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Chapter 1

Introduction

Energy is a scarce resource in many wireless sensor networks (WSNs). As wire-

less communication typically consumes a significant amount of energy, a tremendous

amount of research has been dedicated to the development of radio power manage-

ment protocols. While the goal of each protocol is ultimately the same (reduce the

power consumed by the radio as much as possible), different protocols are better

suited to some applications than others, depending on their workload characteristics

and performance requirements.

Habitat monitoring applications [23][24], for example, have steady, periodic traffic

and can benefit from power management protocols that duty cycle their radios in

order to reduce energy consumption. Latencies in message delivery are tolerable, and

sometimes even encouraged if it means that better power savings can be achieved.

Applications such as intruder detection and tracking [12], on the other hand, rely on

fast message delivery due to the urgency of the information they are providing. These

applications are dominated by long periods of inactivity followed by large bursts of

traffic once something has been detected. They would rather sacrifice some energy

savings for an increased level of performance once they start generating messages.

As evidenced above, we cannot always use the same radio power management pro-

tocol for every type of application. A protocol optimized for low data rate, periodic

habitat applications may perform poorly in an intruder detection application [29].

On the other hand, a protocol designed for the bursty workloads of an intruder de-

tection application would be unnecessarily complex for a simple habitat monitoring

application that always operates at a constant low rate. There must therefore be a
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way to allow an application to incorporate the use of whichever power management

protocol is most appropriate for it.

Sometimes it may also be desirable to allow multiple applications to run concurrently

on a single node. Imagine a set of habitat monitoring applications that each take read-

ings from different sensors at different sampling rates. If each of these applications

were to be installed on a single node, we would need a way of resolving the different

requirements they impose on an underlying radio power management protocol. Some-

times it may be sufficient to configure a single protocol accordingly (either at compile

time for static requirements or at runtime for dynamically changing requirements).

Other times it may be more convenient to choose multiple protocols from among a

set of predefined ones and find a way to compose them together in some coherent

way. Unfortunately, despite significant progress in the development of each of these

protocols, existing WSN systems still lack the software-based architectural support

for flexible radio power management.

To address the issues outlined above, we propose an architecture that not only allows

different radio power management protocols to be flexibly integrated into a fully

functional wireless sensor network system, but also allows the requirements imposed

by multiple applications to be coordinated in such a way that a single coherent radio

power management solution is produced. While some power management protocols

may exist at different layers in the networking protocol stack, we focus our current

work on duty cycling protocols existing only at the data link layer. A high-level

overview of an overall Unified radio Power Management Architecture (UPMA) is

presented in [15].

Specifically, this thesis makes the following primary contributions: (1) We design and

implement a set of interfaces that allow different power management protocols to

share common MAC functionality at the data link layer. Traditionally, MAC pro-

tocols and power management protocols have been developed together to produce a

single monolithic implementation. Development of a new power management proto-

col often meant redesigning an entire radio stack from the ground up. The separation

we propose gives different applications the ability to incorporate the use of whichever

power management protocol is best suited to its needs, independent of the underlying
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MAC protocol it relies on. Certain power management optimizations (such as over-

hearing avoidance) may still need to be implemented within the MAC layer itself, but

features such as this are beneficial to all power management protocols existing at the

link layer, and their existence does not diminish the need for providing the separation

that we support. (2) We propose an architectural framework that gives multiple ap-

plications the ability to specify differing requirements to a component implementing

a single underlying radio power management protocol. Coordination of these require-

ments is achieved through a customizable component whose implementation depends

on both the power management protocol in use and the types of applications running

on top of it. (3) We demonstrate the practicality of this architecture by implementing

it on top of both the Mica2 and Telosb radio stacks in TinyOS-2.0. We show that sep-

arating power management protocols from the MAC level functionality on which they

rely increases flexibility while introducing only a negligible performance penalty. (4)

Finally, we provide two case studies demonstrating how differing requirements from

multiple applications can be resolved within our architecture. In each case study we

show how to coordinate these requirements in a different way.

The rest of this thesis is organized as follows. Chapter 2 provides an overview of

the types of power management protocols this architecture is designed to support.

Chapter 3 presents the design of the architecture as well as example implementa-

tions demonstrating its various features. Chapter 4 presents experimental results of

the overhead incurred by implementing power management protocols using this ar-

chitecture, as well results obtained during our two case studies. Finally, Chapter 5

concludes the thesis.
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Chapter 2

Power Management Protocols

In this chpater, we review existing approaches to radio power management in WSNs.

This review provides the basis for our design of a common set of interfaces and a

unified architecture that can support diverse power management protocols.

