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ABSTRACT OF THE DISSERTATION

Scheduling Policy Design using Stochastic Dynamic Programming
by
Robert Glaubius
Doctor of Philosophy in Computer Science
Washington University in St. Louis, 2009

Research Advisor: Professor William D. Smart

Scheduling policies for open soft real-time systems must be able to balance the com-
peting concerns of meeting their objectives under exceptional conditions while achiev-
ing good performance in the average case. Balancing these concerns requires modeling
strategies that represent the range of possible task behaviors, and solution techniques
that are capable of effectively managing uncertainty in order to discover scheduling
policies that are effective across the range of system modes. We develop methods for
solving a particular class of task scheduling problems in an open soft real-time setting
involving repeating, non-preemptable tasks that contend for a single shared resource.
We enforce timeliness by optimizing performance with respect to the proportional

progress of tasks in the system.

We model this scheduling problem as an infinite-state Markov decision process, and
provide guarantees regarding the existence of optimal solutions to this problem. We

derive several methods for approximating optimal scheduling policies and provide
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theoretical justification and empirical evidence that these solutions are good approx-
imations to the optimal solution. We consider cases in which task models are known,
and adapt reinforcement learning methods to learn task models when they are not

available.
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Chapter 1

Introduction

Open soft real-time systems, such as mobile robots, must respond adaptively to vary-
ing operating conditions. For example, the discovery of a physical obstacle in the
robot’s environment may require an immediate action in order to avoid a collision
and maintain the physical integrity of the robot. Such a system must be able to
select an appropriate response from among multiple alternatives and act on that de-
cision within specific timing constraints — in this case, the system has to decide that

it needs to avoid the obstacle, and how best to do so before a collision occurs.

Such systems often provide fail-safe actions in the event of an anticipated or observed
timing failure. For example, a robot may pause its motion if the robot finds itself
within an unsafe distance of an obstacle, or if it has not been able to perform a
detection action within some predefined interval. While such an action can prevent
a catastrophic system failure, it may be suboptimal in the sense that some other
non-exceptional course of action may address the immediate issue while allowing
the system to continue making progress towards its objectives. Reactive, dynamic
scheduling mechanisms are thus necessary to ensure timely decisions and actions while

attaining the best possible performance.

The crux is that multiple behaviors, or tasks, (e.g., obstacle avoidance or mission
objectives) may contend for control of a shared resource (e.g., the robot’s sensors,
actuators, computers, and communications links). For the system to be useful, we
have to ensure progress of each of these tasks while guaranteeing the safety and

reliability of the system.



While existing real-time systems theory describes how to schedule computation and
communication resources for sensors and actuators, new methods are needed to ad-
dress concerns that arise in domains like that described above. For example, behaviors
may require use of a robot actuator for a long and unpredictable duration, since the
time to move the actuator depends on the how close the actuator is to the required
attitude and is influenced by a series of time-variable mechanical processes. Addition-
ally, we can not preempt these behaviors, since restoring the actuator to a previously
preempted state may be more time consuming than completing the behavior itself.
These concerns render many real-time scheduling algorithms, which require explicit
knowledge of task behavior and the ability to preempt at will, inapplicable. We use

the following example robotics application to make these concerns more concrete.

Robot PTU Scheduling: Consider a mobile robot with two sensors, a camera
and a contact sensor consisting of a set of bumpers. The bumpers allow the robot to
detect when it makes physical contact with an obstacle. These are used to implement
a fail safe action, triggering the robot to stop moving while considering its course of
action. The other sensor is a camera, mounted on a pan-tilt unit (PTU) at about 1.75
meters above the ground — roughly at the height of the average adult human head
when standing. The camera serves two functions. When the pan-tilt unit is parallel
to the ground plane, the camera is used to carry out the robot’s mission: capturing
images of people’s faces. Otherwise, the camera can be used to augment obstacle

avoidance by detecting obstacles before the robot contacts them.

The pan-tilt unit is the shared resource in this domain. We need to balance safety
against the robot’s mission by interleaving face-finding with checking the ground
ahead of the robot for obstacles. It should be clear that the right balance between
these two depends on a number of factors, including the volatility of the environment
and the speed of the robot. In a volatile environment there may be many other
actors or moving objects that we need to avoid, so a larger obstacle avoidance budget
is appropriate. Similarly, if the robot is moving quickly through even a non-volatile
environment, it would behoove us to allocate more time to obstacle avoidance, while if
the robot is standing still we may be able to eliminate most of the obstacle avoidance
budget.



Ideally, this system would spend all of its time finding people in the environment.
However, performing fail-safe actions may cause the robot to spend less time carry-
ing out this mission objective than would be the case if it intermittantly used the
camera to detect obstacles. We therefore are interested in effectively sharing the
PTU between these tasks in order to maximize the time dedicated to finding faces
in the environment, while minimizing the number of fail-safe actions taken. This is
challenging, since uncertainty in the environment translates into unpredictable task

behavior.

This research considers the general problem of scheduling repeating tasks on a single,
mutually-exclusive resource, such as the PTU in our example. We distinguish between
tasks and their instances, or jobs; for example, the obstacle avoidance task consists
of jobs that check the environment for obstacles and plans a route to avoid them.
Three principal considerations guide our choices when designing scheduling policies
for these systems. First, tasks can not be preempted: once an instance of a task
acquires the resource, it retains it until the instance completes. Second, we assume
that task instances have stochastic, highly-variable duration. Finally, we assume that
tasks can be run at any time — that is, whenever the scheduler is given control, each

task has some job that is ready to run.

Preemption tends to make scheduling easier, as it allows individual jobs to be broken
into smaller pieces, thus avoiding hard bin-packing problems [4]. However, preemption
does not make sense in the domains we consider. For example, each job of an image
capture task may require adjusting a pan-tilt unit. Preempting an image capture
job may leave the PTU in an arbitrary state, which may result in a longer duration
for the next task that acquires the resource. Further, restoring the PTU state to its
attitude at preemption may be more expensive that simply running the next job in

the same task.

We assume that the system is open: we do not have complete or accurate specifications
of the task behavior in advance. Task behavior in such a system can only effectively
be modeled statistically. That is, a suitable model of task behavior may consist of
a probability distribution describing their arrival rates, as in queuing theory, or we

may have a distribution describing task duration. By contrast, in a closed system



the task implementation is provided in advance, and its behavior can be exhaustively

modeled, accurately simulated, and then abstracted into a simpler model.

Timeliness of task completion in the considered domains is soft, in the sense that
if some task takes longer than expected to run, the worst-case is that the fail-safe
mechanism takes over. This may be contrasted with the hard case, in which a missed
deadline may manifest as a complete, catastrophic system failure. In the hard case, it
is appropriate to model stochasticity in task execution by a deterministic reduction to
worst-case performance. This is overly conservative for the soft real-time setting [78];
since late completion only degrades performance, we can trade off worst-case perfor-

mance against expected case performance fruitfully.

Task durations are random variables. We make several simplifying assumptions re-

garding the distribution of task durations:

Bounded support: there is a finite upper bound, or worst-case execution time, on

the maximum duration of each job.
Inter-task independence: Durations are independent between tasks.

Intra-task independence: The duration of jobs of the same task are identically

and independently distributed.

These assumptions regarding job durations are fairly common in the discussion of

soft, periodic real-time systems [59, 2].

Our assumptions regarding job availability differ from those of classical periodic real-
time systems. In classical systems, the jobs of a task arrive at regular intervals or
are governed by some minimum inter-arrival rate [21]. Timeliness is then enforced by

establishing and meeting deadlines on the completion of each job.

We model job availability by assuming that whenever one job of a task relinquishes the
shared resource, the next job of that task becomes available immediately. This does
not lend itself naturally to a deadline formulation, however. Instead, our objective is
to make progress on each task proportional to some portion of the shared resource,
called its resource utilization target. More specifically, our goal is to see that in any
sufficiently large observation interval, the difference between the time that each task

spent occupying the resource and the time that it was intended to spend is small.
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This notion of proportional progress [12] ensures timeliness by forcing each task to
make progress relative to the rest at a roughly uniform rate. Further, proportional
fairness promotes temporal isolation between tasks [2, 82|, limiting the amount of

interference between tasks.

New methods are necessary to address the concerns raised in the application domains
we have described. Most scheduling algorithms for real-time systems are extensions to
the earliest deadline first (EDF) or rate monotonic (RM) scheduling algorithms [58].
While EDF in particular is optimal for the deterministic, preemptive case, both are
known to be suboptimal when preemption is not allowed [59]. Further, reduction
to the deterministic case is overly conservative, and tends to lead to poor resource
utilization. Finally, introducing the usual notion of deadlines and periods into our
problem model is likely to result in worse resource utilization as the shared resource

may idle unnecessarily while waiting for periods to complete.

Achieving optimal behavior in these domains requires methods for deriving dynamic
scheduling policies that leverage feedback from the system in order to make good
scheduling decisions. Our focus is on the design and analysis of scheduling policies
obtained by solving stochastic dynamic programming problems. Thus, we do not an-
alyze the behavior of classical real-time scheduling algorithms, but instead focus on
constructing problem representations that are sufficient to represent optimal schedul-
ing policies, and then use techniques from stochastic dynamic programming [72, 14]

and reinforcement learning [44, 87] to compute or approximate those policies.

1.1 Task Scheduling Model

Over the course of this research we have proposed a simple task scheduling problem
model [94, 38, 36]. In this model, we have n repeating tasks (J;)"_;that share access
to a single mutually exclusive resource. Each task J; consists of an infinite sequence
of identical jobs (Jm)]‘?‘;o. When a job is dispatched, it occupies the resource for some
stochastic duration. Once a job J; ; releases the resource, the subsequent job J; (j;1)

immediately becomes available.



Suppose J; ; is a job of task J;. The duration of job J; ; is a random variable ¢; ; dis-
tributed according to the duration distribution P, ;, with P{t,; =t} = P, ;(t). P,
is supported on the positive integers; specifically, for all ¢ > 0, P,;(t) >0, and
Yoy Pij(t) =1. This explicitly requires that tasks advance the system time by
at least one quantum when dispatched. We make several simplifying assumptions

regarding these distributions:

(A1) The durations t;; and t; of any pair of jobs J;; and Ji; are independently
distributed; that is, P{t; ; = t|tx, = t'} = P, ;(¢).

(A2) The durations t;; and t;; of jobs J;; and J;; of task J; are identically dis-
tributed; that is, P; ;(t) = P, x(t).

(A3) Every job J; ; has worst-case execution time 7} ; < oo such that ST P ;(t)=1.

These assumptions appear in the standard formulation of real-time systems with
periodic tasks [59, 2]. Assumption Al asserts that one job does not influence another.
This means that we can expect a job to run according to the same distribution
regardless of what jobs were scheduled before it. This is a strong assumption that is
likely to be violated in practice. However, without this assumption there is little that
we can do to schedule well. In the worst case behaving correctly in any given system
state requires considering the complete execution history to make a decision, which
rapidly becomes intractable. At best we can hope to study empirically how varying

degrees of dependence effect the performance of the scheduling policies we obtain.

Assumption A2 is subject to similar concerns. If the task in question is an interrupt
handler, for example, we would expect repeated successive instances to behave ac-
cording to about the same distribution. However, in the robot example, consecutive
instances of obstacle detection are neither identical nor independent, since we may
only need to move the PTU for the first dispatch.

Practically assumption A2 means that P, ; is identical to P, ;, for every other job J; ; of
task J;. This implies that can omit the job index and just refer to the task’s duration
distribution P;. This regularity plays a crucial role in making the scheduling problem

tractable.



Assumption A3 implies that there is a finite worst-case execution time for each job,
Ti; = max{t|F;;(t) > 0}

By assumption A2, since the duration of jobs from the same task obey the same
distribution, those jobs have identical worst-case execution time 7; ; = T;. The latter
two assumptions allow us to talk about task behaviors rather than considering the
individual behaviors of jobs. Throughout this dissertation we therefore discuss task

timing behavior to characterize the behavior of each job of that task.

In addition to these strong assumptions, we make the weaker assumption that instance
durations are positive integers. This allows us to treat the system time resolution in
terms of a discrete time quantum. This assumption is fundamental to the discrete
modeling techniques described in Chapter 3, but can be relaxed to the non-negative
real numbers when performing direct search in policy space using the methods in
Chapter 5.

We have explicitly ignored deadlines in this system. Our fundamental measure of
timeliness is the proportional utilization of the resource. We specify our scheduling
criterion in terms of the relative progress of each task, measured as the amount of time
that each task holds the resource. This proportional progress criterion is determined
by specifying a utilization target u as a system parameter. The utilization target
is a positive, rational-valued n-vector. Component u; is the relative target resource

utilization for task J;. u is subject to a total utilization constraint

iui =1 (1.1)

requiring that the resource time is budgeted completely among all tasks, and an
interval constraint
Vi=1...n, 0<u; <1 (1.2)

The interval constraint means that each task must be allotted some share, but no task
can be allocated the entire resource. Pragmatically, we can reduce the case u; = 0 to
a scheduling problem with (n — 1) tasks, and the case u; = 1 can be reduced to the

trivial problem of scheduling a single task.



Let x(t) be an integer-valued n-vector. This corresponds to the state of the scheduled
system after ¢t quanta have elapsed. Each component x;(t) equal to the number of
time quanta during which task J; held the resource in the time interval [0,?) (system
initialization is defined as time 0). We refer to x(t) as the system’s utilization state,
or just state. Then x;(t)/t is the percentage of the time spent by the resource on task
Ji. A minimum criterion for a proportionally fair scheduling policy is that x;(t)/t
should approach u; as t grows large. However, we are not just concerned with steady
state, asymptotic behavior, but also want to make sure that we quickly approach and
maintain x(¢) near the target utilization. More specifically, in any time interval [¢,t')

we want to ensure that
(¢ = t)ui — (zi(t') — 24(1))] (1.3)

is small for each task.

