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ABSTRACT OF THE DISSERTATION

Scheduling Policy Design using Stochastic Dynamic Programming

by

Robert Glaubius

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2009

Research Advisor: Professor William D. Smart

Scheduling policies for open soft real-time systems must be able to balance the com-

peting concerns of meeting their objectives under exceptional conditions while achiev-

ing good performance in the average case. Balancing these concerns requires modeling

strategies that represent the range of possible task behaviors, and solution techniques

that are capable of effectively managing uncertainty in order to discover scheduling

policies that are effective across the range of system modes. We develop methods for

solving a particular class of task scheduling problems in an open soft real-time setting

involving repeating, non-preemptable tasks that contend for a single shared resource.

We enforce timeliness by optimizing performance with respect to the proportional

progress of tasks in the system.

We model this scheduling problem as an infinite-state Markov decision process, and

provide guarantees regarding the existence of optimal solutions to this problem. We

derive several methods for approximating optimal scheduling policies and provide
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theoretical justification and empirical evidence that these solutions are good approx-

imations to the optimal solution. We consider cases in which task models are known,

and adapt reinforcement learning methods to learn task models when they are not

available.
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Chapter 1

Introduction

Open soft real-time systems, such as mobile robots, must respond adaptively to vary-

ing operating conditions. For example, the discovery of a physical obstacle in the

robot’s environment may require an immediate action in order to avoid a collision

and maintain the physical integrity of the robot. Such a system must be able to

select an appropriate response from among multiple alternatives and act on that de-

cision within specific timing constraints – in this case, the system has to decide that

it needs to avoid the obstacle, and how best to do so before a collision occurs.

Such systems often provide fail-safe actions in the event of an anticipated or observed

timing failure. For example, a robot may pause its motion if the robot finds itself

within an unsafe distance of an obstacle, or if it has not been able to perform a

detection action within some predefined interval. While such an action can prevent

a catastrophic system failure, it may be suboptimal in the sense that some other

non-exceptional course of action may address the immediate issue while allowing

the system to continue making progress towards its objectives. Reactive, dynamic

scheduling mechanisms are thus necessary to ensure timely decisions and actions while

attaining the best possible performance.

The crux is that multiple behaviors, or tasks, (e.g., obstacle avoidance or mission

objectives) may contend for control of a shared resource (e.g., the robot’s sensors,

actuators, computers, and communications links). For the system to be useful, we

have to ensure progress of each of these tasks while guaranteeing the safety and

reliability of the system.
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While existing real-time systems theory describes how to schedule computation and

communication resources for sensors and actuators, new methods are needed to ad-

dress concerns that arise in domains like that described above. For example, behaviors

may require use of a robot actuator for a long and unpredictable duration, since the

time to move the actuator depends on the how close the actuator is to the required

attitude and is influenced by a series of time-variable mechanical processes. Addition-

ally, we can not preempt these behaviors, since restoring the actuator to a previously

preempted state may be more time consuming than completing the behavior itself.

These concerns render many real-time scheduling algorithms, which require explicit

knowledge of task behavior and the ability to preempt at will, inapplicable. We use

the following example robotics application to make these concerns more concrete.

Robot PTU Scheduling: Consider a mobile robot with two sensors, a camera

and a contact sensor consisting of a set of bumpers. The bumpers allow the robot to

detect when it makes physical contact with an obstacle. These are used to implement

a fail safe action, triggering the robot to stop moving while considering its course of

action. The other sensor is a camera, mounted on a pan-tilt unit (PTU) at about 1.75

meters above the ground – roughly at the height of the average adult human head

when standing. The camera serves two functions. When the pan-tilt unit is parallel

to the ground plane, the camera is used to carry out the robot’s mission: capturing

images of people’s faces. Otherwise, the camera can be used to augment obstacle

avoidance by detecting obstacles before the robot contacts them.

The pan-tilt unit is the shared resource in this domain. We need to balance safety

against the robot’s mission by interleaving face-finding with checking the ground

ahead of the robot for obstacles. It should be clear that the right balance between

these two depends on a number of factors, including the volatility of the environment

and the speed of the robot. In a volatile environment there may be many other

actors or moving objects that we need to avoid, so a larger obstacle avoidance budget

is appropriate. Similarly, if the robot is moving quickly through even a non-volatile

environment, it would behoove us to allocate more time to obstacle avoidance, while if

the robot is standing still we may be able to eliminate most of the obstacle avoidance

budget.
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Ideally, this system would spend all of its time finding people in the environment.

However, performing fail-safe actions may cause the robot to spend less time carry-

ing out this mission objective than would be the case if it intermittantly used the

camera to detect obstacles. We therefore are interested in effectively sharing the

PTU between these tasks in order to maximize the time dedicated to finding faces

in the environment, while minimizing the number of fail-safe actions taken. This is

challenging, since uncertainty in the environment translates into unpredictable task

behavior.

This research considers the general problem of scheduling repeating tasks on a single,

mutually-exclusive resource, such as the PTU in our example. We distinguish between

tasks and their instances, or jobs; for example, the obstacle avoidance task consists

of jobs that check the environment for obstacles and plans a route to avoid them.

Three principal considerations guide our choices when designing scheduling policies

for these systems. First, tasks can not be preempted: once an instance of a task

acquires the resource, it retains it until the instance completes. Second, we assume

that task instances have stochastic, highly-variable duration. Finally, we assume that

tasks can be run at any time – that is, whenever the scheduler is given control, each

task has some job that is ready to run.

Preemption tends to make scheduling easier, as it allows individual jobs to be broken

into smaller pieces, thus avoiding hard bin-packing problems [4]. However, preemption

does not make sense in the domains we consider. For example, each job of an image

capture task may require adjusting a pan-tilt unit. Preempting an image capture

job may leave the PTU in an arbitrary state, which may result in a longer duration

for the next task that acquires the resource. Further, restoring the PTU state to its

attitude at preemption may be more expensive that simply running the next job in

the same task.

We assume that the system is open: we do not have complete or accurate specifications

of the task behavior in advance. Task behavior in such a system can only effectively

be modeled statistically. That is, a suitable model of task behavior may consist of

a probability distribution describing their arrival rates, as in queuing theory, or we

may have a distribution describing task duration. By contrast, in a closed system
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the task implementation is provided in advance, and its behavior can be exhaustively

modeled, accurately simulated, and then abstracted into a simpler model.

Timeliness of task completion in the considered domains is soft, in the sense that

if some task takes longer than expected to run, the worst-case is that the fail-safe

mechanism takes over. This may be contrasted with the hard case, in which a missed

deadline may manifest as a complete, catastrophic system failure. In the hard case, it

is appropriate to model stochasticity in task execution by a deterministic reduction to

worst-case performance. This is overly conservative for the soft real-time setting [78];

since late completion only degrades performance, we can trade off worst-case perfor-

mance against expected case performance fruitfully.

Task durations are random variables. We make several simplifying assumptions re-

garding the distribution of task durations:

Bounded support: there is a finite upper bound, or worst-case execution time, on

the maximum duration of each job.

Inter-task independence: Durations are independent between tasks.

Intra-task independence: The duration of jobs of the same task are identically

and independently distributed.

These assumptions regarding job durations are fairly common in the discussion of

soft, periodic real-time systems [59, 2].

Our assumptions regarding job availability differ from those of classical periodic real-

time systems. In classical systems, the jobs of a task arrive at regular intervals or

are governed by some minimum inter-arrival rate [21]. Timeliness is then enforced by

establishing and meeting deadlines on the completion of each job.

We model job availability by assuming that whenever one job of a task relinquishes the

shared resource, the next job of that task becomes available immediately. This does

not lend itself naturally to a deadline formulation, however. Instead, our objective is

to make progress on each task proportional to some portion of the shared resource,

called its resource utilization target. More specifically, our goal is to see that in any

sufficiently large observation interval, the difference between the time that each task

spent occupying the resource and the time that it was intended to spend is small.
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This notion of proportional progress [12] ensures timeliness by forcing each task to

make progress relative to the rest at a roughly uniform rate. Further, proportional

fairness promotes temporal isolation between tasks [2, 82], limiting the amount of

interference between tasks.

New methods are necessary to address the concerns raised in the application domains

we have described. Most scheduling algorithms for real-time systems are extensions to

the earliest deadline first (EDF) or rate monotonic (RM) scheduling algorithms [58].

While EDF in particular is optimal for the deterministic, preemptive case, both are

known to be suboptimal when preemption is not allowed [59]. Further, reduction

to the deterministic case is overly conservative, and tends to lead to poor resource

utilization. Finally, introducing the usual notion of deadlines and periods into our

problem model is likely to result in worse resource utilization as the shared resource

may idle unnecessarily while waiting for periods to complete.

Achieving optimal behavior in these domains requires methods for deriving dynamic

scheduling policies that leverage feedback from the system in order to make good

scheduling decisions. Our focus is on the design and analysis of scheduling policies

obtained by solving stochastic dynamic programming problems. Thus, we do not an-

alyze the behavior of classical real-time scheduling algorithms, but instead focus on

constructing problem representations that are sufficient to represent optimal schedul-

ing policies, and then use techniques from stochastic dynamic programming [72, 14]

and reinforcement learning [44, 87] to compute or approximate those policies.

1.1 Task Scheduling Model

Over the course of this research we have proposed a simple task scheduling problem

model [94, 38, 36]. In this model, we have n repeating tasks (Ji)
n
i=1that share access

to a single mutually exclusive resource. Each task Ji consists of an infinite sequence

of identical jobs (Ji,j)
∞
j=0. When a job is dispatched, it occupies the resource for some

stochastic duration. Once a job Ji,j releases the resource, the subsequent job Ji,(j+1)

immediately becomes available.
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Suppose Ji,j is a job of task Ji. The duration of job Ji,j is a random variable ti,j dis-

tributed according to the duration distribution Pi,j, with P {ti,j = t} ≡ Pi,j(t). Pi,j

is supported on the positive integers; specifically, for all t > 0, Pi,j(t) ≥ 0, and∑∞
t=1 Pi,j(t) = 1. This explicitly requires that tasks advance the system time by

at least one quantum when dispatched. We make several simplifying assumptions

regarding these distributions:

(A1) The durations ti,j and tk,l of any pair of jobs Ji,j and Jk,l are independently

distributed; that is, P {ti,j = t|tk,l = t′} = Pi,j(t).

(A2) The durations ti,j and ti,k of jobs Ji,j and Ji,k of task Ji are identically dis-

tributed; that is, Pi,j(t) = Pi,k(t).

(A3) Every job Ji,j has worst-case execution time Ti,j <∞ such that
∑Ti,j

t=1 Pi,j(t) = 1.

These assumptions appear in the standard formulation of real-time systems with

periodic tasks [59, 2]. Assumption A1 asserts that one job does not influence another.

This means that we can expect a job to run according to the same distribution

regardless of what jobs were scheduled before it. This is a strong assumption that is

likely to be violated in practice. However, without this assumption there is little that

we can do to schedule well. In the worst case behaving correctly in any given system

state requires considering the complete execution history to make a decision, which

rapidly becomes intractable. At best we can hope to study empirically how varying

degrees of dependence effect the performance of the scheduling policies we obtain.

Assumption A2 is subject to similar concerns. If the task in question is an interrupt

handler, for example, we would expect repeated successive instances to behave ac-

cording to about the same distribution. However, in the robot example, consecutive

instances of obstacle detection are neither identical nor independent, since we may

only need to move the PTU for the first dispatch.

Practically assumption A2 means that Pi,j is identical to Pi,k for every other job Ji,k of

task Ji. This implies that can omit the job index and just refer to the task’s duration

distribution Pi. This regularity plays a crucial role in making the scheduling problem

tractable.
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Assumption A3 implies that there is a finite worst-case execution time for each job,

Ti,j = max{t|Pi,j(t) > 0}

By assumption A2, since the duration of jobs from the same task obey the same

distribution, those jobs have identical worst-case execution time Ti,j = Ti. The latter

two assumptions allow us to talk about task behaviors rather than considering the

individual behaviors of jobs. Throughout this dissertation we therefore discuss task

timing behavior to characterize the behavior of each job of that task.

In addition to these strong assumptions, we make the weaker assumption that instance

durations are positive integers. This allows us to treat the system time resolution in

terms of a discrete time quantum. This assumption is fundamental to the discrete

modeling techniques described in Chapter 3, but can be relaxed to the non-negative

real numbers when performing direct search in policy space using the methods in

Chapter 5.

We have explicitly ignored deadlines in this system. Our fundamental measure of

timeliness is the proportional utilization of the resource. We specify our scheduling

criterion in terms of the relative progress of each task, measured as the amount of time

that each task holds the resource. This proportional progress criterion is determined

by specifying a utilization target u as a system parameter. The utilization target

is a positive, rational-valued n-vector. Component ui is the relative target resource

utilization for task Ji. u is subject to a total utilization constraint

n∑
i=1

ui = 1 (1.1)

requiring that the resource time is budgeted completely among all tasks, and an

interval constraint

∀i = 1 . . . n, 0 < ui < 1. (1.2)

The interval constraint means that each task must be allotted some share, but no task

can be allocated the entire resource. Pragmatically, we can reduce the case ui = 0 to

a scheduling problem with (n − 1) tasks, and the case ui = 1 can be reduced to the

trivial problem of scheduling a single task.
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Let x(t) be an integer-valued n-vector. This corresponds to the state of the scheduled

system after t quanta have elapsed. Each component xi(t) equal to the number of

time quanta during which task Ji held the resource in the time interval [0, t) (system

initialization is defined as time 0). We refer to x(t) as the system’s utilization state,

or just state. Then xi(t)/t is the percentage of the time spent by the resource on task

Ji. A minimum criterion for a proportionally fair scheduling policy is that xi(t)/t

should approach ui as t grows large. However, we are not just concerned with steady

state, asymptotic behavior, but also want to make sure that we quickly approach and

maintain x(t) near the target utilization. More specifically, in any time interval [t, t′)

we want to ensure that

|(t′ − t)ui − (xi(t
′)− xi(t))| (1.3)

is small for each task.

In Chapter 2, we model this scheduling problem as a Markov Decision Process (MDP).

We show that, given an appropriate choice of cost function based on achieving and

maintaining the desired target utilization, there is an optimal scheduling policy. In

Chapter 3, we present several methods for approximating the optimal policy using

finite-state representations.

1.2 Literature Review

In order to ground this research in the context of real-time systems, it is useful first

to illustrate some common modeling assumptions and considerations of that field.

The periodic task model of Liu and Layland [58] is the basis for many system models

studied in the literature on real-time systems. Periodic tasks consist of an infinite

sequence of identical jobs that require access to a preemptable, mutually exclusive

shared resource. This access is subject to timing constraints. The earliest moment

that a job is ready to use resource is its arrival or release time; the task’s period is

the interval between consecutive arrivals of its jobs. A job is available after its release

and prior to its completion; completion should occur prior to the job’s deadline. Each

job is assumed to have a known, finite worst-case execution time.
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An optimal real-time scheduling algorithm produces schedules that meet all deadlines

whenever possible. Liu and Layland [58] introduced the Rate Monotonic (RM) and

Earliest-Deadline-First (EDF) scheduling algorithms for the periodic setting. EDF is

optimal for many generalizations of the periodic setting, including the basic setting

described above. RM is suboptimal, but is the optimum among algorithms that make

scheduling decisions according to a static task ordering. EDF dynamically prioritizes

available jobs according to increasing deadlines, so that the job with least deadline

is run first. While EDF’s optimality makes it more satisfying from a theoretical

perspective, RM remains relevant because of its relative ease and efficiency of imple-

mentation on practical systems. Thus, these two algorithms provide the foundation

for most real-time scheduling theory and implementation.

In our research, we relax several of the periodic task modeling assumptions. Jobs are

released upon completion of the previous job of the same task, so that arrivals are

aperiodic and depend upon previous scheduling decisions and task durations. This

makes establishing job deadlines somewhat arbitrary, so instead we focus on enforcing

timeliness and temporal isolation via proportional fairness. Finally, since we are

concerned with tasks that manipulate physical actuators, preemption is not available.

While many of these relaxations individually have been considered in previous work,

this research appears to be the first that addresses all of them at once.

Stochastic Task Release: Job release times are often subject to variability in

practice. Mok’s sporadic task model [66] extended the periodic task model to accom-

modate variability in release times by assuming only a minimum bound on the time

between consecutive releases of jobs of the same task. This model has since become

widely studied and extensively used [59, 21, 78]. Jeffay and Goddard [42] introduced

Rate-Based Execution, a further generalization of the sporadic task model for the soft

real-time setting in which only job release rates are known in advance. They showed

that EDF is optimal for both preemptive and non-preemptive resources in this model.

Stochastic Task Duration: Atlas and Bestavros [5, 6] proposed Statistical Rate

Monotonic scheduling (SRMS), which extends RM scheduling to systems of periodic

tasks with stochastic durations. In SRMS each task is represented by its period,
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duration distribution, and desired quality-of-service. Quality-of-service is defined as

the probability that any randomly selected job of the corresponding task completes

before its deadline. The algorithm associates a periodically replenished budget with

each task; a released job is scheduled only if its duration is less than its remaining

budget. This budget mechanism prevents tasks from interfering with one another

– i.e., it enforces temporal isolation – since it places an upper bound on individual

task’s resource use over time. One limitation of this technique is that a job’s duration

must be known before it is scheduled in order to enforce budgets.

The Constant Bandwidth Server (CBS) of Abeni and Buttazzo [1, 2, 20] addresses

this limitation. The CBS was introduced as a means of interleaving execution of soft,

stochastic, aperiodic real-time tasks into a hard real-time system. Each soft task is

associated with a server; the fraction of resource time not allocated to hard real-time

tasks is divided among these servers according to user-specified computation budget

and period parameters. The server associates a hard deadline with the soft task it

serves. This deadline is a function of the server’s period and remaining budget. If a

job would overrun its server-assigned deadline, it is preempted and must wait until

its server’s budget is replenished. This allows the CBS to accommodate stochastic

task durations while enforcing temporal isolation between soft and hard real-time

tasks. Tuning CBS parameters has since been used as a means to optimize additional

aspects of system performance [57].

Real-time queuing theory [55] is a more general model for repeating tasks that accom-

modates stochastic job arrivals, durations, and deadlines. This theory adapts meth-

ods from queuing theory to the study of timeliness behavior of real-time scheduling

policies. These tools are primarily useful for analyzing statistics of fixed scheduling

policies, particularly deadline miss rates. For example, Doytchinov et al. [27] and

Kargahi and Movaghar [47] study the performance of EDF in this setting; see the lat-

ter for references to similar analyses of first-come-first-serve scheduling. This analysis

tends to focus on highly structured arrival, duration, and deadline distributions un-

der steady state conditions. Manolache et al. [63] use a related approach to estimate

performance of arbitrary fixed scheduling policies under more restrictive conditions;

one particularly interesting aspect of this work is that their computational methods

are simplified by identifying and collapsing equivalent model states based on intervals

in which scheduling priorities are static.
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Proportional Fairness: SRMS and CBS enforce temporal isolation using a fairness

mechanism. Proportional fairness has received substantial attention, particularly in

multiprocessor scheduling, as a means of pruning poor scheduling alternatives to focus

attention on a narrower range containing feasible schedules that meet all deadlines

whenever they exist.

Baruah et al. introduced two optimal algorithms, PF [12] and PD [13], for proportion-

ally fair, or Pfair multiprocessor scheduling in the periodic task model. Under Pfair

scheduling, each task Ji is assigned a weight, defined as the ratio of its worst-case

execution time Ti to its period pi, Ti/pi. These schedules enforce the Pfair condition,

which bounds the lag

|t · Ti/pi − t · xi(t)| < 1

at every time quantum t, where xi(t) is the cumulative resource utilization of task Ji at

time t. The utilization target t·Ti/pi is the resource usage of task Ji under an idealized

fluid schedule that divides time among tasks at infinitesimal resolution. The Pfair

condition requires that task’s actual usage is as close as possible to this ideal given that

the resource is allocated in discrete quanta. Anderson and his collaborators have since

developed a more efficient Pfair algorithm, PD2 [4], and extended it to the sporadic

task model and further application-specific generalizations thereof [3, 82, 83, 26]. To

the best of our knowledge, enforcing fairness with stochastic task durations has not

been considered.

Pfair scheduling makes extensive use of preemption [12]; jobs are fragmented to the

extent that scheduling decisions are made explicitly at the single-quantum subtask

level [4]. Without preemption, we can only hope to enforce a Pfair-like condition at a

coarser resolution. In our research, we enforce timeliness by maintaining each task Ji’s

resource utilization near a user-specified utilization target ui. We can characterize

our methods as optimizing with respect to the Pfair condition in stochastic, non-

preemptive systems by finding policies that minimize the lag

|t · ui − xi(t)|

for each task Ji at every time t.
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Cho, Ravindran, and Jensen [22] also derived an optimal scheduling algorithm that

approximates the fluid schedule. This is achieved by decomposing time into intervals

between task period boundaries. It is then possible to bound the change in a task’s

accumulated resource utilization above and below within this interval under all fea-

sible schedules; these bounds necessarily encompass the fluid schedule. An optimal

schedule can be obtained by making scheduling decisions that respect the geometry

of this bounding region. This scheduling algorithm reduces, but does not eliminate,

preemptions.

Non-preemptive Scheduling: Non-preemptive systems have received substan-

tially less attention in the literature than have preemptive systems. This is because

preemptive semantics are supported in readily-available off-the-shelf systems, and be-

cause optimal non-preemptive scheduling is known to be NP-hard [43]. Part of the

challenge of non-preemptive scheduling is that an optimal schedule may need to leave

the resource idle even if there are jobs ready; for example, this may be the case if

running any ready job would force a job that is not yet available to miss its deadline.

Thus, much of the work on non-preemptive scheduling incorporates the assumption

that schedules must be work conserving – the resource can not idle if jobs are ready

to run on it.

A non-preemptive version of EDF, EDFnp, is optimal in this setting. However,

admission control under EDFnp, the problem of determining whether a new task

can be scheduled, remains hard. Thus, most of the work on non-preemptive real-

time scheduling focuses on deriving sufficient conditions for schedulability under

EDFnp [10, 11, 40]. EDF is known to perform poorly in overload situations that

are likely to arise under uncertainty, and it also does not maintain temporal isolation

between tasks. Therefore, it does not satisfy our scheduling criteria, but does provide

a useful basis for comparison.
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1.3 Overview

This dissertation is organized as follows. Above, we described our task scheduling

problem model. In Chapter 2, we provide some necessary background on Markov De-

cision Processes (MDPs), classical results that are used throughout this dissertation.

We then model the task scheduling problem as an infinite-state MDP with unbounded

costs, and derive some results that guarantee the existence of an optimal scheduling

policy and conditions that allow us to represent the MDP more compactly.

In Chapter 3, we present several approximation methods that find good scheduling

policies over restricted subsets of the infinite-state MDP derived in Chapter 2. This

includes a truncated MDP, selected so that we will always find a policy that satis-

fies some bounds on deviation from target utilization whenever one exists. We also

propose the Expanding State Policy Iteration algorithm, which exploits the structure

of the task scheduling problem in order to construct minimal state representations

that are necessary and sufficient to find good scheduling policies. We investigate the

performance of these algorithms empirically on simulated problem instances.

Chapter 4 applies methods for reinforcement learning to extend the methods of pre-

vious chapters to domains where accurate task models are not provided in advance.

One key aspect of reinforcement learning is the need to balance exploitation against

exploration; that is, a reinforcement learning agent must determine when it is appro-

priate to act optimally with respect to its current information, or if instead it should

choose an apparently suboptimal sequence of actions in order to learn more about

the controlled system. We find that the structure of the task scheduling MDP elimi-

nates most of the benefit of exploration, as exploiting current information reduces the

number of suboptimal actions performed. We derive a PAC bound on the number of

suboptimal actions taken before learning task models with low error.

One drawback of the methods described in Chapter 3 is that they rely on explicit

enumeration of a large number of system states. This number of states grows expo-

nentially in the number of tasks, so that in order for these methods to be useful in

practice, either the number of tasks must be small or we must be able to aggregate

them into abstract behaviors. In order to address this limitation to the scalability of

our approach, in Chapter 5 we leave behind explicit representation of the scheduling
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MDP and instead focus on direct search over a parameterized class of scheduling

policies. While in general this class does not contain the optimal solution to the cor-

responding MDP formulation, these methods tend to produce policies that perform

much better than available heuristic scheduling policies, particularly as the number

of tasks grows large.

We conclude in Chapter 6 with a discussion of some of the open questions that arose

over the course of this research, and propose several lines of future investigation that

appear particularly significant.
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Chapter 2

Scheduling as a Sequential

Decision Problem

In Section 1.1 we defined the Task Scheduling Problem. This problem consists of

determining a scheduling policy that selects which task will gain exclusive access to

a shared resource at any moment in time. Our objective is to maintain the relative

resource utilization of each task near some target share. In this section we model

the task scheduling problem as a Markov Decision Process, or MDP. This framework

allows us to quantify and compare the long-term utility of different scheduling policies,

and ultimately to derive optimal ones.

In Section 2.1 we provide a brief development of the theory of MDPs and some

algorithms for deriving control policies for them. In Section 2.2 we define the task

scheduling problem as an MDP. In Section 2.3 we formally demonstrate the existence

of an optimal solution to the task scheduling MDP, and in Section 2.4 we examine

some of the special structure of the task scheduling MDP that we will exploit in

order to obtain solution methods. Finally, in Section 2.5 we discuss related results

and ideas.

2.1 Markov Decision Processes

Sequential decision problems arise when an agent or controller must make decisions

repeatedly while maximizing measures of long-term utility. Two complications that
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make these problems challenging are uncertainty and the need to reason about de-

layed rewards. We encounter the former in the task scheduling problem because our

tasks have stochastic duration. The latter may occur whenever a small amount of

“unfairness” in the short term makes it easier to balance utilization over the longer

term. For example, it may be better to run an overutilized task with short duration

rather than a slightly underutilized task with long duration.

A Markov Decision Process, or MDP, is a popular tool for modeling these kinds

of problems. These problems arise in machine learning, operations research, and

economics to name a few, and MDPs have been used to model and solve Reinforcement

Learning problems in a wide range of applications, such as helicopter control [70, 68],

mobile robotics [81, 52], elevator control [23], job shop scheduling [99], and playing

Backgammon [93] and Go [79], among numerous others. The design and analysis

of MDPs is a mature field; while we discuss standard results that are useful for

understanding our algorithms and results, the interested reader is directed to the

preponderance of literature on the subject; in particular, the books by Puterman [72]

and by Bertsekas and Tsitsiklis [14], and the book chapter by Rust [77] provide

detailed developments.

An MDP is a four-tuple (X ,A, P,R) consisting of a collection of states X and actions

A, a transition system P that establishes the conditional probabilities P (y|x, a) of

transitioning from state x to y on action a, and a reward function R that specifies the

immediate utility of acting in each state. In this work we will take R as a deterministic

function mapping state-action-state triples to a real-valued reward, so that R(x, a, y)

is the reward for taking action a in state x, then ending up in state y.

In order to model a sequential decision problem as an MDP, we associate a set of

discrete decision epochs k = 0, 1, . . . , K; in this work we consider the infinite-horizon

setting where K = ∞. Simulation consists of observing the state of the MDP at

epoch k, xk and choosing an action ak. The system transitions to a new state xk+1

according to P (·|xk, ak) and emits reward rk+1 = R(xk, ak, xk+1). We refer to the

sequence of states (xk)
K
k=0 visited during simulation as a trajectory.

Our objective is to find a policy – a strategy for choosing actions at each state –

that maximizes the expected sum of rewards obtained during simulation. In general

a policy π associates a distribution over actions to each state, so that π(a|x) is the
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probability of selecting action a at state x. One classical result is that any MDP with

a finite action space and stationary transitions (i.e., the transition probabilities do

not change between decision epochs) has an optimal deterministic policy [72]. With

this in mind, we will restrict most of our treatment to deterministic policies. If a

policy π is deterministic we overload notation to let π(x) be the recommended action

at state x.

