√√√

1
2M

M∑
l=1

z̆2
l − 2σ̂2

n

1
2M

M∑
l=1

(z̆1
l )

2 − 2σ̂2
n

. (7.16)

7.2.3 Factors Affecting the Performance of MLE

A good estimator is an unbiased one with small variance. We investigate the mean

and variance of the estimator in Eq. 7.16 qualitatively for factors affecting estimator

performance.

Mean of the estimator

For simplicity, we studied ∆̂T
2

in stead of ∆̂T in Eq. 7.16

∆̂T 2 =

1
2M

M∑
l=1

z̆2
l − 2σ̂2

n

1
2M

M∑
l=1

z̆2
1l − 2σ̂2

n

. (7.17)
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In principle, the denominator and numerator in the above equation are correlated

random variables and calculation of E[∆̂T 2] is not trivial. The denominator is the

estimation of σ2
1 defined in Eq. 7.10. Here, we first assume σ2

1 can be estimated

perfectly, that is, σ2
1 is known. The denominator in the above equation is then

constant and the expectation of ∆̂T 2 is

E[∆̂T 2] =

E

[
1

2M

M∑
l=1

z̆2
l − 2σ̂2

n

]

σ2
1

=
σ2

σ2
1

, (7.18)

where σ2 is defined in Eq. 7.5. If the linear approximation of βk(T ) is perfect,

σ2 = ∆T 2σ2
1 and E[∆̂T

2
] = ∆T 2. Unfortunately, the Taylor expansion of βk contains

non-linear components of ∆T

βk(T ) = βk(T0) + ∆Tβ′k(T0) +
∆T 2

2
β

(2)
k (T0) + · · ·+ ∆T n

n!
β

(n)
k (T0) + · · ·

= βk(T0) + ∆Tβ′k(T0) + ∆Tε(∆T ) ,

(7.19)

where ∆Tεk(∆T ) represents higher order components in the Taylor expansion of βk.

Therefore, Eq. 7.3 can be written as

z =

∣∣∣∣∣
N∑

k=1

(βk(T )− βk(T0))Ak(T0)e
jφk

∣∣∣∣∣

= ∆T

∣∣∣∣∣
N∑

k=1

[β′k(T0) + ε(∆T )]Ak(T0)e
jφk

∣∣∣∣∣
= ∆Tw ,

(7.20)

where w =
∣∣∣∑N

k=1[β
′
k(T0) + ε(∆T )]Ak(T0)e

jφk

∣∣∣ is also Rayleigh random variable with

parameter σ2
w and σ2 = ∆T 2σ2

w. σ2
w varies with temperature due to the term ε(∆T )

in Eq. 7.20 and Eq. 7.18 becomes

E[∆̂T 2] =
∆T 2σ2

w(∆T )

σ2
1

.

This result shows that the estimator has a time variant bias even when σ2
1 is known.

Notice that if βk contains only linear terms in its Taylor expansion, then ε(∆T ) = 0,

σ2
w = σ2

1 and the estimator is unbiased. Because βk contains nonlinear terms, the MLE

117



is biased and the linearization of βk could be a major cause of bias in temperature

imaging. Because βk depends on the type of scatterers, the estimation bias relates to

scatterer population.

Furthermore, σ2
1 is usually unknown and the denominator of Eq. 7.17 is also a random

variable. In addition, the denominator and numerator in Eq. 7.17 are correlated.

Both of them are the difference of two Chi-square random variables and follow a

complicated distribution [88]. It is difficult to determine their joint distribution.

It is, however, intuitive that the joint distribution may depend on the correlation

between the denominator and numerator, which varies with SNR since z̆m and z̆1m

are noisy signals. Consequently, the mean of the estimator may be affected by SNR.

It is difficult to see the noise impact on the estimator mean analytically. Bias with

SNR was studied using simulation tools as shown below.

Estimator variance

A good maximum likelihood estimator requires small variance, which may be evalu-

ated by Cramér-Rao bound (CR bound). According to the Cramér-Rao bound for

biased estimators in [99], the variance of our estimator satisfies

V ar(∆̂T ) ≥
(

1 +
dB(∆T )

d∆T

)2
1

E[(∂ln L(T )
∂∆T

)2]
, (7.21)

where L(T ) is given in Eq. 7.7, while zl and σ2 are replaced by z̆l and σ2
z̆ , respectively,

to count the noise effect. Therefore,

∂ ln L(T )

∂∆T
=

∂σ2
z̆

∂∆T

−Mσ2
z̆ + 1

2

M∑
l=1

z̆2
l

σ4
z̆

,
(7.22)

where σ2
z̆ = σ2 + 2σ2

n. Therefore,

[
∂ ln L(T )

∂∆T

]2

=
1

σ8
z̆

[
∂σ2

z̆

∂∆T

]2

M2σ4

z̆ −Mσ2
z̆

M∑

l=1

z̆2
l + 0.25

(
M∑

l=1

z̆2
l

)2

 . (7.23)
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As defined previously, σ2 is the Rayleigh parameter of z in Eq. 7.3 and σ2
n is the

variance of noise in RF images. Given

E(z̆2
l ) = 2σ2

z̆ ,

E(z̆4
l ) = 8σ4

z̆ ,

we have

E

[(
∂ ln L(T )

∂∆T

)2
]

=
M

σ4
z̆

[
∂σ2

z̆

∂∆T

]2

. (7.24)

Accordingly,

V ar(∆̂T ) ≥
(

1 +
dB(∆T )

d∆T

)2
σ4

z̆

M
[

∂σ2
z̆

∂∆T

]2

∼=
(

1 +
dB(∆T )

d∆T

)2 ( σ2

σ2
n

+ 2)2∆T 2

4M
[

σ2

σ2
n

]2 ,

(7.25)

where noise is assumed to be temperature invariant and σ2 ∼= ∆T 2σ2
1 by approximat-

ing βk as in the development of MLE. Obviously, the estimator variance increases with

temperature, ∆T . On the other hand, if M is large, i.e., the size of images increases,

variance is smaller. Smaller variance due to larger image size is reasonable because

more samples are involved and provide better estimation of the statistics. Notice that
σ2

σ2
n

represents the signal to noise ratio. When SNR is large, the CR bound is mainly

determined by ∆T and M . When SNR is very small, the denominator decreases

rapidly, whereas the numerator is bounded by 4∆T 2. Therefore, we can conclude

that the estimator variance decreases with SNR or increases with noise level, which

is consistent with our intuition.

In summary, the mean and variance of the MLE are affected by several factors.

The population of the scatterers, i.e., the type and proportion of scatterers, affects

the bias of the estimation mean resulted from the linearization of the reflectivity

parameter βk. The bias also increases with temperature because βk contains more

higher order components when temperature is high. Estimator variance increases

with temperature, but decreases with image size and SNR.
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7.2.4 Temperature Imaging using MLE – Simulation Results

In this subsection, we evaluate the performance of the maximum likelihood estimator

in Eq. 7.16 using the simulation tool. As discussed in the preceding subsection,

scatterer population, SNR and image size may affect estimator performance. In this

study, we simulated sequences of ultrasonic images with varying values for SNR, image

size and proportion ratio for aqueous and lipid scatterers. Baseline values for SNR

image size and population are 29dB, 1 × 3cm2 and 2:1 Na/Nl ratio, where Na and

Nl are the numbers of aqueous and lipid scatterers, respectively. The scatterers were

assumed to be uniformly distributed over the image region. Following the setting in

our in-vitro heating experiments, the temperature range was chosen to be 37 ∼ 45oC

with 0.5oC intervals.

Figs. 7.7 shows simulated envelope images of signal differences at various tempera-

tures. As expected, the variance, σ2 in Eq. 7.5, of these difference images increased

with temperature, such that it can be used for temperature imaging.

We first applied MLE to simulated image sequences at various SNRs that were typ-

ically seen in in-vitro experiments. Fig. 7.8 shows mean ± standard deviation of

errors in estimation from 50 trials with Na/Nl = 2 and image size 1 × 3cm2. Notice

that, in the development of MLE, we assumed the image at ∆T = 1 is known. In

the simulations, estimation was performed for temperatures above 38oC and errors

at 37 ∼ 38oC were set to be zero.

