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indicate that metallothionein 3 may prevent lungs from developing PGD. Preliminary classification results
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molecular signature for PGD, with machine learning methods for donor lung prediction.
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Abstract

Lung transplantation is the treatment of choice dad-stage pulmonary diseases. A
limited donor supply has resulted in 4000 patiemtshe waiting list. Currently, 10-20%
of donor organs offered for transplantation arenuksk suitable under the selection
criteria, of which 15-25% fails due to primary dgrdfsfunction (PGD). This has resulted
in increased efforts to search for alternative addaongs selection criteria. In this study,
we attempt to further our understanding of PGD Imgenving the changes in gene
expression across donor lungs that developed P@use¢hose that did not. Our second
goal is to use a machine learning tool - suppoctoremachine (SVM), to distinguish
unsuitable donor lungs from suitable donor lungssedl on the gene expression data.
From our analysis, we have obtained transcripts there involved in signalling,
apoptosis and stress-activated pathways. Regdsidisralicate that metallothionein 3 may
prevent lungs from developing PGD. Preliminarysslfication results for distinguishing
suitable and unsuitable lungs for transplantatisingia SVM were promising. This is the
first such attempt to use human lungs used forspiamtation and combine the
identification of a molecular signature for PGD,tlwimachine learning methods for
donor lung prediction.

I ntroduction

Lung transplantation has gained widespread accepttor the treatment of end-stage
pulmonary diseases. However, two significant protglen clinical lung transplantation
are a major shortage of donor organs and the incal®f primary graft dysfunction
(PGD). PGD is a severe allograft ischemia-rep@rfuél/R) injury syndrome occurring
in the hours following transplantation. It signdittly affects morbidity as well as early
and late mortality. Improvements in operative teghaes, donor lungs management, and
immunosuppressive protocols have decreased peatbgemortality to below 10% at
most experienced lung transplant centres (1, 2)e dne- and five-year survival rates
have improved to 76% and 49%, respectively (1).s€hesults, however, continue to lag
behind those achieved for other solid organ tramgpl The occurrence of PGD after
lung transplantation significantly increases theration of mechanical ventilation,
hospital length of stay and short-term mortalitieatung transplantation (3). Survivors
of PGD have a significantly protracted recoveryhwiinpaired physical function up to
one year after transplantation and an increasé&dofigleath extending beyond the first
year after transplantation (3, 4).

The current criteria used to evaluate potentialoddongs appear to be inadequate at
predicting how these lungs will function post-trplasitation (5, 6, 7). Donor organs are
evaluated for lung transplantation on the basisriéria that are primarily historically
founded and largely arbitrary (8). Relatively ceucheasures of lung function such as
chest radiography, arterial oxygen tension in blgasles, and bronchoscopy are currently
used to assess the quality of potential donor lungsat these tools are inadequate in
evaluating organs from prospective donors is ewiddnby two recent developments.
First, the liberalisation of the selection criteaiad the use of ‘marginal’ donor lungs by
many centres have not had a negative impact oroméa@fter transplantation (9-11). A



recent study showed no significant difference inuaber of indices for infection and

inflammation between donor lungs that were accepisd rejected for transplantation

(7). Second, the incidence of PGD or I/R injurfgeratransplantation remains unchanged
at 15-25% despite the increased use of marginabrdiamgs and improvements in all

areas of lung transplantation (2, 4, 12).
These issues have led investigators to search ritaria that may subject lungs to

increased risk of PGD. While recent studies halentified donor age and recipient
diagnosis of primary pulmonary hypertension (PPsiyisk factors for the development
of PGD, the aetiology of PGD in most cases af@ngplantation is unknown and thought
to be due to complex interactions between donag lumd recipient immune system (13,
14).

A limited donor supply has dramatically increasé@ twaiting time for transplant
recipients. Approximately 4,000 patients are cuiyean the transplant waiting list and
this has resulted in intense pressure to searchitennative strategies. Unfortunately, up
to 10-20% of these patients on the waiting list di¢ from their underlying lung disease
before an organ becomes available. Currently, @Gh20% of cadaveric donor organs
offered for transplantation are judged to be aat@ptunder the current selection criteria
(15). More biologically meaningful donor lungslesgion criteria may result in
significant expansion of the number of lungs aceetom this potential donor pool (5).

The results of the above mentioned studies sugbastthere may be complex, occult
biological factors present in donor lungs which totite to the development of PGD
that are not detected by the current donor orgatuation. Gene expression profiling is a
powerful, high-performance tool of molecular biojothat allows the analysis of the
levels of expression of thousands of genes simeittasly. It has been previously used to
study gene transcripts involved in I/R injury usiagat model (16). To the best of our
knowledge, however, this is the first report whgeme expression profiling has been
used on actual human lungs used for transplantattong with the application of
machine learning techniques to attempt to distsiyuinsuitable donor lungs from
suitable donor lungs.

