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ABSTRACT  
Abstract 
 
Optimization of Looped Airfoil Wind Turbine (LAWT) and Floating Looped Airfoil Hydro- 

Turbine (LAHT) Design Parameters for Maximum Power Generation 

by 

Binhe Song 

Master of Science in Mechanical Engineering 

Washington University in St. Louis, 2015 

Research Advisor:  Professor Ramesh K. Agarwal 

 
 
This focus of this research is on the study of the aerodynamic performance of a Looped Airfoil 

Wind Turbine (LAWT™) using the Computational Fluid Dynamics (CFD) software. The looped 

airfoil wind turbine (LAWT™) is a patented new technology by EverLift Wind Technology, Inc. for 

generating power from wind. It takes advantage of the superior lift force of a linearly traveling wing 

compared to the rotating blades in conventional wind turbine configurations. Compared to 

horizontal and vertical axis wind turbines, the LAWT™ can be manufactured with minimal cost 

because it does not require complex gear systems and its blades have a constant profile along their 

length. These considerations make the LAWT™ economically attractive for small-scale 

decentralized power generation in rural areas. Each LAWT™ is estimated to generate power in the 

range of 10 kW to 1 MW. Due to various advantages, it is meaningful to determine the maximum 

possible power generation of a LAWT™ by optimizing its structural layout.  

 

In this study, CFD simulations were conducted using ANSYS Fluent to determine the total lift and 

drag coefficient of a cascade of airfoils. The adaptive structured meshes were created using the 

commercial mesh generating software ICEM. The k-kl-ω turbulence model was used to account for 

flow in the laminar-turbulent transition region. Given the lift and drag coefficients and the 

kinematics of the system, an analytical formula for the power generation of the LAWT™ was 

developed. General formulas were obtained for the average lift and drag coefficients so that the total 

power could be predicted for any number of airfoils in LAWT™.  The spacing between airfoils and 

the track angle were identified as the key design parameter that affected the power generation of the 
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LAWT™. The results showed that a marked increase in total power could be achieved if the 

optimum spacing between the airfoils was used for a given track angle. The same idea was then 

applied to study an analogous floating Looped Airfoil Hydro-Turbine (LAHT) which converts the 

kinetic energy of river streams into electricity. The results showed that each LAHT of the same 

configuration as LAWT can generate nearly 756% more power than the power generated by the 

LAWT due to much higher density of water compared to air.  Finally, to generate more power from 

LAWT and LAHT, a new highly-cambered airfoil was studied to generate more lift and drag to 

generate more power. Thus various parameters of LAWT and LAHT were optimized for generating 

optimum power. 
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Chapter 1     Introduction 

1.1 Background 
 

Wind turbine is a device that converts kinetic energy from the wind into electrical power. There are 

mainly two types of wind turbines: the horizontal-axis wind turbine (HAWT) and the vertical-axis 

wind turbine (VAWT), which rotate about a horizontal and a vertical axis respectively. Wind turbine 

design involves the methodology of defining the form and specifications of a wind turbine to extract 

energy from the wind [1]. The design of HAWT blades employs the concept used in the design of 

helicopter blades. Recently, a novel wind turbine concept (Looped Airfoil Wind Turbine) has been 

invented by George Syrovy and his team at EverLift Inc. Looped Airfoil Wind Turbine (LAWT) 

consists of a basic system of a triangular structure utilizing both lift and drag aerodynamic forces 

produced by the wind [3]. Conventional wind turbine such as HAWT uses the “rotary wing” 

concept of a helicopter, whereas the LAWT uses the “fixed-wing” concept of an airplane. 

 

The idea of LAWT came about when EverLift cofounder George Syrovy invented a novel vertical 

takeoff and landing aircraft that involved extensive investigation of helicopter rotors, basically the 

rotating wings. Syrovy noticed that the horizontal wind turbine rotors have helicopter-like blades 

embodying all the limitations of the rotary wing aircraft. This insight led to the idea of capturing 

wind energy using multiple airfoils in the manner of a fixed-wing aircraft. The LAWT design appears 

to work equally well in both wind and flowing water [4]. 

 

The concept of LAWT was first demonstrated in the Wind Power 2013 exhibition. It is supposed to 

overcome the shortcomings of the horizontal wind turbines. From Fig.1.1 it can be seen that this 

device looks like a conveyor belt with airfoils for cleats. The airfoils travel across the wind and then 

push the belt along the track due to generation of lift and drag. The moving chain via a rack-and-

pinion setup can drive the electric generators. The inventor mentions that one advantage of LAWT 

is that wing on both ascending and descending tracks capture the wind energy and the LAWT 

concept works equally well in both air and water. Thus the LAWT concept can also be turned into a 

floating Looped Airfoil Hydro-Turbine (LAHT) that can harvest energy from river streams which is 

also abundant and renewable. Also, in comparison to the conventional horizontal wind turbines, the 

heavy parts of LAWT are at the ground level. 
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Figure 1.1: Schematic of a Looped Airfoil Wind Turbine (LAWT) 

 

1.2 Motivation 
 

Conventional wind turbines such as HAWT are very heavy and tall, sometimes they weigh as much 

as 250 tons at a height of 150 meters. Hence they require heavy reduction gears and are failure-

prone to yaw control and pitch control.  LAWT is much smaller and can share a single raft or barge 

platform which HAWT cannot do. The blades of HAWT are also complex and expensive to 

manufacture, transport and install. Since conventional wind turbines such as HAWT use the “rotary 

wing” concept of a helicopter, the blades of HAWT act like helicopter rotor blades that lead to 

inefficiencies. George Syrovy’s work on helicopters led him to an awareness of such weaknesses of 

conventional wind turbines. He therefore concluded that the fixed-wing type looping airfoil wind 

turbine is likely to have better efficiency and much cheaper.  

 

The fixed-wing airfoils in LAWT can move linearly. The airfoils are linked together on a triangular 

track as shown in Fig. 1.1, and the system incorporates a power extraction mechanism. LAWT takes 

advantage of the superior lift force of a linearly traveling wing compared to the lift and drag 

generated on rotating blades in conventional wind turbine configurations [2]. Looped Airfoil Wind 

Turbine has other advantages, it does not require complex gear systems and its blades have a 
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constant profile along their length and therefore LAWT can be manufactured at much lower cost 

than a comparable HAWT for the same amount of power. Furthermore, by placing the yaw rotation 

center (the center of rotation of the base around a vertical axis) ahead of the center of the triangular 

structure, LAWT automatically orients itself such that the wings on the ascending track face the 

wind. It also eliminates the need to lock the yaw position of the device as required by a conventional 

wind turbine [3]. Furthermore, several LAWTs can be placed much closer to each whereas 

conventional wind turbines such as HAWT require a minimum distance from each other (usually 5 

to7 times its rotor diameter). Additionally, the LAWT concentrates its weight at the base of the 

triangular structure, and does not require tall and anchored pylons. Since it sits on an offset rotating 

baseplate, the LAWT does not require sophisticated yaw control, either for power regulation or to 

prevent overspeeding [5]. Also, the LAWT does not require complex, expensive and maintenance-

intensive pitch control since all blades have a constant angle of attack. Another design feature of 

LAWT is that its airfoils can extract wind’s energy on both the ascending and descending track. 