We compare policies based on the expected sum of rewards obtained while simulating

a policy. However, the sum of rewards obtained during a single trajectory,
∑∞

k=0 rk,

may grow without bound, which makes direct comparison of policies difficult. There

are a couple of well-studied criteria for alleviating this problem. We adopt the dis-

counted reward criteria: we discount the contribution of the reward at decision epoch

k by γk, with the discount factor γ satisfying 0 ≤ γ < 1. Then the value of a policy,

written V π, is the expected sum of discounted rewards

V π(x) = E

{
∞∑
k=0

γkR(xk, π(xk), xk+1)

∣∣∣∣∣ x0 = x

}
. (2.1)

Practically, the discount factor helps ensure that V π is bounded. Conceptually, it

can be interpreted as a prior probability of surviving from one decision epoch to

the next [44]. In the task scheduling problem, the discount factor helps balance the

immediate concern of quickly reaching the utilization target against maintaining the

system state near that target over the lifetime of the system.

Finding the optimal policy π∗ corresponds to finding the policy with maximum value

at every state. That is, V π∗(x) ≥ V π(x) for each state x. While there may be

multiple optimal policies for a given problem, the optimal value function is unique,

and is identical for all optimal policies. We denote the optimal value function V ∗.

It is straightforward to show from Equation 2.1 that the value function for π satisfies

the following recurrence (Howard [41]):

V π(x) = R(x, π(x)) + γ
∑
y∈X

P (y|x, π(x))V π(y), (2.2)
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where R(x, a) is the expected reward for taking action a in x,

R(x, a) =
∑
y∈X

P (y|x, a)R(x, a, y). (2.3)

Since the recurrence in Equation 2.2 is a linear system, we can compute V π by solving

a matrix equation when X and A are finite and the model parameters R and P are

known.

The optimal value function satisfies the Bellman equation,

V ∗(x) = max
a∈A

{
R(x, a) + γ

∑
y∈X

P (y|x, a)V ∗(y)

}
. (2.4)

Given the optimal value function, we can derive an optimal policy by acting greedily

with respect to V ∗:

π∗(x) ∈ argmax
a∈A

{
R(x, a) + γ

∑
y∈X

P (y|x, a)V ∗(y)

}
. (2.5)

In order to compute the optimal policy for an MDP, it suffices to derive the optimal

value function. Solution methods are typically based on the classical value iteration

and policy iteration algorithms.

Value iteration computes an approximation to the optimal value function. Beginning

with some initial approximation V0 (for example, V0 = 0), the algorithm proceeds by

computing the sequence of approximations Vk+1 by applying the Bellman equation 2.4

to the previous iterate Vk,

Vk+1(x) = max
a∈A

{
R(x, a) + γ

∑
y∈X

P (y|x, a)Vk(y)

}
.

The sequence (Vk)
∞
k=0 is guaranteed to asymptotically approach V ∗ [72]. If we choose

V0 = 0, Vk corresponds to the optimal value given that the system will terminate after

k decision epochs [14]. This algorithm tends to be slower than the next algorithm,

policy iteration, but is conceptually useful for understanding the semantics of the
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optimal value function and is theoretically useful as a basis for inductively proving

claims about it.

In contrast to value iteration, policy iteration computes the optimal value function

exactly in a finite number of steps, given that there are only finitely many states and

actions. Each iteration consists of two steps, policy evaluation and policy improve-

ment. Beginning with some initial policy π0, at iteration k policy evaluation consists

of computing the value function V πk by solving the linear system in Equation 2.2.

In the policy improvement step, we choose a new policy πk+1 by choosing the greedy

action according to V πk ,

πk+1(x) = max
a∈A

{
R(x, a) + γ

∑
y∈X

P (y|x, a)V πk(x)

}
.

This is sufficient to guarantee that every V πk+1 pointwise dominates1 V πk ; since there

are only finitely many deterministic policies, the algorithm terminates. The final value

function is guaranteed to satisfy the Bellman equation 2.4 [72], and so is optimal.

Value and policy iteration are the basis of many algorithms for solving MDPs, but

most analysis considers the case where there are only finitely many states and actions.

Finite state and action spaces admit exact, tabular representations of the intermediate

value functions produced by these algorithms. In the following sections we formulate

the task scheduling problem as a Markov Decision Process with finitely many actions

but an infinite, discrete state space, then investigate some aspects of the problem

structure that we may exploit in order to compute exact optimal scheduling policies.

2.2 Task Scheduling MDP

In previous work [94] we proposed an MDP formulation of the task scheduling problem

based on the system model described in Section 1.1. The set of problem states

corresponds to the accumulated resource utilization of each task. Actions in the

model correspond to the decision to dispatch each task, and modify the state by

increasing the accumulated utilization of the running task according to its observed

1A function f : X → R pointwise dominates g : X → R if and only if for every x in X , f(x) ≥ g(x).
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duration. In the task scheduling setting it is a bit more natural to talk about costs

rather than rewards; we penalize the system for reaching states that are “unfair” with

respect to the utilization target. For example, we may wish to make sure that two

threads receive an equal share by establishing a utilization target of 1
2

for each thread;

there is some penalty attached to one task receiving twice as much resource as the

other, but the penalty for this is less than when one task receives four times as much

resource as the other.

The set of decision epochs in this system corresponds to the points in time when

a task relinquishes the shared resource, and the scheduler must decide which task

to dispatch next. We have two distinct notions of time: (1) system time, which is

measured in quanta and denoted by t when discussing task durations, or τ(x) as the

elapsed time when the system is in state x, and (2) model time, which is measured

in decision epochs and denoted using k.

We introduce a bit of notation before describing these components more formally.

We denote vectors u and v using bold face fonts. 0 is the vector with all zero

components; the dimension of this vector will be apparent from context. For n-

vectors u = (u1, . . . , un) and v = (v1, . . . , vn), we say u is less than or equal to v,

written u � v, if and only if ui ≤ vi for all i = 1, . . . , n. We define the operators ≺,

�, and � analogously. These comparison operators can also be applied to real-valued

functions as well, since these can be interpreted as members of a vector space with

an infinite number of dimensions.

The set of actions in the task scheduling MDP A is the set of integers between 1 and

n, inclusive,

A = {1, 2, . . . , n}. (2.6)

Choosing to execute action i in A corresponds to the decision to dispatch task Ji.

We define the MDP state space X as the cumulative resource utilization of each task.

This is just an n-vector x with non-negative integer components,

X = {x ∈ Zn : x � 0}. (2.7)
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If x is in X , we call it a utilization state in order to distinguish it from model refine-

ments we will discuss in greater detail later in this dissertation. We refer to X as the

collection of utilization states, or as the utilization state space.

Suppose that x is a utilization state. Then x = (x1, . . . , xn), and each component xi

corresponds to the cumulative resource utilization of task Ji. This is the number of

time quanta in which Ji occupied the shared resource. The total utilization τ(x) at

x is the sum of task utilizations,

τ(x) =
n∑
i=1

xi; (2.8)

this is the total number of time quanta that have passed when the system is in x. At

time τ(x) the target utilization point2 is τ(x)u – the utilization vector scaled by the

number of elapsed time quanta; we say that task Ji is overutilized when xi > τ(x)ui;

when xi < τ(x)ui, the task is underutilized.

When we run task Ji in utilization state x, the successor state y is stochastically

determined according to Pi, Ji’s distribution over durations. If Ji occupies the re-

source for t quanta, then x and y differ by t in the ith component: y = x + t∆i =

(x1, . . . , xi + t, . . . , xn). ∆i is the vector with component i equal to one and all other

components equal zero. We can write ∆i = (δi,1, . . . , δi,n) using the Kronecker delta,

δi,j =

1 i = j

0 i 6= j
. (2.9)

Using this notation, we define the probability of transitioning into utilization state y

from x on task Ji

P (y|x, i) =

Pi(t) y − x = t∆i

0 otherwise.
(2.10)

Figure 2.1 illustrates this transition system using an example problem with two tasks.

Task J1 stochastically runs for one or two quanta; its transitions are shown in grey

with open arrowheads, advancing to the right. Task J2 deterministically runs for

2We usually can not call τ(x)u a utilization state, since it will may not be integer-valued for some
x. As we will see in Section 2.4, the case where τ(x)u is a utilization state has some important and
useful properties.
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Figure 2.1: A utilization-state MDP model of a two-task scheduling problem.

a single quantum, with transitions advancing upwards, shown in black with closed

arrowheads. The dashed ray points points in the direction of the target utilization

vector u = (1/3, 2/3). Since we require that tasks always occupy the shared resource

for at least one quantum, the transition system induces a directed acyclic graph over

X . Since the transition probabilities are derived from the task duration distribution

independently from the state, this transition system is self-similar: we can obtain the

transition system at any state by translating the system from any other state. This

observation of self-similarity is a requirement of state reduction techniques based on

identifying homomorphisms between states [24, 34, 74, 34]. These methods simplify

the state space by collapsing together states have similar futures. We will use this

idea later to simplify the task scheduling MDP.

As we mentioned above, the target utilization point τu after τ time quanta have

passed is not necessarily a utilization state. For example, this happens when τ = 1,

since τui = ui is strictly between zero and one. With this in mind, we require that

the cost of states is defined at any point in Rn. We achieve this by defining a cost

function c mapping points in Rn to real-values. Since our objective is to encourage

the scheduler to keep the system near the specified utilization target τu, we measure

cost in terms of the distance between a state x and the target utilization after τ(x)

quanta have elapsed, τ(x)u. The cost function must be minimal at the target point,

and non-decreasing as ‖x − τ(x)u‖ increases for fixed τ(x). This is satisfied, for
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example, by any Lp-norm based cost function cp, p ≥ 1,

cp(x) = ‖x− τ(x)u‖p =
( n∑
i=1

|xi − τ(x)ui|p
)1/p

, (2.11)

since cp(τ(x)u) = 0. Optimal policies are not invariant with respect to the choice

of p, so it is important to consider the implications of any particular choice. As p

increases, a large deviation in a single component, |xi − τ(x)ui|, is weighted more

heavily than small deviations across a number of tasks. Conversely, if p = 1, all

deviations are weighted equally, so that the cost is exactly the sum of deviations from

target utilization for each task. In order to retain flexibility in our framework, we will

attempt to derive results that do not require a specific choice of p whenever possible.

The cp cost function is a pseudonorm when extended to arbitrary x in Rn:

Theorem 2.2.1. The cost function cp is a pseudo-norm over Rn.

Proof. cp is scalable, since for any x ∈ Rn and α ∈ R,

cp(αx) = ‖αx− τ(αx)u‖p
= ‖αx− ατ(x)u‖p
= |α| ‖x− τ(x)u‖p .

= |α| cp(x)

cp satisfies the triangle inequality, since

cp(x + y) = ‖x + y − τ(x + y)u‖p
= ‖x + y − τ(x)u− τ(y)u‖p
≤ ‖x− τ(x)u‖p + ‖y − τ(y)u‖p
= cp(x) + cp(y).

cp falls short of being a norm, since (for example) there are infinitely many states

besides x = 0 where cp is zero. This result is examined in more detail in Theorem 2.4.3

in Section 2.4.

23



Theorem 2.2.1 implies that we can bound the difference in cost between a state and

its successor by a constant. We make this concrete in Lemma 2.2.1.

Lemma 2.2.1. For all utilization states x ∈ X , actions i ∈ A, and positive integers

p and t,

cp(x)− tcp(∆i) ≤ cp(x + t∆i) ≤ cp(x) + tcp(∆i)

Proof. The upper bound follows from Theorem 2.2.1 by straightforward applications

of scalability and the triangle inequality:

cp(x + t∆i) ≤ cp(x) + cp(t∆i) = cp(x) + tcp(∆i).

We can obtain the lower bound by augmenting the cost at x:

cp(x) = ‖x− τ(x)u‖p
≤ ‖x− τ(x)u + t(∆i − u)‖p + ‖t(∆i − u)‖p
= cp(x + t∆i) + tcp(∆i);

we can rearrange terms in this inequality to establish the lower bound.

This result establishes a “speed limit” of sorts on how much the cost may change while

a task occupies the resource [54], provided that tasks’ worst-case execution times are

finite.

We define the reward function R(x, i,y) as the negative cost of the successor state

y; we switch the sign of the rewards so that maximization of rewards corresponds to

minimization of costs

R(x, i,y) = −c(y). (2.12)

At this point, it will facilitate our discussion to introduce some backup operators to

describe compactly the value function recurrence relations in Equations 2.2 and 2.4.

Let V be a bounded, real-valued function of X . Then we define an action-specific

backup operator Γi that maps functions to functions,

(ΓiV )(x) = R(x, i) + γ
∑
y∈X

P (y|x, i)V (y). (2.13)
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Using this notation, we can define the policy backup Γπ and the Bellman operator Γ,

(ΓπV )(x) = (Γπ(x)V )(x) (2.14)

(ΓV )(x) = max
i∈A
{(ΓiV )(x)} (2.15)

These operators allow us to compactly write the policy recurrence equation from

Equation 2.2 as

V π = ΓπV
π;

similarly, we can rewrite the Bellman equation 2.4 as

V ∗ = ΓV ∗,

and the value iteration algorithm can be written compactly as Vk+1 = ΓVk or Vk =

ΓkV0. Plugging in the scheduling-specific definitions of P and R, Equation 2.13 can

be rewritten as

(ΓiV )(x) =
∞∑
t=1

Pi(t)[γV (x + t∆i)− c(x + t∆i)], (2.16)

emphasizing that the value of task Ji in x depends only on the cost and value of

states that differ only in component i. One consequence of this fact is that, while

there may be infinitely many states in the problem, any one state can transition to

at most nT successor states if T is the worst-case execution time among all tasks.

Finally, given the optimal value function V ∗, we can easily recover an optimal policy

π∗ by maximizing with respect to the per-action backup operator. That is,

π∗(x) ∈ argmax
i∈A

{(ΓiV ∗)(x)} . (2.17)

We use the membership relation ’∈’ rather than equality ’=’ here to indicate that

there may be more than one optimal action in a given state in general.

The utilization-state MDP described above captures the semantics of the task schedul-

ing problem from Section 1.1, so that if an optimal scheduling policy for the MDP

formulation exists, it is also optimal for the task scheduling policy given the cost

function. However, this model has infinitely many states, that we can not compute
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its optimal value function V ∗ exactly at all states. Our choice of cost function in-

troduces an additional complication: since state costs grow without bound, it is not

clear that the optimal value can be bounded even in the discounted case.

In the next section we will demonstrate that the optimal value function exists and

is a bounded function over X , despite Lp costs that decrease without bound. This

result is sufficient to prove the existence of an optimal solution to the MDP model. In

subsequent sections we will explore a number of approaches that enable us to compute

or approximate the optimal value function over a subset of utilization states.

2.3 Existence of the Optimal Value Function

In the finite state and action case, showing that the Bellman optimality condition

V ∗ = ΓV ∗ has a unique solution is straightforward, following from the fact that Γ

is a contraction map with factor γ over the Banach space of real-valued functions of

state. The infinite-state case complicates matters, particularly since the cost function

decreases without bound. We will establish two points: first, that the optimal value

function for our infinite-state MDP is a bounded function in some Banach space, and

second, that the limit ΓkV as k grows large is uniquely identified in that space.

We will follow an approach described by Puterman [72] for handling this situation.

We define a weighted supremum norm ‖·‖α in terms of a weight function α, so that

for any function V : X → R,

‖V ‖α = sup{|V (x)| /α(x) | x ∈ X}. (2.18)

We can then define the space Vα,

Vα = {V : X → R | ‖V ‖α <∞}, (2.19)

as the set of functions bounded in the α-weighted supremum norm. We can prove the

existence of the optimal value function by choosing α appropriately. Following theo-

rem 6.10.4 from Puterman [72], an appropriate choice of α is a positive, real-valued

function that constrains the growth of the value function approximations Vt+1 = ΓVt.
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This consists of requiring that the magnitude of expected rewards are bounded above

by α, and that the expectation
∑

t Pi(t)α(x + t∆i) can be bounded in terms of α(x).

This constrains the growth of V (x) by bounding the contribution of future states’

values to the value of x.

We define α in terms of the cost function plus a constant term determined by the

maximum difference in cost that can be accrued when invoking a task. Let µi be the

expected duration of task Ji,

µi =
∞∑
t=1

tPi(t), (2.20)

Then

α(x) = c(x) + max
i∈A
{µic(∆i)} . (2.21)

We can then show that V ∗ = ΓV ∗ has a unique fixed point in Vα. Before we prove

this, we will establish a pair of lemmas. First, we will show that we can bound the

expected reward and expected future state values in terms of α.

Lemma 2.3.1. Let x be a state and let i be an action. Then

1. |R(x, i)| ≤ α(x).

2.
∑∞

t=1 Pi(t)α(x + t∆i) ≤ α(x) + µic(∆i).

Proof. We can show (1) by applying Lemma 2.2.1 to bound c(x + t∆i) in terms of

the cost at x a cost for dispatching task Ji, tc(∆i):

|R(x, i)| =
∞∑
t=1

Pi(t)c(x + t∆i)

≤
∞∑
t=1

Pi(t)[c(x) + tc(∆i)]

= c(x) + µic(∆i).
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We can use this same observation to prove the second claim. Let M = max
i∈A
{µic(∆i)}.

∞∑
t=1

Pi(t)α(x + t∆i) = M +
∞∑
t=1

Pi(t)c(x + t∆i)

≤M + c(x) + µic(∆i)

= α(x) + µic(∆i).

We can use this result to show that the k-step Bellman operator is a contraction

map on Vα. This result will allow us to show that if Vα is a Banach space, then the

sequence of value iterates Vt+1 = ΓVt must converge to a unique fixed point in Vα.

Lemma 2.3.2. There is an integer k such that Γk is a contraction map on Vα.

Proof. We will begin by showing inductively that the k-stage Bellman operator satis-

fies a pointwise Lipschitz condition: that for any state x, non-negative integer k, and

pair of functions U and V in Vα,

∣∣(ΓkU)(x)− (ΓkV )(x)
∣∣ ≤ γk(α(x) + kM) ‖U − V ‖α ,

where M = maxi{µic(∆i)}. This is trivial when k = 0, since Γ0W = W for any

function W . Suppose that the claim is true for some k. Then

∣∣(Γk+1U)(x)− (Γk+1V )(x)
∣∣ =

∣∣∣max
i∈A
{(ΓiΓkU)(x)} −max

i∈A
{(ΓiΓkV )(x)}

∣∣∣
≤ max

i∈A

∣∣(ΓiΓkU)(x)− (ΓiΓ
kV )(x)

∣∣
≤ γmax

i∈A

∑
y∈X

P (y|x, i)
∣∣(ΓkU)(y)− (ΓkV )(y)

∣∣
≤ γmax

i∈A

∑
y

P (y|x, i)γk(α(y) + kM) ‖U − V ‖α

= γk+1(α(x) + (k + 1)M) ‖U − V ‖α ;
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the final step above holds by simplifying according to Lemma 2.3.1:

max
i∈A

∑
y

P (y|x, i)(α(y) + kM) = kM + max
i∈A

∞∑
t=1

Pi(t)α(x + t∆i)

≤ kM + α(x) + max
i∈A
{µic(∆i)}

= (k + 1)M + α(x),

establishing the pointwise Lipschitz property. To complete the proof,

∥∥ΓkU − ΓkV
∥∥
α

= sup
x∈X

{∣∣(ΓkU)(x)− (ΓkV )(x)
∣∣ /α(x)

}
≤ sup

x∈X

{
γk(1 + kM/α(x)) ‖U − V ‖α

}
≤ γk ‖U − V ‖α sup

x∈X
{1 + kM/α(x)} .

The supremum term above is a bounded constant, since α(x) is strictly positive.

Thus, when γ < 1, γk supx{1 + kM/α(x)} < 1 for some k, so that Γk is a contraction

on Vα.

We will use Lemma 2.3.2 to demonstrate that the value function exists.

Theorem 2.3.1. The Bellman equation V ∗ = ΓV ∗ has a unique solution in Vα.

Proof. In order to prove the claim, we need to show that Vα is complete (i.e., that it

is a Banach space) and is closed under Γ. Then we can use Lemma 2.3.2 to conclude

that the sequence Vk+1 = ΓVk has a unique fixed point in Vα.

Showing that Vα is a Banach space is straightforward, but we will provide an argument

here for completeness. Consider a Cauchy sequence (fk)
∞
k=0 with each fk ∈ Vα. Then

by definition, for every ε > 0 there is an integer K > 0 so that if k and k′ exceed K,

‖fk − fk′‖α < ε. Pick an ε and fk with k greater than the corresponding index K.

Since fk ∈ Vα, fk(x) is bounded for any x. Then for any k′ > k, |fk(x)− fk′(x)| ≤
‖fk − fk′‖α α(x) < εα(x). Therefore fk′(x) ∈ fk(x)±εα(x) for any k′ ≥ k, so the limit

must be finite. Since x is arbitrary, the limit of (fk)
∞
k=0 is in Vα; since the sequence

is arbitrary, Vα contains the limit of any Cauchy sequence, and so is complete.
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In the proof of Lemma 2.3.2 we demonstrated inductively that Γ is Lipschitz with

factor γ supx(1 +M/α(x)). Therefore,

‖ΓV ‖α ≤ γ sup
x∈X

(1 +M/α(x)) ‖V ‖α <∞,

and so ΓV is in Vα. Therefore, since Γ is a k-stage contraction on Vα, by the Banach

fixed point theorem we can guarantee that the sequence of functions Vk+1 = ΓVk

converges uniquely to the optimal value function V ∗

This demonstrates that the value function exists and is bounded, implying that some

policy exists that will not accumulate arbitrarily large costs. However, the utilization

state MDP model is impractical, since it requires representing the policy over an

infinitely large state space. Fortunately, the MDP formulation of this problem is

highly structured. The transition probabilities depend on the action but not on the

current state; i.e., it is just as likely that a task runs for t steps in state x as state

y. A second regularity in the problem has to do with our choice of cost functions:

since the reward depends on the distance to the target utilization ray, there are many

states with the same cost. In the next section we will exploit these properties to show

that it is not necessary to represent every utilization state in order to represent the

optimal value function.

2.4 State Space Periodicity

In this section, we will explore some of the properties of the MDP formulation of the

task scheduling problem that make it amenable to efficient solution methods despite

having an infinite number of states. In particular, we will exploit the periodic nature

of the problem state space3. For example, notice that the cost is zero everywhere

along the target utilization ray λu. In fact, since we defined the cost function cp

using the Lp-norm of the distance between a state x and the point τ(x)u, every point

on the line {x + λu | λ ∈ R} has the same cost for any x we choose. Coupled with

3It is important to note that this use of “period” differs from the standard notion in real-time
systems. A periodic task in a real time system repeatedly releases identical jobs to the scheduler at
regular intervals [21]. Periodicity in this work instead refers to a regularity in the state space that
allows us to treat certain states occurring at regular intervals as equivalent.
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the fact that transition probabilities depend only on the dispatched task but not on

the current state, any states that are collinear in the direction u behave the same:

they have the same cost, and their distributions over successor costs are the same.

The key observation is that we can describe the state space as a collection of equiv-

alence classes. Below we show that distinguishing between members of these classes

individually provides no novel information about the long-term cost. Following Mc-

Callum’s utile distinction principle [64], we need not represent more than one state

in each equivalence class. Our notion of equivalence here is based on state space

periodicity, due to the fact that if the utilization ray passes through states 0 and x,

then it must necessarily pass through other utilization states at regular intervals.

Periodicity in the state space occurs whenever we can obtain a distinct state y by

adding the scaled utilization vector to another state x. We will show that in this

case, x and y have the same optimal value, and that there is some optimal policy

that selects the same action at both states. More formally, we say that the task

scheduling MDP is periodic with period κ if and only if whenever x is a utilization

state, x +κu is also a utilization state. We say that a period κ is minimal if and only

if the MDP is periodic with period κ and for any 0 < κ′ < κ, κ′ is not a period of the

MDP.

It is straightforward to compute the minimal period of a task scheduling problem.

Suppose that we can specify the utilization target u = (u1, . . . , un) as a vector of

rational values. Let each component ui = qi/ri, where qi and ri are integer terms

of the simplest fractional form of ui. Then the least common multiple (lcm) of the

utilization denominators, κ = lcm(r1, . . . , rn), is the minimal period of any given task

scheduling MDP.

Theorem 2.4.1. Let M be a task scheduling MDP with rational utilization target

u = (u1, . . . , un), and let each ui = ri/qi with gcd(ri, qi) = 1. Then

κ = lcm(r1, . . . , rn)

is the minimal period of M.
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Figure 2.2: Periodic utilization states of the problem in Figure 2.1.

Proof. x + κu is integer-valued if and only if κu is integer-valued, so it suffices to

demonstrate this latter proposition. For any task Ji, κui is an integer, since

κui = κqi/ri = liqi

for some positive integer li. Notice that if κ′ is a period of M, then κ′ is a common

multiple of r1, . . . , rn, since otherwise for some action i, κ′ui could not be an integer.

Therefore it follows that κ = lcm(r1, . . . , rn) is the minimal period of M.

One consequence of periodicity is that, in order for an MDP to be periodic, the

utilization target components must be rational. This does not impose much of a

restriction on the kinds of systems we can consider, since we are committed to some

quantized digital representation of the utilization ray in practice anyway. Below we

will exploit periodicity in order to obtain more compact models; the size of these

models grows with the size of the period.

Figure 2.2 illustrates the periodicity of states from the example in Figure 2.1. The

utilization target is u = (1/3, 2/3), so the problem is is periodic with period κ = 3.

Each blue state can be obtained by translating a white state up and to the right by

adding κu; similarly, the grey states can be generated from the blue states by adding

κu or from the white states by adding 2κu.

We say that a function f : X → R is a periodic function if and only if for any

utilization state x and positive integer λ, f(x) = f(x + λκu). In other words, a

periodic function is any function that agrees at every state that is collinear with any
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given state along the utilization ray. If we know the value of a periodic function at

x then we also know the value automatically at each x + λκu. If we know that a

function is periodic, then there are infinitely many states that we do not need to

represent in order to store that function exactly.

Below, we will demonstrate that the optimal value function is periodic, and that there

is a periodic optimal policy as well. In order to justify this claim, we will show that

the set of periodic functions is closed under Γ and Γi. We will also show that the cp

cost functions are periodic, as indicated above.

Theorem 2.4.2. If V and c are periodic functions, then ΓV and ΓiV are periodic

functions for any action i.

Proof. Let x be a utilization state and λ be a positive integer.

(ΓiV )(x + λκu) =
∞∑
t=1

Pi(t) [γV (x + λκu + t∆i)− c(x + λκu + t∆i)]

=
∞∑
t=1

Pi(t) [γV (x + t∆i)− c(x + t∆i)]

= (ΓiV )(x)

Periodicity of ΓV follows immediately from the definition of (ΓV )(x) = maxi{(ΓiV )(x)};
since the per-action backups agree, the maxima agree.

Corollary 2.4.1. V ∗ is periodic whenever c is periodic.

Proof. V ∗ = limk→∞{ΓkV } for any V in Vα. 0 is a periodic function in Vα. By

Theorem 2.4.2, if ΓkV is periodic, then so is Γk+1V . By induction, V ∗ must be

periodic.

Corollary 2.4.2. If c is periodic, then there is an optimal, deterministic, periodic

policy π.

Proof. Any action in argmaxi{(ΓiV ∗)(x)} is optimal at state x. Since V ∗ is periodic,

by Theorem 2.4.2,

argmax
i∈A

{(ΓiV ∗)(x)} = argmax
i∈A

{(ΓiV ∗)(x + λκu)},
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so that i is an optimal action at x if and only if it is optimal at x + λκu.

Theorem 2.4.3. For any p, cp is periodic.

Proof. Let x be an arbitrary utilization state and let λ be a positive integer. Notice

that t is a linear function and that τ(u) = 1. Therefore,

cp(x + λκu) = ‖x + λκu− τ(x + λκu)u‖p
= ‖x + λκu− τ(x)u− λκu‖p
= ‖x− τ(x)u‖p .

