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Professor Daniel C. Link, Chairperson 
 

Recent studies have demonstrated the efficacy of hematopoietic cell-based 

therapies in promoting therapeutic angiogenesis for a wide variety of vascular 

syndromes, however the cell populations responsible and the mechanisms involved 

are poorly understood.  Using a mouse model of hindlimb ischemia, we previously 

showed that an adoptive transfer of donor monocytes significantly enhanced 

revascularization.  Monocytes are a widely heterogeneous cell population and 

differences in the ability of various monocyte subsets to mediate revascularization 

have not been previously investigated.  Using the hindlimb ischemia model we 

demonstrate that an adoptive transfer of inflammatory (CX3CR loGr-1+), but not 

resident (CX3CR1hiGr-1-) monocytes, significantly enhances revascularization post-

ischemia.  Additionally, we show that the inflammatory subset of monocytes is 

selectively recruited from the bone marrow to the blood and that these cells 

accumulate at the ischemic lesion.  These findings demonstrate that the adoptive 

transfer of only a small proportion of monocytes from a non-ischemic donor 

significantly enhances revascularization despite the presence of a far greater 
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proportion of endogenous (ischemia-conditioned) monocytes.  Herein, we provide 

data suggesting that upon induction of distant ischemia, systemic signals are 

generated which reduce the angiogenic capacity of bone marrow resident monocytes.  

We provide evidence that granulocyte-colony stimulating factor (G-CSF) and 

interleukin-6 (IL-6) provide these “conditioning” signals.  Systemic levels of G-CSF 

and IL-6 are significantly increased following induction of hindlimb ischemia, and 

accordingly, bone marrow resident monocytes from ischemic mice exhibited 

increased STAT3 phosphorylation and STAT3 target gene expression.  Finally, G-

CSF receptor-/- and IL-6-/- mice were resistant to the deleterious effects of ischemic 

conditioning on monocyte angiogenic potential.  The mechanism by which this 

ischemia-driven signals limit the angiogenic potential of monocytes was examined 

using RNA expression profiling which suggested that ischemia-conditioned 

monocytes in the bone marrow are polarized towards expression of M2-associated 

genes.  Consistent with this observation, M2-skewed monocytes from SHIP-/- mice 

also had impaired angiogenic capacity.  Lastly we demonstrate that the efficacy of an 

adoptive transfer of non-ischemic donor monocytes may be due, at least in part, to 

increased expression of the fractalkine receptor CX3CR1 as well as to increases in 

local concentrations of the angiogenic factors MCP-1, VEGF, MMP-9 and ApoA1.   
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1.1  Angiogenesis 

1.1.1  Types of neovascularization   

Neovascularization is a critical biological process in a variety of 

developmental, repair, and pathological settings.  The general term neovascularization 

describes three distinct processes that result in the formation of blood vessels:  

vasculogenesis, arteriogenesis, and angiogenesis.  Vascuolgenesis refers to the de 

novo formation of vascular structures from mesenchymal angioblasts (Risau, 1995).  

Postnatally, some vasculogenesis mediated by endothelial progenitor cells may occur, 

however the contribution of this process to adult neovascularization is controversial 

(Asahara, 1999; Simons, 2003).  In adults, blood vessel formation occurs by two 

distinct mechanisms referred to as angiogenesis and arteriogenesis.  Arteriogenesis 

refers to the enlargement of pre-existing vessels to form arteries which have 3 distinct 

wall layers as well as vasomotor activity (Helisch, 2003).  In contrast, during 

angiogenesis new capillary networks are formed due to the recruitment of local 

endothelial cells from nearby vessels which assemble into vascular structures in a 

process referred to as tube formation (Folkman, 2005).  The two processes by which 

angiogenesis can occur are referred to as “sprouting” in which a new branch is 

formed from an existing vessel, or “intussusception” which refers to the splitting of a 

pre-existing capillary.  Each of these processes results in the formation of a thin-

walled endothelial cell-lined capillary.  The studies outlined below will focus 

exclusively on post-ischemic neovascularization.  Angiogenesis is a major contributor 

to post-ischemic neovascularization as only this process, and not arteriogenesis, is 

induced in response to hypoxia-inducible factor-1α (HIF-1α) expression which is 
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induced under conditions of ischemia/hypoxia (Madeddu, 2005; Schaper, 2003).  

However, both angiogenic and arteriogenic mechanisms are triggered by shear stress 

which is generated in ischemic tissues and thus both processes are involved in 

recovery from ischemic insult.             

 

1.1.2  Hindlimb ischemia model of angiogenesis 

In order to study post-ischemic neovascularization, we will utilize a mouse 

model first described by Couffinhal, et al. for femoral artery excision (FAE) which 

results in hindlimb ischemia (HLI) (1998).  In this model, the right hindlimb is 

dissected to allow visualization of the femoral artery.  The obturator nerve which runs 

directly parallel and in close proximity to the femoral artery is dissected away from 

the artery taking care that it remains intact.  The femoral artery and all of its side 

branches, as well as the proximal saphenous artery are then ligated and the portions of 

the vessels located between these points of ligation are excised.  Laser Doppler 

imaging is used to monitor the disruption and subsequent restoration of blood flow to 

the ischemic hindlimb.  Imaging software assigns a “flux value” describing the 

surface blood flow observed.  As ischemia is induced in a unilateral fashion, the 

amount of blood flow present in the non-ischemic leg is used as an internal control to 

minimize variations among individual mice.  Blood flow recovery is thus reported as 

the ratio of the flux value observed in ischemic hindlimb divided by the flux value 

observed in the non-ischemic hindlimb abbreviated as (ischemic:non-ischemic).  Prior 

to femoral artery excision, the flux values obtained for the right and left hindlimbs are 

nearly identical, resulting in a flux ratio of approximately 1.0.  In contrast, post-HLI, 
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blood flow to limb undergoing femoral artery excision is nearly absent, resulting in a 

flux ratio of approximately 0.1.  Mice are monitored over a 14-day time course to 

assess revascularization.  Of note, in our studies laser Doppler quantitation is 

performed only on the foot region of the mouse, excluding the adductor and calf 

muscle regions.  Histological analyses suggest that angiogenesis is the major repair 

mechanism present in the ischemic calf muscle and foot while arteriogenesis is 

responsible for repair of the ischemic adductor muscle (Wahlberg, 2006; Shireman, 

2007).  Thus angiogenesis, and not arteriogenesis, is the major neovascularization 

process reflected in this model. 

 

 

Figure 1.1 
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1.2  Monocyte regulation of angiogenesis 

1.2.1  In vitro and animal model findings 

Monocytes are known to play a critical role in promoting angiogenesis in a 

wide variety of settings including wound repair, rheumatoid arthritis, tumor 

development, and ischemic injury (Sunderkotter, 1994).  Monocytes play a variety of 

distinct roles in regulating the angiogenic process.  First, they exhibit proteolytic and 

phagocytic activity which allows for the degradation and removal of damaged tissue, 

thus generating an appropriate scaffolding upon which new blood vessels can be 

formed.  Secondly, macrophages generate a wide range of cytokines which recruit 

and/or activate additional inflammatory cells (MCP-1, IL-8) or endothelial cells 

(VEGF).  Lastly, several studies have reported that monocytes may, in fact, be able to 

incorporate into developing vasculature.  Recent evidence however, has demonstrated 

that CD45+ hematopoietic cells do not incorporate into developing endothelium 

(Capoccia, 2006).  Monocytes are recruited to hypoxic areas and produce angiogenic 

factors which stimulate endothelial cells located in nearby areas to migrate, 

proliferate, and differentiate into new vessels (Lewis, 2005).  In response to hypoxia, 

macrophages produce VEGF, a mitogen specific to endothelial cells which is potently 

angiogenic (Leung, 1989).  Additionally, macrophages have been shown to express 

the inflammatory mediators IL-1, TNF, IL-6, and arginase-1 (Arg1) in response to 

hypoxia (Bosco, 2008).   

In addition to the phagocytic, proteolytic, and proinflammatory properties 

described above, monocyte/macrophages have also been ascribed two unique 

functions outlined in recent studies.  First, although macrophages are largely thought 
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to be non-dividing, several studies have indicated a limited degree of proliferation in 

response to co-culture with endothelial cells and M-CSF in vitro (Cheung, 1992; 

Munn, 1993; Antonov, 1997).  However, the contribution of local proliferation of 

macrophages under inflammatory conditions in vivo is unclear.  Second, an additional 

study using a mouse transgenic model of ischemic cardiomyopathy has indicated that 

macrophages can drill endothelial cell-free“tunnels” using macrophage 

metalloelastase which penetrate the ischemic myocardium (Moldovan, 2000).  

Whether of not these tunnels are subsequently colonized by endothelial cells to form 

capillaries is unknown.   

In light of the well-established important roles played by monocytes in 

mediating angiogenesis, several groups have explored the possibility that a local 

injection or intravenous adoptive transfer of monocytes may serve as an efficacious 

treatment for a variety of angiogenic disorders.  Recent studies by Capoccia et al. 

have demonstrated that an adoptive transfer of bone marrow mononuclear cells, and 

in particular the monocyte fraction contained within this population, significantly 

enhanced blood flow recovery post-hindlimb ischemia in mice (2006, 2008).  These 

findings were corroborated by (Zhang, 2008) and extended to myocardial infarction 

models (Burchfield, 2008; Ziebart, 2008).  Studies such as these provided the 

rationale for the clinical trials described below. 
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1.2.2  Clinical trials utilizing monocytes 

Promising reports using mouse modeling have prompted a variety of clinical 

trials in which bone marrow-derived mononuclear cells are used as a treatment for 

ischemic disorders including myocardial infarction and critical limb ischemia.  

Critical limb ischemia (CLI) is a severe manifestation of peripheral arterial disease 

(PAD).  The estimated annual incidence of CLI ranges between 500 and 1,000 new 

cases per 1 million, and occurs most frequently in patients with diabetes or severe 

atherosclerosis (Minar, 2009).  The primary goals of treatment in patients with CLI 

are to relieve ischemic pain and to treat ischemic ulcers, and in the most severe cases 

to prevent loss of the ischemic limb.  In an effort to treat CLI, the growth factor 

proteins VEGF and bFGF have been administered locally, however results to this 

type of treatment have been mixed (Al Sabti, 2007).  These mixed results are not 

entirely surprising as these proteins have a short serum half-life and a sole factor is 

unlikely to recapitulate all the signals necessary to induce angiogenesis.   

As a means of circumventing the limitations of single protein therapies, recent 

studies have focused on cell-based approaches to therapeutic angiogenesis.  Studies in 

animal models demonstrating the efficacy of hematopoietic cells, in promoting 

angiogenesis led to the rapid development of clinical trials in which autologous 

hematopoietic cells were injected intramuscularly into the ischemic limb.  These 

studies utilize autologous bone marrow mononuclear cells (BM-MNCs) obtained 

directly from bone marrow aspirates or G-CSF-mobilized peripheral blood-

mononuclear cells (PB-MNCs).    In one group of trials, summarized in Table 1, 

autologous BM-MNCs were injected intramuscularly into the ischemic limb of 
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patients with critical limb ischemia.  In each of these trials therapeutic benefits were 

observed in the treatment group as measured by a variety of indicators including 

improvements in ankle-brachial index, mean walking distance, and collateral 

formation.  While these promising findings have been reported for critical limb 

ischemia, similar myocardial infarction trials have yielded disappointing results.  

Little efficacy has been observed using either BM-MNC or PB-MNC therapies 

(Dimmeler, 2008).  Therefore an understanding of the specific pro-angiogenic 

populations contained within the mononuclear cell compartment and the mechanism 

by which these cells promote angiogenesis may reveal important information about 

how to improve the design of these therapies for myocardial infarction patients.      

 

 

1.3  Monocyte biology 

1.3.1  Development and functions 

Monocytes are mononuclear cells that develop from a common myeloid 

progenitor in the bone marrow and are released into the blood under both basal and 

pathogenic conditions (Fogg, 2006).  Monocytes comprise approximately 5-10% of 

the total leukocyte population in the blood where they exhibit a relatively brief 

lifespan.  Monocytes in mice and humans demonstrate a half-life of 17 hours (van 

Furth, 1989) and 71 hours (Whitelaw, 1972), respectively.  Upon recruitment to 

peripheral tissues, monocytes can follow one of two differentiation pathways 

generating either macrophages or dendritic cells (DCs).  Macrophages engulf dead 

cells and debris, proteolytically degrade this cellular material, and release cytokines 
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which further promote the clearance of dead cells.  After processing this cellular 

debris, macrophages do not process or present antigens or generate a T cell response 

(Zammit, 2005).  DCs likewise phagocytose cellular debris but in addition they 

process and present them to T cells via MHC molecules (Trombetta, 2003).  The 

migration properties of these cell types likewise differ: while macrophages remain 

largely confined to tissues, DCs can traffick from the tissues to peripheral lymphoid 

organs.  In addition to deriving from bone marrow/blood precursors, some 

macrophage populations, such as the pulmonary macrophages are known to self-

renew from local precursors (Tarling, 1987).  After emigrating from the blood to 

tissues, macrophages can exhibit any of a wide array of phenotypes depending on 

local signals as outlined below.   

 

1.3.2  M1/M2 polarization 

In response to a variety of stimuli, monocytes are recruited from the bone 

marrow to the blood and subsequently to peripheral tissues where they can 

differentiate into several effector macrophage subsets.  Infectious and pro-

inflammatory stimuli generate signals which drive macrophages down the classical 

activation or M1 pathway.  In vitro, cells exhibiting an M1 phenotype can be 

generated by treating with interferon-γ (IFN-γ) or lipopolysaccharide (LPS).  M1 

polarized macrophages produce a panoply of inflammatory mediators and utilize the 

nitric oxide synthase pathway to generate large amounts of nitric oxide (NO).  

Accordingly, nitric oxide measurements are frequently used as an assessment of 

polarization to the M1 phenotype (Mills, 2000).  Conversely, macrophages can 
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undergo alternative activation to polarize along the M2 pathway.  Alternative 

activation occurs biologically upon infection with parasitic helminths or in response 

to allergens.  This subset of macrophages is referred to at M2a.  In addition, M2 

polarization can occur in response to activation by immune complexes, generating a 

subset called M2b.  Lastly, the M2 phenotype can be generated in response to IL-10 

production at the resolution of inflammation (Kreider, 2007).  In keeping with in vivo 

observations, polarization towards the M2 phenotype can be driven in vitro by 

treating with IL-4, IL-13, or IL-10.  M2 polarized macrophages utilize the arginase 

pathway and expression of arginase 1 (Arg1) is a distinct marker for this cell type.  