In Chapter 2, we model this scheduling problem as a Markov Decision Process (MDP).
We show that, given an appropriate choice of cost function based on achieving and
maintaining the desired target utilization, there is an optimal scheduling policy. In
Chapter 3, we present several methods for approximating the optimal policy using

finite-state representations.

1.2 Literature Review

In order to ground this research in the context of real-time systems, it is useful first
to illustrate some common modeling assumptions and considerations of that field.
The periodic task model of Liu and Layland [58] is the basis for many system models
studied in the literature on real-time systems. Periodic tasks consist of an infinite
sequence of identical jobs that require access to a preemptable, mutually exclusive
shared resource. This access is subject to timing constraints. The earliest moment
that a job is ready to use resource is its arrival or release time; the task’s period is
the interval between consecutive arrivals of its jobs. A job is available after its release
and prior to its completion; completion should occur prior to the job’s deadline. Each

job is assumed to have a known, finite worst-case execution time.



An optimal real-time scheduling algorithm produces schedules that meet all deadlines
whenever possible. Liu and Layland [58] introduced the Rate Monotonic (RM) and
Earliest-Deadline-First (EDF) scheduling algorithms for the periodic setting. EDF is
optimal for many generalizations of the periodic setting, including the basic setting
described above. RM is suboptimal, but is the optimum among algorithms that make
scheduling decisions according to a static task ordering. EDF dynamically prioritizes
available jobs according to increasing deadlines, so that the job with least deadline
is run first. While EDF’s optimality makes it more satisfying from a theoretical
perspective, RM remains relevant because of its relative ease and efficiency of imple-
mentation on practical systems. Thus, these two algorithms provide the foundation

for most real-time scheduling theory and implementation.

In our research, we relax several of the periodic task modeling assumptions. Jobs are
released upon completion of the previous job of the same task, so that arrivals are
aperiodic and depend upon previous scheduling decisions and task durations. This
makes establishing job deadlines somewhat arbitrary, so instead we focus on enforcing
timeliness and temporal isolation via proportional fairness. Finally, since we are
concerned with tasks that manipulate physical actuators, preemption is not available.
While many of these relaxations individually have been considered in previous work,

this research appears to be the first that addresses all of them at once.

Stochastic Task Release: Job release times are often subject to variability in
practice. Mok’s sporadic task model [66] extended the periodic task model to accom-
modate variability in release times by assuming only a minimum bound on the time
between consecutive releases of jobs of the same task. This model has since become
widely studied and extensively used [59, 21, 78]. Jeffay and Goddard [42] introduced
Rate-Based Execution, a further generalization of the sporadic task model for the soft
real-time setting in which only job release rates are known in advance. They showed

that EDF is optimal for both preemptive and non-preemptive resources in this model.

Stochastic Task Duration: Atlas and Bestavros [5, 6] proposed Statistical Rate
Monotonic scheduling (SRMS), which extends RM scheduling to systems of periodic
tasks with stochastic durations. In SRMS each task is represented by its period,

9



duration distribution, and desired quality-of-service. Quality-of-service is defined as
the probability that any randomly selected job of the corresponding task completes
before its deadline. The algorithm associates a periodically replenished budget with
each task; a released job is scheduled only if its duration is less than its remaining
budget. This budget mechanism prevents tasks from interfering with one another
— 1i.e., it enforces temporal isolation — since it places an upper bound on individual
task’s resource use over time. One limitation of this technique is that a job’s duration

must be known before it is scheduled in order to enforce budgets.

The Constant Bandwidth Server (CBS) of Abeni and Buttazzo [1, 2, 20] addresses
this limitation. The CBS was introduced as a means of interleaving execution of soft,
stochastic, aperiodic real-time tasks into a hard real-time system. Each soft task is
associated with a server; the fraction of resource time not allocated to hard real-time
tasks is divided among these servers according to user-specified computation budget
and period parameters. The server associates a hard deadline with the soft task it
serves. This deadline is a function of the server’s period and remaining budget. If a
job would overrun its server-assigned deadline, it is preempted and must wait until
its server’s budget is replenished. This allows the CBS to accommodate stochastic
task durations while enforcing temporal isolation between soft and hard real-time
tasks. Tuning CBS parameters has since been used as a means to optimize additional

aspects of system performance [57].

Real-time queuing theory [55] is a more general model for repeating tasks that accom-
modates stochastic job arrivals, durations, and deadlines. This theory adapts meth-
ods from queuing theory to the study of timeliness behavior of real-time scheduling
policies. These tools are primarily useful for analyzing statistics of fixed scheduling
policies, particularly deadline miss rates. For example, Doytchinov et al. [27] and
Kargahi and Movaghar [47] study the performance of EDF in this setting; see the lat-
ter for references to similar analyses of first-come-first-serve scheduling. This analysis
tends to focus on highly structured arrival, duration, and deadline distributions un-
der steady state conditions. Manolache et al. [63] use a related approach to estimate
performance of arbitrary fixed scheduling policies under more restrictive conditions;
one particularly interesting aspect of this work is that their computational methods
are simplified by identifying and collapsing equivalent model states based on intervals

in which scheduling priorities are static.
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Proportional Fairness: SRMS and CBS enforce temporal isolation using a fairness
mechanism. Proportional fairness has received substantial attention, particularly in
multiprocessor scheduling, as a means of pruning poor scheduling alternatives to focus
attention on a narrower range containing feasible schedules that meet all deadlines

whenever they exist.

Baruah et al. introduced two optimal algorithms, PF [12] and PD [13], for proportion-
ally fair, or Pfair multiprocessor scheduling in the periodic task model. Under Pfair
scheduling, each task J; is assigned a weight, defined as the ratio of its worst-case
execution time 7; to its period p;, T;/p;. These schedules enforce the Pfair condition,
which bounds the lag

it-Ti/pi —t-z;(t) < 1

at every time quantum ¢, where x;(t) is the cumulative resource utilization of task J; at
time ¢. The utilization target ¢-T;/p; is the resource usage of task J; under an idealized
fluid schedule that divides time among tasks at infinitesimal resolution. The Pfair
condition requires that task’s actual usage is as close as possible to this ideal given that
the resource is allocated in discrete quanta. Anderson and his collaborators have since
developed a more efficient Pfair algorithm, PD? [4], and extended it to the sporadic
task model and further application-specific generalizations thereof [3, 82, 83, 26]. To
the best of our knowledge, enforcing fairness with stochastic task durations has not

been considered.

Pfair scheduling makes extensive use of preemption [12]; jobs are fragmented to the
extent that scheduling decisions are made explicitly at the single-quantum subtask
level [4]. Without preemption, we can only hope to enforce a Pfair-like condition at a
coarser resolution. In our research, we enforce timeliness by maintaining each task J;’s
resource utilization near a user-specified utilization target u;. We can characterize
our methods as optimizing with respect to the Pfair condition in stochastic, non-

preemptive systems by finding policies that minimize the lag
[t u; — (1)

for each task J; at every time ¢.
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Cho, Ravindran, and Jensen [22] also derived an optimal scheduling algorithm that
approximates the fluid schedule. This is achieved by decomposing time into intervals
between task period boundaries. It is then possible to bound the change in a task’s
accumulated resource utilization above and below within this interval under all fea-
sible schedules; these bounds necessarily encompass the fluid schedule. An optimal
schedule can be obtained by making scheduling decisions that respect the geometry
of this bounding region. This scheduling algorithm reduces, but does not eliminate,

preemptions.

Non-preemptive Scheduling: Non-preemptive systems have received substan-
tially less attention in the literature than have preemptive systems. This is because
preemptive semantics are supported in readily-available off-the-shelf systems, and be-
cause optimal non-preemptive scheduling is known to be NP-hard [43]. Part of the
challenge of non-preemptive scheduling is that an optimal schedule may need to leave
the resource idle even if there are jobs ready; for example, this may be the case if
running any ready job would force a job that is not yet available to miss its deadline.
Thus, much of the work on non-preemptive scheduling incorporates the assumption
that schedules must be work conserving — the resource can not idle if jobs are ready

to run on it.

A non-preemptive version of EDF, EDF,,,, is optimal in this setting. However,
admission control under EDF,,,, the problem of determining whether a new task
can be scheduled, remains hard. Thus, most of the work on non-preemptive real-
time scheduling focuses on deriving sufficient conditions for schedulability under
EDF,, [10, 11, 40]. EDF is known to perform poorly in overload situations that
are likely to arise under uncertainty, and it also does not maintain temporal isolation
between tasks. Therefore, it does not satisfy our scheduling criteria, but does provide

a useful basis for comparison.
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1.3 Overview

This dissertation is organized as follows. Above, we described our task scheduling
problem model. In Chapter 2, we provide some necessary background on Markov De-
cision Processes (MDPs), classical results that are used throughout this dissertation.
We then model the task scheduling problem as an infinite-state MDP with unbounded
costs, and derive some results that guarantee the existence of an optimal scheduling

policy and conditions that allow us to represent the MDP more compactly.

In Chapter 3, we present several approximation methods that find good scheduling
policies over restricted subsets of the infinite-state MDP derived in Chapter 2. This
includes a truncated MDP, selected so that we will always find a policy that satis-
fies some bounds on deviation from target utilization whenever one exists. We also
propose the Expanding State Policy Iteration algorithm, which exploits the structure
of the task scheduling problem in order to construct minimal state representations
that are necessary and sufficient to find good scheduling policies. We investigate the

performance of these algorithms empirically on simulated problem instances.

Chapter 4 applies methods for reinforcement learning to extend the methods of pre-
vious chapters to domains where accurate task models are not provided in advance.
One key aspect of reinforcement learning is the need to balance exploitation against
exploration; that is, a reinforcement learning agent must determine when it is appro-
priate to act optimally with respect to its current information, or if instead it should
choose an apparently suboptimal sequence of actions in order to learn more about
the controlled system. We find that the structure of the task scheduling MDP elimi-
nates most of the benefit of exploration, as exploiting current information reduces the
number of suboptimal actions performed. We derive a PAC bound on the number of

suboptimal actions taken before learning task models with low error.

One drawback of the methods described in Chapter 3 is that they rely on explicit
enumeration of a large number of system states. This number of states grows expo-
nentially in the number of tasks, so that in order for these methods to be useful in
practice, either the number of tasks must be small or we must be able to aggregate
them into abstract behaviors. In order to address this limitation to the scalability of

our approach, in Chapter 5 we leave behind explicit representation of the scheduling
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MDP and instead focus on direct search over a parameterized class of scheduling
policies. While in general this class does not contain the optimal solution to the cor-
responding MDP formulation, these methods tend to produce policies that perform
much better than available heuristic scheduling policies, particularly as the number

of tasks grows large.

We conclude in Chapter 6 with a discussion of some of the open questions that arose
over the course of this research, and propose several lines of future investigation that

appear particularly significant.
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Chapter 2

Scheduling as a Sequential

Decision Problem

In Section 1.1 we defined the Task Scheduling Problem. This problem consists of
determining a scheduling policy that selects which task will gain exclusive access to
a shared resource at any moment in time. Our objective is to maintain the relative
resource utilization of each task near some target share. In this section we model
the task scheduling problem as a Markov Decision Process, or MDP. This framework
allows us to quantify and compare the long-term utility of different scheduling policies,

and ultimately to derive optimal ones.

In Section 2.1 we provide a brief development of the theory of MDPs and some
algorithms for deriving control policies for them. In Section 2.2 we define the task
scheduling problem as an MDP. In Section 2.3 we formally demonstrate the existence
of an optimal solution to the task scheduling MDP, and in Section 2.4 we examine
some of the special structure of the task scheduling MDP that we will exploit in
order to obtain solution methods. Finally, in Section 2.5 we discuss related results

and ideas.

2.1 Markov Decision Processes

Sequential decision problems arise when an agent or controller must make decisions

repeatedly while maximizing measures of long-term utility. Two complications that
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make these problems challenging are uncertainty and the need to reason about de-
layed rewards. We encounter the former in the task scheduling problem because our
tasks have stochastic duration. The latter may occur whenever a small amount of
“unfairness” in the short term makes it easier to balance utilization over the longer
term. For example, it may be better to run an overutilized task with short duration

rather than a slightly underutilized task with long duration.

A Markov Decision Process, or MDP, is a popular tool for modeling these kinds
of problems. These problems arise in machine learning, operations research, and
economics to name a few, and MDPs have been used to model and solve Reinforcement
Learning problems in a wide range of applications, such as helicopter control [70, 68],
mobile robotics [81, 52|, elevator control [23], job shop scheduling [99], and playing
Backgammon [93] and Go [79], among numerous others. The design and analysis
of MDPs is a mature field; while we discuss standard results that are useful for
understanding our algorithms and results, the interested reader is directed to the
preponderance of literature on the subject; in particular, the books by Puterman [72]
and by Bertsekas and Tsitsiklis [14], and the book chapter by Rust [77] provide

detailed developments.

An MDP is a four-tuple (X, A, P, R) consisting of a collection of states X and actions
A, a transition system P that establishes the conditional probabilities P(y|z,a) of
transitioning from state x to y on action a, and a reward function R that specifies the
immediate utility of acting in each state. In this work we will take R as a deterministic
function mapping state-action-state triples to a real-valued reward, so that R(z,a,y)

is the reward for taking action a in state x, then ending up in state y.