Periodicity of the Lp costs also implies periodicity of some derived cost functions. For

example, the family of ε-insensitive cost functions cp,ε,

cp,ε(x) =

cp(x)− ε cp(x) > ε

0 cp(x) ≤ ε

is periodic. This cost function is useful if we wish to permit bounded deviations from

target utilization. In fact, any composite cost function c that can be expressed as

c(cp(x)) is periodic. This includes cost functions that threshold on cp(x) cost, so

that the cost is zero if cp(x) is less than a threshold, otherwise the cost is negative.

Thresholded cost functions are useful if we want to determine the existence of policies

that never reach high Lp-cost states from the initial state 0, since if such a policy

exists, its value at 0 is zero under thresholded costs.

It is worth noting that another natural expression of the cp cost objective is not

periodic. In state x, task Ji’s resource share is xi/τ(x), so its deviation from target

utilization is |xi/τ(x)− ui|. We could express this as a cost function proportional to

c1(x) by defining

c1,u(x) =
n∑
i=1

|xi/τ(x)− ui| .

c1,u is not periodic, since c1,u(x+λκu) = c1,u(x)/(τ(x)+λκ). As time progresses, c1,u

becomes less sensitive small deviations from target utilization, as a single transition
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is unable to change the utilization much. The cp costs we employ do not suffer from

this issue, and so are better suited to reducing deviation from target utilization over

both the short and the long term.

Periodicity implies that the task scheduling problems have a reduced set of states

that provide a complete representation of the deviations from target utilization that

we care about. In the next chapter, we exploit the periodicity of the optimal value

function in order to allow its computation with a more compact representation.

2.5 Discussion

MDPs with infinite state or action spaces: There is an extensive literature

surrounding the problem of extending MDP solution techniques to problems with in-

finite state or action spaces, though a complete survey of these results is beyond the

scope of this work. Boyan and Moore [18] demonstrated that it is difficult guarantee

stable value function approximation when directly substituting off-the-shelf function

approximation strategies in place of a tabular value function representation. Gor-

don [39] characterized a class of stable approximation strategies. Lagoudakis and

Parr [53] adapted the policy iteration algorithm to the linear function approxima-

tion setting. Szepesvári and Munos [90, 67] studied the finite-sample performance

of general implementations of fitted value iteration, a procedure analogous to value

iteration that fits a general function approximation architecture to the intermediate

value functions.

Finiteness of V ∗: We published the proof that the value function exists in Sec-

tion 2.3 in RTSS 2008 [38]. A much simpler proof is possible when the worst-case

execution time among all tasks T is finite, since then for any policy π,

V π(x) = −E

{
∞∑
k=0

γkcp(xk)

∣∣∣∣∣x0 = x

}
,

with the expectation taken with respect to the sequence of actions taken by the policy

π. Each state xk can be expanded by considering the individual steps needed to arrive
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at that state,

xk = x +
k∑
d=1

td∆id ,

where id = π(xd) is the policy action at decision epoch d, and td is its duration,

distributed according to Pid . Then by Theorem 2.2.1, using the trajectory (xk)
∞
k=0 we

can obtain a worst-case upper bound on the cost of xk

cp(xk) ≤ cp(x) +
k∑
d=1

tdcp(∆id).

By linearity of expectations, we can write

V π(x) = −
∞∑
k=0

γkE {cp(xk)|x0 = x}

≥ −
∞∑
k=0

γkE
{
cp(x) +

k∑
d=1

tdcp(∆id)
∣∣∣x0 = x

}
= −

∞∑
k=0

γk
[
cp(x) +

k∑
d=1

E {tdcp(∆id)|x0 = x}
]
.

We can simplify this by bounding the expectation E {tdcp(∆id)|x0 = x}. This can be

accomplished by noticing that cp(∆i) ≤ 2 for any action i and choice of p; we can

also use the fact that td can not exceed the maximum worst-case execution time T .

This gives us

E {tdcp(∆id)|x0 = x} ≤ 2T.

We can substitute this into the V π inequality to get

V π(x) ≥ −
∞∑
k=0

γkcp(x)−
∞∑
k=0

γk
k∑
d=1

2T

= − cp(x)

(1− γ)
− 2T

∞∑
k=0

γkk

= − cp(x)

(1− γ)
− 2Tγ

(1− γ)2
. (2.22)
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This provides a finite lower bound on the value of any policy at each state. Since the

value can never be greater than zero, this suffices to show that every policy has finite

value at each state, even though V π is not bounded.

This proof is conceptually simpler than that provided in Section 2.3, since we did

not need to introduce any additional function spaces in order to reason about the

value. However, the previous results appear to be more powerful, since the additional

structure of the Banach space Vα allows us to invoke the fixed point theorem to prove

that Γ and Γπ have unique fixed points corresponding to the optimal value function

and the policy value functions, respectively.

Periodicity as State Aggregation: State aggregation techniques [56] attempt to

reduce the computational burden of finding a good policy for controlling an MDP.

These techniques achieve this goal by combining, or aggregating, states to obtain a

more compact abstract MDP with a smaller state space. Depending on the aggrega-

tion strategy used, the abstract MDP may retain only a subset of the policies for the

original problem.

McCallum’s utile distinction memory approach [64] was based on the principle that

states should only be distinguished if doing so allows the system to achieve better

performance. This occurs whenever one of the states in the aggregate has different

value than the rest. The decision tree based value representation of Boutilier et al. [17]

implicitly incorporates this principle, as the length of a path from the root to leaf,

which is equivalent to an assignment to relevant state values, corresponds exactly

to the set of state variables that influence the value in a particular state. The utile

distinction principle leads us to consider a more compact task scheduling MDP by

pruning out states that are periodically related to at least one other state until we

have exactly one state from each equivalence class.

Givan et al. [34] proposed a notion of stochastic bisimulation. Two MDPs M and

M ′ are in bisimulation if and only if there is a binary relation between states of

each MDP involving every state in each MDP such that related states have the same

expected reward and whenever x and x′ are related and y and y′ are related, then

P (y|x, a) = P (y′|x′, a). This notion is perhaps most useful when a larger MDP is

in stochastic bisimulation with a smaller one, as a solution to the smaller MDP is
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equivalent to a solution to the larger. Periodicity in our application can be restated as

bisimulation between the utilization state MDP and a related MDP over exemplars

from each equivalence class. MDP homomorphisms [74, 75] can be viewed as an

extension of stochastic bisimulation in that it allows a notion of action equivalence in

addition to state equivalence.

The topics covered in this section are solely concerned with existential questions re-

garding the structure of the task scheduling problem formulated as a Markov Decision

Process. In the next chapter, we approach the problem from a less abstract stand-

point, focusing on practical issues, including the representation of the task scheduling

MDP and computational issues that arise given that we can only work with a finite

subset of the full utilization state space.

Scaled cost as a dynamic sliding window: We mentioned the distinction be-

tween using cp(x) = ‖x− τ(x)u‖p, which penalizes deviation from the best possible

utilization state at time τ(x), versus the utilization cost cp,u(x) = ‖x/τ(x)− u‖p,
which penalizes deviation from the utilization target. The former is periodic, while

the latter is not. The distinction between these costs is subtle: both reward hitting

the utilization target exactly; small perturbations to the state have less impact as

time passes under the latter but not under the former. One way to look at this is

that our approach, trying to hit a target point at each time step, encourages us to

stay on target over all time, while the latter permits a policy to deviate from target

utilization if it has done a good job of maintaining target utilization over most of the

history.

One way to avoid ossification of state due to accumulated history is by maintaining

a sliding window over history. That is, we could retain system states corresponding

to the resource utilization of each task over the last t time quanta for some choice

of t. Once the system has executed for at least t quanta, the change in cost due to

executing a task maintains a fixed, attainable upper bound.

It turns out that the Lp cost function performs a similar purpose, except that it uses

a dynamic window length: periodicity implies that whenever the historic utilization

xi of each task Ji achieves or exceeds its periodic target κui, we can throw out κu

quanta of history from each task and get an equivalent state.
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Chapter 3

Solution Methods

In Chapter 2 we modeled the task scheduling problem from Chapter 1 as a discrete

Markov Decision Process with a countably infinite state space. We call this model the

utilization state model because each model state represents the cumulative resource

utilization of each task. This implicitly assumes that, in order to make appropriate

scheduling decisions, we do not need to know exactly when in the past a task has

occupied the shared resource; but only how much time it has spent occupying it.

It is straightforward to describe the task scheduling problem using the utilization

state model. Whenever a dispatched task completes, the utilization state is updated

by incrementing the corresponding state variable by the task’s observed duration. In

order to encourage solutions that keep the resource share near the utilization target,

maximizing reward in the utilization state model corresponds to minimizing costs for

deviating from target utilization.

We demonstrated that this model has a unique optimal value function in the infinite-

horizon discounted reward case. We also noted that the optimal value function ex-

hibits periodic behavior under appropriate conditions on the utilization target and

cost function. In this chapter we will exploit these observations in order to obtain

methods for approximating and solving the task scheduling problem as an MDP.

In Section 3.1 we propose a more compact model, the wrapped state model, that

removes an infinitude of states from the utilization state model. This is achieved by

removing equivalent states, then re-establishing the transition function to account

for the probability of moving between collections of equivalent states. We prove that
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this model retains the optimal solution to the utilization state model; however, the

wrapped state model still has infinitely many states.

In Section 3.2 we demonstrate that when Lp costs are used, there are finitely many

wrapped model states with cost less than any specified bound. We use this observation

to truncate the state space and provide bounds on the quality of the truncated model.

In Section 3.3 we propose a technique for automatically constructing a state space that

is necessary for policy evaluation and improvement. We present the ESPI algorithm,

which computes locally optimal solutions in this setting. We conclude this chapter

with discussion of related work that has motivated these methods.

3.1 Wrapped State Model

In the previous chapter, we defined the utilization state model, consisting of a straight-

forward MDP formulation of the task scheduling problem. While this model is useful

for grounding the semantics of the task scheduling problem in a computational ap-

proach, general direct MDP solution techniques like value iteration and policy itera-

tion can not be applied to this model because of the size of its state space.

The periodicity property indicates that the utilization state model carries substantial

redundant information. If the model is periodic with period κ, then the optimal

value is the same whether the system is in state x or x + κu. Intuitively it does

not seem necessary to consider more than one of these two states. However, being

able to aggregate these equal value states into a single exemplar state is contingent

not just on states’ values, but on the relationship between possible future state space

trajectories from each state [24, 56]. In this section we show that we can safely

aggregate equivalent states given the properties of state transitions and rewards in

the utilization state model, in the sense that there is an MDP defined in terms of

aggregates of states from the utilization state model so that the optimal policy for

the aggregate model corresponds to an optimal policy for the utilization state model.

Congruence in modular arithmetic can be extended to vectors of positive integers as

follows. Let x, y, and z be vectors in Zn
+. Then x is congruent to y modulo z if and

only if the displacement vector x− y is a scalar multiple of z. As in the case where
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n = 1, congruency modulo a vector is an equivalence relation over Zn
+, and we write

x ≡z y, or just x ≡ y when the vector modulus is clear from context.

We can use this formalization to describe periodicity more precisely. If x and y

are utilization states with y = x + λκu for some λ, then x and y are congruent

modulo κu. As we showed in the previous chapter, since x ≡κu y, then any periodic

function f agrees at these states, including the optimal value function and some

optimal policy. In this chapter we will show that we can construct an MDP model

using a single exemplar from each each equivalence class; in principle, the choice of

exemplar should not matter, but computationally it is useful to choose this state in

a principled way.

The vectors that occur along a line in Rn are totally ordered under �. To see this, if

the line has direction z and contains x, then any other vector y on this line can be

written as y = x + λz for some λ, with y ≺ x if λ is negative and otherwise x � y.

Since we restrict consideration to just vectors with non-negative integer components,

there is a well-defined least vector in Zn
+ along any such line. This vector is the

remainder w(x, z), defined

w(x, z) = x− λ∗z, (3.1)

with

λ∗ = min
i=1,...,n

bxi/zic. (3.2)

In the context of the task scheduling problem, we treat the state w(x, κu) as an

exemplar of the set of states congruent to x modulo κu. We denote this state more

concisely as w(x). We call w the wrapping function, since conceptually, it wraps the

utilization state space into a topological cylinder so that all equivalent states map to

one another. When n = 2, this can be visualized by drawing the states on a sheet of

paper, then tightly rolling the sheet of paper in the direction of u so that 0 and κu

overlap.

We define the wrapped state model as an MDP over these exemplar states; the state

space of this model is the set

W = {w(x)|x ∈ X}, (3.3)
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Figure 3.1: The wrapped model of the utilization state MDP from Figure 2.1.

where X is the utilization state space. In the previous chapter, we showed that this

state space is sufficient to represent the optimal value function and an optimal policy.

In this chapter, we will further show that a model defined over the wrapped state

space is sufficient for computing the optimal value function of the utilization state

model, once we have adjusted the transition system appropriately.

In practice, wrapping the state space removes a huge number of states. This corre-

sponds to removing every utilization state x � κu. Figure 3.1 illustrates the wrapped

state model for the example problem from Figure 2.1. Following the black transition

out of (1,1) in the utilization state model would have moved the system upward into

the state (1,2), which has cost zero; in the wrapped model, this transition is remapped

to the state (0,0).

The set of exemplar states is determined by utilization targets, but is invariant to

changes in the duration distribution, since the wrapping function is independent of

task durations. It is worth considering how W changes as we vary the utilization

target. For example, in the example shown in Figure 3.1, the wrapped state space

consists of an infinite strip of states along the horizontal axis and the vertical axis;

the width of these strips is determined by the utilization target numerators, as u =

(1/3, 2/3). In general, the wrapped state space is contained in the union of (n− 1)-

dimensional axis-aligned hypercubes with infinite extent.

It is interesting to note how the size of the state space grows as we vary the utilization

target. Of course, since the wrapped state space is infinite, the cardinality is a

poor measure of size. Instead, we will consider the number of wrapped states in the
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Figure 3.2: The number of states in [0, κu) in two-task wrapped state scheduling
MDPs with varying utilization targets. See the text for further details.

rectangle [0, κu1)× [0, κu2) for a two-task problem – in the example in Figure 3.1, this

rectangle contains the states (0, 0) and (0, 1). If the utilization target u = (r1/q, r2/q)

with r1 and r2 relatively prime, then there are r1r2 states in this rectangle. Then the

system period is the common denominator q = r1 + r2; as κ grows large, the number

of states grows large as well.

The period κ directly describes the resolution of the utilization target. When κ is

small, for example, if κ = 2, then the only utilization we can describe is u = (1/2, 1/2),

the fair share case. As q grows larger, we can describe a wider variety of utilization

targets; for example, we can describe the fair share case u ≡ (128/256, 128/256),

but we can also describe situations that are almost fair, such as (127/256, 129/256).

While the difference in utilization targets is small, the difference in the number of

states is striking. There is only one state in the region of interest in the fair share

case compared to more than sixteen thousand for the (127/256, 129/256) case!

Figure 3.2 explicitly quantifies the number of states for utilization targets of the form

u = (u′1/256, (256− u′1)/256). Since u2 = 1 − u1, we plot u1 against the number of

states in the half-open rectangle [0, κu). The number of states falls into a series of

bands; the uppermost band corresponds to utilization targets that are irreducible.

The next highest band corresponds to utilization targets that can be cut in half

losslessly (i.e., problems with period κ = 128), the next can be cut in half again, and

so on. The least number of states occurs in the fair share case when u1 = u2.

43



Figure 3.2 implies a useful tradeoff, as we may approximate high resolution utilization

targets – utilization targets that require large denominators – using lower resolution

targets by scaling down the utilizations and rounding appropriately. The figure shows

that reducing the resolution can dramatically decrease the number of states. Due to

stochasticity in task duration distributions, even the best scheduling policies will only

keep the system near target utilization, and will rarely achieve the target utilization

exactly. It seems likely that stochasticity in task durations will negate most of the

drawbacks from using a lower resolution utilization target, since the difference between

the actual utilization of each task and its target will probably be quite variable over

small intervals.

Next, we consider how to define an MDP over the wrapped state model. Moving

from the utilization state model to a model over the wrapped state space leaves some

“dangling” transitions whenever it is possible to transition from an exemplar state

to a non-exemplar state. We can reattach any of these dangling transitions to an

equivalent exemplar state that is in the wrapped state space, as we have done when

mapping the example utilization state model in Figure 2.1 to the wrapped model in

Figure 3.1. Lemma 3.1.1 provides a basis for this result: any two equivalent states

have equivalent successors.

Lemma 3.1.1. If x and y are equivalent utilization states in X , then for any task Ji

and duration t,

x + t∆i ≡ y + t∆i

Proof. Without loss of generality, we assume that x � y. Then y = x + λu for some

non-negative integer λ. The claim follows immediately, since

y + t∆i = x + t∆i + λκu ≡ x + t∆i.

As a consequence of Lemma 3.1.1, any successor state x+t∆i is equivalent to w(w(x)+

t∆i), since

x + t∆i ≡ w(x) + t∆i ≡ w(w(x) + t∆i)
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This means that the successor state distribution at x is captured exactly using only

exemplar states.

We define the wrapped state model as a Markov Decision Process with state space

W , the actions from the utilization state model A, transitions Pw, and rewards Rw.

For this model to be useful, we need to define Pw and Rw so that the optimal value

of any state in the wrapped model agrees with the optimal value of all equivalent

states in the original model. To achieve this, we require that executing any task in

any state results in the same distribution over rewards as executing the same task

in an equivalent state in the original model. We can then invoke Theorem 2.4.2 to

guarantee that this wrapped model captures the optimal value function.

Conceptually, we define the transition function Pw by starting with the transition

system from the original problem (see Figure 2.1). Any transition to a state that

does not map to itself under w (e.g., x 6= w(x)) is instead mapped to an equivalent

state. We then remove the unreachable states. The resulting transition system is

shown in Figure 3.1.

Let x and y be wrapped states in W , and let Ji be a task. We define the transition

function Pw in terms of duration distributions,

Pw(y|x, i) =

Pi(t) y = w(x + t∆i)

0 otherwise.

This maps the successors in the utilization state model back into the wrapped state

space to establish the transition. This definition satisfies

Pw(y|x, i) = P (z + t∆i|z, i) = Pi(t)

whenever z is a utilization state equivalent to x.

Since we require the cost function c to be periodic, any two equivalent states have the

same cost. Following Equation 2.12, we define the wrapped-state rewards according

to

Rw(x, i,y) = −c(y)
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which satisfies R(x, i,y) = Rw(x, i,y) because of cost periodicity. Thus, for any

utilization z and wrapped state x = w(z), the expected rewards obey

Rw(x, i) = −
∑
y∈W

P (y|x, i)c(y)

= −
∞∑
t=1

Pi(t)c(w(x + t∆i))

= −
∞∑
t=1

Pi(t)c(x + t∆i)

= R(z, i),

so that the expected reward for dispatching task Ji in the wrapped state x matches

the expected reward of all equivalent states in the original model. This formulation

is sufficient to compute the optimal value function to wrapped state model, which is

equivalent to the optimal value function of the original model.

Theorem 3.1.1. Let V ∗ and V ∗w be the optimal value functions for the original and

wrapped state models, respectively. For any utilization state z, we have

V ∗w(w(z)) = V ∗(z).

Proof. Let V be a periodic function over X , Vw,k = ΓkwV , and Vk = ΓkV . Then for

any utilization state z,

Vw,0(w(z)) = V (w(z)) = V (z) = V0(z).
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Suppose that Vw,k−1(w(z)) = Vk−1(z). Then the k-step wrapped-state approximation

Vw,k agrees with the the corresponding utilization state value function, since

Vw,k(w(z)) = (ΓwVw,k−1)(w(z))

= max
i∈A

∞∑
t=1

Pi(t)[γVw,k−1(w(z + t∆i))− c(w(z + t∆i))]

= max
i∈A

∞∑
t=1

Pi(t)[γVk−1(z + t∆i)− c(z + t∆i)]

= (ΓVk)(z)

= Vk(z).

Therefore, since the limits of these sequences exist in Vα, we have

V ∗w(w(z)) = lim
k→∞

{
(ΓkwV

)
(w(z))}

= lim
k→∞

{
(ΓkV )(z)

}
= V ∗(z),

so the optimal value in the utilization state model of z is identical to the optimal

value of its exemplar w(z) in the wrapped model.

Theorem 3.1.1 shows that it is sufficient to compute the value function over the

wrapped states, and the proof establishes that in principle the value iteration algo-

rithm will correctly converge to this solution. However, computing V ∗w over W is

no more feasible than computing the optimal solution to the utilization state model,

since there are also infinitely many states in the wrapped state model. In the next sec-

tion we truncate the wrapped state space to obtain an MDP with only finitely many

states, analyze its approximation qualities, and examine its empirical performance.

3.2 Bounded, Wrapped State Model

Wrapping the state space allows us to describe the features of the state space that are

relevant for evaluating scheduling policies more compactly. However, there are still
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Figure 3.3: The set of utilization states that satisfy cost bound θ.

infinitely many equivalence classes in the wrapped state model. In order to obtain

an MDP that we can feasibly solve, we still need to use some additional methods to

restrict our attention to a finite number of states.

There are only so many “good” states in the wrapped state model. Specifically, for

any cost threshold that we choose, there are only finitely many states with Lp cost

below that threshold. We would expect a scheduling policy that tries to minimize

cost to stay close to target utilization at all times, which means that the policy should

consistently restrict itself to low-cost states. This does depend on having finite worst-

case execution times for each thread, since otherwise there is always some probability

that any low-cost state has a successor with arbitrarily high cost.

We can introduce some notation to formalize this first claim, that there are only

finitely many states that satisfy any particular cost bound. Let θ be a non-negative

real value; then we define the set of cost-bounded utilization states Xθ and cost-

bounded wrapped states Wθ:

Xθ = {x ∈ X |c(x) ≤ θ}, (3.4)

Wθ = {x ∈ W|c(x) ≤ θ}. (3.5)

Figure 3.3 illustrates these state sets on a two-task example. Here the cost bound

defines the two red rays of points x with cost c(x) = θ. The set of cost-bounded

utilization states Xθ lies between these rays. The grey and blue regions contain the
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wrapped state space, and the blue region between these rays contains the bounded

state space Wθ.

In any periodic task scheduling problem, Xθ is infinite, since it contains the infinite

set

X0 = {λκu|λ ∈ Z+}.

Wθ is finite, though; this is because Xθ intersects only finitely many equivalence

classes in periodic problems, and so wrapping will remove all but a finite number of

exemplar states. We formalize this result in Lemma 3.2.1.

Lemma 3.2.1. For any θ in [0,∞) and Lp-norm cost cp, Wθ is finite.

Proof. Notice that we can decompose Wθ into disjoint subsets

Wθ =
∞⋃
τ=0

Wθ,τ

by defining cost-bounded sets Wθ,τ consisting of wrapped states with equal cumulative

utilization,

Wθ,τ = {x ∈ Wθ|τ(x) = τ}.

Consider the union
⋃m
τ=0Wθ,τ for m ∈ Z+. If x is in

⋃m
τ=0Wθ,τ , then every component

of x is between 0 and m, inclusive. Then this union is a discrete subset of [0,m]n,

and therefore finite.

Each Wθ,τ is empty for large enough τ . To see this, notice that if x is in Wθ,τ ,

it has some component xi with 0 ≤ xi < κui, otherwise x would not be a wrapped

state since we could subtract κu from x to get an equivalent state with smaller

components. As τ grows large, |xi − τui| grows large as well since xi is bounded but

τui grows linearly with τ . We know that action i is underutilized for large enough τ ,

since τui > κui > xi, so we have |xi − τui| = τui − xi > τui − κui. Notice that

τui − κui ≥ θ ≡ τ ≥ θ/ui + κ,

49



Figure 3.4: A bounded state approximation to the wrapped model from Figure 3.1.

so that if τ ≥ maxi{θ/ui} + κ (these inequalities are well-defined since we require

0 < ui < 1 for all i), then for any x in Wθ,τ we have

cp(x) ≥ |xi − τui| > τui − κui > θ

so x can not be in Wθ,τ ; since x was chosen arbitrarily, Wθ,τ is empty for sufficiently

large τ . Thus Wθ =
⋃m
τ=0Wθ,τ for some finite m, so Wθ is finite.

Assuming that the optimal policy never reaches states with high cost given an initial

state with low cost, then the optimal policy can only visit a finite number of wrapped

states. Using this assumption, our third MDP model for the task scheduling problem

explicitly enforces a bound on the set of states that we will consider. In particular, we

restrict consideration to the wrapped states that satisfy a user-specified cost threshold.

Figure 3.4 illustrates this construction on the example problem from Figures 2.1

and 3.1. We have replaced the continued transitions upwards and to the left with

transitions to the absorbing state in the upper right. Local transitions are unchanged

for the states that are far enough away from the bounds. By choosing a large enough

cost for the absorbing state, we can force MDP solution methods to discover policies

that always stay within the cost bounds if any such policy exists.

We obtain the bounded state model by constructing an MDP over the set of wrapped

states in Wθ. This is achieved by preserving most of the transition and reward struc-

ture from the wrapped-state model. The main difference between the wrapped and

bounded state models occur at boundary states: states in the wrapped model that

50



have successors with cost exceeding θ. Since these successors are not part of the

wrapped state space, we are left with some dangling transitions. We abstract the

removed states with a single absorbing state, and map all of the dangling transi-

tions to the absorbing state. For example, if x is a wrapped state with successor

y = w(x + t∆i), with c(x) ≤ θ but c(y) > θ, then the transition from x to y is

replaced by a transition to the absorbing state, and the probability of transitioning

to the absorbing state is increased by Pi(t).

The absorbing state is an abstraction for all of the high cost states in the wrapped

state model. Since our goal is to avoid high cost states, we penalize the system heavily

for entering the absorbing state. In practice, we choose a cost that exceeds the cost

of any successor utilization state reachable from Wθ,

c(zθ) = θ + 2T,

where T is the largest worst-case execution time among all tasks, since this guarantees

that the bounded state model never underestimates the cost of an action.

Formally, given a cost bound θ, the bounded state MDP is defined over the states Wθ

together with an absorbing state zθ, along with the actions A, the transition system

Pθ, and the rewards Rθ. For any x and y in Wθ, Pθ(y|x, i) = Pw(y|x, i), while the

probability of transitioning to the absorbing state in x is the aggregate probability of

transitioning to any state with cost greater than the bounds,

Pθ(zθ|x, i) =
∑

y∈W/Wθ

Pw(y|x, i).

The reward function is defined analogously to the rewards in the utilization state and

wrapped state models as

Rθ(x, i,y) = −c(y).

The utilization state, wrapped state, and bounded state rewards are all equal when

y is in Wθ.

While the state space Wθ is finite, its size grows exponentially in the number of tasks.

The boundaries of the bounded, wrapped state space are parallel to the utilization

ray, and so are not axis aligned (Figure 3.3). To get a sense for the size of the state
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space, we bound it above and below using the difference of two hypercubes. In two

dimensions, this corresponds to two L-shaped regions of real space, one contained

completely inside the bounded state space and another completely containing the

bounded state space. For vectors v and w in Rn with v � w, let [v,w] be the

hypercube obtained by taking the Cartesian product of the intervals ×ni=1[vi, wi].

Then if we have bounds bi such that (bi − 1)c(∆i) < θ and bic(∆i) ≥ θ, the bounded

state space is contained in

[0,b + κu)/[κu,b + κu),

and the cost bounds contain the set

[0,b− 1]/[κu,b− 1 + κu].

This does mean that the bounded state model is restricted to small numbers of tasks

in practice. In Chapter 5, we discuss methods for approximating an optimal policy

in problems involving many tasks using direct policy search techniques [88, 52, 71].

3.2.1 Approximation Quality

The bounded, wrapped state model achieves our goal of providing a finite model

of the task scheduling problem; intuitively, it restricts the set of states we consider

to just “good” states – states with relatively low costs. In this section we derive a

prior bound on the approximation error between the optimal value function of the

truncated model versus the optimal utilization state value function.

The basic idea is straightforward: we can bound the contribution of any state y

with high cost to the value at some arbitrary state x if we know that, for example,

c(y) ≥ 2Tk + c(x). This is because any policy that reaches y from x must take at

least k decision epochs to do so; then the contribution of y has weight at most γk.