Additionally, expression of the markers Ym1/chitinase and FIZZ1 are widely 

accepted as M2 markers across all M2 subsets and are upregulated in response to the 

vast majority of helminth infections (Martinez, 2009). 

Genetic mouse models for M1 or M2 polarization have been described, but 

are wrought with important caveats.  Mice lacking Src homology inositol phosphotase 

(SHIP) demonstrate a skewing towards increased M2 polarization as SHIP has been 

found to repress alternative activation in macrophages in vitro (Rauh, 2005).  In 

addition, PPAR-gamma deficiency has been shown to result in preferential M1 

macrophage polarization (Odegaard, 2007).  Interestingly, these phenotypes are 

highly dependent upon mouse strain.  For example, in the Th1-permissive Balb/c 

mouse strain, PPAR-gamma deficiency results in increased M1 polarization, however 

in the Th1-resistant C57Bl/6 mouse strain this phenotype is not observed.   

While M1-polarized macrophages clearly play a role in inflammatory 

processes, the role of M2-polarized macrophages is less clear.  M2a macrophages in 
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concert with Th2 cells to elicit antibody-mediated immunity which allows antibodies 

to coat invading parasites such that they can be cleared via a process referred to as 

antibody-dependent cell-mediated cytotoxicity (ADCC).  Monocytes exhibiting an 

M2 phenotype have been extensively reported in a variety of tumor models (Nardin, 

2008).  

The ability of M1 or M2 macrophage subsets to influence angiogenesis 

outside of the tumor microenvironment has not been extensively studied, however 

one report indicates that IL-4-inducted M2 macrophages elicited a 3-fold greater 

proliferation in endothelial cells in vitro compared to IFN-g-elicited M1 macrophages 

(Kodelja, 1997).  The studies described in Chapter 3 will assess M1 and M2 

polarization phenotypes in an ischemic setting. 

 

 

1.3.3  CX3CR1 monocyte subsets  

Monocytes are a widely heterogeneous cell population in which the full extent 

of existing subsets and the plasticity between subsets is largely unknown.  One major 

subset designation in monocytes has been recently described based upon differential 

expression of the cell surface markers CX3CR1 and Gr-1 (Table 2).  In the bone 

marrow, monocytes can be divided into two distinct populations based upon these 

markers, namely CX3CR1hiGr-1- and CX3CR1loGr-1+ subsets.  The CX3CR1loGr-1+ 

subset is referred to as the inflammatory subset, due to the ability of these cells to 

migrate to the peritoneum in response to intraperitoneal thioglycollate.  In addition, 

these cells express the adhesion markers VCAM-1 and L-selectin, as well as the 
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chemokine receptor CCR2.  In contrast, cells of the CX3CR1hiGr-1- subset do not 

traffic to the peritoneum in response to thioglycollate treatment and do not express 

the adhesion markers or chemokine receptors observed in the inflammatory subset 

(Geissmann, 2008).  Based on these observations, this subset is referred to as the 

resident subset.  While the precise function of this subset is unclear, a recent study 

has suggested that the resident monocyte subset patrols blood vessels, allowing rapid 

tissue invasion and subsequently give rise to macrophages while inflammatory 

monocytes reach the inflammatory site at a later time and differentiate into 

inflammatory DCs (Auffray, 2007).  Subsets analogous to the mouse inflammatory 

and resident subsets have been described in humans in which a CD14hiCD16- 

population resembles the inflammatory monocyte population while CD14+CD16+ is 

functionally comparable to the resident subset (Table 3) (Zeigler, 2007). 

  The bone marrow is made up largely of the CX3CR1loGr-1+ inflammatory 

subset while the resident subset dominates in the peripheral blood.  Several studies 

have indicated that the inflammatory population in the bone marrow may convert into 

the resident population in the peripheral blood based upon labeling and tracking 

studies (Tacke, 2006; Arnold, 2007).    Another study utilizing a mouse model of 

myocardial infarction has indicated that the inflammatory subset is selectively 

recruited first and that these cells exhibit phagocytic and proinflammatory functions 

and that subsequently the healing myocardium recruits monocytes of the resident 

subset which mediate angiogenesis and the deposition of collagen (Nahrendorf, 

2007).  While no studies have directly examined the contribution of the inflammatory 

and resident subsets to angigogenesis, in the ApoE-/- atherosclerosis-prone mouse 
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model, a skewing towards the CX3CR1loGr-1+ inflammatory monocyte subset was 

observed in the blood and these cells also preferentially accumulated in the 

atherosclerotic lesion (Tacke, 2007).  Further studies are required to determine if this 

subset is responsive to specifically responsive to ischemic signals or if the 

accumulation of the cells is in response to inflammatory signals.  

 

 

 

 

1.3.4  Tie2 monocyte subset 

Recent studies have revealed a potently angiogenic monocyte subset that 

expresses the receptor tyrosine kinase Tie2.  The Tie2 receptor binds two major 

ligands:  the agonist ligand angiopoietin-1 (Ang1) and the antagonist ligand 

angiopoietin-2 (Ang2).  Binding of Ang1 to Tie2 receptor strengthens interactions 
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between endothelial cells and extracellular matrix (Thurston, 2000).  Ang2 competes 

for binding with Tie2 preventing the binding of Ang1, thus leading to destabilization 

of vessels (Maisonpierre, 1997).  However, in vitro, Ang-2 stimulates endothelial 

cells migration and tube cell formation (Teichert-Kuliszewska, 2001).  Roughly 2-5% 

percent of bone marrow cells have been shown to express Tie2.  Flow cytometic 

analysis revealed that these Tie2+ cells present in the bone marrow were comprised of 

both endothelial cells (<5% CD31+CD45−) and hematopoietic cells (>95% CD45+).  

Tie2-expressing CD45+ hematopoietic cells were found to be enriched for Sca-1+ (

30%) and c-kit+ ( 50%) progenitors (De Palma, 2003).  In the peripheral blood, 

Tie2-expressing monocytes (TEMs) have been shown to comprise 2-7% of the total 

circulating monocytes in healthy human subjects (Venneri, 2007) as well as in mice 

(Lewis, 2007).  TEMs in the peripheral blood largely did not express the HSC/HPC 

markers c-kit (95% c-kit−) and Sca-1 (>70% Sca-1−).  Interestingly, circulating TEMs 

were found to exhibit a CCR2–, L-selectin-, CCR5+ phenotype—a surface profile 

previously associated with resident monocytes (Gordon, 2005).   

  While TEMs comprise only a small fraction of blood monocytes, they are 

have been found to be enriched in a variety of tumor environments.  55% and 70% of 

the CD14+ monocytes present in both a colorectal and lung carcimona expressed 

Tie2.  It is thought that these TEMs play an important role in vascularizing tumors 

based on several lines of evidence.  For example, U87 tumor cells coinjected with 

human CD14+Tie2+ monocytes led to larger and more highly vascularized tumors 

than those observed in mice receiving U87 cells alone (De Palma, 2009).  In addition, 

in a knockout mouse model lacking TEMs, there was a complete prevention of human 
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glioma neovascularization in the mouse brain as well as substantial tumor regression 

(De Palma, 2005).  It is currently unknown whether TEMs represent a unique 

monocyte lineage or if this phenotype is induced by the tumor microenvironment.       

 

1.4  CX3CR1/fractalkine receptor 

Fractalkine or CX3CL1 is CX3C motif chemokine which is produced by 

macrophages, activated vascular endothelial cells, smooth muscle cells, epithelial 

cells, dendritic cells, and neurons (Landsman, 2009).  CX3CR1 is the sole known 

receptor for fractalkine ligand and is expressed on blood monocytes, T cells, DC 

subsets, and natural killer (NK) cell subsets.  Fractalkine ligand is a transmembrane 

mucin-like stalk which mediates integrin independent adhesion to leukocytes 

expressing CX3CR1 (Bazan, 1997).  CX3CL1 can also be cleaved and secreted, and 

in its secreted form it acts as a chemoattractant for cells bearing its cognate receptor 

(Garton, 2001; Hundhausen, 2003).  

Expression of fractalkine is induced in inflammatory conditions downstream 

of TNF-α and IL-1 production (Bazan, 1997).  IFN-g has been shown to increase 

fractalkine expression in epithelial cells and dermal fibroblasts (Fujimoto, 2001; 

Fahy, 2003) acting through the STAT1 signaling pathway (Lombardi, 2008).  A 

recent study has demonstrated that in the absence of either CX3CR1 or CX3CL1 

there is a reduction in circulating monocyte levels at steady state as well as in the 

inflammatory setting present in ApoE-/- atherosclerosis-prone mice (Landsman, 

2009).  This study also reported that overexpression of the cell survival factor Bcl2 in 

CX3CR1-/- or CX3CL1-/- mice restored monocyte recruitment, suggesting that the 
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CX3CR1 pathway promotes cell survival.  In a model for wound healing, CX3CR1 

was found to play a critical role as CX3CR1-/- mice exhibited defects in macrophage 

infiltration, VEGF production, collagen deposition, and neovascularization (Ishida, 

2008).     

  A variety of studies have indicated that fractalkine and its receptor may be 

induced in response to hypoxia and may play an important role in blood vessel 

growth.  Specifically, hypoxia has been shown to inhibit the IFN-γ-induced 

expression of fractalkine in HUVEC; however this inhibition is reversible as the 

reintroduction of oxygen increases fractalkine levels (Yamashita, 2003).  The addition 

of exogenous fractalkine ligand has been shown to induce new vessel formation in 

vitro using the rat aortic ring and chick chorioallantoic membrane in vitro assays 

(Ryu, 2008).  This vessel formation was associated with upregulation of HIF-1a and 

VEGF-A.  The role of CX3CR1 in mediating post-ischemic angiogenesis varies 

according to the models tested.  In a mouse model for retinal vascular repair, 

CX3CR1 signaling was shown to have no role in revascularizing injured retinal tissue 

(Zhao, 2009).  In contrast CX3CR1-/- mice demonstrated reduced macrophage 

accumulation as well as decreased injury in models for kidney ischemia/reperfusion 

(Li, 2008) and focal cerebral ischemia (Denes, 2008).   Interestingly, bone marrow 

transplantation experiments demonstrated that mice lacking CX3CR1 in the 

hematopoietic compartment were able to promote blood vessel growth within an 

implanted Matrigel/fractalkine matrix whereas mice lacking CX3CR1 in all tissues 

demonstrated no blood vessel growth (Ryu, 2008).  This finding suggests that 

CX3CR1 signaling by endothelial cells may be a greater contributor to angiogenesis 
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than signaling by this receptor on hematopoietic cells, however data from other 

angiogenic models is currently lacking.   

   In addition to an accumulating body of evidence that fractalkine may play an 

important role in angiogenesis, several studies have linked fractalkine and its receptor 

to atherosclerosis susceptibility.  Polymorphisms in this gene which reduce the ability 

of CX3CR1 to bind to its ligand are associated with a reduced risk for atherosclerosis 

in humans (Lesnik, 2003).  In addition CXCL1 expression has been observed in both 

macrophages and coronary artery smooth muscle cells in the vessels of 

atherosclerotic but not normal patients (Wong 2003, Lucas 2002).  While the role of 

CX3CR1/CX3CL1 in leading to atherosclerosis is unclear a recent study has 

demonstrated that the lipid components of low density lipoprotein (LDL) activate 

peroxisome proliferator-activated receptor-γ (PPAR-γ) in macrophages leading to 

decreased CCR2 expression (and therefore reduced CCR2-dependent migration) and 

increased CX3CR1 expression leading to adhesion to the vessel wall (Barlic, 2006).  

CX3CL1-/-ApoE-/- mice demonstrated no reduction in the number of circulating 

monocytes, however there was a significant reduction in the number of macrophages 

which infiltrated the atherosclerotic lesion (Saederup, 2007).  This finding suggests a 

role for CX3CL1 in the capture and retention of monocytes by the endothelium and 

not in their ability to traffick from the bone marrow to the periphery.  Taken together 

the aforementioned studies indicate a clear role for the CX3CR1/CX3CL1 interaction 

in the retention of monocytes at inflammatory and ischemic lesions. 

 

1.5  Apolipoprotein A1 
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ApoA1 is the major protein component of high density lipoprotein (HDL).  

ApoA1 is synthesized in the liver and small intestine, exported and associates with 

lipids extracellularly.  The primary function of HDL is to promote reverse cholesterol 

transport from the tissues to bile.  HDL-associated ApoA1 is classically regarded as a 

negative acute-phase protein, a term assigned to serum proteins whose levels are 

decreased by at least 25% during acute inflammation (Gabay, 1999).  In keeping with 

its anti-inflammatory designation, ApoA1 has been shown to inhibit monocyte 

activation in vitro (Murphy, 2008).  Additionally, gene transfer of ApoA1 led to 

reductions in macrophage accumulation in several mouse models of atherosclerosis 

(Tangirala, 1999; Paszty, 1994).  Likewise, administration of ApoA1 significantly 

limited macrophage-related pathology in mouse models of kidney 

ischemia/reperfusion injury (Shin, 1998), myocardial infarction (Gu, 2007), and 

stroke (Paterno, 2004). 

While the above studies indicate an anti-inflammatory role for ApoA1, recent 

evidence suggests that the precise relationship of HDL/ApoA1 to the regulation of 

inflammation may, in fact, be more complex.  HDL has been shown to be both pro-

inflammatory and anti-inflammatory depending on the model tested.  On the whole it 

is accepted that HDL prevents inflammation in the absence of systemic inflammation 

but becomes pro-inflammatory in response to systemic inflammation or an acute 

phase response (Navab, 2005; van Lenten, 1995).  For example, when mice were 

subjected to a viral pneumonia, HDL became pro-inflammatory and resulted in a 

marked increase in IL-6 production and in macrophage trafficking to the infected 

areas (van Lenten, 2002).  In this same study, when mice were treated with an ApoA1 
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mimetic peptide, a dramatic reduction in macrophage accumulation and IL-6 

production was observed.  Interestingly, increased levels of ApoA1 have been 

observed in the synovial fluid of rheumatoid arthritis patients concomitant with a 

reduction in serum levels of this protein (Oliviero, 2009; Ananth, 1993).  It is unclear 

whether the redistribution of this protein from the circulation to the inflammed joint is 

a mechanism to reduce inflammation or if it is, in fact, contributing to the pathology.   

