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Abstract

This Dissertation presents quantitative ultrasonic measurements of the myocardium

in fetal hearts and adult human hearts with the goal of studying the physics of sound

waves incident upon anisotropic and inhomogeneous materials. Ultrasound has been

used as a clinical tool to assess heart structure and function for several decades. The

clinical usefulness of this noninvasive approach has grown with our understanding

of the physical mechanisms underlying the interaction of ultrasonic waves with the

myocardium.

In this Dissertation, integrated backscatter and attenuation analyses were per-

formed on midgestational fetal hearts to assess potential differences in the left and

right ventricular myocardium. The hearts were interrogated using a 50 MHz trans-

ducer that enabled finer spatial resolution than could be achieved at more typical

clinical frequencies. Ultrasonic data analyses demonstrated different patterns and

relative levels of backscatter and attenuation from the myocardium of the left ventri-

cle and the right ventricle.

Ultrasonic data of adult human hearts were acquired with a clinical imaging sys-

tem and quantified by their magnitude and time delay of cyclic variation of myocar-
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dial backscatter. The results were analyzing using Bayes Classification and ROC

analysis to quantify potential advantages of using a combination of two features of

cyclic variation of myocardial backscatter over using only one or the other feature

to distinguish between groups of subjects. When the subjects were classified based

on hemoglobin A1c, the homeostasis model assessment of insulin resistance, and the

ratio of triglyceride to high-density lipoprotein-cholesterol, differences in the magni-

tude and normalized time delay of cyclic variation of myocardial backscatter were

observed. The cyclic variation results also suggested a trend toward a larger area

under the ROC curve when information from magnitude and time delay of cyclic

variation is combined using Bayes classification than when each feature is analyzed

individually.

Ultrasound continues to be a powerful tool that enables noninvasive quantification

of material properties. The studies in this Dissertation show that understanding the

physical mechanisms behind the interaction of sound waves with myocardium can

reveal new information about the structure, composition and overall state of the

heart.

iv



Acknowledgments

The work presented in this dissertation was not done in isolation, but benefited

from many great scientists who are a part of the Laboratory for Ultrasonics at Wash-

ington University in St. Louis. My research would not have been possible without

the support and guidance of my two advisors, James Miller and Mark Holland. I owe

them both a great amount of gratitude for their patience, thoughtfulness, and enthu-

siasm. I would also like to thank Steve Baldwin, Scott Handley, Karen Marutyan,

Becky Trousil, Kirk Wallace and Min Yang, who helped lay the foundation for my re-

search, taught me the principles of ultrasound, and guided me as I began this journey.

Special thanks also go to my friends and peers within the laboratory, Chris Anderson,

Adam Bauer, Joe Hoffman, Ben Johnson, Todd Krueger, Chris Lloyd, and Amber

Nelson for their support and helpful scientific discussions over the years.

In addition to the member of the Laboratory for Ultrasonics, this research ben-

efited greatly from the energy and support of our collaborators at Barnes Jewish

Hospital, Washington University School of Medicine, and the Division of Imaging

and Applied Mathematics at the U.S. Food and Drug Administration. In particular

I would like to acknowledge Dr. Gautam Singh and the team of Dr. Linda Peterson,

v



Dr. Jean Schaffer, Kyle Bilhorn, Marsha Farmer, Troy Haider, and Karla Robert for

allowing me to be part of such interesting studies, and for teaching me about clinical

cardiology, sonography, fetal hearts and diabetes. I would also like to recognize the

late Dr. Robert Wagner for the joy he brought to my life, and for teaching me that

statistical analysis could actually be fun.

I am deeply appreciative for the faculty and staff of the Department of Physics

who offered support throughout my graduate school career. Specifically, Jan Foster,

Julia Hamilton, Sarah Hedley, Alison Verbeck, and Tammy White-Devine all pro-

vided invaluable help navigating the administrative hoops of graduate school. Tony

Biondo, Todd Hardt, and Denny Huelsman made the research possible by masterfully

machining various parts for our experiments. Rita Wilson deserves thanks for keeping

Compton Hall clean and for always managing to put a smile on my face.

I have been very lucky to have numerous friends who have supported me through

my journey as a graduate student. I am grateful for my friendships with Seth Bartel,

Adam Eggebrecht and Kasey Wagoner and for our great nights of music, cards, and

conversations. I also want to thank Laurie Bauer, Charles Chung, Ashley Fitzgerald,

Shannon Hoffman, Patrick Johnson, Tim Mitchell, Lauren Scott, Amy Sheldahl, Paul

Rebillot, Vic Wessels, Dawn Yanker, Shannon Zareh and the rest of the physics crew

for many fun cabin trips, weekend gatherings, flag football games, and breaks from

work. Special thanks goes to Christopher Aubin, one of my first friends in St. Louis,

who continually keeps me smiling and patiently answers my questions. In addition,

I am indebted to the ANTM crew, especially Scott Hughes and Danette Wilson,

vi



who have been an oasis for crazy conversations, fun TV, and great dinners for over

12 “cycles”. A huge thanks belongs to a wonderful group of women I met in St.

Louis including Linda, Katie, Rebecca, Katie, Gabriella, Erin, and Anna who are so

supportive, brought balance to my life, and were great fun. I am also profoundly

grateful for my friendships with Michelle Milne and Becky Trousil. Both women are

my pillars of support, confidants, and sounding boards. Thanks also to my friends at

UUMC especially Laura Cochrane, Margaret Davis, Doug and Judith Durham, Beth

Elders, Suzy Hamon, Linda Harris, Brad and Phyllis Hershey, Alice and John Mohr,

Brenda Stobbe, Julie Thrasher, and Bette Welch.

I feel inordinately lucky to have a wonderfully supportive family and adopted

families who have cheered me on throughout my life. I am deeply appreciative to the

Clardys, Giddens, and Koenigs who have welcomed me into their families, and let me

share in their joys and sorrows. I cannot thank enough the unquestioning support

and encouragement of Clif Judy who shaped my life with his dreams and passions.

I am also indebted to the Foster family, especially Jan Foster, who has shown me

unbounded love and support, and brought a great deal of laughter and joy into my

life. I am profoundly grateful for my parents, James and Elizabeth Gibson, who are

sources of love, strength, inspiration, hope, and playfulness. I am also thankful for my

sister, Kathryn Gibson, who is my role model, hero, and close friend. Thanks also to

my grandmother, Beulah Brown, who, with every conversation, says, “I’m so proud

of you”. My deepest thanks and gratitude go to Chris, someone I feel very fortunate

to have in my life. Chris has brought a tremendous amount of support, comfort, joy,

vii



and happiness to my life, and without him this whole process would have been much

more challenging.

There are many people who directly and indirectly helped me along this journey

and I am deeply grateful for all of their support. Had it not been for the many hands

holding me up along the way, this work would not have been possible. Thank you!

viii



Contents

Abstract iii

Acknowledgments v

List of Figures xi

List of Tables xiv

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . 3
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Measurements of Apparent Ultrasonic Backscatter 8
2.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Preparation of specimens . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Acquisition of ultrasonic backscatter data . . . . . . . . . . . 16
2.4.3 Integrated backscatter image formation . . . . . . . . . . . . . 18
2.4.4 Measurement of ultrasonic backscatter from the left-ventricular

and right-ventricular free walls . . . . . . . . . . . . . . . . . . 21
2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 Myofiber Architecture . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2 Comparison of Apparent Integrated Backscatter . . . . . . . 25

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.9 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Measurements of Ultrasonic Attenuation Properties 38
3.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

ix



Contents

3.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Preparation of specimens . . . . . . . . . . . . . . . . . . . . . 42
3.4.2 Acquisition of ultrasonic attenuation data . . . . . . . . . . . 43
3.4.3 Data Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.4 Measurement of attenuation properties from the left ventricular

and right ventricular free walls . . . . . . . . . . . . . . . . . . 49
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 Regional Variation of Attenuation Properties . . . . . . . . . . 51
3.5.2 Comparison of attenuation properties . . . . . . . . . . . . . . 52

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.7 Clinical Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.8 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Ultrasonic Images of Mid-gestational Fetal Hearts 68
4.1 Description of the Images . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Comparison of the Images . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Anomalies Within the Images . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Quantitative Analysis of Cyclic Variation of Myocardial Backscatter 79
5.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.1 Subjects Studied . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.2 Laboratory Tests . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.3 Tissue Characterization Data Acquisition . . . . . . . . . . . . 85
5.4.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7.1 Bayes Classification . . . . . . . . . . . . . . . . . . . . . . . . 100
5.7.2 Receiver Operating Characteristic (ROC) Analysis . . . . . . 102

5.8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Dissertation Summary and Concluding Remarks 111

x



List of Figures

2.1 An image of the custom-designed sectioning tool that was used to cut
thin, flat and parallel slices of the fetal heart. The tool was used by
inserting an agarose encased heart into the barrel of the micrometer.
The micrometer was then placed on top of the cutting tool such that
the encased heart fit closely into the hole of the cutting apparatus.
This close fit prevented slipping or bunching of the heart as the blade
cut through the specimen. The thickness of each slice was determined
by adjusting the depth of the micrometer from one cut to the next. . 14

2.2 Representative short-axis cross-sectional slice of a fetal pig heart. LV=left
ventricle; RV=right ventricle . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 (a) Block diagram illustrating the experimental setup. The data ac-
quisition computer is imbedded in the Tektronix 5052B digital oscil-
loscope. (b) Picture of the experimental setup showing the 50 MHz
transducers position relative to the cut face of the fetal pig heart spec-
imen. At 50 MHz the ultrasonic beam diameter is approximately 60
µm and is considerably smaller than the dimensions of the transducer
casing shown in the image. . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Representative picture of a RF (radio-frequency) backscatter trace and
the corresponding gated region. . . . . . . . . . . . . . . . . . . . . . 19

2.5 Representative integrated backscatter image of a fetal pig heart il-
lustrating the positions of the regions of interest. LV=left ventricle;
RV=right ventricle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Representative integrated backscatter images obtained from three of
the fetal pig heart specimens. LV=left ventricle; RV=right ventricle . 24

2.7 (a) Apparent integrated backscatter image and (b) corresponding his-
tology image (hematoxylin and eosin stain) of the same fetal pig heart.
(c) Magnified histology of the left-ventricular free wall. The area en-
closed by the dotted lines represents that in which the myofibers run
perpendicular to the direction of insonification, which is into the paper
relative to the specimen. LV=left ventricle; RV=right ventricle . . . . 25

xi



List of Figures

2.8 Individual and mean values of the measured backscatter from the
bright bands in the left ventricular and right ventricular myocardium
of the fetal pig heart. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Block diagram illustrating the experimental setup. The 50-MHz trans-
ducer scans the excised heart specimen in a C-scan format. LV=left
ventricle; RV=right ventricle . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 (a) Representative power spectra for a reference signal and specimen
signal at one site. (b) A representative signal loss curve and signal loss
compensated for transmission and reflection effects and the attenuation
effect of water at high frequencies. . . . . . . . . . . . . . . . . . . . . 47

3.3 (a) Representative slope of attenuation image of a fetal pig heart with
bright pixels representing relatively large values for slope of attenua-
tion and dark pixels representing small values for slope of attenuation
(range 0.5 to 2.0 dB/(cm·MHz)). LV=left ventricle; RV=right ventri-
cle (b) An illustration of the bisecting line used for line profile analysis
and locations of the regions of interest in a representative slope of
attenuation image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 (a) Individual and mean ± standard error values (N=15) for the slope
of attenuation coefficient from regions within the ventricular free walls
with perpendicular insonification relative to the predominant myofiber
orientation. (b) The mean and standard error (N=15) of the atten-
uation coefficient at 45 MHz from the left and right ventricular free
walls where insonification is perpendicular to the predominant my-
ofiber orienation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Histology, backscatter, and attenuation images from a representative
fetal pig heart. White represents large apparent integrated backscatter
values in the second image from the left and large values for slope of
attenuation coefficient and attenuation coefficient at 45 MHz in the
two right images, respectively. Black represents small values of ap-
parent integrated backscatter in the second image and small slope of
attenuation coefficient and attenuation coefficient at 45 MHz values in
the two right images. LV=left ventricle; RV=right ventricle . . . . . . 56

xii



List of Figures

3.6 Mean ± standard error values of the apparent integrated backscat-
ter (IBS) and slope of attenuation coefficient with respect to position
within the left ventricular free wall, septal wall, and right ventricular
free wall for 15 fetal pig heart specimens. The open circles represent
average apparent integrated backscatter values and correspond to the
left axes. The average slope of attenuation coefficient values are plot-
ted using triangles and correspond to the right axes. Below the graphs
are illustrations of the locations of the line profiles within the walls of
the fetal pig hearts. LV=left ventricle; RV=right ventricle . . . . . . 57

4.1 Ultrasonic images of fetal pigs 1, 2, and 3 . . . . . . . . . . . . . . . . 73

4.2 Ultrasonic images of fetal pigs 4, 5, and 6 . . . . . . . . . . . . . . . . 74

4.3 Ultrasonic images of fetal pigs 7, 8, and 9 . . . . . . . . . . . . . . . . 75

4.4 Ultrasonic images of fetal pigs 10, 11, and 12 . . . . . . . . . . . . . . 76

4.5 Ultrasonic images of fetal pigs 14, 15, and 16 . . . . . . . . . . . . . . 77

5.1 Relationship between ultrasonic backscatter level (expressed in decibels
[dB]) and mean grayscale value for one specific configuration of the GE
Vivid 7 clinical imaging system. . . . . . . . . . . . . . . . . . . . . . 86

5.2 (a) Image showing a representative region of interest placed in the
posterior wall of the parasternal long-axis view for one subject. RV =
right ventricle LV = left ventricle Ao= aorta (b) Cyclic variation of
myocardial backscatter data from the region of interest shown in Fig-
ure 5.2a and backscatter data from the blood-filled cavity. The vertical
scale illustrates the relative difference in backscatter results and does
not represent an absolute measurement. (c) Average waveform calcu-
lated from the five heart cycles illustrated in Figure 5.2b. The data
are represented as a zero-mean curve and the heart cycle is defined as
starting and ending with end diastole. (d) A model waveform utilized
in the automated analysis of cyclic variation data (Mohr, et al., 1989)
to calculate the magnitude and time delay of the cyclic variation of
myocardial backscatter. The vertical arrow illustrates the magnitude
of cyclic variation, and the normalized time delay is calculated as the
time interval from end diastole to the center of the nadir divided by
the systolic interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xiii



List of Figures

5.3 The averages and standard errors of the magnitude (left panels) and
normalized time delay (right panels) of cyclic variation for the low-
est and highest quartiles in each subject division. The significance of
each cyclic variation parameters was found using a two-tailed unpaired
student t-test. HbA1c = Hemoglobin A1c, HOMA-IR = Homeostasis
model assessment for insulin resistance, TG/HDL-C = Triglyceride to
high density lipoprotein-cholesterol ratio . . . . . . . . . . . . . . . . 93

5.4 The left panels are the mean, and standard deviations of the magni-
tude and normalized time delay of cyclic variation for the lowest and
highest quartiles in each subject division. The right panels are indi-
vidual subject results for the magnitude and normalized time delay
of cyclic variation. In all the graphs, the open circles represent the
32 subjects in the lowest quartile of each subject division while the
squares illustrate the results for the 32 subjects in the highest quar-
tiles. HbA1c = Hemoglobin A1c, HOMA-IR = Homeostasis model
assessment for insulin resistance, TG/HDL-C = Triglyceride to high
density lipoprotein-cholesterol ratio . . . . . . . . . . . . . . . . . . . 94

xiv



List of Tables

5.1 A summary of the laboratory results for the study population. The
column headings represent how the subjects were divided for cyclic
variation analysis and the rows represent a subset of the biological
parameters reported. All values are expressed as a mean ± standard
deviation. The p values were determined using a two-tailed, unpaired
student t-test. HOMA-IR = Homeostasis model assessment for in-
sulin resistance, TG/HDL-C = Triglyceride to high density lipoprotein-
cholesterol ratio, BMI = Body Mass Index, n.s. = not significant . . 91

5.2 A summary of the nonparametric estimate of the area under the Re-
ceiver Operating Characteristic curve (AUC) and the associated stan-
dard errors (St.Err.). The first two rows represent the results when
only magnitude or normalized time delay information is used. The
third row reports the results when the magnitude and time delay re-
sults are combined through Bayes classification. HbA1c = Hemoglobin
A1c, HOMA-IR = Homeostasis model assessment for insulin resistance,
TG/HDL-C = Triglyceride to high density lipoprotein-cholesterol ratio 96

xv



Chapter 1

Introduction

1.1 Background and Motivation

The objective of this Dissertation is to study the physics of ultrasonic waves inci-

dent upon the anisotropic and inhomogeneous muscle of the heart, the myocardium.