Our objective is two fold - the first is to obtasnset of genes involved in PGD and
identify new gene products relevant to allogradinsplantation; and the second is to use
this set of genes for classification of donor lung® PGD positive (i.e. lungs that
develop PGD) or PGD negative (i.e. lungs that dodevelop PGD) categories. The first
objective would provide greater insights into theamanisms of PGD as well as extend
the work of Yamane et al (16). The set of genestifled as being involved in PGD can
be designated as the ‘molecular signature’ of P@®many donor lungs that may be
actually suitable for transplantation, are discdrdy the current selection criteria, it
would be useful to classify unseen donor lungspgusihe molecular signature derived in
the first objective coupled with machine learnieghniques. Such a classification can
ultimately perhaps increase the potential donoi parolung transplantation and is the
motivation behind our second objective.



M aterialsand M ethods

Donor lung sampling

From August 2003 to January 2005, 80 transplants werformed in our programme at
Washington University School of Medicine. Threetbése were excluded from the
study as one was a single lung transplant, anatiasra heart-lung transplant, and the
third was a combined coronary artery bypass grdft lung transplant. This resulted in
biopsies of 77 donor lungs used for bilateral sajakelung transplantation. The biopsies
were obtained from the anterior right middle lobdingula immediately prior to cold-
flushing. Of these 77, 9 patients did not givessot. Of the remaining biopsies, some
samples were excluded due to technical errors onptaxities during expression
profiling, resulting in a net total of 50 biopsiesing used for the study. Five lungs were
considerednarginal donor lungs based on them portraying one or mbtheofollowing
conditions - either PaQn arterial blood gas < 300 on 100% inspired oxyge smoking
history > 20 pack-years or donor age > 55. Thasgptes were immediately snap-frozen
in liquid nitrogen and then stored in a -70° Cedsiveezer until used for analysis.
Specimens were sampled using standard techniquepda lung wedge biopsy. An area
of lung tissue approximately 1 x 1 cm was isoladed excised using 2 staple lines from
a 30 mm EndoGIA stapler (US Surgical, Norwalk, CThis protocol was approved by
the Human Studies Committee and Institutional Re\B®ard at Washington University
School of Medicine and protection of human subjatésnely recipients, was afforded by
detailed informed consent before entrance intordmsgarch protocol. No complications
related to sampling of the donor lungs occurrethis study. As this is a pilot study done
on actual human lungs used for transplantationdidenot have enough tissue to perform
RT-PCR.

RNA Isolation

Single isolates of donor lung samples were homagehin the presence of RNAzolB
and finally dissolved in RNase-free H20. 25 g aft RNA was treated with DNase
using the Qiagen RNase-free DNase kit and sampdes further purified using RNeasy
spin columns (Qiagen, Valencia, CA). Total RNAatex with DNase was dissolved in
RNase-free H20 to a final concentration of 0.2 gANA quality was assessed by 1%
agarose gel electrophoresis in the presence dfiethibromide. Samples that did not
reveal intact and approximately equal 18S and #@&omal bands were excluded from
further study.

cDNA Synthesis and Gene Expression Profiling

This study used commercially available high-dengiticroarrays (Affymetrix, Santa
Clara, CA) that produce gene expression levelsHa78 probe sets (Affymetrix Human
Genome U133Av2.0 Array). Each donor lung biopsys vemalysed on a different
GeneChip. Preparation of cDNA, hybridisation, anchrsiing of the arrays were



performed according to the manufacturer's instomsti The arrays were scanned using
the Affymetrix GeneArray scanner. Image analysis \warformed with the Affymetrix
GeneChip software. We also performed a qualitytrobest on the dataset using the R
package ‘affyQCReport’ (17) and the results wek@tmable.

Data

The data from all 50 gene chips was normalisedgusia GCRMA method developed by
(18). The 50 donor lung samples were divided tmto groups - those that developed
PGD after transplantation (PGD positive) and thibeg did not (PGD negative). PGD
was defined as TO Grade Ill dysfunction accordmdnternational Society for Heart and
Lung Transplantation criteria, that is, a ratiofdreed to as the P/F ratio) of partial
pressure of arterial oxygen (Pg@o fraction of inspired oxygen (Fipless than 200 in
the first arterial blood gas in the intensive carét after transplantation (generally 4-6
hours after actual reperfusion) (19). Althougliirdgons of PGD at later time points
may more accurately reflect outcomes after tramsateon, they may also be potentially
affected by other postoperative factors such agativBuid balance or presence of
infection. Sixteen samples were classified as RG@8itive according to this definition
and the remaining thirty-four were PGD negative.

Transcripts Selection

We then proceeded to the next step in our studye-identification of differentially
expressed (DE) transcripts. The objective wasrd & set of DE transcripts/probes that
could be used as a molecular signature for theittond DE transcript extraction falls
into two broad categories - wrapper methods anerfihethods. In wrapper transcript
selection methods, the DE transcript identificatiphase is integrated with the
classification phase. In filter methods, the DEhs@ipt extraction phase is independent
of the classification phase. In this study, we usea packages for the identification of
DE transcripts - RankGene (20), and significancdyess of microarrays (SAM) (21).