With respect to vascular models, one study has demonstrated that ApoA1 

stimulates endothelial cell migration in vitro (Seethram, 2006).  Additionally, mice 

lacking ApoA1 demonstrate impaired revascularization in response to carotid artery 

injury and this defect is rescued by reconstitution of ApoA1 expression by gene 

transfer (Seetharam, 2006).  Another study revealed that treatment of mice with 

recombinant HDL post-hindlimb ischemia significantly improves blood flow 

recovery in an endothelial nitric oxide synthase (eNOS)-dependent fashion (Sumi, 

2007).  Based on these studies and findings described above, ApoA1 clearly plays a 

role in the regulation of revascularization as well as macrophage recruitment.  In 

Chapter 2 we will examine the contribution of this protein to the recovery from 

hindlimb ischemia. 
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1.6  Summary 

This study will center on defining the proangiogenic subsets of monocytes and 

also exploring the mechanism by which these cells improve angiogenesis.  Three 

main questions will be addressed: 

 

1.  What subset of monocytes is angiogenic? 

2.  What factors released by monocytes accelerate angiogenesis? 

3.  How do signals generated by ischemia impact the phenotype of endogenous, bone 

marrow resident monocytes? 

 

In Chapter 2 we will define the subset of monocytes responsible for 

angiogenesis and examine the importance of two factors with a previously 

undetermined role in post-ischemic angiogenesis.  In Chapter 3 we will assess 

differences between non-ischemic donor and ischemia-conditioned bone marrow 

monocytes.  Finally, in Chapter 4 we will summarize our results, discuss the 

significance of this work, and outline future studies.   
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The Inflammatory Subset of Monocytes Potently 
Stimulates Post-Ischemic Angiogenesis  

 

 

 

 

Portions of this chapter are contained in the following published article: 

Capoccia, B.J., Gregory, A.D., Link, D.C.  Recruitment of the Inflammatory Subset of 
Monocytes to Sites of Ischemia Induces Angiogenesis in an Monocyte 
Chemoattractant Protein-1 Dependent Fashion.  J Leukoc Biol. 2008 Sep;84(3):760-8. 
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2.1  ABSTRACT 

Monocytes are a widely heterogeneous cell population which has been shown to 

significantly accelerate angiogenesis in a variety of models.  Differences in the ability 

of various monocyte subsets to mediate revascularization have not been previously 

investigated.  Herein, we address the two subsets of monocytes designated based on 

differential expression of CX3CR1 and Gr-1, the CX3CR loGr-1+ inflammatory subset 

and the CX3CR1hiGr-1- resident subset.  Using a mouse model for hindlimb ischemia, 

we demonstrate that an adoptive transfer of the inflammatory subset, but not the 

resident subset, significantly enhances revascularization post-ischemia.  Additionally, 

we show that the inflammatory subset of monocytes is selectively recruited from the 

bone marrow to the blood upon induction of ischemia.  Accordingly an accumulation 

of monocytes of the inflammatory subset is observed at the ischemic lesion at all 

analyzed timepoints post-hindlimb ischemia.  Lastly we demonstrate that the efficacy 

of an adoptive transfer of inflammatory monocytes may be due, at least in part, to 

increased expression of the fractalkine receptor CX3CR1 as well as to increases in 

local concentrations of the angiogenic factors MCP-1, VEGF, MMP-9 and ApoA1.   

 

2.2  INTRODUCTION 

Peripheral arterial disease is an atherosclerosis-associated syndrome which 

affects nearly 15% of the United States population over the age of 55 (Weitz, 1996).  

Critical limb ischemia is a severe manifestation of peripheral arterial disease and is a 



 
 

31

leading cause of limb amputation.  Various strategies have been used in an effort to 

restore angiogenesis in the setting of critical limb ischemia, including cytokine and 

cell therapies.  Treatment with growth factors alone, namely VEGF (Rajagopalan, 

2003) and rFGF (Lederman, 2002) has demonstrated little efficacy in clinical trials.  

Based on the assumption that treatment with a single growth factor is unlikely to 

recapitulate all the signals necessary for angiogenesis, recent studies have focused on 

the ability of hematopoietic cell-based therapies to mediate revascularization.  

Notably, several studies have demonstrated that intramuscular injections of bone 

marrow mononuclear cells (BM-MNCs) or apheresed, G-CSF-mobilized peripheral 

blood-mononuclear cells (PB-MNCs) can improve revascularization as assessed by 

several indicators including improvement of ischemic ulcers, increase in maximum 

walking distance, and a reduction in amputations (Al Mheid, 2008).  Mobilization of 

the patients’ own mononuclear cells via G-CSF (Arai, 2006) or GM-CSF (van Royen, 

2005) has likewise shown promise as a treatment for critical limb ischemia.  

However, as a non-specific and widespread mobilization or local injection of a 

heterogeneous population of inflammatory cells may have deleterious side effects, 

particularly within the context of atherosclerosis, there exists a demand for cell-based 

therapies in which a small population of highly angiogenic cells is targeted to the 

ischemic tissue.   

Recent studies by our laboratory have demonstrated that of the major cell 

types contained within the mononuclear cell fraction, monocytes exhibit the most 

potent angiogenic activity (Capoccia, 2006).  Monocytes play a variety of roles in the 

angiogenic process, including the secretion of a variety of factors including VEGF, 
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bFGF, TGF-a, GM-CSF, IL-8, and PDGF.  These factors promote proliferation and 

migration of endothelial cells as well as tube formation (Sunderkotter, 1994).  

Activation of endothelial cells by these cytokines induces production of VEGF and 

MCP-1, providing a positive amplification loop leading to the recruitment of 

additional monocytes (Shireman, 2007).  Additionally, monocytes express 

metalloproteases and serine proteases which play a critical role in degradation of the 

extracellular matrix, thus generating an appropriate scaffolding upon which new 

vessels can form (Moldovan, 2005).  Mice subjected to ischemia exhibit a marked 

endogenous monocytic response, consisting of increased production in the bone 

marrow and trafficking to the lesion (Capoccia, 2008).  Additionally, ablation of 

macrophages is associated with a significant reduction in post-ischemic angiogenesis 

(Heil, 2002; DiPietro, 1993; Brechot, 2008).  Therefore a determination of the 

mechanisms governing monocyte recruitment and retention at ischemic sites as well 

as an understanding of what constitutes a proangiogenic phenotype may reveal 

important therapeutic strategies for the treatment of ischemic disorders.  

Geissmann and colleagues described two unique monocytic populations 

present in the bone marrow and blood based on differential expression of the 

fractalkine receptor, CX3CR1, and Gr-1 (2003).  The fractalkine receptor CX3CR1 

binds to fractalkine ligand (CX3CL1) and this interaction promotes adhesion.  Both 

CX3CR1 and its ligand are expressed on hematopoietic cells, including monocytes, as 

well as endothelial cells.  Cells with a CX3CR1loGr-1+ phenotype were named 

“inflammatory” based on the observation that these cells traffick from the bone 

marrow to the peritoneum in response to intraperitoneal injections of thioglycolate.  
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In contrast, cells exhibiting the CX3CR1hiGr-1- phenotype, did not respond to 

challenge with thioglycolate and were thus referred to as the “resident” subset.  A 

recent study has indicated that cells of the inflammatory subset may convert into 

resident cells in the periphery, however the precise relationship between these subsets 

is not fully defined (Tacke, 2006).   

Herein, we provide evidence that the inflammatory subset of monocytes is 

preferentially recruited from the bone marrow to the peripheral blood to the site of 

ischemia.  In accordance with this finding, an adoptive transfer inflammatory 

monocytes significantly improves revascularization post-hindlimb ischemia (HLI).  

This improvement is associated with an increased influx of endogenous monocytes to 

the ischemic lesion as well as increased local production of the known angiogenic 

factors vascular endothelial growth factor-A (VEGF-A), monocyte chemotactic 

protein-1 (MCP-1),  matrix metalloprotease-9 (MMP-9), as well as of apolipoprotein 

A1 (ApoA1).  Additionally, we show that an adoptive transfer of ApoA1-/- 

inflammatory monocytes does not improve revascularization post-HLI, demonstrating 

for the first time an important role for this protein in mediating post-ischemic 

angiogenesis.     
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2.3  MATERIALS AND METHODS  

 

Mice.  ApoA1-/- mice on a C57BL/6 background were obtained from The Jackson 

Laboratory (Bar Harbor, ME, USA). CX3CR1GFP/+ and CX3CR1GFP/GFP mice on a 

C57BL/6 background were a generous gift from Dr. Dan Littman (Skirball Institute of 

Biomolecular Medicine, New York University School of Medicine, New York, NY, 

USA). Mice were housed in a specific pathogen-free environment. The Washington 

University Animal Studies Committee (St. Louis, MO, USA) approved all 

experiments.  

Murine hindlimb ischemia model.  The hindlimb ischemia surgical procedure was 

performed as described previously (Couffinhal, 1998). In brief, an incision was made 

in the skin at the mid-portion of the right hindlimb overlying the femoral artery, and 

the femoral artery and vein were then dissected free from the nerve, and the proximal 

portion of the femoral artery and vein ligated with 6-0 silk sutures. The distal portion 

of the saphenous artery and vein and remaining arterial and venous side branches 

were ligated, followed by their complete excision from the hindlimb. The overlying 

skin was then closed using Nexaband veterinary glue (Abbott Animal Health, Abbott 

Park, IL, USA).  

Laser Doppler perfusion imaging.  Blood perfusion in the hindlimb was monitored by 

laser Doppler imaging (MoorLDI-2, Moor Instruments, UK). Before initiating 

scanning, mice were anesthetized with ketamine/xylazine and placed on a heating 

plate at 37°C to minimize temperature variations. For each time-point, the laser 
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Doppler image obtained was analyzed by averaging the perfusion, expressed as the 

relative unit of flux as determined by Moor Instruments, over the surface of the 

ischemic and nonischemic foot. To control for ambient light and temperature, 

calculated perfusion was expressed as the flux ratio between the ischemic and 

nonischemic limbs.  

Inflammatory and resident monocyte subset isolation.  Bone marrow mononuclear 

cells from CX3CR1GFP/+ mice were incubated at 4°C with PE-conjugated Gr-1 

antibody (PharMingen). CX3CR1loGr-1+ and CX3CR1hiGr-1– monocytes were 

isolated using a MoFlo high-speed flow cytometer (Dako Cytomation, Fort Collins, 

CO, USA).  

Adoptive transfer of CFSE-labeled cells.  Bone marrow was harvested from the 

femurs of donor mice, and mononuclear cells were isolated by centrifugation across a 

1.011 density gradient (Histopaque, Sigma-Aldrich, St. Louis, MO, USA) at 1700 x g 

for 30 min. Mononuclear cells were then incubated with 2.5µM CFSE in PBS for 10 

min at 37°C. CFSE-labeled mononuclear cells (1x106) were administered i.v. into 

recipient mice 24 h after the induction of hindlimb ischemia; this cell dose is the 

minimum number that consistently stimulated angiogenesis in the hindlimb ischemia 

model.  

Flow cytometry.  The adductor muscle from ischemic and nonischemic hindlimbs was 

surgically isolated after hindlimb ischemia and then treated with 3 mg/ml Type I 

collagenase (Worthington Biomedical Corp., Lakewood, NJ, USA) for 40 min at 

37°C. After filtering through a 50-µm cell strainer (Partec, Munster, Germany), cells 
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were incubated with Fc block (Miltenyi Biotec, Auburn, CA, USA) for 10 min at 4°C, 

followed by incubation with PE-conjugated antibodies to Gr-1, F4/80, CD3, B220, or 

NK1.1 (PharMingen, San Diego, CA, USA). Cells were analyzed on a FACScan flow 

cytometer (Becton Dickinson, Franklin Lakes, NJ, USA). Data are reported as the 

total number of the indicated cell type recovered from an entire adductor muscle.  

Unbiased screen for soluble factors.  Following digestion of adductor muscle with 

collagenase to generate a single-cell suspension, cells and debris were removed by 

centrifugation at 500 x g for 5 min. The cell-free tissue supernatant was recovered and 

analyzed using a multiplexed ELISA assay for 58 unique soluble factors (Rules Based 

Medicine, Austin, TX, USA).   

Statistical analysis.  Statistical significance was determined by a two-way ANOVA 

analysis or by a two-sided Student’s t-test.  

 

2.4  RESULTS 

 

2.4.1  Monocytes are recruited to ischemic tissue post-HLI.  In order to determine 

if adoptively transferred monocytes home to the ischemic lesion, donor BM-MNCs 

were labeled with CFSE and were injected intravenously into ischemic recipients at 

24 hours post-HLI.  The ischemic adductor muscle was harvested at several time 

points post-ischemia, homogenized, and cell populations contained in this fraction 

were analyzed by flow cytometry.  As shown in Figure 2.1A, adoptively transferred 
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monocytes to home to ischemic tissue, with a peak influx of 2.5x104 cells observed at 

24 hours post-adoptive transfer.  Likewise, contaminating neutrophils present in BM-

MNC preparations were observed to home to the ischemic adductor muscle (Figure 

2.1B).  Interestingly, the adoptive transfer of BM-MNCs lead to increased recruitment 

of CFSE- endogenous monocytes to the ischemic adductor muscle with peak numbers 

observed at 24 hours post-adoptive transfer (Figure 2.1.C).  These data indicate that 

both monocytes and neutrophils contained within the adoptively transferred BM-

MNC fraction home to the site of ischemia, and that a specific recruitment of 

additional endogenous monocytes is observed. 

  

2.4.2  An adoptive transfer of the inflammatory, but not resident, subset of 

monocytes significantly improves revascularization post-HLI.  The recent 

designation of the inflammatory and resident subsets of monocytes is based on the 

ability of these subsets to traffick in response to thioglycollate.  The contribution of 

these particular subsets in responding to alternative signals, such as ischemia, has not 

been previously examined.  In order to determine if the inflammatory and resident 

monocyte subsets differ in their ability to promote post-ischemic angiogenesis, we 

sort-purified these populations and adoptively transferred them into ischemic 

recipients.  Revascularization of ischemic recipients was assessed over a 14-day time 

course using laser Doppler imaging.  While an adoptive transfer of resident 

monocytes showed no improvement over PBS-treated controls, an adoptive transfer 

of inflammatory monocytes lead to a significant acceleration of revascularization 

(Figure 2.2).  This finding indicates that the CX3CR1loGr-1+ inflammatory subset is 



 
 

38

uniquely responsible for the enhanced revascularization observed upon an adoptive 

transfer of unfractionated monocytes.   

 

2.4.3  The inflammatory subset of monocytes is selectively mobilized from the 

bone marrow into the blood post-HLI.  Having determined that an adoptive transfer 

of inflammatory monocytes significantly increases revascularization post-HLI, we 

next assessed the contribution of inflammatory and resident monocyte subsets to the 

endogenous response to ischemia.  At baseline, the resident monocyte subset 

dominates in the peripheral blood while, the inflammatory subset comprises the 

majority of bone marrow monocytes.  However, in response to hindlimb ischemia, an 

increase in the number of inflammatory cells in the blood is observed (Figure 2.3A) 

concomitant with an increase in the production of this subset in the bone marrow 

(Figure 2.3B).  These data indicate that the inflammatory subset of monocytes is 

selectively mobilized from the bone marrow into the peripheral blood in response to 

hindlimb ischemia.       