Understanding the physical mechanisms underpinning the interaction of sound waves

with complex materials can elucidate information about the structure and compo-

sition in a nondestructive manner. Additionally, analysis of the observed acoustic

parameters can highlight potentially occult anomalies. These ultrasonic techniques

of interrogation are useful in a wide range of applications, and are applied to the

study of the myocardium in this Dissertation.

Ultrasound has been used as a clinical tool to assess heart structure and func-

tion for several decades. The clinical usefulness of this noninvasive approach has

grown with our understanding of the physical mechanisms underlying the interaction

of ultrasonic waves with the myocardium. Laboratory measurements of the speed of

1



1.1 Background and Motivation

sound, attenuation of the ultrasonic signal, and the backscattered ultrasonic energy

have been an ongoing focus of the Washington University Physics Department’s Lab-

oratory for Ultrasonics (Baldwin et al., 2005a,b; Hall et al., 1997; Hoffmeister et al.,

1994, 1995, 1996; Madaras et al., 1988; Mottley and Miller, 1988, 1990; Sosnovik et al.,

2001; Verdonk et al., 1992, 1996; Yang et al., 2006). These qualitative measurements

have been useful in characterizing properties of the myocardium.

Quantitative ultrasonic measurements have enhanced clinical ultrasound by mea-

suring differences between the material properties of normal and diseased hearts.

Numerous studies have shown quantitative differences in the acoustic properties of

hearts with specific pathologies relative to those of normal hearts (Barzilai et al.,

1988, 1990; Feinberg et al., 1996; Holland et al., 2004; Mottley et al., 1984; Perez

et al., 1992, 1995; Wagner et al., 1995). By further understanding the physical mech-

anisms associated with the interaction of ultrasound waves and normal and diseased

soft tissue, one can envision new and novel techniques to enhance the assessment of

a patient’s heart.

This Dissertation is a step to further understanding the physical mechanisms be-

hind the propagation of ultrasonic waves in specific anisotropic and inhomogeneous

materials. This work deals with both laboratory based measurements of ultrasonic

properties in fetal hearts and with clinically based measurements in the adult hearts

of normal subjects and subjects with type 2 diabetes. A long term goal of the stud-

ies reported in this Dissertation is to contribute to the knowledge base that might

ultimately provide improved diagnoses of congenital heart disease and of diabetic

2



1.2 Overview of the Dissertation

cardiomyopathy.

1.2 Overview of the Dissertation

The first portion of the Dissertation focuses on studies of the left and right ven-

tricular myocardium in formalin-fixed fetal hearts using data acquired over 30 to 60

MHz. The aim of this section is to elucidate the similarities and differences between

the structure and composition of left and right sided ventricular myocardium using a

high-frequency ultrasound system. Numerous studies have focused primarily on the

left ventricular myocardium, whereas this work extends that knowledge by comparing

the ultrasonic properties of the right ventricular myocardium to that of the left.

Chapter 2 begins the study of the regional variation of the left and right ventricular

myocardium in mid-gestational fetal pig hearts by analyzing the backscattered energy.

The measurements were performed using a single element transducer centered at 50

MHz, an approach that permitted finer spatial resolution than would be achieved at a

more typical clinical frequency of 5 MHz. Although both ventricles of the developing

fetal heart are exposed to similar pressures, an important determinant of ventricular

properties, the results of this study documented differences in the fiber architecture

and composition between the myocardium of the left and right ventricle in the mid-

gestational fetal hearts.

Chapter 3 continues the study of mid-gestational fetal hearts by measuring the

regional differences in the ultrasonic attenuation properties of the ventricular my-

3



1.2 Overview of the Dissertation

ocardium. In this study the myocardium of the left and right ventricle exhibited

differences in both the attenuation coefficient at mid-bandwidth and the frequency

dependence of the attenuation coefficient (the so-called slope of attenuation). This

study provided further evidence that the structure and composition of the left and

right ventricular myocardium are distinct in fetal hearts at mid-gestation.

Chapter 4 presents images of the apparent integrated backscatter, slope of atten-

uation, and attenuation coefficient at 45 MHz for the midgestational fetal pig hearts

discussed in Chapters 2 and 3. These images help demonstrate the differences be-

tween the left and right ventricular myocardium, and the relationship between the

three ultrasonic measurements.

The second portion of the Dissertation, presented in Chapter 5, is a study of

the left ventricular myocardium in adult human hearts. This work measures acoustic

properties from backscattered ultrasound using a clinical imaging system. Interpreta-

tion of the results of these in vivo studies benefits from knowledge obtained in studies

similar to those presented in the first portion of this Dissertation.

The work presented in Chapter 5 quantifies the systematic variation (cyclic varia-

tion) of myocardial ultrasonic backscatter over the heart cycle in asymptomatic type 2

diabetic patients and in normal control subjects. The study uses Bayes classification

and ROC (Receiver Operator Characteristic) analysis to quantify potential advan-

tages of using a combination of two features of the cyclic variation of myocardial

backscatter over using only one or the other feature to distinguish between groups of

subjects.
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1.2 Overview of the Dissertation

A summary of the Dissertation and closing remarks are presented in Chapter 6.
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Chapter 2

Measurements of Apparent

Ultrasonic Backscatter

2.1 Preface

This chapter is based on the peer-reviewed journal article Regional Variation in

the Measured Apparent Ultrasonic Backscatter of Mid-Gestational Fetal Pig Hearts

written by Allyson A. Gibson, Gautam K. Singh, Agnieszka Kulikowska, Kirk D.

Wallace, Joseph J. Hoffman, Achiau Ludomirsky, Mark R. Holland and published in

Ultrasound in Medicine & Biology, Vol. 33, No. 12, pp. 1955-1962, 2007
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2.2 Abstract

2.2 Abstract

The goal of this study was to characterize and compare regional backscatter prop-

erties of fetal hearts through measurements of the apparent integrated backscat-

ter. Sixteen excised, formalin-fixed fetal pig hearts, representing an estimated 53-

63 days of gestation, were investigated. Spatially localized measurements of inte-

grated backscatter from these specimens were acquired using a 50-MHz single-element

transducer. The apparent integrated backscatter measurements demonstrate differ-

ent patterns of backscatter from the myocardium of the right ventricle compared to

that of the left ventricle. These backscatter measurements appear to be consistent

with the anisotropy of the fiber orientation observed in histological assessment of

the same specimens. For each of the 16 hearts, the apparent integrated backscatter

from the right ventricular myocardium was larger than that from the left ventricu-

lar myocardium exhibiting mean apparent backscatter values of -35.9 ± 2.0 dB and

-40.1 ± 1.9 dB (mean ± standard deviation; N = 16; p <0.001), respectively. This

study suggests that the intrinsic ultrasonic properties of the left and right ventricular

myocardium are distinct in fetal pig hearts at mid-gestation.

2.3 Introduction

Although previous studies have demonstrated significant regional differences in

measured ultrasonic backscatter in mature hearts (Hoyt et al., 1984), relatively little

is known regarding these differences in the fetal heart. Because both ventricles of
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2.3 Introduction

the fetal heart are exposed to similar prenatal loading conditions, which represent

an important determinant of ventricular geometry, one might anticipate that the

myoarchitecture of the two ventricles would develop similarly. However, embryologic

studies suggest that the left- and right-ventricular myocardium develop differently

which leads to a particular interest in quantifying the intrinsic differences in the left

and right ventricular myoarchitecture and properties of the developing heart (Perles

et al., 2007; Salih et al., 2004; Smolich et al., 1989). The objective of this investigation

was to characterize and compare the relative regional ultrasonic backscatter properties

of the myocardium in the left-ventricular and right-ventricular free walls in fetal

hearts. Our approach was to investigate excised formalin-fixed, mid-gestational fetal

pig heart specimens by measuring the backscattered ultrasound from a thin slice of

the heart. Mid-gestational fetal pig hearts were chosen for this study because the

gross structural formation of the heart is completed by this time point, and fetal pigs

of this gestational age are similar in gestational age to human fetuses referred for fetal

echocardiography at our clinic at St. Louis Children’s Hospital. The measurements

performed in this study focus on the relative left-ventricular and right-ventricular

myocardium backscatter properties of the heart. Although formalin fixation can affect

the absolute level of apparent backscatter (Baldwin et al., 2005d; Hall et al., 2000a;

Takiuchi et al., 2001) the relative differences are expected to be largely preserved.

Previous studies from our laboratory and others have demonstrated the relation-

ship between measured ultrasonic parameters (ultrasonic attenuation, backscatter,

speed of sound) and the inherent properties of myocardial tissue. Both the nature of
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2.3 Introduction

the intrinsic material properties (e.g., the types and concentrations of proteins present

resulting in specific intracellular and extracellular viscoelastic properties) as well as

the geometrical properties (structural morphology) of the myocardium combine to

produce the observed ultrasonic parameters (Hall et al., 2000b,c; Kumar and Mott-

ley, 1994; Madaras et al., 1988; Mottley and Miller, 1988; O’Brien et al., 1995b,a; Rose

et al., 1995; Wickline et al., 1985). For example, several studies have demonstrated

that an increase in both the measured ultrasonic attenuation and backscatter correlate

well with increased collagen concentration in the myocardium (Davison et al., 1995;

Hall et al., 1997, 2000c; Hoyt et al., 1984, 1985; Mimbs et al., 1980, 1981; Nguyen

et al., 2001; O’Donnell et al., 1981; Perez et al., 1984; Pohlhammer and O’Brien, 1981;

Wear et al., 1989; Wickline et al., 1992; Wong et al., 1992, 1993).

In addition, effects of the structural properties of myocardium, such as myofiber

orientation, on measured ultrasonic parameters are manifest in the angle-of-insonification-

dependent (anisotropic) nature of the myocardium. These anisotropic properties have

been observed in measurements of ultrasonic backscatter, attenuation, and speed of

sound (Baldwin et al., 2005a,b; Hoffmeister et al., 1994, 1995, 1996; Madaras et al.,

1988; Mottley and Miller, 1988, 1990; Sosnovik et al., 2001; Verdonk et al., 1992,

1996; Yang et al., 2006). These studies demonstrate that the ultrasonic backscatter

and longitudinal velocity are significantly larger and the attenuation properties are

significantly smaller for insonification perpendicular to the myofibers compared with

the corresponding values for parallel insonification.

Because the intrinsic material properties and the myofiber orientation contribute
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to the observed ultrasonic attenuation and backscatter properties (Baldwin et al.,

2005a,b; Hall et al., 2000b,c; Hoffmeister et al., 1995; Kumar and Mottley, 1994;

Madaras et al., 1988; Mottley and Miller, 1988, 1990; O’Brien et al., 1995b,a; Rose

et al., 1995; Sosnovik et al., 2001; Verdonk et al., 1996; Wickline et al., 1985), echocar-

diographic images reflect these intrinsic properties of the heart. Studies by our labo-

ratory and others have demonstrated the profound effects that the intrinsic properties

of myocardial tissue have on two-dimensional echocardiographic images (Aygen and

Popp, 1987; Holland et al., 1998, 2005; Recchia et al., 1993; Sosnovik et al., 2001).

These studies suggest that measurements of the backscatter from myocardium may

provide a method to assess differences in the intrinsic properties of the myocardium

as the heart develops.

2.4 Methods

2.4.1 Preparation of specimens

A total of 16 age-bracketed, formalin-fixed fetal pigs were obtained from Nebraska

Scientific Inc. (Omaha, NE, USA) in compliance with approved procedures estab-

lished by the Animal Studies Committee at Washington University in St. Louis. The

heart and humerus bone were harvested from each of the fetal pigs and placed in 10%

formalin solution. Potential effects of formalin fixation on the tissue and resulting

measurements are addressed in Section 2.7, (Limitations). After extraction of the fetal

heart, the pericardial sac was removed, and the exterior of the left ventricular free wall
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was identified and marked with black India ink (Bradley Products Inc., Bloomington,

MA, USA) to aid in ventricular identification after slicing. Because the transmural

thickness of the ventricular myocardium in the fetal heart appears similar in the left

and right side, and the typical morphological appearance of the left and right ventri-

cles in a short axis view (circular left ventricle and a crescent-shaped right ventricle)

is not always readily apparent, marking the left side of the heart prior to cutting

proved useful. After marking the heart, the atria were removed from the specimen

by cutting at a position basal to the atrial-ventricular valve plane. The remaining

ventricular section of the heart was glued to a plastic plug and encased in agarose

(Sigma-Aldrich Co., St. Louis, MO, USA). Surrounding the heart with agarose pro-

vided a uniform cylindrical exterior that closely fit into a custom-designed sectioning

tool pictured in Figure 2.1. The sectioning tool was used to cut thin (approximately

1.0 mm) flat and parallel slices of the fetal heart. Each heart was sectioned in a

transverse plane, perpendicular to the long axis of the heart, at the mid-papillary

level to provide short-axis cross-sectional slices. Figure 2.2 shows a representative

short-axis cross-sectional slice of a fetal pig heart used in this investigation.