It can be seen that the estimation is biased and the bias increases with temperature,

which is consistent with the analysis in the previous section. The bias at SNRs of 23

and 29dB are similar, while the bias at SNR of 17dB is even smaller. Further studies

are needed to explore the impact of noise on the bias.

As discussed in the preceding subsection, the variance in estimation decreases with

SNR. When SNR is as low as 17dB, the range of the mean±STD may be larger

than ±0.5oC after 42oC. Otherwise, the error in temperature estimation is less than

±0.5oC. This result shows that, although noise has been taken into account, MLE is

not completely SNR independent because estimation of MLE parameters, such as σ1

in Eq. 7.16, is affected by noise. This again reminds us of the significance of noise

reduction.
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Figure 7.7: Simulated envelope images of the signal difference of the reference image
and images at various temperatures. Top: 38oC. Center: 41oC. Bottom: 45oC.

Color scale is in dB.
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Figure 7.8: Error in temperature estimation using MLE at various SNRs.
Mean±STD of 50 trials.

In the previous discussion, we found that scatterer population affects both the bias

and variance of the estimator. In this study, following [103], we applied MLE to image

sequences generated with Na/Nl = 2 : 1 and Na/Nl = 1 : 1, and baseline values for

SNR and image size. Mean ± standard deviation of the estimation error from 50

trials is plotted in Figs. 7.9.

Estimation biases at Na/Nl = 2 : 1 and Na/Nl = 1 : 1 are obviously different, which

confirms our analysis. Estimation variance at Na/Nl = 2 is slightly larger than that

at Na/Nl = 1. This increase occurs because the bias at Na/Nl = 2 changes more

with temperature and thus the term dB(∆T )
d∆T

in Eq. 7.21 is larger resulting in larger

variance.

Estimation variance may also be affected by the size of images. Fig. 7.10 shows

estimation error with different image sizes. Biases are same in the results, while the

estimation variance is slightly larger when image size is smaller, which is consistent

with our analytical discussion in previous subsection.

The simulation results verified the analysis in the previous subsection. We would point

out that estimation variance is largely affected by SNR. If SNR can be controlled
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Figure 7.9: Error in temperature estimation using MLE at two scatterer
proportions. Mean±STD of 50 trials.
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Figure 7.10: Error in temperature estimation using MLE at two image sizes.
Mean±STD of 50 trials.
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Figure 7.11: Error in temperature estimation using MLE with calibration for bias.
Mean±STD of 50 trials. SNR:29dB. Image size:1x3cm2. Na/Nl = 2.

to 29dB or above, the standard deviation of estimation could be less than 0.1oC.

Approaches to increasing SNR were discussed in Chapters 3 and 5. The bias was

affected by both SNR and scatterer proportion. We assumed scatterer proportion

varies little for the same type of tissue and SNR can be kept at or above 29dB. In

this case, the mean bias of the estimator remains the same. As an initial attempt at

reducing bias, we generated images with baseline settings, calibrated the ∆̂T curves

with respect to true ∆T , assuming true values are known. The calibration curve

was then used to estimate temperature from another group of images. The error

of calibrated estimation from 50 trials is shown in Fig. 7.11. The bias was largely

reduced by calibration.

The above results show that the MLE is a potential estimator for temperature imag-

ing. Looking at Eq. 7.16, the numerator and denominator are actually estimations of

σ2 at ∆T = and > 1 , respectively, which are equivalent to the energy of the difference

image. In other word, we were evaluating temperatures using the energy of change in

the signals. Therefore, the idea of maximum likelihood estimator is consistent with

temperature imaging from CBE in principle, because both of them are based on the

model of CBE for individual scatterers developed in [92]. The advantages of using
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MLE are: 1) computing the difference does not generate ”outliers” as in ratios, 2) it

is easier to find distributions for the envelope of the difference, 3) we may be able to

find a relation between data and temperature that allows us to analytically discuss

estimator performance.

7.3 Summary and Conclusions

In this chapter, we discussed estimating temperature from joint distributions between

signals. Mutual information and correlation were examples of parameters that may be

computed from the joint distribution. This study was an initial look at the potential

of temperature imaging from signal joint distributions. More studies are needed for

more comprehensive approaches to optimal solutions.

By linearizing the random phasor sum representation, we developed a maximum likeli-

hood estimator for temperature assuming uniformly distributed scatterers. Analytical

analysis and simulation results show how SNR, image size and scatterer proportion

affect MLE performance. Scatterer population cannot be controlled, so that more

investigations are necessary for approaches to reducing bias other than by calibration

in cases for which scatterer proportion varies. Image size has less effect than the

other two factors and is usually determined by application, so it will not be discussed

further. SNR plays an important role in the estimation.
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Chapter 8

Investigation of Experimental

Applications of the Framework

In previous chapters, we developed a framework for temperature imaging using the

change in backscattered signals. Our former approach using energy ratio was formal-

ized. Two other examples of temperature estimator other than energy ratio, mutual

information and a maximum likelihood estimator, were investigated. Simulation re-

sults showed that temperature accuracy was improved using these methods. For the

framework to be meaningful, its results should be able to be applied to experimental

data.

As shown in Chapter 5, in addition to noise and motion, change in signals may also

be caused by degradation of tissue in the medium or by imaging system variation.

In clinical application, degradation is not likely to happen in living tissue. Changes

caused by variation in the imaging system could be avoided by modifying hardware

or changing the image formation method. These changes require cooperation with

system provider. On the other hand, signal changes caused by these reasons could be

dominated by thermal change when tissue is heated. Therefore, we did not consider

these effects in this work.

We have shown that motion in images has significant impact when comparing signals.

There are two ways to handle motion effects: 1) model motion effects in the frame-

work. 2) compensate motion in the images. In this work, we followed the second

consideration. In Chapters 3 and 5, we showed motion can be compensated well.

Here, we assume motion compensation is good enough such that the residual effect

of motion is dominated by thermal changes in the signals. Our framework does not
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take motion into account for now, but it may be extended or modified to encompass

motion effect in the future.

There are two other issues we need to face when applying the mutual information

(MI) and maximum likelihood estimator (MLE) methods to experimental data. First,

the scatterers are not uniformly distributed in real tissue, which was assumed in

previous chapters. Second, due to the first issue, we may not be able to take noise

into account in the framework, and thus SNR has significant impact on both MI and

MLE performance.

The envelope images of real tissue can not be described by Rayleigh distribution

since the scatterers are not uniformly distributed. In Chapter 6, we showed that

generalized Gamma (GG) or generalized Nakagami (GN) distributions match the

histogram of B-scans from turkey muscle. Therefore, the random variables involved

in the ratio in Eq. 6.17 follow the GG distribution shown in Eq. 6.15. The ratio

distribution is determined by their joint distribution as in Eq. 6.16. Although it may

be possible [13], computing ratio PDF from the joint distribution is complicated. In

order to compute CBE independent of SNR as for the Rayleigh case, an appropriate

choice of ratio distribution and a smart way of estimating distribution parameter are

required. Exploring the ratio PDF for GG random variables can be part of future

work. Below, we discuss the possibility of computing mutual information and applying

the maximum likelihood estimator to experimental data.

8.1 Computation of Mutual Information from the

Data Histogram

In the last chapter, we computed mutual information as a function of correlation

coefficient between RF images, assuming uniformly distributed scatterers. Noise can

be taken into account and thus MI can be calculated independent of SNR. When con-

sidering experimental data, computing MI analytically from RF or envelope images is

difficult because of the complex form of their joint distributions as shown in Eq. 6.14

and 6.16. In image registration problems, mutual information is alternatively com-

puted from marginal and joint histograms of two images [89]. Here, we computed MI
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Figure 8.1: Mutual information computed from the histograms of envelope-detected
images acquired in 3D heating experiments.

with temperature using histograms of envelope images of 3cm3 turkey breast volumes

from eight 3D heating experiments. The results are plotted in Fig. 8.1.

There is obvious variation among MI curves from experiments. A likely cause of

this variation is the noise effect. Histograms used in MI computation were generated

from the noisy data. Therefore, MI curves depend on SNR. If SNR varies among

experiments, which was usually the case, MI curves also vary. To illustrate the

effect of SNR on MI, we simulated images at various SNRs and computed MI using

histograms. MI curves are plotted in Fig. 8.2.

