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Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative

disorder currently with no cure. Understanding the patho-

genesis in the early stages of late-onset AD can help gain im-

portant mechanistic insights into this disease as well as aid

in effective drug development. The analysis of incipient AD

is steeped in difficulties due to its slight pathological and ge-

netic differences from normal ageing. The difficulty also lies

in the choice of analysis techniques as statistical power to

analyse incipient AD with a small sample size, as is common

in pilot studies, can be low if the proper analytical tool is

not employed. In this study, we propose the use of a new

method of significant genes selection, multiple linear regres-

sion, which uses the cognitive index (MiniMental Status Exam-

ination (MMSE)) and pathological characteristic (neurofibril-

lary tangles (NFT)), along with gene expression profiles, to se-

lect genes. The data consists of 7 incipient AD affected subjects

and 9 age-matched normal controls. The analysis resulted in

686 significant genes with a false discovery rate of 0.2. Among

the various biological processes previously known to be associ-

ated with AD, we discovered a set of 14 DNA repair genes that

had statistically elevated or lowered levels of mRNA expres-

sion. Many key players involved in the defense against DNA

damage were present in this list of 14 genes. In this article

we report the status of DNA repair activity in incipient AD.

From this study we conclude that the much observed apopto-

sis in AD may also be due to the activity of DNA repair genes.

These findings have not been previously reported with respect

to incipient AD and may shed new light onto its pathogenesis.

This is the first study that has incorporated multiple clinical

phenotypes of AD affected individuals in order to select statis-

tically significant genes. It is also the first in analysing DNA

repair genes in the context of AD via microarray gene expres-

sion analysis.

Keywords: gene expression, incipient alzheimer’s disease, late-

onset alzheimer’s disease, DNA repair genes, multiple linear re-

gression, gene selection

Alzheimer’s disease (AD) is a complex progressive neu-

rodegenerative disorder of the brain and is the common-

est form of dementia, with 50-70% of all clinically pre-

sented cases being histopathologically confirmed at post

mortem [1]. Advancing age is the major contributing factor

for increased susceptibility to AD and the old are the fastest-

growing segment of the United States population and have
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the highest prevalence of dementia [2]. AD has a complex

aetiology with strong genetic and environmental determi-

nants. Pathologically AD is characterised by the presence of

neurofibrillary tangles (NFT) in the neurons of the cerebral

cortex and hippocampus as well as the deposition of beta

amyloid (Aβ) plaques in the entorhinal cortex, hippocam-

pus, amygdala and association areas of frontal, temporal,

parietal and occipital cortex. Several processes have been

associated with AD, such as inflammation, loss of neurons,

synaptic pathology, calcium dysregulation , cholesterol syn-

thesis, re-entry into the cell cycle, oxidative stress, to men-

tion a few. However, the molecular processes that initiate

these processes are still unclear.

As there is no cure for late-onset alzheimer’s disease

(LOAD), treatment focuses on relieving and slowing down

the progression of the symptoms. Hence, early diagnosis

of AD can help in effective treatment strategies. Under-

standing the pathology present in incipient AD cases will

help understand the progression and aetiology of the dis-

ease. Microarray data have many layers of information.

The information revealed depends on the kind of analysis

tools employed. Although the data used in this study has

been previously analysed by Blalock et al. [3], the authors’

main objective is to re-mine the data with a different set of

techniques in order to gain new mechanistic insights into

incipient AD.

The diagnosis of AD is made clinically by the finding of

progressive memory loss with increasing inability to partici-

pate in daily activities. The MiniMental Status Examination

(MMSE) or Folstein test is a quantitative measure of cog-

nitive performance [4]. MMSE varies within the popula-

tion by age and educational level. The normal MMSE score

for individuals 80 years of age and older is 25 and higher.

