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1 Introduction

This report describes a hashing scheme for a dictionary of short bit strings. The scheme, which
we call near-perfect hashing, was designed as part of the construction of Mercury BLAST [7], an
FPGA-based accelerator for the BLAST family of biosequence comparison algorithms [3, 2, 4].

Near-perfect hashing is a heuristic variant of the well-known displacement hashing approach [9]
to building perfect hash functions. It uses a family of hash functions composed from linear trans-
formations on bit vectors and lookups in small precomputed tables, both of which are especially
appropriate for implementation in hardware logic. We show empirically that for inputs derived
from genomic DNA sequences, our scheme obtains a good tradeoff between the size of the hash
table and the time required to compute it from a set of input strings, while generating few or no
collisions between keys in the table.

One of the building blocks of our scheme is the H3 family of hash functions, which are linear
transformations on bit vectors. We show that the uniformity of hashing performed with randomly
chosen linear transformations depends critically on their rank, and that randomly chosen trans-
formations have a high probability of having the maximum possible uniformity. A simple test is
sufficient to ensure that a randomly chosen H3 hash function will not cause an unexpectedly large
number of collisions. Moreover, if two such functions are chosen independently at random, the
second function is unlikely to hash together two keys that were hashed together by the first. Hash-
ing schemes based on H3 hash functions therefore tend to distribute their inputs more uniformly
than would be expected under a simple uniform hashing model, and schemes using pairs of these
functions are more uniform than would be assumed for a pair of independent hash functions.

The remainder of this report is organized as follows. In the first part, we prove the claimed
properties for hash functions in the H3 family. In the second part, we describe the near-perfect
hashing scheme and provide empirical results on how closely it approximates the ideal of perfect
hashing on genomic DNA.

2 H3 Hash Functions of Full Rank

In their seminal paper on universal hashing, Carter and Wegman [5] defined the class H3 of hash
functions. Elements of H3 are linear transformations over Z2, the field of bits equipped with AND
and XOR operations. H3 hash functions with a particular input and output width are universal ;
that is, a random hash function is likely to hash any two keys in its input space to different
values. The practical utility of H3 functions was shown empirically by [6], while Alon et al. [1]
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showed analytically that these functions are quite unlikely to produce large bin sizes when used in
a hash table. Because H3 functions can be implemented using bit operations, they are particularly
attractive for implementation in hardware.

Although the H3 class has nice properties on average, many functions in the class do not
distribute their inputs as evenly as possible, and a minority have pathologically bad behavior. In
this section, we show that, to guarantee the best-performing hash functions in practice, one may
straightforwardly sample from a subspace of the H3 functions, namely those that have full rank
when considered as linear transformations. We show that these functions have strong uniformity
properties, and in particular that a pair of random full-rank H3 functions will likely produce a
much more uniform result that would be expected for two functions satisfying the tenets of simple
uniform hashing.

2.1 Definitions

Let Z2 = ({0, 1},+,×) be the finite field of integers modulo 2 equipped with the XOR operation
+ and the AND operation ×. Let Zn

2 be the n-dimensional vector space over Z2.
An H3 hash function H : Zn

2 → Zk
2 is a linear transformation from Zn

2 to Zk
2 , that is, a mapping

from n-bit to k-bit numbers, described by a k×n matrix of bits. The rows of H may be viewed as
vectors e1 . . . ek ∈ Zn

2 , and the operation of H on v ∈ Zn
2 to produce a hash value h ∈ Zk

2 is simply
h = Hv.

We denote by Hn
k the space of all non-singular H3 hash functions from Zn

2 to Zk
2 , that is, all

such functions H for which the k vectors e1 . . . ek are linearly independent over Zn
2 .

2.2 Goodness of Hn
k

We now show that the family Hn
k of hash functions has particularly desirable properties. Our first

observation is that every function in Hn
k is highly uniform, in the following sense:

Lemma 2.1. Any H ∈ Hn
k maps exactly 2n−k inputs to every vector in Zk

2 .