Existing approaches to radio power management fall into two categories: transmission

power control and duty cycling. Transmission power control [22] reduces the energy

consumed during communication by adjusting the power at which a radio transmits.

Duty cycling reduces energy wasted during idle listening by allowing the radio to

cycle between periods of activity and sleep. The architecture presented in this thesis

only focuses on supporting duty cycling protocols, which have proven to be a very

efficient means of extending the system lifetime of WSNs. This can be accomplished

by following one of three different approaches: time-division multiple access (TDMA),

scheduled contention, or channel polling [29].

In TDMA based protocols, time is divided up into discrete time slots and allocated

to all nodes within transmission range of one another. Nodes transmit during the

time slots that have been allocated to them, and listen during the time slots that

have been allocated to those nodes from which they wish to receive. When not

transmitting or receiving, a node is free to sleep. Several different TDMA based

protocols have been proposed for use in WSNs. These protocols include TRAMA [19],

and DRAND [21]. One limitation of these types of protocols is that their schedules

can be very sensitive to changes in network traffic or network topology, and all nodes

sharing a schedule must remain synchronized with one another. Whenever one of
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these properties changes, a new TDMA schedule must somehow be generated and

distributed to some subset of nodes in the network.

Protocols based on scheduled contention allow nodes to schedule times in which they

will all be awake in order to communicate. Nodes within transmission range of one

another synchronize their schedules to ensure that they are all awake at the same

time. While awake, nodes contend for use of the radio channel through a process

known as carrier-sense multiple access with collision avoidance (CSMA/CA). Nodes

that gain access to the channel during this contention period are allowed to send,

while all other nodes listen. Several energy-efficient media access control protocols

(MACs) based on sleep scheduling include S-MAC [28], T-MAC [25], and Z-MAC [20].

Despite the energy savings achieved using protocols of this type, energy is still wasted

in maintaining synchronization and waking up when there is no data to transmit or

receive.

Protocols based on channel polling (such as the Low Power Listening features of

B-MAC [17], WiseMac [7] and X-MAC [3]) do not require synchronized contention

periods for reception and transmission. All nodes independently wake up to poll the

radio channel for activity. If there is, they prepare themselves for message reception.

If there is not, they return immediately to sleep. Transmitting nodes send a stream

of preamble bytes (or wake up tones) equal to the polling period of their destination

nodes, in order to ensure that they wake up in time to receive any actual data. In

lightly loaded networks, these types of protocols can achieve better power savings

than scheduling based protocols since the overhead associated with long contention

periods and synchronization is avoided. In heavily loaded networks, however, the

overhead of transmitting a long stream of preamble bytes starts to outweigh these

benefits.

Hybrid protocols (SCP [29], Funneling-MAC [1], and IEEE 802.15.4 [14]) combine

some of the features present in TDMA, scheduled contention, and channel polling

based protocols in order to find a reasonable tradeoff between message latency and

power consumption. SCP, for example, combines the advantages provided by channel

polling with those of scheduled contention in order to avoid the problems normally

associated with requiring time synchronization while at the same time avoiding long

preamble costs. Funneling-MAC, on the other hand, allows some nodes near a sink to
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run TDMA schedules while all others follow either a scheduled contention or polling

based duty cycle. The overhead of maintaining the TDMA schedule is mitigated by

the fact that only a small number of nodes actually need to follow it.

To improve the performance of duty cycling protocols, backbone based power manage-

ment protocols have also been proposed to support performance sensitive applications.

Protocols such as ASCENT [4], SPAN [5], GAF [26], and PEAS [27] set up a back-

bone of nodes that must be continually active in order to quickly forward messages

between a source and its sink. Nodes not in the backbone are allowed to follow one of

the four different types of duty cycling protocols presented in this chapter. Member-

ship in the backbone is periodically changed in order to balance the power consumed

by all nodes in the network.
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Chapter 3

Architectural Framework

In this chapter, we describe the architectural support necessary for providing flexible

radio power management at the data link layer. This architecture defines a set of in-

terfaces that allow different duty cycling protocols to be independently implemented

on top of a common underlying radio stack. The introduction of these interfaces

enables support for flexibly integrating different duty cycling protocols into a sys-

tem based on its specific application requirements. This architecture also includes

support for defining components that are capable of coordinating the duty cycling

requirements from multiple applications. By combining these requirements inside a

separate architectural component, different duty cycling protocols can be made to

work with a diverse set of applications and platforms.

Although the architectural design presented in this chapter is not inherently tied

to the TinyOS [13] operating system, we use TinyOS terminology and naming con-

ventions in order to describe it. TinyOS’s component-based design offers a good,

well-known vocabulary for discussing interactions among the components in our ar-

chitecture. We express the interfaces described in this chapter using nesC syntax [10],

for analogous reasons.