RankGene is a programme for analysing gene expresiata, feature selection and
ranking genes based on the predictive power of gack/transcript to classify samples
into functional or disease categories. It suppeight different measures for quantifying
a gene's ability to distinguish between classest okr analysis, we used the t-statistics
measure of predictability. The t-statistic valsea score for each gene’s ability to
discriminate between the 2 classes. RankGene igatkss according to the decreasing
order of the absolute value of the t-statisticdach gene. The group of top genes from
this ranked list is considered to be the most mftive for distinguishing between the
classes. SAM is open-source software which idestiDE genes based on the change in
gene expression relative to the standard deviatiorpeated measurements (21). It uses
the false discovery rate (FDR) and g-value methedgnted in (22) to select genes. As
microarrays result in the measurement of sevewmldhnd probes, the individual p-values
are not a good measure of significance. The gevelwsed to adjust for multiple testing.
It is analogous to the p-value and is correctethuph a permutation process, for the
variability of the expression data. The g-valuedfanscript is the FDR for the transcript



list that includes that transcript and all trangtsithat are more significant. SAM also
provides the tail strength (TS) value which measuhe deviation of each p-value from
its expected value. Therefore, large positive TlBesindicate evidence against the null
hypothesis, i.e., there are more small p-values tme would expect by chance (23).

We first ran RankGene on the complete set of prol&isce we were interested in the
most highly DE transcripts, we chose to take thelt00 transcripts from the ranked list
for further analysis. On this list of 100 DE traripts, we applied SAM. SAM displayed
81 differentially expressed transcripts based &iD& of 0% and a TS of 92.7%. After
averaging the values of and removing multiple psolmapping to the same gene name,
23 upregulated and 42 downregulated transcript® wbétained. These sets of up and
down regulated transcripts were used for furthedyasis in Ingenuity Pathway Analysis
software.

Pathway analysis

Ingenuity Pathway Analysis (IPA) (www.ingenuity.cpnvas used to perform pathway
analysis on the two sets of DE transcripts - upeggd and downregulated, to identify
networks of genes that are known to interact fmatly. IPA uses the Ingenuity
Pathways Knowledge Base (IPKB) which contains lasgaounts of individually
modelled relationships between objects (e.g., germsteins and mMRNAS) to
dynamically generate significant biological/gen@mssion networks and pathways. The
identified DE transcripts from our analysis that¢ anapped onto the IPKB are called
‘focus genes’. These are used as starting poimtbditding the networks. IPA consists
of genes that have functions assigned to them emthagublished literature. First, IPA
gueries the IPKB for interactions between the fogeses and all other genes stored in
IPKB and then generates a set of networks/pathwatysa maximum of 35 genes. A p
value for each network is calculated accordingh® tiser's list of DE genes. This is
accomplished by comparing the number of focus gdhet are present in a given
pathway, relative to the total number of occurrenaiethose genes in all pathways stored
in IPKB. The score of the network is shown as niegative logarithm of the p value,
indicating the likelihood of the focus genes inedwork being found together by random
chance. In our study, we further analysed netwdinlas had a network score of 10 or
higher. If genes do not have any known functiorsgaed to them, they do not become
focus genes in IPA although they have a gene narhies network analysis is an
exploratoryin silico approach and does not necessarily indicate thetpdthway or
network actually exists.

Support Vector Machines

Originally developed by Vapnik (24), the supporttee machine (SVM) is a statistical
learning tool which has been extensively used fioaty classification with great success.
Ranging from classification of cancer (25) to det@ation of haemodialysis dosage
(26), SVMs have proven to be an effective tool imide-range of applications.



SVM was used for the classification of patient skmpnto PGD positive or PGD
negative categories. The dataset consisted ofafi@np samples and 100 transcripts
(ranked transcripts from RankGene). Following is thanner in which SVM was used.
The dataset is divided into training and test (ensey the classifier) sets. The test set is
also the validation set because although the usawn& the classes of the samples in the
test set, the classifier does not see the samplbe itest set while it is training. The SVM
is trained on the training set. The classifier perfance is measured by the prediction
accuracy on the test set. It is quite well knohet the set of significant genes (SG) from
a particular set of training data is very oftenyeifferent from one chosen from a
different set of training data. Obtaining a SGfsein the complete dataset (i.e. from all
50 patient samples), leads to a selection biagrdar to avoid selection bias, an external
cross-validation (CV) was performed i.e. the cliesperformance was measured using
only the set of genes (i.e. a subset of the 108s¢ripts) obtained from the training set
and not from the complete dataset of 50 patierds.fdld CV was carried out rather than
leave-one-out (LOO) CV, as the variability in th&t lof SG is much lower with 10 fold
CV and this is what is preferred. Results wereayed over 20 runs.

Results and Discussion

The definition of PGD used in this study was TO d&dll PGD as described by the
International Society for Heart and Lung Transm@#ioh consensus statement on the
definition of primary graft dysfunction (19). Irhis statement, any time between
immediately post-transplant (TO, ideally definedamsval in the ICU, within 6 hours
post-reperfusion) and 72 hours after transplamaij®72) can be used to measure blood
gases and define PGD. Although definitions of P&Dater time points may more
accurately reflect outcomes after transplantatioey may also be potentially affected by
other postoperative factors such as overall fllathibce or presence of infection. Our
objective in this study was to identify biologicski factors in donor lungs that may
contribute to PGD and therefore we felt that theswnost purely measured at TO, where
lung function may most clearly reflect the statfishe donor lung at the time of harvest.
Furthermore, data from our institution suggests @D as early as TO is associated with
the development of bronchiolitis obliterans syndeofthronic rejection) (27).