A pathological hallmark of AD is NFTs which are protein

aggregates found within neurons. Tangles are formed by

hyperphosphorylation of a microtubule-associated protein,

tau, causing it to aggregate in an insoluble form. This phe-

nomenon is normal in ageing, however, it is much more

pronounced in AD brains, resulting in the loss of synapses

and eventual neuronal death. The amount of NFTs is de-

termined from postmortem brain specimens. Patients af-

fected by AD have higher NFT scores. Based on the MMSE

and NFT scores, there are four diagnoses (personal com-

munication with Eric Blalock)- (a) High MMSE and low

NFT → normal ageing; (b) low MMSE and high NFT →
alzheimer’s disease; (c) low MMSE and low NFT → an-

other dementing pathology and (d) high MMSE and high

NFT → ‘cognitive reserve hypothesis’ which suggests that

individuals with a high intellect can withstand a large patho-

logical insult and maintain their cognitive prowess [5]. In

this paper, we use the MMSE and NFT scores of normal

controls and the AD affected subjects along with gene ex-

pression profiles to address the differences between normal

and AD affected individuals at the gene expression level.

Figure 1 shows the MMSE and NFT scores of sixteen

subjects, 9 controls and 7 diagnosed with incipient AD,

from a dataset originally analysed by Blalock et al. [3]. As

can be seen from the figure, the separation between the con-

trols and incipient cases is not distinct as there is some over-

lap between the 2 groups. Furthermore, it is evident that one

variable without the other does not explain the AD diagno-

sis. Although all the controls have high MMSE and very

low NFT scores, the incipient cases are spread across the

entire MMSE range. If NFT is a good indicator of AD,

then the samples labelled 1,2 and 3 should be classified

as AD affected. If MMSE is a sufficient indicator of AD,

then samples 4 and 5 should be labelled as normal subjects.

However, that is not how the samples have been labelled,

indicating that MMSE and NFT scores taken together influ-

ence the clinical diagnosis. The choice of clinical measures

used to define microarray-based transcriptional profiles has

a great impact on downstream analysis. Different clinical

metrics will lead to different set of results.

In the method described here, we calculate the strength

of the association between each gene’s expression profile,

and the MMSE and NFT phenotypes of each patient us-
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ing multivariate linear regression. The assessment of the

relationship between the gene expression, and clinical and

histopathological phenotypes would be more relevant to

better understand the underlying biological structure rather

than correlating the expression to a single abstract pheno-

type, such as class labels. Instead of pooling into a class,

the incorporation of individual samples’ characteristics into

the analysis will lead to a better study design, such as taking

both MMSE and NFT for gene selection in this study. Us-

ing the p-values obtained from the linear regression model,

multiple hypothesis testing is carried out to calculate the

corresponding q-value for each gene. This is the most cru-

cial step in the entire analysis as it plays a significant role

in the false discovery rate (FDR) calculation as well as in-

terpretation of downstream results. Based on the q-values,

transcripts that are significant at a particular FDR are taken

for further analysis.

We obtained a set of 686 significant genes at a FDR of

0.20, which included 14 genes, some of which are involved

in initiating DNA repair or in the recruitment of other prod-

ucts involved in repair, and others that are involved in cell

cycle check-point as a response to DNA damage. As the

state of DNA repair activity in human AD has not been

studied via microarray analysis, it prompted us to further

analyse this set of 14 genes. This is the first report in

which multiple macro-level phenotypes of AD were taken

into account to select differentially expressed significant

genes. Furthermore, to the best of our knowledge, this is

also the first study that has focused on the expression lev-

els of DNA repair genes in incipient AD. Previous expres-

sion studies on AD have focused on other characteristics of

AD [3, 6, 7, 8, 9, 10, 11].

Materials and Methods

Data. The dataset consists of hippocampal specimens of 16

individuals [3]. There are 7 affected patients with incipient

AD and 9 age-matched normal controls. Each subject had a

MiniMental Status Examination (MMSE) score which var-

ied from 20 (affected) to 30 (normal). The MMSE is a con-

tinuous measure that has been used as a reliable index of

AD-related cognitive status. The patients were classified as

‘incipient’ based on their MMSE scores [3]. More details

on this data can be found in [3].