3.1 Supporting Flexibility

We begin by defining a clear separation between what functionality is shared among

all duty cycling protocols and what is not. We define this separation to occur above

the features present in radio specific MAC implementations, but below the features
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distinguishing one duty cycling protocol from another. Figure 3.1 shows how exisiting

monolithic implementations are constructed, while 3.2 shows how we propose to per-

form our separation by introducing a set of uniform interfaces between duty cycling

protocols and the MAC layer.

MAC

Send/Receive
Buffers

Radio Power
Management

Clear Channel
Assessment

Backoff Controller

Radio State
Machine

Send/Receive Interfaces Power Management Interfaces Backoff Control Interfaces

Radio Component

Figure 3.1: Existing monolithic implementations of the MAC layer

Three interfaces are made available by the MAC layer for use by different duty cy-

cling protocols. Ideally, all radio stack implementations should provide each of these

interfaces. If a particular MAC layer is unable to provide one of them, it may be

limited in the types of duty cycling protocols that can be built on top of it. Each

interface is described in greater detail below.

The RadioPowerControl Interface:

The first of these interfaces is RadioPowerControl. This interface allows a radio to

be switched between its active and sleep power states. It must be implemented by all

types of MAC protocols, since without it, duty cycling of the radio is not possible.
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MAC

Send/Receive
Buffers

Clear Channel
Assessment

Backoff Controller

Radio
State

Machine

Send/Receive Interfaces Backoff Control Interfaces

Duty Cycling Protocol

Radio Component

ChannelMonitorRadioPowerControlPreambleLength

Duty Cycling Interfaces

Figure 3.2: Proposed separation of duty cycling protocols from common MAC level
functionality

interface RadioPowerControl {

async command void on();

async event void onDone(error_t error);

async command void off();

async event void offDone(error_t error);

}

The ChannelMonitor Interface:

The second interface is the ChannelMonitor interface. This interface is used to expose

clear channel assessment (CCA) capabilites of a radio. This capability is required by

all duty cycling protocols based on channel polling in order to determine if a radio

channel has any activity on it or not. If this interface is not exposed, the use of

certain duty cycling protocols (such as Low Power Listening) will not be possible.

interface ChannelMonitor {

command void check();

async event void free();

async event void busy();

event void error();

}
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The PreambleLength Interface:

The third and final interface is the PreambleLength interface. This interface allows

a duty cycling protocol to dynamically change the length of the preamble associated

with a particular outgoing packet. It is intended for duty cycling protocols that require

a constant wakeup tone of a certain length to be sent (transparent to the operation of

the duty ccling protocol itself). For certain types of radios (in particular, packet radios

like the cc2420 [6]), the implementation of this interface may need to be emulated

by sending multiple packets with very short gaps instead of a constant stream of

preamble bytes. For duty cycling protocols that actually rely on the transmission of

short packets, this interface is not necessarily required.

interface PreambleLength {

async command void set(uint16_t numBytes);

async command uint16_t get();

}

In addition to the interfaces presented above, the MAC layer may also need to support

time stamping for incoming and outgoing packets in order to facilitate the develop-

ment of time synchronization protocols required by both scheduled contention and

TDMA based protocols. Time stamp data can be appended as metadata to any pack-

ets passed up the radio stack through the Receive interface of the MAC layer. Duty

cycling protocols that exploit the use of this information simply need to extract it

from the packets as they are passed up the stack.

3.2 Supporting Multiple Applications

UPMA provides a framework for coordinating different power management require-

ments from multiple applications. For purposes of this discussion, an application refers

to any component in the system that wishes to specify a set of power management

requirements to a duty cycling protocol existing at the link layer. Our architectural
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framework provides a mediator that resolves any conflicts among these applications’

stated power requirements.1 Figure 3.3 illustrates the framework for coordination.

DutyCycle Interface

Application 2

MAC

PHY

DutyCycle Table

OnMode

OffMode

PreambleLengthChannelMonitor RadioPowerControl

Application 0 Application 1

Duty Cycling Protocol

Power Coordinator

Figure 3.3: Architecture for enabling the coordination of differing application
requirements.

Applications insert parameters into a Power Management Table using a set of pre-

defined interfaces. The interfaces depend on the power management protocol in use.

