Forecasting Cryptocurrency Volatility

Daniel Wasserman
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/wushta_spr2017

Recommended Citation

This Abstract for College of Arts & Sciences is brought to you for free and open access by the Washington University Senior Honors Thesis Abstracts at Washington University Open Scholarship. It has been accepted for inclusion in Spring 2017 by an authorized administrator of Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.
The advent of Bitcoin has sparked massive growth in cryptocurrencies in recent years. The prices of Bitcoin and other cryptocurrencies are relatively volatile, which deters people who are risk-averse from investing in them. Many smaller cryptocurrencies are even more volatile than Bitcoin. A model that can predict cryptocurrency volatility based on price motion would benefit potential cryptocurrency investors by providing them with extra information about risk. A random forest machine learning model is used to predict cryptocurrency volatility; this model is compared to the GARCH volatility model that is widely used in modern finance as a benchmark. A discussion regarding model accuracy reveals how predictable cryptocurrency volatility actually is. Finally, comparisons of models with different feature selections give insight as to what factors can significantly influence cryptocurrency volatility.