Significant transcripts selection. The data was normalised

using GCRMA as it has the best balance between precision

and accuracy [12]. Probesets were mapped to genes using

DAVID [13]. Probesets that didn’t map to any gene name

as well as those matching to hypothetical proteins with no

known functions were removed. When multiple probesets

mapped to the same gene, only the probeset with the highest

mean was selected. This preprocessing resulted in 11543

unique genes.

In order to measure the strength of association between

two independent (explanatory) variables taken simultane-

ously and one dependent variable, we use multivariate lin-

ear regression as described in [14]. In this analysis, MMSE

and NFT are the two independent variables and the gene’s

mRNA expression level is the dependent variable. An in-

depth explanation of multiple linear regression can be found

in [15, 16, 17].

Let mRNA expression level be denoted by yij for i =

1, 2, ..., n genes and j = 1, 2, ..., m subjects or individuals.

Let the total number of covariates be k, with k = 2 in this

study, and x = < x1, x2 > where x1 is the MMSE value

and x2 is the NFT value. Then the linear regression model

is given by

yij = b0 + b1x1j + b2x2j + εij (1)

where b0 is the regression constant, b1 and b2 are regres-

sion coefficients, and εij is the random error that is assumed

to be i.i.d normal distribution with zero mean and constant

variance.

Equation 1 is estimated by least squares, which yields

parameter estimates such that the sum of squares of errors

is minimised. The resulting equation is
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ŷij = b̂0 + b̂1x1j + b̂2x2j (2)

where ∧ denotes estimated values. There is no error term as

the true model is unknown. Therefore, after the model has

been estimated, the regression residuals r are defined as

rij = yij − ŷij (3)

where rij = ε̂ij , y is the observed value and ŷ is the pre-

dicted value.

As the residuals are correlated and have variances, they

are normalised to have zero mean and constant variance (ho-

moscedastic). The normalised residual, normr, has a Stu-

dent’s t distribution with (total number of samples - total

number of random variables - 1) degrees of freedom. The

total number of random variables in this study is 3, i.e., gene

expression, MMSE and NFT.

The sum-of-squares-error (SSE) (also known as the resid-

ual sum of errors) is the sum of squares of the residuals.

SSE is defined by SSE =
∑m

j=1(normrj)2. The smaller

SSE, the better the approximating function fits the data. The

regression-sum-of-squares (RSS) is the amount of variabil-

ity in the response that is accounted for by the regression

model. RSS is given by RSS =
∑m

j=1(ŷj − y)2 where

y = 1
m

∑m
j=1 yj is the average gene expression across all

individuals. The total amount of variability in the response

is referred to as the total-sum-of-squares (TSS) and is de-

fined as TSS =
∑m

j=1(yj − y)2. It is the amount of vari-

ation in the data that cannot be accounted for by the re-

gression model. In other words, the RSS is the difference

between the TSS and SSE.

The R2 statistic or the coefficient of determination is

given by R2 = 1 − SSE
TSS and it ranges from 0 to +1. It

is the proportion of variability in a data set that is accounted

for by a statistical model and is a measure of the global fit

of the model. As the number of covariates in the model

increases, R2 increases, however it does not decrease due

to the addition of noisy covariates. In order to account for

noisy covariates being included in the model, the adjusted

R2 is calculated, which is the same as R2 except that it pe-

nalises R2 by the number of variables used in the model.

The adjusted R2 is given by

R2 = 1− (1−R2)
m− 1

m− k − 1
(4)

The estimator of error variance (EV) is defined as EV =

( normr√
m−k

)2, where m is the total number of subjects and k is

the total number of covariates and (m− k) ≥ 0. (m− k) is

the residual degrees of freedom. Therefore, the F statistic

for regression is defined for k > 1 and given by F =
( RSS

k−1 )

EV .