Proof. Because H has rank k, it has a nullspace of dimension n − k. Let V = {v1 . . . vn−k} be
any basis for this nullspace. Every v for which Hv = 0 can be obtained as a linear combination of
vectors from V ; moreover, no two distinct combinations yield the same vector; otherwise, V would
not have rank n− k. Conclude that there are exactly 2n−k distinct vectors v for which Hv = 0.

Let x ∈ Zn
2 be given, and let w = Hx. Then for any v in the nullspace of H, H(x + v) =

Hx + Hv = w + 0 = w. Moreover, every y ∈ Zn
2 with Hy = v can be decomposed as x + v, where

v = y + x is an element of H’s nullspace. We conclude that there are exactly 2n−k distinct vectors
x for which Hx = w.

Since there are 2n inputs, and each w to which some input maps receives only 2n−k inputs,
there must be 2k different values of w realizable by some vector. Conclude that H covers its entire
range and maps an equal number of vectors to each element of that range.

We note that H3 hash functions of less than full rank are guaranteed not to be as uniform as
Hn

k . Indeed, if such a function F has rank r < k, then it maps all keys onto a subspace of Zk
2 of

size 2r, leaving the remaining hash values unused!
Next, we prove a nice property of pairs of full-rank H3 hash functions. Consider a pair of such

functions F and G, mapping n-bit strings into a-bit and b-bit hash values, respectively. If each of
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F and G are chosen independently at random, then one might expect, reasoning from the usual
model of simple uniform hashing, that for vectors x and y, Pr(Fx = Fy ∧Gx = Gy) would be the
product Pr(Fx = Fy) Pr(Gx = Gy). For example, If n = 22, a = 17, and b = 10, then one might
expect x and y to map to the same pair of hash values with probability 1/217+10. By a Birthday
Paradox argument, we therefore expect to see simultaneous collisions under both hash functions
when there are more than about 11600 keys.

In fact, viewing our hash functions as linear transformations yields a stronger result: provided
that a and b together are at least n, then for any fixed F , a randomly chosen G is likely to separate
all pairs of keys that collide under F .

Lemma 2.2. Let a + b ≥ n, let F ∈ Hn
a be any fixed hash function, and let and G ∈ Hn

b be a
randomly chosen hash function. Then with probability at least 1/4, for every x 6= y ∈ Zn

2 , the pairs
(Fx,Gx) and (Fy, Gy) are distinct.

Proof. It suffices to show that with the claimed probability, the rows of F and G together form
an (a + b) × n matrix S of rank n. Since S has full rank, it maps x and y to the same value iff
H(x + y) = 0, which is possible only if x + y = 0, i.e. if x = y.

Suppose first that a + b = n, and let e1, e2, . . . eb be the vectors of G. What is the probability
that S has rank n? We require that each ei must be different from any combination of the e′is and
the vectors of F . Hence, there are only 2n − 2a+i−1 feasible choices for ei given F and e1 . . . ei−1,
compared to 2n− 2i−1 choices for a random G of rank b. Hence, the probability qS that S has rank
k is given by

qS =
b∏

i=1

(
1− 2n − 2i−1+a

2n − 2i−1

)
.

Recognizing that a = n− b, we make two observations:

• For any fixed n, the probability qS attains its minimum value for b = n/2.

• When b = n/2, qS attains its minimum value in the limit as n →∞, and this value is

lim
n→∞

n/2∏
j=1

(
1− 1

2j

)
≥ 0.2887.

Conclude that qS ≥ 0.2887 > 1/4.

Finally, consider the case when a + b > n. The matrix S now has full rank provided that any
subset of n− a < b linearly independent vectors from G form a rank-n collection together with F .
Hence, the probability that S has full rank is at least as great as in the case when a + b = n.