In order to model a sequential decision problem as an MDP, we associate a set of
discrete decision epochs k£ = 0,1,..., K; in this work we consider the infinite-horizon
setting where K = oco. Simulation consists of observing the state of the MDP at
epoch k, x; and choosing an action aj,. The system transitions to a new state xyyq
according to P(-|xy,ax) and emits reward ry; = R(zk,ar, xxr1). We refer to the

sequence of states (xy,)5_, visited during simulation as a trajectory.

Our objective is to find a policy — a strategy for choosing actions at each state —
that maximizes the expected sum of rewards obtained during simulation. In general

a policy 7 associates a distribution over actions to each state, so that m(a|z) is the
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probability of selecting action a at state z. One classical result is that any MDP with
a finite action space and stationary transitions (i.e., the transition probabilities do
not change between decision epochs) has an optimal deterministic policy [72]. With
this in mind, we will restrict most of our treatment to deterministic policies. If a
policy 7 is deterministic we overload notation to let 7(x) be the recommended action

at state x.

We compare policies based on the expected sum of rewards obtained while simulating
a policy. However, the sum of rewards obtained during a single trajectory, Y p- 7,
may grow without bound, which makes direct comparison of policies difficult. There
are a couple of well-studied criteria for alleviating this problem. We adopt the dis-
counted reward criteria: we discount the contribution of the reward at decision epoch
k by 4%, with the discount factor v satisfying 0 < v < 1. Then the value of a policy,

written V™, is the expected sum of discounted rewards

VTi(z)=E {Z Y*R(zp, m(21), Try1)

xozx}. (2.1)

Practically, the discount factor helps ensure that V™ is bounded. Conceptually, it
can be interpreted as a prior probability of surviving from one decision epoch to
the next [44]. In the task scheduling problem, the discount factor helps balance the
immediate concern of quickly reaching the utilization target against maintaining the

system state near that target over the lifetime of the system.

Finding the optimal policy 7* corresponds to finding the policy with maximum value
at every state. That is, V™ (z) > V™(x) for each state x. While there may be
multiple optimal policies for a given problem, the optimal value function is unique,

and is identical for all optimal policies. We denote the optimal value function V*.

It is straightforward to show from Equation 2.1 that the value function for 7 satisfies

the following recurrence (Howard [41]):

VT (x) = R(z,m(x)) +7 Y Plyle,n(2))V"(y), (2.2)

yeX
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where R(z,a) is the expected reward for taking action a in z,

R(z,a) = ZP(y|aj,a)R(x,a,y). (2.3)

yeX

Since the recurrence in Equation 2.2 is a linear system, we can compute V™ by solving
a matrix equation when X and A are finite and the model parameters R and P are

known.

The optimal value function satisfies the Bellman equation,

V*(z) = max {R(w, a) + Z P(y|z, a)V*(y)} : (2.4)

acA
yeX

Given the optimal value function, we can derive an optimal policy by acting greedily

with respect to V*:

7m*(x) € argmax {R(x, a)+ Z P(y|z, a)V*(y)} . (2.5)

acA yeX

In order to compute the optimal policy for an MDP, it suffices to derive the optimal
value function. Solution methods are typically based on the classical value iteration

and policy iteration algorithms.

Value iteration computes an approximation to the optimal value function. Beginning
with some initial approximation Vj (for example, Vj = 0), the algorithm proceeds by
computing the sequence of approximations Vj,, by applying the Bellman equation 2.4

to the previous iterate V,

Vi1 () = max {R(x, a)+7 Y Plyle, a)Vk(y)} :

acA
yeX

The sequence (V)22 is guaranteed to asymptotically approach V* [72]. If we choose
Vo = 0, V}, corresponds to the optimal value given that the system will terminate after
k decision epochs [14]. This algorithm tends to be slower than the next algorithm,

policy iteration, but is conceptually useful for understanding the semantics of the
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optimal value function and is theoretically useful as a basis for inductively proving

claims about it.

In contrast to value iteration, policy iteration computes the optimal value function
exactly in a finite number of steps, given that there are only finitely many states and
actions. Each iteration consists of two steps, policy evaluation and policy improve-
ment. Beginning with some initial policy g, at iteration k policy evaluation consists
of computing the value function V7 by solving the linear system in Equation 2.2.
In the policy improvement step, we choose a new policy 71 by choosing the greedy

action according to V7k,

Trt1(z) = max {R(x, a)+ Z P(ylz,a)V™* (x)} .

acA
yeX

This is sufficient to guarantee that every V™ +! pointwise dominates® V™ since there
are only finitely many deterministic policies, the algorithm terminates. The final value

function is guaranteed to satisfy the Bellman equation 2.4 [72], and so is optimal.

Value and policy iteration are the basis of many algorithms for solving MDPs, but
most analysis considers the case where there are only finitely many states and actions.
Finite state and action spaces admit exact, tabular representations of the intermediate
value functions produced by these algorithms. In the following sections we formulate
the task scheduling problem as a Markov Decision Process with finitely many actions
but an infinite, discrete state space, then investigate some aspects of the problem

structure that we may exploit in order to compute exact optimal scheduling policies.

2.2 Task Scheduling MDP

In previous work [94] we proposed an MDP formulation of the task scheduling problem
based on the system model described in Section 1.1. The set of problem states
corresponds to the accumulated resource utilization of each task. Actions in the
model correspond to the decision to dispatch each task, and modify the state by

increasing the accumulated utilization of the running task according to its observed

LA function f : X — R pointwise dominates g : X — R if and only if for every z in X, f(z) > g(z).
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duration. In the task scheduling setting it is a bit more natural to talk about costs
rather than rewards; we penalize the system for reaching states that are “unfair” with
respect to the utilization target. For example, we may wish to make sure that two
threads receive an equal share by establishing a utilization target of % for each thread;
there is some penalty attached to one task receiving twice as much resource as the
other, but the penalty for this is less than when one task receives four times as much

resource as the other.

The set of decision epochs in this system corresponds to the points in time when
a task relinquishes the shared resource, and the scheduler must decide which task
to dispatch next. We have two distinct notions of time: (1) system time, which is
measured in quanta and denoted by ¢ when discussing task durations, or 7(x) as the
elapsed time when the system is in state x, and (2) model time, which is measured

in decision epochs and denoted using k.

We introduce a bit of notation before describing these components more formally.
We denote vectors u and v using bold face fonts. 0 is the vector with all zero
components; the dimension of this vector will be apparent from context. For n-
vectors u = (uq,...,u,) and v = (vy,...,v,), we say u is less than or equal to v,
written u < v, if and only if u; < v; for all © = 1,...,n. We define the operators <,
>, and > analogously. These comparison operators can also be applied to real-valued
functions as well, since these can be interpreted as members of a vector space with

an infinite number of dimensions.

The set of actions in the task scheduling MDP A is the set of integers between 1 and
n, inclusive,

A=1{1,2,....n}. (2.6)

Choosing to execute action i in A corresponds to the decision to dispatch task .J;.

We define the MDP state space X as the cumulative resource utilization of each task.

This is just an n-vector x with non-negative integer components,

X={xeZ" :x»0}. (2.7)
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If x is in X', we call it a utilization state in order to distinguish it from model refine-
ments we will discuss in greater detail later in this dissertation. We refer to X" as the

collection of wutilization states, or as the utilization state space.

Suppose that x is a utilization state. Then x = (z1,...,x,), and each component z;
corresponds to the cumulative resource utilization of task J;. This is the number of
time quanta in which J; occupied the shared resource. The total utilization 7(x) at

X is the sum of task utilizations,

T(x) = sz, (2.8)

this is the total number of time quanta that have passed when the system is in x. At
time 7(x) the target utilization point? is 7(x)u — the utilization vector scaled by the
number of elapsed time quanta; we say that task J; is overutilized when x; > 7(X)u;;

when z; < 7(x)u;, the task is underutilized.

When we run task J; in utilization state x, the successor state y is stochastically
determined according to P;, J;’s distribution over durations. If J; occupies the re-

source for ¢ quanta, then x and y differ by ¢ in the i"* component: y = x + tA; =

(x1,..., 2+t ..., z,). A;is the vector with component i equal to one and all other
components equal zero. We can write A; = (6;1, ..., 0;,) using the Kronecker delta,
1 1=
0 i#j

Using this notation, we define the probability of transitioning into utilization state y
from x on task J;
Pi(t) y—x=1tA;
Plylx.i) = 2.10
0 otherwise.
Figure 2.1 illustrates this transition system using an example problem with two tasks.
Task J; stochastically runs for one or two quanta; its transitions are shown in grey

with open arrowheads, advancing to the right. Task J, deterministically runs for

2We usually can not call 7(x)u a utilization state, since it will may not be integer-valued for some
x. As we will see in Section 2.4, the case where 7(x)u is a utilization state has some important and
useful properties.
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Figure 2.1: A utilization-state MDP model of a two-task scheduling problem.

a single quantum, with transitions advancing upwards, shown in black with closed
arrowheads. The dashed ray points points in the direction of the target utilization
vector u = (1/3,2/3). Since we require that tasks always occupy the shared resource
for at least one quantum, the transition system induces a directed acyclic graph over
X. Since the transition probabilities are derived from the task duration distribution
independently from the state, this transition system is self-similar: we can obtain the
transition system at any state by translating the system from any other state. This
observation of self-similarity is a requirement of state reduction techniques based on
identifying homomorphisms between states [24, 34, 74, 34]. These methods simplify
the state space by collapsing together states have similar futures. We will use this
idea later to simplify the task scheduling MDP.

As we mentioned above, the target utilization point 7u after 7 time quanta have
passed is not necessarily a utilization state. For example, this happens when 7 = 1,
since Tu; = u; is strictly between zero and one. With this in mind, we require that
the cost of states is defined at any point in R”. We achieve this by defining a cost
function ¢ mapping points in R™ to real-values. Since our objective is to encourage
the scheduler to keep the system near the specified utilization target 7u, we measure
cost in terms of the distance between a state x and the target utilization after 7(x)
quanta have elapsed, 7(x)u. The cost function must be minimal at the target point,

and non-decreasing as ||x — 7(x)u|| increases for fixed 7(x). This is satisfied, for
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example, by any L,-norm based cost function c,, p > 1,

e(x) =[x — T(x)ul|, = (Zm—f )/p, (2.11)

since ¢,(7(x)u) = 0. Optimal policies are not invariant with respect to the choice
of p, so it is important to consider the implications of any particular choice. As p
increases, a large deviation in a single component, |r; — 7(x)u;|, is weighted more
heavily than small deviations across a number of tasks. Conversely, if p = 1, all
deviations are weighted equally, so that the cost is exactly the sum of deviations from
target utilization for each task. In order to retain flexibility in our framework, we will

attempt to derive results that do not require a specific choice of p whenever possible.

The ¢, cost function is a pseudonorm when extended to arbitrary x in R™:

Theorem 2.2.1. The cost function c, is a pseudo-norm over R".

Proof. ¢, is scalable, since for any x € R" and a € R,

cp(ax) = [lax — T(ax)ull,
= [ax — OéT(X)lal
= |l [[x = 7(x)u,

= laf 6 (x)

¢, satisfies the triangle inequality, since

opx+y)=x+y—-7x+yul,
=[x+y—7(x)u—7(y)ul,
< [lx—=7&)ull, + Iy — 7(y)ull,
= ¢p(x) + ¢p(y)-

]

¢, falls short of being a norm, since (for example) there are infinitely many states
besides x = 0 where ¢, is zero. This result is examined in more detail in Theorem 2.4.3
in Section 2.4.

23



Theorem 2.2.1 implies that we can bound the difference in cost between a state and

its successor by a constant. We make this concrete in Lemma 2.2.1.

Lemma 2.2.1. For all utilization states x € X, actions © € A, and positive integers
p and t,
(%) = tep(Ad) < p(x +1A;) < ¢p(x) +tep(Ai)

Proof. The upper bound follows from Theorem 2.2.1 by straightforward applications
of scalability and the triangle inequality:

(x4 tA;) < cp(x) + ¢ (tA;) = cp(x) + tep(A).
We can obtain the lower bound by augmenting the cost at x:

(%) = [[x = T(x)ul],
< [x = r(x)u+t(A; — )|, + [[t(A; —w)]|,
= cp(X + tA;) + ey (A);

we can rearrange terms in this inequality to establish the lower bound. O

This result establishes a “speed limit” of sorts on how much the cost may change while
a task occupies the resource [54], provided that tasks’ worst-case execution times are
finite.

We define the reward function R(x,i,y) as the negative cost of the successor state
y; we switch the sign of the rewards so that maximization of rewards corresponds to

minimization of costs
R(x,i,y) = —c(y). (2.12)

At this point, it will facilitate our discussion to introduce some backup operators to
describe compactly the value function recurrence relations in Equations 2.2 and 2.4.
Let V be a bounded, real-valued function of X. Then we define an action-specific

backup operator I'; that maps functions to functions,

(LV)(x) = R(x,0) +7 ) Plylx. i)V (y). (2.13)

yeEX
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Using this notation, we can define the policy backup I'; and the Bellman operator I,

(V) (%) = (Trg V) (%) (2.14)
(TV)(x) = max {(T}V) (%)} (2.15)

These operators allow us to compactly write the policy recurrence equation from
Equation 2.2 as
VT = Fﬂvﬂ;

similarly, we can rewrite the Bellman equation 2.4 as
V=TV~

and the value iteration algorithm can be written compactly as Vi3 = 'V, or Vi, =
I'*V,. Plugging in the scheduling-specific definitions of P and R, Equation 2.13 can

be rewritten as

[e.e]

(CV)(x) =Y BtV (x + tA) — c(x + tA;)], (2.16)

emphasizing that the value of task J; in x depends only on the cost and value of
states that differ only in component 7. One consequence of this fact is that, while
there may be infinitely many states in the problem, any one state can transition to

at most nT successor states if T is the worst-case execution time among all tasks.