The F ratio estimates the statistical significance of the re-

gression equation. It incorporates sample size and number

of predictors in the assessment of significance of the rela-

tionship. This is the advantage of using the F ratio over R2

as a model can have a high R2 and still not be statistically

significant if the sample size is not large compared to the

number of predictors in the model. The significance proba-

bility p for regression is p = 1− (F cumulative distribution

function with (k - 1) and (m - k) degrees of freedom at the

values in F ).

As microarrays result in the measurement of several thou-

sand probes, the individual p-values are not a reliable mea-

sure of significance. The individual p-values are corrected

for multiple testing by calculating each gene’s q-value us-

ing the Benjamini and Hochberg method of FDR calcula-

tion [18].

A variation of this gene selection strategy was published

during the preparation of this manuscript [20]. On further

analysis, the authors of [20] only use R2 as the criteria

for gene selection. No F ratio or q-value calculation was

performed.

Results and Discussion

Unlike the analysis performed in [3] which used Pearson

correlation coefficient, we carried out the comparison be-

tween 9 normal controls and 7 incipient AD using multiple
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regression analysis (see Methods). Statistical power in the

analysis of datasets, depends on factors such as sample size

and the tool employed for the analysis. Different analytical

tools make different assumptions about sample distribution,

population distribution, etc. Other differences include null

hypothesis, sensitivity and specificity of the tool. We com-

pared our multiple regression approach to select differen-

tially expressed (DE) transcripts with SAM [19]. SAM is

an open-source software which uses a modified t-statistics

approach to identify DE genes. We ran SAM on the data

with class labels - control and affected. The lowest FDR

achieved by SAM was 0.50. On the other hand, multiple lin-

ear regression on the same dataset resulted in 52 DE genes

at a FDR of 0, 303 genes at a FDR of 0.05 and 426 genes

at a FDR of 0.10. This indicates that the multiple regres-

sion approach is probably a better method to analyse this

data if one requires a large set of significant genes with a

low FDR. This approach took into account two variables,

i.e. cognitive index and pathological, - MMSE and NFT,

respectively - associated with each subject, along with the

observed gene expression to select DE genes. A variation

of this idea was recently published during the writing of this

manuscript [20].

From Figure 1 it seems that the difference in the gene

expression levels between controls and incipient AD cases

would be subtle as there is some overlap. After cor-

recting for multiple testing, 686 genes were considered

significant with a FDR of 0.20 as opposed to 89 genes

identified to be correlated with both MMSE and NFT in

Blalock et al.’s study [3]. The entire list of 686 genes

is provided in supplemental information. Statistically sig-

nificant biological processes were identified using EASE

(http://niaid.abcc.ncifcrf.gov/home.jsp). A few of the sta-

tistically significant biological processes present in our sig-

nificant genes (SG) list is shown in Table 1. Quite a few

of the SG have been identified in previous microarray stud-

ies and reported to be associated with AD, such as calcium

channel dysregulation, amyloid processing genes, apopto-

sis genes etc. As shown by Blalock et al., there are indeed

many transcriptional and tumour suppressor responses [3].

As we used a different gene selection method, we were

hunting for genes that have previously not been associated

with AD via microarray studies. We discovered that DNA

replication and repair biological process was also present in

the SG list. When the list of 686 SG was compared to the

genes described in a study on human DNA repair [21] and

to DAVID [13], 14 DNA repair genes were present in our

list (see Table 2). Since the study of DNA repair in AD

is still in its nascent stage and has not been investigated in

depth, we decided to further analyse this set of genes in-

volved in the defense against DNA damage.