Even if our policy could reach y in k steps and stay there, the contribution to the

value at x is at most γkc(y)/(1−γ). Since Lp costs grow polynomially while high-cost

states are discounted exponentially, the contribution of far away states vanishes. This

means that if we want to estimate accurately the value of states in Wθ, then there is
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another threshold θ′ such that a bounded state model defined over Wθ′ is sufficient

to guarantee the desired precision.

With this intuition in mind, we present a more formal worst-case analysis of the qual-

ity of approximations obtained by solving the bounded state model. Our analysis is a

specialization of general results from Chapter 6.10 of Puterman’s book for analyzing

the performance of finite-state approximation of countable state models [72]. First,

we define a sequence of cost thresholds

(θk = 2Tk)∞k=0

we assume that the threshold θ used to define the bounded state model is in this

sequence, with θ = θm. This in turn defines a sequence of nested wrapped state sets

{0} ⊂ Wθ0 ⊂ Wθ1 ⊂ . . . ⊂ Wθm = Wθ ⊂ . . .

To reduce the proliferation of subscripts, we abbreviate Wθk to just Wk. It is not

possible to reach any state with cost greater than θk after taking any sequence of

within k decision epochs from the initial state 0, so if we start in 0 and dispatch k

actions, the system state is in Wk. Similarly, if the system is initially in x ∈ Wj, then

after k decision epochs the system state is guaranteed to be in Wj+k.

It is useful for our discussion to look at sets of states with cost bounded above and

below. Specifically, the set difference Wk/Wk−1 is the set of states with cost in the

interval (θk−1, θk]. We denote the set of these states as Zk:

Zk =

Wk/Wk−1, k > 0

W0, k = 0.

Together (Zk)
∞
k=0 partitions the wrapped state space W into cells with the property

that if x is in Zk, then its successors are in the union of Zk−1, Zk, and Zk+1.
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Given the cost threshold θ, for any real-valued function V over W we write the

bounded model backup operators as

(ΓθV )(x) = max
i∈A
{(Γθ,iV )(x)}, (3.6)

(Γθ,iV )(x) =
∑
y∈Wθ

P (y|x, i)[γV (y)− c(y)] +
∑
y 6∈Wθ

P (y|x, i)vθ (3.7)

where vθ is the default, fixed value of the absorbing state zθ,

vθ = −θm+1/(1− γ).

We use this as the default value for unrepresented states because θm+1 is a pessimistic

estimate of the cost of states reachable from Wθ; this biases solutions towards policies

that stay inside Wθ by making the alternative prohibitively expensive.

If x is in Wm−1, then its successors are entirely inside Wθ, so these backup operators

are equal to their utilization or wrapped state equivalents. Let V ∗θ = ΓθV
∗
θ be the

optimal bounded state value function. Let

εk = max
x∈Zk
|V ∗(x)− V ∗θ (x)|

be the largest magnitude error over states in Zk. Below, we exploit the locality of

the transition function to show that εk depends directly only on εk−1, εk, and εk+1.

Our intuition is that εk is largest when k is near m, since it takes fewer steps to reach

outside of Wθ from Zk as k approaches m. To formalize this intuition, we make use

of the following straightforward inequality,

|V ∗(x)− V ∗θ (x)| = |(ΓV ∗)(x)− (ΓθV
∗
θ )(x)|

≤ max
i∈A
|(ΓiV ∗)(x)− (Γθ,iV

∗
θ )(x)| .

This indicates that we can bound the approximation error in terms of backups per-

formed with respect to a single action. This eliminates the need to consider possible
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differences in the optimal policy at x.

|(ΓiV ∗)(x)− (Γθ,iV
∗
θ )(x)|

=
∣∣∣γ m∑

j=0

∑
y∈Zj

P (y|x, i)[V ∗(y)− V ∗θ (y)] +
∑

y∈Zm+1

P (y|x, i)[γV ∗(y)− c(y)− γvθ]
∣∣∣

≤ γ
m∑
j=0

∑
y∈Zj

P (y|x, i) |V ∗(y)− V ∗θ (y)|+
∑

y∈Zm+1

P (y|x, i) |γV ∗(y)− c(y)− γvθ|

≤ γ

m∑
j=0

∑
y∈Zj

P (y|x, i)εj +
∑

y∈Zm+1

P (y|x, i)[γεj+1 + c(y)]

≤ γ
m+1∑
j=0

∑
y∈Zj

P (y|x, i)εj +
∑

y∈Zm+1

P (y|x, i)θm+1

We obtain the final inequality above by noting that y must be in Wm+1, or equiv-

alently, c(y) ≤ θm+1. We can use this inequality to bound εk by maximizing the

right-hand side with respect to the state x and the action i,

εk ≤ max
x∈Zk
i∈A

{
γ
m+1∑
j=0

∑
y∈Zj

P (y|x, i)εj +
∑

y∈Zm+1

P (y|x, i)θm+1

}

Three cases for εk must be considered; (1) when k < m, (2) when k = m, and (3)

when k = m+ 1. We examine each of these cases below.

εm+1 : Since states in Zm+1 are absorbing in the bounded state model, we can bound

εm+1 independently of the error in any other cells. The error in this region

is bounded by the largest difference between the optimal value V ∗(x) and the

default value vθ,

|V ∗(x)− vθ| = max{V ∗(x)− vθ, vθ − V ∗(x)}.

We loosely bound the first term in the maximum by observing that V ∗(x) ≤ 0

since there are no positive rewards, so

V ∗(x)− vθ ≤ θm+1/(1− γ).
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For the second term,

vθ − V ∗(x) = −θm+1/(1− γ)− V ∗(x),

≤ −θm+1/(1− γ)

+ c(x)/(1− γ) + 2Tγ/(1− γ)2,

≤ 2Tγ/(1− γ)2,

which follows because c(x) is bounded above by θm+1 when x is in Zm+1. Since

θm+1/(1− γ) eventually exceeds 2Tγ/(1− γ)2 as m grows large, we use

εm+1 ≤ θm+1/(1− γ).

εk, k < m : For any k < m, εk ≤ γεk+1. We demonstrate this inductively. First,

assuming that m > 1, then there is a state x in Z0 such that

ε0 ≤ γP (Z0|x, i)ε0 + γP (Z1|x, i)ε1,

Since P (Z1|x, i) = 1− P (Z0|x, i) we can rearrange terms to get

ε0/ε1 ≤ γ
1− P (Z0|x, i)

1− γP (Z0|x, i)
≤ γ,

or equivalently, ε0 ≤ γε1. Then if εk−1 ≤ γεk, we can employ a similar argument

to show that εk ≤ γεk+1, since

εk ≤ γ

k+1∑
j=k−1

P (Zj|x, i)εj ≤ γεk

k∑
j=k−1

P (Zj|x, i) + γP (Zk+1|x, i)εk+1.

Therefore the inductive hypothesis is valid.

εm : We treat this case last because it relies on both εm−1 and εm+1. We have that

for some x in Zm,

εm ≤ γ[1− P (Zm+1|x, a)]εm + P (Zm+1|x, a)[γεm+1 + θm+1].
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Since εm+1 is bounded by θm+1/(1 − γ), the term γεm+1 + θm+1 simplifies to

θm+1/(1− γ). In the worst case, this means that we have

εm ≤ θm+1/(1− γ).

Putting these pieces together, we have that if k is less than m, then

εk ≤ γm−kθm+1/(1− γ).

Therefore as θ increases (that is, as we choose larger values of m), εk vanishes, and

the bounded model provides a consistent approximation to the value function of the

original wrapped-state MDP.

3.2.2 Empirical Results

In the previous section, we showed that the bounded state model is a consistent

approximator for the optimal value function of the task scheduling problem. These

bounds are primarily useful as a theoretical tool for demonstrating consistency; since

they apply to arbitrary policies, they are quite loose. In this section we will look

empirically at bounded state model solutions empirically to get a better sense for

their practical performance.

In the following discussion, we present results from different strategies for approxi-

mating the optimal task scheduling policy using the bounded model representation.

This includes experiments considering the choice of cost bounds on the derived policy

quality, the effect of reducing the temporal resolution of the problem, and the effect

of reducing the fidelity of the utilization target (for example, by approximating a

51%/49% share between two tasks using a 50%/50% share).

We can characterize each of these settings as varying some parameter of interest β to

study its impact on approximation performance. Each parameter β induces a different

problem that approximates the original task scheduling problem, and each of these

problems has its own optimal policy π∗β. There are two values that we can consider

when talking about π∗β. One is its value on the approximate problem, denoted V ∗β ,

and the other is V π∗β , the value of using π∗β on the actual task scheduling problem.

57



Even if some state x occurs in both the approximate and the original problem, V ∗β (x)

is not necessarily equal to V π∗β(x).

The quantity we are interested in studying in our approximation experiments is

|V π∗β(0)−V ∗(0)|, the difference in value of the optimal and approximate solutions at

the initial state 0. One reason that we restrict our attention to just the initial state

is that it appears in the original problem and every approximation we consider, so it

provides a consistent basis for comparison. The other reason is that if V π∗β and V ∗

differ at x, then it is necessarily the case that V π∗β(x) < V ∗(x), so if x is reachable

from 0 under π∗β, then V π∗β(0) < V ∗(0), so the initial state reflects suboptimality at

all of the states we care about even when π∗β(0) = π∗(0).

There are a couple of issues with using the error |V π∗β(0)− V ∗(0)| as our quantity of

interest. The first issue is that expected rewards, and so values, can vary tremendously

between problem instances, so this error has high variance. The second issue is that

we do not have access to the optimal value V ∗(0) in general.

We report results averaged across many random problem instances, and the value of

the initial state can vary substantially even between problem instances with the same

number of tasks. The expected error calculated across problem instances tends to be

dominated by the problem instances with the greatest magnitude initial state value,

and is not necessarily indicative of the actual approximation quality. With this in

mind, we instead report the normalized approximation error |[V π∗β(0)−V ∗(0)]/V ∗(0)|,
or equivalently, |V π∗β(0)/V ∗(0)− 1|. This measure vanishes as the approximation ap-

proaches the true optimal value, and is monotonically increasing as the approximation

gets worse. It is well-defined for all of the problem instances we consider, since V ∗(0)

is zero only in the degenerate case in which some task has a duration of zero4.

A further problem is that we can not certify that any policy we consider is actually

optimal, since we can not evaluate policies that may reach infinitely many states

– while we suspect that no such policy can be optimal, we have not been able to

demonstrate this conclusively. Therefore, we need to use some proxy in place of V ∗(0)

in our error measurements. In all of the settings we consider, there is a natural choice

4If some degenerate task has a duration of zero, then running that task from the initial state
never accrues any cost; any task with non-zero duration has positive expected cost, so the optimal
policy will be to run the degenerate task repeatedly forever
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of a baseline parameter value B that serves this purpose: solutions to the largest

bound model are never worse than policies derived with smaller bounds, the set of

policies over coarse temporal resolution approximations is a subset of the policies for

finer resolution problems, and so on, so that V π∗β � V π∗B . With this in mind, we

report approximation quality in terms of |V π∗β(0)/V π∗B(0)− 1|.

Varying the cost bounds: Our first tests consider the convergence rate on random

two-task problem instances. These problem instances were constructed by choosing

task duration distributions and utilization targets at random. Utilization targets were

selected by choosing integers q1 and q2 uniformly at random from between 1 and 16,

inclusive, in order to establish a utilization target of u = (q1, q2) · (q1 + q2)
−1. The

worst-case execution time for each task varied from instance to instance and was

selected uniformly at random from between 8 and 32 quanta, inclusive.

One common consideration with simulated performance is whether or not results from

simulated problem instances predict real-world behavior. In order to address this, we

ran tests with structured and unstructured duration distributions. Unstructured dis-

tributions consisted of randomly chosen histograms, and may simulate a wide variety

of phenomena, including distributions with non-convex support. Structured support

is intended to model task behaviors that may be more likely in certain domains: for

example, the duration of robot motor tasks is often estimated using normal distribu-

tions, as this fits well with empirical observations.

Unstructured histograms were generated at random as follows. We first select a worst-

case execution time Ti for the task Ji uniformly at random between 8 and 32 time

quanta. The closed interval from time 0 to Ti+1 was then discretized into Ti bins; bin

t corresponds to the probability of running for t quanta, Pi(t). We populated each bin

by sampling uniformly at random among integers between 0 and 10, inclusive, then

normalized each bin by the sum over all bins in order to obtain a discrete distribution.

Structured histograms correspond to discretized, truncated normal distributions. As

above, we first select a worst-case execution time uniformly at random between 8 and

32 time quanta. Then we select the normal distribution’s real-valued mean from the

intervals 1 and Ta and its variance from the interval [0, 5). The corresponding discrete

distribution is obtained by taking the height of the normal density at the center of

each bin, then normalizing by the sum over bins to get a proper discrete distribution.
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(a) value comparison (b) state space size

Figure 3.5: Approximation performance for the bounded state model.

We examined the approximation performance for increasing cost bounds between

θ = 10 and θ = 100 at unit intervals. The results of these tests are shown in

Figure 3.5. We report the approximation quality in Figure 3.5(a). The approximation

quality is a function of the difference between the optimal and approximate policy,

and is discussed in greater detail below. Figure 3.5(b) shows the number of states in

the bounded state model as we increase the bounds. We show results for cost bounds

between 10 and 40 because in all of these tests the bounded state approximation

converged at or before θ = 37.

In Figure 3.5(b), the number of states grows linearly as the cost bounds increase. In

the n-task case, the size of the bounded state space grows according to O(nf(u)n−1)

for some utilization-dependent density constant f(u). One way to visualize this

growth is by projecting every utilization state (or equivalently, every wrapped state)

onto n orthogonal, axis-aligned (n−1)-dimensional halfplanes that meet at the origin

and extend to +∞, i.e., the halfplanes pi = {x ∈ Rn | x � 0, xi = 0} for i = 1, . . . , n.

We can flatten out the union of these halfplanes to span Rn−1 so that the cost of a state

is just the distance to the initial state in the the flattened space. Therefore the size of

wrapped state spaces with progressively larger cost bounds corresponds to selecting

progressively larger balls in the flattened (n − 1)-dimensional space; the number of

states in these balls necessarily grows asymptotically on the order of densityn−1. The

density of states in this space is dictated by the utilization target, becoming more

dense as the period grows large.
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The approximation quality for varying cost bounds is shown in Figure 3.5(a). We

measure the approximation quality as the normalized error |V ∗θ (0)/V ∗100(0)− 1|. If

the optimal policy for the model with cost bound θ never reaches an absorbing state

in that model, then its value at the initial state in the bounded model is identical

to its value at the initial state of the unbounded wrapped state model. In these

experiments, π∗θ stayed within the cost bounds whenever θ exceeded 36; we suspect

that the optimal bounded model policy for each of these problems may be the optimal

policy for the original problem, as further increasing the bounds fails to improve the

policy. While this stabilization point varies from problem to problem, we conjecture

that for any periodic task scheduling problem with finite worst-case execution times

there is some finite bound cost model that is sufficient to represent the optimal policy

at the initial state and its successors.

Structured problem instances exhibited much better approximation performance than

we saw in the unstructured case. This is encouraging, since we expect that most real-

world tasks will resemble more closely our structured distributions rather than the

unstructured ones. We attribute this approximation performance to the likelihood of

transitioning to the absorbing state as the bounds increase. Since we used discretized

Gaussian distributions for these experiments, the probability of emitting larger dura-

tions gradually falls off beyond the mean. If we choose a wrapped state and look at

the probability of transitioning from it to the absorbing state in bounded state models

with progressively larger bounds, that probability will fall off gracefully. Under the

unstructured distributions, the change in probability of reaching the absorbing state

while varying cost bounds may be less smooth.

Varying the worst-case execution time (WCET): In these tests, we ran thirty

trials to evaluate the effects of differing worst-case execution convergence time of

bounded state approximations. In each trial we chose a mean and variance for each

task; these means were real values selected uniformly at random between 1 and 32,

while variances were selected similarly from between 1 and 16. We then generated 25

problem instances by truncating the distributions at T = 8 up to T = 32 in order to

induce a variety of worst-case execution times.

Next, we approximated a solution to each of these problem instances by using cost

bounds between 10 and 50 to determine the point of convergence. The point of
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Figure 3.6: Convergence points as a function of task worst-case execution time.

convergence was determined by finding the least cost bound θ′ such that for each θ

between θ′ and 50, V ∗θ (0) = V ∗50(0). Figure 3.6 shows the results of these tests.

In Figure 3.6 we report the mean, minimum, and maximum locations of the con-

vergence point for each worst-case execution time we considered. 95% confidence

intervals about the mean are shown. We see that the convergence point grows almost

linearly with worst-case execution time. The curvature in the mean curve is due to

our method for choosing the distribution means; the WCET induced by truncation

may differ from the actual one if a duration distribution has small enough mean and

variance that the last few bins in the discretization have zero probability mass. This

causes an artificial decrease in slope as truncation is irrelevant for more problems as

the induced worst-case execution time increases.

Perhaps the most interesting observation is that in both sets of tests, the value func-

tion approximations appeared to converge at a finite cost bound. This is in contrast

to our a priori performance bounds in the previous section, which guaranteed con-

vergence to the optimal asymptotically. This suggests that for any periodic task

scheduling problem with finite worst-case execution times, there may be a finite cost

bound such that the bounded state model is sufficient to completely represent an

optimal policy from the initial state. That is, there may be some optimal policy that

only reaches finitely many states from the initial state.

This is not particularly surprising, since increasing the number of states in a model

can result in a new optimal policy only when the new states themselves offer lower

costs or make it easier to reach existing low cost states. We have formulated the
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bounded cost model such that increasing the bounds only adds states with higher

cost, but increasing the bounds would change the optimal policy only if they made

it easier to reach low cost states. The limit on the difference in cost between states

and their successors (Lemma 2.2.1 from Section 2.2) means that high cost states are

near similarly costed states, so it seems unlikely that adding higher cost states will

open up paths to beneficial states. However, we have not been able to prove that this

conjecture holds overall.

Comparison to heuristic policies: Good approximations to the optimal policy

are quite expensive to compute. With this in mind, we performed experiments to

compare the quality of the optimal solution to a pair of heuristic policies. We looked

at two policies in particular: the cost-greedy policy, and the policy that always runs

the most underutilized action.

The cost-greedy policy πg chooses actions according to

πg(x) ∈ argmin
i∈A

{
∞∑
t=1

Pi(t)c(x + t∆i)

}
, (3.8)

with ties broken uniformly at random. This policy just chooses the action with the

best expected next-state cost. We denote by πu the policy that always executes the

most underutilized action. This utilization policy is expressed as

πu(x) ∈ argmax
i∈A

{τ(x)ui − xi}; (3.9)

with ties broken uniformly at random. In the two-task case, the decision boundary for

the greedy policy is parallel to the target utilization ray, while the decision boundary

for πu is the utilization ray itself.

We compared the quality of these policies to the optimal bounded model policy for

varying cost bounds using the same methodology as above. We considered two-

and three-task problem instances with discretized normal duration distributions with

means between 1 and 32, variances between 1 and 16, and worst-case execution times

between 8 and 32, selected uniformly at random. The utilization targets for each

problem instance were selected by choosing integers q ∈ [1, 16]n uniformly at random,

so that the utilization target is u = q · (
∑

i qi)
−1. We computed the optimal bounded
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policy using bounds ranging from θ = 10 to θ = 50. We repeated this procedure 50

times for both the two- and three-task case.

Figure 3.7 shows the results for the two-task comparison. We measure the approx-

imation quality in terms of the normalized approximation error |V π(0)/V ∗50(0)− 1|,
where V π(0) can be the value of one of the heuristic policies or the value of the op-

timal bounded model policy for varying cost-bounds. We verified that neither the

greedy policy nor the utilization policy ever had value greater than V ∗50(0) at the

initial state, so the approximation error does indeed measure how much worse these

heuristic policies perform relative to the best bounded model policy considered. We

report the mean and 95% confidence intervals over fifty trials.

Figure 3.7: Comparison of the optimal bounded policy value to two heuristic policies
on two-task problems.

The heuristic policies do not depend on the cost bound. To evaluate these policies

we first computed their closure, i.e, the set of states reachable from the initial state.

This allows us to compute exactly the value of each of these policies at the initial

state. We see that the greedy policy has significantly higher value (lower error) than

the utilization policy. More importantly, the greedy policy and the optimal bounded

policy are identical for sufficiently large bounds. While we have not been able to prove

that the greedy policy is optimal for the two-task case, empirically these policies have

been identical in every problem instance that we have considered.

Optimality of the greedy policy clearly does not hold in general; moving to the three

task case illustrates this quite clearly. Figure 3.8 shows the results of our experiments

in this setting. In Figure 3.8(a) we see that once again the utilization policy is
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significantly inferior to the greedy policy. At this scale, the greedy policy and the

optimal bounded policy are quite similar. Figure 3.8(b) provides a closer comparison

of the greedy and bounded optimal policies for larger bounds. Here we can see that

the bounded policy is significantly better, although they are similar enough to suggest

that the greedy policy is a good proxy for the optimal policy. We do, however, expect

that the difference in value between the greedy and optimal policies will grow with

the number of tasks.

(a) full results (b) detail

Figure 3.8: Comparison of the optimal bounded policy value to two heuristic policies
on three-task problems.

Figure 3.9 plots the average number of states as a function of the cost bound in the

two- and three-task cases. Notice that the vertical axis is in log scale; the three-task

results reflect our expectation that the number of states grows quadratically in the

cost bounds, while the number of states grows linearly in the cost bounds.

In this and in the previous experiments, we considered the performance of heuristic

policies or bounded model policies as approximations to the optimal task scheduling

policies. These experiments consider different models of the same task scheduling

problem. In the next set of experiments, we consider approximating the original task

scheduling problem with a similar task scheduling problem with a simpler utilization

state model. This consists of reducing the temporal resolution when modeling task

durations. This reduces the number of successors any state can have, and corresponds

to aggregating temporally similar states.
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Figure 3.9: The number of bounded model states for increasing cost bounds.

Varying the temporal resolution: Above, we considered the effect of approxi-

mating one problem with another using a more easily-represented utilization target.

Another factor was not considered in much depth is the temporal resolution of a

problem. For example, if we have extremely large durations in tens of thousands

of quanta, using a single quantum time resolution may be inappropriate, since we

would require a large number of states to capture the entire distribution of successor

states of any given state. In these situations, it may be appropriate to aggregate time

quanta into a different time scale.

We tested this conjecture in order to evaluate empirically the performance ramifica-

tions of using a problem with coarse time resolution as an approximation to a one

with finer resolution. In these tests, we constructed fifty two-task scheduling problem

instances using randomized duration distributions and utilization targets. Utilization

targets were selected uniformly at random by choosing integers in q ∈ [1, 16]n to

establish a utilization target of u = q · (
∑

i qi)
−1.

Duration distributions were constructed with a worst-case execution time of T = 256.

We repeated these tests with unstructured histograms selected uniformly at random,

and using structured discretized normal distributions. These were constructed fol-

lowing the procedures described in previous experiments above; normal distribution

parameters were selected uniformly at random, with means between 1 and 256 and

variance between 1 and 128.

In each trial we considered a single problem instance. For each task, we took the

duration distribution over the interval [0, 256] and rescaled it to the interval [0, ρ] for
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each resolution ρ in 8, 16, 32, 64 and 128. The probability of running for t quanta

in the resolution ρ = 2k problem was the probability of running between 28−kt and

28−k(t+7−k) quanta (inclusive) in the original problem. For example, the probability

for running t quanta in the 128-resolution approximation was just the probability of

running for 2t or 2t+ 1 quanta in the original, maximum resolution problem. Moving

from a resolution of 2k down to 2k
′

corresponds to aggregating groups of k − k′ + 1

adjacent utilization states. For example, the 128-resolution state (0, 0) corresponds

to the set of states {(0, 0), (0, 1), (1, 0), (1, 1)} of the 256-resolution problem.

We then performed 5000 Monte-Carlo trials, following the greedy policy for the low-

resolution problem on the original problem for 2000 steps. We used this to estimate

the value of that policy on the original problem, since in our experience the greedy and

optimal policies agree on two-task problems. This was accomplished by mapping each

utilization state x we encountered in the original problem down to the corresponding

low-resolution state x′, looking up the greedy action at x′, then applying that action

at x. We report the results of these experiments in Figure 3.10; Figure 3.10(a) shows

the approximation performance as a function of resolution for unstructured random

histograms, and Figure 3.10(b) presents our results on discretized normal duration

distributions.

As in our previous experiments, we report approximation quality after normalizing the

results with respect to the optimal value. Let V ρ(0) be the initial-state value of the

ρ-resolution greedy policy on the original 256-resolution problem, and let V̂ ρ(0) be its

approximation. We report the approximation quality as |V̂ ρ(0)/V 256(0)− 1|, using

the true value of the greedy policy for the maximum resolution problem as our basis for

comparison. This error measure vanishes as V̂ ρ(0) approaches V 256(0). In both sets

of experiments, it appears that we can decrease the temporal resolution substantially

while incurring only a small loss in policy performance. This is significant, since

cutting the temporal resolution in half in an n-task problem results in a reduction in

the number of states that is exponential in the number of tasks.

It is worth noting that the unstructured problem instances appear to endure changes

in temporal resolution more gracefully than the structured instances. The difference

in approximation error between the highest and lowest resolution problem instances

is an order of magnitude smaller under unstructured problem instances.

67



(a) random durations (b) gaussian durations

Figure 3.10: Approximation quality using reduced temporal resolution. Note the
order of magnitude difference in scale.

3.3 Automatic State Space Construction

In Section 3.2 we described the bounded state model, an MDP formulation of the task

scheduling problem restricted to a cost-bounded subset of states from the wrapped

state model of Section 3.1. The transition and reward structure of this model is

identical to that of the wrapped state model in any state with sufficiently low cost,

while the remaining states are abstractly represented with a single absorbing state.

By choosing appropriately large costs for the absorbing state, we can guarantee that

the optimal policy for the bounded model never reaches states that exceed the cost

threshold. This allows us to guarantee that these solutions are a good solution to the

original task scheduling problem.

Our empirical results with the bounded model approach suggest that there may be a

finite cost bound that suffices to capture an optimal policy near the initial state. In

order to benefit from using the bounded model solution (as opposed to the cheaper-

to-compute greedy policy) we need to select the bound carefully: if it is too small,

the resulting policy performs worse than the greedy policy, while if the bounds are

too large the model includes many irrelevant states.

One straightforward way to address these concerns is to integrate modeling and solv-

ing bounded models into a meta-algorithm that iteratively increases the cost bounds.
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This meta-algorithm terminates whenever it appears that the optimal policy has sta-

bilized. This approach has several drawbacks: It does not carry information between

iterations, many states in the bounded model may be irrelevant, and we can only

identify policy stabilization heuristically.

Most of the structure is identical in two bounded models with similar cost bounds.

If x is a state with much lower cost than either models’ bound, then the transition

system and expected reward at that state is unchanged between the two models. The

more transitions it would take to escape these bounds from x, the more similar its

value is in either model. This suggests that the optimal policy and value for one

model would be a good initial approximation for the other. The meta-algorithm

framework described above does not explicitly take this into account; doing so may

save a substantial amount of time and effort.

The second drawback is that cost bounded models may include many irrelevant states.

Since the wrapped state space is countably infinite, we have restricted the set of states

we consider by identifying a distinguished initial state x = 0. Costs increase with

distance from 0 in the wrapped state model, penalizing policies that visit states that

are arbitrarily far away. However, even if we have a policy that never visits states

with cost greater than the bound θ, it may be the case that it visits far fewer states

than the corresponding bounded model contains. For example, it is often the case

that one component of the state ever grows large under good scheduling policies;

choosing bounds large enough to accommodate such states forces us to include states

that allow any component to grow similarly large, whether or not the policy ever

reaches these states. If we can identify these states (or more accurately, if we can

enumerate only the necessary states) we may significantly reduce the cost of solving

the model.