2.4.4  Monocytes of the inflammatory subset accumulate at the ischemic lesion 

post-HLI.  As monocytes of the inflammatory subset preferentially mobilize from the 

bone marrow to the blood in response to hindlimb ischemia, we next asked if this 

subset likewise accumulates at the ischemic lesion.  In fact, the monocytic infiltrate in 

the ischemic adductor muscle was largely comprised of the inflammatory subset.  

Around 106 inflammatory monocytes were observed at the peak time of influx, 

whereas levels of resident monocytes peaked at only around 105 cells (Figure 2.4).  
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This data suggests that inflammatory monocytes are the major subset mediating repair 

at the site of ischemia in this model.  This finding contrasts with chronic models of 

ischemia in which a bimodal “switch” from inflammatory to resident monocyte 

infiltrate is observed (Nahrendorf, 2007; Arnold, 2007).    

 2.4.5 Bone marrow resident monocytes decrease expression of CX3CR1 upon 

induction of ischemia and CX3CR1-/- monocytes exhibit a reduced ability to 

improve angiogenesis.  In order to understand why the trafficking of a small number 

of adoptively-transferred donor monocytes, representing only 0.1-1% of the total 

monocytes present in the ischemic lesion, so potently accelerates revascularization we 

set out to assess phenotypic differences between donor monocytes and endogenous 

monocytes.  Interestingly, we observed that upon induction of ischemia, expression of 

the fractalkine receptor CX3CR1 is markedly reduced (Figure 2.5A).  As CX3CR1 is 

known to play a role in adhesion of monocytes to endothelium and also in stimulating 

endothelium to produce a variety of angiogenic factors, we set out to assess if the 

downregulation of CX3CR1 which occurs as monocytes leave the bone marrow 

impairs the downstream angiogenic capacity of these cells.  To test this, we sort-

purified monocytes from a CX3CR1-/- donor and adoptively transferred these cells 

into ischemic recipients.  In fact, these cells did exhibit a slight, but statistically 

significant, defect in accelerating revascularization compared to wild type controls 

(Figure 2.5B).  This finding suggests that the loss of CX3CR1 expression that occurs 

as monocytes are mobilized from the bone marrow to the periphery may partially 

explain the loss of angiogenic capacity of these cells compared to donor cells which 

express high levels of this receptor.   



 
 

40

 

2.4.6.  Local production of VEGF, MCP-1, MMP-9, and apolipoprotein A1 is 

increased post-adoptive transfer.  As CX3CR1 expression in endogenous 

monocytes appears to play only a partial role in mediating the proangiogenic effects 

of monocytes, we next performed an unbiased screen to determine what factors are 

produced locally which may impact revascularization.  An unbiased ELISA-based 

screen for 58 unique soluble factors was performed on cell-free muscle supernatants 

obtained from the ischemic adductor muscles of mice undergoing HLI only (poor 

blood flow recovery) and from mice receiving HLI plus an adoptive transfer of BM-

MNCs (improved blood flow recovery).  The screen indicated that levels of the 

proangiogenic factors VEGF (Figure 2.6A), MCP-1 (Figure 2.6B), and MMP-9 

(Figure 2.6C) as well as the major protein component of HDL, apolipoprotein A1 

(Figure 2.6D) were increased upon adoptive transfer.  As VEGF, MCP-1, and MMP-9 

have well-described roles in post-ischemic angiogenesis, we decided to examine the 

importance of apolipoprotein A1 in mediating the potent pro-angiogenic effect of a 

monocytic adoptive transfer.     

2.4.7.  An adoptive transfer of apolipoprotein A1-deficient monocytes does not 

improve revascularization post-HLI.  ApoA1 is the major protein component of 

HDL known to be largely synthesized by hepatocytes in the liver and then exported 

into the circulation where it assembles with the lipid components of HDL (ref).  The 

ApoA1 lipid complex classically is known to play an important role in reverse 

cholesterol transport.  Synthesis of ApoA1 by monocytes and its role in post-ischemic 
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angiogenesis has not been previously described.  In order to determine if production 

of ApoA1 by monocytes is necessary for monocytes to mediate their angiogenic 

effect, we sort-purified inflammatory monoctyes from ApoA1-/- mice and adoptively 

transferred them into ischemic recipients.  Interestingly, an adoptive transfer of 

monocytes lacking ApoA1 was not sufficient to enhance revascularization compared 

to wild type controls (Figure 2.7).  This data indicates an essential role for ApoA1 in 

the angiogenic repair capacity of monocytes.   

 

2.5  DISCUSSION 

BM-MNCs have demonstrated efficacy in the treatment of a variety of 

ischemic disorders in both mice and humans.  Many of these studies have centered on 

the role of progenitor populations present in the BM-MNC fraction and their ability to 

differentiate into endothelial cells.  However, recent work by our laboratory has 

demonstrated that the monocyte fraction contained within BM-MNCs potently 

enhances revascularization following hindlimb ischemia (Capoccia, 2006).  We 

observed that adoptively transferred monocytes home to the site of ischemia and also 

recruit additional endogenous monocytes to the lesion (Figure 2.1).   

A further examination of monocyte subsets revealed that only the 

inflammatory and not the resident subset of monocytes is competent to accelerate 

revascularization (Figure 2.2).  Additionally, the inflammatory subset of monocytes 

likewise is selectively recruited from the bone marrow into the blood upon induction 

of ischemia and this is the major subset that accumulates at the ischemic lesion at all 

time points post-HLI.  In several other models including myocardial infarction 
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(Nahrendorf, 2007) as well as a muscle injury model (Arnold, 2007), inflammatory 

monocytes dominate the early time points while the resident population comprises the 

majority of the infiltrate at late timepoints.  Interestingly, Tie2-expressing monocytes 

(TEMs), thought to be potently angiogenic in tumor models, are thought to fall within 

the resident Gr-1- subset of monocytes (Venneri, 2007).  Our finding underscores the 

potential differences in tumor versus ischemia-driven angiogenesis.  These data 

provide the first evidence that the CX3CR1loGr-1+ inflammatory subset is the major 

contributor to angiogenic repair in response to acute ischemia.         

CX3CR1 is the receptor for the fractalkine ligand CX3CL1 which is 

expressed as a transmembrane protein on a mucin-like stalk.  Interaction of CX3CR1 

with this membrane-bound ligand allows for integrin-independent adhesion.  The 

membrane-bound form of CX3CL1 can also be cleaved by metalloproteases 

generating free CX3CL1 which can then act as a chemoattractant.  CX3CR1-/- and 

CX3CL1-/- mice both demonstrate a reduction in circulating resident monocytes and 

normal numbers of inflammatory monocytes.  A recent study has demonstrated that 

this is due to the critical Bcl2-dependent survival signals generated by the 

CX3CR1/CX3CL1 interaction in the resident monoctyes (Landsman, 2009).  

Interestingly, local injections of CX3CL1 lead to improved blood flow recovery in a 

rat model of hindlimb ischemia (Ryu, 2008).  As CX3CR1 expression was markedly 

decreased in bone marrow monocytes post-HLI, but intact in donor monocytes from 

mice that did not receive surgery, we examined the possible contribution of this 

receptor in mounting the angiogenic response.  An adoptive transfer of CX3CR1-/- 

monocytes showed a modest, but significant, decrease in revascularization compared 
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to CX3CR1-sufficient controls (Figure 2.5).  Further studies will be necessary to 

determine if this defect in revascularization is due to a decreased ability of CX3CR1-/- 

cells to home to the ischemic lesion, to attach to damaged endothelium via the 

CX3CR1/CX3CL1 interaction, or to survive at the inflammatory site.   

As the loss of CX3CR1 only appeared to have a minor effect on the 

revascularization potential of monocytes, we looked for other ways in which non-

ischemic donor monocytes may have such a profound impact on the revascularization 

of ischemic recipients.  To accomplish this, an unbiased screen for 58 unique soluble 

factors was performed on adductor muscle supernatant from mice undergoing HLI 

with and without an adoptive transfer.  Interestingly, the potently angiogenic factors 

VEGF, MCP-1, and MMP-9 were all found to be upregulated post-adoptive transfer.  

The role of VEGF in recruiting macrophages which contribute to angiogenesis has 

been extensively described.  For example a host of experiments using neutralizing 

antibodies or soluble receptors demonstrated that VEGF is a major contributor to 

post-ischemic as well as tumor angiogenesis (Cursifen, 2004; Frank, 1995; Adamis, 

1996).  Based upon the critical role of this factor in angiogenesis, the increased 

production of VEGF observed upon adoptive transfer likely is a large contributor to 

the accelerated angiogenesis observed in our model.    

Like VEGF, MCP-1 is likewise a well-known regulator of angiogenesis.  

MCP-1 is secreted from monocyte/macrophages, smooth muscle cells, and endothelial 

cells within ischemic tissue (Goede, 1999; Lakshminarayanan, 2001).  In addition, 

MCP-1 has been shown to directly induce VEGFA expression from endothelial cells 

(Hong, 2005).  The addition of recombinant MCP-1 or its overexpression by gene 
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transfer has been shown to significantly enhance revascularization in ischemic tissues 

which is associated with increased macrophage recruitment (Ito, 1997; Muhs, 2004; 

Schwarz, 2004).  MCP-1–/– mice had impaired monocyte recruitment and blood flow 

recovery after hindlimb ischemia, which could be reversed by local treatment with 

purified MCP-1 protein (Vosukil, 2004).   

MMP-9 belongs to a family of zinc-containing endopeptidases which play a 

role in vascular remodeling by degrading the extracellular matrix (Heissig, 2003).  

MMP-9 has been shown to mobilize endothelial progenitor cells (EPCs) from the 

bone marrow niche (Hessig, 2002) and to recruit bone marrow-derived leukocytes to 

tumors (Jodele, 2005).  Secretion of MMP-9 by tumor associated macrophages 

(TAMs) is a major signal governing tumor angiogenesis in several models (Coussens, 

2004; Giraudo, 2004; Dirkx, 2006).  The increased levels of MMP-9 observed post-

adoptive transfer demonstrate that in addition to its importance in tumor models, this 

proteinase likewise plays a critical role in repairing post-ischemic injury.  

Apolipoprotein A1 (ApoA1) is the major protein component of the high 

density lipoprotein (HDL) complex.  While largely described as an anti-inflammatory 

regulator, recent evidence suggests that ApoA1 may exhibit anti-inflammatory 

functions at the steady state but pro-inflammatory functions under conditions of 

systemic inflammation (Navab, 2005).  In our model of hindlimb ischemia, ApoA1 is 

clearly protective as markedly increased levels are observed post-adoptive transfer 

and an adoptive transfer of ApoA1-/- monocytes does not improve revascularization.  

Interestingly, ApoA1 is known to be secreted by hepatocytes and some cells of the 

small intestine, and its production by macrophages has not been previously described.  
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Further studies will be required to determine if monocyte/macrophages do, in fact, 

secrete ApoA1, or if alternatively, macrophage development in an ApoA1-deficient 

setting leads to phenotypic changes which limits their pro-angiogenic capacity.   

 Taken together, these data identify a specific subset of monocytes which 

potently enhances angiogenesis in an adoptive transfer setting and describe several 

factors which are significantly increased in association with this adoptive transfer.  

Future studies will be required to delineate the specific mechanism by which an 

adoptive transfer of a small proportion of monocytes leads to significantly increased 

blood flow recovery.  A better understanding of this process may unveil promising 

therapeutic strategies for a variety of ischemic disorders.  
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Figure 2.1   

Adoptively transferred donor monocytes home to the site of ischemia and a 

concomitant recruitment of additional endogenous monocytes is observed.  Ficoll-

purified BM-MNCs were harvested from nonischemic donor mice, labeled with 

CFSE, and 2x106 cells were adoptively transferred into ischemic recipients at 24 

hours post-HLI.  The ischemic adductor muscle was harvested at the times indicated, 

subjected to collagenase digestion and homogenization, and analyzed by flow 

cytometry.  The absolute number of CFSE+F4/80+ donor monocytes (A), CFSE-

F4/80+ endogenous monocytes (B), CFSE+Gr-1hi donor neutrophils (C), and CFSE-

Gr-1hi endogenous neutrophils (D) was determined by multiplying the percentages of 

cells obtained by flow cytometry by hemacytometer counts of whole adductor 

muscle.   

 

Figure 2.2 

An adoptive transfer of the inflammatory, but not resident, subset of monocytes 

significantly improves revascularization post-HLI.  Monocytes of the CX3CR1loGr-1+ 

inflammatory and CX3CR1hiGr-1- resident subsets were sort-purified from 

CX3CR1+/GFP mice. 2x105 sorted monocytes were adoptively transferred via a tail 

vein injection into ischemic recipients at 24 hours post-HLI.  The blood flow ratio of 

the ischemic versus nonischemic leg was assessed using laser Doppler imaging over a 

14 day time course.   
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Figure 2.3.   

The inflammatory subset of monocytes is selectively mobilized from the bone marrow 

into the blood post-HLI.  Hindlimb ischemia surgeries were performed in CX3CR1 

GFP/+ mice and peripheral blood (A) and bone marrow (B) were harvested at the times 

indicated.  Percentages of the inflammatory (GFPloGr-1+) or resident (GFPhiGr-1-) 

subsets were identified by flow cytometry and multiplied by the total white blood 

count in order to determine the absolute number of monocytes present.   

 

Figure 2.4 

Monocytes of the inflammatory subset accumulate at the ischemic lesion post-HLI.  

CX3CR1GFP/+ mice were subjected to hindlimb ischemia and the ischemic adductor 

muscles were harvested at the indicated time points.  Muscles were homogenized and 

the total number of inflammatory (GFPloGr-1+) and resident (GFPloGr-1-) monocytes 

were quantified using percentages obtained using flow cytometry multiplied by 

absolute cell numbers obtained by hemacytometer counts (n=3-5).   
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Figure 2.5   

 

Expression of CX3CR1 is decreased upon induction of ischemia and CX3CR1-/- 

monocytes demonstrate a reduced capacity to stimulate angiogenesis.  (A)  Whole 

bone marrow was prepared from CX3CR1+/GFP mice at baseline or at 24 hours post-

HLI.  Cells were stained for Gr-1 and analyzed using flow cytometry.  (B)  The 

CX3CR1loGr-1+ inflammatory monocyte subset was sort purified from the bone 

marrow of a CX3CR1-/- donor and 2x105 cells were adoptively transferred into 

ischemic recipients at 24 hours post-HLI.  Mice were analyzed using laser Doppler 

scanning over a 14-day time course.   