Thus, the prospects of LAWT for small and medium range wind power generation of the order of 

10 KW to 1 MW look promising. 

 

The concept of a LAWT has never been evaluated theoretically and numerically in the literature 

before. The goal of this thesis is to perform numerical simulation and compute the power generated 

by a LAWT and then compare it with experimentally available information for a model LAWT [3]. 

Another goal is to optimize various design parameters of the LAWT, namely the track angle and the 

distance between the airfoils to maximize the power generation. The final objective is to extend the 

concept of LAWT to LAHT and analyze and optimize the performance of a LAHT by numerical 

simulation using CFD technology. 
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Chapter 2     Modeling and Analysis Tools 

2.1    Mesh Generation Software-ANSYS ICEM  
 

ANSYS ICEM is a popular proprietary software package used for mesh generation. It can create 

structured, unstructured, multi-block, and hybrid grids with different cell geometries. ANSYS ICEM 

provides advanced geometry acquisition, mesh generation, and mesh optimization to meet the 

requirement for integrated mesh generation and post processing tools for sophisticated analysis of 

complex configuration. ANSYS ICEM is used in conjunction with flow modeling software such as 

ANSYS FLUENT to solve engineering problems involving fluid flow.  

 

ANSYS ICEM can be considered as an extension of the meshing capabilities of original ANSYS 

meshing software. ICEM can be used outside of the workbench to mesh from faceted geometry and 

is easy to use and fits into the workbench. 

 

In this thesis, all geometry modelling was created using ANSYS ICEM. After geometry modelling, 

the unstructured meshes were created which were then imported into ANSYS FLUENT for fluid 

flow simulations.  

2.2    CFD Flow Solver-ANSYS FLUENT 
 

ANSYS FLUENT is a Computational Fluid Dynamics (CFD) tool for simulating fluid flows in a 

virtual environment used by engineers for design and analysis of many industrial products. It is 

owned by ANSYS, Inc. Capabilities of FLUENT include modeling of fluid including the effects of 

flow, turbulence, heat transfer, and chemical reactions. FLUENT is currently extensively employed 

in both industry and academic research. 

 

In this thesis, all fluid field simulations were conducted using ANSYS FLUENT. 
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Chapter 3     Flow Field Simulations of  
Cascade of  NACA 64421 Airfoils and 
Optimization Methodology for Looped Airfoil 
Wind Turbine 
 

LAWT utilizes aerodynamics forces generated by wind for power generation. The LAWT takes 

advantage of the superior aerodynamic performance of an airplane wing compared to conventional 

wind turbines with rotating blades [3]. The wings in a LAWT are mounted on a trapezoidal track and 

are connected by chains. The wings are evenly spaced on a triangular structure with their leading 

edges parallel, traveling up and down in a triangular path. The entire system moves together due to 

aerodynamic forces on the wings in the ascending and descending portions of the track [3]. When 

the wings are powered by the positive lift force, they travel upward in the clockwise direction. The 

airfoils are connected to each other by a chain. The chain can transfer kinetic mechanical power to 

electric generators. The rotor blades in conventional wind turbines are very complex and expensive 

to design and manufacture. However, as can be seen from Fig. 1.1, a LAWT utilizes planar wings 

with uniform airfoil section instead of the traditional three long rotating blades used in a HAWT. 

Since each wing on the track has a uniform airfoil section along its length, it can significantly reduce 

the manufacturing cost. Furthermore the LAWT design is flexible, it can be adjusted to face the 

wind direction all the time or can stay in a fixed position. 

 

The wing sections in a LAWT can be either symmetrically or asymmetrically having a camber. The 

ascending wings can be positioned at an angle of attack ranging from 0 to 18 degrees. The LAWT 

structure has three tracks: an ascending track at an angle, a descending track at an angle and a 

horizontal bottom track. The optimal track angle is 60 degrees; it can vary between 45 to 75 degrees. 

To find the optimal LAWT configuration to maximize the power generation, several design 

parameters must be considered, such as the spacing between the wings, the track speed, and the 

angle of the ascending and descending tracks. This thesis develops an analytical expression for the 

power generated by the LAWT by calculating the average lift and drag coefficients for each wing 

based on the kinematics of the LAWT system. To calculate the average lift and drag coefficients, 
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numerical simulations for a cascade of airfoils on ascending and descending track are performed 

using ANSYS FLUENT. The simulation is also considered the effect of the ascending track angle 

and the spacing between the wings in order to determine the optimal parameters for maximum 

power generation. 

3.1    Kinematics of a Wing with Constant Airfoil 
Section on Ascending Track 

 

The LAWT is set in motion by the components of the lift and drag forces on wings in the direction 

of the ascending track. During start-up operation, the only velocity component seen by the airfoil is 

the wind (assumed horizontal). As a result, the high initial pitching angle also acts as the angle of 

attack and motion along the track is initiated primarily by the drag. As the track attains speed, the 

track motion induces a downwards velocity on the airfoil, which reduces the angle of attack seen by 

the airfoil, bringing the airfoil to a more favorable operating condition where the lift starts to 

contribute more to the resultant force along the track than the drag. Steady-state operation is 

reached when the track reaches its design speed and brakes engage to prevent it from accelerating 

further.  

 

The wings move along a track at an angle β to the horizontal. For a given wind speed 𝑈W and a 

given track speed 𝑈T = 𝑓𝑈W (as a fraction of the wind speed, 𝑓<1). There are primarily three 

possible scenarios that can occur as illustrated in Fig 3.1. It is assumed that the track angle β is 60 

degrees. Note that in each case, the angle of attack α remains at 12 degrees. The wind direction is at 

an angle φ with the horizontal direction. Now, the freestream velocity seen by the airfoils on the 

ascending track can be determined from the wind speed, the forward track angle, and the track 

speed using the cosine rule as shown in Eq. 3.1. 

 

                                                                                               (3.1) 

For the three cases with different track speed, the freestream velocity 𝑈∞ is given in Table 3.1. 
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Table 3.1: Freestream Velocities for Different Track Speeds 

 Case 1 Case 2 Case 3 

Track Speed 𝑈T 0.25 𝑈W 0.5 𝑈W 𝑈W 

Freestream velocity 

𝑈∞ 
0.90 𝑈W 0.87 𝑈W 𝑈W 

 

Figure 3.1: Freestream Velocities for Different Track Speeds 
 

To maximize the wind speed, the design track speed in this study is considered to be equal to the 

wind speed, as shown in Fig. 3.2 

 

 

Figure 3.2: Kinematics of LAWT Airfoil on Ascending Track with Track Speed Equal to the 
Wind Speed 

3.1.1    Kinematics of the LAWT Wings on Ascending Track  
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The freestream velocity seen by the airfoils on the ascending track can be found from the wind 

speed, the forward track angle, and the track speed using the cosine rule as given in Eq. 3.1. The 

freestream velocity given by Eq. 3.2 acts at an angle of φ from the horizontal. 

 

                                                                                                                (3.2)               

 

To ensure that the angle of attack seen by the airfoil during steady-state operation is the design angle 

of attack α, the airfoil must be pitched on the track at an angle θ with respect to the horizontal 

where θ = 𝛼 + 𝜑. 