In addition to the fetal pig heart, the humerus bone was excised to permit es-

timation of the gestational age of the pig fetus. A linear relationship between the

diaphyseal length of the humerus bone and the gestational age of the pig fetus was

described by Wrathall et al. (1974). In our study the estimated gestational ages of

the 16 fetal pigs ranged from 53 to 63 days with a mean of 57 days, representing

approximately half of the gestational age of a pig (full gestation of a pig is ∼120
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Cutting Apparatus

Micrometer

Slicing Blade

Figure 2.1: An image of the custom-designed sectioning tool that was used to cut
thin, flat and parallel slices of the fetal heart. The tool was used by inserting an
agarose encased heart into the barrel of the micrometer. The micrometer was then
placed on top of the cutting tool such that the encased heart fit closely into the hole
of the cutting apparatus. This close fit prevented slipping or bunching of the heart
as the blade cut through the specimen. The thickness of each slice was determined
by adjusting the depth of the micrometer from one cut to the next.
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1 cm

LV

RV

Figure 2.2: Representative short-axis cross-sectional slice of a fetal pig heart.
LV=left ventricle; RV=right ventricle
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days).

2.4.2 Acquisition of ultrasonic backscatter data

The approximately 1.0 mm-thick fetal heart specimens were mounted on a stainless-

steel plate and placed in a custom-designed and constructed water tank. Backscat-

tered ultrasonic signals were obtained from the specimens using a broadband, 50-

MHz center frequency, single-element transducer (6.35 mm diameter, 12.7 mm focus,

Panametrics V390; Panametrics Inc., Waltham, MA, USA) with 6 dB bandwidth of

30-60 MHz. The transducer’s angle of insonification was perpendicular to the cut face

of the myocardial slice. Figure 2.3b is an image of the experimental setup showing

the orientation of the transducer with respect to the myocardial slice. It should be

noted that at 50 MHz the ultrasonic beam diameter is approximately 60 µm, and

is significantly smaller than the diameter of the transducer casing seen in the im-

age. The transducer was used in pulse-echo mode, and translated in a C-scan over

the entire specimen using a Newport XPS motion controller (Newport Corp., Moun-

tain View, CA, USA) in 50 µm steps. The vertical position of the transducer was

adjusted to place the focal distance 0.25 mm below the face of the tissue. In our exper-

imental setup, a Panametrics 5900 pulser/receiver was used to trigger a Panametrics

5627RPP-1 remote pulser/preamplifier, which sent a pulse to the Panametrics V390

50-MHz transducer. The backscattered signal from each interrogated site of the my-

ocardial specimen was pre-amplified by the Panametrics 5627RPP-1 remote pulser/

preamplifier and sent to the Panametrics 5900 pulser/receiver. The amplified output
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(a)

(b)

Figure 2.3: (a) Block diagram illustrating the experimental setup. The data acqui-
sition computer is imbedded in the Tektronix 5052B digital oscilloscope. (b) Picture
of the experimental setup showing the 50 MHz transducers position relative to the cut
face of the fetal pig heart specimen. At 50 MHz the ultrasonic beam diameter is ap-
proximately 60 µm and is considerably smaller than the dimensions of the transducer
casing shown in the image.
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from the pulser/receiver was digitized at 625 megasamples-per-second, signal aver-

aged 256 times, and stored as a 2500-point record using a Tektronix 5052B digital

oscilloscope with 8-bit digitization (Tektronix Inc., Beaverton, OR, USA). Figure 2.3a

shows a block diagram illustrating the experimental setup for these measurements.

In addition to the tissue backscatter traces, specular reflections from the stainless-

steel plate were acquired to utilize as reference signals. The reference signals used the

same acquisition parameters as the backscatter traces with the exception of where the

transducer was focused and the input attenuation. In the backscatter traces the focal

distance of the ultrasonic beam was placed below the face of the tissue; whereas, the

ultrasonic beam was focused on the front wall of the steel plate for the reference traces.

Electronic gain and attenuation were adjusted for both the reference and backscatter

signals to utilize the full dynamic range of the measurement system. These gain and

attenuation settings were compensated for in subsequent analyses of the data.

2.4.3 Integrated backscatter image formation

For each backscattered radio-frequency (RF) signal obtained from the specimen,

a 0.67 µs (0.50 mm) segment of the backscattered ultrasound waveform was gated

using a Tukey window. Figure 2.4 shows a representative RF trace from one site with

the corresponding gated region indicated. A 0.67 µs gate length was chosen because

it includes half the thickness of the 1.0 mm slice. A Tukey window was selected to

minimize gating artifacts. Because integrated backscatter values (frequency averaged)

were used to quantify the level of apparent backscatter the choice of window should
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Figure 2.4: Representative picture of a RF (radio-frequency) backscatter trace and
the corresponding gated region.
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not have significantly affected the results of the study. The start of the windowing

gate was placed 0.33 µs (0.25 mm) behind the front wall of the tissue such that

scattering from the center of the tissue was interrogated, and the specular reflection

from the front wall of the specimen was avoided. The backscattered power spectrum

from the gated region was determined using a fast Fourier transform and expressed

in decibels (dB).

For each myocardial site interrogated, the apparent backscatter transfer function

was determined by subtracting the reference power spectrum (the specular echo off

of the stainless-steel plate, expressed in dB) from the myocardial backscatter power

spectrum (also expressed in dB) and compensated for differences in the input attenua-

tion or gain from the pulser/receiver between the two data acquisitions. The apparent

integrated backscatter value was determined by averaging the apparent backscatter

transfer function over the useful frequency range from 30 MHz to 60 MHz. Subse-

quently, this average was converted to a grayscale value and displayed as a pixel in

an image. This algorithm was applied to each backscattered RF signal to form an

image of the entire fetal pig heart slice. All the images were displayed over the same

dynamic range of 30 dB so that the 16 fetal hearts could be compared. All data

analyses were performed using Igor Pro (WaveMetrics Inc., Portland, OR, USA) on

a PowerBook G4 (Apple Inc., Cupertino, CA, USA).
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2.4.4 Measurement of ultrasonic backscatter from the left-

ventricular and right-ventricular free walls

To compare the level of backscatter from left-ventricular and right-ventricular

myocardium, measurements were obtained from those regions exhibiting the largest

level of backscatter within the two ventricular walls. These regions were chosen be-

cause they represent areas of perpendicular insonification relative to the predominant

myofiber orientation, as demonstrated by previous studies from our laboratory that

characterized the level of apparent backscatter and fiber orientation, using both high

and low frequencies (Bridal et al., 1993; Hoffmeister et al., 1995; Mottley and Miller,

1988; Sosnovik et al., 2001), as well as the histological measurements described in Sec-

tion 2.5 (Results). By choosing to compare the areas of perpendicular insonification

in both ventricles, the confounding effects of tissue anisotropy on measurements of

apparent integrated backscatter (Hoffmeister et al., 1995; Mottley and Miller, 1988;

Sosnovik et al., 2001) are significantly reduced.

To quantify the level of backscatter from the myocardium of the left and right

ventricles, regions of interest were drawn on each image and analyzed. Figure 2.5

shows a representative integrated backscatter image of one of the fetal pig heart

specimens. The size and placement of the region of interest for measurements of the

level of backscatter from the left- and right-ventricular myocardium are depicted in

the figure.

Each region of interest was centered on a line bisecting the ventricular free walls
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Regions of Interest

LV

RV

Figure 2.5: Representative integrated backscatter image of a fetal pig heart illus-
trating the positions of the regions of interest. LV=left ventricle; RV=right ventricle
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and septum. The dashed line in Figure 2.5 represents this bisecting line. Because

the region of investigation was chosen to represent that in which the myofibers are

perpendicular to the angle of insonification, the regions of interest for each specimen

were drawn to fit within the thinnest transmural bright region and then translated

along the bisecting line. Because the ventricular free walls are curved in opposite

directions with respect to each other, the width of the region of interest was limited

to that which would fit in both ventricular walls.

The size of the region of interest placed in each heart’s bright band was uniform

within each individual heart, but varied between different hearts depending on the

transmural thickness of the bright band. The average area for all the regions of

interests was 0.625 mm2. The regions of interest were always chosen to be small

enough to only cover the band of perpendicular insonification, but large enough to

provide reasonable spatial averaging.

2.5 Results

2.5.1 Myofiber Architecture

The images representing measurements of the apparent integrated backscatter il-

lustrate different patterns of backscatter in the left and right ventricular free walls,

implying distinct ventricular myoarchitecture between the two sides. Within the left-

ventricular free wall, the largest level of backscatter is located in a band within the

mid-myocardium and regions of decreased apparent backscatter are located subepi-
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Fetal Pig 1 Fetal Pig 6 Fetal Pig 8

LV LV
LV

RV RV
RV

Figure 2.6: Representative integrated backscatter images obtained from three of
the fetal pig heart specimens. LV=left ventricle; RV=right ventricle

cardially and subendocardially. The right ventricular free wall shows the largest level

of apparent backscatter in a subepicardial band with less apparent backscatter mea-

sured in the subendocardial region. Figure 2.6 illustrates the apparent backscatter

images obtained from three of the fetal pig specimens. These images are typical of

those obtained from all 16 specimens.

To examine the relationship between the level of apparent backscatter and my-

ofiber orientation, several of the ultrasonically imaged hearts were further sliced and

stained with H&E (hematoxylin and eosin) to visually differentiate microstructure

of the slice. Histological analyses demonstrate that the largest (brightest) regions of

backscatter in the ventricular free walls correspond to those associated with perpen-

dicular insonification relative to the circular myofiber orientation, whereas the less

bright regions represent non-perpendicular insonification. Figure 2.7 shows the ap-

parent integrated backscatter image and corresponding histology images for the same
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LV

RV

(a) (b) (c)

LV

RV

Figure 2.7: (a) Apparent integrated backscatter image and (b) corresponding his-
tology image (hematoxylin and eosin stain) of the same fetal pig heart. (c) Magnified
histology of the left-ventricular free wall. The area enclosed by the dotted lines repre-
sents that in which the myofibers run perpendicular to the direction of insonification,
which is into the paper relative to the specimen. LV=left ventricle; RV=right ventricle

fetal heart specimen. Figure 2.7c is a magnified section of the left-ventricular free

wall in Figure 2.7b. In Figure 2.7c the area between the two dotted lines represents

the region where the myofibers are perpendicular to the direction of insonification

and correspond to the white area in the left-ventricular free wall of Figure 2.7a. The

direction of insonification is into the paper relative to the specimens in Figure 2.7.

2.5.2 Comparison of Apparent Integrated Backscatter

Figure 2.8 displays the results of the measured level of backscatter from the regions

of maximum backscatter (bright bands) in the left-ventricular and right-ventricular
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Right VentricleLeft Ventricle

Mean ± S.D.
p < 0.0001; Paired t-test

Figure 2.8: Individual and mean values of the measured backscatter from the bright
bands in the left ventricular and right ventricular myocardium of the fetal pig heart.
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myocardium for each of the 16 fetal pig hearts along with the corresponding mean

levels. In general, the apparent integrated backscatter for the right ventricular my-

ocardium was larger than that for the left ventricular myocardium (p <0.0001; paired

t-test). The mean apparent integrated backscatter from all of the heart slices was

found to be -35.9 ± 2.0 dB and -40.1 ± 1.9 dB (mean ± standard deviation; N =

16; p <0.001; unpaired two-tailed t-test) from the myocardium of the right ventricle

and left ventricle, respectively, representing a 4.2 dB greater level of backscatter in

the right-ventricular myocardium than the left-ventricular myocardium.

2.6 Discussion

Measurements of the apparent integrated backscatter from the mid-gestational fe-

tal pig hearts examined in this study demonstrate significant transmural variations in

the level of backscatter from the left-ventricular and right-ventricular myocardium.

High-frequency apparent integrated backscatter images typically show the largest

level of apparent integrated backscatter in the mid-myocardium of the left-ventricular

free wall and in the subepicardial region of the right-ventricular free wall. This obser-

vation is consistent with the morphological architecture in the three-dimensional or-

ganization of muscle fibers for prenatal and adult human hearts described by Sanchez-

Quintana et al. (1995). In their study, they found the left-ventricular wall to be ar-

ranged in three layers: a subepicardial (superficial) layer, a middle layer, and a deep

(subendocardial) layer. The superficial and deep layers were present in both ventri-
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cles; however, the middle layer was found only in the left-ventricular myocardium.

Age-related differences were noted in the pattern of myoarchitecture of the superficial

layer, mainly during the fetal period. Our ultrasound measurements appear to be in

agreement with the histological images (Figure 2.7) in which the maximum level of

backscatter occurs in those regions representing perpendicular insonification relative

to the predominant fiber orientation.

Our experimental measurements demonstrate a lesser degree of backscatter from

the brightest region of the left ventricle than from the brightest region of the right

ventricle. This result is reflected both in the mean backscatter level for the 16 pigs and

in general within each fetal pig. This difference in backscattered energy between the

ventricular free walls suggests an intrinsic difference in the myocardium of the left and

right ventricles. Studies by Smolich et al. (1989) demonstrated that morphological

differences exist between the left and right ventricular myocardium during fetal and

postnatal development of sheep hearts. They reported significantly larger myocyte

cross-sectional area, capillary luminal area, and intercapillary distance in the right

ventricle as compared to the left. Additionally they describe the significantly smaller

myocyte density, capillary density, and the myocyte matrix volume density in the

right ventricle compared to the densities of those objects in the left ventricle during

development. Several studies investigating the mechanisms of ultrasonic scattering

have demonstrated the effects of scatterer size, shape, number density, and acoustic

impedance properties on the observed level of backscatter from tissue (Insana et al.,

1990; Lizzi et al., 1983; Rose et al., 1995).
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Furthermore, Salih et al. (2004) showed that the right-ventricular myocardium

contains a higher percentage of collagen than the left-ventricular myocardium. Hoyt et

al. (1984) demonstrated that in mature human and canine hearts both the integrated

backscatter and the amount of collagen present were larger in the right ventricle than

the left ventricle.

The results of our measurements appear consistent with these previous studies de-

scribing significant differences between left and right ventricular characteristics dur-

ing fetal and postnatal development. The existence of a difference in the left and

right ventricular myoarchitecture in the developing heart is an important observation

because both ventricles are exposed to similar prenatal loading conditions, which rep-

resent important determinants of ventricular geometry. This suggests that intrinsic

myocardial properties of the two ventricles may be genetically programmed differ-

ently during the heart development. These high-frequency ultrasonic measurements

of excised fetal hearts permit an assessment of the myoarchitecture and intrinsic prop-

erties of the developing heart and their potential effects on fetal echocardiography.