We note that, if it is the user’s intent a priori to produce two hash functions of sizes a and
b, a + b ≥ n, that generate unique pairs of values, one could also produce a random full-rank
list of n vectors, then adjoin any a + b − n rows to this list and divide it to produce the desired
pair of functions. However, random generation of the two functions independently will likely work,
particularly when a + b > n.
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2.3 Efficient Sampling from Hn
k

To achieve the guarantees of the previous section, one must draw from the space of hash functions
H ∈ Hn

k . We now show how to sample efficiently from this space. We analyze the following
sampling procedure:

Sample(n,k)
do

choose k random non-zero n-bit vectors e1 . . . ek

until (e1 . . . ek are linearly independent)
return the matrix Hk×n whose ith row is ei

This procedure samples uniformly from the space of k×n-bit matrices with no zero rows, rejecting
any matrix that is not a member of Hn

k . The elimination of zero rows is natural, since the presence
of such a row would trivially render the matrix singular. Testing for linear independence can be
performed efficiently using, e.g., Gaussian elimination.

Lemma 2.3. For any k ≤ n, a single iteration of the do-loop in procedure Sample(n,k) produces
a member of Hn

k with probability greater than 1/4.

Proof. Let pn,k be the probability that a set of k non-zero n-bit vectors, chosen at random with
replacement, has rank k. To estimate this probability, we consider the choices of vectors sequentially
and define Ei to be the event that ei is linearly independent of e1 . . . ei−1, given that these i − 1
vectors are themselves linearly independent. The event Ei occurs precisely when ei is not equal to
the XOR of any nonempty subset S ⊆ {e1 . . . ei−1}. One can show that XOR’ing every distinct
subset S from this set yields a distinct vector; hence, ei must be different from exactly 2i−1 − 1
other vectors in Zn

2 .
Because there are 2n − 1 non-zero vectors in Zn

2 , we have

Pr(Ei) =
(

1− 2i−1 − 1
2n − 1

)
.

It follows that

pn,k =
k∏

i=2

Pr(Ei)

=
k∏

i=2

(
1− 2i−1 − 1

2n − 1

)

≥
n−1∏
j=1

(
1− 2j − 1

2n − 1

)
.

In the limit as n →∞, the last expression achieves its minimum value, which is

lim
n→∞

n−1∏
j=1

(
1− 1

2j

)
≥ 0.2887.

Hence, pn,k ≥ 0.2887 > 1/4.
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From the lemma, we may conclude that the procedure Sample(n, k) succeeds on average after
at most 4 trials. Moreover, since all k × n-bit matrices without zero rows are chosen with equal
probability, this procedure produces a random member of Hn

k .
The bound given above is reasonably tight for n = k; for example, when n = k = 8, pn,k is

already < 0.3. However, it is quite conservative for hash functions that reduce the size of their
input, since it is easier to choose a small set of linearly independent vectors than a large set. For
example, p16,16 ≈ 0.289, but p16,15 > 0.577, and p16,8 > 0.996. In general, H3 functions from n to k
bits with full rank form a minority only when n = k, but one cannot be very sure of choosing such
a function without checking its rank unless the gap between n and k is on the order of 10 or more.

2.4 Universality of Hn
k

For completeness, we verify that the family Hn
k is still universal ; in other words, a random hash

function from this family is expected to cause no more collisions than a truly uniform random
mapping from Zn

2 to Zk
2 . [5] showed that this result holds for the family of all H3 functions from

Zn
2 to Zk

2 , so it is not surprising that it continues to hold for the “smoothest” functions in this
family.

Lemma 2.4. Let x 6= y be any two distinct elements of Zn
2 , and let H be a random hash function

from Hn
k . Then

Pr(Hx = Hy) ≤ 1
2k

.

Proof. Let v = x + y. We have that Hx = Hy iff Hv = 0. Let e1 . . . ek be the rows of H; Hv = 0
iff ei · v = 0 for every i.

We will use several facts to prove the lemma:

• Firstly, if we consider only the first row of a random H ∈ Hn
k , this row is equally likely to

be any nonzero vector in Zn
2 . Indeed, the analysis of Lemma 2.3 implies that, if we set any

non-zero n-bit vector as e1, there are any equal number of ways to “complete” the k × n
matrix with non-zero vectors so as to obtain a matrix of rank k.

• Secondly, a random z ∈ Zn
2 has

Pr(z · v = 0) = 1/2.