 

The lift and drag on the airfoil act perpendicular and parallel to the direction of the freestream 

respectively. The resultant force along the track as a result of the lift and drag is what powers the 

track motion. Assuming that the lift 𝐿 and drag 𝐷 are known, the net force along the track 𝐹T can be 

computed from Eq. 3.3. 

 

                                                                                         (3.3)               

 

The one-dimensional resultant force coefficient along the track can be obtained from the airfoil lift 

and drag coefficients as given in Eq. 3.4. 

 

                                                                                   (3.4)      

3.1.2    Analytical Derivation of Power Generation from LAWT  
 

As can be seen from Fig. 3.2, for the case when the track speed is equal to the wind speed, the 

direction of the drag is such that the contribution of the drag to the resultant force along the track is 

negative. However, since the lift is much greater than the drag during steady-state operation, the net 

force along the track remains positive to power the track motion. 
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For a single airfoil, the coefficients of lift and drag can be obtained from the literature. For cascade 

of airfoils in a LAWT configuration, differences from single airfoil values are expected due finite 

spacing between the airfoils. Numerical simulations are used to determine the average lift and drag 

coefficients for a cascade of airfoils and are substituted in Eq. 3.4 to calculate the resultant force 

coefficient along the track. The force along the track per airfoil can then be obtained using Eq. 3.5. 

                                                                                                                    (3.5)                

 

For 𝑛 airfoils along the front side of the triangular track, an approximation for the total force along 

the track is 𝑛𝐹T. The exact value can be determined by using the numerical data from Fluent. It is 

expected that the top and bottom airfoil along the track will have a large contribution to the total 

force than the middle airfoils. The total power generated along the ascending track with 𝑛 airfoils is 

given by Eq. 3.6, excluding inefficiencies due to chains and end effects of the wing. 

 

                                                                                                                                 (3.6) 

3.2    Flow Field Simulation of a Single Airfoil on 
Ascending Track  

3.2.1    Description of NACA 64421 Airfoil  
 

In last several decades, important contributions have been made to provide wind turbine 

manufacturers with superior airfoil families such as NACA 64 series of airfoils that fulfill the 

intrinsic requirements in terms of design point performance, off-design capabilities and structural 

properties [6]. 

 

The NACA 63 and 64 six-digit series airfoils are still being used for wind turbine blades. These 

airfoils have been optimized for high speed wind condition to achieve higher maximum lift 

coefficient for a small range of operating conditions [7, 8]. The NACA 64 series airfoils have an 

upper surface contoured so as to increase the flow velocity to avoid separation for the desired range 

of incidence angles. The lower surface is contoured so as to maintain the desired thickness [9]. 
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This study employs NACA66421 airfoil. The maximum lift for the NACA64421 airfoil is generated 

at an angle of attack of approximately 12 degrees. Therefore, this angle of attack is chosen as the 

design angle of attack for the LAWT. The baseline forward track angle is chosen as 60 degrees and a 

wind speed of 14 m/s is considered. For steady-state operation with track speed equal to wind 

speed, the freestream velocity seen by the airfoil from Eq. (1) is also 14 m/s. The chord length used 

in the LAWT design is 0.3 m. From the lift curve and drag polar data available in Ref. [10], the CL 

and CD for the NACA 64421 airfoil at an angle of attack of 12 degrees are approximately 1.2 and 

0.12 respectively. It should be noted that the Reynolds number (Re) of the LAWT in this study is 

approximately one-tenth of the Re used in the experiment in Ref. [10] to obtain these values of CL 

and CD. However, Ref. [10] shows only a slight dependence of the lift curve slope on the Re at an 

angle of attack of 12 degrees. Therefore, in the absence of data at the actual LAWT Re, the values of 

1.2 and 0.12 for CL and CD respectively are used to validate the numerical approach. 

3.2.2    Computational Fluid Dynamics (CFD) Methodology 
 

All the simulations in this thesis employ the Computational Fluid Dynamics (CFD) methodology to 

compute the flow field. CFD is a branch of fluid mechanics which numerically solves the governing 

equations of fluid dynamics. 

 

CFD technology solves the governing equations of fluid dynamics which include the continuity 

equation, the Naiver-Stokes equations and the energy equation. Given the complexity and 

nonlinearity of the Naiver-Stokes equations, depending upon the appreciation and physics of the 

problem, they are often simplified by invoking several assumptions. The equations are simplified by 

assuming the fluid to be inviscid and therefore deleting the viscous terms to yield the Euler 

equations. By making addition assumption that the fluid flow is irrotational, one obtains the full 

potential equation. Finally, for small perturbations in subsonic and supersonic flows (not transonic 

or hypersonic) the full potential equation can be linearized to yield the linearized potential equation 

[9]. 

 

The basic procedure employed in obtaining the CFD solution is Pre-processing, Flow field 

simulation and Post-processing. Pre-processing includes geometry modeling, mesh generation about 

the body, and boundary conditions at various boundaries of the flow domain. The governing 



11 

equations are discretized at mesh points and are solved using an appropriate algorithm on a 

computer to obtain the values of the flow variables at the mesh points. Post-processing is used for 

analysis of the computed data and shape optimization. 

 

Most well-known CFD codes that have been developed during past three decades are Fluent, 

StarC++, Overflow, etc. In this study, the most commonly used CFD solver ANSYS Fluent is 

employed for flow field simulations. 

 

3.2.3    Turbulence Modeling   
 

Most of the flows encountered in nature and in industrial systems are generally turbulent. 

Turbulence characterizes the random and chaotic motion of viscous fluid flow at high Reynold 

numbers. Turbulent flows are characterized by fluctuating velocity, pressure and temperature fields.  

 

Because of small scale and high frequency of the flow fluctuations, it is too difficult and expensive to 

directly simulate the turbulent flow by solving the Naiver-Stokes equations at high Reynolds 

numbers for practical engineering applications. Therefore, the instantaneous (time dependent) 

governing equations are generally time-averaged or ensemble-averaged to remove the small scales, 

thereby resulting in a time-averaged set of equations that are computationally less intensive to solve. 

These equations are known as the Reynolds-Averaged Naiver-Stokes (RANS) equations. 

Unfortunately, the RANS equations contain additional unknown variables known as the “Reynolds-

Stresses” that need to be modeled. Therefore, turbulence models are needed to define these stresses 

in terms of known quantities (flow variables) [9].  

 

There are several most commonly used turbulence models, e.g., the Spalart-Allmaras (SA) Model, 

the Shear-Stress Transport (SST) k-ω model and k-kl-ω Transition model. 

 

In this study, accurate simulation of LAWT airfoil is relatively difficult because of lower Reynolds 

number at which the laminar flow at the leading edge of the airfoil tends to separate and becomes 

transitional before becoming fully turbulent [10]. The process of a laminar flow becoming turbulent 

is known as laminar-turbulent transition. This is an extremely complex process which even today is 
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not fully understood. However, as a result of several decades of excellent research, certain features 

of transitional flow have become gradually clear, and it is now known that the process develops 

through a series of instability modes. While transition can occur in any fluid flow, it is most often 

important in the context of boundary layers. 