Although these measurements obtained at 50 MHz are well beyond the frequencies

used clinically and the specific interactions of ultrasound with the myocardium may

be different at higher frequencies compared with lower frequencies, the influence of

the regional variations in acoustic properties discernable at high frequencies may well

affect features observed in clinical fetal echocardiographic imaging and permit an

enhanced interpretation of the in vivo examinations of the fetal heart. Previous stud-

ies from our laboratory suggest many features of myocardial backscatter observed at
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lower frequencies (e.g., anisotropy of backscatter) (Hoffmeister et al., 1995; Mottley

and Miller, 1988) are observed at higher frequencies as well (Bridal et al., 1993; Hall

et al., 2000c). Knowledge of the intrinsic properties of the fetal heart may permit re-

searchers and clinicians to more accurately identify abnormalities of the myocardium

earlier than they are currently identified.

2.7 Limitations

One potential limitation of the current study was that measurements were per-

formed on formalin-fixed specimens at room temperature. This approach was nec-

essary due to the length of time required to acquire the ultrasonic measurements.

Although measurements using fresh tissue would be desirable, these were not feasible

due to concerns regarding tissue degradation over the length of time required for data

acquisition (hours). Although fixation does affect absolute values of ultrasonically

measured quantities (Baldwin et al., 2005d; Hall et al., 2000a; Takiuchi et al., 2001),

the backscatter measurements performed in this study focused on relative properties

of the heart (e.g., left-ventricular and right-ventricular myocardium). These relative

differences are expected to be largely preserved in fixed myocardium.

Another concern is the placement of the region of interest within the myocardium

for intrinsic apparent integrated backscatter measurements. Previously published

literature has shown the dependence of velocity, attenuation, and backscatter on

the angle of insonification relative to the myofiber direction (Baldwin et al., 2005c;
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Hoffmeister et al., 1995; Mottley and Miller, 1988, 1990; Verdonk et al., 1992, 1996;

Yang et al., 2006). We chose to place the regions of interest within the brightest bands

of the ventricular free walls in order to minimize the effects of myocardial anisotropy.

These bright bands represent regions primarily perpendicular to the direction of in-

sonification, as validated by histological analysis. However, it is possible that the

regions of interest may contain a modest range of myofibers whose direction was not

strictly perpendicular to the incoming ultrasonic beam.

2.8 Summary

Results of this study show that the measured apparent integrated backscatter val-

ues demonstrate significant transmural variation in the ventricular myocardium with

the largest levels of apparent integrated backscatter located in the mid-myocardium

of the left-ventricular free wall and within the subepicardium in the right-ventricular

free wall. These different levels of apparent integrated backscatter correspond to the

anisotropy of the fiber orientation seen in histological analyses. Comparisons of sig-

nals backscattered at perpendicular incidence to the myofibers from the ventricular

free walls indicate that the level of backscatter from the right ventricular myocardium

is greater than that of the left ventricular myocardium in fetuses. This result is con-

sistent with previous studies in mature hearts (Hoyt et al., 1984) and with published

studies showing differences in developing hearts (Salih et al., 2004; Smolich et al.,

1989).
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2.9 Acknowledgment

We speculate that the left and right ventricles of the fetal heart follow a biogenet-

ically predetermined trajectory of growth and development, which can be altered by

the intrauterine environment (e.g. nutritional deprivation or excess hormonal expo-

sure). This altered environment can result in an altered trajectory of the developing

heart that can permanently change cardiovascular structure and physiology (Barker,

1995; Lucas, 1991). In this context, our method of evaluation of myoarchitectural

properties may discern prenatally the cardiac changes with consequential long-term

postnatal effects.

Our research suggests that the intrinsic properties of the left and right ventricular

myocardium are distinct in fetal pig hearts at mid-gestation. Apparent integrated

backscatter may offer a method for assessing changes of fetal hearts due to primary

cardiac defects and secondary adaptive changes.
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Chapter 3

Measurements of Ultrasonic

Attenuation Properties

3.1 Preface

This chapter is based on the peer-reviewed journal article Measurements of Ultra-

sonic Attenuation Properties of Mid-Gestational Fetal Pig Hearts written by Allyson

A. Gibson, Gautam K. Singh, Joseph J. Hoffman, Achiau Ludomirsky, Mark R. Hol-

land and published in Ultrasound in Medicine & Biology, Vol. 35, No. 2, pp. 319-328,

2009.
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3.2 Abstract

3.2 Abstract

The objectives of this study were to measure the relative attenuation properties

of the left and right ventricles in fetal pig hearts and to compare the spatial varia-

tion in attenuation measurements with those observed in Chapter 2. Approximately

1.0 mm thick, short-axis slices of excised, formalin-fixed heart were examined from

15 mid-gestational fetal pigs using a 50-MHz single-element transducer. Measure-

ments of the attenuation properties demonstrate regional differences in the left and

right ventricular myocardium that appear consistent with the previously reported

regional differences in apparent integrated backscatter measurements of the same fe-

tal pig hearts. For regions of perpendicular insonification relative to the myofiber

orientation, the right ventricular free wall showed larger values for the slope of the

attenuation coefficient from 30-60 MHz (1.48 ± 0.22 dB/(cm·MHz) [mean ± standard

deviation]) and attenuation coefficient at 45 MHz (46.3 ± 7.3 dB/cm [mean ± SD])

than the left ventricular free wall (1.18 ± 0.24 dB/(cm·MHz) and 37.0 ± 7.9 dB/cm

[mean ± SD]) for slope of attenuation coefficient and attenuation coefficient at 45

MHz, respectively). This attenuation study supports the hypothesis that intrinsic

differences in the myocardium of the left and right ventricles exist in fetal pig hearts

at mid-gestation.
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3.3 Introduction

Echocardiographic assessment of the developing fetal heart is becoming an impor-

tant component of overall prenatal care. The ability to characterize intrinsic features

of the developing myocardium may aid researchers and clinicians in identifying those

fetuses most at risk for developing congenital heart defects, myopathies, or altered

myocardial function due to an adverse intrauterine environment. Observed character-

istics of fetal echocardiographic images are significantly dependent upon the inherent

ultrasonic properties of the developing myocardium. Observed images of the heart

depend upon the combined contributions of both the intrinsic ultrasonic backscatter

and attenuation properties of myocardium (Holland et al., 1998, 2005). These ul-

trasonic properties are largely determined by the detailed viscoelastic and structural

properties of myocardial tissue (Insana et al., 1990; Lizzi et al., 1987; O’Brien et al.,

1995; O’Donnell et al., 1979, 1981; Oelze et al., 2002; Rose et al., 1995). Hence,

a better understanding of the inherent ultrasonic properties of the developing my-

ocardium and their spatial variation may provide new insights into the development

of enhanced echocardiography-based methods to assess heart development and aid in

prenatal diagnoses of altered growth trajectories.

In Chapter 2, we reported measurements of the apparent integrated backscatter

properties of excised mid-gestational fetal pig hearts. This study showed distinct

patterns of backscatter in the left and right ventricular free walls that appeared to

correlate with the ventricular myoarchitecture associated with the two sides. For
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ultrasonic insonficiation perpendicular to the transverse plane of the heart, at the

mid-papillary level, the largest level of backscatter in the left ventricular free wall

was located within the mid-myocardium and regions of decreased apparent backscat-

ter were located subepicardially and subendocardially. The right ventricular free

wall showed the largest level of apparent backscatter in a subepicardial band with

less apparent backscatter measured in the subendocardial region. Histological analy-

ses of the ultrasonically imaged fetal pig hearts demonstrated the regions of largest

backscatter in the ventricular free walls were areas corresponding to perpendicular

insonification relative to the circular myofiber orientation. Regions of the ventricular

free wall where the predominant myofiber direction was not perpendicular to the ul-

trasonic beam exhibited smaller levels of backscatter. Furthermore, for those regions

of perpendicular insonification relative to the myofiber orientation, it was seen that

the level of apparent integrated backscatter for the right ventricular myocardium was

larger than that for the left ventricular myocardium. The objectives of the study re-

ported in this chapter are to extend the ultrasonic characterization of fetal hearts by

measuring the relative attenuation properties of the fetal myocardium and to compare

these attenuation measurements with the apparent backscatter measurements.

Our approach was to investigate excised formalin-fixed, mid-gestational fetal pig

heart specimens by measuring the ultrasonic properties from a thin slice of the heart.

Mid-gestational fetal pig hearts were chosen for this study because the gross structural

formation of the heart is complete by this time point, and fetal pigs of this gestational

age are similar in gestational age to human fetuses referred for routine diagnostic fetal
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echocardiographic evaluation at fetal cardiology clinics of other institutions and our

center at St. Louis Children’s Hospital. The measurements performed in this study

focus on the relative attenuation properties of the left ventricular and right ventricular

myocardium. Although formalin fixation can affect the absolute level of attenuation

and backscatter parameters (Baldwin et al., 2005b; Bamber et al., 1979; Hall et al.,

2000a; Takiuchi et al., 2001; van der Steen et al., 1991) the relative differences should

be largely preserved.

3.4 Methods

3.4.1 Preparation of specimens

Fifteen mid-gestational, formalin-fixed fetal pigs were obtained from Nebraska Sci-

entific Inc. (Omaha, NE, USA) in compliance with approved procedures established

by the Animal Studies Committee at Washington University in St. Louis. The heart

and humerus bone were harvested from each of the fetal pigs and placed in 10% forma-

lin solution. Thin (approximately 1.0 mm) flat and parallel short-axis cross-sectional

specimens of the fetal hearts, representing a transverse plane perpendicular to the

long axis of the heart at the mid-papillary level, were prepared using a previously

described method in Section 2.4.1 of Chapter 2. The gestational age of each fetal

pig was estimated from the length of the humerus bone using a previously described

approach (Wrathall et al., 1974). In our study the estimated age of the 15 fetal pigs

was 57 ± 3 days (mean ± standard deviation), representing approximately half of the

42



3.4 Methods

gestational age of a pig (full gestation of a pig is ∼120 days).

3.4.2 Acquisition of ultrasonic attenuation data

Measurements of the ultrasonic attenuation properties of the excised fetal heart

specimens were obtained using a shadowed-reflector method (Ophir et al., 1984; Ver-

donk et al., 1996). In this approach, the approximately 1.0 mm-thick fetal heart

specimens were mounted on a stainless-steel plate and placed in a custom-designed

and constructed water tank. A broadband, 50-MHz center frequency, single-element

transducer (6.35 mm diameter, 12.7 mm focus, Panametrics V390; Panametrics Inc.,

Waltham, MA, USA) with a nominal 60 µm beam width was used to insonify the

specimens and measure the specular reflection from the shadowed surface of the

stainless-steel plate. The angle of insonification was perpendicular to the cut face

of the myocardial slice such that the ultrasonic wave propagated through the entire

thickness of each specimen twice. Figure 3.1 shows a block diagram illustrating the

experimental setup and the orientation of the transducer with respect to the my-

ocardial slice. The transducer was used in pulse-echo mode, and data were acquired

over the entire specimen, by translating the transmitting /receiving transducer in a

C-scan pattern using a Newport XPS motion controller (Newport Corp., Mountain

View, CA, USA) in 50 µm steps. The vertical position of the transducer was adjusted

to place the focus at the front face of the stainless-steel plate. A Panametrics 5900

pulser /receiver was used in conjunction with a Panametrics 5627RPP-1 remote pulser

/preamplifier to drive the transmit of the Panametrics V390 50-MHz transducer and
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Figure 3.1: Block diagram illustrating the experimental setup. The 50-MHz trans-
ducer scans the excised heart specimen in a C-scan format. LV=left ventricle;
RV=right ventricle

preamplify the reflected signal from the surface of the shadowed stainless-steel plate.

The shadowed reflector signal from each interrogated myocardial site was digitized

at 625 megasamples-per-second, signal averaged 64 times, and stored as a 2500-point

record using a Tektronix 5052B digital oscilloscope with 8-bit digitization (Tektronix

Inc., Beaverton, OR, USA). In addition to the tissue-shadowed reflected signals, un-

shadowed specular reflections from the stainless-steel plate were acquired as reference

signals using the same acquisition parameters.
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3.4.3 Data Analyses

Each radio-frequency (RF) signal acquired was gated using a 0.67 µs long Tukey

window centered on the reflection off the stainless-steel plate. Contributions to the

measured signal arising from myocardial backscatter within the gate were small com-

pared to the specularly-reflected signal from the stainless-steel plate and did not

significantly affect the measurements. At each site, the power spectrum was calcu-

lated from the gated waveform using a fast Fourier transform and the same algorithm

was performed on the water-path-only reference signal from the steel plate.

The power spectrum Preference(f) of the received reference signal can be expressed

as

Preference(f) = P0(f)·E0(f)2 ·(Dhost(f))·[exp(−αhost(f)·2L)]2 ·(RIntensity
host→reflector) (3.1)

where P0(f) is the transmitted power spectrum, E0(f) is the frequency response

of the transducer and associated electronics, Dhost(f) is the diffraction effects in the

host medium (water), αhost(f) is the frequency dependent attenuation coefficient of

the water, L represents the distance from the transducer to the stainless-steel plate,

and R is the intensity reflection coefficient at the surface of the stainless-steel reflector.

Similarly the received power spectrum, Pspecimen(f) of the reflector shadowed by the
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specimen can be written as

Pspecimen(f) = P0(f) · E0(f)2 · (Dspecimen(f))

· [exp(−αhost(f) · 2(L− l))]2 · [exp(−αspecimen(f) · 2l]2

· (T Intensity
host→specimen) · (RIntensity

host→reflector) · (T
Intensity
specimen→host) (3.2)

in which Dspecimen(f) is the diffraction effects in the path including the host and

specimen, l represents the specimen thickness, αspecimen(f) is the frequency dependent

attenuation coefficient of the specimen, and T represents the intensity transmission

coefficients at the interface between the host medium and specimen. Figure 3.2a

shows representative logarithmic power spectra corresponding to a reference signal

and specimen signal for one site within the specimen.

A ratio of the linear reference power spectrum (Equation 3.1) and linear speci-

men power spectrum (Equation 3.2) is then used to calculate the total signal loss

(TSL) and compensate for the frequency response of the transducer and associated

electronics.

TSL =
Preference(f)

Pspecimen(f)
= [exp(αspecimen(f)− αhost(f)) · 2l]2

·

[
RIntensity

host→reflector

(T Intensity
host→specimen) · (RIntensity

specimen→reflector) · (T
Intensity
specimen→host)

]
(3.3)

The total signal loss has contributions arising from the reflection and transmis-

sion losses at the water, tissue and stainless-steel interfaces as well as the losses

associated with the intrinsic attenuation properties of myocardial tissue. The ef-

fects of diffraction are not explicitly stated in the expression for the total signal loss
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Signal Loss

Compensated
Signal Loss

Reference

Specimen
(1 site)

Representative Signals at 1 Site

(a)

(b)

Figure 3.2: (a) Representative power spectra for a reference signal and specimen
signal at one site. (b) A representative signal loss curve and signal loss compensated
for transmission and reflection effects and the attenuation effect of water at high
frequencies.