Protocols based on scheduled contention provide interfaces that allow applications to

specify their on/off intervals, while protocols based on channel polling provide inter-

faces that allow them to specify a polling period and a preamble length. Protocols

based on a hybrid of these two approaches require both sets of interfaces. Rows in

the Power Management Table represent a single parameter type into which an ap-

plication may supply a value. Columns are used to separate the values supplied by

1If only a single application happens to be running on the system, this mediator need not be
included in its compilation.
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different components. For example, all parameters supplied by ‘Application 1’ in the

figure will be stored in column 1, and all parameters supplied by ‘Application 2’ will

be stored in column 2.

A Power Coordinator is used to coordinate the use of all parameters supplied to

the Power Management Table by each application. It decides how to combine these

parameters in order to provide a coherent radio power management solution that

satisfies the needs of all applications as best it can. The Power Coordinator can be

customized based on the requirements of the applications and the underlying duty

cycling protocol on which they rely. We envision that a library of efficient standard

coordination techniques (similar to design patterns) will be created that will be able

to meet the needs of different types of applications.

3.3 Implementation

To enable the flexible integration of different radio power management protocols, the

cc1000 and cc2420 radio stacks in TinyOS-2.x have been altered to expose the in-

terfaces described in section 3.1. Implementations of several different duty cycling

protocols have been created on top of these radio stacks for use on both the Mica2

and TelosB hardware platforms. We have chosen to use TinyOS-2.0 as our imple-

mentation platform since it is still maturing and does not yet have many radio power

management protocols developed for it. Our hope is that as developers start porting

implementations of their protocols from TinyOS-1.x to TinyOS-2.x, they will do so

within the architecture presented here. Doing so will ease the development of these

protocols and create a rich set components for use within the architecture.

In this section we describe sample implementations of both the polling based Low

Power Listening (LPL) protocol and a simple scheduling based protocol called Simple

Synchronous Sleeping (SSS). A third protocol that we call Basic Synchronous Sleeping

(BSS) is also introduced. It is functionally similar to SSS, but differs in the type of

interface it provides to its users. By providing implementations of both polling based

and scheduling based duty cycling protocols, we are able to demonstrate the flexibility

introduced by this new architecture.
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We also present how two different coordination polices can be implemented using

the mechanisms described in section 3.1. One policy coordinates the use of different

duty cycling requirements from multiple applications, while the other coordinates a

backbone maintenance protocol with these same duty cycling requirements.

We note that the implementations provided in this section are just examples that

demonstrate the flexibility and efficacy of the architecture presented in this thesis.

More sophisticated duty cycling protocols and coordination policies can (and should)

be implemented within the framework provided here. The focus of this work has not

been to develop new protocols or coordination policies, but rather the architectural

framework within which they can be developed.

3.3.1 Duty Cycling Protocols

LPL allows a radio to sleep for long periods of time, periodically polling the radio

channel to check if there are any incoming packets. If no packet is present, it goes

back to sleep for an amount of time equal to the node’s polling interval. Packets

are sent with preamble lengths equal to the size of the polling interval so that the

destination node is guaranteed to be awake when the packet is sent. LPL allows a

user to specify two different parameters: the time interval between subsequent checks

for activity on the radio channel, and the preamble length for outgoing packets. We

have implemented Low Power Listening on top of the interfaces presented in section

3.1.2

We have also designed and implemented a scheduling based duty cycling protocol

known as SSS (Simple Synchronous Sleeping) on top of our interfaces. SSS relies

on global time synchronization of all nodes in a network to precisely control their

duty cycles. This protocol is intended as an example of how a scheduling based

protocol could be implemented, rather than a replacement for more robust protocols.

This protocol allows the duty cycle of the radio to be tuned through the following

interface:

2Due to the limited preamble lengths allowed by the cc2420 hardware, our specific implementation
of LPL can only be used by the cc1000 radio stack. Ye, et al., [29] propose a way of implementing a
variation of LPL for use on the cc2420 radio stack. This variant is compatible with our architecture
and we plan on implementing it as future work.
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interface RadioDutyCycling {

command error_t setDutyCycle(uint8_t on, uint8_t off);

command error_t setOnTime(uint8_t onTime);

command error_t setOffTime(uint8_t offTime);

event void beginOnTime();

event void beginOffTime();

}

A higher layer uses this interface to set the duty cycle of the radio and be notified

whenever it has been switched on or off. Since the start of every radio’s duty cycle

must be synchronized, all nodes having the same duty cycle will be able to communi-

cate with each other during the on time of the radio (using CSMA/CA) and conserve

energy during the off time.