The characteristics of the donor lungs are depictehble 1. The operative factors and
the outcome of patients with PGD versus those witlaoe shown in Table 2 and Table 3,
respectively. Despite other studies correlatiogat age and recipient diagnosis of PPH
with PGD, we have not seen a significant corretatino our samples. Although,
cardiopulmonary bypass (CPB) seemed to be significacould also occuas a result of
PGD rather than be a causative factor of PGD. Sahalysis resulted in 81
differentially expressed (DE) transcripts whichaleed into 65 unique genes using
DAVID (http://niaid.abcc.ncifcrf.gov/tools.|9pat the time of writing this paper. This list
along with the fold change is presented in Tablé4lowchart depicting the sequence of
analysis is shown in Figure 1.




Pathways and gene products involved in PGD:

The upregulated transcripts were analysed usingnipenuity Pathway Analysis (IPA)
software. There were 23 upregulated transcrigtsyhoch 13 were focus genes. Focus
genes are the genes that map onto the IngenuitywBgs Knowledge Base (IPKB). The
network generated from these genes is shown inré&igu

Network 1 primarily centres on tumour protein pF®%3). The focus genes are shown
in shaded/solid shapes and more details on thedesrare given in the supplementary
material (Table 1). Figure 3 shows the locatiorthaf different gene products and the
canonical pathways present in Network 1. The ldgenthe network is shown in Figure
7. It is natural to expect many pathways relatedgoptosis and cell signalling as over
50% of the donor lungs (PGD positive and PGD nggativere involved in some kind of
trauma. Interestingly, a few transcripts identifiée also cancer related genes. There is
growing evidence of genetic parallels between Idegelopment and several types of
cancer (28, 29). The authors of (30) have shovan ¥int signalling, cell cycle, and
apoptosis pathways play important roles in lungettgwmment. We also have noticed an
increased presence of genes in these pathways stualy (Figure 3).

Next, we analysed the 42 downregulated transcrpisg IPA, and obtained 11 focus
genes. The network created from these 11 gerst®wisn in Figure 4. Network 2 shows
a lot of activity around beta-5 integrin (ITGB5)daRB2-associated binding protein 2
(GAB2). The focus genes are shown in shaded/sblapes and further description of
these nodes are given in the supplementary mat@radle 2). Figure 5 shows the
location of the different gene products and theooaal pathways present in Network 2.
The legend for the network is shown in Figure 7e @bserve similar pathways, as the
ones present in Network 1, in Network 2. This & anexpected since a pathway can
consist of up and downregulated genes.

Both the networks show the presence of nuclearoifd& (NFKB), stress-activated
protein kinases Niterminal Jun kinase (SAPK/JNK) and p38 mitogenvatéd protein
kinase (MAPK) signalling pathways. NFKB plays aalitole in mediating immune and
inflammatory responses, and apoptosis. It reguldtesxpression of a large number of
genes. Many of the gene products regulated by NikKR&irn activate NFKB, such as
vascular endothelial growth factor (VEGF), and ptoe for advanced glycation end
product (RAGE). Activation of NFKB involves the pmhorylation-induced,
proteasome-mediated degradation of the inhibitatyusit - inhibitory protein KB. This
protein is phosphorylated by an upstream serinasd@nwhich, in turn is phosphorylated
and activated by additional upstream serine kinaseAPK/JNK are members of the
superfamily of MAP serine/threonine protein kinaseshis family also includes p38
MAP kinases (p38 MAPK) and extracellular signabtel kinases (ERK) (31).
JNK/SAPK and p38 MAPK are known as stress-activkiedses, and are responsive to
numerous exogenous and endogenous stress-induammgjissuch as reactive oxygen
species (ROS), oxidative stress, osmotic stressnffammatory cytokines, heat shock,



and ultraviolet irradiation. Oxidative stress idided as a persistent imbalance between
the production of highly reactive molecular sped@smarily oxygen and nitrogen) and
antioxidant defences, finally resulting in tisswenthge. There is evidence in literature
that NF-KB, SAPK/JNK and p38 MAPK signalling pathysa are stress-sensitive
intracellular signalling systems, activation of winiresults in the increased expression of
numerous gene products that cause cellular dan32ye (

Gene products associated with stress-activatedvagthemerged from both our study as
well as the study in the rat model for ischemiaerfysion injury (16). As the
experimental protocol, and animal model are difierene would not expect too much of
an overlap. As suggested by the recent articledNature Biotechnology by the
MicroArray Quality Control (MAQC) project (33), it better to focus on pathways and
broad functional relationships, rather than on vidilial genes. They state that “even
under the best circumstances, gene lists will differ somewhat from person to person
and place to place”. In our work, we have obseraedood deal of overlap in the
functional categories/pathways of the identifiednscripts. As not all animal model
studies translate well into human analysis, ouestigation takes the study performed by
(16) a step further by performing the analysis oman samples and showing consensus.