47



3.4 Methods

because of the similarity of the velocity of sound in water and myocardium. Further-

more, because the experiment is performed at 50 MHz, the attenuation coefficient

of water, the host medium, cannot be neglected. At the experimental temperature

of 24◦C, the frequency dependent attenuation coefficient of water was taken to be

αhost(f) = 0.00022 · f 2(cm−1MHz−2) where f is the frequency in MHz (AIUM, 1992).

By rearranging Equation 3.3 and converting to logarithmic units, the compensated

signal loss is written as

αspecimen,dB(f) · 2l = 10log(Preference)− 10log(Pspecimen) + αhost,dB(f) · 2l

− 10log

[
RIntensity

host→reflector

(T Intensity
host→specimen) · (RIntensity

specimen→reflector) · (T
Intensity
specimen→host)

]
(3.4)

where αspecimen,dB(f) and αhost,dB(f) are expressed in units of dB/cm and the

signal loss due to water (host) is added to the reflection and transmission losses.

The reflection and transmission coefficients were calculated based on the acoustic

impedance values (MKS units) of stainless steel (45.4 MRayl), water (1.46 MRayl),

and fixed myocardium (1.67 MRayl) (Baldwin et al., 2005a; Yang et al., 2006). The

value for the acoustic impedance of myocardium was derived from density and speed

of sound measurements of fixed ovine myocardium at lower frequencies. However,

we anticipate the potential difference in the acoustic impedance for the two species

and two frequency ranges should have minimal effects on the reported results. Figure

3.2b displays representative total signal loss and compensated signal loss curves for

one site. After these compensations were applied to the measured signal loss, the

attenuation coefficient as a function of frequency was determined by dividing by twice
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the thickness of the tissue. The tissue thickness was determined with the micrometer

that was mounted on the custom-designed cutting tool shown in Figure 2.1.

The compensated attenuation coefficient was further analyzed to determine the

attenuation coefficient at a specific frequency and the frequency dependence of the

attenuation coefficient over the bandwidth of the transducer. A line was fit to the

compensated attenuation coefficient data over the useful 6 dB bandwidth of 30 MHz

to 60 MHz. From this best-fit line the slope of attenuation coefficient and attenuation

coefficient at 45 MHz were recorded for each site interrogated. This algorithm was

applied to every shadowed reflector RF signal obtained to form images of the entire

fetal pig heart slice. Images of the attenuation properties were created by mapping

the attenuation measurements to grayscale values and displaying them as pixels in

either a slope of attenuation coefficient from 30-60 MHz image or an attenuation

coefficient at 45 MHz image. Figure 3.3a displays a representative slope of attenuation

image for one of the fetal pig hearts. All data analysis was performed using Igor Pro

(WaveMetrics Inc., Portland, OR, USA) on a PowerBook G4 (Apple Inc., Cupertino,

CA, USA).

3.4.4 Measurement of attenuation properties from the left

ventricular and right ventricular free walls

To compare the attenuation properties of the left ventricular myocardium with

those of the right, measurements were obtained from regions of perpendicular insoni-
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Figure 3.3: (a) Representative slope of attenuation image of a fetal pig heart with
bright pixels representing relatively large values for slope of attenuation and dark pix-
els representing small values for slope of attenuation (range 0.5 to 2.0 dB/(cm·MHz)).
LV=left ventricle; RV=right ventricle (b) An illustration of the bisecting line used for
line profile analysis and locations of the regions of interest in a representative slope
of attenuation image.

fication relative to the predominant myofiber orientation based on previous analyses

of the backscatter data in Chapter 2. These specific regions of interest were chosen

to reduce the confounding effects of tissue anisotropy on the ultrasonic measurements

and enable assessment of other intrinsic properties of the tissue. Figure 3.3b illus-

trates the placement of the regions of interest on a representative slope of attenuation

image.

The regions of interest used for analyses in each attenuation image were similar in
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size, shape, and placement as those regions used in Chapter 2. Each region of interest

was centered on a line bisecting the ventricular free walls and septum. The size of

the region of interest was uniform within each individual heart, but varied between

different hearts depending on the transmural dimension of the regions of perpendicular

insonification, as validated by histology. The average area for the regions of interest

was 0.533 mm2. The regions were always chosen to be small enough to cover only the

band of perpendicular insonification, but large enough to provide reasonable spatial

averaging of measured values. Because the fetal hearts were not repositioned between

acquisitions of backscatter and attenuation data, each region of interest was drawn

on the backscatter images and copied onto the attenuation images to ensure the same

myocardial regions were compared for each heart.

3.5 Results

3.5.1 Regional Variation of Attenuation Properties

Parametric images generated from measurements of the slope of the attenuation

coefficient from 30-60 MHz and attenuation coefficient at 45 MHz illustrate distinct

patterns of attenuation in the left and right ventricular myocardium for all 15 spec-

imens investigated. These spatial variations in attenuation properties are consistent

with those reported in Chapter 2 for apparent integrated backscatter values and are

further examined in the Discussion section of this chapter (Section 3.6). The attenu-

ation images show distinctly different patterns of values in the left and right ventricu-
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lar myocardium implying distinct ventricular myoarchitecture and properties between

the two sides. In these images the darkest levels, representing relatively small atten-

uation coefficient or small slope of attenuation coefficient values, are located in the

mid-myocardium of left ventricles and brighter regions (higher attenuation coefficient

or slope of attenuation coefficient) are located in the subepicardium and subendo-

cardium. Values range from approximately 0.5 dB/(cm·MHz) to 1.5 dB/(cm·MHz)

for slope of attenuation coefficient (20 to 60 dB/cm for the attenuation coefficient at

45 MHz) in this region. In the right ventricular myocardium the regions with lower

attenuation values were positioned more subepicardially with regions of higher atten-

uation values on the endocardial side of the ventricular free wall. Right ventricular

values ranged from 1.0 dB/(cm·MHz) to 2.5 dB/(cm·MHz) for slope of attenuation

coefficient and 40 to 70 dB/cm for the attenuation coefficient at 45 MHz in this re-

gion. Figure 3.3 shows representative patterns of attenuation for the left and right

ventricular myocardium for one of the fetal hearts.

3.5.2 Comparison of attenuation properties

In general, the right ventricular myocardium of each ultrasonic attenuation image

exhibits larger values of the slope of attenuation coefficient and the attenuation coef-

ficient at 45 MHz than the left ventricular myocardium. Figure 3.4 shows the results

of attenuation measurements from the left and right ventricular myocardium for re-

gions of perpendicular insonification relative to the myofibers. This figure depicts a)

measurements of the slope of attenuation coefficient from 30-60 MHz and b) the atten-
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Slope of Attenuation Coeff. (dB/(cm•MHz))

Attenuation Coeff. at 45 MHz (dB/cm)
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p < 0.0001
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Mean ± Std Err

Mean ± Std Err

Figure 3.4: (a) Individual and mean ± standard error values (N=15) for the slope
of attenuation coefficient from regions within the ventricular free walls with perpen-
dicular insonification relative to the predominant myofiber orientation. (b) The mean
and standard error (N=15) of the attenuation coefficient at 45 MHz from the left and
right ventricular free walls where insonification is perpendicular to the predominant
myofiber orienation.

53



3.6 Discussion

uation coefficient at 45 MHz for the 15 fetal pig hearts along with the corresponding

mean levels. In both sets of measurements, the right ventricular myocardium yields

significantly larger values than the left ventricular myocardium, both for paired anal-

yses within each specimen (p <0.0001; paired t-test) as well as overall (p <0.005;

unpaired t-test; N=15). Specifically, the mean slope of attenuation coefficient over

the experimental bandwidth was 1.48 ± 0.22 and 1.18 ± 0.24 dB/(cm·MHz) (mean

± standard deviation; N = 15; p <0.005; unpaired t-test) from the myocardium of

the right ventricle and left ventricle, respectively. The mean attenuation coefficient at

45 MHz was 46.3 ± 7.3 dB/cm for the right ventricular myocardium and 37.0 ± 7.9

dB/cm for the left ventricular myocardium (mean ± standard deviation; N = 15; p

<0.005; unpaired t-test) showing a 9.3 dB/cm difference between the two ventricles.

3.6 Discussion

Unlike mature adult hearts, both ventricles of fetal hearts are exposed to similar

pressures that represent an important determinant of ventricular geometry. Despite

the similar prenatal loading conditions, previous embryologic studies suggest the left

and right ventricular myocardium develop differently (Salih et al., 2004; Sanchez-

Quintana et al., 1995; Smolich et al., 1989). These developmental differences lead to

particular interest in quantifying the intrinsic differences in the left and right ven-

tricular myoarchitecture and properties of the developing heart. Because the intrin-

sic composition and myofiber orientation of the heart can affect measured ultrasonic
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properties and hence fetal echocardiographic imaging, our aim is to analyze the ultra-

sonic attenuation parameters and compare these to the reported backscatter results,

as a means of characterizing the fetal myocardium.

High frequency analysis of the ventricular myocardium shows transmural vari-

ations in the attenuation properties of the heart that appear consistent with the

variations observed in the backscatter data in Chapter 2. Grayscale images of the

histology, apparent integrated backscatter values, slope of attenuation coefficient val-

ues, and attenuation coefficient at 45 MHz values are shown in Figure 3.5 for a

representative fetal pig heart specimen. Both the backscatter and attenuation images

display bands within the mid-myocardium of the left ventricular free wall and the

subepicardial area of the right ventricular free wall that correspond to insonification

perpendicular to the predominant myofiber orientation as validated by histology.

The three panels in Figure 3.6 depict mean transmural line profiles of the apparent

integrated backscatter values and slope of attenuation coefficient values for the left

ventricular free wall, septal wall, and right ventricular free wall, as well as a pictorial

representation of the approximate location of each line profile for each heart investi-

gated. The line profiles for each heart wall were generated by plotting the measured

backscatter or attenuation values as a function of the percentage of wall thickness.

Results from each specimen were averaged to produce the mean line profiles illus-

trated. The line profile data represents that corresponding to the bisecting line for

each specimen as indicated in Figure 3.3b. The nature of the transmural line profiles

depicted in Figure 3.6 appears consistent with what would be anticipated based on
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Figure 3.5: Histology, backscatter, and attenuation images from a representative
fetal pig heart. White represents large apparent integrated backscatter values in
the second image from the left and large values for slope of attenuation coefficient
and attenuation coefficient at 45 MHz in the two right images, respectively. Black
represents small values of apparent integrated backscatter in the second image and
small slope of attenuation coefficient and attenuation coefficient at 45 MHz values in
the two right images. LV=left ventricle; RV=right ventricle
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Figure 3.6: Mean ± standard error values of the apparent integrated backscatter
(IBS) and slope of attenuation coefficient with respect to position within the left
ventricular free wall, septal wall, and right ventricular free wall for 15 fetal pig heart
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LV=left ventricle; RV=right ventricle
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previously published studies examining the effects of anisotropy on ultrasonic param-

eters (Baldwin et al., 2006; Hall et al., 1997; Hoffmeister et al., 1995; Kumar and

Mottley, 1994; Madaras et al., 1988; Mottley and Miller, 1988, 1990; Sosnovik et al.,

2001; Verdonk et al., 1996). Specifically, these studies demonstrated that maximum

values of apparent backscatter with minimum levels of attenuation are associated with

perpendicular insonification relative to the myofibers whereas, for non-perpendicular

insonification larger levels of attenuation and smaller levels of apparent backscatter

are observed. The measured line profiles demonstrate that the maximum apparent

integrated backscatter values and slope of attenuation coefficient values are larger in

the right ventricular free wall than the corresponding values in the left ventricular

free wall.

Comparison of the values in these line profiles with the mean values for the slope

of attenuation coefficient depicted in Figure 3.4 and the backscatter results reported

in Chapter 2 demonstrate slight differences. This is a result of averaging the line

profiles from the 15 individual hearts, each exhibiting slight variations in transmural

myofiber orientation. Hence, the absolute ultrasonic values are somewhat muted by

the influence of varying fiber orientation, and the detailed shape of the transmural line

profiles may be influenced as well. On average these observed transmural variations

of the acoustic properties of the left and right ventricular myocardium are consistent

with previously published fiber architecture data. Sanchez-Quintanta et al. (1995)

describe architecture of three layers (subepicardial, middle, subendocardial) in the

left ventricular myocardium and a right ventricular fiber architecture consisting of
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only two layers (subendocardial, subepicardial) for the prenatal and adult human

hearts.

Additional insights regarding the intrinsic properties of fetal myocardium can be

obtained by further analyses of those regions of perpendicular insonification within

the ventricular free walls. A comparison of the ultrasonic measurements in the left

and right ventricular regions show both the attenuation coefficient (and its frequency

dependence) and the backscatter levels are larger in the right ventricular myocardium

than in the left ventricular myocardium. Because the results from these regions (per-

pendicular insonification) diminish the effects of fiber orientation, these differences

may imply compositional differences between the two ventricles. This observation

is consistent with previously published data from mature hearts that demonstrate

higher collagen content in the right ventricular myocardium compared to the my-

ocardium of the left ventricle (Hoyt et al., 1984, 1985). These studies also showed

that an increase in myocardial collagen concentration correlates with an increase in

both the measured ultrasonic attenuation and backscatter (Hall et al., 2000b; Hoyt

et al., 1984, 1985; Mimbs et al., 1980, 1981; Nguyen et al., 2001; O’Donnell et al.,

1979, 1981; Perez et al., 1984; Pohlhammer and O’Brien, 1981; Wear et al., 1989;

Wong et al., 1993).
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3.7 Clinical Implications

The results of these ultrasonic measurements of excised fetal hearts permit an

assessment of the myoarchitecture and intrinsic properties of the developing heart.

Although these measurements obtained at 50 MHz are well beyond the frequencies

used clinically, the influence of the regional variations in acoustic properties discern-

able at high frequencies may affect features observed in clinical fetal echocardiographic

imaging (Holland et al., 1998). Previous studies from our laboratory suggest several of

the features of myocardial backscatter observed at lower frequencies (e.g., anisotropy

of backscatter) (Hoffmeister et al., 1995; Mottley and Miller, 1988) are observed at

higher frequencies as well (Bridal et al., 1993; Hall et al., 2000a,b; Saijo et al., 1997).