The results in the above figure demonstrate the apparent impact of SNR on MI

computation. To reduce this impact, SNR needs to be increased. In addition, it is

desired that all experiments have similar SNR to reduce variation in MI curves. From

results of Chapter 5, increasing and keeping SNR consistent are possible if we can

implement signal averaging for 3D heating experiments.

The choice of bin width for generating histograms also has impact on MI computa-

tion. Our signals were represented by continuous values after motion compensation

and thus there was no natural choice of the bin width for histograms. In order to
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Figure 8.2: Mutual information computed from the histograms of simulated B-scans
at various SNRs.

demonstrate the effect of the bin width, we simulated images for uniformly distributed

scatterers, and computed mutual information using both the PDF in Eq. 7.1 and the

joint histograms. Fig. 8.3 shows the variation of MI curves with the bin width of

the histograms. There seems to be an ”optimal” bin width for MI computation so

that MI values are consistent with MI computed from the PDF. Differences in the

”optimal” bin width among experiments may also cause variation in MI calculation.

How to choose the bin width for histograms could be part of future work.

In this section, we showed that MI can be computed from experimental data using

histograms. However, SNR and choice of bin width of histograms may cause variation

in measured MI. Work in previous chapters showed that it is possible to reduce SNR

effects once we can implement signal averaging for 3D heating experiments. A smart

way of choosing bin width for histograms is desired as future work. From the results

in section, it can be seen that MI is sensitive to signal de-correlation caused by noise.

Hence, we do not rule out other possible causes of signal de-correlation, such as

residual motion effects after motion compensation.
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Figure 8.3: Mutual information computed from joint histograms of RF images at
SNR=29dB with different bin widths.

8.2 Application of the Maximum Likelihood Esti-

mator to Experimental Data

In the previous chapter, in deriving the maximum likelihood estimator (MLE), we

looked at the difference between the random phasor sums (RPS) representing images

at current and reference temperatures. This difference is still a random phasor sum.

As mentioned above, for experimental data, the magnitude of the random phasor

sum does not fit a Rayleigh distribution, but does fit the generalized Gamma (GG)

well. Hence, the magnitude of RPS difference can also be modeled by a generalized

Gamma distribution. The difference magnitude, z, was previously approximated as

z ∼= ∆T

∣∣∣∣∣
N∑

k=1

β′k(T0)Ak(T0)e
jφk

∣∣∣∣∣ = ∆Tu ,
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where u =
∣∣∣∑N

k=1 β′k(T0)Ak(T0)e
jφk

∣∣∣ and u follows generalized Gamma distribution

f(u) =
pupm−1 exp

(−(u
a
)p

)

apmΓ(m)
. (8.1)

From the properties of GG random variables [90], if u ∼ f(u; a,m, p), then w = ku ∼
f(w; ka,m, p). Therefore, distribution of z is

f(z) =
pzpm−1 exp

(−( z
∆Ta

)p
)

(∆Ta)pmΓ(m)
. (8.2)

The likelihood function in Eq. 7.7 now becomes

L(T ) =

pM

(
M∏
l=1

zl

)pm−1

exp

[
− 1

(∆Ta)p

M∑
l=1

zp
l

]

(∆Ta)pmMΓ(m)M
. (8.3)

Log likelihood function is then

ln L = M ln p+(pm−1) ln

(
M∏

l=1

zl

)
− 1

∆T p

(
1

ap

M∑

l=1

zp
l

)
−pmM ln ∆T−pmM ln a−M ln Γm.

(8.4)

Differentiating the log likelihood function with respect to ∆T and setting it to zero

lead to
∂ln L

∂∆T
=

1

∆T p+1

(
p

ap

M∑

l=1

zp
l

)
− pmM

∆T
= 0 . (8.5)

The MLE for temperature change is found as

∆̂T =

[
1

apmM

M∑

l=1

zp
l

] 1
p

. (8.6)

The above estimator is in fact a scaled Lp norm of z. When m = 1, p = 2 and

a =
√

2σ, GG distribution reduces to a Rayleigh distribution with parameter σ.

Accordingly, the Lp norm becomes L2 norm and Eq. 8.6 reduces to the MLE based

on a Rayleigh distribution as in Eq. 7.14.

When applied to experimental data, MLE parameters need to be estimated from noisy

signals. Notice that, the effect of noise was not considered in the estimator in Eq. 8.6
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Figure 8.4: Error in temperature estimation for simulated images of non-uniformly
distributed scatterers at various SNRs using MLE.

because the GG distribution is a direct generalization of the Rayleigh distribution.

The impact of noise on GG parameters is not clear and to our knowledge there is

no apparent approach to estimating these parameters from noisy data. Therefore,

it is expected that we will see significant impact of SNR on the estimation of these

parameters and thus on temperature imaging.

To see SNR effects on temperature estimation, images of non-uniformly distributed

scatterer were simulated as in Fig. 6.4 at various SNRs. Since scatterer density in the

left half is higher than that in the right half, the overall distribution is not Rayleigh,

but generalized Gamma as shown in Fig. 6.6. The estimator in Eq. 8.6 was applied

to the simulated images and errors in temperature estimation plotted in Fig. 8.4.

The results in Fig. 8.4 show that, when SNR is as high as 43dB, performance of MLE

is very good and estimation error at 45oC is about 0.5oC. When SNR is reduced to

17−23dB, the error in estimation, however, is between 4.8−6oC at 45oC. The effect

of SNR on temperature estimation is significant. To see the performance of MLE for

real data, we applied it to the images from the 3D heating experiments. Errors in

temperature estimation are shown in Fig. 8.5.
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Figure 8.5: Error in temperature estimation for 3D heating experiments using MLE.

For most experiments, the error around 45oC is between 4− 6oC. Noticing that SNR

of these experiments varied between 18 to 25dB, the error in temperature estimation

for experiments using MLE is consistent with the simulation results shown above.

Hence, it is very likely that the large error in Fig. 8.5 is caused by noise, which can

be reduced significantly if we can increase SNR of experimental data to about 43dB

by, for example, signal averaging.

A special view of signals from non-uniformly distributed scatterers

We proposed a theory in Chapter 6 to explain why the histogram of experimental B-

scans is not Rayleigh. Each pixel was still represented by a Rayleigh random variable,

but with a distinct parameter. The histogram of non-identical random variables does

follow a Rayleigh distribution, but a more general one. According to this theory, the

likelihood function in Eq. 7.7 for i.i.d. pixels is modified for non-i.i.d. pixels as

L(T ) =

M∏
l=1

zl

M∏
l=1

σ2
l

exp

(
−1

2

M∑

l=1

z2
l

σ2
l

)
, (8.7)

133



where l is the index of image pixels. Because ideas embodied in Eqs. 7.8 to 7.11 are

now valid for each pixel, we have

σ2
l
∼= ∆T 2σ2

1l ,

where σ2
1l is the value of σ2

l at ∆T = 1. The likelihood function is approximated

L(T ) =

M∏
l=1

zl

M∏
l=1

∆T 2σ2
1l

exp

(
−1

2

M∑

l=1

z2
l

∆T 2σ2
1l

)
. (8.8)

Given
∂L

∂∆T
= 0 ,

a maximum likelihood estimator for ∆T can be derived

∆T =

√√√√ 1

2M

M∑

l=1

z2
l

σ2
1l

. (8.9)

Eq. 8.9 is a theoretical result, but σ2
1l, the parameter of the distribution for the lth

pixel cannot be estimated accurately from a single sample. For the same reason, it is

difficult to remove noise effects. One possible approach to estimating σ2
1l is to make

use of the pixels in the neighborhood of the lth pixel, which means considering the

dependence among pixels. More consideration of this notion is presented in the next

chapter.

8.3 Summary and Conclusions

In this chapter, we studied the application of results from the framework to experi-

ments, especially the application of mutual information and the maximum likelihood

estimator. Although these studies showed that these approaches are not yet ready

to be used for experiments because of the obstacle presented by the effects of noise.