Finally, given the optimal value function V*, we can easily recover an optimal policy

7 by maximizing with respect to the per-action backup operator. That is,

7 (x) € argmax {(I; V") (x)}. (2.17)
icA
We use the membership relation '€’ rather than equality '=" here to indicate that

there may be more than one optimal action in a given state in general.

The utilization-state MDP described above captures the semantics of the task schedul-
ing problem from Section 1.1, so that if an optimal scheduling policy for the MDP
formulation exists, it is also optimal for the task scheduling policy given the cost

function. However, this model has infinitely many states, that we can not compute
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its optimal value function V* exactly at all states. Our choice of cost function in-
troduces an additional complication: since state costs grow without bound, it is not

clear that the optimal value can be bounded even in the discounted case.

In the next section we will demonstrate that the optimal value function exists and
is a bounded function over X, despite L, costs that decrease without bound. This
result is sufficient to prove the existence of an optimal solution to the MDP model. In
subsequent sections we will explore a number of approaches that enable us to compute

or approximate the optimal value function over a subset of utilization states.

2.3 Existence of the Optimal Value Function

In the finite state and action case, showing that the Bellman optimality condition
V* = I'V* has a unique solution is straightforward, following from the fact that I’
is a contraction map with factor v over the Banach space of real-valued functions of
state. The infinite-state case complicates matters, particularly since the cost function
decreases without bound. We will establish two points: first, that the optimal value
function for our infinite-state MDP is a bounded function in some Banach space, and

second, that the limit I'*V as k grows large is uniquely identified in that space.

We will follow an approach described by Puterman [72] for handling this situation.
We define a weighted supremum norm ||-||, in terms of a weight function «, so that

for any function V : X — R,
IVl = sup{[V(x)| /a(x) | x € X} (2.18)
We can then define the space V,,
Vo={V:X—=R| V|, < oo}, (2.19)

as the set of functions bounded in the a-weighted supremum norm. We can prove the
existence of the optimal value function by choosing « appropriately. Following theo-
rem 6.10.4 from Puterman [72], an appropriate choice of « is a positive, real-valued

function that constrains the growth of the value function approximations V, 1 = I'V}.
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This consists of requiring that the magnitude of expected rewards are bounded above
by o, and that the expectation ), P;(t)a(x +tA;) can be bounded in terms of a(x).
This constrains the growth of V(x) by bounding the contribution of future states’

values to the value of x.

We define a in terms of the cost function plus a constant term determined by the
maximum difference in cost that can be accrued when invoking a task. Let u; be the

expected duration of task J;,
o= SR (220
t=1
Then

a(x) = c(x) + max {pic(A;)}. (2.21)

We can then show that V* = I'V* has a unique fixed point in V,. Before we prove
this, we will establish a pair of lemmas. First, we will show that we can bound the

expected reward and expected future state values in terms of «.

Lemma 2.3.1. Let x be a state and let © be an action. Then

1. |R(x,1)| < a(x).
2. 222 Pi(Da(x +tA:) < a(x) + pic(A).

Proof. We can show (1) by applying Lemma 2.2.1 to bound ¢(x + tA;) in terms of
the cost at x a cost for dispatching task J;, tc(A;):

[R(x,i)| = > Pi(t)e(x + tA;)

< 3" Pb)fe(x) + te(A))

t=1

= c(x) + pic(A;).
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We can use this same observation to prove the second claim. Let M = majc{mc(Ai)}.
1€

i Fi(t)a(x +tA;) = M + i Pi(t)e(x + tA;)

7 < M+ () + pic(A)
= a(x) + pic(A;).

O
We can use this result to show that the k-step Bellman operator is a contraction

map on V,. This result will allow us to show that if V, is a Banach space, then the

sequence of value iterates V; 1 = 'V, must converge to a unique fixed point in V,.

Lemma 2.3.2. There is an integer k such that T'* is a contraction map on V,.

Proof. We will begin by showing inductively that the k-stage Bellman operator satis-
fies a pointwise Lipschitz condition: that for any state x, non-negative integer k, and

pair of functions U and V in V,,
[(T*0)(x) = (T"V)(x)| < ~*(alx) + kM) U =V,

where M = max;{p;c(A;)}. This is trivial when & = 0, since T°W = W for any

function W. Suppose that the claim is true for some k. Then

(T (x) — (DY) (x)] =

max{(TiT0) (%)} = max{(NTV) (%)}
< max (T, THU) (x) — (T0FV) (%)

< ymax 3" Plylx,) [(T0) () = (V) ()]

< )k —
< 1me Y PO i)y Holy) + KA1V -V,

=" ax) + (k+DM) U =V,
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the final step above holds by simplifying according to Lemma 2.3.1:

max d P(y|x,i)(a(y) + kM) = kM + rzneaxg P(t)a(x + tA;)

< kM + a(x) + max{jc(A;)}
1€

— (k+ )M +a(x),
establishing the pointwise Lipschitz property. To complete the proof,

|T*U —T*V|| . = sup {|T*U)(x) — (M*V)(x)] /(%) }

< sup {7*(1 + kM/a(x) |U - V], }

xeX

<A U = V|, sup {1+ kM /a(x)}
xeX

The supremum term above is a bounded constant, since «(x) is strictly positive.
Thus, when v < 1, ¥*sup, {1 + kM/a(x)} < 1 for some k, so that T'* is a contraction
on V,. O

We will use Lemma 2.3.2 to demonstrate that the value function exists.

Theorem 2.3.1. The Bellman equation V* =T'V* has a unique solution in V,.

Proof. In order to prove the claim, we need to show that V, is complete (i.e., that it
is a Banach space) and is closed under I'. Then we can use Lemma 2.3.2 to conclude

that the sequence Vi1 = 'V} has a unique fixed point in V,,.

Showing that V, is a Banach space is straightforward, but we will provide an argument
here for completeness. Consider a Cauchy sequence (fx)52, with each fz € V,. Then
by definition, for every € > 0 there is an integer K > 0 so that if k£ and k' exceed K,
| fx — fwll, < e. Pick an € and f; with k greater than the corresponding index K.
Since fi € Va, fr(x) is bounded for any x. Then for any &' > k, |fr(x) — fi(x)]| <
I fx — fwll, a(x) < ea(x). Therefore fi(x) € fi(x)E£ea(x) for any &' > k, so the limit
must be finite. Since x is arbitrary, the limit of (fx)52, is in V,; since the sequence

is arbitrary, V, contains the limit of any Cauchy sequence, and so is complete.
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In the proof of Lemma 2.3.2 we demonstrated inductively that I' is Lipschitz with
factor vsupy (1 + M/a(x)). Therefore,

vy, < 7825(1 + M/a(x)) V]|, < oo,

and so 'V is in V,. Therefore, since I is a k-stage contraction on V,, by the Banach
fixed point theorem we can guarantee that the sequence of functions Vi, = T'Vj

converges uniquely to the optimal value function V* O]

This demonstrates that the value function exists and is bounded, implying that some
policy exists that will not accumulate arbitrarily large costs. However, the utilization
state MDP model is impractical, since it requires representing the policy over an
infinitely large state space. Fortunately, the MDP formulation of this problem is
highly structured. The transition probabilities depend on the action but not on the
current state; i.e., it is just as likely that a task runs for ¢ steps in state x as state
y. A second regularity in the problem has to do with our choice of cost functions:
since the reward depends on the distance to the target utilization ray, there are many
states with the same cost. In the next section we will exploit these properties to show
that it is not necessary to represent every utilization state in order to represent the

optimal value function.

2.4 State Space Periodicity

In this section, we will explore some of the properties of the MDP formulation of the
task scheduling problem that make it amenable to efficient solution methods despite
having an infinite number of states. In particular, we will exploit the periodic nature

3. For example, notice that the cost is zero everywhere

of the problem state space
along the target utilization ray Au. In fact, since we defined the cost function c,
using the L,-norm of the distance between a state x and the point 7(x)u, every point

on the line {x + Au | A € R} has the same cost for any x we choose. Coupled with

3Tt is important to note that this use of “period” differs from the standard notion in real-time
systems. A periodic task in a real time system repeatedly releases identical jobs to the scheduler at
regular intervals [21]. Periodicity in this work instead refers to a regularity in the state space that
allows us to treat certain states occurring at regular intervals as equivalent.
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the fact that transition probabilities depend only on the dispatched task but not on
the current state, any states that are collinear in the direction u behave the same:

they have the same cost, and their distributions over successor costs are the same.

The key observation is that we can describe the state space as a collection of equiv-
alence classes. Below we show that distinguishing between members of these classes
individually provides no novel information about the long-term cost. Following Mc-
Callum’s wutile distinction principle [64], we need not represent more than one state
in each equivalence class. Our notion of equivalence here is based on state space
periodicity, due to the fact that if the utilization ray passes through states 0 and x,

then it must necessarily pass through other utilization states at regular intervals.

Periodicity in the state space occurs whenever we can obtain a distinct state y by
adding the scaled utilization vector to another state x. We will show that in this
case, X and y have the same optimal value, and that there is some optimal policy
that selects the same action at both states. More formally, we say that the task
scheduling MDP is periodic with period k if and only if whenever x is a utilization
state, x + xu is also a utilization state. We say that a period & is minimal if and only
if the MDP is periodic with period x and for any 0 < k' < k, K’ is not a period of the
MDP.

It is straightforward to compute the minimal period of a task scheduling problem.
Suppose that we can specify the utilization target u = (uq,...,u,) as a vector of
rational values. Let each component w; = ¢;/r;, where ¢; and r; are integer terms
of the simplest fractional form of ;. Then the least common multiple (lem) of the
utilization denominators, k = lem(ry, ..., 7,), is the minimal period of any given task
scheduling MDP.

Theorem 2.4.1. Let M be a task scheduling MDP with rational utilization target
u = (uy,...,u,), and let each u; = r;/q; with gced(r;,q;) = 1. Then

Kk =lem(ry,...,7mp)

is the minimal period of M.
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Figure 2.2: Periodic utilization states of the problem in Figure 2.1.

Proof. x + ku is integer-valued if and only if xu is integer-valued, so it suffices to

demonstrate this latter proposition. For any task J;, ku; is an integer, since
Ku; = KqGi [T = 1;q;

for some positive integer [;. Notice that if " is a period of M, then «’ is a common
multiple of r1,...,r,, since otherwise for some action i, x'u; could not be an integer.

Therefore it follows that k£ = lem(ry, ..., 7,) is the minimal period of M. O]

One consequence of periodicity is that, in order for an MDP to be periodic, the
utilization target components must be rational. This does not impose much of a
restriction on the kinds of systems we can consider, since we are committed to some
quantized digital representation of the utilization ray in practice anyway. Below we
will exploit periodicity in order to obtain more compact models; the size of these

models grows with the size of the period.

Figure 2.2 illustrates the periodicity of states from the example in Figure 2.1. The
utilization target is u = (1/3,2/3), so the problem is is periodic with period x = 3.
Each blue state can be obtained by translating a white state up and to the right by
adding ku; similarly, the grey states can be generated from the blue states by adding

ru or from the white states by adding 2xu.

We say that a function f : X — R is a periodic function if and only if for any
utilization state x and positive integer A\, f(x) = f(x + Axu). In other words, a

periodic function is any function that agrees at every state that is collinear with any
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given state along the utilization ray. If we know the value of a periodic function at
x then we also know the value automatically at each x + Axku. If we know that a
function is periodic, then there are infinitely many states that we do not need to

represent in order to store that function exactly.

Below, we will demonstrate that the optimal value function is periodic, and that there
is a periodic optimal policy as well. In order to justify this claim, we will show that
the set of periodic functions is closed under I' and I';. We will also show that the ¢,

cost functions are periodic, as indicated above.

Theorem 2.4.2. If V' and c are periodic functions, then TV and I';V are periodic

functions for any action 1.

Proof. Let x be a utilization state and A be a positive integer.

o0

(T:V)(x + Aku) = ZR YV (x4 Aku + tA;) — e(x 4 Aru + tA;)]

o0

_ZR [(YV (x4 tA;) — c(x + tA;)]

= (I;V)(x)

—~

Periodicity of I'V follows immediately from the definition of (I'V')(x) = max;{(I';V)(x)};

since the per-action backups agree, the maxima agree. O

Corollary 2.4.1. V* is periodic whenever c is periodic.

Proof. V* = limg_,o{*V} for any V in V,. 0 is a periodic function in V,. By
Theorem 2.4.2, if T*V is periodic, then so is I'**'V. By induction, V* must be
periodic. n

Corollary 2.4.2. If ¢ is periodic, then there is an optimal, deterministic, periodic

policy .

Proof. Any action in argmax,{(I;VV*)(x)} is optimal at state x. Since V* is periodic,
by Theorem 2.4.2,

argmax{(I';V")(x)} = argmax{(I';V")(x + Aru)},
icA icA
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so that 7 is an optimal action at x if and only if it is optimal at x + Axu. n

Theorem 2.4.3. For any p, ¢, is periodic.

Proof. Let x be an arbitrary utilization state and let A be a positive integer. Notice

that ¢ is a linear function and that 7(u) = 1. Therefore,

cp(X + Aku) = ||lx + Avu — 7(x + Aku)ul],
=[x+ Aku — 7(x)u — )\/{u||p

=[x = 7(x)ul,

]

Periodicity of the L, costs also implies periodicity of some derived cost functions. For

example, the family of e-insensitive cost functions ¢, .,

). (x) = p(x) —e cp(x) >¢
0 op(x) <e

is periodic. This cost function is useful if we wish to permit bounded deviations from
target utilization. In fact, any composite cost function ¢ that can be expressed as
c(cp(x)) is periodic. This includes cost functions that threshold on ¢,(x) cost, so
that the cost is zero if ¢,(x) is less than a threshold, otherwise the cost is negative.
Thresholded cost functions are useful if we want to determine the existence of policies
that never reach high L,-cost states from the initial state 0, since if such a policy

exists, its value at 0 is zero under thresholded costs.