Knowledge of the intrinsic properties of the fetal heart may permit researchers

and clinicians to more accurately identify abnormalities of the myocardium earlier

than they are currently identified and permit an enhanced interpretation of the in

vivo examinations of the fetal heart. Congenital heart defects and cardiomyopathies

that exhibit a spectrum of pathologic substrates with myocardial fiber disarray and

altered myoarchitecture evolve in the first trimester but are only recognized by current

echocardiographic modalities in the second trimester. An evaluation of intrinsic prop-

erties of the fetal myocardium, discernable by backscatter and attenuation properties

in the early stages of hearts destined to develop congenital heart defects, myopathies

or altered myocardial function due to an adverse intrauterine environment, will likely

improve diagnostic ability and the scope of favorable intervention in the future.
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3.8 Limitations

A potential limitation of this study was that ultrasonic measurements were per-

formed on formalin-fixed specimens at room temperature. While it is known that

fixation does affect absolute values of ultrasonically measured quantities (Baldwin

et al., 2005b; Bamber et al., 1979; Hall et al., 2000a; Takiuchi et al., 2001; van der

Steen et al., 1991), the measurements performed in this study focused on relative

properties of the heart, which should be largely preserved in fixed myocardium. For

this research study, the length of time required for data acquisition (hours) and con-

cerns regarding fresh tissue degradation made the use of fresh tissue impractical,

although desirable.

The region of interest placement may represent another concern of our study.

Regions of interest were intentionally located in areas primarily perpendicular to the

direction of insonification, as validated by histological analysis, in order to minimize

the effects of myocardial anisotropy. However, it is possible that some regions encircle

a few non-perpendicular fibers. Because the analysis averages over the entire area

enclosed, the large number of perpendicular fibers in the enclosed area will minimize

the effects of the non-perpendicular fibers.

3.9 Summary

Measurements of the attenuation coefficient at 45 MHz and slope of attenuation

coefficient from 30-60 MHz demonstrate regional differences between the left and
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right ventricular myocardium of the developing heart that appear to correspond to

the regional differences in apparent integrated backscatter measurements and histo-

logical analyses reported in Chapter 2. Measurements exhibited the smallest levels

of attenuation and the largest levels of backscatter for those regions where insonifi-

cation was perpendicular to the predominant myofiber direction. More specifically,

for data acquired with insonification perpendicular to the cut faces of the transverse

cross-sectional fetal heart specimens, lower attenuation values and higher backscatter

values were located in the mid-myocardium of the left ventricle and located more

subepicardially in the right ventricular myocardium. Furthermore, attenuation and

backscatter values for perpendicular insonification in the right ventricular free wall

were larger than those areas in the left ventricular free wall, suggesting intrinsic dif-

ferences between the two ventricles.

The results of this study appear consistent with previously published literature

examining the differences in tissue properties of developing hearts (Salih et al., 2004;

Sanchez-Quintana et al., 1995; Smolich et al., 1989). It is interesting to note that, in

spite of exposure to similar prenatal loading conditions, the left and right ventricular

myocardium show architectural and compositional differences in the ultrasonic mea-

surements. This suggests that the left and right ventricles of the fetal heart follow

a biogenetically predetermined trajectory of growth and development that may be

altered by the intrauterine environment. An adverse environment can result in an

altered trajectory of the developing heart leading to a permanent change in cardiovas-

cular structure and physiology (Barker, 1995; Lucas, 1991). Hence, prenatal changes
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in structural and viscoelastic properties resulting in altered ultrasonic properties of

the myocardium may permit analyses of fetal echocardiographic images to discern

cardiac changes with consequential long-term postnatal effects.
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Chapter 4

Ultrasonic Images of

Mid-gestational Fetal Hearts

4.1 Description of the Images

This Chapter presents quantitative images of the 15 fetal pig heart slices that are

analyzed in Chapters 2 and 3 of this thesis. For each heart there are three ultrasonic

images that are displayed horizontally for ease of visual comparison. In each image,

the left ventricle is located in the upper-right section or upper half of the image and

the right ventricle is positioned in the lower-left section or lower half.

In each figure the columns group the fetal pig heart images by the ultrasonic

data analyses used to create them. The left column correspond to the data analysis

performed in Chapter 2 and contain images of the integrated backscatter from 30-60

MHz. In order to permit direct comparisons among these, these backscatter images

are displayed using identical grayscale color mappings from -20dB to -60dB. In the

left column, the color “white” represents large backscatter whereas the color “black”
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4.2 Comparison of the Images

represents little backscatter.

The images in the middle and right columns show the relative differences in atten-

uation properties of the fetal hearts and correspond to the data analyses in Chapter

3. The middle column display images of the slope of attenuation from 30-60 MHz,

and the right column show images of the attenuation coefficient at midbandwidth,

45 MHz, as determined from a least squared fit line to the data over the entire avail-

able bandwidth. In the middle and right columns, the color “white” represents large

slope of attenuation and large attenuation coefficient respectively. The color “black”

corresponds to small values of slope of attenuation and attenuation coefficient. In a

fashion similar to that employed for the integrated backscatter images, each column

of attenuation images is displayed with identical grayscale color mappings so that

results from the individual hearts can be compared. The values for slope of atten-

uation from 30-60 MHz range from 0.5 to 2.0 dB/(cm·MHz) and the values for the

attenuation coefficient at 45 MHz range from 25 to 75 dB/cm.

4.2 Comparison of the Images

As discussed in Chapters 2 and 3, a number of structures are common to essen-

tially all of the fetal pig heart images. In general, the bright band that appears in

the left ventricular free wall of the integrated backscatter images is located in the

midmyocardium. In contrast, the bright band that appears in the right ventricular

myocardium is more subepicardial.
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4.3 Anomalies Within the Images

The bright bands within the integrated backscatter images are in the same loca-

tions as the darker bands in the attenuation images of the same fetal heart specimen.

These locations correspond to the portion of the ventricle in which the local myofiber

arrangement is most perpendicular to the incident ultrasonic beam. This result is

consistent with what would be anticipated based on previously published studies ex-

amining the effects of anisotropy on ultrasonic parameters and is quantified in Figure

3.6 (Baldwin et al., 2006; Hall et al., 1997; Hoffmeister et al., 1995; Kumar and Mott-

ley, 1994; Madaras et al., 1988; Mottley and Miller, 1988, 1990; Sosnovik et al., 2001;

Verdonk et al., 1996).

In addition to the ventricular anisotropy, the 15 fetal pig hearts show similarities in

their relative brightness between the left and right myocardium. In general the right

side of the heart appears brighter than the left side of the heart. This observation

was quantified in Chapters 2 and 3 for regions of interest drawn within the bands of

perpendicular insonification in the left and right ventricular myocardium. Although

the difference in relative brightness between the two ventricles is easiest to see in the

attenuation images, this observation holds true for all three methods of data analysis,

integrated backscatter, slope of attenuation, and attenuation coefficient at midband.

4.3 Anomalies Within the Images

Several images, specifically the attenuation coefficient images for pig 1, pig 4 and

pig 10, show large white circles within the myocardium. These white spots are be-
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lieved to be air bubbles that accumulated on the surface of the myocardium during

the multiple hour data acquisition. These suspected surface bubble artifacts are more

readily apparent on the shadowed reflector attenuation measurements where surface

effects can affect the data; whereas the backscatter measurements might be less influ-

enced by surface effects because they are based on gated regions of backscatter from

within the myocardium. Although these artifacts do affect the qualitative appear-

ance of the ultrasonic images, the quantitative analyses were not affected. Regions

of interest used for quantitative analyses were specifically drawn to not include any

large bright spots.

In several of the attenuation images (e.g. pig 7 and pig 11), small white spots

appear in the ventricular myocardium and are sometimes denser on the right side

than on to the left. Unlike the larger bright spots described previously, we believe

these smaller spots are not air bubbles and possibly reflect actual features of the fetal

myocardium.

4.4 Summary

Differences in the properties of left and right ventricular myocardium, as reflected

in the images displayed in this chapter, are clearly evident for all 15 midgestational

fetal pig hearts. These differences in the ventricular myoarchitecture exist despite the

fact that left and rights sides of heart are exposed to very similar prenatal pressures

and loading conditions, conditions that are known to represent important determi-
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4.5 Images

nants of ventricular geometry. To our knowledge, existing models for fetal ventricular

development do not account for this result.

4.5 Images
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4.5 Images
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Figure 4.1: Ultrasonic images of fetal pigs 1, 2, and 3
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Figure 4.2: Ultrasonic images of fetal pigs 4, 5, and 6
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Figure 4.3: Ultrasonic images of fetal pigs 7, 8, and 9
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4.5 Images
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Figure 4.4: Ultrasonic images of fetal pigs 10, 11, and 12
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4.5 Images
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Figure 4.5: Ultrasonic images of fetal pigs 14, 15, and 16
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Chapter 5

Quantitative Analysis of Cyclic

Variation of Myocardial

Backscatter

5.1 Preface

This chapter is based on the peer-reviewed journal article Quantitative Analysis

of the Magnitude and Time Delay of Cyclic Variation of Myocardial Backscatter from

Asymptomatic Type 2 Diabetes Mellitus Subjects written by Allyson A. Gibson, Jean

E. Schaffer, Linda R. Peterson, Kyle R. Bilhorn, Karla M. Robert, Troy A. Haider,

Marsha S. Farmer, Mark R. Holland, James G. Miller and published in Ultrasound

in Medicine & Biology, Vol. 35, No. 9, pp. 1458-1467, 2009.
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5.2 Abstract

5.2 Abstract

Early detection of diabetic patients at high risk for developing diabetic cardiomy-

opathy may permit effective intervention. The goal of this work is to determine

whether measurements of the magnitude and time delay of cyclic variation of my-

ocardial backscatter, individually and in combination, can be used to discriminate

between subgroups of individuals including normal controls and asymptomatic type

2 diabetes subjects. Two-dimensional parasternal long-axis echocardiographic images

of 104 type 2 diabetic patients and 44 normal volunteers were acquired. Cyclic varia-

tion data were produced by measuring the mean myocardial backscatter level within

a region of interest in the posterior wall, and characterized in terms of the magni-

tude and normalized time delay. The cyclic variation parameters were analyzed using

Bayes classification and a nonparametric estimate of the area under the receiver op-

erating characteristic (ROC) curve to illustrate the relative effectiveness of using one

or two features to segregate subgroups of individuals. The subjects were grouped

based on glycated hemoglobin (HbA1c), the homeostasis model assessment for in-

sulin resistance (HOMA-IR), and the ratio of triglyceride to high-density lipoprotein

cholesterol (TG/HDL-C). Analyses comparing the cyclic variation measurements of

subjects in the highest and lowest quartiles of HbA1c, HOMA-IR, and TG/HDL-C

showed substantial differences in the mean magnitude and normalized time delay of

cyclic variation. Results show that analyses of the cyclic variation of backscatter in

young asymptomatic type 2 diabetics may be an early indicator for the development
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of diabetic cardiomyopathy.

5.3 Introduction

Insulin resistance and type 2 diabetes are growing concerns in populations in which

there is an increasing prevalence of obesity. Although diabetes is a well-known risk

factor for coronary artery disease, and consequently, ischemia-related heart failure,

there is increasing evidence that diabetes is also a risk factor for the development

of heart failure apart from coronary disease, a so-called “diabetic cardiomyopathy”

(Fang et al., 2004; Hamby et al., 1974; Kannel et al., 1974; Witteles and Fowler, 2008).

The mechanisms for the development of diabetic cardiomyopathy are not com-

pletely known and likely involve multiple pathways including impaired renal function,

sympathetic/parasympathetic imbalance, protein glycosylation, and upregulation of

the renin-angiotensin-aldosterone system. Evidence is also emerging that hyperlipi-

demia plays a central role in the pathogenesis of heart failure in diabetic patients,

independent of atherosclerosis. Type 2 diabetes is associated with elevated serum

triglyceride and free fatty acid level (Barrett-Connor et al., 1982; Fraze et al., 1985;

Hallgren et al., 1960). These elevated levels can increase the supply of fatty acid sub-

strates to the heart, increase fatty acid utilization, and alter the lipid homeostasis of

the tissue, particularly in the setting of insulin resistance (Augustus et al., 2003; Car-

ley and Severson, 2005; Peterson et al., 2004; Stremmel, 1988). Several mouse models

show that accumulation of lipids in non-adipose tissue such as the myocardium can
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lead to cell dysfunction and cell death, and ultimately result in cardiomyopathy, even

in the absence of hyperglycemia (Borradaile and Schaffer, 2005; Chiu et al., 2001,

2005; Finck et al., 2003; Nielsen et al., 2002; Rijzewijk et al., 2008; Zhou et al.,

2000). While the link between lipid metabolic abnormalities and cardiomyopathy

in diabetic patients is less clear, evidence suggests that the myocardium of patients

with type 2 diabetes is exposed to excessive free fatty acid and triglyceride deliv-

ery, which causes lipotoxicity and thereby contributes to the development of diabetic

cardiomyopathy. This is supported by studies demonstrating increased myocardial

triglycerides in hearts of diabetic patients at autopsy and in pathological examina-

tions of failing hearts explanted from individuals with diabetes and cardiomyopathy

who underwent orthotopic cardiac transplantation (Alavaikko et al., 1973; Sharma

et al., 2004; Szczepaniak et al., 2003).

Cyclic variation of myocardial backscatter is a non-invasive approach for assessing

myocardial structure and function. This form of tissue characterization analysis has

been employed to characterize a number of cardiac pathologies including ischemia

(Barzilai et al., 1984), myocardial infarction (Hancock et al., 2002; Iwakura et al.,

2003; Ohara et al., 2005), cardiac hypertrophy (Losi et al., 2007; Masuyama et al.,

1989), and changes in myocardial size, structure, and function (Di Bello et al., 1998;

Giglio et al., 2003; Hu et al., 2003; Komuro et al., 2005; Madaras et al., 1983; Mi-

cari et al., 2006; Naito et al., 1996). One such study from our laboratory examined

differences in magnitude and normalized time delay of cyclic variation of backscat-

ter among type 1 diabetic patients with systemic complications and normal controls
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(Perez et al., 1992). In a follow up study, Wagner et al. extended this work by

using Receiver Operating Characteristic (ROC) analysis to quantitatively assess the

univariate and multivariate discriminating power of the cyclic variation parameters

(Wagner et al., 1995). The results of that paper indicated that a combination of

two or more cyclic variation parameters (magnitude of the septal wall, time delay of

the septal wall, magnitude of the left ventricular free wall, and time delay of the left

ventricular free well) yielded a larger area under the ROC curve than a single feature.

Early detection of diabetic patients at high risk for developing diabetic cardiomyopa-

thy might permit effective intervention. The long-term goal of this exploratory study

is to determine whether myocardial tissue characterization based on measurements

of the magnitude and time delay of cyclic variation of myocardial backscatter might

be a useful non-invasive indicator of hearts at potentially higher risk for developing

diabetic cardiomyopathy. Although a longitudinal study over many years would be

required to determine the utility of this approach in modifying clinical outcomes,

this preliminary study examines methodology that might be appropriate for such a

longer-term investigation.