This obstacle can be overcome by increasing SNR. One approach we have shown

to be effective at increasing SNR is signal averaging, but these methods cannot be
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implemented with our present imaging instruments. Once these methods can be im-

plemented for 3D heating experiments, it is highly likely that temperature can be

estimated accurately using MI or MLE. Furthermore, application of MI and MLE are

examples of temperature imaging other than the energy ratio. We do not rule out

other possible approaches.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

This dissertation extended the initial studies on temperature imaging for hyperther-

mia using the change in backscattered energy. Approaches to noise reduction were

not implemented and motion compensation algorithms were not evaluated in our ini-

tial works. The mathematical representation of our method presented here is the first

formal representation for CBE based thermometry. It made it possible to investigate

potential temperature estimators using changes in backscattered signals other than

the energy ratio.

In chapter 3, we implemented noise reduction approaches by signal averaging and

thresholding in simulations, assuming additive white Gaussian noise. In chapter 5,

these approaches were applied to image loops acquired in null experiments. Suc-

cessful reduction of noise with an accompanying increase of SNR for experiment data

showed that the assumption of additive Gaussian noise is valid. Thus noise effects can

be handled in experimental environments. That is, we can increase SNR to main-

tain experiments at the same SNR, and therefore improve calibration of CBE and

temperature accuracy.

Motion compensation algorithms were evaluated using simulations in chapter 3 and

were shown to be able to correct for motion effects. It was also found that both

interpolation methods and sampling rate affect the performance of motion compensa-

tion algorithms. In chapter 5, these observations were confirmed in null experiments,

during which known motion was added to images of turkey breast.
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The studies on reducing effects of noise and motion benefit not only the temperature

imaging methods developed in our initial work, but also the development of the

framework. For example, we may assume motion compensation works well enough so

that motion effect does not need to be considered in the framework. It also makes

the mathematic work simpler. In addition, we have seen that SNR has an apparent

impact on applications of the framework, such as temperature imaging with MI and

MLE. The ability of increasing SNR, e.g., by signal averaging, makes it possible to

apply the framework to experimental data.

In chapter 6, we developed a mathematical representation of our approach to tem-

perature imaging. Temperature imaging was modeled via a probabilistic framework.

Computation and characterization of CBE were formalized, which improved tem-

perature estimation in simulations of uniformly distributed scatterers. In chapter

7, we extended our view beyond the energy ratio to other possibilities, e.g., mutual

information and maximum likelihood estimator. Both MI and MLE showed improve-

ments in temperature accuracy compared to the energy ratio from the signal mean in

simulations. Although the approaches developed in these two chapters work well in

simulations, they required special assumption on scatterer distributions. These chap-

ters showed the potential of improving temperature imaging with the framework.

Investigations in Chapter 8 showed high likelihood of success in applying the frame-

work in experimental environments, if we have enough resource to implement noise

reduction approaches . According to the results in Chapter 8, in order to reach the

temperature accuracy of ±0.5oC, SNR needs to be maintained above a certain level

for each of the methods discussed in this work. Possible values of these required SNRs,

above which the ”mean ± standard deviation” of the estimate is within ±0.5oC, are

summarized in table 9.1.

When the scatterers are uniformly distributed, the methods from the framework,

i.e., PCBE from the ratio PDF, MI and MLE, allow lower SNR than the method

using PCBE from ratio mean, because they take noise information into account in

the estimation. It seems the MLE requires similar SNR to our former methods. This

is because the MLE is biased due to the linearization of the random phasor sum

representation. If the bias can be compensated, the MLE can allow lower SNR, since

the standard deviation of the MLE at 23dB SNR is only 0.25oC. Reduction of MLE
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bias will be discussed in the future work in Section 9.3. Furthermore, SNR for MLE

in this table was generated without calibration, which is an advantage of using MLE

over using MI and CBE.

When the scatterers are non-uniformly distributed, applications of MI and MLE with

desired temperature accuracy require higher SNR because, currently, we are not able

to take noise into account in the estimation. If SNR can be increased to the levels

shown in the table, it is likely that the ±0.5oC accuracy can be reached. In addition,

if we can estimate parameters of the generalized Gamma distribution from noisy

signals, the requirement of SNR for MLE can be reduced. On the other hand, our

former method using PCBE from the ratio mean does not require SNR to be much

higher and therefore is still the appropriate method for experimental data for now.

Table 9.1: SNR for Temperature Accuracy of ±0.5oC

TI PCBE from PCBE from MI from MLE
Method ratio mean ratio PDF RF images Na/Nl = 2
Uniform

Distribution
25 17 20 23

Non-uniform

Distribution
30 X 35 45

Na/Nl is the ratio of aqueous to lipid scatterers

Results in the above table are from simulations and can be used as reference for SNR

requirements. There are other factors which impact temperature accuracy, such as

residual motion effects. When CBE and MI are fitted to a polynomial for temperature

imaging, the order of the polynomial may affect temperature accuracy. In this work,

the polynomial for CBE was 2nd order and that for MI was 3rd order. For images

from non-uniformly distributed scatterers, MI is computed from data histograms and

is affected by the bin width of the histograms. In the table, the SNR of 35dB was

determined by choosing bin width as 0.5 for RF images which were simulated as in

Fig. 6.4. When signal range changes, the choice of bin width may change. Developing

a systematic way to find the optimal bin width for computing the MI can be part of

the future work. For the MLE, notice that simulations were done with Na/Nl = 2.

When the scatterer population changes, the results in the table also change.
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The main contributions of this work are summarized below. We

1. Developed and verified noise reduction approaches and discovered factors affecting

CBE measurement that were unknown before, specifically, tissue degradation and

change due to the imaging system,

2. Evaluated motion compensation algorithms,

3. Created a framework for temperature imaging using the change in backscattered

signals; developed mathematical representation of our approach to temperature imag-

ing; formalized CBE computation and characterization; and investigated approaches

to CBE temperature imaging beyond the energy ratio,

4. Investigated the application of the framework to experiments.

9.2 Further Work on Noise and Motion Reduction

In future studies, noise reduction procedure needs to be implemented for 3D heating

experiments. Recall that, for 3D experiments, a set of 30 2D images were acquired

at each temperature. In order to perform signal averaging, each of these 2D images

should be replaced by an image loop that contains around 150 frames. If stored on

computer, these files may use around 90G bytes in Matlab data format. Although

it is not impossible to average files on a hard drive, it is inefficient. In addition,

saving loops to hard drive may cost more time for data acquisition during which

tissue temperature may vary. Alternatively, signal averaging may be done online

during the time interval between two temperatures (two acquisitions). Our Matlab

control program, however, can not process data directly before saving them to files

and converting them to the Matlab data format. Furthermore, we hope to be able to

control the number frames in a loop. These requirements for online processing need

cooperation with Teratech Inc., the provider of imaging system.

We have shown motion in images can be detected and compensated well, although

better performance is always desired. Currently, the optimization function in Matlab

is used for maximizing correlation between two images. An implementation of the

optimization algorithm specific to our problem may produce faster convergence. In
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future in-vivo experiments, motion in images could be highly non-rigid over large

volumes. Current algorithms may need modifications, e.g., to model nonlinear motion

over large region, or to change reference during an experiment. Furthermore, the

residual effect of motion after compensation may be considered as disturbance in the

phase of the phasors in the random phasor sum model. Hence, the motion effect

could be incorporated into the framework. The disadvantage of doing so is that the

framework becomes more complicated.

9.3 Further Development of the Framework

The framework studied in this work is a first step of the theoretical development for

temperature imaging using the change in backscattered signals. More effort is needed

to make it more comprehensive and complete. For example, as mentioned before, the

temperature dependent random phasor sum model may be modified to account for

residual motion effects.

For real tissue images, modeling the energy ratio from joint generalized Gamma dis-

tributions may need more refined mathematical work [13]. Alternatively, it is helpful

to find a simple form for the ratio PDF, which can be used for experimental data.

Mutual information has been used as an example of temperature imaging using joint

distribution. However, we do not know if it is the best method and there could be

other possible choices. For example, we have seen that the joint histogram spreads

away from its diagonal with temperature. Hence, proportion between the number

of pixel pairs on the diagonal and total number of pixels could be a parameter of

temperature dependence of the joint histogram. To our knowledge, there is no clear

direction to an optimal method. Research on temperature imaging using the joint

distribution or joint histogram is an open area.