Genomes are subject to damage by chemical and physical

agents in the environment and by free radicals or alkylating

agents endogenously generated in metabolism. Mature neu-

rons in the mammalian brain cannot divide and are highly

metabolically active. Due to the high oxygen consump-

tion rate by the brain, reactive oxygen species (ROS) can

contribute to neuronal damage. Oxidative stress in neurons

in human neurodegenerative diseases such as AD has been

documented in previous reports [22, 23]. ROS attack of

DNA can lead to DNA-DNA and DNA-protein cross link-

ing, re-entry into cell-cycle by mature neurons, DNA strand

breaks, production of oxidized base adducts, modification

of DNA bases leading to problems in DNA replication and

altered protein synthesis, and sister chromatid exchange and

translocation in nuclear DNA [23]. The maintenance of

genome integrity is essential and particularly important to

neurons as they are among the longest living cells in the

body. In response to DNA damage, cells activate multiple

signalling pathways, leading to the accumulation of proteins

in complex multisubunit nuclear foci, that represent sites of

DNA replication arrest or sites of DNA repair [24]. To deal

with DNA damage, cells have evolved a repertoire of cell-

cycle check-point and DNA repair processes. In order to

repair DNA damage, three main DNA repair pathways are

present - base excision repair, nucleotide excision repair,
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and mismatch repair. An excellent survey on DNA repair in

neurons is [25].

Non-homologous end-joining (NHEJ) is the predominant

pathway used to repair double-strand breaks in DNA and

is evolutionarily conserved. Ligase IV (LIG4) and pro-

tein kinase, DNA-activated, catalytic polypeptide (PRKDC)

are involved in NHEJ [26]. LIG4 and XRCC4 form a lig-

ation complex in the cell and play an important role in

NHEJ [27]. In the repair process, LIG4 joins broken nu-

cleotides together by catalysing the formation of an inter-

nucleotide ester bond between the phosphate backbone and

the deoxyribose nucleotides [17]. Furthermore, it has been

shown that PRKDC negatively regulates LIG4 protein sta-

bility [28]. LIG4 expression level was severely decreased

in the AD subjects and PRKDC level was only slightly ele-

vated. Study in [28] shows that LIG4 can facilitate PRKDC

binding to the LIG4-XRCC4 complex and in the absence

of LIG4, PRKDC and XRCC4 do not bind efficiently. In-

creased occurrence of double-strand breaks in DNA due to

the oxidative damage requires increased activity of NHEJ

components. Deficiency of LIG4 has been shown to be as-

sociated with extensive neuronal apoptosis [29, 30]. Defi-

ciency in any of the NHEJ components can lead to chromo-

somal instability [28].

The mismatch excision repair (MMR) system is responsi-

ble for repairing the erroneous insertion, or deletion of bases

that can arise during DNA replication and recombination,

as well as repairing some forms of DNA damage. Repair is

carried out by excising the wrongly incorporated base and

replacing it with the correct nucleotide. The MMR system

is composed of several protein complexes. Muts homolog

2, colon cancer, nonpolyposis type 1 (MSH2), postmeiotic

segregation increased 1 (PMS1) and polymerase (DNA di-

rected), epsilon (POLE) are involved in DNA mismatch ex-

cision repair. In particular, MSH2 expression was decreased

in the AD subjects. MSH2 is a key mammalian mismatch

repair gene that initiates the recognition of a base mis-

pair and subsequently recruits additional MMR proteins in-

volved in the repair. Normal neurons exposed to neurotox-

ins resulted in an increased production of MSH2 [31]. Cells

deficient in MMR genes have increased susceptibility to ge-

nomic instability and cancer. It has been documented that

cancer and neurodegenerative diseases may share a com-

mon pathway for the progression of the neurodegenerative

disease [32]. PMS1 expression level was elevated in the

AD individuals in our study. MMR proteins have also been

known to regulate cellular response to DNA damage by sig-

nalling apoptosis [33]. The exact role of all MMR genes in

response to DNA damage still remains unclear. It is hypoth-

esised that just like protein degradation and nuclear export

of p53 are blocked by DNA damage leading to increased

levels of intranuclear p53, DNA damage induces the ac-

cumulation of human PMS1 through ataxia-telangiectasia-

mutated (ATM)-mediated protein stabilisation [33]. POLE

has been implicated in mismatch repair, nucleotide exci-

sion repair (NER) and base excision repair (BER) [21, 34].