The third protocol we have implemented is BSS (Basic Synchronous Sleeping). Both

SSS and BSS require time synchronization for all nodes in a network, and they both

turn the radio on and off for certain time durations as specified by the user. The

primary difference between the two is that SSS allows an application to specify a

periodic radio duty cycle, while BSS requires that an application explicitly request

the radio to be turned on or off just before making each transition. This allows the

on and off periods to be changed on every transition rather than requiring them to be

periodic. SSS could, in fact, be simulated using BSS by always specifying the same on

and off times every time the appropriate transition was supposed to occur. Because of

this flexibility in changing on and off times at every transition, BSS has the capability

of supporting more sophisticated scheduling algorithms as well as integrating different

schedules supplied by multiple applications.

An application can inform BSS when (as well as for how long) to power the radio on

and off using the following interface:

interface DutyCycleTimes {

command turnOnFor(uint32_t onTime);

command turnOffFor(uint32_t offTime);

event void ready();

}
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Calling the turnOnFor() and turnOffFor() commands does not necessarily indicate

that the radio will be turned on or off immediately. These commands are a way of

specifying the on and off times that will be used the next time BSS signals the ready

event. To duty cycle a radio, an application can alternate calls to turnOnFor() and

turnOffFor() within the body of the ready() event. If no calls to turnOnFor()

or turnOffFor() are made between subsequent ready() events, the power state of

the radio remains unchanged and the next ready() event is signaled after the same

amount of time it took to receive the previous ready() event.

Our current implementations of SSS and BSS use a simple time synchronization

scheme that operates in a single-hop network. Under this scheme, all nodes other

than the base station turn on their radio interfaces once they are booted, and leave

it on until they have a received a synchronization packet. Once the base station is

started, it sends the synchronization packet, and all nodes in the network start a

timer simultaneously. There are no synchronization updates and clock drift is not

taken into consideration. If one of the nodes happens to not hear the synchronization

message, then it will not become synchronized and the entire network will need to be

rebooted. It is left as future work to implement more sophisticated sychronization

protocols using the time stamping features provided by the MAC layer [8, 9, 16].

In addition to the simple duty cycling protocols presented here, more complicated

duty cycling protocols such as SCP-MAC and 802.15.4 can also be implemented within

this architecture. We consider these two protocols as examples because 802.15.4 is

the most widely accepted industry standard, and both 802.15.4 and SCP-MAC are

both representative hybrid protocols that combine the features present in TDMA,

scheduled contention, and polling based protocols. Both protocols would use the

underlying CSMA/CA capabilities of the radio to contend for use of the radio chan-

nel, as well as the RadioPowerControl interface to turn the radio on and off. The

time stamping feature provided by the MAC layer would also be used in order to

provide a time synchronization service for use by the protocols. 802.15.4 would use

the RadioPowerControl interface to turn on the radio for both its contention access

period (CAP) and its contention free period (CFP). During the CAP it would use

CSMA/CA to send and receive messages over the radio and during the CFP it would

use a TDMA schedule to decide in which guaranteed times slots a node should be

sending. After both the CAP and CFP, the radio would be turned off again via the
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RadioPowerControl interface. SCP would only use the RadioPowerControl inter-

face to turn the radio on for the reception of packets, and off again once all packets

were received. It would additionally require the ChannelMonitor interface to per-

form its channel polling capabilities and the PreambleLength interface to adjust the

number of preamble bytes associated with any outgoing packets.

3.3.2 Coordination Policies

We have implemented two coordination policies that are able to combine different

duty cycling requirements specified through the RadioDutyCyling interface. The

parameters passed to this interface are stored in a Power Management Table, and

a Power Coordinator is used to combine these requirements to produce a single co-

herent duty cycling schedule. This schedule is used to inform BSS of the on and

off times it should use when duty cycling the radio. Note that different systems may

desire different coordination policies. We provide the two coordination policies just as

examples to demonstrate the capability of our architectural framework to coordinate

multiple power management requirements.

In our first coordination policy, the Power Coordinator is implemented to aggregate

the duty cycles specified by multiple applications according to an OR policy as shown

in Figure 3.4.

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

Time (ms)

Duty Cycle 0

Duty Cycle 1

Aggregate Duty Cycle

Figure 3.4: Aggregation of multiple duty cycles

This coordination policy is implemented as follows. (1) All duty cycles from all

applications are synchronized to begin at the same time instant. (2) They all run

periodically according to their own schedule. (3) If any of the duty cycles requires the
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radio to be on at any particular point in time, the radio will be turned on. (4) Only

if all duty cycles indicate that the radio should be turned off will the radio ever be

turned off. The coordinator creates a schedule whose length equals the least common

multiple of the duty cycles of all applications.