The maximum likelihood estimator is attractive due to its analytical form and the

good performance shown in simulation. A limitation of applying MLE to experimental

data is, however, the linearization of random phasor sum (RPS) representation, which

introduces bias in the estimation. In Chapter 6, we discussed the calibration and

reduction of bias for the same type of scatterer population. If the MLE can be derived

140



based on higher order approximation of the RPS, estimation bias may be reduced

and calibration for removing bias as done in simulation study is no longer needed.

An alternative is to change the reference in the experiments. The linearization of

RPS is with respect to the reference image. If reference is changed so that relative

temperature change is not very large, then the bias caused by linearization can be

limited. Furthermore, as mentioned before, the parameters of the MLE based on the

generalized Gamma distribution need to estimated from noisy signals, which requires

more study.

Through this dissertation, we assumed that pixels are independent. In the future,

we may consider the correlation among pixels. An important tool to incorporate

pixel dependence is Markov random field (MRF), which has been used for texture

classification [20] and modeling ultrasound envelope images [17, 16]. For example,

pixels of envelope-detected images can be modeled as realizations of Nakagami random

variables, whose parameters are determined by the pixels in a neighborhood [17, 16].

This concept is similar, in part, to our idea mentioned in Chapter 6, that pixels are

realizations of same type of distribution, but with different parameters. If MRFs can

be combined into the development of an MLE or a ratio PDF, temperature estimation

may be more accurate due to a more precise description of the data statistic properties.

9.4 Dynamic Model

Thermal changes in tissue and thus in backscattered signals during heating are dy-

namic. Acquiring images at various temperatures is in fact sampling the state of

these dynamics. If we can develop a dynamic model to describe the change in signals,

it could help link signal properties with temperature.

As in Eq. 7.9, by linearizing the random phasor sum, magnitude of difference images

at Tn and Tn+1 can be approximated by

z(∆Tn) = ∆Tn

∣∣∣∣∣
N∑

k=1

β′k(T0)Ak(T0)e
jφk

∣∣∣∣∣ ,
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z(∆Tn+1) = ∆Tn+1

∣∣∣∣∣
N∑

k=1

β′k(T0)Ak(T0)e
jφk

∣∣∣∣∣ .

From these two equations, we have

z(∆Tn+1) =
∆Tn+1

∆Tn

z(∆Tn) ,

where ∆Tn > 0. The above equation is in fact a simple dynamic model describing

the change in signals. The transition parameter is determined by temperature and

therefore the system is temperature variant. Estimating temperature could be con-

sidered a system identification problem. Although we do not know how much this

idea could benefit the study of thermometry for hyperthermia, it is a open area of

research. In fact, the above dynamic relation between system states is embedded in

the development of the MLE, which was based on the linearization of random phasor

sum. Notice that this model has a constrain of ∆Tn > 0, which means the initial

state cannot be obtained at T0. Correspondingly, a training image was required for

estimating the parameter of MLE because image difference at reference temperature

provided no information of the change in backscattered signals.

Another possible dynamic model can be considered using the linearized random pha-

sor sum at Tn and Tn+1

i(Tn) =
N∑

k=1

Ak(T0)e
jφk + ∆Tn

N∑

k=1

β′k(T0)Ak(T0)e
jφk ,

i(Tn+1) =
N∑

k=1

Ak(T0)e
jφk + ∆Tn+1

N∑

k=1

β′k(T0)Ak(T0)e
jφk ,

where i(T0) =
∑N

k=1 Ak(T0)e
jφk . From these equations, we have

i(Tn+1) =

(
1− ∆Tn+1

∆Tn+1

)
i(T0) +

∆Tn+1

∆Tn+1

i(Tn) .

The above equation is another dynamic model to describe thermal changes in signals.

Here, there is no constraint that ∆T > 0. However, the statistic property of i(Tn)

may be more complicated than that of z(∆Tn).
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From the above discussion, we see that the form of dynamic model is not unique.

For a more practical model, disturbances, such as noise and motion, need to be

included. Developing a suitable dynamic model of thermal change in signals for

practical application can be a open area of future research. We believe that an

accurate estimator for tissue temperature can be derived by combining a suitable

dynamic model and a statistic model of the signals.
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Appendix A

Matlab Control Functions for the

Terason 3000 Ultrasonic Imaging

System

A.1 Matlab Control Functions using AutoIt

To start the T3000 GUI and load an exam denoted by ”cbe”, we used the following

AutoIt script, ”OpenTerason.au3”, which contains the following code:

Run(”C:\Program Files\Teratech\Terason 3000\Ultrasound.exe”) – Starts the Tera-

son

WinActivate(”Terason t3000 - Probe Data”) – Activate T3000 GUI window

WinWaitActive(”Terason t3000 - Probe Data”) – Wait T3000 GUI window to be

active

Send(”!x”) – mimic keyboard input ”!x”

Send(”O”) – mimic keyboard input ”O”

Send(”cbe”), Sleep(500), Send(”TAB”), Send(”ENTER”)– load exam ”cbe”

After each single command, ”Sleep” may be executed to ensure the command is

finished. AutoIt shared library is loaded by loadlibrary(’AutoItX3’). Images are

saved by calling following functions in Matlab:
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calllib(’AutoItX3’,’AU3 Send’,’ ’,0); – Send space to freeze image

calllib(’AutoItX3’,’AU3 Sleep’, 100);

calllib(’AutoItX3’,’AU3 Send’,’F8’,0); – Send ”F8” to save current frame

calllib(’AutoItX3’,’AU3 WinWaitActive’,’Terason t3000 - Suspended’,”,0);

calllib(’AutoItX3’,’AU3 Sleep’, 50);

calllib(’AutoItX3’,’AU3 Send’,’ ’,0); – Send space to activate live image

calllib(’AutoItX3’,’AU3 WinWaitActive’,’Terason t3000 - Probe Data’,”,0);

calllib(’AutoItX3’,’AU3 Sleep’, 100);

A.2 Matlab Control Functions using the Terason

Software Developer’s Kit (SDK)

Function StartTerasonActx

% Function name: StartTerasonActx

% Descript: This function starts Terason 3000 in Matlab as external

% command. Then, create an ActiveX control for TTAutomation associated

% with the running Terason application. Desired exam will be loaded

% using this control.

% Input: name of exam. e.g. ’cbe’.

% Output: handle of the TTAutomate control.

% Author: Yuzheng Guo

% Date: 1/15/2009

function hTTauto = StartTerasonActx(exam)

if (nargin~=1)

disp(’There should be one input’);

exit;

end
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if (~isstr(exam))

disp(’Input should be a sting of exam name’);

exit;

end

% start Terason

% \! C:\\Program Files\\Teratech\\Terason 3000\\Ultrasound.exe \&

system(’C:\\Program Files\\Teratech\\Terason 3000\\Ultrasound.exe \&’);

pause(15);

% create TTAutomate control

hTTauto = actxcontrol(’TTAUTOMATE.TTAutomateCtrl.1’);

if (~OpenUltrasound(hTTauto))

disp(’Terason can not be opened!’);

exit;

end

% load exam

if (~LoadPreset(hTTauto,exam))

disp(’Exam can not be loaded!’);

exit;

end

---------------------

% Author: Yuzheng Guo

% Date: 1/15/2009

function savesglimage\_ttauto(hTTauto,filename)

% freeze image

if(~FreezeImage(hTTauto))
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disp(’Can not freeze image!’);

return;

end

% save image

if(~SaveUltrasoundFile(hTTauto,filename,0))

disp(’Can not save file!’);

return;

end

% Resume live image

if(~ResumeLiveImaging(hTTauto))

disp(’Can not resume live image!’);

return;

end

---------------------------

% Function name: saveloop\_ttauto

% Descript: Save a loop of 2D images using Terason SDK.

% Input: handle of the TTAutomate control. loop filename.