 

 

Figure 2.6.   

Local production of VEGF, MCP-1, MMP-9, and apolipoprotein A1 is increased 

post-adoptive transfer.  Ischemic adductor muscles from ischemic mice with (dashed 

bars) or without (solid bars) an adoptive transfer of 2x106 BM-MNCs were 

harvested.  Muscles were treated with collagenase and homogenized as described in 

Methods and the cell free supernatant was obtained.  Cell free muscle supernatants 

were subjected to a multiplex ELISA-based screen for 58 unique soluble factors.  

Levels of VEGF (A), MCP-1 (B), MMP-9 (C) and apolipoprotein A1 (D) were 

upregulated locally in mice receiving adoptive transfer.  (n=1-2 pooled samples, 

representing 3-6 mice, respectively).   
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Figure 2.7 

An adoptive transfer of apolipoprotein A1-deficient monocytes does not improve 

revascularization post-HLI  The inflammatory subset of monocytes was sorted from 

ApoA1-/- mice based on CD115+Gr-1+ expression.  2x105 of these sorted cells were 

adoptively transferred into ischemic recipients at 24 hours post-HLI.  The blood flow 

ratio of the ischemic versus nonischemic leg was assessed over a 14 day time course 

using laser Doppler imaging.   
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Figure 2.1 
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Figure 2.2 

 

 

0 3 6 9 12 15
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Inflammatory monocytes (n=10)
PBS (n=5)

Resident monocytes (n=4)
p=0.002

Days post surgery

ra
tio

 is
ch

em
ic

/n
o

n
-is

ch
em

ic

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

52

 

Figure 2.3 
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Figure 2.4   
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Figure 2.5 
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Figure 2.7 
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Chapter 3 

 

Systemic Signals Generated by Interleukin-6 (IL-6) and 

Granulocyte-Colony Stimulating Factor (G-CSF) 

Influence the Angiogenic Capacity of Bone Marrow 

Resident Monocytes  
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3.1  ABSTRACT 

There is considerable interest in the potential of cell-based approaches to mediate 

therapeutic angiogenesis for acute and chronic vascular syndromes. Using a mouse 

model of hindlimb ischemia, we previously showed that adoptive transfer of a small 

number of donor monocytes significantly enhanced revascularization. Herein, we 

provide data suggesting the bone marrow resident monocytes sense systemic signals 

that influence their future functional capacity.  Specifically, following induction of 

distant ischemia, the angiogenic capacity of bone marrow resident monocytes is 

markedly reduced.  We provide evidence that granulocyte-colony stimulating factor 

(G-CSF) and interleukin-6 (IL-6) represent such “conditioning” signals.  Systemic 

levels of G-CSF and IL-6 are significantly increased following induction of hindlimb 

ischemia.  Accordingly, bone marrow resident monocytes from ischemic mice 

exhibited increased STAT3 phosphorylation and STAT3 target gene expression.  

Finally, G-CSF receptor-/- and IL-6-/- mice were resistant to the deleterious effects of 

ischemic conditioning on monocyte angiogenic potential.  RNA expression profiling 

suggested that ischemia-conditioned monocytes in the bone marrow are polarized 

towards expression of M2-associated genes.  Consistent with this observation, M2-

skewed monocytes from SHIP-/- mice also had impaired angiogenic capacity.   

Collectively, these data show that G-CSF and IL-6 provide signals that determine the 

angiogenic potential of bone marrow resident monocytes.   
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3.2  INTRODUCTION 

The bone marrow represents a rich reservoir of cells that are able to stimulate 

angiogenesis.  Delivery of bone marrow cells to sites of ischemia, either by direct 

injection into ischemic tissue (1) or by mobilization of bone marrow cells into the 

blood (2), has been shown to stimulate angiogenesis in animal models.  Moreover, 

several clinical trials have utilized direct injection of bone marrow cells to stimulate 

revascularization.  Though preliminary, there is evidence that this approach may have 

modest clinical benefit in patients with acute myocardial infarction (3) or peripheral 

vascular disease (4).  Importantly, the bone marrow is comprised of many cell types, 

and the cell population(s) that stimulate angiogenesis have not been fully defined.  

The identification of the relevant cell populations and a better understanding of the 

signals that regulate their angiogenic activity may lead to improved strategies for cell-

based therapeutic angiogenesis. 

Within the bone marrow, cell populations with known angiogenic activity 

include monocytes, endothelial cells and natural killer cells (5).  Accumulating 

evidence suggests that monocytes may be the key bone marrow cell type mediating 

angiogenesis upon delivery to sites of ischemia.  Mice subjected to ischemia exhibit a 

marked endogenous monocytic response, consisting of increased production in the 

bone marrow and trafficking to the lesion (6).  Monocytes are thought to stimulate 

angiogenesis through secretion of angiogenic growth factors, degradation of 

extracellular matrix by the release of proteases, and increases in vascular permeability 

by the deposition of fibrin.  Accordingly, ablation of macrophages is associated with 

a significant reduction in post-ischemic angiogenesis (7-9).  Conversely, we recently 
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showed that early delivery of bone marrow monocytes to sites of ischemia markedly 

enhanced reperfusion in a murine model of acute hindlimb ischemia (6). 

 The cytokines granulocyte-colony stimulating factor (G-CSF) and interleukin-

6 (IL-6) are known to provide important survival and activation signals to 

monocyte/macrophages, acting through signal transducer and activator of 

transcription 3 (STAT3) signaling intermediates (10).  IL-6 and G-CSF are induced in 

several ischemic settings including a murine model of ischemic acute kidney injury 

(11) and a rat model of gut ischemia/reperfusion (12).  Likewise, levels of these 

cytokines have been shown to be elevated in a variety of ischemic disorders in 

patients, including severe heart failure patients (13, 14) and vascular surgery-

associated ischemia (15).  The effect of these cytokines on the bone marrow 

compartment has not previously been investigated. 

 Herein, we demonstrate that the addition of only a small proportion of 

adoptively transferred monocytes from a non-ischemic donor significantly enhances 

revascularization post-hindlimb ischemia (HLI).  Based on this finding we set out to 

assess differences in proangiogenic capacity between endogenous ischemia-

conditioned monocytes and donor basal monocytes.  We demonstrate that ischemia-

conditioned monocytes are unable to enhance revascularization post-HLI and that this 

defect is dependent upon signaling by G-CSF and IL-6.  Additionally, bone marrow 

resident monocytes subjected to ischemic signals exhibit reduced expression of 

classical M1 genes and increased expression of M2 genes.  Accordingly, an adoptive 

transfer of M2-skewed monocytes obtained from Src homology 2 domain-containing 

inositol 5'-phosphatase 1-/- (SHIP-/-) mice does not improve blood flow recovery 
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post-HLI.  This study provides the first evidence that systemic signals generated by 

ischemia can lead to functional alterations in bone marrow resident monocytes and 

has important implications for cell-based therapeutic angiogenesis approaches. 

 

3.3  MATERIALS AND METHODS 

 

Mice.  IL-6-/- on a C57BL/6 background were obtained from The Jackson Laboratory 

(Bar Harbor, ME).  CX3CR1GFP/+ mice on a C57BL/6 background were a generous 

gift from Dr. Dan Littman (Skirball Institute of Biomolecular Medicine, New York 

School of Medicine, New York, NY).  SHIP-/- mice on a C57BL/6 background were a 

generous gift from Dr. F. Patrick Ross (Washington University School of Medicine, 

St. Louis, MO)   G-CSFR-/- mice on a C57BL/6 background were generated as 

previously described (43).  Mice were housed in a specific pathogen-free 

environment.  The Washington University Animal Studies Committee (St. Louis, 

MO) approved all experiments.   

 

Murine hindlimb ischemia model.  Mice were anesthetized by an intraperitoneal 

injection of a solution of 87 mg/kg ketamine; 13 mg/kg xylazine.  An incision was 

made at the mid-portion of the right hindlimb proximal to the femoral artery and the 

femoral artery and vein were dissected free from the nerve.  The proximal portion of 

the femoral artery and vein were ligated with Perma-Hand taper point (6-0) 

nonabsorbable silk surgical sutures (Ethicon, Summerville, NJ).  The distal portion of 

the saphenous artery and vein and remaining arterial and venous side branches were 
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ligated and then excised from the hindlimb.  The incision was then closed using 

Nexaband veterinary glue (Abbott Animal Health, Abbott Park, IL).   

 

Laser Doppler perfusion imaging.  Blood perfusion in the hindlimb was monitored 

by laser Doppler imaging (MoorLDI-2, Moor Instruments, UK).  Prior to imaging, 

mice were anesthetized with ketamine/xylazine, and placed on a heating plate at 37oC 

for 10 minutes in order to minimize temperature variations.  The laser Doppler image 

was analyzed by averaging the perfusion, expressed as the relative unit of flux as 

determined by Moor Instruments, over the surface of the ischemic and non-ischemic 

foot.  To control for ambient light and temperature, calculated perfusion was 

expressed as the flux ratio between the ischemic and non-ischemic limbs. 

 

Isolation and adoptive transfer of bone marrow mononuclear cells (BM-MNCs) 

or purified monocytes.   Bone marrow was harvested from the femurs of donor mice 

and mononuclear cells were isolated by centrifugation across a 1.011 density gradient 

(Histopaque, Sigma-Aldrich, St. Louis, MO) at 1700xg for 30 minutes.  Pure 

monocyte populations were obtained from CX3CR1GFP/+ mice using a MoFlo high 

speed cell sorter (Dako, Fort Collins, CO) based on CX3CR1loGr-1+ expression or 

CD115+Gr-1+ expression in mice which do not express CX3CR1-GFP.  2x106 BM-

MNCs or 2x105 purified monocytes were administered intravenously into recipient 

mice 24 hours after the induction of hindlimb ischemia.  For trafficking experiments, 

cells were incubated with 2.5uM carboxyfluorescein succinimidyl ester (CFSE) 
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(Invitrogen, Eugene, OR) in PBS for 10 minutes at 37oC prior to intravenous 

injection.  

 

Homogenization of muscle tissue.  The adductor muscle was dissected free of the 

ischemic hindlimb, subjected to mechanical disruption, and incubated 3 mg/mL 

collagenase type I (Worthington Biochemical, Lakewood, NJ) for one hour on a 37° 

shaking incubator.  Cells were further homogenized by drawing through a 18-gauge 

and 22-gauge needle and then filtered through a 50 uM cell filter (Partec, Mt. Laurel, 

NJ).  The resulting suspension was spun at 8000xg for 5 minutes, and the cell-free 

supernatant analyzed by ELISA. 

 

Histological analyses.  Ischemic adductor muscles were excised and fixed overnight 

in 10% formalin.  Tissue was then paraffin-embedded, sectioned, and stained with 

hematoxylin/eosin (H&E).  The number of newly regenerated myofibrils containing 

centrally-localized nuclei was scored by counting 100 cells in three distinct fields of 

each section (300 total myofibrils scored).  Leukocyte infiltration present in the entire 

section area was given a histological score as follows: 1=0-25% affected area; 2=25-

50% affected area; 3=50-75% affected area; 4=75-100% affected area; n=3, p<0.05.  

All scoring was conducted in a blinded fashion by two independent investigators.   

 

Unbiased screen for secreted factors.  Cell free supernatants were obtained from 

homogenized adductor muscle as described above.  Supernatants were analyzed using 
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the RodentMap v2.0 multiplex analysis for 58 unique soluble factors (Rules Based 

Medicine, Austin, TX). 

 

ELISA.  ELISA analysis for G-CSF and IL-6 (R&D Systems, Minneapolis, MN) 

were performed according to manufacturer’s instructions. 

 

Flow cytometry.  Cells were incubated with the indicated primary antibody for 1 

hour at 4°C in PBS containing 0.2% BSA and 0.1% sodium azide. The following 

primary antibodies were used: Gr-1, B220, CD3, F4/80, CD115 (eBioscience, San 

Diego, CA).  Cells were analyzed on a FACScan flow cytometer (BD Bioscience, San 

Jose, CA). 

 

Flow cytometric phosphorylation assay.  Femurs obtained from ischemic or non-

ischemic CX3CR1GFP/+ transgenic mice were flushed with PBS containing 0.2% 

bovine serum albumin (BSA).  Cells were immediately fixed and permeabilized using 

BD Cytofix/Cytoperm reagent according to manufacturer’s instructions (BD 

Biosciences, San Jose, CA).  Permeabilized cells were stained using BD Phosflow 

anti-STAT3 or anti-STAT5 antibodies (BD Biosciences).  Cells were then gated on 

the CX3CR1lo inflammatory monocyte population and the mean fluorescent intensity 

measured. 

 

Microarray analysis.  CX3CR1-GFPloGr-1+ inflammatory monocytes were sorted 

from the bone marrow of CX3CR1GFP/+ transgenic mice, with our without hindlimb 
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ischemia, directly into Trizol (Invitrogen, Carlsbad, CA).  Three independent 

replicates were performed.  Total RNA was prepared according to manufacturer’s 

instructions, amplified, labeled, and hybridized to a MouseRef-6 BeadChip (Illumina, 

San Diego, CA, USA).  Expression profiles from basal inflammatory monocytes were 

compared to those of ischemia-conditioned monocytes using the Spotfire analysis 

program (TIBCO, Somerville, MA, USA). After normalization, mean signal 

intensities for each probeset were calculated across the three experiments. Probesets 

upregulated or downregulated in ischemia-conditioned monocytes versus basal 

monocytes were selected based upon the following selection criteria: (i) mean signal 

intensity > 40 in at least two of three probesets corresponding to the upregulated 

condition; (ii) greater than threefold changes in mean signal intensity (hereafter 

referred to as “fold-induction ratio”). (iii) Statistical significance (P < 0.03) by t-

test/Anova.  In cases where multiple probesets corresponded to the same gene, the 

probeset with the highest average signal intensity and greatest number of present calls 

was used. 

 

Statistics.  Statistical significance between curves in time courses was determined by 

two-way ANOVA with Bonferroni post-testing.  Unpaired students’ t-test was 

performed on single observation data.  Significance was determined as p<0.05.    

 

 

3.4  RESULTS 
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3.4.1  Adoptive transfer of bone marrow monocytes significantly improves 

revascularization in mice after induction of hindlimb ischemia 

Monocytes were sort-purified from the bone marrow of donor mice, labeled 

with carboxyfluorescein succinimidyl ester (CFSE), and adoptively transferred into 

recipient mice 24 hours after surgical induction of unilateral hindlimb ischemia.  