An exciting observation was that the metallothionéamily of gene products was
identified as being upregulated in the lungs thdtribt develop PGD. In the work by
Yamane et al (16), metallothionein levels of expi@s are much lower in the microarray
when compared to most of the other genes considaggdficant. However, RT-PCR
confirms that it does have an increased expressitence, the rat study as well as ours
does confirm the elevated expression of metall oo

Metallothioneins (MT) are ubiquitous, low molecwaeight, intracellular zinc-binding
proteins with antioxidant properties. MT consistS isoforms — MT1, MT2 and MT3.
We extracted the metallothionein 3 (MT3) pathwaynirNetwork 1 (see Figure 6).
Although the exact mechanism by which MT3 operaewt well known, there are a few
studies that have explained the possible rolesatéiothionein, especially MT1 and
MT2. A recent study has shown that metallothionéiange positive effects during the
early phase of islet transplantation (34). Anotttedy has shown that the
metallothionein gene is upregulated in wound margiarticularly in regions of high
mitotic activity (35). These observations refldstriole in promoting cell proliferation
and re-epitheliation. Furthermore, selected grdatiors may modulate metallothionein
gene expression and hence, the ability of celfgttiferate (35). As can be seen from
Figure 6, MT3 is connected to NF-KB1. In humandifdasts, NFKB protein consisting
of p50 [NFKBL1] and of p65 v-rel reticuloendothel®siral oncogene homolog A
(RELA) increases expression of human MT3 mRNA. réhe also an indirect
relationship between MT3 and epidermal growth fa@&sF). EGF is involved in EGF
signalling, ephrin receptor signalling, neuregulignalling, and NFKB signalling. EGF's
role in the cell is proliferation, migration, mitegesis, apoptosis, growth, chemotaxis,
transformation, stimulation, S phase, and diffeegiin. Several other papers have also
shown that metallothionein positively regulates ¢bBular level ana@ctivity of NF-KB

(36, 37). Recent work by St. Croix et al (38), hls® shown the protective role of



metallothionein in acute lung injury. Cells deficien MT1 and MT2 have shown
increased sensitivity to apoptosis (39). Otherkvguggests that under inflammatory
conditions, MT supports beneficial movement of leckes to the inflammation site
(40). In vitro experiments have shown that modestase in MT levels still provides
protection against oxidative stress (41). All ttasearch on MT suggests that it is a
valuable gene and should be analysed in extensitedl th the context of PGD.
Furthermore, whether the MT3 isoform has the saropeasties as MT1 and MT2 needs
to be determined. The overexpression of metabboikin 3 may protect the lung graft
from PGD. We feel that this is one of the mostam@nt insights into the mechanism of
PGD.

Classification of donor lungsusing SVM:

The set of 100 ranked transcripts, obtained usirepk&ene, was used for the

classification of donor lungs into PGD positive &/@D negative classes by SVM. The

classification accuracy of SVM in differentiatingettwo classes was 70%. This indicates
that this set of transcripts has enough informatmuistinguish unsuitable and suitable
donor lungs.

The SVM did better at identifying the suitable Isr(ge. low false negative). Considering
that the motivation behind using machine learniag the selection of suitable donor
lungs was to detect those that otherwise would leeen discarded, this observation is
promising. The unsuitable donor lungs were morerofnisclassified and this can be
attributed to the fact that there were very fewuitadle donor lungs in the dataset (16
unsuitable lungs versus 34 suitable lungs) andesulently, an even smaller number in
the training set. Furthermore, our dataset had Ipeerselected by physicians based on
clinical criteria. Hence, the dataset did not hawéy unsuitable donor lungs, i.e., lungs
considered unsuitable by clinical criteria. Obwilyy certain lungs that passed the
selection criteria developed PGD. In essence, ttivese lungs thaseemed to be good by
the current clinical criteria. Hence, the generegpion patterns of the unsuitable donor
lungs are very similar to the patterns of suitdbfegs. In fact, when the gene expression
values of the DE transcripts were compared betw&@b positive and PGD negative
lungs, the difference was marginal. These obsemnstare not surprising as both sets of
lungs were considered suitable by clinical criteaiad therefore the difference between
them would be very subtle.

The SVM had difficulty in recognising some unsuiegaldonor lungs as it was not being
trained on the gene expression pattern of a langger of unsuitable donor lungs, or, for
that matter, on a large numbertaily unsuitable donor lungs. Given the fact that we had
only 50 samples, in which we did not have truly witeble lungs, the classification
performance is good. Increasing the sample sizmih categories would lead to a more
accurate and possibly larger set of DE transcripblved in PGD, as well as improved
classification results.