5.4 Methods

5.4.1 Subjects Studied

A total of 148 subjects (44 normal controls and 104 asymptomatic type 2 diabetic

patients) between the ages of 30 and 55 years old were recruited for the research
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study over a 3-year period. Subjects were enrolled in the study after signing informed

consent forms approved by the Washington University Human Studies Committee.

Subjects were excluded if they met the following criteria that are known to affect

adversely heart function or metabolism independent of parameters being studied:

participants who had greater than Stage 1 hypertension as defined by the seventh

report of the Joint National Committee (JNC, 2003); valvular disease including trace

or mild valvular regurgitation; systolic dysfunction; ischemic heart disease as assessed

by a screening stress echocardiography exam; or symptoms of heart failure. Subjects

were also excluded if they were outside the age range of 30 to 55 years old, current

smokers, postmenopausal, pregnant or lactating. Out of the 148 subjects enrolled,

7 subjects withdrew from the study, 4 subjects did not have all the plasma markers

needed for analysis, and data from 12 subjects were not analyzed due to poor signal

to noise ratios for the tissue characterization measurements. In the end, data from

125 subjects were collected and analyzed. These 125 subjects had an average age of

43 ± 7 years (mean ± standard deviation) and included 72 females and 53 males.

5.4.2 Laboratory Tests

Once a subject was enrolled in the study, laboratory tests were performed after

an overnight fast. The tests included fasting glucose, glycated hemoglobin, lipid, and

protein levels. The echocardiographic evaluation included standard measurements to

assess cardiac function as well as study specific measurements such as tissue charac-

terization.
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5.4.3 Tissue Characterization Data Acquisition

A detailed description of the system calibration, backscatter data acquisition,

and cyclic variation analysis can be found in Holland et al. (2006) and is summa-

rized below. Subjects were imaged using a General Electric (GE) Vivid 7 clinical

imaging system (General Electric Medical Systems, Waukesha, WI). Data was col-

lected from the parasternal long-axis view in harmonic imaging mode with a transmit

frequency of 1.7 MHz and a receive frequency of 3.4 MHz. The post-processing set-

tings (compression, reject, dynamic range, data dependent processing (DDP)) of the

imaging system were configured to optimize the dynamic range of images of the left

ventricular free wall, and to provide a linear relationship between changes in the dis-

played grayscale value and changes in the level of ultrasonic backscatter expressed

in decibels. This relationship was achieved by acquiring a succession of images of a

tissue-mimicking phantom as the overall receiver gain was systematically changed in

known decibel (dB) steps for a specific post-processing and dynamic range setting.

The phantom images were analyzed offline using NIH ImageJ (National Institutes

of Health, Bethesda, MD). In this approach, a region of interest was placed within

each phantom image and the mean grayscale value was measured. Analysis of the

measured mean grayscale level corresponding to each known gain setting was used

to determine the relationship between changes in the displayed grayscale value and

changes expressed in dB. Furthermore, this approach established the useful dynamic

range (the linear backscatter to grayscale range) of the imaging system for a specific
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Figure 5.1: Relationship between ultrasonic backscatter level (expressed in decibels
[dB]) and mean grayscale value for one specific configuration of the GE Vivid 7 clinical
imaging system.

configuration.

Figure 5.1 illustrates the relationship between backscatter level and mean grayscale

value for one specific configuration of the GE Vivid 7 clinical imaging system used in

this study. The conversion factor relating a change in grayscale value to the equiva-

lent change in decibels was found by determining the slope of the best-fit line in the

“linear range” region. For the system configuration used in this study the conversion
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factor was 6.98 grayscale level/dB.

To obtain echocardiographic data from subjects, images from five consecutive

heart cycles were digitally acquired with the overall gain of the imaging system con-

figured to maximize the available dynamic range of backscattered signals. Digital

cine loops with frame rates of at least 30 frames/second were acquired and saved in a

standard 8-bit image format (e.g. DICOM format). Because it was difficult to know

the mean grayscale level of the mid-myocardium prior to quantitative data analyses,

several sets of image data were acquired with different values of overall system gain.

Subsequent analyses of the acquired image data were performed off-line using NIH

ImageJ.

Backscatter data were generated from a region of interest that was manually

tracked to stay within the mid-myocardium of the left ventricular free wall over the

heart cycle. Figure 5.2a shows a representative echocardiographic image with a re-

gion of interest drawn in the posterior wall of the parasternal long-axis view. Previous

studies have used this method of measuring backscatter data from a manually posi-

tioned region of interest and shown both intra- and inter-observer backscatter results

are reproducible (Holland et al., 2009). For each image frame of the cineloop, the

mean grayscale value of the region of interest was recorded and converted to backscat-

tered energy expressed in decibels. The backscattered energy was plotted versus time

(or frame number) to yield the systematic variation of backscatter from the heart.

A similar procedure was performed for a region of interest placed in the blood-filled

cavity of the left ventricle. This analysis was done to ensure clutter in the image did
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Figure 5.2: (a) Image showing a representative region of interest placed in the
posterior wall of the parasternal long-axis view for one subject. RV = right ventricle
LV = left ventricle Ao= aorta (b) Cyclic variation of myocardial backscatter data
from the region of interest shown in Figure 5.2a and backscatter data from the blood-
filled cavity. The vertical scale illustrates the relative difference in backscatter results
and does not represent an absolute measurement. (c) Average waveform calculated
from the five heart cycles illustrated in Figure 5.2b. The data are represented as
a zero-mean curve and the heart cycle is defined as starting and ending with end
diastole. (d) A model waveform utilized in the automated analysis of cyclic variation
data (Mohr, et al., 1989) to calculate the magnitude and time delay of the cyclic
variation of myocardial backscatter. The vertical arrow illustrates the magnitude of
cyclic variation, and the normalized time delay is calculated as the time interval from
end diastole to the center of the nadir divided by the systolic interval.
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not strongly affect the measured backscatter energy from the myocardium and ulti-

mately influence the cyclic variation results. Figure 5.2b shows the cyclic variation

of myocardial backscatter over five heart cycles for the region of interest drawn in

Figure 5.2a, and for a region of interest placed in the blood-filled cavity. The vertical

scale in Figure 5.2b illustrates the relative difference between the measured backscat-

ter energy in the myocardium and the blood-filled cavity, and does not represent the

absolute level of backscatter. Figure 5.2c depicts the average cyclic variation wave-

form calculated by averaging the five separate heart cycles of myocardial backscatter

in Figure 5.2b. The data are represented as a zero-mean curve and plotted as a per-

centage of the heart cycle. In this formalism, end-diastole is defined as the start (0%)

and end (100%) of the heart cycle.

The systematic variation of the backscattered energy was quantified by analyzing

the magnitude and normalized time delay of cyclic variation using an automated

algorithm (Mobley et al., 1995; Mohr et al., 1989). The magnitude of cyclic variation

was calculated as the difference between the average peak and average nadir values

of the backscattered energy. The corresponding normalized time delay is expressed

as a dimensionless ratio obtained by dividing the time interval from end-diastole to

the nadir of the mean backscatter trace by the systolic interval. Mitral valve motion

was used to identify the diastolic and systolic intervals. End diastole was defined as

the frame just after the mitral valve closed and end systole corresponded to the frame

before the mitral valve opened. The analysis of magnitude and normalized time delay

of cyclic variation are illustrated in Figure 5.2d.
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5.4.4 Data Analysis

For this preliminary study, analyses of the cyclic variation of myocardial backscat-

ter were performed with subjects divided into quartiles based on each of three indices,

glycated hemoglobin (HbA1c), the homeostasis model assessment of insulin resistance

(HOMA-IR) as calculated by The Oxford Centre for Diabetes, Endocrinology, and

Metabolism HOMA calculator (Wallace et al., 2004), and the ratio of triglyceride to

high-density lipoprotein-cholesterol levels (TG/HDL-C). With regard to the choice

of indices for these planned comparisons, HbA1c and HOMA-IR were selected for

the data analyses because they represent useful indices for the monitoring of type

2 diabetic patients. The ratio of TG/HDL-C, which was previously employed as a

predictor of insulin resistance and cardiometabolic risk in the Framingham offspring

cohort (Kannel et al., 2008), illustrates a particular dislipidemia that could play a role

in the pathogenesis of heart failure in diabetic patients. For each classification, cyclic

variation measurements from subjects in the highest quartile (N=32) were compared

with those in the lowest quartile (N=32). The quartiles were determined by rank

ordering the subjects according to the index of interest, and grouping the 32 subjects

with the largest rank as the highest quartile and the 32 subjects with the smallest

rank in the lowest quartile. Our hypothesis was that subjects with a high percent-

age of HbA1c, large value for HOMA-IR, or large ratio of TG/HDL-C exhibited a

less favorable profile than those subjects with lower values. In this sense, the lowest

quartile might be considered to be the “healthier” of the two quartiles; however, the

90



5.4 Methods

Table 5.1: A summary of the laboratory results for the study population. The
column headings represent how the subjects were divided for cyclic variation analysis
and the rows represent a subset of the biological parameters reported. All values are
expressed as a mean ± standard deviation. The p values were determined using a
two-tailed, unpaired student t-test. HOMA-IR = Homeostasis model assessment for
insulin resistance, TG/HDL-C = Triglyceride to high density lipoprotein-cholesterol
ratio, BMI = Body Mass Index, n.s. = not significant

HbA1c HOMA-IR TG/HDL-C

Lowest
Quartile
(N=32)

Highest
Quartile
(N=32)

Lowest
Quartile
(N=32)

Highest
Quartile
(N=32)

Lowest
Quartile
(N=32)

Highest
Quartile
(N=32)

Gender
M=10 M=15 M=13 M=14 M=11 M=16

F=22 F=17 F=19 F=18 F=21 F=16

Age (yrs)
39 ± 6 44 ± 6 41 ± 6 43 ± 7 41 ± 6 43 ± 8

p < 0.05 p = n.s. p = n.s.

BMI (kg/m2)
28 ± 7 36 ± 7 26 ± 5 38 ± 7 31 ± 8 34 ± 7

p < 0.001 p < 0.001 p = n.s.

HbA1c (%)
5.4 ± 0.2 9.1 ± 1.3 5.7 ± 0.7 7.4 ± 1.6 6.7 ± 1.6 7.5 ± 1.7

p < 0.001 p < 0.001 p = n.s.

HOMA-IR
1.1 ± 0.7 2.8 ± 1.8 0.7 ± 0.2 4.7 ± 2.2 1.7 ± 1.9 3.1 ± 1.8

p < 0.001 p < 0.001 p < 0.01

TG/HDL-C
3.0 ± 3.0 6.4 ± 8.0 2.7 ± 2.9 6.8 ± 7.7 1.2 ± 0.3 10.7±7.4

p < 0.05 p < 0.01 p < 0.001

subjects in both groups have clinically normal hearts as assessed by a stress echocar-

diography exam. A subset of the laboratory results for these three subject groupings

is presented in Table 5.1.

Cyclic variation data from the lowest and highest quartile-groups (small HbA1c,

HOMA-IR, or ratio of TG/HDL-C and large HbA1c, HOMA-IR or ratio of TG/HDL-

C respectively) served as the input data for Bayes classification. Bayes classification
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was employed to combine information from the magnitude and time delay of cyclic

variation and assign a subject to the lowest or highest quartile. Once the result

was calculated for each subject, Receiver Operating Characteristic (ROC) analysis

was used to assess the performance of the Bayes classified data. A more detailed

explanation of Bayes classification and ROC analysis is provided in the Appendix of

this chapter.

5.5 Results

The mean and standard error for the magnitude and time delay of cyclic variation

of myocardial backscatter were analyzed for the highest and lowest quartile groups of

each metabolic parameter to quantify how the subjects separated on average. Figure

5.3 illustrates these results for three metabolic parameters, HbA1c, HOMA-IR, and

TG/HDL-C. For each parameter, we observed a separation between the lowest and

highest quartiles for the magnitude and the normalized time delay. In all but one

case this separation between the results for the lowest and highest quartile was calcu-

lated to be statistically significant with a two-tailed, unpaired student t-test. Of the

three metabolic parameters, HbA1c yielded the largest separation between the mean

magnitude results, with the lowest quartile averaging 5.4 dB and the highest quartile

averaging 4.1 dB. The average time delay measurements for this classification were

0.78 and 0.85 for the lowest and highest quartiles respectively. Dividing the subjects

by HOMA-IR resulted in a similar separation of the average time delays as that seen
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Figure 5.3: The averages and standard errors of the magnitude (left panels) and
normalized time delay (right panels) of cyclic variation for the lowest and highest
quartiles in each subject division. The significance of each cyclic variation parameters
was found using a two-tailed unpaired student t-test. HbA1c = Hemoglobin A1c,
HOMA-IR = Homeostasis model assessment for insulin resistance, TG/HDL-C =
Triglyceride to high density lipoprotein-cholesterol ratio
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Figure 5.4: The left panels are the mean, and standard deviations of the magnitude
and normalized time delay of cyclic variation for the lowest and highest quartiles in
each subject division. The right panels are individual subject results for the magni-
tude and normalized time delay of cyclic variation. In all the graphs, the open circles
represent the 32 subjects in the lowest quartile of each subject division while the
squares illustrate the results for the 32 subjects in the highest quartiles. HbA1c =
Hemoglobin A1c, HOMA-IR = Homeostasis model assessment for insulin resistance,
TG/HDL-C = Triglyceride to high density lipoprotein-cholesterol ratio
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in the HbA1c results. The results for subjects in the lowest and highest quartiles

of HOMA-IR were mean time delays of 0.76 and 0.83, respectively, and mean mag-

nitudes of 5.5 dB and 4.4 dB, respectively. TG/HDL-C yielded a less pronounced

separation of the cyclic variation results than the other metabolic parameters. In

this subject classification, the lowest quartile had an average magnitude of 5.6 dB

and average time delay of 0.79 whereas the highest quartile had a mean value of 4.6

dB for the magnitude and 0.83 for the time delay. The magnitude and normalized

time delay of cyclic variation are illustrated together in Figure 5.4. The left panels

of Figure 5.4 show the means, and standard deviations for the magnitude and time

delay of cyclic variation for the highest and lowest quartile groups of each metabolic

parameter. The right panels display the individual data for the 64 subjects included

in the HbA1c, HOMA-IR, and TG/HDL-C analysis. For the two cyclic variation

parameters used in combination, the means suggest a modest separation of the data

for all three subject classifications.