AD subjects showed increased POLE expression level. Al-

though extensive details about its role in DNA repair has not

been well documented, it has been shown to play a vital role

in the NER system in the presence of proliferating cell nu-

clear antigen, replication factor C (RFC), replication protein

A, and DNA ligase I [35]. RFC was also present in our list

of SG and showed elevated levels of expression in AD sub-

jects. RFC is a five-subunit protein complex that is required

for DNA replication. A recent study has suggested that

BRCA1-associated complex (BASC) is key to recognising

and repairing DNA damage. Among other components

of this complex are MSH2, BRCA1 associated protein-1

(ubiquitin carboxy-terminal hydrolase (UCH)) (BAP1), and

RFC [36, 13]. BAP1 level was decreased in the AD brains

in our study. BAP1, which is a tumour suppressor gene, is

required for transcription-coupled DNA repair [37]. Post-

meiotic segregation increased 2-like 2 (PMS2L2) expres-

sion level was increased in AD subjects and is thought to

be associated with DNA repair via sequence similarity but

lacks experimental evidence [21].
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ROS attack on DNA leads to a variety of modifications

of purine and pyrimidine bases. BER prevents mutations by

removing the oxidative lesions from the DNA. 7,8-dihydro-

8-oxoguanine (8-oxoG) is an important mutagenic lesion.

Nth endonuclease III-like 1 (NTHL1) is involved in BER

and participates in the removal of 8-oxoguanine from 8-

oxoguanine/guanine mispairs in DNA [38]. However, the

increase in NTHL1 was very subtle in the AD cases.

H2a histone family, member x (H2AFX) is required for

checkpoint mediated arrest of cell cycle progression and for

efficient repair of DNA double strand breaks. H2AFX helps

in the recruitment of repair and signalling proteins to the

sites of DNA damage [39, 40]. Its expression level in the

AD individuals was only slightly elevated. Fanconi ane-

mia, complementation group g (FANCG) (alias: XRCC9) is

associated with hypersensitivity to DNA-damaging agents,

chromosomal instability (increased chromosome breakage),

and defective DNA repair [41]. It is a part of the RAD6

pathway which is sensitive towards a variety of geno-

toxic agents. As a DNA repair protein, it may operate in

postreplication repair or in a role of the cell cycle check-

point guard [13]. Although not much has been documented

about FANCG, it has been shown to be involved in protec-

tion against oxidative DNA damage [41]. FANCG levels

was also increased in the AD affected subjects. Ubiquitin

specific peptidase 1 (USP1) has been implicated in DNA

repair and cell cycle regulation [42]. USP1 regulates the

Fanconi anemia (FA) pathway. The FA pathway is required

for the normal cellular response to DNA damage. Ubiqui-

tination of the FA protein, Fanconi anemia D2 (FANCD2),

is a critical event in DNA damage repair [42]. Deficiency

of USP1 results in an accumulation of monoubiquitinated

FANCD2. USP1 is necessary to deubiquitinate FANCD2

after the repair of specific DNA damage sites, in order to

avoid overall-deleterious effects on genome integrity [42].

USP1 expression level was increased in the AD affected in-

dividuals.

Casein kinase 1 (CK1) contain a family of highly related

serine/threonine protein kinases. Members of the CK1 fam-

ily, such as casein kinase 1, epsilon (CSNK1E), have been

shown to be sensitive to DNA damage and involved in chro-

mosomal maintenance [43, 44]. CSNK1E level was de-

creased in the AD subjects in our study. Decreased levels

of CSNK1E results in a significant increase in transforming

growth factor (TGF)-β-induced transcription [45]. TGF-β

signalling pathway suppresses the cell cycle and is defec-

tive in cancerous cells. Hence, decrease in CSNK1E levels

leads to an increased activity of tumour suppressor genes.

Growth arrest and DNA-damage-inducible, gamma

(GADD45G) is a cell cycle control gene and was increased

in the AD brains in our study. GADD45G transcript levels

is increased following stressful growth arrest conditions and

treatment with DNA-damaging agents [13]. Expression of

the GADD45G induces p38/JNK activation and apoptosis.