Figure 3.11 provides an example of this phenomenon. We found a bounded model

solution for a two-task problem with utilization target u = (13/20, 7/20) and dis-

cretized, truncated normal durations with worst-case execution times of 17. We then

looked at the set of states reachable from the initial state x = 0 under that policy;

these states are shown in blue in the figure. The largest cost among these states was

slightly more than 20; the sixty-three red states are included in the tightest bounded

model that contains all of the blue states. It appears that the number of unreachable
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Figure 3.11: An optimal bounded model policy may only visit a small subset of model
states. The optimal bounded model may reach any of the blue states from the initial
state x = 0, but will never reach the red states.

states in a tight model grows as the utilization target becomes more skewed towards

a single task, and also increases with the number of tasks as well.

Finally, we would prefer to address termination in a more principled, less heuristic

fashion. Our empirical results (for example, those in Figures 3.5 and 3.6 in Sec-

tion 3.2.2), suggest we may be justified in terminating whenever the value does not

vary between subsequent iterations, since we have seen no evidence that subsequent

iterations can improve the policy after that point. However, in general this may not

be the case, and V ∗θ (0) = V ∗θ+1(0) does not necessarily mean that we have found the

optimal value at 0; it just means that there is no policy within the bounds (θ + 1)

that is better than the θ-bounded best policy. While it seems unlikely that increasing

the bounds further would yield a better policy, given the speed limit on transitions

and the fact that we are only adding higher cost states to the model, we do not yet

have any guarantee that this is true.

In this section we discuss our Expanding State Policy Iteration (ESPI) algorithm [36],

which addresses these concerns by interleaving state space enumeration with policy

evaluation and improvement in order to compactly represent the states necessary for

finding good policies. ESPI takes as input a collection of initial states and a default

policy. It proceedings iteratively, exploring and enumerating the initial state set to

include states necessary for evaluating and improving its current policy. We construct

an MDP model over the expanded state space, and then perform one or more rounds

of policy iteration in order to obtain a new policy. The algorithm terminates when

no improvements to its current policy are found. ESPI can be viewed as a way of
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incorporating reachability analysis [16] into the bounded model generation, since we

explicitly restrict attention to states that might be encountered given an intermediate

policy that we want to evaluate.

Policies produced by ESPI will never be worse than the default policy, although it

may terminate with a suboptimal policy. We extend ESPI by developing a family of

related algorithms that vary the size of the enumerated state spaces and the number

of rounds of policy iteration applied to each intermediate model. These extensions

are consistent in the sense that as both of these parameters grow large, the solutions

converge on the optimal wrapped state solution. First we describe the basic version

of this algorithm.

3.3.1 The ESPI Algorithm

While we designed the ESPI algorithm specifically with the task scheduling problem

structure in mind, we will first describe the algorithm for general, countable state

Markov decision processes. Let M = (X ,A, R, P ) be an MDP. Then ESPI takes a

distinguished collection of initial states XI ⊆ X and a default policy πI . We then

iterate over three steps: model expansion, policy evaluation, and policy improvement.

The model expansion step is the most involved, in that it constructs an MDP over a

subset of the wrapped state space. Policy evaluation and improvement are straight-

forward analogs to their Policy Iteration equivalents (see, for example, Section 6.4 of

Puterman’s book [72] or our brief description in Section 2.1), except that they are

restricted to the models constructed in the model expansion step.

• Model Expansion explores a subset of states that are necessary and sufficient to

evaluate and improve ESPI’s current policy. This is performed by constructing

an evaluation envelope consisting of the states reachable from XI under the

current policy, then constructing an improvement envelope about the closure to

accommodate the successor states of actions besides the policy actions. The

evaluation envelope is constructed in such a way that we can compute the

policy value exactly at each state it contains, while the improvement envelope

allows us to accurately evaluate the utility of modifying the policy at states

in the evaluation envelope. Finally, we construct an MDP model Md over the
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improvement envelope using techniques similar to those employed in Section 3.2

for constructing cost-bounded models.

• Policy Evaluation consists of computing the value of the current policy in the

context of the intermediate model Md. We design this process so that the value

of the current policy applied to Md is identical to its value over the closure in

the original problem.

• Policy Improvement uses the improvement envelope to accurately assess the

utility of actions different from those suggested by the current policy.

Model Expansion At each iteration d, the model expansion step consists of ex-

ploring the set of states reachable from the initial state set XI under the intermediate

policy πd. We begin by constructing the evaluation envelope Xd, which is the closure

of πd about the initial states XI . The closure of an arbitrary policy π on a set of

state X, denoted CπX, is just the set of states that can be reached from X ⊆ X while

following π in any number of steps. We will define this more precisely in terms of a

policy expansion operator. The expansion of policy π on X, denoted E , is defined as

EπX = {y ∈ X | ∃x ∈ X, P (y|x, π(x)) > 0}. (3.10)

We use this expansion operator to define the k-step closure of a policy. The k-step

closure of a policy π on X, denoted CkπX, is the set of states that can be reached in

k or fewer transitions from X. We define this recursively,

C1
πX = X ∪ EπX

CkπX = Ck−1
π (C1

πX). (3.11)

The one step closure of X is just X and its expansion, while the k-step closure consists

of X and the results of expanding it k or fewer times. If we let P (j)(y|x, π) denote

the probability of reaching y from x in exactly j transitions under policy π and define

P (0)(x|x, π) = 1, then it is equivalent to define the k-step closure as

CkπX =
k⋃
j=0

{y ∈ X | ∃x ∈ X, P (j)(y|x, π) > 0}.
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(a) Greedy policy π (b) Policy closure Cπ{0}

Figure 3.12: The greedy policy closure.

We define the closure CπX of π on X as the limit of the k-step closure as k grows

large:

CπX = lim
k→∞
CkπX. (3.12)

Figure 3.12 illustrates the closure of the greedy policy at the initial state of our running

example from Figure 3.1. The greedy policy is shown in Figure 3.12(a): Action 0 is

selected in the grey states and transitions along the black edges, while Action 1 is

chosen in the red states and follows the red edges. In Figure 3.12(b) we have removed

all of the states that are unreachable from the initial state x = 0 (bottom left) when

following the greedy policy.

For convenience, we also define the unqualified expansion operator E and k-step clo-

sure operators Ck. These are equivalent to the corresponding policy operators using

policies that assign non-zero probability to taking every action in each state. Thus,

EX is the set of states that can be reached in one transition from X under any action,

and CkX is the set of states that can be reached in k or fewer transitions from X

under any possible policy. The ∞-step closure CX is the set of all states that are

reachable from X.

The policy closure CπX is exactly the set of states that are both necessary and suffi-

cient to evaluate π at every state in the closure. Consider the policy value recurrence

from Equation 2.2,

(ΓπV
π)(x) =

∑
y∈X

P (y|x, π(x))[R(x, π(x), y) + γV π(y)].
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Evaluation Envelope By construction, CπX contains all and only the states nec-

essary to evaluate this recurrence at each state it contains: if x is in the closure, it is

in X or it is reachable from X under π; if x is not in the closure, then it is unreachable

from X. Since CπX allows us to evaluate the policy backup operator, we refer to it

as the evaluation envelope.

In order to improve a policy π at a state x, we need to evaluate the action backup

operator (Equation 2.13)

(ΓaV
π)(x) =

∑
y∈X

P (y|x, a)[R(x, a, y) + γV π(y)].

for each action a. In general, the evaluation envelope is not guaranteed to include

the states necessary to perform this backup at every state it contains. For example,

in Figure 3.12, we would not be able to evaluate Γ0V
π exactly at the initial state

because the successor state (2, 0) is not part of the closure.

Improvement Envelope In order to correctly perform policy improvement, we

need to be able to evaluate (ΓaV )(x) at each state x in the evaluation envelope. To

accomplish this, we expand the evaluation envelope to accommodate the successors

of arbitrary actions by taking the 1-step (unqualified) closure of CπX,

C1(CπX) = E(CπX) ∪ CπX

This set contains all of the successors of states in CπX, so it is possible to perform

action backups for these states as long as we already know V π at each successor

state. However, C1(CπX) in general does not contain enough information to evaluate

V π. In order to capture this information, we construct the improvement envelope

Cπ(C1(CπX)).

Figure 3.13 shows the improvement envelope for the greedy policy in our running

example. We have also included the transitions that necessitate adding each of the

states shown.

Policy Evaluation At iteration d of ESPI we construct the evaluation envelope

Xd = CπdXI , then expand it to obtain the improvement envelope Yd = Cπd(C1Xd).

Next, we need to compute the policy value V πd at each state in the improvement
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Figure 3.13: The improvement envelope for the greedy policy in Figure 3.12.

envelope. For example, this can be approximated using successive approximations

to compute ΓkπdV for suitably large k, or computed exactly by directly solving the

system V = ΓπdV . This step differs from the policy evaluation step of policy iteration

only in that we restrict computations to just the states in the improvement envelope.

Policy Improvement Similarly, policy improvement is a direct analog to its policy

iteration equivalent. This consists of evaluating the action backup operator at just

the states in the evaluation envelope Xd. We only perform policy improvement over

the evaluation envelope because we are not guaranteed to have all of the successors of

states in Yd/Xd. (Later we extend ESPI to permit improvements at every state in the

improvement envelope as well) This gives us the policy πd+1 for the next iteration,

with

πd+1(x) ∈ argmax
a∈A

{(ΓaV πd)(x)}

for each state x in Xd. ESPI terminates when πd and πd+1 agree at every state in the

evaluation envelope.

When ESPI terminates, we only need to retain the final evaluation envelope; the

states in Yd/Xd are not reachable from XI under the final policy. In fact, if πI can be

implicitly defined over all of X , then we only need to explicitly store πd for states in

Xd where πd and πI differ. For example, we can define the task scheduling greedy or

utilization policies without explicitly storing a lookup table mapping states to actions;

the greedy policy and our bounded state approximations tend to agree in the majority

of states, so only storing states where they differ can result in substantial savings in

storage when we store or communicate the policy.

On general Markov decision processes we can not guarantee that the final policy πd

is optimal, since we may never consider a policy that reaches a high reward state
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if it can only be reached by moving through states with very low reward. There is

no apparent reason to alter the policy if it increases the likelihood of incurring large

penalties, so ESPI may never expand its improvement envelope enough to enclose

the high reward state. Therefore, ESPI is most useful for applications like our task

scheduling problem, where costs increase monotonically away from some desired state

or trajectory.

Algorithm 1 combines the steps described above to provide a pseudocode description

of the ESPI algorithm.

Algorithm 1 ESPI(XI , πI)
1: π0 := πI
2: for d = 0, 1, 2, . . . do
3: Xd := CπdXI

4: Yd := CπdC1Xd

5: Solve Vd = ΓπdVd over Yd.

6: ∀x ∈ X , πd+1(x) =

argmax
a∈A

{(ΓaVd)(x)} x ∈ Xd

πI otherwise

7: if πd+1 = πd over Xd, then return
8: end for

When ESPI is used on any finite MDP, it is guaranteed to terminate. The evalu-

ation and improvement envelopes can at most contain the entire finite state space.

Further, we can employ the same argument used to demonstrate the correctness of

policy iteration in finite MDPs here: πd+1 differs from πd only if there is some state

x in the evaluation envelope where V πd+1(x) ≥ V πd(x), so the policies we consider

are monotonically increasing in value. There are only finitely many policies we can

consider on any finite MDP, so ESPI must terminate.

In general countably infinite state spaces ESPI may not terminate. Trivially, if the

default policy does not have finite closure, then we can not compute its evaluation

or improvement envelopes. Even if the default policy does have finite closure we

still can run into trouble. For example, suppose we have an MDP over the positive

integers and two deterministic actions, {0, 1}, and action a = 0 is a no-op, i.e it leaves

the process in the same state, while a = 1 increments the state. The default policy

πI = 0 has finite closure for any finite initial state set XI , but if R(x, a, y) = r(y)

76



is monotonically increasing in y, then ESPI will not terminate. For example, if

XI = {0}, then Xd = {0, . . . , d}.

This underscores the importance of our choice of initial policy. For any finite subset

of states X, CπIX must be finite. This is sufficient to guarantee that each evaluation

envelope Xd and improvement envelope Yd is finite, since πd and πI can differ on at

most finitely many states. However, our example above shows that even then ESPI

may not terminate; ESPI will terminate only when it is either impossible to leave the

current evaluation envelope or when there is no benefit to doing so, so termination

depends on the application domain.

3.3.2 Algorithm Analysis

Since ESPI’s termination is application-dependent, we now consider its specific appli-

cation to the wrapped state model of the task scheduling problem. ESPI is intended

to exploit the structure of the task scheduling problem cost function in order to

find good policies efficiently. In particular, high cost states have high cost succes-

sors and predecessors; similarly, low cost states are near other low cost states (see

Lemma 2.2.1). Since there are only finitely many low cost states, it seems likely that

good finite-state policies should exist. We will demonstrate that there is at least one

policy that has finite closure.

Notice that ESPI can only terminate when every intermediate policy πd has a corre-

sponding finite improvement envelope Yd. The only way that a task scheduling policy

can have an infinite improvement envelope is if it has non-zero probability of reaching

states with arbitrarily cost. It seems unlikely that such a policy would be optimal,

but a number of factors make obtaining a formal proof of this result difficult. In

practice, ESPI terminates on the wrapped state model of task scheduling problems

given an appropriate default policy. For the remainder of this section we consider the

conditions necessary to select a good default policy, and propose a class of policies

with guaranteed finite improvement envelopes.

When the closure CπX of any finite state set X under π is always finite, we say that

π has finite closure. We have identified a class of policies that have finite closure on

77



the task scheduling problem. These policies are eventually non-expansive in that they

are guaranteed to reduce cost in any state with sufficiently high cost. We formalize

this concept below.

We say that a policy π is non-expansive if and only if it never increases costs; that is,

for any state x, c(y) ≤ c(x) whenever P (y|x, π(x)) > 0. Since there are only finitely

many states that satisfy any given cost bound in the task scheduling problem, any

non-expanding policy has finite closure. However, as long as every task has non-zero

probability of running at least one quanta when dispatched, none of these policies

exist: every possible successor of the initial state has positive cost.

An eventually non-expansive policy π is one that is non-expansive in states with

sufficiently high cost – that is, there is some cost bound θπ such that π will never

transition the system into a higher cost state from any state x with cost c(x) ≥ θπ.

These policies have finite closure on the task scheduling problem with Lp costs, which

we formalize in the following lemma.

Lemma 3.3.1. If π is an eventually non-expansive task scheduling policy with cost

bound θπ under cost function cp, then for any finite set of wrapped states X, CπX is

finite.

Proof. Let X be a finite collection of wrapped states and π be an eventually non-

expansive policy with cost bound θπ. Let cmax be the maximum cost among the states

in X. We can use θπ to partition X into X− and X+, so that states in X− have cost

less than θπ, while states in X+ have cost at least θπ.

Notice that EπX = (EπX−) ∪ (EπX+), which implies that CkπX = (CkπX−) ∪ (CkπX+)

as well. We are not guaranteed that π may increase costs at states in X−, so the

largest cost among states in EπX− can exceed cmax. According to Lemma 2.2.1, the

difference between a state’s cost and its successor’s cost is at most 2T , so the largest

cost state in EπX− is less than θπ + 2T . Since π never increases costs at states in X+,

the largest cost in EπX+ is at most cmax.

It follows that the largest cost in C1
πX is less than the larger of cmax and θπ + 2T .

We can apply this same argument repeatedly to show that CkπX has cost bounded by
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max{cmax, θπ + 2T} as well, so the closure CπX has bounded cost. By Lemma 3.2.1

only finite state sets have bounded cost, so π has finite closure.

We can generalize this result to any MDP in which (1) there are at most finitely many

states with cost less than any finite bound, and (2) if y is a successor state of x, then

the difference in reward or cost between x and y is bounded by a global constant.

Significantly, if we have an eventually non-expansive policy π and another policy

π′ that differs from π in only finitely many states, then π′ is also eventually non-

expansive. If cmax ≥ θπ is the largest cost state where π and π′ disagree, then π′

is eventually non-expansive with cost bound cmax; if cmax is less than θπ, then π′ is

eventually non-expansive with cost bound θπ. Suppose that the policy πd produced

by ESPI is eventually non-expansive. πd+1 and πd can differ only within the finite

evaluation envelope of πd, so πd+1 is also eventually non-expansive. Therefore, if πI

is eventually non-expansive, so is every intermediate policy produced by ESPI, so all

of the closures we need to compute are finite.

The cost-greedy policy

πg(x) = argmin
i∈A

Et∼Pi{c(x + t∆i)}

(an equivalent definition is provided in Equation 3.8) is not necessarily eventually

non-expansive, because in problems with three or more tasks, the greedy policy may

dispatch a task that increases the cost with low probability as long as it reduces cost

in expectation, even if some action that strictly reduces cost is available. Whether or

not the greedy policy has finite closure is an open question; anecdotally, in thousands

of problem instances we have not found any examples in which the greedy policy did

not have finite closure.

The utilization policy

πu(x) = argmax
i∈A

{τ(x)ui − xi}

is eventually non-expansive. For convenience, we will demonstrate that this is true

for L1-costs, but the result can be extended to other order Lp norms.

Lemma 3.3.2. The scheduling policy that always dispatches the most underutilized

task, πu, is eventually non-expansive.
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Proof. We will show that πu decreases costs in any state x with c1(x) greater than

2T (n − 1), where n is the number of tasks and T is the worst-case execution time

among all tasks. The cost of a state is the sum of component costs for each task;

the component cost of a task Ji in L1-norm is |τ(x)ui − xi|. Let O(x) be the set of

overutilized tasks at x,

O(x) = {i ∈ A | xi > τ(x)ui}.

The set of underutilized tasks is the complement of O(x) in A. The sum of component

costs among overutilized tasks equals that among underutilized costs, since∑
i∈O(x)

(xi − τ(x)ui) =
( ∑
i∈O(x)

xi

)
− τ(x)

∑
i∈O(x)

ui

= τ(x)−
( ∑
i∈U(x)

xi

)
− τ(x)

(
1−

∑
i∈U(x)

ui

)
=
∑
i∈U(x)

(τ(x)ui − xi).

The underutilized and overutilized tasks each account for half of the cost c1(x), since

the underutilized and overutilized tasks partition A. We can write

c1(x) = 2
∑
i∈O(x)

(xi − τ(x)ui) = 2
∑
i∈U(x)

(τ(x)ui − xi).

Let x be a state with c1(x) ≥ 2T (n− 1), and suppose πu(x) = a. Then we have∑
i∈U(x)

(τ(x)ui − xi) ≥ T (n− 1),

and the most underutilized task Ja has component cost at least T (that is, τ(x)ua −
xa ≥ T ) since there are at most (n − 1) underutilized tasks and the cost may be

distributed evenly among them.

Consider how dispatching the most underutilized task Ja affects the cost. Let y =

x + t∆a be the successor state after Ja runs for duration t. By construction, Ja
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remains underutilized at y, since

τ(y)ua − ya = τ(x)ua + tua − xa − t

≥ T − t(1− ua)

> 0;

this last step follows because t(1 − ua) < T . Then O(y) ⊆ O(x), since the share of

every other task is decreasing relative to Ja’s share. Meanwhile, if some task Jj is

overutilized in both x and y, then its component cost decreases when Ja is run, since

yj − τ(y)uj = xj − τ(x)uj − tuj > 0

so y’s cost can not exceed x’s. Therefore, πu is eventually non-expansive with cost

bound 2T (n− 1).

Taken together, Lemmas 3.3.1 and 3.3.2 are sufficient to guarantee that each iteration

of ESPI using the utilization policy and initial states XI = {0} will terminate. We

have not been able to prove that ESPI terminates on every task scheduling problem

instance using this configuration, but it does seem likely. Loosely speaking, policies

that stay within a low cost bound seem likely to be better than those that may

reach higher cost states, since any trajectory that reaches high cost states must travel

through a sequence of states with similarly high cost. Therefore, we conjecture that

there exist optimal policies with finite closure; if so, some finite variant of ESPI must

terminate with this policy.

3.3.3 Algorithm Extensions

The formulation of ESPI discussed above is guaranteed to find locally optimal schedul-

ing policies, since πd is guaranteed to have better value than πd−1 whenever they differ.

However, the kinds of improvements that can be made are limited by the fact that we

only look one step ahead when constructing an improvement envelope for a policy.

We also would like to exploit the states enumerated during model expansion better,

both by considering policy improvements over the entire improvement envelope and
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by finding the best policy that stays within that envelope before repeating model

expansion.

This suggests a pair of straightforward and orthogonal extensions to ESPI; we can ad-

just the amount of lookahead by expanding improvement envelopes that admit longer

trajectories that deviate from the policy under consideration, and we can perform

multiple rounds of policy evaluation and improvement once we have computed this

envelope. This leads to a family of algorithms, ESPI(k,l); the parameter k adjusts

the amount of lookahead applied when constructing improvement envelopes, while

the parameter l tunes the degree to which each improvement envelope is exploited.

ESPI(1,1) is most similar to the basic algorithm described in Algorithm 1, except

that ESPI(1,1) attempts to improve the policy over all of the states in Yd.

Adjustable Lookahead: Basic ESPI may terminate with a locally optimal policy

because of its limited lookahead capabilities. Consider the improvement envelope

Y = Cπ(C1X) of the policy π about its evaluation envelope X. While we can evaluate

π exactly at each state in Y , we can only perform exact policy improvements at states

in X. If there are high reward states in X/Y that are successors to states in C1X,

we may never amend π to reach them if their predecessors have high cost.

A simple solution is to increase the amount of lookahead involved when we compute

the improvement envelope. In general, replacing the one-step closure C1X with the

k-step closure CkX will allow us to consider (k − 1)-step improvements to π, since

then the improvement envelope Y = Cπ(CkX) contains all of the successor states to

each state in Ck−1X.

To exploit these larger closures fully, it is appropriate (and often necessary) to perform

more than a single round of policy improvement over this envelope, since a single

round of improvement still constrains us to relatively myopic improvements that can

not break us out of local optima.

Envelope Exploitation: We can further exploit the envelopes constructed by ESPI

as well. In principle, we can perform multiple policy improvements and evaluations

over the improvement envelope Yd at iteration d. However, we must make these

improvements in a way that avoids policies that can exit Yd, since otherwise the

sequence of policies considered may no longer be of monotonically increasing quality.
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At iteration d of ESPI(k,l), the algorithm expands the improvement envelope Yd.

We can define an MDP model over this state space, Md = (Yd ∪ {zd},A, Rd, Pd), by

restricting the wrapped state model to just the states in Yd and aggregating the states

in W/Yd into a single absorbing state zd. For states x and y in Yd ∪{zd} and actions

i in A, we define

Rd(x, i,y) =

−c(y) y ∈ Yd
−c(zd) y = zd

and

Pd(y|x, i) =

Pw(y|x, i) y ∈ Yd∑
z∈X/Wd

Pw(z|x, i) y = zd

where c(zd) is the absorbing state cost. If we choose c(zd) appropriately, any pol-

icy for Md that is better than ESPI’s current policy πd will never reach the ab-

sorbing state. For example, we can accomplish this by setting c(zd) greater than

cmax = max{c(x) | x ∈ Yd}: since πd stays within Yd by construction, V πd at any

state in Yd is at least −cmax/(1− γ), while the value of the absorbing state is exactly

−c(zd)/(1− γ). Since policy improvement never decreases the value of the policies it

produces, it will never consider a policy that reaches the absorbing state.

Basic ESPI performs a single round of policy evaluation and improvement over a

subset of states in each model Md. The straightforward extension is to perform

multiple rounds of evaluation and improvement over the entire model. As the number

of rounds grows large, this is equivalent to computing the optimal policy of Md. By

choosing the absorbing state cost appropriately, the optimal solution π∗d to Md is the

highest value policy with closure Cπ∗dXI contained in Yd.

Putting these results together we get the family of algorithms ESPI(k,l), which per-

forms l rounds of policy improvement on improvement envelopes that admit k step

trajectories from the closure of each intermediate policy. Practically, the most inter-

esting instances of the extended algorithm are ESPI(k,1) and ESPI(k,∞). ESPI(k,1)

has the least cost per iteration, but is more likely to either settle on lower quality

policies or to take more iterations to find a good policy. ESPI(k,∞) maximally ex-

ploits each improvement envelope. In fact, since this corresponds to exactly solving

each model Md, we can discard policy iteration for more efficient solution methods

like Modified Policy Iteration [73, 72].
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In the next section, we study the behavior of multiple variants of ESPI on simulated

problem instances. We focus on the impact of varying the solution depth, looking

at the difference between performing a single round of policy improvement at each

iteration compared to exactly solving each intermediate model. We also compare the

performance of different default policies, and notice that although we were unable

to prove that the greedy policy (Equation 3.8) has finite closure, it appears to have

finite closure in practice, and ESPI using this policy finds good policies more quickly

than the utilization policy (Equation 3.9).

3.3.4 Empirical Results

In this section, we examine ESPI’s practical performance on simulated problem in-

stances. We address two considerations: we provide evidence that ESPI does termi-

nate in practice on task scheduling problems, and we demonstrate that the policies

found by ESPI are qualitatively identical to the corresponding best bounded model

solutions – that is, they have the same value.

We divide our discussion into two parts. First we compare the policy approximation

performance for different choices of default policies and solution depths. We consider

initializing ESPI with the utilization policy πu(x) = argmaxi{τ(x)ui − xi}, which we

demonstrated has finite closure in the proof of Lemma 3.3.2. We also consider using

the greedy policy πg(x) = argminiEt∼Pi{c(x + t∆i)} as the default policy. After ex-

amining the performance several ESPI variants, we compare this performance to that

of the bounded model solutions obtained in Section 3.2.2.

Comparison of ESPI variants: In these experiments, we evaluated the quality

of intermediate policies produced at each iteration of ESPI in order to test the rate

of convergence. We considered four ESPI variants; these consist of pairing either

the utilization policy πu or the greedy policy πg as the default policy with either a

single round of policy evaluation and improvement or by solving each intermediate

model completely; i.e., by using either ESPI(1,1) or ESPI(1,∞). We did not consider

varying the amount of lookahead because in practice a single step was sufficient to

discover policies that were qualitatively equivalent to those found by solving the

largest bounded approximations.
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(a) two tasks (b) three tasks

Figure 3.14: Number of iterations for several ESPI variants.

Our evaluation set consisted of the same problem instances used to compare bounded

model solution performance to that of heuristic policies. We restate our methodol-

ogy for generating these problem instances here. We considered problem instances

with two or three tasks. Task durations were distributed according to discretized,

truncated normal distributions. These distributions had means selected uniformly

at random between 1 and 32, variances between 1 and 16, and worst-case execution

times between 8 and 32. We chose utilization targets for tasks by selecting q ∈ [1, 16]n

uniformly at random, then setting u = q · (
∑

i qi)
−1. This data set consisted of one

hundred problem instances: fifty for the two task case, and fifty for the three task

case.

At iteration d, ESPI produces an intermediate policy πd over the improvement enve-

lope Yd, which contains the evaluation envelope Xd. ESPI terminates when πd = πd−1.

We ran each variant of ESPI to completion on each problem instance. In Figure 3.14,

we compare the number of iterations each variant performed prior to convergence.

All variants of ESPI terminated after finitely many iterations on all of the prob-

lem instances we considered. Figure 3.14(a) displays the mean number of iterations

needed to solve our two-task problem instances; 95% confidence intervals are shown.

When defaulting to the greedy policy, ESPI(1,1) and ESPI(1,∞) terminated after a

single iteration; the greedy policy is at least locally optimal on all of these problem

instances, and seems likely to be the optimal policy. This is consistent with our

observations using bounded model approach, as we were unable to find solutions to

two-task problems that improved on the greedy policy regardless of the bounds.
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(a) two tasks (b) three tasks

Figure 3.15: Value approximation performance over ESPI iterations.

In both two- and three task problem instances we required more iterations to converge

under the utilization policy than the greedy policy. Figure 3.14(b) shows our results

for the three task setting. As in the two task case, the choice of default policy had

much greater impact than the solution depth on the number of iterations needed to

find a solution. ESPI(1,∞) has a slight edge over ESPI(1,1) when greedy policies are

used.