If we additionally require that z be different from one or more fixed vectors zi for which
zi · v = 0, then this probability becomes less than 1/2.

• Thirdly, if ei · v = ej · v = 0, then (ei + ej) · v = 0.

We now ask, what is the probability that ei · v = 0 for every i? Again, we consider the vectors in
increasing order by index. By our first fact, the first row of e1 is a random nonzero n-bit vector,
and so by our second fact, Pr(e1 · v = 0) < 1/2. Now consider the probability that ei · v = 0 for
i > 1. The vector ei must be different from the XOR of any subset of {e1 . . . ei−1}; by our third
fact, all of these subsets yield vectors s for which s · v = 0. It follows that there are strictly fewer
ways to choose ei to ensure ei · v = 0 than there were ways to choose e1, and so

Pr(ei · v = 0 | e1 · v = . . . ei−1 · v = 0) < 1/2.
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We conclude that
Pr(ei · v = 0, 1 ≤ i ≤ n) <

1
2k

,

which proves the lemma.

3 The Near-Perfect Hashing Scheme

This section describes near-perfect hashing, a heuristic method for rapidly creating a static dictio-
nary from a collection C ⊆ Zn

2 of keys. Before describing our construction, we first review briefly
the design considerations of Mercury BLAST that prompted it. We then describe the design and
compare it to related work. Finally, we study the performance of our design.

3.1 Motivation for Design

The target application for our dictionary is Mercury BLAST [7], an FPGA-based search engine for
DNA sequences. Mercury BLAST compares a series of query strings against a large database. A
query is converted to a dictionary composed of all its k-base substrings; because DNA sequences
contain only four possible letters, these substrings are bit strings in Z2k

2 . The dictionary is loaded
into SRAM memory attached to the FPGA hardware. The database is then streamed through the
hardware at high speed, and each of its k-base substrings is checked to see if it is in the dictionary.
A “hit” between query and dictionary is used as a heuristic signal to search more carefully for
similarity between the query and the part of the database adjacent to the hit.

To be of use in Mercury BLAST, a dictionary must balance three competing design pressures.
Firstly, the bandwidth of the memory containing the dictionary is limited. To avoid a performance
bottleneck, it is important that lookups in the dictionary usually require only one probe. Secondly,
the available storage for the dictionary and for its hash function are limited. The available SRAM
can hold records for between 217 and 218 keys, which is within a factor of four of the actual number
that the dictionary must hold in practice. The hash function itself must be stored on-chip; because
it competes for space with other parts of the design, its available storage is limited to 8-16 kilobits.
Finally, the dictionary must be generated quickly. The search engine deals with multiple queries by
reading the entire database once for each query. For a database the size of the human genome, this
read takes less than a second. To keep the search engine busy, we must construct the dictionaries
for later queries while earlier queries are being processed. If it takes longer to build the dictionary
than to perform the search, the engine will be starved for work.

3.2 Dictionary Design

Our dictionary maps a collection C ⊆ Zn
2 of keys into a sparse table M of 2a entries. Keys

are mapped into the table using a displacement hash function [9] consisting of three components:
two H3 hash functions A ∈ Hn

a and B ∈ Hn
b , and a (dense) displacement table T consisting 2b

numbers, in the range {0 . . . 2m−1}, m ≤ a. To evaluate the hash function for a key x, we compute
h(x) = Ax⊕ T [Bx].

To construct a dictionary from C, we proceed in two stages. First, we randomly select A and B
and map each x ∈ C to the pair (Ax,Bx). If this mapping is not 1:1 on C, we discard A and B and
try again. Our result in Lemma 2.2 ensures that a few (and usually just one) selections of A and B
suffice for this step to succeed. Second, we choose the entries in table T as follows. We divide the
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inputs into up to 2b B-groups βi = {x ∈ C | Bx = i} and sort these B-groups in descending order
by size. Then, for each βi in this order, we choose a value for T [i]. We try all 2m possible values
for T [i] and keep the one that results in the fewest collisions between βi and β1 . . . βi−1. Finally, we
mark each entry of M as either containing no key, containing a single key, or containing a collision
of two or more keys.