It is worth noting that another natural expression of the ¢, cost objective is not
periodic. In state x, task J;’s resource share is x;/7(x), so its deviation from target
utilization is |z;/7(x) — u;|. We could express this as a cost function proportional to

¢1(x) by defining
() = |ai/7(x) = wi.
=1

¢1,4 1s not periodic, since ¢, (x4 Aku) = ¢1,(x)/(7(x)+ k). As time progresses, ¢,

becomes less sensitive small deviations from target utilization, as a single transition
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is unable to change the utilization much. The ¢, costs we employ do not suffer from
this issue, and so are better suited to reducing deviation from target utilization over
both the short and the long term.

Periodicity implies that the task scheduling problems have a reduced set of states
that provide a complete representation of the deviations from target utilization that
we care about. In the next chapter, we exploit the periodicity of the optimal value

function in order to allow its computation with a more compact representation.

2.5 Discussion

MDPs with infinite state or action spaces: There is an extensive literature
surrounding the problem of extending MDP solution techniques to problems with in-
finite state or action spaces, though a complete survey of these results is beyond the
scope of this work. Boyan and Moore [18] demonstrated that it is difficult guarantee
stable value function approximation when directly substituting off-the-shelf function
approximation strategies in place of a tabular value function representation. Gor-
don [39] characterized a class of stable approximation strategies. Lagoudakis and
Parr [53] adapted the policy iteration algorithm to the linear function approxima-
tion setting. Szepesvari and Munos [90, 67] studied the finite-sample performance
of general implementations of fitted value iteration, a procedure analogous to value
iteration that fits a general function approximation architecture to the intermediate

value functions.

Finiteness of VV*: We published the proof that the value function exists in Sec-
tion 2.3 in RTSS 2008 [38]. A much simpler proof is possible when the worst-case

execution time among all tasks 7" is finite, since then for any policy ,

X()—X}7

with the expectation taken with respect to the sequence of actions taken by the policy

VT(x) = —E {kacpm)

k=0

7. Each state x; can be expanded by considering the individual steps needed to arrive
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at that state,
k
X =X+ thAid7
d=1

where iy, = m(x4) is the policy action at decision epoch d, and ¢, is its duration,
distributed according to P;,. Then by Theorem 2.2.1, using the trajectory (xj)3>, we

can obtain a worst-case upper bound on the cost of x;

By linearity of expectations, we can write
VT(x) = = > " E{ep(xi) 0 = x}
k=0

_ Z ’ykE{Cp(X) + Z tde(Aid)

XOZX}
00

= — Z 'yk [cp(x) + iE {tde(Az'd)|X0 = X}] :

v

We can simplify this by bounding the expectation E {t4c,(A;,)|xo = x}. This can be
accomplished by noticing that ¢,(A;) < 2 for any action ¢ and choice of p; we can
also use the fact that t; can not exceed the maximum worst-case execution time 7.
This gives us

E{tac,(Ai,)|x0 = x} < 2T.

We can substitute this into the V™ inequality to get

00 00 k
Vix) > =Y Aex) =) 4F> 2T
k=0 k=0 d=1
cp(X) - k
T 2T % ~ek
cp(x) 2T

- - . (2.22)
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This provides a finite lower bound on the value of any policy at each state. Since the
value can never be greater than zero, this suffices to show that every policy has finite

value at each state, even though V™ is not bounded.

This proof is conceptually simpler than that provided in Section 2.3, since we did
not need to introduce any additional function spaces in order to reason about the
value. However, the previous results appear to be more powerful, since the additional
structure of the Banach space V, allows us to invoke the fixed point theorem to prove
that I and I'; have unique fixed points corresponding to the optimal value function

and the policy value functions, respectively.

Periodicity as State Aggregation: State aggregation techniques [56] attempt to
reduce the computational burden of finding a good policy for controlling an MDP.
These techniques achieve this goal by combining, or aggregating, states to obtain a
more compact abstract MDP with a smaller state space. Depending on the aggrega-
tion strategy used, the abstract MDP may retain only a subset of the policies for the

original problem.

McCallum’s utile distinction memory approach [64] was based on the principle that
states should only be distinguished if doing so allows the system to achieve better
performance. This occurs whenever one of the states in the aggregate has different
value than the rest. The decision tree based value representation of Boutilier et al. [17]
implicitly incorporates this principle, as the length of a path from the root to leaf,
which is equivalent to an assignment to relevant state values, corresponds exactly
to the set of state variables that influence the value in a particular state. The utile
distinction principle leads us to consider a more compact task scheduling MDP by
pruning out states that are periodically related to at least one other state until we

have exactly one state from each equivalence class.

Givan et al. [34] proposed a notion of stochastic bisimulation. Two MDPs M and
M’ are in bisimulation if and only if there is a binary relation between states of
each MDP involving every state in each MDP such that related states have the same
expected reward and whenever x and 2’ are related and y and 3/ are related, then
P(y|z,a) = P(y'|«’,a). This notion is perhaps most useful when a larger MDP is

in stochastic bisimulation with a smaller one, as a solution to the smaller MDP is
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equivalent to a solution to the larger. Periodicity in our application can be restated as
bisimulation between the utilization state MDP and a related MDP over exemplars
from each equivalence class. MDP homomorphisms [74, 75] can be viewed as an
extension of stochastic bisimulation in that it allows a notion of action equivalence in

addition to state equivalence.

The topics covered in this section are solely concerned with existential questions re-
garding the structure of the task scheduling problem formulated as a Markov Decision
Process. In the next chapter, we approach the problem from a less abstract stand-
point, focusing on practical issues, including the representation of the task scheduling
MDP and computational issues that arise given that we can only work with a finite

subset of the full utilization state space.

Scaled cost as a dynamic sliding window: We mentioned the distinction be-
tween using ¢,(x) = |[x — 7(x)ul|,, which penalizes deviation from the best possible
utilization state at time 7(x), versus the utilization cost ¢,.(x) = |x/7(x) —ul|,,
which penalizes deviation from the utilization target. The former is periodic, while
the latter is not. The distinction between these costs is subtle: both reward hitting
the utilization target exactly; small perturbations to the state have less impact as
time passes under the latter but not under the former. One way to look at this is
that our approach, trying to hit a target point at each time step, encourages us to
stay on target over all time, while the latter permits a policy to deviate from target
utilization if it has done a good job of maintaining target utilization over most of the

history.

One way to avoid ossification of state due to accumulated history is by maintaining
a sliding window over history. That is, we could retain system states corresponding
to the resource utilization of each task over the last ¢ time quanta for some choice
of t. Once the system has executed for at least ¢t quanta, the change in cost due to

executing a task maintains a fixed, attainable upper bound.

It turns out that the L, cost function performs a similar purpose, except that it uses
a dynamic window length: periodicity implies that whenever the historic utilization
x; of each task J; achieves or exceeds its periodic target ku;, we can throw out xu

quanta of history from each task and get an equivalent state.
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Chapter 3

Solution Methods

In Chapter 2 we modeled the task scheduling problem from Chapter 1 as a discrete
Markov Decision Process with a countably infinite state space. We call this model the
utilization state model because each model state represents the cumulative resource
utilization of each task. This implicitly assumes that, in order to make appropriate
scheduling decisions, we do not need to know exactly when in the past a task has

occupied the shared resource; but only how much time it has spent occupying it.

It is straightforward to describe the task scheduling problem using the utilization
state model. Whenever a dispatched task completes, the utilization state is updated
by incrementing the corresponding state variable by the task’s observed duration. In
order to encourage solutions that keep the resource share near the utilization target,
maximizing reward in the utilization state model corresponds to minimizing costs for

deviating from target utilization.

We demonstrated that this model has a unique optimal value function in the infinite-
horizon discounted reward case. We also noted that the optimal value function ex-
hibits periodic behavior under appropriate conditions on the utilization target and
cost function. In this chapter we will exploit these observations in order to obtain

methods for approximating and solving the task scheduling problem as an MDP.

In Section 3.1 we propose a more compact model, the wrapped state model, that
removes an infinitude of states from the utilization state model. This is achieved by
removing equivalent states, then re-establishing the transition function to account

for the probability of moving between collections of equivalent states. We prove that
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this model retains the optimal solution to the utilization state model; however, the

wrapped state model still has infinitely many states.

In Section 3.2 we demonstrate that when L, costs are used, there are finitely many
wrapped model states with cost less than any specified bound. We use this observation
to truncate the state space and provide bounds on the quality of the truncated model.
In Section 3.3 we propose a technique for automatically constructing a state space that
is necessary for policy evaluation and improvement. We present the ESPI algorithm,
which computes locally optimal solutions in this setting. We conclude this chapter

with discussion of related work that has motivated these methods.

3.1 Wrapped State Model

In the previous chapter, we defined the utilization state model, consisting of a straight-
forward MDP formulation of the task scheduling problem. While this model is useful
for grounding the semantics of the task scheduling problem in a computational ap-
proach, general direct MDP solution techniques like value iteration and policy itera-

tion can not be applied to this model because of the size of its state space.

The periodicity property indicates that the utilization state model carries substantial
redundant information. If the model is periodic with period s, then the optimal
value is the same whether the system is in state x or x + sku. Intuitively it does
not seem necessary to consider more than one of these two states. However, being
able to aggregate these equal value states into a single exemplar state is contingent
not just on states’ values, but on the relationship between possible future state space
trajectories from each state [24, 56]. In this section we show that we can safely
aggregate equivalent states given the properties of state transitions and rewards in
the utilization state model, in the sense that there is an MDP defined in terms of
aggregates of states from the utilization state model so that the optimal policy for

the aggregate model corresponds to an optimal policy for the utilization state model.

Congruence in modular arithmetic can be extended to vectors of positive integers as
follows. Let x, y, and z be vectors in Z” . Then x is congruent to y modulo z if and

only if the displacement vector x — y is a scalar multiple of z. As in the case where
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n = 1, congruency modulo a vector is an equivalence relation over Z', and we write

X =, y, or just x =y when the vector modulus is clear from context.

We can use this formalization to describe periodicity more precisely. If x and y
are utilization states with y = x + Axu for some A, then x and y are congruent
modulo ku. As we showed in the previous chapter, since x =, y, then any periodic
function f agrees at these states, including the optimal value function and some
optimal policy. In this chapter we will show that we can construct an MDP model
using a single exemplar from each each equivalence class; in principle, the choice of
exemplar should not matter, but computationally it is useful to choose this state in

a principled way.

The vectors that occur along a line in R™ are totally ordered under <. To see this, if
the line has direction z and contains x, then any other vector y on this line can be
written as y = x + Az for some A, with y < x if A is negative and otherwise x > y.
Since we restrict consideration to just vectors with non-negative integer components,
there is a well-defined least vector in Z} along any such line. This vector is the
remainder w(x, z), defined

w(x,z) =x — \'z, (3.1)

with

In the context of the task scheduling problem, we treat the state w(x,xu) as an
exemplar of the set of states congruent to x modulo ku. We denote this state more
concisely as w(x). We call w the wrapping function, since conceptually, it wraps the
utilization state space into a topological cylinder so that all equivalent states map to
one another. When n = 2, this can be visualized by drawing the states on a sheet of
paper, then tightly rolling the sheet of paper in the direction of u so that 0 and xu

overlap.

We define the wrapped state model as an MDP over these exemplar states; the state

space of this model is the set

W ={wx)|x € X}, (3.3)
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Figure 3.1: The wrapped model of the utilization state MDP from Figure 2.1.

where X is the utilization state space. In the previous chapter, we showed that this
state space is sufficient to represent the optimal value function and an optimal policy.
In this chapter, we will further show that a model defined over the wrapped state
space is sufficient for computing the optimal value function of the utilization state

model, once we have adjusted the transition system appropriately.

In practice, wrapping the state space removes a huge number of states. This corre-
sponds to removing every utilization state x > xu. Figure 3.1 illustrates the wrapped
state model for the example problem from Figure 2.1. Following the black transition
out of (1,1) in the utilization state model would have moved the system upward into
the state (1,2), which has cost zero; in the wrapped model, this transition is remapped
to the state (0,0).

The set of exemplar states is determined by utilization targets, but is invariant to
changes in the duration distribution, since the wrapping function is independent of
task durations. It is worth considering how W changes as we vary the utilization
target. For example, in the example shown in Figure 3.1, the wrapped state space
consists of an infinite strip of states along the horizontal axis and the vertical axis;
the width of these strips is determined by the utilization target numerators, as u =
(1/3,2/3). In general, the wrapped state space is contained in the union of (n — 1)-

dimensional axis-aligned hypercubes with infinite extent.

It is interesting to note how the size of the state space grows as we vary the utilization

target. Of course, since the wrapped state space is infinite, the cardinality is a

poor measure of size. Instead, we will consider the number of wrapped states in the
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Figure 3.2: The number of states in [0, ku) in two-task wrapped state scheduling
MDPs with varying utilization targets. See the text for further details.

rectangle [0, kuy) X [0, kuy) for a two-task problem — in the example in Figure 3.1, this
rectangle contains the states (0,0) and (0, 1). If the utilization target u = (r1/¢,72/q)
with r; and ry relatively prime, then there are riro states in this rectangle. Then the
system period is the common denominator ¢ = r| + r9; as kK grows large, the number

of states grows large as well.