Each of the four ESPI variants considered reached the same solution, qualitatively, as

the best bounded models on every problem instance we considered. Figure 3.15 shows

the rate of convergence for each ESPI variant. This is measured using the normalized

approximation error |Vd/VD−1|, where Vd is the value computed at ESPI iteration d,

and VD is the value at termination. If ESPI terminates prior to iteration d, we use the

final value VD to compute performance statistics. In ESPI(1,1), Vd(0) = V πd(0), while

in ESPI(1,∞), Vd(0) is the optimal value of the initial state for the MDP restricted

to the improvement envelope Yd.

In both Figures 3.15(a) and 3.15(b), ESPI(1,1) with the utilization policy converged

the most slowly, while pairing ESPI(1,∞) with the greedy policy produces a near-

optimal policy after a single iteration. A good choice of default policy appears to be

a much more important factor in determining performance than the solution depth,

as variants using the greedy policy converged more quickly.

The size of evaluation and improvement envelopes remained constant in each two-

task problem instance regardless of the choice of default policy or solution depth.
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In these problems, the evaluation envelopes had a mean size (with 95% confidence

intervals) of 248(±41.5) states, while the improvement envelopes had a mean size of

496(±83.1) states – each improvement envelope tended to be about twice as large as

the corresponding evaluation envelope. This can be attributed to the binary choice

between two actions in two-task problems.

In two dimensions, we can specify a class of policies by setting a base state x =

(x1, x2) ∈ Z2 subject to the constraint that at least one of x1 or x2 is zero. We define

the decision boundary of the resulting policy as the line through x parallel to the

utilization ray. Use πx to denote such a policy. Then for any such choice of x and y,

|Cπx{x}| = |Cπy{y}|; this may be a bit easier to visualize in the utilization state space

than in the wrapped model, since each of these policies uses the same strategy to

track a different ray through space. The closures have the same size in the wrapped

model since these policies are periodic.

The utilization policy falls into this class by setting the initial state as the base state;

its decision boundary is exactly the utilization ray. The greedy policy is a member

of this class as well, with a base point x such that x1 ≤ T2 and x2 ≤ T1 – we know

that it can not be outside these bounds because in the region between the utilization

ray and the decision boundary, the greedy policy must choose an overutilized task.

Outside of these bounds, running an overutilized task can only increase cost while

running an underutilized one strictly decreases cost, so the greedy policy must choose

the underutilized task. The proximity of the greedy base state to the initial state

means that the greedy policy closure about its base point necessarily contains the

initial state, so the closure about the initial state is identical to its closure about the

base point, and therefore the utilization and greedy policy closures about the initial

state have the same size. A similar argument leads to the same conclusion regarding

the improvement envelopes of these policies in two-task domains.

Envelope sizes for three-task instances do vary between iterations. In Figure 3.16, we

report statistics of these envelope sizes. Figure 3.16(a) shows the mean normalized

evaluation envelope size as a percentage of the final envelope size, and Figure 3.16(b)

similarly shows the improvement envelope size. We report normalized envelope size

rather than absolute envelope size because all ESPI variants end up with the same

evaluation envelope at termination, since they eventually settle on the same policy.
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(a) evaluation envelope (b) improvement envelope

Figure 3.16: Normalized envelope sizes for three-task problems over ESPI iterations.

There are some minor differences in the size of improvement envelopes that amounts

to about 3% of the mean envelope size due to variations in policy inside the improve-

ment envelope but outside the evaluation envelope of the final policy, and so do not

impact the quality of the eventual solution. The mean evaluation envelope size at

termination (with 95% confidence intervals) is 7952(±1521.9) states, while the mean

improvement envelope size is 25939(±4822) states, averaged across all variants. Here

the improvement envelope size is slightly larger than thrice the size of the evaluation

envelope.

Notice that the graph of approximation performance at each iteration in Figure 3.15(b)

flattens out after less than ten iterations, and the evaluation envelope size stabilizes

a few iterations later. This suggests that most of the work of finding a good policy is

complete at that point. The improvement envelope size when defaulting to the utiliza-

tion policy does not stabilize until around iteration 35, suggesting that the remaining

work performed by ESPI involves certifying that the policy can not be improved by

some combination of modifications beyond the policy closure, then propagating that

difference in value back.

Comparison to previous techniques: In the previous set of experiments, we

examined the sequence of policies considered by ESPI. We found that the algorithm

converged even if we initialized it with the greedy policy; in fact, we saw notably

better performance when using the greedy policy instead of the the utilization policy.

We also saw that in three-task problems, ESPI(1,∞) converges in fewer iterations
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(a) two tasks (b) three tasks

Figure 3.17: Comparison of ESPI to bounded model solutions for varying bounds.

than does ESPI(1,1) (note that ESPI(1,∞) does perform more computation at each

iteration, since it solves each intermediate model). With this in mind, we elected

to compare the performance of ESPI(1,∞) to the our bounded model approximation

strategy from Section 3.2.

Our previous results suggest that ESPI produces solutions that are qualitatively iden-

tical to those produced by the best bounded models. We perform a side-by-side com-

parison of ESPI to the greedy policy and the bounded model solutions for varying

bounds in Figure 3.17. These results are based on the same problem set as de-

scribed in the previous experiments, and show the normalized approximation error

|V̂ (0)/V (0)− 1| averaged across all of the problem instances, where V is the final

ESPI value and V̂ is the value of the greedy policy V πg (blue dotted line), the optimal

bounded model solution V ∗θ (red solid line), or the value found by ESPI at termination

V (black dashed line).

Figure 3.17(a) shows the performance on two-task problems as we discussed above,

both the greedy and ESPI solutions are identical to the largest bounded model so-

lutions. Figure 3.17(b) shows the performance on three-task problems; the greedy

policy is worse than the ESPI solution, while the bounded model solution and ESPI

solution eventually agree. This is made clear in the detailed plot shown in Figure 3.18.

Figure 3.19 compares the size of ESPI’s improvement envelope to the number of states

in bounded models with varying bounds. From Figure 3.17, we can see that the
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Figure 3.18: Detail of the three task ESPI approximation performance comparison
from Figure 3.17(b).

(a) two tasks (b) three tasks

Figure 3.19: Comparison of ESPI improvement envelope size to bounded model state
space size.

smallest bounded model sufficient to attain the best policies appear around iteration

27 for two-task problem instances and iteration 32 for instances with three tasks.

ESPI’s improvement envelopes tend to be larger than the smallest good bounded

models. This is not too surprising. The bounded model solutions and ESPI’s solutions

are each guaranteed to be optimal in a restricted sense: if the bounded model policy

has closure that lies inside its bounds, then it is the best such policy; the ESPI

solution is the optimal policy over the improvement envelope, which includes one

step of lookahead. While some particular, small bound may be sufficient to represent

a good policy, we would need a larger model to certify its quality to the extent

provided by ESPI, especially if the bounded model bounds tightly contain its policy’s

closure.
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3.4 Comparison to Earliest-Deadline-First Schedul-

ing

Our experiments in Sections 3.2.2 and 3.2.2 evaluated the performance of MDP solu-

tion methods relative to other MDP-based techniques, but to this point we have not

addressed the performance of our methods in a real-time context. In Chapter 1 Sec-

tion 1.2 we discussed the earliest-deadline-first (EDF) real-time scheduling algorithm.

This algorithm prioritizes available jobs according to the earliest deadline among

them. EDF is known to be optimal in the sense that it meets all deadlines when-

ever possible in preemptive [58] and work-conserving, non-preemptive settings [43].

However, it is generally considered to perform poorly under overload conditions when

deadlines are likely to be missed. In these situations, tasks may be denied the shared

resource for arbitrary lengths of time without regard to their relative importance or

criticality.

In this set of experiments, we compared the performance of ESPI and heuristic MDP

scheduling policies to EDF scheduling. Of course, our representation does not include

deadlines, so it is necessary to introduce them into our experimental setup in order

to compare these policies. Recall from Chapter 1 that our system consists of tasks Ji

that produce an infinite sequence of jobs Ji,j, such that job Ji,(j+1) becomes available

immediately upon completion of Ji,j (Since only one job of any task is available at

any time, our discussion thus far has been able to neglect this detail). Job Ji,0 of

each task Ji is available upon system initialization. Deadlines are specified relative

to arrival times; each task Ji has an associated deadline di, so that if its job Ji,j

arrives at time τ , then it has deadline di,j = τ +di. In our experiments, we chose task

deadlines proportional to their worst-case execution times, with di = ρTi for some

deadline ratio ρ > 0. As ρ approaches zero, deadlines become progressively harder to

meet, while larger deadline ratios result in deadlines that are easier to meet. We vary

the deadline ratio in our experiments in order to study its impact on the likelihood

of missing deadlines under each scheduling policy.

The deadline miss rate, or just miss rate, is the number of missed deadlines normalized

by the number of jobs released. Lu et al have argued that minimizing the miss rate is

crucial for achieving good real-time performance [60, 61]. It is important to note that
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EDF tries to achieve a miss rate of zero, without regard to fairness, while our MDP-

based techniques are concerned with fairness but do not explicitly consider deadlines.

However, since fairness is a mechanism for enforcing timeliness [1, 12], we do expect

that our methods will not perform poorly under the miss rate metric.

We evaluated scheduling policies on thirty three-task problem instances. Tasks had

durations distributed according to uniform random histograms with worst-case execu-

tion times selected uniformly at random from the interval [2,32]. Under this scenario,

expected task durations tend to be about half of their worst-case execution times. Uti-

lization targets defined according to u = q · (q1 + q2 + q3)
−1 with q drawn uniformly

at random from the box [1, 32]3.

The four scheduling policies considered were (1) an approximation to the optimal

policy obtained using ESPI(1,∞), (2) the cost-greedy policy (Equation 3.8), (3) the

policy of running the most underutilized task (Equation 3.9), and (4) EDF. We eval-

uated the quality of each policy by simulating thirty trajectories of 1,000 decision

epochs from the initial state x = 0 on each problem. We report the miss rate and

cumulative discounted cost (i.e., negative value) observed along these trajectories.

Figures 3.20 and 3.21 illustrate the results of these experiments for four representative

problem instances (95% confidence intervals on miss rate and cost are shown, and are

quite tight). The vector of (unnormalized) utilization targets q, worst-case execution

times T, and mean durations µ are provided. The left-hand column of figures shows

the miss rate as a function of the deadline ratio. The right-hand column of figures

displays the long-term, discounted cost (negative value) of each scheduling policy.

Notice that costs are shown in logarithmic scale, as EDF (which, we emphasize, does

not consider these costs in its scheduling decisions) incurs much higher costs than our

MDP-based policies.

Figure 3.20 shows two problem instances in which the MDP techniques achieve much

better miss rate performance when overload conditions are likely, suggesting that the

MDP-based techniques are most appropriate in these situations. Interestingly, there

is little difference in the miss rate performance among the MDP-based scheduling

policies. This suggests that the computationally cheap heuristic policies may be an

appropriate surrogate for the more expensive finite-state approximation methods like
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ESPI when reducing the overhead of scheduling is critical, or when there are too many

tasks to feasibly enumerate a sufficient subset of states.

(a) q = (15, 32, 4), T = (15, 31, 21), µ = (6.4, 15.7, 10.3).

(b) q = (27, 3, 14), T = (20, 15, 24), µ = (9.3, 6.8, 11.3)

Figure 3.20: Timeliness comparison for two three-task problem instances.

Figure 3.21 presents results from two problem instances in which performance is a

bit more skewed over the range of deadline ratios considered. In Figure 3.21(a), the

difference in performance among the scheduling policies is less pronounced for small

deadline ratios than in the previous examples. In this problem, EDF dominates the

MDP-based policies even for relatively tight deadlines. In Figure 3.21(b), the MDP-

based techniques outperform EDF until deadlines become fairly loose, at which point

all of the policies achieve similar miss rates.

Figure 3.22 aggregates data across the thirty problem instances (including the in-

dividual instances above; 95% confidence intervals are shown) and affirms that, in
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(a) q = (24, 7, 28), T = (14, 3, 7), µ = (5.8, 1, 3.6).

(b) q = (23, 22, 7), T = (5, 13, 22), µ = (2.6, 5.5, 10.8)

Figure 3.21: Timeliness comparison for two additional three-task problem instances.

general, MDP-based techniques are able to achieve a better deadline miss rate than

EDF when overload situations are likely. These results also support our claim that

each of the MDP-based scheduling techniques achieves similar miss rate performance.

One question left open is how the choice of utilization targets affects miss rate per-

formance, as one may consider assigning these parameters in order to optimize for

real-time performance, rather than focusing on using these parameters to enforce a

desired share. If we want to minimize the miss rate of one task in particular, it seems

clear that pushing its utilization target closer to one will cause it to be dispatched

more often, and so decrease its miss rate. We have not performed tests to evaluate

this hypothesis.
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Figure 3.22: Timeliness comparison averaged across thirty three-task problem in-
stances.

3.5 Discussion

Wrapped State Model: We published the periodicity results that lead to the

wrapped state model in Glaubius et al. [38]. We also introduced a slightly different

bounded model formulation in that work that individually restricted the range of

state component values.

The wrapped model can be viewed as a state aggregation strategy, as it lumps together

all states that have similar futures in terms of both cost and the relative transition

distribution over states – that is, two utilization states x and y are equivalent if

and only if for for each action i and every successor z of x with cost c(z) there is a

corresponding successor z′ of y such that c(z) = c(z′) and P (z|x, i) = P (z′|y, i). We

are able to contract infinitely large sets of states down to a single exemplar using the

observation that every state that is related by translation along the utilization ray

satisfies this condition.

Dean and Givan [24] use the notion of stochastic bisimulation between states in order

to perform model minimization through state aggregation. In that work, two states

are similar if their relative transition distributions were similar in the sense that

each had an identical probability of transitioning to similar states under the same

actions. This property was used to automate state aggregation after partitioning the

state space so that each cell was homogenous with respect to rewards. Subsequent

work [34] by Givan, Dean, and Greig extended the definition of stochastic bisimulation

to include reward similarity, and demonstrated that a model obtained by aggregating
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similar states retains an optimal policy. Subsequent work has considered approximate

stochastic bisimulation [31, 30] to allow aggregation of states when their rewards and

transitions to similar states are almost identical.

It is possible to derive the wrapped state model from the utilization state model using

this concept, since each equivalence class under periodicity is homogenous with respect

to costs. We presented a problem-specific development of the model equivalence in

order to highlight the importance of the choice of cost function and state-independent

task durations in permitting this aggregation.

Stochastic bisimulation between states has since been generalized to arrive at exact

and approximate homomorphisms in MDPs and SemiMDPs [74, 75, 92]. Whereas

stochastic bisimulation requires that each action behaves essentially the same at sim-

ilar states, states that are related by homomorphism require that every action at one

state has some other action that behaves the same at any similar state. As with

stochastic bisimulation, it can be shown that aggregation performed based on exact

state homomorphisms retains an optimal policy and its value. This result would

be useful in problems involving many identical tasks with equal utilization targets,

since this suggests that we could further reduce the size of the problem, effectively

exploiting the symmetry between tasks.

Li et al. [56] defines several degrees of state abstraction for MDPs; these are classified

by the amount of information about the original model that is retained in the abstract

models. The amount and type of information retained determines how accurately

abstract model solutions mirror solutions to the original problem. In general, larger

models retain more information, and so provide better solutions. One particularly

important class of abstractions they identify are model-irrelevance abstractions, which

preserve the transition and reward structure of the problem. The wrapped state model

is a model-irrelevance abstraction because these abstractions contain models obtained

by aggregating homomorphic states.

Bounded State Model: One early approach to approximating the utilization state

model value function involved truncating the state space by introducing a maximum

system lifetime [94]. This approach introduces an artificial limit on the number of

decision epochs that elapse before termination. Policies obtained using this approach

tend to exhibit edge effects near termination, as they angle to put the system as near
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target utilization as possible at the last possible moment. While this method is not

practical for most real systems, it served to motivate the truncation method used to

develop the bounded state model.

We also reported a more complicated version of the bounded state model that used

component-wise bounds to restrict the set of states considered [38]. In short, a bounds

vector b � 0 is introduced, then a truncated model is defined over the wrapped states

{x ∈ X : x � b}. This is more flexible than the cost-bounded model presented in Sec-

tion 3.2. This approach can be used to address the descrepancy between the number

of model states and the states necessary for finding a good policy (see Figure 3.11 and

the corresponding discussion). However, it is more complicated to tune this model

since each dimension must be bounded individually, and the approximation perfor-

mance of the model is more difficult to analyze because it is no longer possible to

draw a simple distinction between the costs of modeled and unmodeled states.

ESPI: We derived the basic version of the ESPI algorithm described in Section 3.3.1

[36] in the context of the component-wise bounded model described above, but did not

provide empirical verification of the algorithm. The ESPI algorithm is motivated by

earlier approaches that incorporate reachability analysis into state modeling to solve

large stochastic dynamic programming problems. Boutilier et al. [16] developed such

an approach based on an abstract state space representation. The reachable state

space is defined using a set of constraints. The set of reachable states could then

be expanded using a constraint propagation strategy rather than explicititly enumer-

ating reachable states; such an approach may be useful in scaling our techniques to

larger numbers of threads, assuming that a suitable compact policy representation

and constrained state space formulation can be found. Boutilier’s work was inspired

by the GraphPlan [15] algorithm for planning in deterministic domains, which itera-

tively enumerates the successors of a state set, starting with the initial state, until a

goal state is found.

The ESPI(k,∞) algorithms are similar in spirit to the approach of Dean et al for

anytime reinforcement learning [25]. They generate and solve progressively larger

MDPs over restricted sets of states from the original MDP that converge to the

original MDP. Rather than restricting model states based on the number of transitions

needed to reach them, as we do in our work, they prune some immediate successor
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states that are reachable only on low-probability transitions. This is motivated by a

different focus: they are interested in finding coarse models that can be used to provide

solutions quickly, then refining those models until the current most accurate solution

is needed. On the other hand, we are interested in finding policies for intermediate

models that translate exactly from the intermediate model to the original problem

domain.

General Discussion: We have detailed two broad approaches to approximating

the optimal task scheduling policy based on the wrapped state model of the problem.

Our results from experiments looking at problem instances with two tasks suggest

that the cost greedy policy may be the optimal policy in this case. In problems with

three tasks we were able to find policies that outperform the cost-greedy policy, so the

greedy policy is not optimal in general, and we suspect that the difference in value

between the greedy and optimal policies grows with the number of tasks. We have

not been able to demonstrate that it is necessarily the case that the greedy policy

is optimal when there are only two tasks, but it seems likely that this is the case.

Proving this claim may also help to demonstrate an a priori analytical bound on how

well the greedy policy approximates the optimal in arbitrary dimensions.

Our results also suggest that the optimal task scheduling policy only visits finitely

many states when we begin execution in the initial state x = 0. If it is the case

that every periodic task scheduling problem has finite closure, then it follows that

the optimal policy of some corresponding cost bounded model is the optimal task

scheduling policy for that problem. Knowing that such a cost bound exists would

also be helpful in demonstrating that ESPI converges as well.

Even without formal proof of these guarantees, we have demonstrated that the MDP-

based approaches in this section are feasible on a variety of simulated problems.

However, these techniques do rely on explicit enumeration of a subset of the wrapped

state space. Since these subsets grow exponentially in the number of tasks, these

methods are unlikely to scale beyond a small number of tasks. In order to scale to

larger problem instances, we will need to develop additional tools or approximation

strategies. This includes approximation performance results that describe relate the

value of efficiently computable policies, like the cost-greedy policy, approximate the
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optimal solution. Another direction that we consider in Chapter 5 involves using

optimization techniques to tune a class of compact, parameterized policies.
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Chapter 4

Scheduling via Reinforcement

Learning

In the previous chapters, we considered the problem of scheduling tasks under the

assumption that we had perfect prior knowledge of their parameters. In this set-

ting, we could find a (near-)optimal policy using dynamic programming. However,

we often do not know the distribution of task durations in advance. We may have an

inaccurate model, if we have any prior knowledge at all. We must then solve the Rein-

forcement Learning problem of deciding how to behave optimally online while tuning

our scheduling policy based on incoming observations of the executing system. Our

controller must consider the exploration/exploitation dilemma: the controller must

balance behaving optimally with respect to available information against choosing

apparently suboptimal actions in order to improve that information. The controller

may commit to a suboptimal policy if it ceases exploring too soon, while if it contin-

ues to explore for too long, it may waste time and effort making poor choices. This

dilemma is particularly significant in the real-time domain, as sustained suboptimal

behavior translates directly into poor quality of service the system’s users.

The results in this chapter were first made available as a technical report [35]; we have

since obtained a tighter bound on the sample complexity of learning near-optimal

scheduling policies by bounding the L1-norm model estimation error rather than the

l∞-norm error. We have also corrected a mistake in the earlier analysis.
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4.1 Related Work

The exploration/ exploitation dilemma is a well-known and extensively studied issue

in Reinforcement Learning, and there is a substantial literature that addresses it. We

present here a sample of the relevant literature. Kaelbling et al.’s survey [44] and

Sutton and Barto’s book [87] ground these ideas. Kakade’s dissertation [46] provides

a framework for formally studying this dilemma from a standpoint of computational

efficiency. Szepesvári’s recent survey [89] summarizes contemporary approaches.

Heuristic strategies are often employed due to their relative simplicity. These consist

of randomizing the exploitive, value-greedy policy (see 2.5), and include the ε-greedy

and Boltzmann (or softmax) action selection methods [44]. At each decision epoch k,

ε-greedy exploration chooses to exploit with probability (1− εk), otherwise an action

is selected uniformly at random. This strategy will eventually converge to the optimal

policy, provided the sequence (εk)
∞
k=0 decays at an appropriate rate [28]. Boltzmann

action provides randomization by exponentially weighting each action according to its

estimated value; an action is selected at random according to the normalized weights.

A principle that unifies many successful methods for efficient exploration is optimism

in the face of uncertainty [44, 91]. When presented with a choice between two ac-

tions with similar estimated value, methods using this principle tend to select the

action that has been tried less frequently. Optimism can take the form of optimistic

initialization [29], i.e., bootstrapping initial approximations with large values. For

example, R-Max [19] and MBIE [86] assume the value of unvisited states to be as

large as possible, although in the case of MBIE this is somewhat incidental.

Interval estimation is a general technique that biases action selection towards explo-

ration computing and leveraging confidence intervals about model estimates. Interval-

based techniques allow the learner to to behave optimistically within reason by quan-

tifying model uncertainty. For example, actions may be selected according to the

upper bounds of confidence intervals on their estimated values. This idea has been

employed in solving Bandit problems (for some examples, see [7, 28, 62, 65]), a special

case of Reinforcement Learning concerned with single-state with multiple actions hav-

ing unknown rewards. Even-Dar et al. [28] adapted Bandit strategies to the general
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MDP case by treating each state as a distinct Bandit instance with rewards corre-

sponding to the estimated values of successor states. Model-Based Interval Estimation

(MBIE) [84, 85, 86], applies interval estimation more naturally by deriving confidence

intervals on the model parameters, essentially constructing bounds on reasonably

possible models. The exploration policy used during learning is (near-)optimal with

respect to an optimistic value estimate consistent with these bounds. Other examples

of the interval estimation approach include [9, 91, 8].

We are interested in quantifying the difficulty of finding good scheduling policies in

terms of the number of observations necessary to have a good chance to arrive at

such a policy – that is, we are interested in the sample complexity of discovering good

scheduling policies. The PAC, or Probably Approximately Correct learning model [95,

51] is a formal framework for investigating questions of this nature. Fiechter [32] and

Kearns and Singh [48, 50] were among the first to study the sample complexity of

reinforcement learning in the PAC model setting. Kearns and Singh [48, 50] developed

the Explicit Explore or Exploit, or E3, algorithm, a PAC learner that is guaranteed

to find an ε-approximation to the optimal value function with probability at least

(1− δ) after seeing a number of samples polynomial in the size of the state space |X |,
number of actions |A|, and tolerance parameters 1

ε
and 1

δ
.

A pivotal component of E3 is the specification of known and unknown states. Known

states are ones in which each action has been tried a sufficiently large number of

times; any state in which this is not satisfied is unknown. At each decision epoch,

E3 follows an exploration policy that is optimal with respect to a known state MDP

that approximates the underlying true MDP. The known state MDP consists of the

known states with transition and reward estimated from observations. The unknown

states are aggregated into a single absorbing state. Whenever an unknown state

is encountered, E3 follows balanced wandering, simply choosing the least-sampled

action in that state. Thus unknown states gradually become known until a near-

optimal policy is found.

The R-Max algorithm [19] extends E3 by associating an optimistic reward with the

unknown states, encouraging their exploration. Brafman and Tennenholz proved that

R-Max is a PAC reinforcement learning algorithm; Kakade [46] derived tighter bounds
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on its sample complexity for both the discounted and average reward criteria. PAC

guarantees also exist for MBIE.

PAC analysis for these algorithms is restricted to finite-state MDPs with bounded

reward. In this chapter, we address this limitation in order to obtain similar results

for the MDP formulation of the task scheduling problem. Kakade [46] suggested that

the sample complexity ought to scale polynomially with the number of parameters of

the transition model. In our scheduling problem the state-independent task duration

distributions completely specify the transition system, so there is reason to hope that

finite-sample complexity results are attainable in this domain.

4.2 Exploration Approach

The repeated structure of the transition system is crucial for modeling our scheduling

problem as an MDP. Specifically, the transition dynamics are portable between states.

We focus on indirect, model-based techniques [49] for discovering policies, as these

techniques allow us to further exploit the transition structure. While direct methods,

such as Q-learning [96, 97] and SARSA [76] require slightly less bookkeeping, since

they maintain only a table of estimated values while direct methods require the esti-

mated model parameters in addition to these values, it is not clear that we can adapt

them to exploit the problem structure.

Since task duration distributions are discrete probability distributions with finite sup-

port, we simply estimate them using the empirical probability measure: we assume a

collection of m observations {(ik, tk) : k = 1, . . . ,m}, where task Jik was dispatched

at decision epoch k and ran for duration tk ∼ P (·|ik) (we denote the duration distri-

bution of task Ji as P (·|i) rather than Pi(·) in this chapter in order to reduce the risk

of ambiguity). Let ωm(i) be the number of samples of task Ji, and let ωm(i, t) be the
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number of those observations in which Ji ran for t quanta,

ωm(i) =
m∑
k=1

I {ik = i} , (4.1)

ωm(i, t) =
m∑
k=1

I {ik = i ∧ tk = t} . (4.2)

Then the empirical measure Pm(t|i) is just

Pm(t|i) = ωm(i, t)/ωm(i). (4.3)

Since costs are deterministic, user-specified functions of state, the transition model is

the only source of uncertainty in our problem.

4.3 Online Learning Results

We consider the difficultly of learning good scheduling policies in this section. We

approach this question both analytically and empirically. In Section 4.3.1, we derive a

PAC bound [95, 51] on a balanced wandering approach to exploration [48, 50, 28, 19].

Our result is novel, as it extends results derived for the finite-state, bounded cost

setting to a domain with a countably infinite state space and unbounded costs. These

results rely on a specific Lipschitz-like condition that restricts the growth rate of

the value function under Lp-cost functions (cf. Equation 2.11 and Lemma 2.2.1 in

Section 2.2), and the finite support of the duration distributions, i.e., finite worst-

case execution times of tasks. In Section 4.3.2, we present simulation results from

experiments comparing several exploration strategies.

4.3.1 Analytical PAC Bound

We consider the sample complexity of estimating a near-optimal policy with high

confidence by bounding the number of suboptimal actions taken during exploration.

This definition was proposed by Kakade [46]. Our approach follows similar develop-

ments by Kearns and Singh [48, 50] and Kakade. We decompose analysis into two
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parts. We derive bounds on the value estimation error as a function of the model

estimation error. Then we bound the model error with high probability as a function

of the number of observations. We consider the state-action value function Q for each

task Ji, (cf. Equation 2.16 in Section 2.2) with

Q∗(x, i) = (ΓiV
∗)(x) =

Ti∑
t=1

P (t|i)[γV ∗(x + t∆i)− c(x + t∆i)]; (4.4)

recall that

V ∗(x) = max
i∈A
{(ΓiV ∗)(x)} = max

i∈A
{Q∗(x, i)}.