% Author: Yuzheng Guo

% Date: 1/15/2009

function saveloop\_ttauto(hTTauto,filename)

% freeze image

freezed = FreezeImage(hTTauto);

if(~freezed)

disp(’Can not freeze image!’);

return;

end

% save image
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saved = SaveUltrasoundFile(hTTauto,filename,1);

if(~saved)

disp(’Can not save file!’);

return;

end

% Resume live image

if(~ResumeLiveImaging(hTTauto))

disp(’Can not resume live image!’);

return;

end

148



Appendix B

Distribution of the Ratio of

Dependent Rayleigh Random

Variables

Let y0 and yT be two dependent Rayleigh random variables with marginal distribu-

tions

f(y0) =
2y0

σ2
1

e
− y2

0
σ2
1 (B.1)

f(yT ) =
2yT

σ2
2

e
− y2

T
σ2
2 (B.2)

and joint distribution

f(y0, yT ) =
4y0yT

(1− r2)σ2
1σ

2
2

exp

[
− 1

1− r2

(
y2

0

σ2
1

+
y2

T

σ2
2

)]
I0

( −2ry0yT

(1− r2)σ1σ2

)
, (B.3)

where I0() is a modified Bessel function of 0th order and r is a correlation parameter

with 0 ≤ r ≤ 1. We compute the distribution of the ratio, the random variable, z as

z =
yT

y0

.

149



The distribution of z, fZ(z) can be computed using the joint distribution of y0 and

yT [52]

fZ(z) =

∞∫

−∞

|y0|fY0YT
(y0, y0z)dy0 . (B.4)

Substituting Eq. B.3 into Eq. B.4 yields

fZ(z) =

∞∫

0

y0
4y0yT

(1− r2)σ2
1σ

2
2

exp

[
− 1

1− r2

(
y2

0

σ2
1

+
y2

T

σ2
2

)]
I0

( −2ry0yT

(1− r2)σ1σ2

) ∣∣∣∣∣
yT =y0z

dy0

=

∞∫

0

y0
4y2

0z

(1− r2)σ2
1σ

2
2

exp

[
− 1

1− r2

(
y2

0

σ2
1

+
y2

0z
2

σ2
2

)]
I0

( −2ry2
0z

(1− r2)σ1σ2

)
dy0 .

(B.5)

Because the modified Bessel function I0(u) can be written in the form

I0(u) =
∞∑

m=0

u2m

(m!)24m
,

fZ(z) becomes

fZ(z) =

∞∫

0

y0
4y2

0z

(1− r2)σ2
1σ

2
2

exp

[
− 1

1− r2

(
y2

0

σ2
1

+
y2

0z
2

σ2
2

)] ∞∑
m=0

(
−2ry2

0z

(1−r2)σ1σ2

)2m

(m!)24m
dy0

=

∞∫

0

4y3
0z

(1− r2)σ2
1σ

2
2

exp

[
− 1

1− r2

(
1

σ2
1

+
z2

σ2
2

)
y2

0

] ∞∑
m=0

r2m(y2
0z)2m

(m!)2(1− r2)2m(σ1σ2)2m
dy0

=
∞∑

m=0

∞∫

0

4r2my4m+3
0 z2m+1

(m!)2(1− r2)2m+1(σ1σ2)2m+2
exp

[
− 1

1− r2

(
1

σ2
1

+
z2

σ2
2

)
y2

0

]
dy0 .

(B.6)
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Defining

σ2
3 =

[
1

1− r2

(
1

σ2
1

+
z2

σ2
2

)]−1

=

[
σ2

2 + σ2
1z

2

(1− r2)σ2
1σ

2
2

]−1

=
(1− r2)σ2

1σ
2
2

σ2
2 + σ2

1z
2

,

(B.7)

fZ(z) now becomes

fZ(z) =
∞∑

m=0

∞∫

0

4r2my4m+3
0 z2m+1

(m!)2(1− r2)2m+1(σ1σ2)2m+2
exp

[
−y2

0

σ2
3

]
dy0

=
∞∑

m=0

4r2mz2m+1

(m!)2(1− r2)2m+1(σ1σ2)2m+2

∞∫

0

y4m+3
0 exp

[
−y2

0

σ2
3

]
dy0

=
∞∑

m=0

2r2mz2m+1σ2
3

(m!)2(1− r2)2m+1(σ1σ2)2m+2

∞∫

0

y4m+2
0

2y0

σ2
3

exp

[
−y2

0

σ2
3

]
dy0

︸ ︷︷ ︸
.

(B.8)

The kernel of the integral is in fact the (4m+2)th raw moment of a Rayleigh random

variable, whose distribution is 2y0

σ2
3

exp
[
− y2

0

σ2
3

]
with parameter σ2

3. For the kth raw

moment of a Rayleigh random variable as σkΓ(1+ k
2
), the integral part can be written

as

∞∫

0

y4m+2
0

2y0

σ2
3

exp

[
−y2

0

σ2
3

]
dy0 = σ4m+2

3 Γ(1 +
4m + 2

2
) = σ4m+2

3 (2m + 1)! .

Therefore,

fZ(z) =
∞∑

m=0

2r2mz2m+1σ4m+4
3 (2m + 1)!

(m!)2(1− r2)2m+1(σ1σ2)2m+2
. (B.9)
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Substituting the definition of σ2
3 into fZ(z):

fZ(z) =
∞∑

m=0

2r2mz2m+1(2m + 1)!

(m!)2(1− r2)2m+1(σ1σ2)2m+2

[
(1− r2)σ2

1σ
2
2

σ2
2 + σ2

1z
2

]2m+2

=
∞∑

m=0

2r2m(1− r2)z2m+1(2m + 1)!(σ1σ2)
2m+2

(m!)2(σ2
2 + σ2

1z
2)2m+2

=
2(1− r2)σ2

1σ
2
2z

(σ2
2 + σ2

1z
2)2

∞∑
m=0

r2mz2m(2m + 1)!(σ2
1σ

2
2)

m

(m!)2(σ2
2 + σ2

1z
2)2m

.

(B.10)

Lemma 1. The power series in fZ(z) converges.

Proof. Define

B =
r2z2σ2

1σ
2
2

(σ2
2 + σ2

1z
2)2

The power series is then

A =
∞∑

m=0

(2m + 1)!

(m!)2
Bm =

∞∑
m=0

amBm .

The radius of convergence for A can be determined by [51]

lim
m→∞

∣∣∣∣
am

am+1

∣∣∣∣ = lim
m→∞

∣∣∣∣∣
(2m+1)!
(m!)2

(2(m+1)+1)!
((m+1)!)2

∣∣∣∣∣ = lim
m→∞

(2m + 2)(2m + 3)

(m + 1)(m + 1)
=

1

4
.

Consider

4r2z2σ2
1σ

2
2 − (σ2

2 + σ2
1z

2)2 = (2rzσ1σ2 + σ2
2 + σ2

1z
2)(2rzσ1σ2 − σ2

2 − σ2
1z

2)

The first part in above equation is larger than zero. The second part can be written

as [−(σ2 − σ1z)2 − 2(1− r)zσ1σ2] ≤ 0. Then,

4r2z2σ2
1σ

2
2 − (σ2

2 + σ2
1z

2)2 ≤ 0
r2z2σ2

1σ
2
2

(σ2
2 + σ2

1z
2)2

= B ≤ 1

4
. (B.11)

Therefore, B is in the radius of convergence for A and thus A converges.
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Lemma 2. ∞∑
m=0

(2m + 1)!

(m!)2
xm = (1− 4x)−

3
2

Proof.
∞∑

m=0

(2m + 1)!

(m!)2
xm =

∞∑
m=0

(2m)!(2m + 1)

(m!)2
(
√

x)2m

Let y =
√

x, then

∞∑
m=0

(2m + 1)!

(m!)2
xm =

∞∑
m=0

(2m)!(2m + 1)

(m!)2
y2m

=
∞∑

m=0

(2m)!

(m!)2

dy2m+1

dy

=
d

dy

[ ∞∑
m=0

(2m)!

(m!)2
y2m+1

]

=
d

dy

[
y

∞∑
m=0

(2m)!

(m!)2
(y2)m

]

(B.12)

¿From the power series expansion we have

1√
1− 4z

=
∞∑

m=0

(
2m

m

)
zm =

∞∑
m=0

2m!

(m!)2
zm .

Thus,

∞∑
m=0

(2m + 1)!