 

To solve the transitional flow over the airfoil at relatively lower Reynolds number (in transitional 

region), in this study, k-kl-ω turbulence model was used to account for the laminar-turbulent 

transition region on the airfoil [11]. This model has been found to be fairly accurate for predicting 

the transition in boundary layer flows. It is a three-equation eddy-viscosity type turbulence model. 

 

3.2.4    Mesh Generation 
 

Mesh is a mathematical representation of a set of discrete points in the computational domain which 

is needed to discretize the governing equations of fluid flow at these points. The commercially 

available software ANSYS ICEM is employed to generate a structured mesh around a single airfoil.  

 

There are two types of mesh which are most commonly used: O-grid and C-grid as shown on Fig. 

3.3 and Fig. 3.4. For viscous flow, a C-grid is preferred because it allows to resolve the wake more 

accurately. C-grid is aligned to the wake or slipstream at the trailing edge of the airfoil. In particular, 

for grid adaptation, for viscous flow past an airfoil, it is easier to resolve a boundary layer and the 

wake with a C-grid.  

 

The mesh used in this study has a C-grid topology. The grid is refined near the leading edge and 

trailing edge and is adapted to the flow gradients. The mesh is generated using ANSYS ICEM. 
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Figure 3.3: C-grid Mesh around the Single Airfoil (Zoomed-in View) 
 
 
 

 

Figure 3.4: O-grid Mesh around the Single Airfoil (Zoomed-in View) 
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Figure 3.5: Adapted Mesh around the Single Airfoil in Computational Domain 
 

 

Figure 3.6:  Zoomed-in View of Adapted C-Grid Around the NACA 64421 Airfoil 
 

Fig. 3.5 shows the mesh around the NACA 64421 airfoil. In this mesh, there are 76,725 quadrilateral 

cells and 77,256 nodes. The far field boundary is set at 15 chord lengths. 

 

The airfoil mesh is imported into ANSYS Fluent to solve for the flow field and to obtain the lift and 

drag coefficients. As mentioned before, to account for flow in the laminar-turbulent transition 

region, the k-kl-ω   turbulence model is used throughout this study [12]. The flow is assumed to be 

steady and incompressible. Adaptive meshing is employed to maintain y+ values under 1 next to the 

airfoil surface to ensure the accuracy of the numerical solution. 
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3.2.5    Flow Field Results 
 

The plot of the pressure coefficient for the NACA 64421 airfoil is shown in Fig. 3.7. Pressure 

contour and velocity contours are given in Fig. 3.8 and Fig. 3.9 respectively. The computed values of 

CL and CD from ANSYS Fluent are 1.196 and 0.104 respectively. These values match the empirical 

data from Ref. [4] and thus validate the present numerical solution. 

 

Figure 3.7:  Pressure Coefficient Distribution for Single Airfoil on Ascending Track, ReC=0.3m 
= 315,221, α = 12 degrees 

 

3.3    Flow Field Simulation of Cascade of Airfoils on 
Ascending Track  

3.3.1    Modeling Setup  
 

For a given LAWT configuration, there is a certain number of wings on the ascending track spaced 

some distance apart. This section investigates the effect of stacking airfoils along the track for the 

LAWT configuration. In this section, simulations of a cascade of 3 to 19 NACA 64421 airfoils are 

conducted using ANSYS Fluent. The goal of this study is to establish trends in average lift and drag 

coefficients versus the number of airfoils so that the average lift and drag can be accurately 

estimated for any given number of airfoils. The cases considered consist of a cascade of 3, 4, 5, 10, 
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and 19 airfoils respectively. The spacing between the airfoils along the track direction is set equal to 

the chord length of 0.3 m. 

 

The mesh for the cascade of airfoils is generated in ANSYS ICEM using a block-grid approach 

repeated for each airfoil of the cascade. The mesh has a C-grid topology around each airfoil of the 

cascade. Fig. 3.8 and Fig. 3.9 show the mesh around three airfoils. In this mesh, there are 410,777 

quadrilateral cells and 419,372 nodes. The far field boundary is set at 15 chord lengths. Once the 

mesh is imported into ANSYS-Fluent, adaptive meshing is employed to ensure that the y+  

value is less than 1 next to the surface of the airfoils.   

 

Figure 3.8:  C-grid Around a Cascade of Three Airfoils 
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Figure 3.9:  Zoomed-in View of C-grid Around a Cascade of Three Airfoils 
 

3.3.2    Calculation of Total Lift and Drag of LAWT on Ascending 
Track 

 

For a given LAWT, there are n airfoils on the ascending track. It is important to determine the 

average lift and drag coefficient to get the overall lift and drag force which will finally contribute to 

the power generation from a LAWT. 

 

It is assumed that the middle airfoil of the cascade represents the rest of the airfoils since it can 

experience the average aerodynamic effect of having equal number of airfoils on both sides. Once 

the aerodynamics of the middle airfoil is determined it would then be possible to use this result for 

any other airfoil around the loop. Thus an equation for the total coefficient of lift can be written as: 

CL (total) = CL (top) +CL (bottom) + (n-2) CL (middle).  

 

To calculate the average of total lift and total drag, five cases are considered. These cases are 

simulated in ANSYS- Fluent with a cascade of: 3 airfoils, 4 airfoils, 5 airfoils, 10 airfoils and 19 

airfoils. These five cases provide a variation of average CL and CD with number of airfoils. Viewing 

the trend of average CL and CD from the five cases, the total lift and drag coefficient of a LAWT can 

be calculated. 
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The meshes around 4, 5, 10 and 19 airfoils in the cascade are generated in a similar manner in 

ANSYS-ICEM. Each simulation is run with a freestream velocity of 14 m/s with an angle of attack 

of 12 degrees. The k-kl-ω turbulence model is used in the simulations and the flow is assumed to be 

steady and incompressible in each case. 

3.3.3    Results and Discussion  
 

The pressure coefficient distributions over each airfoil for a cascade of 3, 4 and 5 airfoils are shown 

in Fig. 3.10, Fig. 3.11 and Fig. 3.12 respectively. The pressure contours and velocity contours for a 

cascade of 3 and 4 airfoils are shown on Fig.3. 13 to Fig. 3.16 respectively. 

 

 

Figure 3.10:  Pressure Coefficient Distribution for Cascade of 3 Airfoils, ReC=0.3m = 315,221, α 
= 12 degrees 

 

 

Figure 3.11:  Pressure Coefficient Distribution for Cascade of 4 Airfoils, ReC=0.3m = 315,221, α 
= 12 degrees 
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Figure 3.12:  Pressure Coefficient Distribution for Cascade of 5 Airfoils, ReC=0.3m = 315,221, α 
= 12 degrees 

 

 

Figure 3.13:  Pressure Contours for a cascade of 3 Airfoils at an Angle of Attack =12 degrees 
 

 

Figure 3.14:  Pressure Contours for a cascade of 4 Airfoils at an Angle of Attack =12 degrees 
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Figure 3.15:  Velocity Contours for a cascade of 3 Airfoils at an Angle of Attack =12 degrees 
 

 

Figure 3.16:  Velocity Contours for a cascade of 4 Airfoils at an Angle of Attack =12 degrees 
 

The lift and drag coefficients for each airfoil in the cascade of 3, 4, 5, and 10 airfoils are given in 

Tables 3.2 and 3.3 respectively, Table 3.4 shows the average lift and drag coefficients for all 5 cases. 