We define the optimal state value function Vm and state-action value function Qm

of the estimated model with duration distributions Pm similarly. Recall from Equa-

tion 2.17 in Section 2.2 that the optimal policy satisfies

π∗(x) ∈ argmax
i∈A

{Q∗(x, i)} .

The optimal solution to the estimated model is denoted πm and can be defined anal-

ogously in terms of Qm.

Notice that an accurate estimate of the optimal value function yields an accurate

estimate of the optimal policy. Singh and Yee [80] demonstrated that the loss

in value under the greedy policy with respect to an approximation V̂ is at most

2γ‖V ∗ − V̂ ‖∞/(1− γ). It is straightforward to obtain a similar bound on this loss in

terms of ‖Q∗ −Qm‖∞ using Equation 4.4

In order to establish our central result constraining the number of suboptimal actions

taken with high probability, we first provide the following theorem. Proof of this

theorem is somewhat involved, so we defer it to Section 4.5.

Theorem 4.3.1. If there is a constant β such that for all tasks Ji,

Ti∑
t=1

|Pm(t|i)− P (t|i)| ≤ β (4.5)
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and if there is a finite maximum worst-case execution time T = max{Ti : i = 1 . . . n},
then then for every state x and task Ji,

|Qm(x, i)−Q∗(x, i)| ≤ 2Tβ

(1− γ)2
.

This result serves an identical role to the Simulation Lemma of Kearns and Singh [48,

50] relating model estimation error to value estimation error. Our bound replaces the

quadratic dependence on the number of states in that result with a dependence on T ,

the maximal worst-case execution time. This is consistent with results from Kakade’s

dissertation [46] indicating that the sample complexity of obtaining a good approx-

imation should depend polynomially on the number of parameters of the transition

model, which is O(|X |2|A|) for general MDPs, but is Tn in the domain considered

here. The dependence on (1 − γ)2 is related to the pointwise bounds on the value

function (cf. Equation 2.22). We conjecture that similar results can be obtained

in the infinite-horizon discounted reward case for with problems with sparse, highly

structured transition systems that admit Lipschitz value functions.

We say that Qm is an ε-approximation to Q∗ whenever ‖Qm −Q‖∞ ≤ ε. The result

of Theorem 4.3.1 allows us to quantify the model estimation error necessary to obtain

a value approximation that is at least an ε-approximation, since requiring

2Tβ/(1− γ)2 ≤ ε,

or equivalently,

β ≤ ε(1− γ)2/(2T ), (4.6)

is sufficient to guarantee ‖Q∗ −Qm‖∞ ≤ ε. Another way to interpret this bound is

that, if we can guarantee bounded approximation errors with probability (1− δ) for

some confidence level 0 < δ < 1, then with equally high confidence the policy πm will

never choose an action that has value worse than 2ε from the optimal, thus eliminating

expensive mistakes (in terms of the error tolerance ε) with high probability. To see

this, notice that if Qm is a ε-approximation, for any two tasks Ji and Jj and state x,

Qm(x, i)−Qm(x, j) ≤ Q∗(x, i) + ε−Q∗(x, j) + ε,
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so the ordering of Ji and Jj under Q∗(x, ·) is preserved by Qm as long as their true

values differ by at least 2ε.

It remains to relate this result to m, the number of samples of the transition system,

to the model estimation error in Equation 4.5. For this, we rely on the following

lemma:

Lemma 4.3.1. (Lemma 8.5.5 of Kakade [46]) Suppose that M i.i.d. samples are

obtained from a probability measure p supported on a discrete set of N elements. Let

p̂ be the corresponding empirical measure. Then for any ε > 0 and δ ∈ (0, 1), if

M ≥
(

8N
ε2

)
log
(

2N
δ

)
, then with probability at least (1− δ),

N∑
j=1

|p̂(j)− p(j)| ≤ ε.

A union bound argument shows that to guarantee

P
{ n∧
i=1

( T∑
t=1

|Pm(t|i)− P (t|i)| ≥ β
)}
≤ δ,

we require P
{∑T

t=1 |Pm(t|i)− P (t|i)| ≥ β
}
≤ δ/n for each task. If we assume bal-

anced wandering, i.e. ωm(i) = m/n for each task Ji (assuming for convenience that m

is a multiple of n), then by Lemma 4.3.1 we can guarantee the desired model accuracy

β with probability at least (1− δ) for

m ≥ (8Tn/β2) log(2Tn/δ). (4.7)

Now we are prepared to relate our value estimation tolerance ε to the number of

samples m. Equation 4.6 implies that

1

β2
≥ (2T )2/(ε2(1− γ)4)

substituting this into Equation 4.7 implies that in order to guarantee ‖Qm −Q∗‖∞ ≤ ε

with probability at least (1− δ), it is sufficient to require at least

m =

(
16T 3n

ε2(1− γ)4

)
log

(
2Tn

δ

)
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samples. As with previous bounds, the sample complexity scales polynomially in

the parameters of interest. One note is that the worst-case execution time T enters

into the bound from two sources, hence the cubic dependence. The complexity of

learning the duration distributions depends on T , since it limits the number of “bins”

that samples can fall into; 2T/(1 − γ) also bounds the growth of the value function

between consecutive decision epochs (see Lemma 4.5.1 in Section 4.5 for the details of

this result), which we must take into consideration in order to estimate Q∗ accurately.

Due to the transition system portability, our result is most similar to those for ac-

curate estimation in a single state. For comparison, Kakade derives a bound on

the number of experiences necessary to learn the distribution at a state, finding

m = O
((
|X | log2 ε
ε2(1−γ)2

)
log
(
|X ||A|
δ

))
(Lemma 8.5.6 of [46]) under the assumption that

rewards are restricted to the interval [0, 1] and that R-max [19] is used. (The fac-

tor log2 ε appears to be an artifact of the analysis, which considers a finite horizon).

A result for learning the entire model must include an additional factor of at least

|X ||A| in the general case. In our bound, the worst-case execution time T plays a

similar role to the size of the state space in this bound, with the value function bound

introducing an additional factor (T/(1− γ))2.

4.3.2 Empirical Evaluation

The analytical result of the previous section give some sense of the finite-sample

performance for learning a good schedule; however, we required several simplifying

assumptions, such as balanced wandering, so the bound may not be tight. In prac-

tice, alternative exploration strategies may yield better performance than our bound

would indicate. We compared the performance of several exploration strategies in

the context of the task scheduling problem by conducting experiments comparing

ε-greedy, balanced wandering, and an interval-based exploration strategy.

In our experiments we consider the number of mistakes made before converging to

the cost-greedy scheduling policy

π(x) = argmin
i∈A

{∑
t

P (t|i)c(x + t∆i)

}
,
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rather than the optimal policy in two-task problem instances. This is motivated by

the observation that in every case we have considered, the greedy policy is identical to

the optimal for the two task case; the relative efficiency of computing this policy allows

us to perform much larger scale experiments than would be possible if, say, we must

compute an ESPI approximation to the optimal value function after each sample. In

this case, Bandit strategies for determining the best action are appropriate, since the

focus is on correctly identifying and acting with respect to the best reward.

For interval-based optimistic exploration, we use the confidence intervals derived for

the multi-armed bandit case by Even-Dar et al [28] for their Successive Elimination

algorithm. That algorithm constructs intervals of the form αk =
√

log(nk2c)/k about

the expected reward of each action at decision epoch k, then eliminates actions that

appear worse than the apparent best using an overlap test. This constant c encap-

sulates a scale factor and the reciprocal of a PAC parameter δ found in the original

source. Since there are states in which every action is optimal our focus is not on

action elimination per se; we instead use the maximum Rm(x, i) + αk,i among all

actions to choose which action to execute, where we have adjusted the confidence

intervals according to the potentially different number of samples of each task,

αk,i =
√

log(nωk(i)2c)/ωk(i)

In our experiments, we vary the parameter c to control the chance of taking ex-

ploratory actions. As c shrinks, the intervals narrow and this strategy tends to exploit

the estimated model.

Balanced wandering simply executes each task a fixed number of times m prior to

exploiting. We vary this parameter in order to determine its impact on the learning

rate. When m = 0, this strategy always exploits its current model knowledge. In

our experiments with ε-greedy, we set the random selection rate at decision epoch k,

εk = ε0/k for varying values of ε0; this strategy always exploits when ε0 = 0.

In order to compare the performance of these exploration strategies, we generated

1000 random problem instances with two tasks. Duration distributions for these

tasks consisted of discretized normal distributions supported on the interval [1,32],

with means and variances selected uniformly at random from the respective inter-

vals [1,32] and [1,8]. Utilization targets for each task were chosen according to
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u = (u′1, u
′
2)/(u

′
1 + u′2), where u′1 and u′2 were integers selected uniformly at random

between [1,128].

We conducted experiments by initializing the model in the initial state x = (0, 0). The

controller simulated a single trajectory over 20,000 decision epochs in each problem

instance with each exploration strategy. We report the number of mistakes – the

number of times the exploration strategy chooses an action that has smaller reward

in expectation than the greedy policy. The results of these experiments are shown in

Figure 4.1.

(a) Optimistic (b) ε-greedy

(c) Balanced

Figure 4.1: Simulation comparison of exploration techniques. Note the differing scales
on the vertical axes.
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Comparison Results: In Figure 4.1, we report 95% confidence intervals on the

mean number of mistakes each exploration strategy makes, averaged across the prob-

lem instances described above. Note that these plots have different scales due to the

variation in mistake rates among exploration strategies.

Figure 4.1(a) compares the performance of interval-based optimistic action selection

to that of “Exploit”, the policy that behaves greedily with respect to the estimated

model at each decision epoch. All of the interval-based exploration settings we con-

sidered exhibited statistically similar mistake rate performance. Interestingly, the

exploitive strategy yields similar performance to the explorative strategies despite its

lack of an explicit exploration mechanism.

The benefits of the exploitive policy are clear in comparison to two the other explo-

ration strategies we consider. Figure 4.1(b) illustrates the performance of ε-greedy

exploration. Notice that the mistake rate decreases along with the likelihood of taking

exploratory actions – that is, as ε0 approaches zero. Exploration actually may result

not improve performance in this domain.

This is further supported by our results for balanced wandering. The theory behind

balanced wandering is that making a few initial mistakes early on will pay off in

the long run due to more uniformly accurate models. Figure 4.1(c) shows that this

is not the case in in our scheduling domain, as a purely exploitive strategy m = 0

outperforms each of the balanced wandering approaches.

These results suggest that the exploitive strategy may be the best available explo-

ration method in the task scheduling problem. One justification is that the envi-

ronment itself enforces rational exploration: if some task is never dispatched, the

controller will find itself in progressively worse states, as is impossible to track the

utilization target while ignoring states when each task has non-zero utilization target.

Problem Parameter Interaction: The results in Figure 4.1 were obtained by

generating many random problems in order to control for the effects of problem

parameters. We are also interested in understanding how the problem parameters

interact with the mistake rate. In particular, we wish to understand how the choice

of utilization target impacts learning, since this effects the number of model states and
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may contribute to a better understanding of how to select these parameters effectively

We performed another set of experiments to examine this question. We considered

utilization targets of the form u = (1/(1 + u′2), u
′
2/(1 + u′2)), with u′2 an integer in

[1,32]. This allows us to vary the ratio between the target utilization of each task –

that is, we essentially give task J2 progressively larger resource shares relative to J1.

For each utilization target, we executed a trajectory using the exploitive strategy on

problems with the duration distributions from the previous experiments.

Figure 4.2: Simulation comparison of mistake rates under varying task parameters.

We report the aggregate mistake rate after 20,000 decision epochs in Figure 4.2 (la-

beled “Total”) as well as the rate of dispatching task J1 when J2 is the appropriate

choice (labeled “J1”) and vice versa (labeled “J2”). One might expect that as the

utilization target skews more towards J2 that the reward associated with each task

would separate, making it easier to identify the correct action. Figure 4.2 illustrates

that this is not the case; as the utilization target becomes more skewed, the learner

is actually likely to make more mistakes.

Interestingly, while the mistake rate increases as the utilization target becomes more

skewed towards J2, this does not appear to result in a commensurate increase in the

likelihood of incorrectly dispatching any particular task more often.
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4.4 Conclusions

In this chapter, we have considered the problem of learning near-optimal schedules

when the system model is not known in advance. We have presented analytical

results that bound the number of suboptimal actions that are taken prior to arriving

at a near-optimal policy with high certainty. Interestingly, the transition system’s

portability results in bounds that are similar to those for estimating the underlying

model in a single state.

This naturally leads to a comparison to the multi-armed bandit model (see, for exam-

ple, [28]), in which there is a single state with several available actions. Each action

causes the emission of a reward according to a corresponding unknown, stationary

random process. However, a bandit model does not appear to apply directly because

while the duration distributions are stationary processes that are invariant between

states, the payoff associated with each action is state-dependent.

We have focused on the PAC model of learning rather than deriving bounds on regret

– the loss in value incurred because of suboptimal behavior while learning [9, 8].

Regret bounds may translate more readily into guarantees about transient real-time

performance effects during learning, since guarantees regarding cost, and hence value,

translate into guarantees about task timeliness.

We have presented empirical results which suggest that a learner that always exploits

its current information outperforms agents that explicitly encourage exploration. This

occurs because any policy that consistently ignores some action will get progressively

farther from the utilization target, resulting in arbitrarily large costs. Thus the

domain itself appears to enforce an appropriate level of exploration, perhaps obviating

the need for an explicit exploration mechanism. It is an open question whether we

can identify a more general class of MDPs that exhibit this behavior.
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4.5 Proof of Theorem 4.3.1

Recall that in Theorem 4.3.1, we claim that the approximation error

|Qm(x, i)−Q∗(x, i)|

is uniformly at most 2Tβ/(1 − γ)2 given that the model estimation error is at most

in the L1-norm by β. In order to prove this result, we require a pair of lemmas. The

first establishes a “speed limit” that controls the growth of the optimal value function

of any task scheduling problem instance (more generally, we can show that if costs

induce a pseudo-norm over the state space, as do the Lp cost functions, then the value

function of our scheduling MDP is Lipschitz in that pseudonorm).

Lemma 4.5.1. For any state x, task Ji, and duration t,

|V ∗(x + t∆i)− V ∗(x)| ≤ tc(∆i)/(1− γ).

Proof. Note that

|V ∗(x + t∆i)− V ∗(x)| =
∣∣∣max

j
{Q∗(x + t∆i, j)} −max

j
{Q∗(x, j)}

∣∣∣
≤ max

j
|Q∗(x + t∆i, j)−Q∗(x, j)| .

By expanding Q∗ according to Equation 4.4,

|Q∗(x + t∆i, j)−Q∗(x, j)|

=
∣∣∣∑
s

P (s|j)[γV ∗(x + t∆i + s∆j)− c(x + t∆i + s∆j)

− γV ∗(x + s∆j) + c(x + s∆j)]
∣∣∣

≤
∑
s

P (s|j) |c(x + s∆j)− c(x + t∆i + s∆j)|

+ γ
∑
s

P (s|j) |V ∗(x + t∆i + s∆j)− V ∗(x + s∆j)| .

By Lemma 2.2.1 from Section 2.2, we have the bound

|c(x + s∆j)− c(x + t∆i + s∆j)| ≤ tc(∆i),

114



so the first term in this sum can be bounded thus. |V ∗(x + t∆i + s∆j)− V ∗(x + s∆j)|
has the same form as our initial condition, so we can iteratively apply this argument

to obtain the bound

|V ∗(x + t∆i)− V ∗(x)| ≤
∞∑
k=0

γktc(∆i) = tc(∆i)/(1− γ).

The next result allows us to bound the error when estimating the expectation of the

cost and optimal value functions, given that the model estimation error is bounded.

We use this result to bound the computational complexity due to the magnitude of

costs.

Lemma 4.5.2. If task Ji satisfies
∑T

t=1 |Pm(t|i)− P (t|i)| ≤ β and if there is a

constant λ ≥ 0 such that for every state x and duration t, f : X → R satisfies

|f(x + t∆i)− f(x)| ≤ λt, then∣∣∣∑
t

[Pm(t|i)− P (t|i)]f(x + t∆i)
∣∣∣ ≤ Tλβ

Proof. Let σt = sign(Pm(t|i)− P (t|i)). Then

∣∣∣ T∑
t=1

[Pm(t|i)− P (t|i)]f(x + t∆i)
∣∣∣

≤
∣∣∣ T∑
t=1

[Pm(t|i)− P (t|i)](f(x) + tλσt)
∣∣∣

=
∣∣∣ T∑
t=1

[Pm(t|i)− P (t|i)]f(x) +
T∑
t=1

[Pm(t|i)− P (t|i)]tλσt
∣∣∣

= λ
T∑
t=1

|Pm(t|i)− P (t|i)| t

≤ Tλβ.

Since
∑

t Pm(t|i)−P (t|i) = 0, the term involving f(x) vanishes, leading to the desired

result.
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Recall that R is the expected reward,

R(x, i) = −
∑
t

P (t|i)c(x + t∆i); (4.8)

The expected value of the successor y of x is

EP {V ∗(y)} =
∑
t

P (t|i)V ∗(x + t∆i). (4.9)

We denote Rm and EPm{Vm(y)} analogously. Equations 4.8 and 4.9 allow us to write

Q∗ more concisely as

Q∗(x, i) = R(x, i) + γEP{V ∗(y)}

Proof. (Theorem 4.3.1) Let (x, i) be a state-task pair. Then by the triangle inequality,

|Qm(x, i)−Q∗(x, i)| ≤ |Rm(x, i)−R(x, i)|+ γ |EPm{Vm(y)} − EP{V ∗(y)}| (4.10)

We can simplify the error of estimating the expected reward using Lemmas 2.2.1

and 4.5.2,

|Rm(x, i)−R(x, i)| ≤ c(∆i)
T∑
t=1

|Pm(t|i)− P (t|i)| t < 2Tβ;

the final inequality holds because c(∆i) < 2. The difference in expected future state

values can be decomposed into two terms. The first term corresponds to the expected

error under Pm due to misestimation of the value, while the second term consists of

the value estimation error due to the inaccurate duration distribution estimate:

|EPm{Vm(y)} − EP{V ∗(y)}|

=
∣∣∣∑

t

Pm(t|i)Vm(x + t∆i)− P (t|i)V ∗(x + t∆i)
∣∣∣

=
∣∣∣∑

t

Pm(t|i)Vm(x + t∆i)− [P (t|i) + Pm(t|i)− Pm(t|i)]V ∗(x + t∆i)
∣∣∣

=
∣∣∣∑

t

Pm(t|i)[Vm(x + t∆i)− V ∗(x + t∆i)] +
∑
t

[Pm(t|i)− P (t|i)]V ∗(x + t∆i)
∣∣∣

≤
∑
t

Pm(t|i) |Vm(x + t∆i)− V ∗(x + t∆i)|+
∣∣∣∑

t

[Pm(t|i)− P (t|i)]V ∗(x + t∆i)
∣∣∣.
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The second term here can be simplified by applying Lemmas 4.5.1 and 4.5.2,∣∣∣∑
t

[Pm(t|i)− P (t|i)]V ∗(x + t∆i)
∣∣∣ ≤ 2Tβ/(1− γ)

Substitute the bounds on |Rm(x, i)−R(x, i)| and |EPm{Vm(y)} − EP{V ∗(y)}| into

Equation 4.10,

|Qm(x, i)−Q∗(x, i)|

≤ 2Tβ + γ2Tβ/(1− γ) +
∑
t

Pm(t|i) |Vm(x + t∆i)− V ∗(x + t∆i)|

= 2Tβ/(1− γ) +
∑
t

Pm(t|i) |Vm(x + t∆i)− V ∗(x + t∆i)|

Since

|Vm(x + t∆i)− V ∗(x + t∆i)| ≤ max
j
|Qm(x + t∆i, j)−Q∗(x + t∆i, j)|

we may iteratively substitute according to Equation 4.10 to obtain the stated bound

|Qm(x, i)−Q∗(x, i)| ≤
∞∑
k=0

γk2Tβ/(1− γ)

≤ 2Tβ/(1− γ)2.
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Chapter 5

Conic Scheduling Policies

The scheduling algorithms described in Chapter 3 are able to find good approxima-

tions to the optimal task scheduling policy. Those methods operate by enumerating a

set of “good” system states which, due to the state space periodicity (Chapter 2), are

guaranteed to be finite. Those methods enable formal verification techniques [38], as

it is possible to explore the full set of states reachable under the derived policy from

the initial state x = 0.

However, those finite-state approximation techniques have a major drawback. The

utilization state spaces of these models and their corresponding wrapped state spaces

have dimension equal to the number of tasks. Thus those methods are only practical

for small problems involving two or three tasks.

One popular strategy for addressing these concerns is to restrict search to a small

class of compactly parameterizable policies [88, 71]. In special cases, the optimal

scheduling policy may be a member of this family, and can be solved for directly [72].

This is not the case in general, so function optimization techniques must be employed

for tuning the policy parameters until a “good” policy is found [52].

We propose a class of parameterized conic scheduling policies based on the geometry

of those found using finite-state approximation methods [37]. Any scheduling policy

partitions the utilization state space into n distinct regions, one for each task. We

observed that under the best available scheduling policies, these partitions almost

divide the space into n cones. We exploit this regularity to derive our class of policies

with decision boundaries that closely resemble those observed under the finite-state

approximations.

118



In Section 5.1 we describe this class of conic scheduling policies in greater detail.

In Section 5.2, we provide a sufficient condition for policy stability – i.e., the system

state converges to a region with bounded cost – and demonstrate the existence of such

a conic policy. We provide empirical evidence for the effectiveness of these policies in

Section 5.3, and conclude with a discussion of related work and directions of further

investigation in Section 5.4.

5.1 Conic Scheduling Policies

Choosing an appropriate policy class is admittedly more art than science, and requires

understanding the application domain and the properties of good policies. With this

in mind, we first illustrate examples of scheduling policy behavior observed using the

finite-state approximation techniques described in Chapter 3. We use these obser-

vations to select an efficient parameterization that requires only Θ(n2) parameters,

where n is the number of tasks.

Figure 5.1 shows an approximation to the optimal scheduling policy for a problem

instance with two tasks, restricted to states near the initial state x = 0 (lower left

corner). Each point denotes a state in the wrapped state space. The target utilization

ray is shown as a dashed ray labeled λu, and corresponds to a target utilization of

u = (7, 5)>/12. Each task has a different duration distribution supported on the

interval (0, 8]. Task J1 advances along the horizontal axis, and task J2 advances

along the vertical axis. The scheduling policy selects task J1 in states denoted by

closed red circles, and task J2 in those denoted by closed blue squares. Notice that

the decision boundary – the surface separating regions of state space where the policy

is homogeneous – can be described using a ray parallel to the utilization ray. This is

illustrated by the dashed ray labeled λu + d. We will describe the offset d below.

It is more difficult to illustrate the policy in three-task problems, since the state space

is three dimensional. To establish an intuition for what is occurring in three-space,

consider the set of utilization states that the system may reach after exactly t time

quanta have elapsed:

Ht = {x ∈ X : τ(x) = t}.
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Figure 5.1: The scheduling policy for this two-task problem can be defined by parti-
tioning the state space along a ray parallel to the utilization ray λu.

(a) H10 (b) H20 (c) H30

Figure 5.2: Near-optimal scheduling policies for a three task problem, shown at time
horizons H10, H20, and H30. The leftmost state in each is (t, 0, 0), the rightmost is
(0, t, 0), and the topmost is (0, 0, t).

We call Ht a time horizon, and it consists of all of the utilization states (i.e., integral

points) in a (n − 1)-simplex with vertices {t∆i : i = 1, . . . , n}. In two dimensions,

Ht is the set of states that lie on the line segment joining (t, 0) and (0, t). In three

dimensions, Ht is the set of states contained in the equilateral triangle with vertices

(t, 0, 0), (0, t, 0), and (0, 0, t). The target utilization at time t is tu, and is the ideal

point that the system state should be near in Ht.

Figure 5.2 illustrates an approximation to the optimal scheduling policy for a problem

instance with three tasks. The policy is illustrated by plotting it at three different

time horizons, H10, H20, and H30. The target utilization is u = (6, 8, 9)>/23, and

corresponds to a point in each horizon, shown as an open box. Tasks are non-identical,

but each has duration supported on the interval (0, 8]. The policy executes J1 in closed

red circle states, J2 in open green circle states, and J3 in closed blue square states.
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As in the two task case, the policy partitions each time horizon into one region for each

task. This appears to be representative behavior. Together with the observation of

periodicity from Chapter 2, this gives us two criteria for designing a parametric class

of scheduling policies: (1) the policy should be periodic, so that it chooses the same

action at x and every utilization state along x + λu; and (2) the policy should divide

each time horizon into n homogeneous regions. This now leads to our formulation of

conic policies.

We define two types of parameters for conic policies. The first n parameters describe a

decision offset vector d; this is a vector perpendicular to 1, the vector of all ones, (i.e.,

d is parallel to each time horizon) that roots the partition relative to the utilization

target.

The remaining n2 parameters define a collection of action vectors A = [a1 . . . an]

that are used to determine the regions where each action is taken. For each task Ji,

the action vector ai is an n-vector perpendicular5 to 1. We use the decision offset and

action vectors to partition each time horizon into homogeneous regions as follows.

Informally, a conic policy selects a task to dispatch in state x by determining which

action vector most points towards x from the decision offset. More formally, τ(x)u

is the ideal utilization point at time τ(x). We root the policy decision boundaries on

the decision ray λu + d at that time, τ(x)u + d. Let

z(x) = x− τ(x)u− d (5.1)

be the displacement vector from the offset of the ideal utilization point to x. Then

we choose to run the task Ji if its action vector is well-aligned with z(x) – that is, if

the response a>i z(x) is maximal among all action vectors. We state this formally in

the following definition.

5Since we constrain the decision offset d and each action vector ai to be parallel to the time
horizons, they actually lie in an (n−1)-dimensional space and could be parameterized using (n−1)-
vectors instead of n-vectors. We adopt the higher-dimensional representation here for expository
purposes, since it can be communicated more concisely.
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Definition 5.1.1. The conic policy π(·; d,A) with decision offset d and a matrix of

action vectors A chooses actions in each utilization state x according to

π(x; d,A) ∈ argmax
i=1,...,n

{a>i z(x)}

Notice that it is possible for multiple action vectors to have the same response at

x. We recommend breaking ties uniformly at random in this case. Under this tie

breaking convention, the conic policy degenerates to a uniform random scheduling

policy whenever all of the action vectors are equal.

Figure 5.3 illustrates this policy in the state space of two- and three-task problems.

Figure 5.3(a) shows an example policy for a two-task problem instance. The decision

offset d shifts the decision boundary parallel to the target utilization ray, while the

action vectors determine the policy action on either side of the decision boundary. In

two dimensions, the action vectors are not strictly necessary, since any policy that

runs task J2 above the decision boundary and J1 below it will diverge, reaching states

with arbitrarily negative costs, since this policy eventually dispatches the same task

repeatedly.

The action vectors are necessary when there are three or more tasks. This is illustrated

in Figures 5.3(b) and 5.3(c). In Figure 5.3(b), we show the time horizon Ht situated

in three-space. The action vectors are shown in the plane. Figure 5.3(c) shows the

perpendicular projection of the time horizon onto the plane; the decision boundaries

for each action are shown, and consist of the region where the offset between a state

and tu+d is well-aligned with one of the action vectors. Notice that the policy breaks

this simplex into three conic regions emanating from tu + d.

For any number of tasks n, the decision offset and action vectors act to partition each

time horizon Ht into n distinct cones whenever the action vectors are distinct. We

demonstrate this formally in the proof of Lemma 5.1.1.

Lemma 5.1.1. For any decision offset d, action vectors A, time horizon Ht, and

task Ji, the set of states

Λt,i = {x ∈ Ht : i ∈ argmaxj{a>j z(x)}}
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(a) two tasks (b) three tasks (c) three task horizon Ht

Figure 5.3: Illustration of conic policies in two dimensions (Figure 5.3(a)) and three
dimensions (Figures 5.3(b) and 5.3(c)). Figure 5.3(c) shows the time horizon Ht

from Figure 5.3(b) with decision boundaries between regions where the policy is
homogeneous.

is a cone with apex tu + d.