The period x directly describes the resolution of the utilization target. When « is
small, for example, if £ = 2, then the only utilization we can describe isu = (1/2,1/2),
the fair share case. As g grows larger, we can describe a wider variety of utilization
targets; for example, we can describe the fair share case u = (128/256, 128/256),
but we can also describe situations that are almost fair, such as (127/256, 129/256).
While the difference in utilization targets is small, the difference in the number of
states is striking. There is only one state in the region of interest in the fair share
case compared to more than sixteen thousand for the (127/256, 129/256) case!

Figure 3.2 explicitly quantifies the number of states for utilization targets of the form
u = (u} /256, (256 — u})/256). Since us = 1 — uy, we plot u; against the number of
states in the half-open rectangle [0, ku). The number of states falls into a series of
bands; the uppermost band corresponds to utilization targets that are irreducible.
The next highest band corresponds to utilization targets that can be cut in half
losslessly (i.e., problems with period x = 128), the next can be cut in half again, and

so on. The least number of states occurs in the fair share case when u; = us.
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Figure 3.2 implies a useful tradeoff, as we may approximate high resolution utilization
targets — utilization targets that require large denominators — using lower resolution
targets by scaling down the utilizations and rounding appropriately. The figure shows
that reducing the resolution can dramatically decrease the number of states. Due to
stochasticity in task duration distributions, even the best scheduling policies will only
keep the system near target utilization, and will rarely achieve the target utilization
exactly. It seems likely that stochasticity in task durations will negate most of the
drawbacks from using a lower resolution utilization target, since the difference between
the actual utilization of each task and its target will probably be quite variable over

small intervals.

Next, we consider how to define an MDP over the wrapped state model. Moving
from the utilization state model to a model over the wrapped state space leaves some
“dangling” transitions whenever it is possible to transition from an exemplar state
to a non-exemplar state. We can reattach any of these dangling transitions to an
equivalent exemplar state that is in the wrapped state space, as we have done when
mapping the example utilization state model in Figure 2.1 to the wrapped model in
Figure 3.1. Lemma 3.1.1 provides a basis for this result: any two equivalent states

have equivalent successors.

Lemma 3.1.1. If x andy are equivalent utilization states in X, then for any task J;
and duration t,
X +tA; =y + tA;

Proof. Without loss of generality, we assume that x <y. Then y = x + Au for some

non-negative integer A. The claim follows immediately, since
vy +tA; = x +tA; + Aku = x + tA,.

]

As a consequence of Lemma 3.1.1, any successor state x-+tA; is equivalent to w(w(x)+
tA;), since
X+ tA; = w(x) + tA; = w(w(x) + tA;)
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This means that the successor state distribution at x is captured exactly using only

exemplar states.

We define the wrapped state model as a Markov Decision Process with state space
W, the actions from the utilization state model A, transitions P,, and rewards R,,.
For this model to be useful, we need to define P, and R,, so that the optimal value
of any state in the wrapped model agrees with the optimal value of all equivalent
states in the original model. To achieve this, we require that executing any task in
any state results in the same distribution over rewards as executing the same task
in an equivalent state in the original model. We can then invoke Theorem 2.4.2 to

guarantee that this wrapped model captures the optimal value function.

Conceptually, we define the transition function P, by starting with the transition
system from the original problem (see Figure 2.1). Any transition to a state that
does not map to itself under w (e.g., x # w(x)) is instead mapped to an equivalent
state. We then remove the unreachable states. The resulting transition system is

shown in Figure 3.1.

Let x and y be wrapped states in W, and let J; be a task. We define the transition

function P, in terms of duration distributions,

. Pi(t) y=w(x+tA;)
Pw(y|X7 Z) =
0 otherwise.

This maps the successors in the utilization state model back into the wrapped state

space to establish the transition. This definition satisfies
P,(y|x,i) = P(z + tA;|z,i) = Pi(t)
whenever z is a utilization state equivalent to x.

Since we require the cost function ¢ to be periodic, any two equivalent states have the
same cost. Following Equation 2.12, we define the wrapped-state rewards according

to

Rw(X, i? Y) = _C(Y)
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which satisfies R(x,7,y) = Ry,(x,4,y) because of cost periodicity. Thus, for any

utilization z and wrapped state x = w(z), the expected rewards obey

Rw(X, Z) = - Z P(Y|X7i)C(Y)

yeW

- Z Pi(t)e(w(x + tA;))

== Pi(t)e(x +tA)
= R(z,1),

so that the expected reward for dispatching task J; in the wrapped state x matches
the expected reward of all equivalent states in the original model. This formulation
is sufficient to compute the optimal value function to wrapped state model, which is

equivalent to the optimal value function of the original model.

Theorem 3.1.1. Let V* and V) be the optimal value functions for the original and

wrapped state models, respectively. For any utilization state z, we have

Vo(w(z)) =V'(2).

w

Proof. Let V be a periodic function over X, V,,x = 'V, and V}, = T*V. Then for

any utilization state z,

Vuo(w(z)) = V(w(z)) = V(z) = Vo(2).
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Suppose that Vi, x—1(w(z)) = Vi_1(z). Then the k-step wrapped-state approximation

Vw,r agrees with the the corresponding utilization state value function, since

Therefore, since the limits of these sequences exist in V,, we have

Vi (w(z)) = lim {(T},V) (w(z))}

k—o00

= lim {(I'*V)(z)}

k—oo

=V(2),

so the optimal value in the utilization state model of z is identical to the optimal

value of its exemplar w(z) in the wrapped model. O

Theorem 3.1.1 shows that it is sufficient to compute the value function over the
wrapped states, and the proof establishes that in principle the value iteration algo-
rithm will correctly converge to this solution. However, computing V,; over W is
no more feasible than computing the optimal solution to the utilization state model,
since there are also infinitely many states in the wrapped state model. In the next sec-
tion we truncate the wrapped state space to obtain an MDP with only finitely many

states, analyze its approximation qualities, and examine its empirical performance.

3.2 Bounded, Wrapped State Model

Wrapping the state space allows us to describe the features of the state space that are

relevant for evaluating scheduling policies more compactly. However, there are still
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Figure 3.3: The set of utilization states that satisfy cost bound 6.

infinitely many equivalence classes in the wrapped state model. In order to obtain
an MDP that we can feasibly solve, we still need to use some additional methods to

restrict our attention to a finite number of states.

There are only so many “good” states in the wrapped state model. Specifically, for
any cost threshold that we choose, there are only finitely many states with L, cost
below that threshold. We would expect a scheduling policy that tries to minimize
cost to stay close to target utilization at all times, which means that the policy should
consistently restrict itself to low-cost states. This does depend on having finite worst-
case execution times for each thread, since otherwise there is always some probability

that any low-cost state has a successor with arbitrarily high cost.

We can introduce some notation to formalize this first claim, that there are only
finitely many states that satisfy any particular cost bound. Let # be a non-negative
real value; then we define the set of cost-bounded utilization states Xy and cost-

bounded wrapped states Wjy:

Xy = {x € Xl|c(x) < 6}, (3.4)
Wy = {x € W|c(x) < 0}. (3.5)

Figure 3.3 illustrates these state sets on a two-task example. Here the cost bound
defines the two red rays of points x with cost ¢(x) = 6. The set of cost-bounded

utilization states Xy lies between these rays. The grey and blue regions contain the
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wrapped state space, and the blue region between these rays contains the bounded

state space Wpy.

In any periodic task scheduling problem, Xy is infinite, since it contains the infinite
set
Xo ={AkulX € Z, }.

Wy is finite, though; this is because X, intersects only finitely many equivalence
classes in periodic problems, and so wrapping will remove all but a finite number of

exemplar states. We formalize this result in Lemma 3.2.1.

Lemma 3.2.1. For any 6 in [0,00) and L,-norm cost c,, Wy is finite.

Proof. Notice that we can decompose Wj into disjoint subsets
o0
Wy = U W -
7=0

by defining cost-bounded sets Wp ; consisting of wrapped states with equal cumulative
utilization,

Wgﬂ- = {X € WQ‘T(X) = 7‘}.

Consider the union |, Wy, form € Z,. If x is in |J"_, Wp,,, then every component
of x is between 0 and m, inclusive. Then this union is a discrete subset of [0, m]™,

and therefore finite.

Each Wp . is empty for large enough 7. To see this, notice that if x is in Wp .,
it has some component x; with 0 < x; < Ku;, otherwise x would not be a wrapped
state since we could subtract ku from x to get an equivalent state with smaller
components. As 7 grows large, |z; — Tu;| grows large as well since z; is bounded but
Tu; grows linearly with 7. We know that action ¢ is underutilized for large enough 7,

since Tu; > Ku; > x;, so we have |z; — Tu;| = Tu; — x; > Tu; — Ku;. Notice that

Tu; — Ku; > 0 =71 >0/u; + K,
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Figure 3.4: A bounded state approximation to the wrapped model from Figure 3.1.

so that if 7 > max;{6/u;} + k (these inequalities are well-defined since we require

0 < u; <1 for all i), then for any x in Wy, we have
cp(x) > |x; — Tuy| > TU; — KUy >0

so x can not be in Wy ,; since x was chosen arbitrarily, Wy  is empty for sufficiently
large 7. Thus Wy = UT:O Wy - for some finite m, so Wy is finite. O

Assuming that the optimal policy never reaches states with high cost given an initial
state with low cost, then the optimal policy can only visit a finite number of wrapped
states. Using this assumption, our third MDP model for the task scheduling problem
explicitly enforces a bound on the set of states that we will consider. In particular, we

restrict consideration to the wrapped states that satisfy a user-specified cost threshold.

Figure 3.4 illustrates this construction on the example problem from Figures 2.1
and 3.1. We have replaced the continued transitions upwards and to the left with
transitions to the absorbing state in the upper right. Local transitions are unchanged
for the states that are far enough away from the bounds. By choosing a large enough
cost for the absorbing state, we can force MDP solution methods to discover policies

that always stay within the cost bounds if any such policy exists.

We obtain the bounded state model by constructing an MDP over the set of wrapped
states in Wy. This is achieved by preserving most of the transition and reward struc-
ture from the wrapped-state model. The main difference between the wrapped and

bounded state models occur at boundary states: states in the wrapped model that
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have successors with cost exceeding 6. Since these successors are not part of the
wrapped state space, we are left with some dangling transitions. We abstract the
removed states with a single absorbing state, and map all of the dangling transi-
tions to the absorbing state. For example, if x is a wrapped state with successor
y = w(x + tA;), with ¢(x) < 0 but ¢(y) > 6, then the transition from x to y is
replaced by a transition to the absorbing state, and the probability of transitioning

to the absorbing state is increased by P;(t).

The absorbing state is an abstraction for all of the high cost states in the wrapped
state model. Since our goal is to avoid high cost states, we penalize the system heavily
for entering the absorbing state. In practice, we choose a cost that exceeds the cost

of any successor utilization state reachable from W,
c(zg) = 0 + 2T,

where T’ is the largest worst-case execution time among all tasks, since this guarantees

that the bounded state model never underestimates the cost of an action.

Formally, given a cost bound 6, the bounded state MDP is defined over the states Wy
together with an absorbing state zy, along with the actions A, the transition system
Py, and the rewards Ry. For any x and y in Wy, Py(y|x,i) = P,(y|x,), while the
probability of transitioning to the absorbing state in x is the aggregate probability of

transitioning to any state with cost greater than the bounds,

Py(zglx,i) = Y Pulylx.i).

YEW/ Wy

The reward function is defined analogously to the rewards in the utilization state and

wrapped state models as
Ry(x,i,y) = —c(y).

The utilization state, wrapped state, and bounded state rewards are all equal when

y is in Wy.

While the state space Wy is finite, its size grows exponentially in the number of tasks.
The boundaries of the bounded, wrapped state space are parallel to the utilization

ray, and so are not axis aligned (Figure 3.3). To get a sense for the size of the state
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space, we bound it above and below using the difference of two hypercubes. In two
dimensions, this corresponds to two L-shaped regions of real space, one contained
completely inside the bounded state space and another completely containing the
bounded state space. For vectors v and w in R" with v <X w, let [v,w] be the
hypercube obtained by taking the Cartesian product of the intervals xI,[v;, w;].
Then if we have bounds b; such that (b; — 1)c(A;) < 6 and b;c(4A;) > 6, the bounded

state space is contained in
[0,b + ku)/[ku, b + Kku),
and the cost bounds contain the set
[0,b —1]/[ku,b — 1 + ku].

This does mean that the bounded state model is restricted to small numbers of tasks
in practice. In Chapter 5, we discuss methods for approximating an optimal policy

in problems involving many tasks using direct policy search techniques [88, 52, 71].

3.2.1 Approximation Quality

The bounded, wrapped state model achieves our goal of providing a finite model
of the task scheduling problem; intuitively, it restricts the set of states we consider
to just “good” states — states with relatively low costs. In this section we derive a
prior bound on the approximation error between the optimal value function of the

truncated model versus the optimal utilization state value function.

The basic idea is straightforward: we can bound the contribution of any state y
with high cost to the value at some arbitrary state x if we know that, for example,
c(y) > 2Tk + ¢(x). This is because any policy that reaches y from x must take at
least k decision epochs to do so; then the contribution of y has weight at most +*.
Even if our policy could reach y in k£ steps and stay there, the contribution to the
value at x is at most v*¢(y)/(1—7). Since L, costs grow polynomially while high-cost
states are discounted exponentially, the contribution of far away states vanishes. This

means that if we want to estimate accurately the value of states in Wy, then there is
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another threshold 8’ such that a bounded state model defined over Wy is sufficient

to guarantee the desired precision.

With this intuition in mind, we present a more formal worst-case analysis of the qual-
ity of approximations obtained by solving the bounded state model. Our analysis is a
specialization of general results from Chapter 6.10 of Puterman’s book for analyzing
the performance of finite-state approximation of countable state models [72]. First,

we define a sequence of cost thresholds
(0r, = 2T]{;)Z°:0

we assume that the threshold 8 used to define the bounded state model is in this

sequence, with § = 6,,. This in turn defines a sequence of nested wrapped state sets
{0} C Wy, CWp, C...C Wy, =WyC...