After the average cyclic variation results were obtained, ROC analysis was em-

ployed to quantify how magnitude and time delay could distinguish between popula-

tions, both individually and in combination. Table 5.2 summarizes the nonparametric

estimate of the area under the curve and the associated standard error for the cyclic

variation parameters analyzed individually as well as in combination. When the sub-

jects are divided into quartiles of HbA1c, the magnitude of cyclic variation yielded

an area and standard error of 0.69 ± 0.07. The normalized time delay, for these

subjects, resulted in an area under the curve and standard error of 0.75 ± 0.06, and
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Table 5.2: A summary of the nonparametric estimate of the area under the Receiver
Operating Characteristic curve (AUC) and the associated standard errors (St.Err.).
The first two rows represent the results when only magnitude or normalized time
delay information is used. The third row reports the results when the magnitude and
time delay results are combined through Bayes classification. HbA1c = Hemoglobin
A1c, HOMA-IR = Homeostasis model assessment for insulin resistance, TG/HDL-C
= Triglyceride to high density lipoprotein-cholesterol ratio

HbA1c HOMA-IR TG/HDL-C

AUC ± St.Err. AUC ± St.Err. AUC ± St.Err.

Magnitude 0.69 ± 0.07 0.63 ± 0.07 0.58 ± 0.07

Delay 0.75 ± 0.06 0.74 ± 0.06 0.64 ± 0.07

Combination 0.78 ± 0.06 0.76 ± 0.06 0.68 ± 0.07

the combination of the magnitude and time delay of cyclic variation through Bayes

classification gave an area and error of 0.78 ± 0.06. A similar trend is seen when the

subjects are divided into quartiles of HOMA-IR. In this analysis the magnitude of

cyclic variation resulted in an area and standard error of 0.63 ± 0.07, normalized time

delay of cyclic variation yielded an area and error of 0.74 ± 0.06, and the combination

of the two parameters gave an area and error of 0.76 ± 0.06. In the third measure,

TG/HDL-C, the area under the curve and standard error for the magnitude of cyclic

variation was 0.58 ± 0.07, and 0.64 ± 0.07 (area ± standard error) for the normalized

time delay. The combination of magnitude and normalized time delay gave an area

under the curve and standard error of 0.68 ± 0.07 for the TG/HDL-C grouping of

subjects.
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5.6 Discussion

Although the study subjects were considered to have clinically normal hearts as

assessed by a stress echocardiography exam, and no greater than Stage 1 hyperten-

sion, differences in the magnitude and normalized time delay of cyclic variation were

observed when the subjects were classified by hemoglobin A1c (HbA1c), homeostasis

model assessment of insulin resistance (HOMA-IR), and the ratio of triglycerides to

high-density lipoprotein cholesterol (TG/HDL-C). For each of these parameters, the

cyclic variation of backscatter measurements behaved in a fashion similar to that ob-

served in previous studies of subjects with type 1 and type 2 diabetes (Akdemir et al.,

2001; Di Bello et al., 1995, 1996, 1998; Fang et al., 2003; Perez et al., 1992; Wagner

et al., 1995). Those studies showed that the magnitude of cyclic variation is larger

and the normalized time delay measurements are smaller in normal hearts than in

diabetic hearts. Figures 5.3 and 5.4 demonstrate a similar trend in the current sub-

ject population. The subjects with more favorable profiles (low HbA1c, HOMA-IR,

or TG/HDL-C) have a larger magnitude and smaller time delay of cyclic variation

than the subjects in the highest quartiles of each classification. These differences in

the cyclic variation parameters reach significance in all but one instance.

The cyclic variation results may suggest a trend toward a larger area under the

ROC curve when information from magnitude and time delay of cyclic variation is

combined using Bayes classification than when each feature is analyzed individually.

However this observed improvement is relatively modest, suggesting the need for
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additional studies and the identification of additional features that may improve the

approach used to characterize the cyclic variation waveform. Many laboratories only

report the magnitude of cyclic variation, yet this study suggests an improved ability

to distinguish between subject groups when both magnitude and time delay of cyclic

variation are used together. This result is similar to that reported in the Wagner

et al. study of type 1 diabetic patients with systemic complications versus normal

controls (Wagner et al., 1995). Unlike the Wagner et al. study, the current study

examined subjects who have clinically normal hearts and no systemic complications

from diabetes. Yet in spite of this, the magnitude and time delay measurements

show differences between the two groups. The 95% confidence intervals calculated

in the current study are comparable to those reported in Figures 2, 3, and 4 of the

Wagner et al. paper despite the different subject populations. In the current study,

the difference between the area under the curve for the magnitude, time delay, and

combination of cyclic variation parameters could increase if a quadratic classifier was

used in the Bayes classification rather than the linear classifier used in this study

(Fukunaga, 1972; Wagner et al., 1995). Although the calculated values for area under

the curve are quite modest, they are comparable to the areas obtained when the ratio

of triglyceride to high-density lipoprotein cholesterol is used as a surrogate for insulin

resistance (Kannel et al., 2008).

There are a number of limitations to the present study. First, because endomy-

ocardial biopsy was not appropriate in these otherwise healthy subjects, we do not

have direct evidence of myocardial abnormalities, either with regard to structure or
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metabolism. Second, the body mass index of subjects in the highest quartiles was

substantially larger than that in the lowest quartiles for all three metabolic param-

eters. However, because obesity is a known risk factor for the development of type

2 diabetes, this finding is not unexpected. Studies suggest that there may be a link

between obesity and the magnitude of cyclic variation of backscatter (Di Bello et al.,

2006; Wong et al., 2004). This connection could be due to the influence of obesity

on the load experienced by the myocardium. However, studies have shown that the

magnitude of cyclic variation is relatively preload and afterload independent (Naito

et al., 1996).

In summary, classifying subjects according to hemoglobin A1c, homeostasis model

assessment of insulin resistance, and the ratio of triglycerides to high-density lipopro-

tein cholesterol resulted in differences in the magnitude and normalized time delay

of cyclic variation between the lowest and highest quartile groups for each classifica-

tion. In the long view, these results suggest that monitoring the hearts of patients

with type 2 diabetes using the combination of magnitude and time delay of cyclic

variation of backscatter might permit observation of changes associated with disease

progression that may contribute to the development of diabetic cardiomyopathy.
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5.7 Appendix

5.7.1 Bayes Classification

A detailed description of Bayes classification can be found in Introduction to Sta-

tistical Pattern Recognition by Fukunaga and is summarized below (Fukunaga, 1972).

In this study Bayes classification analysis used cyclic variation results to calculate a

decision rule that minimized the error of identifying a new subject with the wrong

group. The Bayes decision rule incorporated both the magnitude and normalized time

delay from the same subject and used information about the mean and covariance of

the tests within both groups.

In general, when the two populations studied are normally distributed and their

covariance matrices are equal, the Bayes decision rule simplifies to a linear classifier,

h(X) = (M2 −M1)
T Σ−1X +

1

2
(MT

1 Σ−1M1 −MT
2 Σ−1M2) (5.1)

where h(X) is the log likelihood ratio that the subject is in population 1 or 2, X

is a vector of test results for one subject, M is a vector representing the means for

each test, Σ is the covariance matrix, T the matrix transpose, and the subscripts 1

and 2 represent the two different populations (Fukunaga, 1972). The elements of the

covariance matrices were calculated using the formula

σ2
mn =

1

N − 1

N∑
k=1

(xmk − µm)(xnk − µn) (5.2)

In the cyclic variation analysis, N is the number of subjects in the test population,

x is the kth subject’s test result for test m or n, and µ is the mean of test m or
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n, where m and n are indices corresponding to the diagnostic tests that are being

compared. In this cyclic variation analysis, two tests (magnitude and time delay)

were analyzed for each patient, so m and n both run from 1 to 2, and four covariance

matrix elements are calculated. If the two populations studied (highest and lowest

quartiles) do not have equal covariance matrices, the elements in the covariance matrix

of population 1 can be averaged with the corresponding elements in the covariance

matrix of population 2 to yield a common covariance matrix (Wagner et al., 1995).

Alternatively a quadratic classifier can be calculated for the decision rule. In the

present study, the covariance matrices for the two groups were averaged and a linear

classifier was employed in order to make the results comparable to those presented

in the Wagner et al. study of type 1 diabetic patients (Wagner et al., 1995). In the

current study the h(X) values ranged from approximately -3 to 3 with negative h(X)

values indicating a higher likelihood to be in population 1 and positive h(X) values

signifying the subject is more likely to be in population 2.

The calculated linear classifier was estimated from a finite sample of subjects

resulting in a decision rule that was derived from imperfect information. The perfor-

mance of this classifier is expected to be inferior to a decision rule based on precise

knowledge of the study population, but by using resampling techniques the effects of

finite sample size can be reduced. The primary resample method was round-robin

classification, also known as leave-one-out jackknife (Efron, 1982; Wagner et al., 1995).

In the round-robin resampling scheme, one of the samples was held out of the train-

ing set and the other samples were used to calculate or train the classifier. The left
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out sample was then classified using the trained decision rule and replaced into the

original dataset. After replacement of the first left-out sample, a different sample was

removed from the training dataset and the remaining samples were used to calculate

the decision rule. The newly calculated decision rule was slightly different from the

first rule because the training dataset included the previously left-out sample and did

not include the latest sample that was removed. The removed sample was classified

using the latest decision rule and then the sample was moved back into the original

dataset. This process was repeated multiple times with different samples excluded

from the training set until all the samples were classified and results could be used in

ROC analysis.

5.7.2 Receiver Operating Characteristic (ROC) Analysis

A nonparametric estimate of the area under the ROC curve was used to assess

the performance of the Bayes classified data by quantifying its ability to distinguish

between the two populations. ROC analysis provides a description of the separability

of two groups that is independent of a decision threshold, a test interpreter’s mindset,

and prevalence of the disease. This method of analysis often relates the true positive

fraction (the fraction of actually positive cases that are identified as positive by the

test) to the false positive fraction (the fraction of actually negative cases that are

called positive by the test) as a function of decision threshold. An ideal test with

clear separation between test results of two groups would yield an area under the

curve of 1.0. Conversely an area under the curve of 0.50 is representative of a random

102



5.7 Appendix

guess. In general an area under the curve between 0.50 and 0.70 indicates a poor test

performance, an area between 0.70 and 0.80 is considered fair, 0.80 to 0.90 is good,

and an area greater than 0.90 is considered excellent (Kannel et al., 2008).

The nonparametric estimate of area under the curve is also referred to as the

Wilcoxon (Wilcoxon, 1945) and the Mann-Whitney U-statistic (Mann and Whitney,

1947). Several studies have shown that these unbiased estimators are analogous to

that of the parametric area under the ROC curve (Bamber, 1975; DeLong et al.,

1988; Gallas, 2006; Hanley and McNeil, 1982). The Wilcoxon and Mann-Whitney

U-statistic estimate the probability that a randomly selected result from one group

will be greater than or equal to a randomly selected result from the other group. This

statistic W is expressed as

W =
1

M ·N

N∑
j=1

M∑
i=1

Ψ(Xi, Yj) where Ψ(Xi, Yj) =



1 if Y < X

1
2

if Y = X

0 if Y > X

(5.3)

In this formulation, the two subject groups are represented by X and Y , with

subject populations M and N respectively. This figure of merit can be interpreted

as the expected percent correct in a binary decision situation. As more test results

are assigned to the correct population the statistic W gets closer to 1.0, in a fashion

similar to that of the parametric area under the ROC curve. In this study all of the

ROC results reported are from a nonparametric estimate of the area under the ROC

curve.
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Chapter 6

Dissertation Summary and

Concluding Remarks

The goal of this Dissertation was to study the physics of sound waves incident upon

the anisotropic and inhomogeneous myocardium. Ultrasound has been utilized as a

clinical tool to assess heart structure and function, and the usefulness of this nonin-

vasive approach has grown with our understanding of the mechanisms underlying the

interaction of ultrasound with the myocardium. One aim of this Dissertation was to

extend the knowledge of myocardial ultrasonic properties to include new information

regarding asymptomatic type 2 diabetes patients and fetal hearts.

The first portion of the Dissertation demonstrated regional differences in mid-

gestational fetal pig hearts by analyzing the ultrasonic properties of the anisotropic

ventricular myocardium. The hearts were interrogated using a 50 MHz transducer

that enabled finer spatial resolution than could be achieved at more typical clinical

frequencies. By insonifying the tissue with higher frequencies and therefore shorter

wavelengths, specific transmural layers of the ventricular myocardium could be re-
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solved. Ultrasonic data analyses demonstrated the left ventricular myocardium ap-

pears to be composed of three layers whereas the right ventricular myocardium ap-

pears to consist of two layers. The data analyses also demonstrated bands within

the midmyocardium of the left ventricular free wall and the subepicardial area of

the right ventricular free wall that correspond to insonification perpendicular to the

predominant myofiber orientation. Interestingly, these differences in the ventricular

structure exist in spite of the fact that the left and right ventricles are exposed to

similar pressures during fetal development, an important determinant of ventricular

structure.

In addition to quantifying the myoarchitecture of the left and right ventricles,

analyses were also performed to characterize areas of perpendicular insonification rel-

ative to the predominant myofiber orientation. These analyses documented further

differences in the ultrasonic properties of the ventricular myocardium. In Chapter 2

it was shown that the apparent integrated backscatter was larger in the right ven-

tricular myocardium than the left. Similarly in Chapter 3 the slope of attenuation

and attenuation coefficient at midbandwidth were shown to be larger in the right

ventricular myocardium than in the myocardium of the left ventricle. Unlike studies

focused solely on the left ventricular myocardium, this work compared the ultrasonic

properties of the right ventricles to that of the left in midgestational fetal hearts.

Chapter 5 demonstrated the clinical usefulness of ultrasound by analyzing the

cyclic variation of myocardial backscatter in asymptomatic type 2 diabetes patients

and in normal control subjects. Although the study subjects were considered to have
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apparently normal hearts, differences in the magnitude and normalized time delay

of cyclic variation of myocardial backscatter were observed when the subjects were

classified based on hemoglobin A1c (HbA1c), the homeostasis model assessment of in-

sulin resistance (HOMA-IR), and the ratio of triglycerides to high-density lipoprotein-

cholesterol (TG/HDL-C). The cyclic variation results also suggest a trend toward a

larger area under the ROC curve when information from magnitude and time delay

of cyclic variation is combined using Bayes classification than when each featured is

analyzed individually. In the long view, these results suggest that, by capitalizing

on our understanding of the interaction of sound waves with myocardium, changes

associated with disease progression may provide enhanced methods to monitor the

hearts of patients undergoing treatment.

Ultrasound continues to be a powerful tool that enables noninvasive quantifica-

tion of material properties. The studies in this Dissertation show that understanding

the physical mechanisms that underpin the interaction of ultrasonic waves with my-

ocardium can reveal beneficial information about the structure, composition, and

overall state of the heart. By looking beyond the ultrasonic images themselves and

quantifying the myocardial properties responsible for generating the images, we con-

tribute to the knowledge base that ultimately provide improved diagnoses of congen-

ital heart disease and of diabetic cardiomyopathy.
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