As the differences at the macroscopic level betwe&D positive and PGD negative
donor lungs are minimised after employing the chihiselection criteria, gene expression



profiling would help in amplifying whatever smaliffiérences there may be. SVMs are
capable of using these marginal differences totifjesuitable and unsuitable donor
lungs. This is where machine learning plays aafakirole -assisting physicians and not
necessarily overruling them. Hence, machine legrmnethods, such as SVMs, can be
used in conjunction with clinical criteria to idégtunsuitable donor lungs, thereby
further decreasing the chances of using donor ltimggswould develop PGD. Due to the
limited dataset, it would be advantageous to haleeger dataset for further validation.

The study design affects the kind of questions thatbe posed as well as the quality of
answers. As this was a pilot study to test thsilglity of the approaches, we restricted it
to only a few samples. Furthermore, we did noteherough tissue material to perform
RT-PCR to validate the microarray results. We hthyae this research would motivate
and warrant the need for a larger study with mophssticated statistical methods as well
as microarray validation tools. Moreover, an animmedel would allow for more
samples to be taken at different time points whaauld further strengthen the study.
An interesting strategy would be to perform a rand@ampling of different regions of the
lung and subject it to microarray analysis. Thesswot done in this study due to three
reasons — 1) taking multiple samples from a donaglwhen the primary objective is
transplantation is difficult to justify; 2) takinrgamples from different regions of the lung
necessitates the need for a larger sample setder 0 reduce variance and increase
statistical power and finally 3) it was conveni¢attake a biopsy from the lingula or
anterior right middle lobe as opposed to otheraesg}i without compromising the amount
of time the lung is kept without cold flushing. u®to the limited number of samples, we
could not perform an external validation and rembib a 10-fold cross validation, which
is normal in many cases where SVM has been useddssification in a clinical study.
Furthermore, in order to improve the classificatemcuracy, it would be necessary to
include lungs in the training set that have begected by the clinical criteria. Although
we obtained 23 upregulated and 42 downregulateddrgpts, only 13 of the 23 and 11 of
the 42 transcripts became focus genes in IPA. ifdigates that the majority of the
transcripts do not have any specific function assigjto them as yet. Further research
into the functions of these transcripts will alsmypde some insight into their role in
PGD.

Conclusion

The incorporation of biological information into mar lung evaluation, based on studies
such as this one, may deem many of the excludezhergs suitable for transplantation,
directly impacting the mortality of patients on thung transplant waiting list. Studies
show that 15-25% of patients develop clinicallyndiigant primary graft dysfunction
(PGD) after lung transplantation. PGD is the singlest significant factor in determining
perioperative morbidity and mortality and has aagg&ting impact on outcome following
lung transplantation. It is the primary factor detming duration of mechanical
ventilatory support and length of ICU and hospsgty following lung transplantation.
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Perioperative mortality rates for those with clallg significant PGD are as high as 40-
60%. One year survival rates fall from 69% to 408d 2-year rates from 66% to 27% in
those who suffer significant PGD. Furthermore, éhttsat survive complications of PGD

endure lengthy hospitalisation periods and a pctdthand often compromised recovery,
evidenced by inferior exercise tolerance and pubmpffunction testing and the inability

to achieve independent lifestyles. Moreover, P&baw being identified as a risk factor
for acute and chronic rejection.

In this study, gene expression profiling of donond samples was used to determine
gene products that are associated with the devaopof PGD after transplantation. It
also resulted in analysing possibly relevant pattsaavolved in PGD. When biological
markers were used to differentiate between PGDtipesand PGD negative lungs, good
classification accuracy was achieved. The incatan of biological markers into donor
organ evaluation will have a significant impactaricomes after lung transplantation, by
potentially expanding the donor pool of organs el for transplantation and by
identifying lungs at risk for the development of P@ost-transplant, which would allow
pre-treatment of these high risk organs or matclihthese organs to relatively lower
risk recipients. Further identification and elwtidn of genetic markers in donor lungs
associated with PGD could have a significant imparctlowering the incidence and
preventing the morbidity and mortality of PGD aftang transplantation. Our results
indicate that we have successfully achieved botlobjectives.
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TABLES

TABLE 1: Clinical Donor Characteristics

Characteristics PGD (n=16) No PGD (n=34) p value
Age (years) 26.6+ 8.9 24.0+9.8 0.53
PaQ 406.7+ 80.5 449.% 80.0 0.17
Smoking history (years 1.5+ 2.07 2.9+ 6.32 0.59
Gender 71% M, 29% F 83% M, 17% F 0.7
Cause of death 57% Trauma, 43% non-Trauma  75% TaR5% non-Trauma  0.66
Marginal donors 1 4 |  0.99
TABLE 2: Operative factors
Factors PGD (n=16) No PGD (n=34) p value
Recipient diagnosis 32% COPD, 25% QF35% COPD, 32.5% CF 0.98
43% other 32.5% other
Recipients with PPH 2 1 0.24
1% lung ischemic time 208.0+ 44.0 240.0: 51.0 0.18
(min)
2" lung ischemic time 330.0+ 72.0 321.6:51.0 0.69
(min)
Cardiopulmonary bypass 72% 17% 0.02
(CPB)

TABLE 3: Outcomes of patients with and without PGD

Qutcome PGD (n=16) | No PGD (n=34) | pvalue
Days on ventilator 9.7+11.7 2.0+ 3.7 0.01
ICU stay (days) 11.3+12.6 2.9+ 3.6 0.006
Total length of stay (days) 20.3+ 13.0 13.4+ 8.1 0.09
Perioperative mortality 28.5% 0% 0.02
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TABLE 4: List of 81 differentially expressed transcriptgmut by SAM. There are 23
upregulated and 42 downregulated genes.