To reduce the proliferation of subscripts, we abbreviate Wy, to just Wj. It is not
possible to reach any state with cost greater than 6, after taking any sequence of
within & decision epochs from the initial state 0, so if we start in 0 and dispatch &
actions, the system state is in Wj,. Similarly, if the system is initially in x € W, then

after k decision epochs the system state is guaranteed to be in Wj_y.

It is useful for our discussion to look at sets of states with cost bounded above and
below. Specifically, the set difference Wy, /Wj,_; is the set of states with cost in the
interval (0;_1,0k]. We denote the set of these states as Zj:

Wk/kala k>0
W, k=0

Zy =

Together (Z)72, partitions the wrapped state space W into cells with the property

that if x is in Zj, then its successors are in the union of Zy_1, Z;, and Zy, 1.
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Given the cost threshold @, for any real-valued function V' over W we write the

bounded model backup operators as

(TeV)(x) = I?&X{(ngi\/)(x)}, (3.6)
(ToaV)(x) = > Plylx,))[yV(y) —c(y)] + > _ Plylx,i)vp (3.7)
yeW)y yEWy

where vy is the default, fixed value of the absorbing state zg,

Vg = —Omi1/(1=7).

We use this as the default value for unrepresented states because 6,1 is a pessimistic
estimate of the cost of states reachable from Wjy; this biases solutions towards policies

that stay inside Wy by making the alternative prohibitively expensive.

If x is in W,,_1, then its successors are entirely inside Wj, so these backup operators
are equal to their utilization or wrapped state equivalents. Let V;* = I'gV," be the
optimal bounded state value function. Let
er = max [V*(x) — V' (x)|
XEZk
be the largest magnitude error over states in Z;. Below, we exploit the locality of
the transition function to show that ¢, depends directly only on e;_1, €, and €5y1.
Our intuition is that e, is largest when k is near m, since it takes fewer steps to reach

outside of Wy from Zj as k approaches m. To formalize this intuition, we make use

of the following straightforward inequality,

V() = Vg (x)] = [(TV7)(x) = (T Vy) (%))

< max | (DV*) (x) = (Do, V) ()]

This indicates that we can bound the approximation error in terms of backups per-

formed with respect to a single action. This eliminates the need to consider possible
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differences in the optimal policy at x.

= [/ 33 PO V) - VW Y PRV Y) - ey) — v

J=0yeZ; YE€Zm+1
<Y D PRIV = Vil + Y PIx ) WVH(y) = ely) =yl
j=0yeZ; YE€Zm41
<Y Y Plylxie+ Y Pyl i)y +c(y)]
j=0yeZ; YE€Zm+1
m+1
<y P(ylx,ie;+ Y Ply[x,i)fms
j=0 yeZ; YE€EZm41

We obtain the final inequality above by noting that y must be in W1, or equiv-
alently, ¢(y) < 6,,.1. We can use this inequality to bound e, by maximizing the

right-hand side with respect to the state x and the action 1,

m+1
ep < max{ 5 g P(yl|x,i)e; + E P(y|x,1) m+1}
ZEA ] 0 yEZ y€Z7n+1

Three cases for €, must be considered; (1) when & < m, (2) when k = m, and (3)

when k& = m + 1. We examine each of these cases below.

Ema1 : Since states in Z,,,1 are absorbing in the bounded state model, we can bound
€m+1 independently of the error in any other cells. The error in this region
is bounded by the largest difference between the optimal value V*(x) and the

default value vy,
|[V*(x) — vg| = max{V"*(x) — vg,v9g — V*(x)}.

We loosely bound the first term in the maximum by observing that V*(x) <0

since there are no positive rewards, so
V(%) = vp < Oy /(1 — ).
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For the second term,

— V(%) = —Opt1 /(1 —7) = V'(x),
< by /(1= 7)
+o(x)/(1=7) +2T7/(1 = )2,
<2Tv/(1 = 7)?,

which follows because ¢(x) is bounded above by 6,,.1 when x is in Z,, ;. Since

Omi1/(1 — ) eventually exceeds 2Ty /(1 — ~)* as m grows large, we use
Em+1 < 9m+1/<1 - 7)'

€k, k<m : For any k < m, ¢, < yeg1. We demonstrate this inductively. First,

assuming that m > 1, then there is a state x in Z;, such that
o S ’yP(Z()|X, i)€0 + ’)/P(Zl|X, Z'>€1,

Since P(Zi|x,1) =1 — P(Zy|x,i) we can rearrange terms to get

1 — P(Z|x,4)
1= P(Zolx,i) = "

go/e1 < 7y

or equivalently, g < ve1. Then if ¢, < e, we can employ a similar argument

to show that e < vegy1, since

k+1 k
ep <y Z P(Z;|x,1)e; < ey, Z P(Z;|x,i) + YP(Zy41|x, 1) k41
j=k—1 J=k—1

Therefore the inductive hypothesis is valid.

em : We treat this case last because it relies on both ¢,,_; and ¢,,,1. We have that

for some x in Z,,,

Em S 7[1 - P(Zm+1|x7 a)]gm + P(Zm+1|xa a)[’ygm—i—l + em—l—l}-
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Since €,,41 is bounded by 6,,,1/(1 — 7), the term ~e,, 11 + 0,,11 simplifies to

Om+1/(1 — 7). In the worst case, this means that we have
Em < em—l—l/(l - 7)'

Putting these pieces together, we have that if k is less than m, then

e <A™ M 0mia /(1 — 7).

Therefore as 6 increases (that is, as we choose larger values of m), e vanishes, and
the bounded model provides a consistent approximation to the value function of the

original wrapped-state MDP.

3.2.2 Empirical Results

In the previous section, we showed that the bounded state model is a consistent
approximator for the optimal value function of the task scheduling problem. These
bounds are primarily useful as a theoretical tool for demonstrating consistency; since
they apply to arbitrary policies, they are quite loose. In this section we will look
empirically at bounded state model solutions empirically to get a better sense for

their practical performance.

In the following discussion, we present results from different strategies for approxi-
mating the optimal task scheduling policy using the bounded model representation.
This includes experiments considering the choice of cost bounds on the derived policy
quality, the effect of reducing the temporal resolution of the problem, and the effect
of reducing the fidelity of the utilization target (for example, by approximating a
51%/49% share between two tasks using a 50%/50% share).

We can characterize each of these settings as varying some parameter of interest (3 to

study its impact on approximation performance. Each parameter 3 induces a different

problem that approximates the original task scheduling problem, and each of these

problems has its own optimal policy 5. There are two values that we can consider

when talking about 75. One is its value on the approximate problem, denoted Vj,

and the other is V™, the value of using 75 on the actual task scheduling problem.
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Even if some state x occurs in both the approximate and the original problem, Vi (x)

is not necessarily equal to V™ (x).

The quantity we are interested in studying in our approximation experiments is
V™5 (0) — V*(0)|, the difference in value of the optimal and approximate solutions at
the initial state 0. One reason that we restrict our attention to just the initial state
is that it appears in the original problem and every approximation we consider, so it
provides a consistent basis for comparison. The other reason is that if V™ and V*
differ at x, then it is necessarily the case that V™ (x) < V*(x), so if x is reachable
from O under 73, then V™5 (0) < V*(0), so the initial state reflects suboptimality at

all of the states we care about even when 75(0) = 7*(0).

There are a couple of issues with using the error [V (0) — V*(0)| as our quantity of
interest. The first issue is that expected rewards, and so values, can vary tremendously
between problem instances, so this error has high variance. The second issue is that

we do not have access to the optimal value V*(0) in general.

We report results averaged across many random problem instances, and the value of
the initial state can vary substantially even between problem instances with the same
number of tasks. The expected error calculated across problem instances tends to be
dominated by the problem instances with the greatest magnitude initial state value,
and is not necessarily indicative of the actual approximation quality. With this in
mind, we instead report the normalized approximation error |[V™(0)—V*(0)]/V*(0)],
or equivalently, [V™3(0)/V*(0) — 1|. This measure vanishes as the approximation ap-
proaches the true optimal value, and is monotonically increasing as the approximation
gets worse. It is well-defined for all of the problem instances we consider, since V*(0)

is zero only in the degenerate case in which some task has a duration of zero*.

A further problem is that we can not certify that any policy we consider is actually
optimal, since we can not evaluate policies that may reach infinitely many states
— while we suspect that no such policy can be optimal, we have not been able to
demonstrate this conclusively. Therefore, we need to use some proxy in place of V*(0)

in our error measurements. In all of the settings we consider, there is a natural choice

4If some degenerate task has a duration of zero, then running that task from the initial state
never accrues any cost; any task with non-zero duration has positive expected cost, so the optimal
policy will be to run the degenerate task repeatedly forever
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of a baseline parameter value B that serves this purpose: solutions to the largest
bound model are never worse than policies derived with smaller bounds, the set of
policies over coarse temporal resolution approximations is a subset of the policies for
finer resolution problems, and so on, so that V™ < V7. With this in mind, we

report approximation quality in terms of [V™3(0)/V™5(0) — 1|.

Varying the cost bounds: Our first tests consider the convergence rate on random
two-task problem instances. These problem instances were constructed by choosing
task duration distributions and utilization targets at random. Utilization targets were
selected by choosing integers ¢; and ¢» uniformly at random from between 1 and 16,
inclusive, in order to establish a utilization target of u = (q1,¢2) - (¢1 + ¢2)~'. The
worst-case execution time for each task varied from instance to instance and was

selected uniformly at random from between 8 and 32 quanta, inclusive.

One common consideration with simulated performance is whether or not results from
simulated problem instances predict real-world behavior. In order to address this, we
ran tests with structured and unstructured duration distributions. Unstructured dis-
tributions consisted of randomly chosen histograms, and may simulate a wide variety
of phenomena, including distributions with non-convex support. Structured support
is intended to model task behaviors that may be more likely in certain domains: for
example, the duration of robot motor tasks is often estimated using normal distribu-

tions, as this fits well with empirical observations.

Unstructured histograms were generated at random as follows. We first select a worst-
case execution time T; for the task J; uniformly at random between 8 and 32 time
quanta. The closed interval from time 0 to T; + 1 was then discretized into T; bins; bin
t corresponds to the probability of running for ¢ quanta, P;(t). We populated each bin
by sampling uniformly at random among integers between 0 and 10, inclusive, then

normalized each bin by the sum over all bins in order to obtain a discrete distribution.

Structured histograms correspond to discretized, truncated normal distributions. As

above, we first select a worst-case execution time uniformly at random between 8 and

32 time quanta. Then we select the normal distribution’s real-valued mean from the

intervals 1 and T}, and its variance from the interval [0,5). The corresponding discrete

distribution is obtained by taking the height of the normal density at the center of

each bin, then normalizing by the sum over bins to get a proper discrete distribution.
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Figure 3.5: Approximation performance for the bounded state model.

We examined the approximation performance for increasing cost bounds between
0 = 10 and # = 100 at unit intervals. The results of these tests are shown in
Figure 3.5. We report the approximation quality in Figure 3.5(a). The approximation
quality is a function of the difference between the optimal and approximate policy,
and is discussed in greater detail below. Figure 3.5(b) shows the number of states in
the bounded state model as we increase the bounds. We show results for cost bounds
between 10 and 40 because in all of these tests the bounded state approximation

converged at or before § = 37.

In Figure 3.5(b), the number of states grows linearly as the cost bounds increase. In
the n-task case, the size of the bounded state space grows according to O(nf(u)"!)
for some utilization-dependent density constant f(u). One way to visualize this
growth is by projecting every utilization state (or equivalently, every wrapped state)
onto n orthogonal, axis-aligned (n — 1)-dimensional halfplanes that meet at the origin
and extend to +o0o0, i.e., the halfplanes p; = {x € R" | x = 0, z; =0} fori =1,... n.
We can flatten out the union of these halfplanes to span R"~! so that the cost of a state
is just the distance to the initial state in the the flattened space. Therefore the size of
wrapped state spaces with progressively larger cost bounds corresponds to selecting
progressively larger balls in the flattened (n — 1)-dimensional space; the number of
states in these balls necessarily grows asymptotically on the order of density™!. The
density of states in this space is dictated by the utilization target, becoming more

dense as the period grows large.
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The approximation quality for varying cost bounds is shown in Figure 3.5(a). We
measure the approximation quality as the normalized error |V, (0)/V;,(0) — 1|. If
the optimal policy for the model with cost bound # never reaches an absorbing state
in that model, then its value at the initial state in the bounded model is identical
to its value at the initial state of the unbounded wrapped state model. In these
experiments, 7 stayed within the cost bounds whenever 6 exceeded 36; we suspect
that the optimal bounded model policy for each of these problems may be the optimal
policy for the original problem, as further increasing the bounds fails to improve the
policy. While this stabilization point varies from problem to problem, we conjecture
that for any periodic task scheduling problem with finite worst-case execution times
there is some finite bound cost model that is sufficient to represent the optimal policy

at the initial state and its successors.

Structured problem instances exhibited much better approximation performance than
we saw in the unstructured case. This is encouraging, since we expect that most real-
world tasks will resemble more closely our structured distributions rather than the
unstructured ones. We attribute this approximation performance to the likelihood of
transitioning to the absorbing state as the bounds increase. Since we used discretized
Gaussian distributions for these experiments, the probability of emitting larger dura-
tions gradually falls off beyond the mean. If we choose a wrapped state and look at
the probability of transitioning from it to the absorbing state in bounded state models
with progressively larger bounds, that probability will fall off gracefully. Under the
unstructured distributions, the change in probability of reaching the absorbing state

while varying cost bounds may be less smooth.