Proof. A set Y is a cone with apex v if and only if Y is convex and for any y ∈ Y ,

any y′ on the ray from v through y is also in Y . We demonstrate below that these

two properties hold for Λt,i relative to tu + d. We make use of the fact that for any

real-valued n-vector v, τ(v) ≡ v>1 is a linear map.

Convexity: Suppose that x and x′ are states in Λt,i and that y = αx + βx′ is a

utilization state for some α ∈ [0, 1] and β = 1− α. z(·) is convex, i.e.,

z(αx + βx′) = αx + βx′ − τ(αx + βx′)u− d

= αx + βx′ − ατ(x)u− βτ(x′)u− αd− βd

= αz(x) + βz(x′),

therefore

A>z(y) = αA>z(x) + βA>z(x′).

Since ai maximizes each term in the right-hand side, it also maximizes the left-hand

side, implying that y is in Λt,i.

Homogeniety: For any x in Λt,i, a state y in Ht is along the ray through x from tu+d

if and only if y = λz(x) + tu + d for some λ > 0. Since z(x) and d are perpendicular
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to 1, τ(z(x)) = τ(d) = 0. Therefore,

z(y) = z(λz(x) + tu + d)

= λz(x) + tu + d− τ(λz(x) + tu + d)u− d

= λz(x) + tu + d− λτ(z(x))u− tu− τ(d)u− d

= λz(x),

and so

A>z(y) = λA>z(x).

It follows that if ai maximizes A>z(x), it also maximizes A>z(y), and so y is in

Λt,i.

Above, in the statement of Lemma 5.1.1 we define the cone Λt,i as the set of states in

the horizon where ai has maximal response. It might appear more natural to define

Λt,i as the set of states in horizon Ht where the parameterized policy dispatches task

Ji. However, this latter definition breaks down at the decision boundaries, since if we

use a nondeterministic tie breaking procedure, the policy may not be homogeneous

along these boundaries.

Conic policies select among the tasks whose action vectors yield the greatest response

in any given state. Our proof of Lemma 5.1.2 formalizes periodicity of the conic policy

by showing that the set of action vectors that gives the greatest response x also yields

the greatest response at any utilization state along the ray {x + λu : λ ≥ 0}.

Lemma 5.1.2. For any decision offset d, action vectors A, and utilization state x,

if Ji maximizes a>i z(x) among all tasks, then Ji maximizes a>i z(x + λu) for any real

scalar λ.

Proof. Since

z(x + λu) = x + λu− τ(x + λu)u− d

= x + λu− τ(x)u− λu− d

= z(x),
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so for any task Ji,

a>i z(x) = a>i z(x + λu),

and so if a>i z(x) is maximal among all tasks, then it also maximizes a>i z(x+λu).

The example policy shown in Figure 5.2 is periodic but not conic: in order for the

partition induced by the policy to be conic, we would need to be able to represent the

decision boundary by exactly three rays emanating from a common point. Thus, the

conic partition of the parameterized policy is not optimal in general. In Section 5.2,

we show that while the best conic policy may not be optimal among all possible

scheduling policies, it contains stable policies that maintain the system near target

utilization. In Section 5.3 we demonstrate that we can find conic policies that perform

well; particularly, there are conic policies that consistently outperform the cost-greedy

(Equation 3.8) and utilization-based (Equation 3.9) heuristic policies of Section 3.2.2

on problems that are too large to solve using finite-state approximations.

5.2 Conic Policy Stability

Above, we described a case in which the system might diverge to states with arbitrarily

negative costs. In Figure 5.1, if the policy instead dispatched task J1 in every state

below the decision boundary, upon reaching any of these states, the policy would

then repeatedly run that task forever. We say that such a policy is unstable, since it

never settles into a region with bounded cost. We now derive a sufficient condition

under which a conic policy is guaranteed to be stable. Informally, a stable policy is

one under which the system state is guaranteed to converge to a region with finite,

bounded costs.

A trajectory generated under policy π is a sequence of utilization states (xk)
∞
k=0 such

that xk+1 is distributed according to P (·|xk, π(xk)). We say that a scheduling policy

is stable if and only if we can guarantee that any trajectory generated under that

policy is eventually within some bounded neighborhood of the utilization ray. The

cost function is defined in terms of the Lp distance between the state x and the ideal
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point τ(x)u on the utilization ray (first defined in Equation 2.11)

cp(x) = ‖x− τ(x)u‖p

This means that a stable policy maintains the system in states with costs relatively

near zero, which in turn ensures that every task makes progress relative to one an-

other.

Theorem 5.2.1 provides a sufficient condition on the decision offset and action vectors

to guarantee that the corresponding conic policy is stable. The proof is stated in terms

of the Euclidean distance rather than the general Lp distance; since these norms are

topologically equivalent, stability in Euclidean distance also implies stability in the

rest.

Theorem 5.2.1. If π = π(·; d,A) is a conic policy, and there is some ε > 0 such

that for every utilization state x,

(∆π(x) − u)>z(x) ≤ −ε ‖z(x)‖ (5.2)

where ‖·‖ is the Euclidean norm, then π is stable.

We defer a formal proof of Theorem 5.2.1 to supplemental material in Section 5.5 at

the end of this chapter, and provide only a brief sketch here. The vector (∆π(x) − u)

is the instantaneous change in state at x when following π. The precondition of the

theorem requires that the angle between this state derivative and the displacement

z(x) between x and the decision ray is negative. This guarantees that there is always

an instantaneous reduction in distance from the decision ray under π.

However, since the state changes in discrete jumps according to the task durations, it

is possible for the policy to move the system from a state that is close to the decision

ray to one that is farther away. Since tasks have bounded worst-case durations, the

policy will always move the system closer to the decision ray from a state that is far

enough away. Closer to the decision ray, the policy may throw the state farther from

the decision ray, but because of the duration bounds, the distance of this successor

state from the decision ray is bounded. Therefore, we can draw a cylinder with

finite radius centered around the decision ray such that any trajectory starting from
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a state inside the cylinder must stay inside, while trajectories originating outside of

the cylinder are eventually pulled inside, and then stay there.

We can conclude that the system state must always enter into a bounded neighbor-

hood of the decision ray. Since the utilization ray is at a fixed distance from the

decision ray, this result also implies that the policy converges to a bounded region

about the target utilization.

While Theorem 5.2.1 provides a sufficient condition to guarantee stability, it does not

supply us with a stable parameterization. Corollary 5.2.1 provides an example of a

stable policy.

Corollary 5.2.1. A conic policy π(·; d,A) with action vectors

ai = (u−∆i)/ ‖u−∆i‖ (5.3)

is stable for any choice of decision offset d.

The proof of this corollary is surprisingly involved, and so we defer this to the sup-

plemental material in Section 5.5 as well. The intuition behind the proof is relatively

straightforward, however. By construction, each action vector ai defined by Equa-

tion 5.3 points exactly opposite the direction of travel relative to the utilization target,

(∆i − u); that is, the angle between these two vectors is 180◦. Because of this re-

lationship, we can conclude that if the angle between an action vector ai and the

displacement z(x) is “comfortably” smaller than 90◦ (expressed as a constraint on

their dot product in terms of ε), then the angle between z(x) and the (∆i − u) must

be more than 90◦, satisfying the precondition of Theorem 5.2.1. Figure 5.4 illustrates

these action vectors for a three-task problem instance.

The choice of decision offset is unnecessary when determining stability. If a policy

is stable with offset d, it will also be stable with offset d′. This is because the state

derivative when dispatching a particular task is independent of the decision offset.

A stable choice of action vectors causes the system state to enter a stochastic orbit

around the decision ray; moving the decision offset just moves that orbit through the

state space.
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Figure 5.4: Scaled action vectors ai = (u−∆i)/ ‖∆i − u‖.

This line of reasoning seems to suggest that we should always choose d = 0 as the

decision offset, so that the system orbits around the utilization ray. This is not the

case, however. In practice, the state stochastically orbits the decision ray, but because

of the difference in durations between tasks and because there is a non-smooth change

in the direction of travel when changing actions, the average location tends to differ

from the decision ray. Selecting a good conic policy parameterization appears to

consist of establishing a decision offset and action vectors so that this average state

is as close as possible to the utilization target.

5.3 Conic Policy Performance

Finding the optimal conic policy analytically appears to be a difficult problem. Rather

than approaching the problem from this direction, we instead employ stochastic opti-

mization techniques to select good parameterizations of the conic policy. We discuss

these methods and evaluate them empirically in this section.

We ran tests comparing the performance of selected conic policies to two heuristic

scheduling policies. The, cost-greedy policy πg (Equation 3.8) is defined

πg(x) = argmin
i∈A

Et∼Pi{c(x + t∆i)};
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it always executes the task that leads to the least immediate cost in expectation. The

second heuristic policy is the utilization-based policy πu (Equation 3.9), defined as

πu(x) ∈ argmax
i∈A

{τ(x)ui − xi};

this always runs the most underutilized task. Where possible, we also compare conic

policy performance to finite-state approximations.

To find good conic policies we implemented the hill climbing and policy gradient

search methods described by Kohl and Stone [52]. Both of these search methods

follow a similar outline. We begin with an initial policy parameterization; in each

case, the stable conic policy in Equation 5.3 with a decision offset of d = 0. At

each iteration, we generate a population of nearby policies by adding small random

perturbations to each parameter. In our experiments, we found that a population

size of 3n(n+ 1) works well for either search strategy, where n is the number of tasks.

These policies are evaluated by performing Monte Carlo evaluation [87] – i.e., by

repeatedly simulating the policy from the initial state x = 0 to estimate the policy

value and averaging the sum of discounted, observed rewards (recall that reward

equals negative cost). This population is then used to determine a policy for the next

iteration.

Hill climbing search chooses the policy at each iteration by selecting the policy with

greatest estimated value among this population. As in Kohl and Stone’s work [52], we

select the best policy among these perturbed parameter settings regardless of whether

that policy is worse than the current policy. This affords the algorithm some limited

ability to escape local optima. In our experiments, parameter perturbations were

drawn uniformly at random from the interval ±(1/m+ 0.98m) at iteration m.

Policy gradient search instead uses these perturbations to estimate the gradient of

the value with respect to the policy parameters. The policy at the next iteration

is determined by stepping a fixed distance along the gradient. In our experiments,

parameters were perturbed by adding a value at random from among {0,±m−1/6},
while the step size along the gradient was 1/m + 0.98m. We decay the step size and

the perturbation size in the hill climbing experiments so that we eventually settle on

some policy. The specific decay rates were chosen, loosely speaking, to keep this from
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(a) 4 Task Problem Instance (b) 10 Task Problem Instance

Figure 5.5: Experimental results showing the performance of policy search strategies
as a function of the number of iterations performed. Values labeled “Hill climb-
ing” and “Policy Gradient” show the eponymous search performance, “Greedy” and
“Underused show the heuristic policy performance, and “Model” the finite-state ap-
proximation of optimal.

happening too quickly. A formal discussion of appropriate decay strategies can be

found, for example, in [33].

We performed two experiments comparing the performance of conic policies, heuris-

tic policies, as well as finite-state approximation policies when possible. The first

experiment examines how the value of each conic policy evolves with each iteration of

the policy search method. The second experiment examines the performance of the

different policies for problem instances as a function of the number of tasks.

In each problem instance the task duration distributions were random histograms

with worst-case execution time Ti in the interval [2, 32]. The utilization targets for

each problem instance were selected by choosing integers q ∈ [2, 32]n uniformly at

random, so that the utilization target is u = q · (
∑

i qi)
−1. For both the heuristic and

conic policies, evaluating the value function at the initial state was carried out using

Monte Carlo evaluation.

In the first experiment, we generated a single problem instance with 4 tasks. We

performed 100 iterations of policy search using both hill climbing and policy gradient

search and estimated the value at each iteration. We compared their performance to

the utilization policy πu, the greedy policy πg, and a finite-state approximation to the

130



Figure 5.6: Comparison of policy performance for varying numbers of tasks. finite-
state approximation of the optimal policy is shown only for two and three tasks.

optimal policy. These values are shown in Figure 5.5(a) as “Hill Climbing,” “Policy

Gradient,” “Underused,” “Greedy,” and “Model,” respectively. Since rewards equal

negative costs, policy values closer to zero indicate better performance. 95% confi-

dence intervals were obtained by performing 30 repetitions of each search strategy.

Conic policy evaluation was performed by averaging across 1000 simulated trajectories

of 1000 decision epochs. A discount factor of γ = 0.99 was used.

Figure 5.5(a) shows that explicitly solving the MDP model gives the best results.

However, Hill Climbing, Policy Gradient and Greedy produce comparable results.

Utilization performs relatively poorly. We have observed that πu has value near the

default stable policy with decision offset d = 0.

Figure 5.5(b) shows the results of repeating this experiment using a problem instance

with 10 tasks. In this case, finite-state approximation of the optimal policy is in-

tractable. Exact evaluation of the heuristic policies also requires enumerating their

set of reachable states, and so is intractable as well. Instead, Monte Carlo simulation

is used to estimate their values, which are shown with 95% confidence intervals. In

this case Hill Climbing outperforms either heuristic policy. The additional structure

used by Policy Gradient search allows it to outperform Hill Climbing.

In the second experiment we compared the performance of these policies across prob-

lem instances with varying number of tasks. For each number of tasks we generated

100 independent problem instances with the same method described above. Average

values with 95% confidence intervals are shown in Figure 5.6. We report the policy
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found after 100 iterations of search. Results are shown for the finite-state approxi-

mation for two and three task problem instances. Monte Carlo evaluation was used

to evaluate the heuristic policies and conic policies in each case, consisting of 100

simulated trajectories of 1000 decision epochs each.

In two or three task problem instances, Greedy, Model, Hill Climbing and Policy

Gradient all perform similarly. With more tasks the conic policy clearly outperforms

either heuristic policy. This supports the use of conic policies for scaling to larger

problem instances.

5.4 Discussion

Related Work: The work presented in this chapter demonstrates the ability of the

parameterized conic policy to approximate the optimal task scheduling policy and to

scale our approach to larger problems. We selected to tune the policy parameters

using hill climbing search and sparse stochastic policy gradient estimation methods

primarily for their simplicity.

The study of policy gradient estimation in reinforcement learning is a broad area of

study with numerous applications. Peters and Schaal [71] a survey of these methods

in the context of robotics, where the emphasis is on scalability to high-dimensional

policy parameterization. We provide a brief overview of topics in this area.

Most of the work on direct policy search appears to be focused on robust estimation

of policy gradients. Broadly speaking, these methods fall into two categories: finite

difference methods [52] like those used in this work, and what Peters and Schaal refer

to as “likelihood ratio” methods [98, 69, 88].

The focus in finite difference methods is on estimating gradients by examining the

value of parameterizations in the neighborhood of the current policy. This is per-

formed by perturbing the policy parameters and performing Monte Carlo estimation

of the parameter values. The downside of this approach is that it assumes experience
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is cheap; for example, that we have an accurate generative model of the system. The

benefit is that these methods tend to achieve low-variance gradient estimates.

Likelihood ratio methods follow in the footsteps of Williams’s REINFORCE meth-

ods [98]. These methods are sample efficient: they are provided a fixed collection

of trajectories observed under some exploration policy, or equivalently, that a fixed

sequence of random numbers used to generate policies is provided [69]. Policies are

assumed to assign non-zero probability to every action in every state, so that the like-

lihood of each trajectory under the policy can be computed. This is used to provide

an estimate of the policy value, and together with an analytical gradient of the policy

with respect to its parameters, can be used to estimate the policy gradient.

Using these methods to tune the conic policy could allow us to perform policy search

online without a prior model of the system. However, extending to this case requires

addressing a couple of issues. The straightforward gradient estimate is not invariant

to reparameterization, so we may see different performance if we define the decision

offsets and action vectors in the n-dimensional space of this paper rather than in the

(n− 1)-dimensional space perpendicular to 1. Perturbations to different parameters

also affect the conic policy differently; a small change to the decision offset changes the

policy more than a commensurate change to the action vector parameters. Natural

policy gradient methods [45] sidestep this issue by deriving a gradient estimate that

is invariant to change of parameters.

Conclusions: In this chapter we have introduced a scalable conic scheduling policy

design technique that compactly approximates the geometric structure of policies

obtained using direct solution techniques. This technique allows us to derive good

scheduling policies for open soft real-time systems with large numbers of tasks. Our

results indicate that direct solution techniques are most appropriate when tractable,

while conic policies provide strong scalable performance where direct solution methods

fail.

Our experiments demonstrate that search is able to find a good conic policy when

initialized with the stable policy from Equation 5.3. However, it is unclear whether

these methods are likely to converge to a global optimum among conic policies when

restricted to this initial parameterization. Typically, this would be addressed by using
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randomized restarts in order to sample many local optima. However, that approach

fails for our task scheduling problem, as most random conic policies are unstable and

policies in their neighborhood also tend to be unstable. Since unstable policies reach

states with large magnitude cost, these policies have almost uniformly low value, so

there is no clear direction that search can follow to reach a good parameterization.

We suggest two promising approaches for addressing this problem. One is to use

a richer policy representation; for example, choosing to dispatch tasks at random,

with probability proportional to to the action vector responses, may provide a more

informative value gradient [88]. A second method is to derive a more comprehensive

characterization of stable conic policies, which would allow us to sample safely from

a wider variety of initial conditions.

5.5 Supplemental Material

Proof of Theorem 5.2.1:

Proof. Let (xk)
∞
k=0 be a trajectory, with x0 arbitrary and xk+1 determined by exe-

cuting π(xk) in xk. We need to prove that this (arbitrary) trajectory converges to a

bounded neighborhood of the utilization ray. Our proof consists of two parts: first

we show that the trajectory eventually enters this neighborhood, and then we show

that the trajectory can not escape this neighborhood.

Let x be an arbitrary state and let π(x) = i. Suppose that y = x + t∆i is a successor

of x under π. We can write the displacement z(y) between y and the decision ray in

terms of the displacement at x,

z(y) = x + t∆i − τ(x)u− tu− d

= z(x) + t(∆i − u).
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This allows us to derive an upper bound on the squared magnitude of z(y), as

‖z(y)‖2 = (z(x)− t(∆i − u))>(z(x)− t(∆i − u))

= z(x)>z(x) + t2(∆i − u)>(∆i − u)

+ 2t(∆i − u)>z(x)

≤ ‖z(x)‖2 + t2 ‖∆i − u‖2 − 2tε ‖z(x)‖ .

Defining

η(x, t) ≡ t2
∥∥∆π(x) − u

∥∥2 − 2tε ‖z(x)‖

allows us to write the inequality above more concisely as

‖z(y)‖2 ≤ ‖z(x)‖2 + η(x, t). (5.4)

We define M = maxi{T 2
i ‖∆i − u‖2} to bound the first term of η(x, t) above (recall

that Ti is the worst-case execution time of Task Ji). For any α > 0 let ρα = (M + α)/(2ε)

be the radius of a cylinder centered on the decision ray. Then if ‖z(x)‖ ≥ ρα,

η(x, t) ≤M − 2ε(M + α)/(2ε) = −α.

We can substitute this inequality into Equation 5.4 to get ‖z(y)‖2 ≤ ‖z(x)‖2−α. In

other words, executing the policy action always reduces the distance between x and

the decision ray if x is far enough away.

This result guarantees that the trajectory is eventually within ρα of the decision ray

for any α > 0. If this were not the case, we would be able to find some K such that

any k ≥ K has ‖z(xk)‖ ≥ ρα, but for any m > 0, we have

‖z(xK+m)‖2 ≤ ‖z(xK+m−1)‖2 − α
...

≤ ‖z(xK)‖2 −mα,

so xK+m is within ρα of the decision ray for large m.
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By the triangle inequality, we have

‖z(y)‖ = ‖z(x) + t(∆i − u)‖

≤ ‖z(x)‖+ t ‖∆i − u‖

≤ ‖z(x)‖+M1/2,

so if ‖z(x)‖ ≤ ρα, ‖z(y)‖ ≤ ρα +M1/2. Since the state gets closer to the decision

ray when ‖z(x)‖ is greater than ρα, and cannot get farther than ρα + M1/2 when

the state is inside this neighborhood, the trajectory must eventually enter and stay

within distance ρα + M1/2 of the decision ray for any α > 0. Since the trajectory is

arbitrary, this must hold for any trajectory generated while following π.

Proof of Corollary 5.2.1:

Proof. To simplify notation, let z denote z(x) for some arbitrary state x. Under

Equation 5.3,

a>i z = −(∆i − u)>z/ ‖∆i − u‖ .

Therefore, we just need to show that for some α > 0,

max
i
{a>i z} ≥ α ‖z‖

for every z, since then (∆π(x) − u)>z ≤ −α ‖z‖ ‖∆i − u‖, satisfying Theorem 5.2.1’s

precondition. To simplify the discussion, we assume that mini{‖∆i − u‖} is a factor

of α. This term is guaranteed to be positive because no single task is assigned the

entire processor. Demonstrating the claim therefore reduces to demonstrating that

in every state there is a task Ji such that (u−∆i)
>z ≥ α ‖z‖.

For the sake of contradiction, suppose that for all α > 0, there is a state x (and

corresponding displacement z) such that

max
i
{(u−∆i)

>z} < α ‖z‖ . (5.5)

We can rewrite the left-hand side of Equation 5.5 according to

max
i
{(u−∆i)

>z} = u>z−min
i
{zi}
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(recall that ∆>i z = zi). We will proceed to show that satisfying Equation 5.5 for

arbitrarily small α requires an invalid utilization target. To achieve this, we first

need an upper bound on the left-hand side of the equation.

To obtain this bound, recall that z is the displacement between x and the decision

ray (see Equation 5.1). This lies in a plane perpendicular to 1, and so
∑n

i=1 zi = 0.

Let ζ be the sum of positive components of z, then −ζ is the sum of its negative

components.

Without loss of generality, we may assume that the components of the utilization

target are ordered with u1 ≥ u2 ≥ . . . ≥ un. This implies that un lies in the interval

(0, 1/n] and that u1 ≤ 1− un(n− 1), as otherwise u’s components would not sum to

one.

Using these observations, it is straightforward to verify that for a fixed utilization

target, the left-hand side of Equation 5.5 is maximized by fixing z1 = ζ and zn = −ζ,

and setting the other components to zero. Then

u>z−min
i
{zi} ≤ ζu1 − ζun + ζ

≤ ζ(2− n · un)

Substituting this bound into Equation 5.5 yields the inequality ζ(2− n · un) < α ‖z‖,
or equivalently,

un > 2/n− α ‖z‖ /(ζn).

Thus as α approaches zero, the smallest utilization target un must exceed 1/n, a

contradiction.
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Chapter 6

Conclusions

In this dissertation we have proposed a system for scheduling tasks with timing con-

straints subject to a novel combination of operating conditions. We consider schedul-

ing multiple tasks that require mutually exclusive access to a non-preemptive, shared

resource. Each task is composed of an infinite sequence of identical jobs; a new job

of a task arrives immediately upon completion of the previous job. Job durations are

stochastic, but are assumed independent.

We have developed problem models and solution algorithms for scheduling policy

design in this setting, with the objective of maximizing proportional fairness according

to user-specified resource utilization targets ui for each task Ji in (Ji)
n
i=1. We enforce

timeliness of task execution by minimizing long-term cost, defined as an increasing

function of the task lag |tui − xi(t)|, where xi(t) is the cumulative resource usage of

task Ji at time t. Thus, our algorithms find scheduling policies that maintain each

task’s resource usage near the specified share target under non-preemptive execution

constraints and in spite of uncertainty in job execution time.

We have modeled this scheduling problem as a Markov Decision Process (MDP)

with an infinite state space, unbounded costs, and with decision epochs synchronous

with task completion. We have proven that despite the size of the state space and

unbounded costs, this process has nontrivial optimal6, deterministic control policies

in the infinite-horizon discounted reward setting. We have shown that for a family

of periodic cost functions, including the sum of task lags (i.e. the L1 cost function

c1(x(t)) =
∑n

i=1 |xi(t)− tui|), we can eliminate infinitely many MDP states from

6Optimality in that these policies maximize long-term discounted rewards, or equivalently, min-
imize long-term discounted costs.
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consideration without sacrificing optimality, provided that the vector of utilization

targets u has only rational components.

The wrapped model induced by periodicity remains infinite with unbounded costs,

thus further techniques were needed in order to compute or approximate optimal

scheduling policies. We presented two approximation methods that exploit the ob-

servation that only finitely many states with have cost less than any chosen, finite

bound in the wrapped state model. Our bounded state model restricts attention to

states with cost less than a given bound. As desired, the bounded model solution

converges to the true optimal scheduling policy as the cost bound, and thus the size

of the approximate model, increases. Further, by penalizing boundary conditions ap-

propriately, we are guaranteed to find the best policies that stay within the specified

bounds, which under L1 costs corresponds directly to bounding the maximum lag

among all tasks at all times.

Using the bounded state model to design scheduling policies potentially requires solv-

ing many related MDPs until a satisfactory policy is found that respects suitably

small cost bounds. We have developed an algorithm, Expanding State Policy Itera-

tion (ESPI), that automates this process by iteratively constructing minimal subsets

of the state space that are necessary to perform policy evaluation and improvement

about the initial MDP state. While we have not been able to prove that this method

terminates in general, we are able to guarantee that it strictly improves its policy at

each iteration. We generalized this algorithm to allow varying degrees of lookahead

in order to ensure better coverage of the state space.

Both of these methods rely on enumeration of a finite subset of the MDP state space.

Even with state space compression due to periodicity, this space grows exponentially

with the number of tasks. Thus, we developed a class of conic scheduling policies

that approximate the geometry of the state space partitions induced by finite-state

approximation methods. These policies can be efficiently parameterized with Θ(n2)

parameters. We have verified the efficacy of this approach in simulation.

Additionally, we have provided a PAC bound on the sample complexity of reinforce-

ment learning effective scheduling policies when task duration distributions are not

provided in advance; this result is novel, as existing results are confined to learning

MDPs with finitely many states and bounded rewards, and so do not cover our task

139



scheduling MDP. Our empirical results in this case indicate that there is no need to

incorporate an explicit exploration mechanism, as the structure of the task scheduling

MDP enforces rational exploration.

Open Questions: Two open questions remain in our analysis of finite-state ap-

proximation methods. First, if we identify a fixed initial state or, more generally, a

finite set of initial states, how many wrapped model states may an optimal policy

reach? If some optimal policy has finite closure, i.e., there are only finitely many

states reachable when starting from a finite set of states, then it follows that some

cost bound captures the optimal exactly. This result may also be useful in determin-

ing the convergence properties of ESPI. The second open question is whether or not

the greedy policy is optimal in the two task setting. This hypothesis is consistent

with our empirical results. If true, it seems reasonable that an n steps of lookahead

may suffice to attain optimal performance in the n task setting, which could lead to

more efficient solution methods.

One of the most optimistic assumptions we have made with our system model is that

jobs are independent of one another. While this is a common assumption in real-time

systems with repeating tasks [58, 59], it is unlikely to hold in practice. For example,

repeated uses of a robot actuator are not independent, since the duration of a job

depends on the state of the actuator upon acquisition. Although we could enforce

independence by requiring that each job must return the actuator to a fixed reference

state prior to completion, this would unnecessarily increase job durations. We have

performed some preliminary research on identifying and exploiting system modes [35]

that provides an interesting avenue to address this concern.

We have omitted deadlines from our discussion of task timeliness. We have observed

that if we associate deadlines with jobs as a function of worst-case execution time,

we achieve better deadline miss rates than non-preemptive EDF when overload sit-

uations are likely. Explicitly incorporating deadlines into our model may allow us

to further improve performance under these conditions. However, this would require

encoding additional information into our state representation; it seems likely that

state reduction techniques similar to those used in this work could then be employed

to reduce the size of the resulting model.
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[89] Csaba Szepesvári. Reinforcement learning algorithms for MDPs. Technical Re-
port TR09-13, University of Alberta, Edmonton, 2009.
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