Consistent with a previous report by our laboratory (6), infusion of as few as 2 x 105 

bone marrow monocytes significantly enhances blood flow recovery as assessed by 

laser Doppler analysis (Figure 1A).  The number of donor (CSFE+) and recipient 

(CSFE-) monocytes recruited to the ischemic adductor muscle was assessed by flow 

cytometry (Figure 1B-C).  Interestingly, though donor monocytes clearly home to and 

are retained in the ischemic tissue, they make up only a small fraction (0.1% to 1%) 

of the total monocytes/macrophages present in the lesion.  Moreover, in control mice 

not receiving donor monocytes, blood flow recovery was significantly delayed 

despite the recruitment of a large number of CFSE- host monocytes (Figure 1B-C).  

Together, these data suggest dramatic differences in the ability of donor versus host 

monocytes to stimulate revascularization.  

 

3.4.2  Adoptive transfer of BM-MNCs from ischemic donors does not improve 

revascularization after induction of hindlimb ischemia 

Local ischemia/inflammation can induce systemic production of cytokines, 

such as IL-6, G-CSF, tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-

γ), and transforming growth factor-beta (TGF-β), that regulate immune cell function 

(16).  We hypothesized that systemic factors induced by hindlimb ischemia may alter 
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the ability of bone marrow resident monocytes to stimulate angiogenesis.  To test this 

hypothesis, we harvested BM-MNCs from mice 24 hours after induction of hindlimb 

ischemia.  Of note, cells were obtained only from the non-ischemic hindlimb of the 

ischemic donor, as cells present in the femur of the ischemic hindlimb are subject to 

local effects of hypoxia and inflammation (Figure 2A).  In this study, we refer to 

these cells as ischemia-conditioned BM-MNCs and cells from non-ischemic mice as 

basal BM-MNCs.  Basal or ischemia-conditioned BM-MNCs were adoptively 

transferred into recipient mice 24 hours after induction of hindlimb ischemia and 

revascularization assessed by laser Doppler imaging (Figure 2B).  In contrast to basal 

cells, ischemia-conditioned BM-MNCs did not improve blood flow recovery (Figure 

2B).   

 Accelerated restoration of blood flow should result in improved tissue 

preservation.  To assess the integrity of muscle tissue post-ischemia, we examined 

histological sections of ischemic adductor muscle 21 days after induction of HLI 

(Figure C-E).  Adoptive transfer of basal bone marrow cells resulted in a significant 

increase in myofibrils with centrally-located nuclei (Figure 2D), a feature associated 

with regenerating myofibrils (17).  In contrast, muscle sections obtained from mice 

receiving ischemia-conditioned BM-MNCs had reduced myofiber regeneration, as 

measured by this assay (Figure 2D).  Interestingly, however, an adoptive transfer of 

either basal or ischemia-conditioned BM-MNC significantly reduced leukocyte 

infiltration present in the ischemic lesion (Figure 2E).  Collectively, these data 

suggest that the tissue reparative capacity of ischemia-conditioned BM-MNCs is 

reduced compared with basal BM-MNCs. 
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3.4.3  Ischemia conditioned bone marrow monocytes demonstrate a reduced 

capacity to stimulate revascularization 

The inability of ischemia-conditioned bone marrow cells to improve blood 

flow recovery may be due directly to a reduction in their ability to stimulate 

angiogenesis or may be secondary to the loss of angiogenic cells from the bone 

marrow.  We have previously used sort-fractionation experiments to show that 

monocytes of the CX3CR1loGr-1+ inflammatory subset represent the angiogenic cell 

type within the BM-MNC fraction (6).  In order to assess if this pro-angiogenic 

population is, in fact, reduced, we quantified the number of inflammatory monocytes 

in the bone marrow 24 hours after induction of ischemia in the contralateral limb.  

Compared with baseline bone marrow, no differences in the percentage or absolute 

number of inflammatory monocytes in the ischemia-conditioned bone marrow were 

observed (Figure 3A & B).   We next asked whether ischemic conditioning leads to a 

defect in monocyte-promoted angiogenesis on a per cell basis.  Inflammatory 

monocytes were sorted from the bone marrow of mice at baseline or at 24 hours after 

induction of hindlimb ischemia and adoptively transferred into ischemic recipients.  

Consistent with our previous data, adoptive transfer of basal inflammatory monocytes 

was associated with significant improvement in blood flow recovery (Figure 3C).  In 

contrast, adoptive transfer of ischemia-conditioned inflammatory monocytes had no 

effect on blood flow recovery (Figure 3C).  These data suggest that ischemia-

conditioned bone marrow resident monocytes have reduced capacity to stimulate 

revascularization.   



 
 

73

 

3.4.4  Ischemia-conditioned monocytes home to sites of ischemia normally  

We next assessed whether ischemia-conditioned monocytes are competent to 

home to sites of ischemia.  Basal or ischemia-conditioned bone marrow monocytes 

were labeled with CSFE and adoptively transferred into recipient mice 24 hours after 

induction of hindlimb ischemia.  The magnitude and kinetics of the accumulation of 

ischemia-conditioned monocytes in the ischemic muscle was similar to basal 

monocytes (Figure 4), suggesting that homing of ischemia-conditioned monocytes 

was normal.  

In addition, there was no significant difference in the number of recipient (CFSE-) 

monocytes, neutrophils, T cells, or B cells that infiltrated the ischemic tissue (data not 

shown).  

 

3.4.5  Ischemia-conditioned bone marrow resident monocytes have increased 

STAT3 but not STAT5 activation. 

To begin to elucidate the molecular mechanisms responsible for the reduced 

angiogenic capacity of ischemia-conditioned monocytes, we sorted basal or ischemia-

conditioned monocytes from the bone marrow and performed RNA expression 

profiling. Data from three independent experiments were pooled; genes that were 

consistently upregulated or downregulated in ischemia-conditioned monocytes are 

summarized in Supplemental Tables 1 and 2.  Since several well known STAT3 

target genes were found to be significantly upregulated in ischemia-conditioned 

monocytes, including SOCS3, we next assessed STAT3 activation in these cells.  
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Bone marrow cells were harvested from mice at baseline or 24 hours after induction 

of hindlimb ischemia and STAT3 and STAT5 phosphorylation in monocytes assessed 

using a phospho-flow assay in which CX3CR1lo inflammatory monocytes were gated 

(Figure 5A) and mean fluorescence intensity of pSTAT3 or pSTAT5 was assessed 

(Figure 5B).  Compared with basal monocytes, a modest but significant increase in 

STAT3 phosphorylation in ischemia-conditioned monocytes was observed (Figure 

5C).  In contrast, no difference in STAT5 phosphorylation levels was observed 

(Figure 5C) suggesting specific induction of the STAT3 pathway post-ischemia.   

 

 

3.4.6  The impaired angiogenic capacity of ischemia-conditioned monocytes is 

dependent on IL-6 and G-CSF signals  

Localized ischemia can lead to the production of inflammatory cytokines that 

might contribute to STAT3 activation in bone marrow resident monocytes.  To 

address this possibility, we performed an unbiased screen for 58 biomarkers, 

including many cytokines and chemokines, in the serum of mice at baseline or 24 

hours after induction of hindlimb ischemia.  Interestingly, the only factor which was 

significantly elevated from baseline was IL-6 (data not shown).  ELISA confirmed 

increased IL-6 levels (Figure 6A).  We also assayed for G-CSF by ELISA, as G-CSF 

likewise activates STAT3 in monocytes (18), and which was not included in the 

unbiased screen.  Like IL-6, this cytokine was significantly upregulated in the serum 

of ischemic mice (Figure 6B).     
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We next asked if the signals generated by G-CSF and IL-6 are responsible for 

the impaired ability of ischemia-conditioned monocytes to improve revascularization.  

To test this possibility, we assessed the angiogenic capacity of monocytes harvested 

from the bone marrow of IL-6-/- or G-CSFR-/- mice at baseline or 24 hours after 

induction of hindlimb ischemia.  Similar to wild type mice, induction of contralateral 

ischemia did not alter the number or percentage of monocytes in the bone marrow of 

IL-6-/- or G-CSFR-/- mice (data not shown).  Remarkably, ischemic conditioning of 

IL-6-/- or G-CSFR-/- monocytes had no affect on their ability to promote 

revascularization (Figure 6C & D).  These data suggest that signaling by G-CSF and 

IL-6 in bone marrow monocytes is a key determinant of their ability to stimulate 

revascularization.  

 

3.4.7  Ischemia-conditioned monocytes demonstrate a shift towards the 

expression of M2 genes and M2-skewed SHIP-/- monocytes do not improve blood 

flow recovery 

 In response to local environmental signals, tissue macrophages may be 

polarized into two broad activation states: classical (M1) and alternative (M2).  

Classically activated macrophages are induced by proinflammatory signals such as 

IFN-γ and have enhanced cytotoxic and anti-microbial activities.  In contrast, 

alternative activated macrophages are polarized towards tissue repair and 

angiogenesis (19).  Though this classification has been designated based on tissue 

macrophages, we asked whether bone marrow resident monocytes were undergoing 

similar polarization following induction of distant ischemia.  Specifically, we 
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analyzed the RNA profiling data from basal and ischemia conditioned bone marrow 

monocytes for expression of a curated list of well-defined M1- or M2-associated 

genes (Supplemental Table 3 & 4) (20-22).  Expression of the majority of the M1-

associated genes was similar, with the exception of 3 genes that were significantly 

reduced in ischemia-conditioned monocytes (Figure 7A).  Conversely, 7 of 32 M2-

associated genes were increased in ischemia conditioned bone marrow monocytes 

(Figure 7B).  Thus, the RNA expression pattern is suggestive of at least partial 

polarization towards alternative (M2) activation. 

Alternative activation of macrophages is classically associated with tissue 

reparation and angiogenesis, not the decreased repair that was observed with 

ischemia-conditioned (M2-polarized) monocytes.  Thus, we assessed the capacity of 

monocytes from SHIP-/- mice to stimulate revascularization in the hindlimb ischemia 

model; macrophages in SHIP-/- mice are reported to be preferentially polarized 

towards M2 activation (23).  Bone marrow monocytes of the inflammatory subset 

were sort-purified from SHIP-/- mice and adoptively transferred into ischemic 

recipients (Figure 7C).  Consistent with our results with ischemia-conditioned 

monocytes, M2-skewed monocytes from SHIP-/- mice had markedly reduced capacity 

to stimulate revascularization in this model.   

 

 

3.5  DISCUSSION 

In this study, we show that bone marrow monocytes harvested from mice with 

distant ischemia have reduced capacity to stimulate angiogenesis upon adoptive 
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transfer. Interestingly, this finding is consistent with a recent study in which BM-

MNCs obtained from patients with chronic ischemic cardiomyopathy were defective 

in improving angiogenesis post-HLI in nude mice (24).  The bone marrow is 

recognized as the major site of monocyte production and provides a reservoir of 

monocytes that can be mobilized into the blood in response to stress (25).  Our data 

suggest that bone marrow resident monocytes also may sense systemic signals that 

influence their future functional capacity.  This “conditioning” of monocytes in the 

bone marrow represents another level of regulation of monocyte activation.   

We show that in the hindlimb ischemia model, G-CSF and IL-6 provide such 

“conditioning” signals to bone marrow resident monocytes.  Systemic expression of 

G-CSF and IL-6 were significantly increased after induction of hindlimb ischemia, 

reaching levels in the serum that are in seen in other inflammatory conditions (26-28).  

Consistent with G-CSF and IL-6 signaling, a modest but consistent increase in 

STAT3 phosphorylation and induction of several STAT3 target genes was observed 

in ischemia-conditioned bone marrow resident monocytes.  Finally, we show that G-

CSF and IL-6 signaling in monocytes is relevant, since ischemia-conditioned IL-6-/- 

or G-CSFR-/- bone marrow monocytes are able to stimulate revascularization. 

Interestingly, systemic levels of G-CSF and/or IL-6 are increased in many 

inflammatory conditions (29-31), suggesting that these findings may have broad 

relevance for monocyte biology.  

G-CSF has been shown to improve tissue recovery in animal models of 

hindlimb ischemia (2), myocardial infarction (32), focal cerebral ischemia injuries 

(33, 34), and renal ischemia-reperfusion (35, 36).  Moreover, clinical trials utilizing 
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G-CSF to mobilize cells for adoptive transfer have demonstrated efficacy in the 

treatment of peripheral arterial disease in humans (4).  While at first glance, these 

studies would seem at odds with the current findings that G-CSF inhibits the 

angiogenic capacity of monocytes, G-CSF also is a potent mobilizer of monocytes, 

endothelial progenitors, and other cells with potential angiogenesis-promoting 

activity.  Thus, the increased delivery of these cells to sites of ischemia/tissue injury 

may overcome the negative effect that G-CSF signaling has on the function of 

recruited monocytes.  On the other hand, trials of stem cell/leukocyte mobilization by 

G-CSF after myocardial infarction in humans have been disappointing (37).  It is 

possible that monocytes mobilized by alternative agents, such as AMD3100, may 

have better efficacy. 

  Macrophages are known to polarize along the classical M1 activation 

pathway or conversely to exhibit an M2 alternative activation phenotype, however 

emerging data suggest that macrophage activation is quite heterogeneous and that 

these classifications may, in fact, be oversimplified.  M1 macrophages are generated 

in response to infectious or inflammatory stimuli and function to clear intracellular 

pathogens and also play a role in tumor resistance.  In contrast, M2 macrophages are 

elicited in response to IL-4 and IL-13 (M2a subset) or IL-10 (M2c subset) signaling 

and exhibit diverse functions including immunity to extracellular parasites, the 

evolution of an allergic response, matrix remodeling, and tumor promotion (38).  M2 

macrophages have been associated with angiogenesis in vitro (39) and in a wide 

variety of tumor models (40).  The role that the M2 macrophage subset plays in post-

ischemic angiogenesis, however, has not previously been examined.   
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The M1 and M2 classification of macrophage activation is based on data from 

tissue macrophages.  Thus, its relevance to monocyte activation in blood or bone 

marrow is unclear.  With this caveat in mind, our RNA profiling data suggest that 

ischemia-conditioned bone marrow monocytes are polarized towards a M2 

phenotype.  Expression of hallmark M2 genes, Arg1 and Ym1, is increased, while a 

trend of decreased expression of several M1-asscoicated genes was observed in 

ischemia-conditioned bone marrow monocytes (Supplemental Tables 3 & 4).  At first 

glance, these results may be counter-intuitive, since M2 activation is associated with 

enhanced angiogenesis and tissue repair and not the impaired angiogenic capacity that 

was observed.  However, these results are consistent with our finding that monocytes 

obtained from SHIP-/- mice, known to exhibit preferential M2 polarization, also do 

not improve blood flow recovery in ischemic recipients.  Likewise, two recent studies 

have demonstrated that mice deficient in IL-10, a critical determinant of M2c 

polarization, have improved blood flow recovery post-HLI compared to wild type 

controls due, at least in part, to the increased levels of VEGF and active matrix 

metalloproteinases in these mice (41, 42).  Though it will require further study, it is 

possible that functions associated with classically activated (M1) macrophages, 

including secretion of proinflammatory cytokines and degradation of extracellular 

matrix, are advantageous early during the course of tissue reparation following acute 

ischemic injury.   