Varying the worst-case execution time (WCET): In these tests, we ran thirty
trials to evaluate the effects of differing worst-case execution convergence time of
bounded state approximations. In each trial we chose a mean and variance for each
task; these means were real values selected uniformly at random between 1 and 32,
while variances were selected similarly from between 1 and 16. We then generated 25
problem instances by truncating the distributions at 7' = 8 up to 17" = 32 in order to

induce a variety of worst-case execution times.

Next, we approximated a solution to each of these problem instances by using cost

bounds between 10 and 50 to determine the point of convergence. The point of
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Figure 3.6: Convergence points as a function of task worst-case execution time.

convergence was determined by finding the least cost bound &' such that for each 6
between 6" and 50, V;5(0) = V;;(0). Figure 3.6 shows the results of these tests.

In Figure 3.6 we report the mean, minimum, and maximum locations of the con-
vergence point for each worst-case execution time we considered. 95% confidence
intervals about the mean are shown. We see that the convergence point grows almost
linearly with worst-case execution time. The curvature in the mean curve is due to
our method for choosing the distribution means; the WCET induced by truncation
may differ from the actual one if a duration distribution has small enough mean and
variance that the last few bins in the discretization have zero probability mass. This
causes an artificial decrease in slope as truncation is irrelevant for more problems as

the induced worst-case execution time increases.

Perhaps the most interesting observation is that in both sets of tests, the value func-
tion approximations appeared to converge at a finite cost bound. This is in contrast
to our a priori performance bounds in the previous section, which guaranteed con-
vergence to the optimal asymptotically. This suggests that for any periodic task
scheduling problem with finite worst-case execution times, there may be a finite cost
bound such that the bounded state model is sufficient to completely represent an
optimal policy from the initial state. That is, there may be some optimal policy that

only reaches finitely many states from the initial state.

This is not particularly surprising, since increasing the number of states in a model

can result in a new optimal policy only when the new states themselves offer lower

costs or make it easier to reach existing low cost states. We have formulated the
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bounded cost model such that increasing the bounds only adds states with higher
cost, but increasing the bounds would change the optimal policy only if they made
it easier to reach low cost states. The limit on the difference in cost between states
and their successors (Lemma 2.2.1 from Section 2.2) means that high cost states are
near similarly costed states, so it seems unlikely that adding higher cost states will
open up paths to beneficial states. However, we have not been able to prove that this

conjecture holds overall.

Comparison to heuristic policies: Good approximations to the optimal policy
are quite expensive to compute. With this in mind, we performed experiments to
compare the quality of the optimal solution to a pair of heuristic policies. We looked
at two policies in particular: the cost-greedy policy, and the policy that always runs

the most underutilized action.

The cost-greedy policy 7, chooses actions according to

me(x) € argmin ZB(t)c(x +tA;) ¢, (3.8)
ieA —1

with ties broken uniformly at random. This policy just chooses the action with the

best expected next-state cost. We denote by 7, the policy that always executes the

most underutilized action. This utilization policy is expressed as

mu(X) € argmax{7(x)u; — ; }; (3.9)

icA
with ties broken uniformly at random. In the two-task case, the decision boundary for
the greedy policy is parallel to the target utilization ray, while the decision boundary

for 7, is the utilization ray itself.

We compared the quality of these policies to the optimal bounded model policy for
varying cost bounds using the same methodology as above. We considered two-
and three-task problem instances with discretized normal duration distributions with
means between 1 and 32, variances between 1 and 16, and worst-case execution times
between 8 and 32, selected uniformly at random. The utilization targets for each
problem instance were selected by choosing integers q € [1, 16]" uniformly at random,

so that the utilization target is u = q- (3., ¢;)~'. We computed the optimal bounded
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policy using bounds ranging from 6 = 10 to § = 50. We repeated this procedure 50

times for both the two- and three-task case.

Figure 3.7 shows the results for the two-task comparison. We measure the approx-
imation quality in terms of the normalized approximation error |V7(0)/VZ(0) — 1],
where V7™(0) can be the value of one of the heuristic policies or the value of the op-
timal bounded model policy for varying cost-bounds. We verified that neither the
greedy policy nor the utilization policy ever had value greater than V5(0) at the
initial state, so the approximation error does indeed measure how much worse these
heuristic policies perform relative to the best bounded model policy considered. We

report the mean and 95% confidence intervals over fifty trials.
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Figure 3.7: Comparison of the optimal bounded policy value to two heuristic policies
on two-task problems.

The heuristic policies do not depend on the cost bound. To evaluate these policies
we first computed their closure, i.e, the set of states reachable from the initial state.
This allows us to compute exactly the value of each of these policies at the initial
state. We see that the greedy policy has significantly higher value (lower error) than
the utilization policy. More importantly, the greedy policy and the optimal bounded
policy are identical for sufficiently large bounds. While we have not been able to prove
that the greedy policy is optimal for the two-task case, empirically these policies have

been identical in every problem instance that we have considered.

Optimality of the greedy policy clearly does not hold in general; moving to the three

task case illustrates this quite clearly. Figure 3.8 shows the results of our experiments

in this setting. In Figure 3.8(a) we see that once again the utilization policy is
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significantly inferior to the greedy policy. At this scale, the greedy policy and the
optimal bounded policy are quite similar. Figure 3.8(b) provides a closer comparison
of the greedy and bounded optimal policies for larger bounds. Here we can see that
the bounded policy is significantly better, although they are similar enough to suggest
that the greedy policy is a good proxy for the optimal policy. We do, however, expect
that the difference in value between the greedy and optimal policies will grow with

the number of tasks.
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Figure 3.8: Comparison of the optimal bounded policy value to two heuristic policies
on three-task problems.

Figure 3.9 plots the average number of states as a function of the cost bound in the
two- and three-task cases. Notice that the vertical axis is in log scale; the three-task
results reflect our expectation that the number of states grows quadratically in the

cost bounds, while the number of states grows linearly in the cost bounds.

In this and in the previous experiments, we considered the performance of heuristic
policies or bounded model policies as approximations to the optimal task scheduling
policies. These experiments consider different models of the same task scheduling
problem. In the next set of experiments, we consider approximating the original task
scheduling problem with a similar task scheduling problem with a simpler utilization
state model. This consists of reducing the temporal resolution when modeling task
durations. This reduces the number of successors any state can have, and corresponds

to aggregating temporally similar states.
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Figure 3.9: The number of bounded model states for increasing cost bounds.

Varying the temporal resolution: Above, we considered the effect of approxi-
mating one problem with another using a more easily-represented utilization target.
Another factor was not considered in much depth is the temporal resolution of a
problem. For example, if we have extremely large durations in tens of thousands
of quanta, using a single quantum time resolution may be inappropriate, since we
would require a large number of states to capture the entire distribution of successor
states of any given state. In these situations, it may be appropriate to aggregate time

quanta into a different time scale.

We tested this conjecture in order to evaluate empirically the performance ramifica-
tions of using a problem with coarse time resolution as an approximation to a one
with finer resolution. In these tests, we constructed fifty two-task scheduling problem
instances using randomized duration distributions and utilization targets. Utilization
targets were selected uniformly at random by choosing integers in q € [1,16]" to

establish a utilization target of u=q- (>, ¢;)~".

Duration distributions were constructed with a worst-case execution time of T" = 256.
We repeated these tests with unstructured histograms selected uniformly at random,
and using structured discretized normal distributions. These were constructed fol-
lowing the procedures described in previous experiments above; normal distribution
parameters were selected uniformly at random, with means between 1 and 256 and

variance between 1 and 128.

In each trial we considered a single problem instance. For each task, we took the

duration distribution over the interval [0, 256] and rescaled it to the interval [0, p| for
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each resolution p in 8,16,32,64 and 128. The probability of running for ¢ quanta
in the resolution p = 2% problem was the probability of running between 25~%t and
28~k (t4+7—k) quanta (inclusive) in the original problem. For example, the probability
for running ¢ quanta in the 128-resolution approximation was just the probability of
running for 2t or 2t + 1 quanta in the original, maximum resolution problem. Moving
from a resolution of 2¥ down to 2¥ corresponds to aggregating groups of k — k' + 1
adjacent utilization states. For example, the 128-resolution state (0,0) corresponds
to the set of states {(0,0),(0,1),(1,0),(1,1)} of the 256-resolution problem.

We then performed 5000 Monte-Carlo trials, following the greedy policy for the low-
resolution problem on the original problem for 2000 steps. We used this to estimate
the value of that policy on the original problem, since in our experience the greedy and
optimal policies agree on two-task problems. This was accomplished by mapping each
utilization state x we encountered in the original problem down to the corresponding
low-resolution state x’, looking up the greedy action at x’, then applying that action
at x. We report the results of these experiments in Figure 3.10; Figure 3.10(a) shows
the approximation performance as a function of resolution for unstructured random
histograms, and Figure 3.10(b) presents our results on discretized normal duration

distributions.

As in our previous experiments, we report approximation quality after normalizing the
results with respect to the optimal value. Let V?(0) be the initial-state value of the
p-resolution greedy policy on the original 256-resolution problem, and let VP(O) be its
approximation. We report the approximation quality as [V?(0)/V?%(0) — 1], using
the true value of the greedy policy for the maximum resolution problem as our basis for
comparison. This error measure vanishes as V?(0) approaches V2%(0). In both sets
of experiments, it appears that we can decrease the temporal resolution substantially
while incurring only a small loss in policy performance. This is significant, since
cutting the temporal resolution in half in an n-task problem results in a reduction in

the number of states that is exponential in the number of tasks.

It is worth noting that the unstructured problem instances appear to endure changes
in temporal resolution more gracefully than the structured instances. The difference
in approximation error between the highest and lowest resolution problem instances

is an order of magnitude smaller under unstructured problem instances.
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Figure 3.10: Approximation quality using reduced temporal resolution. Note the
order of magnitude difference in scale.

3.3 Automatic State Space Construction

In Section 3.2 we described the bounded state model, an MDP formulation of the task
scheduling problem restricted to a cost-bounded subset of states from the wrapped
state model of Section 3.1. The transition and reward structure of this model is
identical to that of the wrapped state model in any state with sufficiently low cost,
while the remaining states are abstractly represented with a single absorbing state.
By choosing appropriately large costs for the absorbing state, we can guarantee that
the optimal policy for the bounded model never reaches states that exceed the cost
threshold. This allows us to guarantee that these solutions are a good solution to the

original task scheduling problem.

Our empirical results with the bounded model approach suggest that there may be a
finite cost bound that suffices to capture an optimal policy near the initial state. In
order to benefit from using the bounded model solution (as opposed to the cheaper-
to-compute greedy policy) we need to select the bound carefully: if it is too small,
the resulting policy performs worse than the greedy policy, while if the bounds are

too large the model includes many irrelevant states.

One straightforward way to address these concerns is to integrate modeling and solv-

ing bounded models into a meta-algorithm that iteratively increases the cost bounds.
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This meta-algorithm terminates whenever it appears that the optimal policy has sta-
bilized. This approach has several drawbacks: It does not carry information between
iterations, many states in the bounded model may be irrelevant, and we can only

identify policy stabilization heuristically.

Most of the structure is identical in two bounded models with similar cost bounds.
If x is a state with much lower cost than either models’ bound, then the transition
system and expected reward at that state is unchanged between the two models. The
more transitions it would take to escape these bounds from x, the more similar its
value is in either model. This suggests that the optimal policy and value for one
model would be a good initial approximation for the other. The meta-algorithm
framework described above does not explicitly take this into account; doing so may

save a substantial amount of time and effort.

The second drawback is that cost bounded models may include many irrelevant states.
Since the wrapped state space is countably infinite, we have restricted the set of states
we consider by identifying a distinguished initial state x = 0. Costs increase with
distance from 0 in the wrapped state model, penalizing policies that visit states that
are arbitrarily far away. However, even if we have a policy that never visits states
with cost greater than the bound 6, it may be the case that it visits far fewer states
than the corresponding bounded model contains. For example, it is often the case
that one component of the state ever grows large under good scheduling policies;
choosing bounds large enough to accommodate such states forces us to include states
that allow any component to grow similarly large, whether or not the policy ever
reaches these states. If we can identify these states (or more accurately, if we can
enumerate only the necessary states) we may significantly reduce the cost of solving
the model.

Figure 3.11 provides an example of this phenomenon. We found a bounded model
solution for a two-task problem with utilization target u = (13/20,7/20) and dis-
cretized, truncated normal durations with worst-case execution times of 17. We then
looked at the set of states reachable from the initial state x = 0 under that policy;
these states are shown in blue in the figure. The largest cost among these states was
slightly more than 20; the sixty-three red states are included in the tightest bounded

model that contains all of the blue states. It appears that the number of unreachable
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Figure 3.11: An optimal bounded model policy may only visit a small subset of model
states. The optimal bounded model may reach any of the blue states from the initial
state x = 0, but will never reach the red states.

states in a tight model grows as the utilization target becomes more skewed towards

a single task, and also increases with the number of tasks as well.

Finally, we would prefer to address termination in a more principled, less heuristic
fashion. Our empirical results (for example, those in Figures 3.5 and 3.6 in Sec-
tion 3.2.2), suggest we may be justified in terminating whenever the value does not
vary between subsequent iterations, since we have seen no evidence that subsequent
iterations can improve the policy after that point. However, in general this may not
be the case, and V(0) = Vj,;(0) does not necessarily mean that we have found the
optimal value at 0; it just means that there is no policy within the bounds (6 + 1)
that is better than the #-bounded best policy. While it seems unlikely that increasing
the bounds further would yield a better policy, given the speed limit on transitions
and the fact tha