Stress-responsive p38 and JNK mitogen-activated protein

kinase (MAPK) pathways regulate cell cycle and apopto-

sis [46].

Conclusion

AD has been characterised by extensive cell death. Cell

death can occur by injury (necrosis) or by suicide (apop-

tosis). Sometimes cells are induced to commit suicide in

order to preserve genomic integrity. Two factors induce a

cell to commit suicide - the withdrawal of positive signals,

that is, signals needed for continued survival, and the re-

ceipt of negative signals. Positive signals include growth

factors for neurons, and negative signals include increased

levels of oxidants within the cell, DNA damage by these ox-

idants and the accumulation of misfolded proteins. In AD

brains the negative signals clearly overshadow the positive

signals. If the rate of DNA damage is greater than the rate

of DNA repair, errors accumulate resulting in early senes-

cence, apoptosis or cancer. Therefore, DNA repair rate is an

important determinant of cell pathology [17] (see Figure 2).

Some of the 14 DNA repair genes present in our SG list

7



are involved in the early stages of DNA damage detection

and some of them help in the recruitment of other down-

stream proteins to help in DNA repair. A few of them are

also involved in cell cycle control. LIG4 and PRKDC are

the most well studied and documented repair genes in our

SG list. The level of LIG4 was significantly decreased in

the AD subjects. On the other hand, there were repair genes

that had elevated levels of expression in the AD subjects.

However, repair genes sometimes “repair” by inducing cell

death. Hence, it cannot be assumed that increased levels of

expression would necessarily prevent apoptosis or that de-

creased levels would automatically induce apoptosis. In our

study we found that genes that should have had decreased

levels of expression displayed increased levels, and the vice

versa was true for genes that should have had increased lev-

els of expression. In our list of 14 DNA repair genes, a few

of them signal apoptosis pathways when present at elevated

levels. On the other hand, deficiency in the expression of

certain other repair genes also lead to significant cell death,

as in the case with LIG4. Therefore, it is the orchestrated

expression of many repair genes that can eventually lead to

cell survival. This orchestrated action was disrupted in AD

subjects resulting in DNA repair genes themselves inducing

apoptosis. Further validation of these DNA repair genes as

well as more investigation into the roles of currently known

DNA repair genes would shed more light into the DNA re-

pair process in AD affected individuals.

As cell cycle check-point is also a defence mechanism

against DNA damage, there were many cell cycle related

genes in our list of 686 transcripts. However, the difficulty

lies in identifying those genes that respond to DNA damage

and help in DNA repair versus those that are being switched

on as a result of DNA damage, such as a mutation, and do

not actually help in repair. In the set of 14 repair genes

described in this article, the few that were involved in cell

cycle have been shown in literature to be also involved in

DNA repair. As more research is carried out in DNA repair,

it is likely that the complete functions of more genes as well

as the exact mechanism of DNA repair by some of the genes

listed in this paper will be elucidated.

Instead of applying a cut-off value for increased or de-

creased levels of expression, we chose the significant genes

for further analysis based on their statistical significance.

We also felt that incipient AD subjects would have very sub-

tle differences in their expression profile when compared to

controls, and therefore allowed a FDR of 0.2. Although we

used a linear model to correlate the gene expression lev-

els to MMSE and NFT scores, a simple extension would

be a non-linear correlation. However, AD is a difficult dis-

ease to study due to its close relationship to ageing. How

can we be sure that certain gene changes are normal due to

ageing while others are abnormal and more likely to be as-

sociated with AD pathology? Designing an experiment that

can clearly delineate ageing from AD would help further

the understanding of this complex disease.