  In summary, our data demonstrate that monocytes derived from an ischemic 

donor have a markedly reduced capacity to improve revascularization compared to 

non-ischemic controls.  We demonstrate that G-CSF and IL-6 are generated upon 
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induction of ischemia and that signaling by these cytokines plays an essential role in 

altering the phenotype of bone marrow-resident monocytes, including the induction 

of STAT3 target genes and increased expression of well-defined M2-associated 

genes.  These data provide the first evidence that systemic inflammatory signals lead 

to significant functional changes in bone marrow-resident monocytes.  A specific 

delineation of the ways in which inflammation- and ischemia-driven signals impact 

the angiogenic capacity of bone marrow-resident monocytes may have important 

implications for the treatment of a variety of ischemic disorders.  

  

 

 

 

3.6  FIGURE AND FIGURE LEGENDS 
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Figure 1.  The addition of a small proportion of macrophages obtained from an 

non-ischemic donor significantly improves revascularization post-hindlimb 

ischemia.  (A) Monocytes were sort-purified from non-ischemic donors, labeled with 

CFSE and adoptively transferred into ischemic recipients at 24 hours post-HLI.  

Revascularization of recipients was assessed over 14 days using laser Doppler 

imaging.  (B) F4/80+ macrophages present in homogenized, ischemic adductor 

muscle tissue were gated and assessed for CFSE expression as shown in this 

representative histogram plot.  (C) The ratio of (CFSE+ donor)/(CFSE- endogenous) 

F4/80+ macrophages is shown at several time points post-adoptive transfer (n=3 at 4 

and 72 hours; n=10 at 48 hours).  Data represent mean ± SEM.   
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Figure 2.  An adoptive transfer of BM-MNCs obtained from an ischemic donor 

does not improve revascularization post-HLI.  (A) BM-MNCs were obtained from 

the non-ischemic limb of a 24-hour post-HLI donor using Ficoll purification and 

injected intravenously into an ischemic recipient at 24 hours post-HLI according to 

the scheme illustrated.  (B) Blood flow recovery in recipient mice was assessed by 

laser Doppler imaging over a 14-day time course; n=6.  (C) Ischemic adductor 

muscles were obtained at 21 days post-HLI and were sectioned and stained with 

H&E.  Original magnification x 40.  (D) The percentage of newly regenerated 

myofibrils containing centrally-localized nuclei, indicated in panel (C) with 

arrowheads, was scored by counting 300 cells in three distinct fields of each section; 

n=3, p<0.05.  (E) Leukocyte infiltration present in the entire section area was given a 

histological score as follows: 1=0-25% affected area; 2=25-50% affected area; 3=50-
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75% affected area; 4=75-100% affected area; n=3 p<0.05.  Data represent the mean ± 

SEM. 

 

 

Figure 3.  Ischemia-conditioned monocytes are not competent to mediate 

revascularization.  (A) Bone marrow cells were obtained from CX3CR1GFP/+ mice at 

baseline (upper panel) or at 24 hours post-ischemia (lower panel) and analyzed by 

flow cytometry.  The percentages of CX3CR1loGr-1+ inflammatory monocytes are 

noted.  (B) The absolute number of inflammatory bone marrow monocytes was 

quantified by multiplying the percentage obtained by flow cytometry by the total 

white blood count per femur (n=5).  (C) Laser Doppler analysis of mice receiving 

2x105 sort-purified inflammatory monocytes from non-ischemic donors (squares, 
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dashed line) or ischemia-conditioned donors (circles, solid line).  Data represent the 

mean ± SEM, p<0.05.   

 

 

 

 

 

 

Figure 4.  Adoptively transferred ischemia-conditioned monocytes are competent to 

home to ischemic tissue.  BM-MNCs were harvested from wild type or 24 hour-post 

HLI donors, labeled with CFSE, and intravenously adoptively transferred into 

ischemic recipients.  At the time points indicated, the absolute number of CFSE+ 

donor macrophages present in the ischemic adductor muscle was quantified using cell 

percentages obtained by flow cytometry multiplied by the total cell number obtained 

by hemacytometer counts; n=3 at 4 and 48 hours; n=10 at 24 hours.  Data represent 

the mean ± SEM.   
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Figure 5.  Increased STAT3 phosphorylation is observed in ischemia-conditioned 

bone marrow monocytes.  Bone marrow cells were harvested from non-ischemic or 

ischemic mice, immediately subjected to fixation/permeabilization, and stained with a 

phospho-specific anti-STAT3 or anti-STAT5 antibodies for flow cytometric analysis.  

Inflammatory (CX3CR1-GFPlo) monocytes were gated (A) and mean fluorescent 
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intensity of pSTAT3 staining was quantitated (B-C).  Data are n=3, representative of 

four independent experiments.  Data represent the mean ± SEM, p<0.05.   

 

 

 

 

 

 

 

 

 

Figure 6.  IL-6 and G-CSF are produced upon induction of ischemia and loss of 

either of these signals is sufficient to restore the ability of ischemic adoptively 

transferred monocytes to promote angiogenesis.  (A-B) Serum levels of IL-6 (A) and 

G-CSF (B) were assessed at the indicated time points post-HLI.  Asterisks denote a 
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significant change from baseline, n=4-9.  (C-D) Bone marrow monocytes were 

purified using cell sorting from non-ischemic (solid line) or 24-hour ischemic (dotted 

line) wild type, IL-6-/- (C), or G-CSFR-/- (D) donors and 2x105 cells were adoptively 

transferred into ischemic recipients at 24 hours post-HLI.  Revascularization of 

recipients was then assessed for 14 days using laser Doppler imaging.  Data represent 

the mean ± SEM, p<0.05.         

 

 

 

 

 

Figure 7.  Differential M1/M2 gene expression post-ischemic conditioning, and 

reduced revascularization capacity of SHIP-/- M2-skewed monocytes.  
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 (A-B)  CX3CR1loGr-1+ inflammatory bone marrow monocytes were sort-purified 

from mice at baseline or at 24 hours post-HLI and RNA expression profiling 

performed on three independent replicates.   Shown are normalized signals for all 

M1-associated genes (A) or M2-associated genes that displayed consistent changes 

(increased or decreased) from control cells.   (C)  CD115+Gr-1+ monocytes were 

sorted from SHIP+/+ (squares, solid line), SHIP+/- (triangles, dashed line) and SHIP-/- 

(circles, solid line) mice and adoptively transferred into ischemic recipients at 24 

hours post-HLI.  Blood flow recovery was assessed by laser Doppler imaging over a 

14-day time course.  Data represent the mean ± SEM, p<0.05.     
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Supplemental Table 1.  Genes upregulated in ischemia-conditioned bone marrow monocytes   
        Fold- t-test/ 

Gene Symbol Baseline 
Ischemia-

conditioned Change Anova 
serum amyloid A 3 Saa3* 124 + 50 7425 + 1183 59.9 0.00 
interleukin 1 receptor, type II Il1r2 17 + 1 368 + 82 20.6 0.01 
leucine-rich alpha-2-glycoprotein 1 Lrg1 618 + 257 7712 + 1477 12.5 0.01 
suppressor of cytokine signaling 3 Socs3* 137 + 79 1191 + 315 8.7 0.03 
sterol O-acyltransferase 2 Soat2 36 + 6 296 + 54 8.2 0.01 
glycosylphosphatidylinositol specific phospholipase D1  Gpld1 22 + 10 164 + 11 7.2 0.00 
interferon induced transmembrane protein 1 Ifitm1 366 + 54 2334 + 576 6.4 0.03 
chondroitin sulfate proteoglycan 2  Cspg2 48 + 8 290 + 13 6.4 0.01 
potassium channel, subfamily K, member 13 Kcnk13 37 + 4 217 + 38 6.0 0.01 
serine protease inhibitor, Kunitz type 1  Spint1 47 + 2 269 + 72 5.7 0.03 
insulin-like growth factor binding protein 6  Igfbp6 44 + 5 240 + 23 5.5 0.00 
DNA (cytosine-5-)-methyltransferase 3-like Dnmt3l 36 + 12 174 + 19 4.8 0.00 
ribosomal protein S19  Rps19 11 + 3 52 + 8 4.7 0.01 
guanine nucleotide binding protein, beta 5  Gnb5 27 + 7 125 + 8 4.6 0.01 
spermidine synthase  Srm 303 + 173 1054 + 80 3.5 0.03 
a disintegrin and metalloprotease domain 8  Adam8 17 + 7 62 + 7 3.5 0.00 
complement component 1, r subcomponent-like C1rl 193 + 35 610 + 28 3.2 0.02 
heat shock protein 1  Hspd1 159 + 84 488 + 38 3.1 0.02 
cytidine 5-triphosphate synthase Ctps 59 + 28 154 + 15 2.6 0.04 
ribonucleotide reductase M2  Rrm2 107 + 49 266 + 18 2.5 0.04 
The average (+ SEM) raw signal of triplicate experiments is shown.         
Genes denoted with * indicate STAT3 target genes.          
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Supplemental Table 2.  Genes downregulated in ischemia-conditioned bone marrow monocytes   
        Fold- t-test/ 

Gene Symbol Baseline 
Ischemia-

conditioned Change Anova 
ureidopropionase, beta  Upb1 349 + 24 51 + 15 0.152 0.00 
solute carrier family 14 (urea transprorter), member 1 Slc14a1 90 + 24 12 + 2 0.159 0.03 
myxovirus (influenza virus) resistance 2 Mx2 209 + 28 46 + 11 0.217 0.01 
reticulon 1  Rtn1 78 + 14 19 + 12 0.221 0.03 
toll-like receptor 11 Tlr11 68 + 11 15 + 2 0.229 0.01 
2-5 oligoadenylate synthetase-like 2 Oasl2 142 + 33 30 + 3 0.231 0.03 
2-5 oligoadenylate synthetase-like 1 Oasl1 195 + 9 47 + 10 0.241 0.00 
interferon regulatory factor 4 Irf4 303 + 32 73 + 8 0.244 0.00 
similar to Ifi204 protein LOC240921 268 + 58 59 + 10 0.244 0.02 
interferon-induced protein with tetratricopeptide repeats 2 Ifit2 538 + 67 141 + 23 0.260 0.00 
interferon regulatory factor 7 Irf7 670 + 42 175 + 7 0.265 0.00 
PHD finger protein 11  Phf11 454 + 105 116 + 42 0.277 0.04 
angiotensin receptor-like 1 Agtrl1 76 + 9 20 + 2 0.278 0.00 
peptidyl arginine deiminase, type II Padi2 2136 + 227 605 + 22 0.288 0.00 
Otoferlin Otof 212 + 26 59 + 1 0.288 0.00 
interferon activated gene 203 Ifi203 287 + 42 83 + 13 0.290 0.01 
ubiquitin specific protease 18  Usp18 816 + 147 230 + 8 0.295 0.02 
D site albumin promoter binding protein Dbp 179 + 28 52 + 4 0.304 0.01 
angiotensin converting enzyme Ace 218 + 21 70 + 47 0.306 0.04 
keratin complex 2, basic, gene 7  Krt2-7 139 + 16 46 + 10 0.321 0.01 
The average (+ SEM) raw signal of triplicate experiments is shown.         
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Supplemental Table 3.  M1-associated genes             

              

M1 Genes which change* upon induction of ischemia:           

              

Gene Symbol   
Baseline 

A 
Ischemia 

A   
Baseline 

B 
Ischemia 

B   
Baseline 

C 
Ischemia 

C   Fold ∆ p-value 

chemokine (C-X-C motif) ligand 9; MIG Cxcl9   133 62   197 47   107 47   0.38 0.03 

chemokine (C-C motif) ligand 3; Mip1alpha Ccl3   1111 395   984 711   106 65   0.56 0.40 

chemokine (C-C motif) ligand 4; Mip1beta Ccl4   522 368   450 332   281 88   0.59 0.24 

tumor necrosis factor Tnf   117 77   167 86   74 55   0.64 0.17 

toll-like receptor 5 Tlr5   120 81   98 71   98 69   0.70 0.02 

toll-like receptor 7 Tlr7   621 344   502 280   535 303   0.56 0.00 

              

M1 Genes unchanged** upon induction of ischemia:           

Gene Symbol   
Baseline 

A 
Ischemia 

A   
Baseline 

B 
Ischemia 

B   
Baseline 

C 
Ischemia 

C   Fold ∆ p-value 

chemokine (C-C motif) ligand 5  Ccl5   88 100   56 20   43 38   0.79 0.75 

CD80 antigen Cd80   315 323   302 281   298 310   1.00 1.00 

CD86 antigen Cd86   751 866   796 721   802 883   1.05 0.50 

Fc receptor, IgG, low affinity III  Fcgr3   5474 4899   3387 4016   3109 3634   1.08 0.83 

Fc receptor, IgG, low affinity Iib Fcgr2b   3180 2525   1903 1816   2557 2241   0.87 0.45 

Fc receptor, IgG, high affinity I Fcgr1   1837 901   795 801   636 617   0.82 0.46 

interleukin 12a Il12a   43 67   36 33   87 48   1.02 0.77 

interleukin 1 beta Il1b   204 177   67 86   103 302   1.69 0.44 

lymphocyte antigen 64  Ly64   69 82   44 37   60 48   0.94 0.90 

toll-like receptor 1 Tlr1   61 57   55 56   74 57   0.90 0.28 

toll-like receptor 2 Tlr2   4135 3730   2323 2365   2373 3339   1.11 0.80 

toll-like receptor 4 Tlr4   313 374   204 365   275 300   1.36 0.10 

toll-like receptor 6  Tlr6   518 507   412 485   401 434   1.08 0.50 

                  

M1 genes not expressed***:              

Gene Symbol   
Baseline 

A 
Ischemia 

A   
Baseline 

B 
Ischemia 

B   
Baseline 

C 
Ischemia 

C   Fold ∆ p-value 

chemokine (C-C motif) receptor 7  Ccr7   9 17   12 14   33 21   N/A N/A 

nitric oxide synthase 2, inducible, macrophage  Nos2   -4 8   8 1   8 4   N/A N/A 

chemokine (C-C motif) ligand 8 Ccl8   10 -2   -5 -2   16 0   N/A N/A 

interferon alpha family, gene 1 Ifna1   12 5   7 21   15 15   N/A N/A 

interferon alpha family, gene B Ifnab   -7 -7   -2 -6   4 -7   N/A N/A 

interleukin 1 receptor, type I  Il1r1   2 23   22 13   18 25   N/A N/A 

chemokine (C-X-C motif) ligand 10 Cxcl10   27 10   35 -3   27 -5   N/A N/A 

chemokine (C-X-C motif) ligand 11 Cxcl11   5 7   2 4   9 2   N/A N/A 

chemokine (C-C motif) ligand 2  Ccl2   43 43   14 11   21 12   N/A N/A 

interleukin 6  Il6   1 1   -2 -3   5 -4   N/A N/A 

*All genes which were expressed at levels greater than 40 relative expression units and which showed consistent      

induction or reduction across all three data sets are reported as "changed."          