In Figure 3.4 we see that ‘Duty Cycle 0’ has an on time duration of 200ms and an off

time duration of 800ms, while ‘Duty Cycle 1’ has both an on and off time duration

of 200ms. the period of ‘Duty Cycle 0’ is therefore 1000ms, while the period of ‘Duty

Cycle 1’ is just 400ms. In order to find the period of the ‘Aggregate Duty Cycle’

schedule, the least common multiple of all duty cycles must be determined. In this

case it is 2000ms. Since multiple on and off periods will exist within one period, BSS

is more appropriate than SSS for executing the aggregated schedule.

The second coordination policy we have implemented allows a backbone based duty

cycling protocol to be introduced as one of the applications specifying parameters

to the RadioDutyCyling interface. The backbone based protocol we use is known

as PEAS [27]. When nodes first wake up in a PEAS enabled network, they send

out a probing message to determine if any of their neighboring nodes are awake and

operating. If they do not hear any responses, they decide to become active and turn

their radios on accordingly. Once a node has become active, it will remain active

until its power supply has been depleted. Active nodes take on the the responsibility

of responding to probing messages sent by inactive nodes. If inactive nodes hear one

of these responses, they return immediately to sleep and wait some predetermined

amount of time before sending out the next probe. The amount of time they have to

wait changes dynamically based on the number of active nodes within their probing

range as well as the frequency with which other inactive nodes send out their probing

messages. We have implemented a lightweight version of PEAS that uses the same

probe/reply mechanism as described above, but uses a fixed delay time between each

probing message.

Our coordination policy allows PEAS to determine which nodes should be active,

but instead of keeping these nodes always turned on, it allows them to run according

to some duty cycle. The duty cycles on active nodes are aggregated according to

the same OR policy on top of BSS as described before. Only active nodes run these

aggregated duty cycles, sending and receiving both their own messages and PEAS
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probe/reply messages in the background. Inactive nodes do not run any applications

and simply run a periodic sleep schedule specified by PEAS, continuously probing if

they should become active or not.

We note that PEAS saves energy by controlling the spatial density of active nodes,

while duty cycling saves energy by controlling the temporal frequency of radio activity.

By combining the energy benefits provided by PEAS with those of duty cycling, this

coordination policy is able to save more energy in a network than using of either one

of these protocols individually. A key advantage of implementing all of these protocols

within the architecture described in this thesis is that neither the implementations of

PEAS, BSS, nor any of the applications needs to be altered in order to achieve these

energy savings. All coordination is handled by the implementation of the coordination

policy itself.
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Chapter 4

Evaluation

This chapter presents the empirical evaluation of our architecture. The first set of

experiments evaluates the efficiency of the uniform interfaces between duty cycling

protocols and the MAC in terms of both performance and code size. The second set

of experiments evaluates the effectiveness of our framework in coordinating the duty

cycle requirements of multiple applications. The final set of experiments evaluates

the coordination of a backbone protocol and duty cycle requirements of multiple

applications.

4.1 Efficiency

The first set of experiments involve comparing the monolithic implementation of Low

Power Listening (LPL) on the cc1000 radio stack with the one designed for use within

our architecture. Our experimental settings are the same as the ones presented for

the full B-MAC implementation in [17]. We also compare the difference in the code

size between the two implementations. By showing that our implementation of Low

Power Listening is comparable to the original one in terms of both performance and

code size, we are able to demonstrate that our architecture provides just as efficient

a framework for implementing it as the original one. Since our implementation is

not implemented within the MAC component of the default radio stack, however, it

provides much more flexibility.

We first measure throughput vs. number of nodes in a single hop network. There is

one receiver, with a variable number of senders from 1 to 4. All senders are equidistant
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from the receiver at 2 feet. Each sender transmits as often as possible with messages

containing 38 bytes of data and 8 preamble bytes. We measure the total throughput

(bits per second) at the receiver over 2 minutes. The results are given in Figure 4.1.
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Figure 4.1: Throughput vs. Number of nodes at 100% duty cycle for two different
LPL implementations

With only one node in the network, performance between the two implementations

is almost identical. While the original LPL implementation achieves slightly higher

throughput for two and three nodes, the results for the two implementations are

comparable again for four and five.

Next, we measure the delivery latency vs. number of hops in a fixed route multi-hop

network. Nodes are placed in a chain, with the first node being both the source and

the sink node. Messages are sent from one node to the next until the last node in

the chain is reached. Messages are then sent in reverse back to the original sender.

The number of nodes varies from 2 to 5, resulting in 2, 4, 6, and 8 hops respectively.