(m!)2
xm =

d

dy

[
y√

1− 4y2

]

= (1− 4y2)−
3
2

= (1− 4x)−
3
2

(B.13)
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¿From Lemma 2, the closed form of the power series in fZ(z) is (1−4B)−
3
2 . Therefore,

fZ(z) =
2(1− r2)σ2

1σ
2
2z

(σ2
2 + σ2

1z
2)2

[1− 4B]−
3
2

=
2(1− r2)σ2

1σ
2
2z

(σ2
2 + σ2

1z
2)2

[
1− 4

r2z2σ2
1σ

2
2

(σ2
2 + σ2

1z
2)2

]− 3
2

=
2(1− r2)σ2

1σ
2
2z

(σ2
2 + σ2

1z
2)2

(σ2
2 + σ2

1z
2)3

[(σ2
2 + σ2

1z
2)2 − 4r2σ2

1σ
2
2z

2]−
3
2

.

(B.14)

Finally,

fZ(z) =
2(1− r2)σ2

1σ
2
2(σ

2
2 + σ2

1z
2)z

[(σ2
2 + σ2

1z
2)2 − 4r2σ2

1σ
2
2z

2]−
3
2

. (B.15)

Note that, distributions of y0 and yT can be written

f(y0) =
y0

σ2
0

e
− y2

0
2σ2

0

f(yT ) =
yT

σ2
e−

y2
T

2σ2 ,

where σ2
0 = 0.5σ2

1, σ2 = 0.5σ2
2, and σ2

1 and σ2
2 are the same as above. Then, the joint

distribution becomes

f(y0, yT ) =
y0yT

(1− r2)σ2
0σ

2
exp

[
− 1

2(1− r2)

(
y2

0

σ2
0

+
y2

T

σ2

)]
I0

( −ry0yT

(1− r2)σ0σ

)
.

(B.16)

However, if substitute σ2
0 = 0.5σ2

1, σ2 = 0.5σ2
2, for example, into Eq. B.15, the result

does not change. That is, the form of ratio distribution does not change with the

form of the marginal distributions of the denominator and numerator.

154



Appendix C

Estimation of Correlation

Parameter in the Joint Rayleigh

Distribution

Let y0 and yT be two dependent Rayleigh random variables representing ultrasound

B-scans. Their marginal distributions are

f(y0) =
y0

σ2
0

e
− y2

0
2σ2

0

f(yT ) =
yT

σ2
e−

y2
T

2σ2 ,

and their joint distribution is

f(y0, yT ) =
y0yT

(1− r2)σ2
1σ

2
2

exp

[
− 1

2(1− r2)

(
y2

0

σ2
1

+
y2

T

σ2
2

)]
I0

( −ry0yT

(1− r2)σ1σ2

)
,

(C.1)

where I0() is a modified Bessel function of 0th order and r is a correlation parameter

with 0 ≤ r ≤ 1. r can be estimated as [91, 13]

r̂ =

√
Cov(y2

0y
2
T )√

V ar(y2
0)V ar(y2

T )

In reality, r needs to be estimated from noisy signals. Let ỹ0 and ỹT denote noisy

versions of y0 and yT , respectively. Noise is assumed to be additive Gaussian noise in

the corresponding RF signals, x0 and xT . Let n0 ∼ N(0, σ2
n0) and nT ∼ N(0, σ2

nT ) be
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the noise in x0 and xT , respectively. The distributions of ỹ0 and ỹT are then

f(ỹ0) =
y0

σ̃0
2 e
− y2

0
2σ̃0

2

f(ỹT ) =
yT

σ̃2
e−

y2
T

2σ̃2 ,

where σ̃0
2 = σ2

0 + σ2
n0 and σ̃2 = σ2 + σ2

nT .

Below, we compute some useful raw moments of y0, yT , ỹ0 and ỹT . For a Rayleigh

random variable with distribution f(z) = z
σ2 e

− z2

2σ2 , the kth raw moment is µk =

σk2k/2Γ(1 + k/2). Therefore, we have

E(y2
0) = σ2

02
2/2Γ(1 + 2/2) = 2σ2

0 (C.2)

E(y2
0) = σ4

02
4/2Γ(1 + 4/2) = 8σ4

0 (C.3)

E(y2
T ) = σ222/2Γ(1 + 2/2) = 2σ2 (C.4)

E(y2
T ) = σ424/2Γ(1 + 4/2) = 8σ4 (C.5)

E(ỹ0
2) = σ̃0

222/2Γ(1 + 2/2) = 2σ̃0
2 (C.6)

E(ỹ0
4) = σ̃0

424/2Γ(1 + 4/2) = 8σ̃0
2 (C.7)

E(ỹT
2) = σ̃222/2Γ(1 + 2/2) = 2σ̃2 (C.8)

E(ỹT
4) = σ̃424/2Γ(1 + 4/2) = 8σ̃2 (C.9)

Now, we compute the variance of y2
0 and y2

T .

V ar(ỹ0
2) = E(ỹ0

4)− E2(ỹ0
2) = 8σ̃0

4 − (2σ̃0
2)2

= 4σ̃0
4 = 4(σ2

0 + σ2
n0)

2 = 4σ2
0 + 8σ2

0σ
2
n0 + 4σ4

n0

= V ar(y2
0) + 8σ2

0σ
2
n0 + 4σ4

n0 .

(C.10)

Therefore,

V ar(y2
0) = V ar(ỹ0

2)− 8σ2
0σ

2
n0 − 4σ4

n0 . (C.11)

Similary,

V ar(y2
T ) = V ar(ỹT

2)− 8σ2σ2
nT − 4σ4

nT . (C.12)
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Now, we prove that

Cov(y2
0y

2
T ) = Cov(ỹ0

2ỹT
2) .

Cov(ỹ0
2ỹT

2) can be estimated from ỹ0
2 and ỹT

2)

Cov(ỹ0
2ỹT

2) = E(ỹ0
2ỹT

2)− E(ỹ0
2)E(ỹT

2) . (C.13)

We first write y2
0 and y2

T in the form of the square magnitude of the random phasor

sum as in Eq. 6.10

y2
0 = R2

0 + I2
0 ,

y2
T = R2 + I2 ,

where R0 ⊥ I0, R ⊥ I, R0, I0 ∼ N(0, σ2
0) and R, I ∼ N(0, σ2). The corresponding

representations for ỹ0 and ỹT are

ỹ0
2 = (R0 + n1)

2 + (I0 + n2)
2 ,

ỹT
2 = (R + n3)

2 + (I + n4)
2 ,

where R0, I0, R and I are the same as above. ni, i = 1, 2, 3, 4 are noise in random

phasor sums corresponding to the noise in the RF signals and n1, n2 ∼ N(0, σ2
n0) and

n3, n4 ∼ N(0, σ2
nT ). ni, i = 1, 2, 3, 4 are independent of the signals and each other.

Then,

E(ỹ0
2ỹT

2) = E
[(

(R0 + n1)
2 + (I0 + n2)

2
) (

(R + n3)
2 + (I + n4)

2
)]

= E
[(

R2
0 + 2R0n1 + n2

1 + I2
0 + 2I0n2 + n2

2

) (
R2 + 2Rn3 + n2

3 + I2 + 2In4 + n2
4

)]

= E[R2
0R

2 + 2R2
0Rn3 + R2

0n
2
3 + R2

0I
2 + 2R2

0In4 + R2
0n

2
4+

2R0n1R
2 + 4R0n1Rn3 + 2R0n1n

2
3 + 2R0n1I

2 + 4R0n1In4 + 2R0n1n
2
4+

R2n2
1 + 2Rn3n

2
1 + n2

3n
2
1 + I2n2

1 + 2In4n
2
1 + n2

4n
2
1+

I2
0R

2 + 2I2
0Rn3 + I2

0n
2
3 + I2

0I
2 + 2I2

0In4 + I2
0n

2
4+

2I0n2R
2 + 4I0n2Rn3 + 2I0n2n

2
3 + 2I2I0n2 + 4I0n2In4 + 2I0n2n

2
4+

R2n2
2 + 2Rn3n

2
2 + n2

2n
2
3 + I2n2

2 + 2In2
2n4 + n2

2n
2
4]

(C.14)
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Notice that because E(R2
0) = E(I2

0 ) = σ2
0, E(R2) = E(I2) = σ2, E(ni) = 0, i =

1, 2, 3, 4, E(n2
1) = E(n2

2) = σ2
n0 and E(n2

3) = E(n2
4) = σ2

nT , the above equation

becomes

E(ỹ0
2ỹT

2) = E(R2
0R

2) + 0 + σ2
0σ

2
nT + E(R2

0I
2) + 0 + σ2

0σ
2
nT +

0 + 0 + 0 + 0 + 0 + 0+

σ2σ2
n0 + 0 + σ2

n0σ
2
nT + σ2σ2

n0 + 0 + σ2
n0σ

2
nT +

E(I2
0R

2) + 0 + σ2
0σ

2
nT + E(I2

0I
2) + 0 + σ2

0σ
2
nT +

0 + 0 + 0 + 0 + 0 + 0+

σ2σ2
n0 + 0 + σ2

n0σ
2
nT + σ2σ2

n0 + 0 + σ2
n0σ

2
nT

= E(R2
0R

2 + R2
0I

2 + I2
0R

2 + I2
0I

2) + 4(σ2
0σ

2
nT + σ2σ2

n0 + σ2
n0σ

2
nT )

= E[(R2
0 + I2

0 )(R + I)] + 4(σ2
0σ

2
nT + σ2σ2

n0 + σ2
n0σ

2
nT )

= E[y2
0y

2
T ] + 4(σ2

0σ
2
nT + σ2σ2

n0 + σ2
n0σ

2
nT ) .