**Genes which did not show consistent induction or reduction across all three data sets are reported as "unchanged."    

***Genes with a relative expression value <40 are reported as "not expressed."          
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Supplemental Table 4.  M2-associated 
genes              

              
M2 Genes which change* upon induction of 
ischemia:             

Gene Symbol   
Baseline 

A 
Ischemia 

A   
Baseline 

B 
Ischemia 

B   
Baseline 

C 
Ischemia 

C   Fold ∆ 
p-

value 

arginase 1, liver (Arg1) Arg1   -5 490   1 49   1 23   562.00 0.28 

chitinase 3-like 3 (Chi3l3) Chi3l3   407 803   194 422   164 391   2.00 0.14 

interleukin 1 receptor, type II (Il1r2) Il1r2   17 419   20 211   17 475   21.00 0.01 

C-type lectin, superfamily member 9 Clecsf9   425 993   159 542   110 849   34.00 0.03 

leucine-rich alpha-2-glycoprotein 1 Lrg1   1080 9427   566 8880   211 4830   13.00 0.01 

vascular endothelial growth factor A  Vegfa   48 169   46 77   44 61   2.00 0.17 

chitinase 3-like 4  Chi3l4   10308 13183   5603 9085   2169 10190   1.80 0.02 

                 
M2 Genes unchanged** upon induction of 
ischemia:             

Gene Symbol   
Baseline 

A 
Ischemia 

A   
Baseline 

B 
Ischemia 

B   
Baseline 

C 
Ischemia 

C   Fold ∆ 
p-

value 
Fc receptor, IgE, high affinity I, gamma 
polypeptide  Fcer1g   26927 19555   21773 21268   19015 21467   0.94 0.50 
macrophage galactose N-acetyl-
galactosamine specific lectin 2  Mgl2   1450 942   960 707   351 828   1.25 0.79 

mannose receptor, C type 1  Mrc1   168 213   203 72   415 231   0.73 0.39 
platelet-activating factor acetylhydrolase, 
isoform 1b Pafah1b1   2328 1877   1570 1782   1606 1701   1.00 0.86 

prosaposin  Psap   27140 22879   27001 28059   23643 25701   0.99 0.85 

transforming growth factor, beta 1  Tgfb1   1207 910   1138 789   134 885   2.69 0.92 
triggering receptor expressed on myeloid 
cells 2  Trem2   1146 946   700 766   1063 596   0.83 0.30 

arginase type II Vti1b   1509 1564   3011 4073   3548 3429   1.12 0.75 

              

M2 genes not expressed***:              

Gene Symbol   
Baseline 

A 
Ischemia 

A   
Baseline 

B 
Ischemia 

B   
Baseline 

C 
Ischemia 

C   Fold ∆ 
p-

value 
Fc receptor, IgE, low affinity II, alpha 
polypeptide Fcer2a   8 -3   -6 -2   8 -5   N/A N/A 

chemokine (C-C motif) ligand 22  Ccl22   -3 10   8 14   12 8   N/A N/A 

chemokine (C-C motif) ligand 17 Ccl17   10 5   3 6   19 -1   N/A N/A 

macrophage scavenger receptor 1 Msr1   -4 -1   -1 -2   7 3   N/A N/A 

macrophage scavenger receptor 2 Msr2   11 -2   17 5   27 -2   N/A N/A 

chemokine (C-C motif) ligand 2 Ccl2   43 43   14 11   21 12   N/A N/A 

chemokine (C-C) receptor 2 Ccr2   -6 -1   5 1   9 -2   N/A N/A 

interleukin 13 Il13   18 23   28 26   30 25   N/A N/A 

interleukin 1 receptor antagonist IL1RA   62 53   24 18   13 16   N/A N/A 

interleukin 10 (Il10) Il10   -8 -3   -3 -4   6 -1   N/A N/A 
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chemokine (C-C motif) ligand 17 Ccl17   10 5   3 6   19 -1   N/A N/A 

chemokine (C-C motif) ligand 22  Ccl22   -3 10   8 14   12 8   N/A N/A 

chemokine (C-C motif) ligand 24  Ccl24   12 16   5 10   16 3   N/A N/A 

resistin like alpha/Fizz1 Retnla   -6 -4   -1 -3   12 0   N/A N/A 

cadherin 1 Cdh1   6 6   1 6   12 10   N/A N/A 

folate receptor 2 (fetal) Folr2   -2 -4   -4 -6   9 9   N/A N/A 

CD163 antigen Cd163   -7 -2   2 -4   9 -2   N/A N/A 

*All genes which were expressed at levels greater than 40 relative expression units and which showed consistent      
induction or reduction across all three data sets are reported as 
"changed."           

**Genes which did not show consistent induction or reduction across all three data sets are reported as "unchanged."     

***Genes with a relative expression value <40 are reported as "not expressed."          
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4.1  SUMMARY 

 The studies outlined in this work lend insight into the mechanisms governing 

the regulation of angiogenesis by monocytes and also may have important 

implications for the design of cellular therapies for angiogenic disorders.  In this work 

we demonstrated that monocytes of the inflammatory subset are rapidly recruited to 

the ischemic tissue post-hindlimb ischemia.  A further proof of the importance of 

these cells in regulating post-ischemic angiogenesis was the accelerated 

revascularization observed when these cells were adoptively transferred into an 

ischemic recipient.  We also identified several factors that were produced upon 

adoptive transfer—VEGF, MCP-1, and MMP—each of which is a known player in 

the angiogenic repair.  Additionally, we identified apolipoprotein A1, a factor with a 

previously unknown role in angiogenesis, to be upregulated post-adoptive transfer.  

Interestingly, this protein must play a critical role in the mechanism by which 

adoptively transferred cells accelerate revascularization as ApoA1-/- monocytes did 

not mediate this effect.   

Having established that an adoptive transfer of monocytes does potently affect 

revascularization, we next sought to identify the ways in which the ischemic 

recipients’ own endogenous monocytes differed functionally from the non-ischemic 

donor cells used for the adoptive transfer.  We demonstrated that an adoptive transfer 

of monocytes obtained from an ischemic donor do not accelerate revascularization in 

the hindlimb ischemia model.  Our studies revealed that post-hindlimb ischemia there 



 
 

100

is a marked increase in systemic levels of IL-6 and G-CSF and this is associated with 

increased STAT3 phosphorylation in bone marrow-resident monocytes.  In addition 

to the increased STAT3 activation observed, bone marrow resident monocytes also 

exhibited increased expression of M2 genes and a reduction in expression of M1 

genes.  In keeping with this finding, an adoptive transfer of SHIP-/- monocytes which 

are preferentially skewed to the M2 phenotype, does not accelerate revascularization 

in the hindlimb ischemia model.  This finding runs counter to tumor angiogenesis 

studies in which M2 macrophages are major contributors to angiogenesis and 

underscores the need to explore macrophage-regulated angiogenesis in a variety of 

ischemic settings.  Taken together our data identify a potent pro-angiogenic subset of 

monocytes (CX3CR1loGr-1+ inflammatory subset) and also reveal a profound defect 

in the ability of ischemia-conditioned monocytes to accelerate recovery from 

ischemia.  These findings can be exploited clinically by modifying current cell-based 

therapies for ischemic disorders such that they contain only this pro-angiogenic 

monocyte population (and not simply the unfractionated mononuclear cell 

compartment) and also potentially to obtain these cells from a matched, non-

autologous donor in order to avoid the negative impact of the ischemic-conditioning 

observed in our studies.  

 

4.2  APPLICATION TO OTHER ISCHEMIC MODELS 

A limitation of the studies described in this work is that only one model of 

ischemia and angiogenesis has been explored.  The mouse model for hindlimb 

ischemia we utilized generates an acute ischemia that is largely resolved after 
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approximately three weeks.  Therefore it is would be useful to compare the findings 

we obtained using this model and compare with other models of acute ischemia such 

as myocardial infarction or acute ischemic kidney injury to see if our findings 

regarding the efficacy of a monocyte adoptive transfer hold true in these settings as 

well.  While differences between these models will certainly exist, shared findings 

with regard to monocyte subsets involved and factors produced will corroborate and 

strengthen our conclusions from the hindlimb ischemia model.   

In the majority of patients with critical limb ischemia, atherosclerosis—which 

is a chronic, persistent inflammatory state—is the underlying cause.  In this way, our 

model for hindlimb ischemia does not accurately replicate this disease state.  It would 

be useful to compare our findings from the acute ischemia model utilized in our 

studies to a model for chronic ischemia.  For example, a model has been recently 

described in which the femoral artery excision surgery is performed in an ApoE-/- 

mouse; the combination of the femoral artery excision with the persistent 

inflammatory state in this mouse model better replicates chronic ischemia than 

femoral artery excision alone (Kang, 2008).  Results obtained from this model would 

provide insight into the ways in which the monocytic response differs between an 

acute versus a chronic ischemic insult. 

In addition to exploring the ways in which treatment with monocytes may be 

used as a pro-angiogenic therapy for ischemic disorders, it would also be useful to 

explore ways in which our findings may regulate pathologic neovascularization such 

as that observed during macular degeneration.  It would be useful to extend our 

findings to oxygen-induced retinopathy (OIR) and laser-induced choroidal 
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neovascularization (CNV) studies which model this disorder.   Such studies could 

focus on which macrophage subsets accumulate during the course of 

neovascularization.  It may also be useful to attempt to prevent neovascularization by 

neutralizing the pro-angiogenic factors we described in Chapter 2—for example 

treating these animals with the apolipoprotein A1 mimetic pepide in an effort to 

reduce angiogenesis.   

 

4.3  ROLE OF TYPE I INTERFERON 

In addition to revealing that several STAT3 targets were upregulated in 

ischemia-conditioned monocytes, microarray data revealed that several type I 

interferon-regulated genes were significantly downregulated (Table 3.2).  The role of 

type I interferons in the response to ischemia has not been extensively examined, 

however one study reported that IFNα/β, and not IFN-γ, is specifically induced in a 

mouse model of acute liver ischemia (Zhai, 2008).  The role that IFNα/β may play in 

regulating the development of bone marrow-resident monocytes is unclear.  One 

recent set of in vitro studies has indicated that bone marrow monocytes cultured 

under M2-polarizing conditions produce more endogenous IFN-β and express a far 

greater number of type I interferon target genes than do monocytes cultured under 

M1-polarizing conditions (Fleetwood, 2009).  If this finding hold true in vivo it may 

represent an important regulatory mechanism for the downstream polarization of bone 

marrow resident monoctyes.  Further studies are required in order to determine if 

tonic IFNα/β signaling does, in fact, occur in the bone marrow and what specific 

implications this regulation has on the downstream phenotype of these cells.   
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4.4  CLINICAL TRIAL USING MOBILIZING AGENTS TO RECRUIT 

MONOCYTES 

Our laboratory is currently enrolling patients with critical limb ischemia for a 

clinical trial in which they are treated for 10 days with G-CSF, a potent mobilizing 

agent, or placebo.  A total of 60 patients will be enrolled with 30 patients each in the 

treatment and placebo arms.  Eligibility criteria for patient enrollment includes a 

diagnosis of critical limb ischemia, defined as the presence of a non-healing ulcer or 

rest pain, secondary to peripheral arterial disease (PAD).  Patients in this study must 

not be candidates for a surgical revascularization procedure.  Additionally patients 

must have an absolute neutrophil count in the normal range and may not demonstrate 

an active infection or malignancy.  CD14/CD16 monocyte subsets as well as 

endothelial progenitor cells (EPCs) and lymphocytes will be measured by flow 

cytometry in peripheral blood obtained from patients prior to treatment as well as at 

and day 10 post-treatment.  The efficacy of this treatment will be assessed clinically 

by measuring ulcer size, ankle-brachial index, toe pressures, as well as a pain 

assessment.  The primary endpoint for these studies will be the rate of amputation at 

one year post-treatment.  The results of this study will demonstrate the specificity and 

magnitude of recruitment of the CD14-CD16+ and CD14+CD16- human monocyte 

subsets in response to treatment with G-CSF.  This study will also determine if 

mobilization of bone marrow-derived hematopoietic cells represents an efficacious 

treatment for critical limb ischemia.  If the results of this trial are disappointing, a 

modified protocol in which an alternative mobilizing agent, such as AMD-3100 may 
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yield better results based on the finding presented in this work that G-CSF, while it 

actively recruits monocytes to a site of ischemia, may also reduce their pro-

angiogenic potential.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

105

 

4.5  REFERENCES 

 

1. Fleetwood, A.J., H. Dinh, A.D. Cook, P.J. Hertzog, and J.A. Hamilton. 2009. 
GM-CSF- and M-CSF-dependent macrophage phenotypes display differential 
dependence on Type I interferon signaling. J Leukoc Biol. 
 

2. Kang, J., H. Albadawi, V.I. Patel, T.A. Abbruzzese, J.H. Yoo, W.G. Austen, 
Jr., and M.T. Watkins. 2008. Apolipoprotein E-/- mice have delayed skeletal 
muscle healing after hind limb ischemia-reperfusion. J Vasc Surg 48:701-708. 
 

3. Zhai, Y., B. Qiao, F. Gao, X. Shen, A. Vardanian, R.W. Busuttil, and J.W. 
Kupiec-Weglinski. 2008. Type I, but not type II, interferon is critical in liver 
injury induced after ischemia and reperfusion. Hepatology 47:199-206. 

 

 

 

 


	Systemic Levels of G-CSF and IL-6 Determine the Angiogenic Potential of Bone Marrow Resident Monocytes
	Recommended Citation

	Microsoft Word - $ASQ25177_supp_37171138-88CD-11DE-B3D1-5292F0E6BF1D.doc