The sender sends 20 messages, each containing 38 bytes of payload and a variable

number of preamble bytes depending on the length of the LPL check interval that has

been selected. LPL check intervals of “always on”, 800ms, and 1600ms were chosen,

and the average latency from source to sink of each data packet was measured. The
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Original LPL New LPL
RAM/ROM RAM/ROM

SenderApp 383/11956 394/12350
ReceiverApp 705/15098 716/15560

Table 4.1: LPL Memory Footprint (Bytes)

results are given in Figure 4.2. In this experiment, we see that the results for both

LPL implementations are identical for all measured check intervals.
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Figure 4.2: Latency vs. Number of Hops at different check intervals for two different
LPL implementations

Table 4.1 shows the difference in code size for each implementation when they are

compiled into the applications used in the experiments above. As expected, both

the RAM and ROM sizes for the new implementation are slightly larger than for

the original one. The main contributor to this increase in size is the extra timer

required by the new LPL implementation. In the original implementation of LPL,

the timer used to switch between the different states of the radio was shared by the

LPL implementation. Other contributors include additional flags and logic needed to

coordinate the use of the interfaces now provided by the radio stack.
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The second set of experiments shows the performance characteristics of our SSS im-

plementation. The results of these experiments show that it is easy to reuse the

implementation of this sleep scheduling policy on top of two very different radio stack

implementations. Results are given for both Mica2 and TelosB.

The setups for each experiment are the same as those used for LPL. For measuring

throughput vs. number of nodes, we ran SSS at duty cycles of 100%, 47%, and 20%,

and measured the total throughput for each duty cycle over 2 minutes. For measuring

latency vs. number of hops, we ran SSS at a 50% duty cycle, and measured the average

latency from source to sink for a single packet.
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Figure 4.3: Throughput vs. Number of nodes at different duty cycles for the SSS
implementation on mica2

Figures 4.3 and 4.4 show that SSS is able to deliver more data as its duty cycle is

increased. As expected, TelosB achieves higher throughput for all duty cycles in both

experiments because data is sent at a much higher rate by the cc2420 radio than by

the cc1000 radio.
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Figure 4.4: Throughput vs. Number of nodes at different duty cycles for the SSS
implementation on telosb

Figure 4.5 shows the latency associated with running SSS. Once again, the higher

data rate of the cc2420 radio accounts for the difference in performance between the

TelosB and the Mica2 platforms in this experiment.

Overall, the results of these experiments show the following: (1) Implementing LPL

using our framework only incurs a negligible performance penalty. (2) Exposing the

proposed MAC layer interfaces may produce a slight increase in code size, but it

allows much more flexibility when choosing the sleep scheduling policy that is most

appropriate. (3) Both channel polling and scheduled contention based protocols can

easily be implemented on top of these interfaces and used by different mote platforms.

These implementations produce results typical of these types of protocols.

4.2 Coordinating Multiple Duty Cycles

In this section, we evaluate the architecture in terms of the different coordination

policies used to combine duty cycles specified by multiple applications. The first
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experiment demonstrates the ability to combine the duty cycling requirements of

multiple applications in a way that is transparent to each of them. The second one

presents the results obtained from coordinating the duty cycling requirement from

multiple applications for use with PEAS and BSS. The network used in this set of

experiments is a one-hop cluster consisting of a master TelosB node and a number

of slave TelosB nodes. Each slave node runs a sensing application that periodically

sends packets to the master node.

Although each node only runs a single application, up to 6 different applications

can be running in the network at any given time. The on time of the duty cycle

for each application is 200ms, with off times of 200ms, 600ms, 1.4s, 3s, 6s, and

12.6s, respectively. Each application sends a packet of 66 bytes (including header and

payload) at a random time within the 200ms active period of each duty cycle. The

master node is able to receive packets from each application by running an aggregate

duty cycle according to the OR policy described in section 3.2.
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The first run of experiments consists of the master node and two slave nodes running

the application with the lowest duty cycle. Two more slave nodes running the appli-

cation with the next highest duty cycle are then added in each following run. Each

run lasts for 320 s. Figure 4.6 shows the delivery ratio measured at the master node

for each run. We can see that the delivery ratio remains close to 100% as the number

of applications increases. Once all six applications (total 12 nodes) have been added

to the network, however, we do begin to see a slight increase in the number of packets

that are lost.
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Figure 4.6: The delivery ratio measured at the master node.

Figure 4.7 shows the duty cycle measured at the master node. A 100% duty cycle

corresponds to the radio always being on, and a 0% duty cycles corresponds to the

radio always being off. The duty cycle was calculated by instrumenting the cc2420

radio stack with a 32 KHz timer in order to measure the amount of time spent

in each radio state. We can see that the duty cycle measured at the master node

matches the predicted curve, verifying the correctness of the combination logic of the

aggregator. As a baseline we also show the predicted duty cycle of the master node if

no aggregation policy were used. This duty cycle is simply calculated as the sum of
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the duty cycles of all applications in the network. As shown in Figure 4.7, performing

the combination will always yield a lower overall duty cycle than not performing it.