UP-requlated in PGD
negative lungs

REFSEQ_MRNA
NM_005633

NM_000492
NM_003645
NM_005573
NM_005502
NM_017613
NM_019841
NM_017760
NM_018365
NM_183419, NM_015435
NM_015024
XM_938545
NM_017654
NM_016265
NM_005531
NM_007358
NM_005954
NM_015205, NM_032189

NM_007118
NM_001004420,
NM_001004419, NM_013269

NM_181657

NM_014229
NM_201279, NM_003872,
NM_201266

Down-requlated in PGD
negative lungs

REFSEQ_MRNA
NM_024917
NM_024508

NM_022460
NM_178312, NM_178311,
NM_080920

NM_198544

NM_014241
NM_079837, NM_017869
NM_025124

NM_001017962, NM_000917
NM_022337
NM_002035
NM_024956

NM_003562
NM_007001
XM_929985
NM_021029

Gene Name

SON OF SEVENLESS HOMOLOG 1 (DROSOPHILA)
CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR, ATP-BINDING
CASSETTE (SUB-FAMILY C, MEMBER 7)

FATTY-ACID-COENZYME A LIGASE, VERY LONG-CHAIN 1

LAMIN B1

ATP-BINDING CASSETTE, SUB-FAMILY A (ABC1), MEMBER 1

DOWNSTREAM NEIGHBOR OF SON

TRANSIENT RECEPTOR POTENTIAL CATION CHANNEL, SUBFAMILY V, MEMBER 5
LEUCINE ZIPPER PROTEIN 5

MEIOSIS-SPECIFIC NUCLEAR STRUCTURAL 1

RING FINGER PROTEIN 19

EXPORTIN 7

SIMILAR TO FORMIN-BINDING PROTEIN 3 (FORMIN-BINDING PROTEIN 11) (FBP 11)
STERILE ALPHA MOTIF DOMAIN CONTAINING 9

ZINC FINGER PROTEIN 12

INTERFERON, GAMMA-INDUCIBLE PROTEIN 16

METAL RESPONSE ELEMENT BINDING TRANSCRIPTION FACTOR 2
METALLOTHIONEIN 3 (GROWTH INHIBITORY FACTOR (NEUROTROPHIC))
ATPASE, CLASS VI, TYPE 11A

TRIPLE FUNCTIONAL DOMAIN (PTPRF INTERACTING)

C-TYPE LECTIN DOMAIN FAMILY 2, MEMBER D

LEUKOTRIENE B4 RECEPTOR
SOLUTE CARRIER FAMILY 6 (NEUROTRANSMITTER TRANSPORTER, GABA),
MEMBER 11

NEUROPILIN 2

Gene Name

CHROMOSOME X OPEN READING FRAME 34
ZINC FINGER, BED-TYPE CONTAINING 2
HS1-BINDING PROTEIN 3

GAMMA-GLUTAMYLTRANSFERASE-LIKE ACTIVITY 4

CORTISTATIN
PROTEIN TYROSINE PHOSPHATASE-LIKE (PROLINE INSTEAD OF CATALYTIC
ARGININE), MEMBER A

BTG3 ASSOCIATED NUCLEAR PROTEIN

HYPOTHETICAL PROTEIN FLJ21749
PROCOLLAGEN-PROLINE, 2-OXOGLUTARATE 4-DIOXYGENASE (PROLINE 4-
HYDROXYLASE), ALPHA POLYPEPTIDE |

RAB38, MEMBER RAS ONCOGENE FAMILY
FOLLICULAR LYMPHOMA VARIANT TRANSLOCATION 1

TRANSMEMBRANE PROTEIN 62
SOLUTE CARRIER FAMILY 25 (MITOCHONDRIAL CARRIER; OXOGLUTARATE
CARRIER), MEMBER 11

SOLUTE CARRIER FAMILY 35, MEMBER D2
SIMILAR TO LARGE SUBUNIT RIBOSOMAL PROTEIN L36A
RIBOSOMAL PROTEIN L36A

16

Fold
Change

2.2183831

1.7822446
1.7679424
1.6928441
1.6240539
1.5424873
1.5196761
1.5172142
1.5161006
1.4642686
1.4545849
1.3552737
1.3251204
1.2960459
1.2918867
1.2824896
1.2808244
1.2417599
1.1514956