Looking up a key x in the dictionary entails probing M [h(x)]. If this probe finds no key, we are
done; if it finds a single key, we may simply check whether this key equals x. If the probe finds a
collision, we must resolve it using additional memory accesses; details of the resolution mechanism
are given in [7].

3.3 Related Work

Displacement hashing as a mechanism for generating perfect hash functions has a long history,
starting with the work of Tarjan and Yao [9]. More recently, Pagh gave an efficient dictionary
construction [8] similar to our own that uses displacement hashing to produce a perfect hash. He
showed that, provided m = a and 2b ≥ 2|C|, a displacement table T that yields perfect hash exists
with positive probability if the underlying hash functions A and B are universal. Moreover, roughly
doubling the size of b is sufficient to ensure that T can be found quickly.

Pagh’s construction requires a displacement table of at least 2|C| log |C| bits to produce a
perfect hash for all keys in C. For |C| = 215, this requires almost a megabit of storage, well beyond
the amount of on-chip storage we can dedicate to the dictionary. Ensuring quick generation of
this perfect hash requires even more space. We were therefore motivated to investigate how few
collisions could be achieved in practice by an efficient construction that is restricted to a much
smaller displacement table.

3.4 Performance

In this section, we empirically investigate the number of colliding keys produced by our dictionary
construction using practically feasible parameters and real DNA queries.

We chose the parameters of construction as follows. Our SRAM currently supports a table
size M of 217 entries, and we expect this to increase to 218 in the near term. Hence, we tested
a ∈ {17, 18}. We allowed the total size of the displacement table T to be either 8 or 16 kilobits. For
these sizes, the fewest collisions were obtained by setting m = 8 and b to 10 and 11, respectively.

Tables with the specified a and b values were tested on collections of 30 non-repetitive DNA
sequences chosen at random from the human genome. We tested two sizes of sequence, 12500
bases and 25000 bases, that reflect the range of target query sizes for Mercury BLAST. Each test
sequence, together with its reverse complement, was converted to a collection of 11-base keys (i.e.
keys in Z22

2 ); each sequence of length ` yields roughly 2` such keys. For each test sequence, we
performed the table construction five times using different random hash functions A and B.

Table 1 illustrates the performance of our dictionary construction. For each combination of
parameters and query size, we give the mean number of table slots containing a collision, along
with a 95% confidence interval based on our 150 trials. To illustrate the benefits of the displacement
table, we also give collision counts for a simple, non-displacement strategy in which h(x) = Ax.
In general, setting a = 17 and b = 10 sufficed to generate perfect hashes in almost every trial for
12.5 kb sequences, while setting a = 18 and b = 11 sufficed to generate perfect hashes for 25 kb
sequences.
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b (bits) a (bits) # collisions (12.5 kb) # collisions (25 kb)
(none) 17 3881 ± 60 14724 ± 97

18 1957 ± 33 7718 ± 66
10 17 0.067 ± 0.058 4718 ± 53

18 0 ± 0 600 ± 15
11 17 0 ± 0 1591 ± 33

18 0 ± 0 0.040 ± 0.045

Table 1: Numbers of colliding keys in small-displacement hash tables. We give averages and 95%
confidence intervals for the number of collisions based on 30 non-repetitive sequences from the
human genome, each hashed five times using randomly chosen hash functions.

We implemented our dictionary generator in the C++ language. To assess its efficiency, we
measured the (wall-clock) time required to generate dictionaries, including reading of input and
writing of the dictionary to a file, on a 2 GHz AMD Opteron processor. For a = 17, b = 10, and
m = 8, a 12.5kb query required 0.44 seconds to convert to a dictionary; for a = 18, b = 11, and
m = 8, a 25kb query required 0.65 seconds. Both times showed very little variation across the 150
random trials.

In conclusion, our near-perfect hashing scheme appears to cause many fewer collisions for given
table and input size than a similar scheme without displacement hashing, while requiring well under
a second to generate the displacement table component of the hash function. These results make
the scheme appropriate for use in the demanding Mercury BLAST application.
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