The results in this section demonstrate that this coordination policy is capable of

correctly combining the duty cycles specified by multiple applications, and that com-

bining these duty cycles according to some aggregation policy can potentially lead to

lower energy consumption.
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Figure 4.7: The duty cycle of the master node.

4.3 Coordinating Duty Cycles with PEAS

In this section, we evaluate the architecture in terms of the coordination policy al-

lowing PEAS to be combined with applications specifying different duty cycles. The

network consists of a master Telosb node and 15 slave Telosb nodes placed within a

5×3 grid. Each slave node runs both PEAS as well as one of six different applications.

Each application runs with a duty cycle period of 3.2s. The on times of each duty

cycle range from 200ms to 1.2s in steps of 200ms. Nodes designated as ‘inactive’ by
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PEAS run with a duty cycle period of 16s and an on time of 200ms. Inactive nodes

send probe messages at some random time within their on periods, and active nodes

send messages from their applications at some time during their on periods. Although

all nodes are within communication range of one another, the probing range of PEAS

is limited to 1.5 times the grid width.

In this set of experiments we measure the total energy consumed by the radio for

all nodes in the network. The amount of energy used by each radio is measured as

the sum of the energy consumed in each of four different radio states: idle, receiving,

transmitting, and sleeping. We first measure the total time that the radio spends in

each radio state by instrumenting the Telosb cc2420 radio stack with a 32 KHz timer.

We then calculate the energy consumed in each state by multiplying the total time

the radio spends in that state by the power consumed in that state. These power

consumption values are all taken directly from the cc2420 data sheet [6]1.
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Figure 4.8: The total energy consumption of the network.

1There are two different sleeping modes available on the cc2420. In the sleeping mode bench-
marked here, the transmitter is turned off while the crystal oscillator and voltage regulator remain
on. In the data sheet this state is referred to as IDLE.
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As a baseline, we first measure the power consumption of the network when only

PEAS is enabled and all active nodes have their radios powered all the time. We

then disable PEAS and allow all nodes to run their duty cycling applications, without

PEAS specifying certain nodes as inactive. Finally, we measure the power consump-

tion when these two policies are combined: PEAS is enabled and only active nodes

are able to run their application. Figure 4.8 shows the total energy consumption of

the network in each situation. The baseline is represented by a straight line.

We can see from Figure 4.8 that the policy combining PEAS with each application

duty cycle yields the lowest energy consumption. These energy savings are achieved

by (1) allowing PEAS to choose the subset of nodes that will actually run each

application, and (2) allowing those nodes chosen by PEAS to run at their application-

specified duty cycle. Overall, the energy consumption under the combined policy is

57−86% lower than running PEAS alone and 42−63% lower than duty cycling alone.

The results in this chapter demonstrate the power of combining complementary power

management protocols using the architectural framework provided in this thesis. By

using the Power Coordinator to combine the use of the these protocols, more energy

can be saved than by using either one of them individually.
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Chapter 5

Conclusion

In this thesis, we have presented link layer support towards realizing a unified radio

power management architecture for use in wireless sensor networks. The architec-

tural support we have presented is comprised of two key components: (1) a set of

standard interfaces allowing different duty cycling protocols to be implemented on

top of a common radio stack, and (2) an abstraction layer that can incorporate the

use of different coordination polices for coordinating the duty cycling requirements of

multiple applications running on the system.

We have demonstrated the flexibility of this architecture through the development of

several different duty cycling protocols, and have conducted experiments in order to

evaluate their performance. We have also shown how the architecture can be used

to coordinate the duty cycling requirements of multiple applications. By replacing

only the coordination policy, we demonstrate that it is possible to coordinate these

requirements with those of a backbone based power management protocol as well.

In the future, we plan to build on the ideas presented in this thesis to support power

management protocols existing at layers other than the link layer. Specifically, we

plan to add support for transmission power control protocols existing at the network

layer. Another important direction for future work is to integrate this architecture

with an overall sensor network architecture [2][11]. A first step in this direction is

to develop interfaces that allow it to coordinate with a link layer abstraction such

as SP [18]. Integration with SP will enable the support of more efficient power

management techniques through fine-grained interactions with network and MAC-

layer protocols. Additionally, we plan to integrate this architecture with the power
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management techniques used by other hardware components (e.g., microcontrollers,

sensors, and flash) on a WSN platform. Such a holistic power management approach

will result in maximum energy savings in real world systems.
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