The first row in the tables refers to the bottommost airfoil. 

Table 3.2: Lift Coefficient for Each Airfoil in the Cascade 

 Number  of    airfoils    in cascade  
3 4 5 10 

1.246 1.255 1.190 1.013 

1.138 1.078 1.121 1.013 
1.138 0.992 0.989 0.984 

- 1.046 0.956 0.967 
- - 1.037 0.931 
- - - 0.883 
- - - 0.818 
- - - 0.795 
- - - 0.786 
- - - 0.976 
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Table 3.3: Drag Coefficient for Each Airfoil in the Cascade 

 Number  of    airfoils    in cascade  
3 4 5 10 

-0.040 -0.054 -0.068 -0.075 

0.041 0.027 0.011 -0.027 
0.084 0.059 0.045 0.005 

- 0.088 0.066 0.028 
- - 0.094 0.044 
- - - 0.056 
- - - 0.061 
- - - 0.074 
- - - 0.079 
- - - 0.101 

 

Table 3.4: Average Lift and Drag Coefficient with Different Numbers of Airfoils in Cascade 

Number of Airfoils Average CL Average CD 

3 1.174 0.0284 
4 1.093 0.0299 
5 1.063 0.0312 
10 0.914 0.0344 
19 0.766 0.0540 

 

The assumption that the middle airfoil gives a good representation of the rest of the airfoils in the 

cascade. As given in Tables 3.2 and 3.3 and comparing it with the average values in Table 3.4, for 

each cascade, the lift coefficient is the highest for the bottom most airfoil and then decreases along 

the cascade, except for the top most airfoil which shows a slight increase again. On the other hand, 

the drag coefficient starts out with a negative value and increases along the cascade such that the 

topmost airfoil has the highest drag coefficient. The negative drag coefficient on the bottom most 

airfoils in the cascade is caused by the large static pressure on the bottom surface that cannot be 

balanced by the pressure on the top surface due to the presence of additional airfoils. This 

unbalanced pressure overwhelms the viscous drag to produce a net force back towards the 

freestream velocity on the bottom most airfoils. 

 

Based on the average lift and drag coefficients in Table 3.4, the trends in the average lift and drag 

coefficient versus the number of airfoils can be identified. These are plotted in Figs. 3.17 and 3.18 

respectively. From Fig. 3.17, it can be seen that the average lift coefficient has a negative power law 
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dependence with respect to the number of airfoils. On the other hand, Fig. 3.18 shows that the 

average drag coefficient increases linearly with the number of airfoils. It should be noted that 

although the average lift per airfoil decreases as the number of airfoils is increased, the total lift (and 

hence, power) still increases. The results in this section can be used to predict the average lift and 

drag coefficients for any number of airfoils and to calculate the total power from LAWT using Eqs. 

3.4-3.6. Using the general formula for average lift and drag for the case of 30 airfoils along the track 

and assuming a span of 1 m and properties of air at sea level, the power generated by the LAWT is 

approximately 8.45 kW, which agrees with values reported in Ref. [3]. 

 

 

Figure 3.17:  Average Lift Coefficient Versus the Number of Airfoils in the Cascade for 
NACA 64421 Airfoils 

 
 

 

 

Figure 3.18:  Average Drag Coefficient Versus the Number of Airfoils in the Cascade for 
NACA 64421 Airfoils 
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3.4    Flow Field Simulation of a Single NACA 64421 
Airfoil on Descending Track 

3.4.1    Kinematics of Airfoil on Descending Track 
 

The airfoils can extract wind’s energy on both ascending and descending track. Based on the design 

and kinematics of the LAWT, the airfoils on the descending track may contribute an additional force 

along the track. If the airfoils are fixed with respect to the track, the descending track only 

contributes to the power when the track speed is below a certain threshold. If the track speed 

exceeds this threshold, the net angle of attack becomes negative and the net resulting force subtracts 

from the power generated by the ascending track. However, mechanical pitch adjustments can be 

added to the LAWT design to ensure that the contribution from the descending track remains 

positive [3].  

 

The present study considers an airfoil with a fixed pitch that has been flipped to a trailing-edge-first 

configuration on the descending track as shown in Fig. 3.19. The angle of attack for the flipped 

airfoil is 20.2 degrees, which corresponds to an airfoil pitch angle such that the ascending angle of 

attack is the design value of 12 degrees when the track speed is a quarter of the wind speed and both 

forward and reverse track angles are 60 degrees, as shown in Fig. 3.19. It should be noted that in 

actual practice, the descending track will lie in the wake of the ascending track and will likely see a 

reduced wind speed. No attempt has been made to include the effects of the wake in reducing the 

wind velocity. 
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Figure 3.19:  Kinematics of LAWT Airfoil on Descending Track with Track Speed Equal to 
Quarter of the Wind Speed 

 

3.4.2    Results and Discussion  
 

The modeling setup and mesh generation are similar to the cascade of single airfoil on the ascending 

track. The pressure coefficient distribution obtained by ANSYS-Fluent is plotted in Fig. 3.20. From 

Fluent, the computed lift coefficient is 0.535 and the drag coefficient is 0.1661. The coefficient of 

power along the track can be determined using Eq. 3.4 with the forward track angle β replaced by 

the reverse track angle ω. 

 

Figure 3.20:  Pressure Coefficient Distribution for Single Airfoil on Descending Track, 
ReC=0.3m = 315,221, α = 20.2 degrees 
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The lift coefficient for the flipped airfoil on the descending track is considerably less than that of the 

single airfoil on the ascending track; on the other hand, the drag coefficient is much higher. This is 

expected because the flow encounters the sharp trailing edge of the airfoil first and then separates 

leading to a stall condition, which reduces lift and increases drag. This is verified from the velocity 

contour shown in Fig. 3.21. The velocity contour shows a prominent zone of separation of the 

sharp edge. These results indicate that the drag can also be a significant contributor to the resultant 

force along the descending track.  

 

Figure 3.21:  Velocity Contour for the Flipped Airfoil on the Descending Track at an Angle 
of Attack = 20.2 degrees 

 

3.5    Optimization Methodology for LAWT Design 
 

For a given CL and CD, the effects of the various angles, namely the angle of attack and pitch angle, 

in the LAWT design have already been accounted for in the analytical formulation of power via Eqs. 

3.4-3.6. However, it is expected that the CL and CD are also affected by the track angle β and the 

spacing between the airfoils.  

 

The objective of this section is to identify the design parameters that have the biggest effect on 

power generation from LAWT and then optimize them. Fig. 3.22 schematically illustrates the 

optimization methodology.  
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Figure 3.22:  Schematic of Information Flow in Optimization Process 
 

For this purpose, various numerical studies are conducted by varying the forward track angle and the 

spacing between airfoils The track angle of 60 degrees and spacing of one chord length between the 

airfoils is considered as the baseline case (case 0). Four cases are investigated which are summarized 

in Table 3.5. It should be noted that in each of these cases, a cascade of 3 airfoils is considered. Each 

simulation is run with a freestream velocity of 14 m/s with an angle of attack of 12 degrees. The k-

kl-ω turbulence model is used in the simulations and the flow is assumed to be steady and 

incompressible. 