This study is the first in which multiple variables ob-

tained at a macro-level of AD individuals were taken into

account simultaneously, as opposed to binary class pheno-

types, along with gene expression to select genes perturbed

in LOAD. Multiple testing correction was also performed

to avoid single inference errors. The method applied in this

article was significantly different from the one employed by

Blalock et al. in their work [3] and had higher statistical

power. Furthermore, this is also the first study that focused

on the expression levels of DNA repair genes in AD affected

individuals via microarray analysis. This is a small-scale

study designed to test a new analytical tool, however, we

hope that its results will motivate a larger, more sophisti-

cated study to investigate the status of DNA repair in AD

patients.
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Table 1: Statistically significant Biological Processes present in 686 genes

GO Biological Process Ease Score

Regulation of cellular physiological process 5.59E-08

Primary metabolism and nucleobase, nucleoside, nucleotide and nucleic acid metabolism 4.76E-07

Regulation of transcription, DNA-dependent and primary metabolism 1.50E-05

Negative regulation of cellular physiological process and cellular process 2.14E-05

Transcription, DNA-dependent 2.76E-05

Biopolymer metabolism 0.017361586

Protein modification and DNA replication 0.020111636

Dna replication and cellular macromolecule metabolism 0.024086171

Actin filament capping and actin cytoskeleton organisation and biogenesis 0.043723268

Actin filament depolymerisation and actin filament capping 0.043723268

Table 2: 14 DNA repair genes in the list of 686 significant genes with FDR ≤ 0.20

RefSeq ID Gene name Activity

NM 004629 fanconi anemia, complementation group g (FANCG)(alias:XRCC9) RAD6 pathway

NM 002105 h2a histone family, member x (H2AFX) Editing and processing nucleases

NM 002312 ligase IV, DNA, atp-dependent (LIG4) Non-homologous end-joining

NM 006904 protein kinase, dna-activated, catalytic polypeptide (PRKDC)(alias:XRCC7) Non-homologous end-joining

NM 000251 muts homolog 2, colon cancer, nonpolyposis type 1 (e. coli)(MSH2) Mismatch excision repair

NM 000534 postmeiotic segregation increased 1 (PMS1) Mismatch excision repair

NM 006231 polymerase (dna directed), epsilon (POLE) Mismatch repair, nucleotide excision repair

NM 002528 nth endonuclease III-like 1 (NTHL1) Base excision repair

NM 152221 casein kinase 1, epsilon (CSNK1E) –

NM 001017415 ubiquitin specific peptidase 1 (USP1) –

NM 006705 growth arrest and DNA-damage-inducible, gamma (GADD45G) –

NM 002916 replication factor c (activator 1) 4, 37kda (RFC4) Mismatch repair

NM 002679 postmeiotic segregation increased 2-like 2 (PMS2L2) Mismatch repair

NM 004656 brca1 associated protein-1 (ubiquitin carboxy-terminal hydrolase) (BAP1) –
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Figure 1: The MMSE-NFT plot for 9 normal controls and 7 AD affected cases. The ontrols are shown in solid circles

while affected cases are in white circles. While the controls occupy a small compact space in the lower right corner, the

affected samples spread out over the entire MMSE range. As can be seen there is an overlap between a normal and affected

subject, i.e. samples 1 and 4, indicating no clear class distinction based on MMSE and NFT scores. Furthermore, just one

variable (either MMSE or NFT) without the other does not explain the AD diagnosis. If NFT is the sole indicator of AD,

then the samples labelled 1,2 and 3 should be classified as AD affected. If MMSE is a sufficient indicator of AD, then

samples 4 and 5 should be labelled as normal subjects. Since both MMSE and NFT played a role in the AD diagnosis,

both variables were taken into account in the gene selection algorithm. Due to the overlap of control and incipient case, a

subtle change in gene expression level was expected resulting in the choice of a FDR of 0.2.
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Figure 2: Cartoon depicting a healthy and diseased cell based on the accumulation of errors in the cell. Mature neurons

are highly metabolically active and produce large amounts of ATP in order to generate action potentials. This results in

high rates of DNA damage. Healthy cells have a proper balance of the DNA repair and DNA damage mechanisms. DNA

repair rate is an important determinant of cell pathology. Figure taken from [17]
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