(C.15)

To compute E(ỹ0
2)E(ỹT

2), we use

E(ỹ0
2)E(ỹT

2) = (2σ̃0
2)(2σ̃2)

= 4(σ2
0 + σ2

n0)(σ
2 + σ2

nT )

= 4σ2
0σ

2 + 4(σ2
0σ

2
nT + σ2

n0σ
2 + σ2

n0σ
2
nT )

= E(y2
0)E(y2

T ) + 4(σ2
0σ

2
nT + σ2

n0σ
2 + σ2

n0σ
2
nT ) .

(C.16)

Substituting this result into Eq. C.13:

Cov(ỹ0
2ỹT

2) = E(ỹ0
2ỹT

2)− E(ỹ0
2)E(ỹT

2)

= E[y2
0y

2
T ] + 4(σ2

0σ
2
nT + σ2σ2

n0 + σ2
n0σ

2
nT )− (E(y2

0)E(y2
T )+

4(σ2
0σ

2
nT ) + σ2

n0σ
2 + σ2

n0σ
2
nT ))

= E[y2
0y

2
T ]− E(y2

0)E(y2
T )

= Cov(y2
0y

2
T ) .

(C.17)

Eqs.C.11, C.12 and C.17 give estimates of the correlation parameter, r, in the joint

Rayleigh distribution.
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Appendix D

Dependence of the Ratio PDF on

SNR

In the discussion below, we show, analytically, how the ratio PDF depends on SNR

when the change in signals is caused only by noise. Scatterers are assumed to be

uniformly distributed. Suppose s1 and s2 are two RF images of the same tissue

sample with noise:

s1 = irf + n1 , (D.1)

s2 = irf + n2 , (D.2)

where irf ∼ N(0, σ2
r), n1, n2 ∼ N(0, σ2

n), irf⊥n1, n2 and n1⊥n2. Therefore, s1 and

s2 are dependent identically distributed random variables, with s1, s2 ∼ N(0, σ2
s) and

σ2
s = σ2

r + σ2
n.

Denote the envelope detected images corresponding to s1, s2 by y1 and y2 respectively.

Because scatterers are uniformly distributed, y1 and y2 are Rayleigh random variables

with parameter σ2
s . As discussed in the framework (Chapter 6), the ratio computation

is modeled as

z =
y2

y1

,

where y1 and y2 are Rayleigh variables with parameters σ2
y1 = σ2

y2 = σ2
y = σ2

s .

Distribution of z can be determined using Eq.6.24 by setting σ2 = σ2
0 = σ2

y:

fZ(z) =
2(1− r2)(1 + z2)z

[(1 + z2)2 − 4r2z2]
3
2

(D.3)
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¿From Eq.B.3 and 6.25, it can be proved that

r2 =
4σ4

r

4 (σ2
r + σ2

n)

=

σ4
r

σ4
n

σ4
r

σ4
n

+ 2 σ2
r

σ2
n

+ 1

(D.4)

Note that the ratio σ2
r

σ2
n

is in fact a representation of signal-to-noise ratio. Denoting it

by µ, we have

r2 =

(
µ

µ + 1

)2

. (D.5)

Therefore, distribution of the ratio z becomes

fZ(z) =

2

(
1−

(
µ

µ+1

)2
)

(1 + z2)z

[
(1 + z2)2 − 4

(
µ

µ+1

)2

z2

] 3
2

. (D.6)

More generally, suppose the noise in s1 and s2 is at different levels, i.e., n1 ∼ N(0, σ2
n1)

and n2 ∼ N(0, σ2
n2), σ2

n1 6= σ2
n2. The Rayleigh parameters of y1 and y2 then become

σ2
y1 = σ2

r + σ2
n1 and σ2

y2 = σ2
r + σ2

n2. The distribution of z is then

fZ(z) =
2(1− r2)σ2

y1σ
2
y2(σ

2
y2 + σ2

y1z
2)z

[
(σ2

y2 + σ2
y1z

2)2 − 4r2z2σ2
y1σ

2
y2

] 3
2

, (D.7)

where

r2 =
µ1µ2

(µ1 + 1)(µ2 + 1)

and µ1 = σ2
r

σ2
n1

and µ2 = σ2
r

σ2
n2

. fZ(z) can be further modified

fZ(z) =
2 (µ1+1)(µ2+1)

µ1µ2

(
1− µ1µ2

(µ1+1)(µ2+1)

)(
µ2+1

µ2
+ µ1+1

µ1
z2

)
z

[(
µ2+1

µ2
+ µ1+1

µ1
z2

)2

− 4z2

] 3
2

, (D.8)

where µ1 and µ2 represent signal-to-noise ratio of s1 and s2, respectively. When

µ1 = µ2 = µ, Eq. D.8 reduces to Eq. D.6.
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Eqs. D.6 and D.8 show that, when there is no change in backscattered signals, the

distribution of ratio z between two noise corrupted signals depends only on SNR in

original RF images. Therefore, PCBE and NCBE are functions of the signal-to-noise

ratio since z disappears after integration. When SNR is very low, r = µ
µ+1

is less than

1, y1 and y2 are less correlated. CBE will be determined by µ. When SNR is very

high, r = µ
µ+1

is close to 1 and fZ(z) is close to zero, indicating y1 and y2 are highly

correlated. Because the backscattered signals are assumed to be same, CBE without

noise is 0dB, as expected.
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Appendix E

CBE Due to Motion-Induced

De-correlation

When CBE is computed from two images with a rigid motion-induced shift, we can

assume the two RF images are in form of

s1 = irf1 + n1 , (E.1)

s2 = irf2 + n2 , (E.2)

where irf1, irf1 ∼ N(0, σ2), n1, n2 ∼ N(0, σ2
n) assuming uniformly distributed scatter-

ers. Therefore, the corresponding envelope detected signals, y1 and y2 are Rayleigh

with same parameter σy1 = σy2 = σy. The ratio distribution is the same as in Eq.

D.3, from which we see that CBE is a function of the correlation parameter r2 only.

Fig. 3.11 shows the prediction of CBE variation with r2 using Eq. D.3 and the defi-

nitions of PCBE and NCBE in Eq. 6.18 and 6.19, respectively. Notice that, r2 here

depends on both SNR and motion and does not follow Eq. D.4 any more, because

Eq. D.4 is valid only when irf1 = irf2, which is not satisfied due to the motion.

When motion is large enough such that the two signals are completely uncorrelated,

PCBE and NCBE can be computed using Eq. 6.22 with σ = σ0:
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PCBE =

σ2

σ2
0+σ2 + σ

σ0
[π
2
− arctan(σ0

σ
)]

σ2

σ2
0+σ2

, (E.3)

NCBE =

σ
σ0

arctan(σ0

σ
)− σ2

σ2
0+σ2

σ2
0

σ2
0+σ2

. (E.4)

The resulting PCBE and NCBE values for large motion, i.e., with σ = σ0 are

PCBE = 1 + π
2

or 8.2dB

NCBE = π
2
− 1 or -4.87dB.

These values match the simulations in Fig. 3.10 and the prediction in Fig. 3.11.
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