1.1469583
1.1067929

1.0890867

1.0625556

Fold
Change

2.3873841
2.0313459
1.6525671

1.5240059
1.5027289

1.4121977
1.3943394
1.3593494

1.3539779
1.3356873
1.3315413
1.3201902

1.3193721
1.3140864
1.3078617
1.3078617



NM_019040
NM_015654
NM_007069

XM_937648
NM_153741, NM_018973
NM_014320
NM_006476
NM_002513
NM_018158
NM_002213
NM_005865
NM_020385
NM_015958
NM_021824

NM_014173, NM_001033549
NM_213622, NM_201647,
NM_006463

NM_207356
NM_016142
NM_016080
NM_080491, NM_012296
NM_032900
NM_004699
NM_003060
NM_014300
NM_024766
NM_001004

ELONGATION PROTEIN 4 HOMOLOG (S. CEREVISIAE)
N-ACETYLTRANSFERASE 9

HRAS-LIKE SUPPRESSOR 3
SIMILAR TO ALVEOLAR SOFT PART SARCOMA CHROMOSOME REGION,
CANDIDATE 1

DOLICHYL-PHOSPHATE MANNOSYLTRANSFERASE POLYPEPTIDE 3
HEME BINDING PROTEIN 2

ATP SYNTHASE, H+ TRANSPORTING, MITOCHONDRIAL FO COMPLEX, SUBUNIT G

NON-METASTATIC CELLS 3, PROTEIN EXPRESSED IN

SOLUTE CARRIER FAMILY 4 (ANION EXCHANGER), MEMBER 1, ADAPTOR PROTEIN

INTEGRIN, BETA 5

PROTEASE, SERINE, 16 (THYMUS)

REX4, RNA EXONUCLEASE 4 HOMOLOG (S. CEREVISIAE)
DPH5 HOMOLOG (S. CEREVISIAE)

NIF3 NGG1 INTERACTING FACTOR 3-LIKE 1 (S. POMBE)
HSPC142 PROTEIN

STAM BINDING PROTEIN

CHROMOSOME 1 OPEN READING FRAME 174
HYDROXYSTEROID (17-BETA) DEHYDROGENASE 12
CHROMOSOME 17 OPEN READING FRAME 25
GRB2-ASSOCIATED BINDING PROTEIN 2

RHO GTPASE ACTIVATING PROTEIN 19

FAMILY WITH SEQUENCE SIMILARITY 50, MEMBER A
SOLUTE CARRIER FAMILY 22 (ORGANIC CATION TRANSPORTER), MEMBER 5
SEC11-LIKE 1 (S. CEREVISIAE)

CHROMOSOME 2 OPEN READING FRAME 34
RIBOSOMAL PROTEIN, LARGE, P2

17

1.2951361
1.2935561
1.2878168

1.2864441
1.2849801
1.2791263
1.2710706
1.2675264
1.2606948
1.2579474
1.2495258
1.2404477
1.2402215
1.2392898
1.2375188

1.2360276
1.2286265
1.2277373
1.2263789
1.2246286
1.2229376
1.2086274
1.1931567
1.1914145
1.1822266
1.1529057



FIGURE LEGENDS

FIGURE 1: Sequence of analysis undertaken in this studsneGexpression profiling was conducted on 50
lung samples. The transcripts were ranked usimk@®ane in descending order of their t-statistic ted

top 100 were selected for further analysis. Tkisad 100 transcripts was used for classificatigrSiyM

and resulted in an accuracy of 70%. The set oftdf@scripts was also analysed using SAM to detami
up and down regulated transcripts. SAM output Bferéntially expressed transcripts. After averapgthe
values of and removing multiple probes mapping te same gene name, 23 upregulated and 42
downregulated transcripts were obtained. Of the@@gulated transcripts, 13 became focus gendAn

and of the 42 downregulated, 11 were focus gent#3An

FIGURE 2: Network 1 - upregulated genes in PGD. This nétwimarily centres on tumour protein p53
(TP53). The focus genes are shownshaded/solicshapes. Further details on the focus genes are

provided in Table 4. The legend for this figurd-igure 7.

FIGURE 3: Network 1 with canonical pathways overlaid. Theus genes are shown $haded/solid

shapes. The location of the gene products isiatSoated. Further details on the focus genepeoreided

in Table 4. The legend for the figure is Figure 7.

FIGURE 4: Network 2 - downregulated genes in PGD. Thisvoek shows a lot of activity around beta-5

integrin (ITGB5) and GRB2-associated binding pnmot& (GAB2). The focus genes are shown in
shaded/solidhapes. Further details on the focus genes angded in Table 5. The legend for this

figure is Figure 7.

FIGURE 5: Network 2 with the canonical pathways overlaidThe focus genes are shown in

shaded/solidhapes. The location of the different gene pradiscalso depicted. Further details on the

focus genes are provided in Table 5. The legenthfe figure is Figure 7.
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FIGURE 6: Network 3 - Metallothionein pathway. In humabréiblasts, NFKB protein consisting of p50
[NFKB1] and of p65 v-rel reticuloendotheliosis \limcogene homolog A (RELA) increases expression of
human MT3 mRNA. The overexpression of metalloteianmay protect the lung graft from PGD. The

legend for this figure is Figure 7.

FIGURE 7: Network Legend (a) Key for nodes in the netwdl®, Key for edges in the network, (c) Key

for edge labels in the network
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FIGURE 5
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