 

 

Table 3.5: Summary of Cases Run for Various Track Angles and Spacings between the 
Airfoils 

Case 0 1 2 3 4 

Spacing 1c 1c 1c 1.25c 0.75c 

β (deg) 60 75 45 60 60 

 

3.6    Results and Discussion  
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For each case in Table 3.5, the lift and drag coefficients for each airfoil in a cascade of 3 airfoils is 

obtained from the numerical simulation. The average lift and drag coefficients, and the coefficient of 

the resultant force along the track direction are computed and are given in Table 3.6. 

 

Table 3.6: Results of Numerical Simulations for Case 0, 1, 2, 3and 4 in Table 3.5 

Case 0 1 2 3 4 

Spacing 1c 1c 1c 1.25c 0.75c 

β (deg) 60 75 45 60 60 

φ (deg) 60 52.5 67.5 60 60 

Average CL 1.174 1.240 1.083 1.237 1.043 

Average CD 0.028 0.027 0.040 0.030 0.030 

Average CF 1.003 0.968 0.986 1.056 0.889 

Average CF per 

unit chord of 

spacing 

1.003 0.968 0.986 0.845 1.182 

 

The pressure contours and velocity contours for varies cases are shown in Fig. 3.23 to Fig .3.30. 

 

Figure 3.23:  Pressure Contours for Case 2 with Spacing 1c and Track Angle 450 
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Figure 3.24:  Velocity Contours for Case 2 with Spacing 1c and Track Angle 450 

 

 

 

Figure 3.25:  Pressure Contours for Case 1 with Spacing 1c and Track Angle 750 
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Figure 3.26:  Velocity Contours for Case 1 with Spacing 1c and Track Angle 750 

 

 

 

Figure 3.27:  Pressure Contours for Case 4 with Spacing 0.75c and Track Angle 600 
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Figure 3.28:  Velocity Contours for Case 4 with Spacing 0.75c and Track Angle 600 

 

 

 

Figure 3.29:  Pressure Contours for Case 3 with Spacing 1.25c and Track Angle 600 
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Figure 3.30:  Velocity Contours for Case 3 with Spacing 1.25c and Track Angle 600 
 

For cases 0, 1, and 2, the spacing and hence the number of airfoils remains constant. From Eqs. 3.5 

and 3.6, the total power is therefore directly proportional to the average coefficient of force along 

the track. Thus, it can be seen that the forward track angle of 60 degrees is the optimal case. The 

average CF for both cases 1 and 2 is lower than the average CF for case 0. It should be noted that 

although the average CL for case 1 is greater compared to case 0, the lift acts along a direction such 

that it has a smaller component in the direction of the track. This result was verified in the original 

patent that the optimal track angle for the ascending track is 60 degrees for maximum power 

generation from LAWT.  

 

The results for the cases 3 and 4 with varying spacing between airfoils are of greater interest. From 

Table 3.6, case 3 with a spacing of 1.25c has the highest average CF whereas case 4 with a spacing of 

0.75c has the lowest average CF. However, the spacing also affects the number of airfoils that can be 

placed along the same length of the track. Assuming a track length that fits 30 airfoils with a baseline 

spacing of 1c, increasing the spacing to 1.25c would reduce the number of airfoils to 24 while 

reducing the spacing to 0.75c would increase the number of airfoils to 40. Taking this into account, 

the average CF per unit chord of spacing shows that case 4 would have greater power generation 

according to Eq. 3.6 by 18% compared to the baseline case. These results show that significant 

increases in power generation can be obtained by optimizing the design of the LAWT, particularly 

the spacing between the airfoils.  
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It appears that as the spacing between the airfoils becomes smaller, the power increases. However, 

the spacing between the two airfoils cannot be too small due to negative effects of aerodynamic 

interference. NACA 64421 is very thick airfoil; the effects of aerodynamic interference cannot be 

ignored if the two thick airfoils are very close. The simulation results show that if the spacing is half 

of the chord length (0.5c), the lift coefficient drops significantly. Therefore, it is assumed that the 

optimal spacing is between 0.5c and 0.75c. To verify this conclusion, two additional cases are 

simulated. 

 

Table 3.7: Summary of Parameters for Two Additional Cases 

Case 0 5 6 

Spacing 1c 0.6c 0.8c 

             β (deg) 60 60 60 

 

For case 5 and case 6, the computed average lift, drag coefficients, and the coefficient of the 

resultant force along the track are given in Table 3.8. 

 

Table 3.8: Results of Numerical Simulations for Case 0, 4, 5 and 6 

Case 0 4 5 6 

Spacing 1c 0.75c 0.6c 0.8c 

β (deg) 60 60 60 60 

φ (deg) 60 60 60 60 

Average CF 1.003 0.889 0.834 0.924 

Average CF per 

unit chord of 

spacing 

1.003 1.182 1.390 1.155 

 

The average CF per unit chord of spacing shows that case 5 would have greater power generation by 

38.6% compared to the baseline case. These results show that the spacing of 0.6c between airfoils is 

optimal. This results points out that a more advanced optimization method such as a Genetic 

Algorithm may be helpful in determining the optimum spacing for maximum power generation 

from a LAWT. 
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Chapter 4     Flow Field Simulations of  NACA 
64421 Hydrofoils and New Highly-Cambered 
Hydrofoils for LAHT 

4.1    Flow Field Simulations of a Single Hydrofoil on 
Ascending Track of LAHT 

 

LAWT concept can work well both in air and water. Hence the same idea as described in chapter 3 

for a LAHT is applied to study an analogous floating Looped Airfoil Hydro Turbine (LAHT) which 

converts the kinetic energy of river streams into electricity. Like LAWT, the floating LAHT also 

brings same advantages of a superior lift force of linearly traveling wing to harvest energy from a 

flowing water stream. Since water is approximately 800 times denser than air, it is appears that a 

LAHT could harvest more energy than a LAWT (See Eq. 3.6).  The model of a floating LAHT is 

shown in Fig. 4.1. 

 

 

Figure 4.1:  Model of a Floating LAHT  
 

The speed of water in a river stream can vary from close to 0 meter per second to 3 meter per 

second. Factors that affect the speed of water in a river include the slope gradient, the roughness of 

the channel and effects of tides. In this study, the water speeds of 1 m/s and 3 m/s are chosen for 

the simulation. 
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First a uniform wing of NACA66421 airfoil section is considered. The results in chapter 3 for a 

LAWT showed that the maximum lift for the NACA64421 airfoil is generated at an angle of attack 

of approximately 12 degrees. Therefore, for a LAHT, an angle of attack of 12 is chosen along with 

the forward track angle of 60 degrees as the baseline case.  

 

For water speed of 1.3 m/s, the computed value of CL and CD from ANSYS-Fluent are 1.57 and 

0.03 respectively. Comparing these values with those for a LAWT, it can be noted that the results 

for a LAHT are better as shown in Table 4.1. In Table 4.1, the results for LAWT are for wind speed 

of 14m/s while the results for LAHT are for water speed of 1.3m/s. For higher water speed, the 

results for a LAHT will be much superior.  

Table 4.1:  Comparison of Performance Between Single Airfoil and Hydrofoil  

 CL CD 

Single Airfoil in LAWT 1.196 0.104 

Single Hydrofoil in LAHT 1.572 0.031 

4.2    Flow Field Simulations of Cascade of Hydrofoils 
on Ascending Track of LAHT  

 

As in the case of LAWT in chapter 3, for a given LAHT, there is a certain number of hydrofoils on 

the ascending track with a specific spacing between the airfoils. Again for LAHT, cascades of 

NACA 64421 hydrofoils are simulated using ANSYS Fluent. In this section, a cascades of NACA 

64421 hydrofoils are simulated in ANSYS Fluent. The three cases considered consist of 3, 4, and 5 

hydrofoils in the cascade. The spacing between the hydrofoils along the track direction is set at 

chord length of 0.3m. 

 

The mesh for the cascade of hydrofoils is again generated using ANSYS ICEM. The mesh has an C-

grid topology with block grid around each hydrofoil. The far field boundary is set at 20 chord length. 

Once the mesh is imported into ANSYS-Fluent, adaptive meshing is employed to ensure that the y+ 

value is less than 1 at a grid point next to the surface of the airfoil. Each simulation is run with a 

freestream velocity of 1m/s and 3m/s respectively at an angle of attack of 12 degrees. Again, the k-

kl-ω turbulence model is employed in the simulations and the flow is assumed to be steady and 

incompressible.  
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The lift and drag coefficients for each hydrofoil in the cascade of 3, 4, and 5 hydrofoils are given in 

Table 4.2 and 4.3 respectively. Table 4.4 shows the average lift and drag coefficients for all three 

cases. The first row in tables refers to the bottom most hydrofoil. 

 

Table 4.2: Lift Coefficient for Each Hydrofoil in the Cascade 

 Number  of  hydrofoils    in cascade 
3 4 5 

1.273 1.216 1.210 

1.117 1.075 1.114 
1.123 0.980 0.975 

- 1.058 0.933 
- - 1.013 

 

Table 4.3: Drag Coefficient for Each Hydrofoil in the Cascade 

 Number  of  hydrofoils    in cascade 
3 4 5 

-0.040 -0.061 -0.066 

0.043 0.029 0.011 
0.086 0.058 0.046 

- 0.089 0.066 
- - 0.092 

 

Table 4.4: Average Lift and Drag Coefficient for the Cascade with Different Number of 
Airfoils 

Number of Airfoils Average CL Average CD 

3 1.171 0.030 
4 1.082 0.0289 
5 1.049 0.0298 

 

Like LAWT, for each cascade the lift coefficient is the highest for the bottom most hydrofoil and 

then decreases for other hydrofoils in the cascade, except for the topmost hydrofoil which shows a 

slight increase again. The drag coefficient starts out at with a negative value and increases along the 

cascade such that the top most airfoil has the highest drag coefficient. As in the case of LAWT, the 

negative drag coefficient on the bottommost is caused by the large static pressure on the bottom 

surface that cannot be balanced by the pressure on the top surface due to the presence of the 

additional hydrofoils. This unbalanced pressure overwhelms the viscous drag to produce a net force 

back towards the freestream velocity on the bottom most hydrofoils. 
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Based on the average lift and drag coefficients in Table 4.4, the trends in the average lift and drag 

coefficient versus the number of airfoils are similar to those shown in Figs. 3.18 and 3.19. The 

average lift per airfoil decreases as the number of airfoils increases; however, the total lift (and 

hence, power) still increases.  

 

The results for water speed of 1m/s are very close to the results for air speed of 14 m/s. Despite of 

the fact that the results from water are similar to those from air for the speed considered, LAHT has 

greater potential for increasing power generation due to higher density of water (800 times greater 

than air). For example, for a cascade of 3 hydrofoils, when the water speed is 1m/s and 3m/s 

respectively, the power generated from a 3 hydrofoils LAHT is approximately 4320w and 38880w 

respectively as given in Table 4.5. 

 

Table 4.5: Comparison of Power Generation Between a LAWT and a LAHT 

Cascade of 3 Airfoils or Hydrofoils Power (w) 

LAWT with wind speed of 14m/s 4536 
LAHT with water speed of 1m/s 4320 
LAHT with water speed of 3m/s 38880 

 

When the water speed is 3m/s, the power generated by a LAHT is 756% more than the power 

generated by a LAWT.  From the results shown in Table 4.5, LAHT performs similar to a normal 

LAWT when the water speed is slow. If the water speed is fast enough, LAHT performs better than 

LAWT. Thus, the potential of LAHT appears very promising.   

 

 

4.3    Flow Field Simulation of a New Highly-
Cambered Hydrofoil for LAHT  

4.3.1    Introduction of a New Highly-Cambered Hydrofoil  
 

As mentioned in section 3.2.1, the NACA 63 and 64 six-digit series airfoils are still used for wind 

turbine blades today. These airfoils have been optimized for high speed wind condition to obtain 

higher maximum lift coefficient and very low drag over a small range of operating conditions [7, 8]. 
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However, for LAWT or LAHT concept which utilizes both lift and drag aerodynamic forces 

produced by wind energy, NACA 64 six-digit series clearly is not the most ideal airfoil or hydrofoil. 

To get more drag for a LAWT or a LAHT, a new highly-cambered airfoil or hydrofoil has been 

designed and built by EverLift Inc. using the NASA foil-simulation applet. The airfoil profile is 

shown in Fig 4.2.  

 

Figure 4.2:  Highly-Cambered Airfoil or Hydrofoil  
 

Obviously, this highly-cambered airfoil is not suitable for aviation or aircraft application because of 

its high drag. However, this highly-cambered airfoil can produce very high lift and drag and 

therefore is very suitable for LAWT or LAHT application. It should be noted that for LAWT/ 

LAHT, the high drag coefficient is an extra bonus for LAWT/LAHT in addition to high lift. This 

airfoil is unsuitable for an airplane wing, thus one cannot find such an airfoil in the NACA library. 

4.3.2    Concept of Minimal Spacing between the Hydrofoils 
 

The "minimal spacing between the airfoils or hydrofoils" is the smallest distance between the 

adjacent airfoils or hydrofoils which results in little aerodynamic interference. 

 

The inventor George Syrovy has researched this issue for many years. Based on the data available 

for various biplane designs and some tri-plane designs since 1920s, George has concluded that 

nearly all bi-planes have distance between the wings equal or slightly bigger than the wing chord. It 

should be noted that even the modern large Russian agricultural spray bi-planes from 1900s used 

today have the distance between the two wings of about a chord length and also the smaller modern 

"bush" bi-planes used in Alaska etc.  
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In order to avoid aerodynamic interference, George Syrovy has suggested the spacing between the 

blades to be two times of the chord length. He designed the first model of LAWT using a distance 

of two chord length between the blades; however, it is found by numerical simulations described in 

chapter 3 that the spacing between the blade should be of the order 0.6 times the chord to extract 

maximum power from LAWT. 

 

The designed wings of a LAHT model originally built by Syrovy have chord length of 2.45 inches 

while the distance between them is 5 inches. Thus the distance between the hydrofoils of LAHT 

model is greater than two chord. In a later model, Syrovy introduced additional 14 thin metal rods 

between the two blades which could mount additional 14 hydrofoils to reduce the spacing between 

the blades to be 2.5 inches, approximately equal to the chord. 

4.3.3    Flow Field Simulation of a Single Highly-Cambered 
Hydrofoil 

 

The maximum lift for a highly-cambered hydrofoil is generated at an angle of attack of 

approximately 17 degrees. Accordingly, this is chosen as the design angle of attack for the LAHT. 

The baseline forward track angle is chosen as 60 degrees and a water speed of 3 m/s is considered. 

The chord length used in the simulation of single hydrofoil is 0.3 m. It should be noted that CL for 

the highly-cambered hydrofoil at an angle of attack of 17 degrees is approximately 2.8; this value of 

CL is validated by the numerical simulation. 

 

The mesh for a single highly-cambered hydrofoil is generated using ANSYS-ICEM. Figs. 4.3 and 4.4 

show the mesh. In this mesh, there are 78,375 quadrilateral cells and 78,916 nodes. The far field 

boundary is set at 20 chord length. Once the mesh is imported into ANSYS-Fluent, adaptive 

meshing is employed to ensure that the y+ value is less than 1 at all grid points next to the hydrofoil. 
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Figure 4.3:  Mesh Around the Highly-Cambered Hydrofoil 
 

 

Figure 4.4:  Zoomed-in View of the C-grid Around the Highly-Cambered Hydrofoil 
 

ANSYS Fluent is used to solve the flow field and obtain the lift and drag coefficients. The computed 

value of CL is 2.98. This value is slightly bigger than the one given by George Syrovy. The computed 

value of CD is 0.09. This calculation shows that perhaps a more refined mesh is needed to improve 

the prediction of lift and drag coefficient. 

4.3.4    Flow Field Simulation of a Cascade of Highly-Cambered 
Hydrofoils 
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In this section, numerical simulations for a cascade of five hydrofoils are considered with spacing 

between the blades of one and two chord length. 

 

The mesh around the cascade of hydrofoils is again generated using ANSYS ICEM employing a 

block-grid approach. Fig. 4.5 and Fig. 4.6 show the structured mesh around five hydrofoils. Again 

after the mesh is imported into ANSYS-Fluent, an adaptive meshing is employed to ensure that the 

y+ value is always less than 1 for a grid point next to the hydrofoil surface. 

 

 

Figure 4.5:  Mesh Around a Cascade of Five Highly-Cambered Hydrofoils with Spacing of 
One Chord Length 

 

 

Figure 4.6:  Mesh Around a Cascade of Five Highly-Cambered Hydrofoils with Spacing of 
Two Chord Length 
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To compare the CFD simulation results with the experimental results from EverLift, the chord 

length of the hydrofoils in this simulation is taken to be equal to the real model value of 2.45 inch. 

Thus, two spacings of 2.45 inch and 5 inch are considered in this simulation. Simulation for LAHT 

are also run for a cascade of 5 NACA 64421 hydrofoils using a chord length of 0.064 meters (2.45 

inch).  

 

Three simulation cases are conducted. Case 1 represents the flow simulation of LAHT with a 

cascade of five NACA 64421 hydrofoils with spacing of one chord length. Case 2 represents flow 

simulation of LAHT with a cascade of five highly-cambered hydrofoils with spacing of one chord 

length. Case 3 represents flow simulation of LAHT with five highly-cambered hydrofoils with 

spacing of two chord length. Table 4.6 shows the results of lift coefficient and drag coefficient for 

the three cases. 

 

Table 4.6:  Results for Three Numerical Simulation Cases 

 Case 1 Case 2 Case 3 

 CL CD CL CD CL CD 

1 1.346 -0.100 1.161 0.202 1.299 0.212 

2 1.133 0.004 1.296 0.175 1.873 0.124 

3 1.060 0.042 1.736 0.211 2.309 0.168 

4 0.998 0.066 1.982 0.181 2.323 0.272 

5 1.052 0.092 3.056 0.572 3.034 0.444 

 

Using the CL and CD for case 1 and case 2 in Table 4.6, from power generation Eqs. 3.4-3.6, the 

power generated by the new highly-cambered hydrofoils is 52.95% greater than that generated by 

NACA 64421 hydrofoils.  
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Table 4.7:  Comparison of Average CF per unit  
chord of spacing between Case 2 and Case 3 in Table 4.6 

Case 2 3 

Spacing 1c 2c 

β (deg) 60 60 

φ (deg) 60 60 

Average CF 1.846 2.168 

Average CF per 

unit chord of 

spacing 

1.846 1.084 

 

From Table 4.7, it can be noted that case 3 with a spacing of 2c has higher average value of CF 

compared to that for case 2. However, similar to the conclusion in chapter 3, the spacing also affects 

the number of airfoils that can be placed along the same length of the track. Less spacing means that 

more hydrofoils can be installed on the track. Thus, case 2 could have additional 5 hydrofoils on the 

ascending track compared to case 3. The average CF per unit chord of spacing shows that case 2 thus 

would have greater total power generation by 72.3% compared to case 3 according to Eq. 3.6. 

 

The above results show that LAHT with spacing of one chord length performs better than that with 

spacing of two chord length. This spacing can be optimized following the methodology described in 

section 3.5 to extract maximum power from a LAHT. 

 

In future work, the CFD simulations data should be compared with the experimental data from 

EverLift Inc. when it becomes available. 
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Chapter 5     Conclusions 
 

In chapter 3 of this thesis, the mesh generation software ANSYS ICEM and the commercial 

computational fluid dynamics (CFD) flow solver ANSYS Fluent were employed to simulate the flow 

field of a single NACA 64421 airfoil. The k-kl-ω turbulence model was used to account for flow in 

the laminar-turbulent transition region. The computed results matched with the empirical data and 

thus validated the numerical simulation approach. The numerical procedure was continued to 

simulate the flow field of a cascade of airfoils on the ascending track of a Looped Airfoil Wind 

Turbine (LAWT). These results were used to predict the average lift and drag coefficients for any 

number of airfoils in LAWT and to calculate the total power generated from a given LAWT 

configuration. The CFD simulations were then conducted to study the flow field of an airfoil on the 

descending track. It was concluded that the airfoils can extract wind’s energy on both the ascending 

and descending tracks. In the second part of chapter 3, an optimization methodology was employed 

to determine the optimal track angle and the optimal spacing between the blades to maximize the 

power generation by the LAWT. In chapter 4, the Floating Looped Airfoil Hydro-Turbine (LAHT) 

was studied; the results showed that LAHT could generate much greater power compared to LAWT 

at wind speed of 14 m/s when the water speed is greater than 1 m/s. In this chapter the concept of 

a highly-cambered airfoil or hydrofoil was also introduced. The computed results showed that this 

type of airfoil or hydrofoil is best suited for LAWT or LAHT design for best performance.  
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