Stat3 Signaling Mediates FAK Inhibitor Response and Resistance in Pancreatic Cancer

Kyung Bae Lee
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/wuurd_vol13

Recommended Citation
https://openscholarship.wustl.edu/wuurd_vol13/115

This Abstracts J-R is brought to you for free and open access by the Washington University Undergraduate Research Digest at Washington University Open Scholarship. It has been accepted for inclusion in Volume 13 by an authorized administrator of Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.
Pancreatic cancer is not responsive to targeted therapy. This may be due to the presence of a uniquely fibrotic and immunosuppressive tumor microenvironment present in pancreatic ductal adenocarcinoma (PDAC). Critical obstacles to targeted therapy in PDAC tumors include the dense desmoplastic stroma that acts as a physical barrier to drug delivery and the high numbers of tumor associated immunosuppressive cells. In our previous study, we identified hyperactivated focal adhesion kinase (FAK) activity in neoplastic PDAC cells as a significant regulator of the fibrotic and immunosuppressive tumor microenvironment (TME). FAK inhibition (VS-4718) significantly limited tumor progression, and prolonged mice survival. Herein, we observed that STAT3 signaling was constantly activated in non-responsive and rebounded tumors, suggesting STAT3 signaling pathway regulates FAK inhibitor (FAKi) response and resistance.

We proposed that overcoming STAT3 reactivation upon FAK inhibition would enhance pancreatic cancer sensitive to FAK inhibitor. Together, our data indicate that STAT3 inhibition sensitizes PADC to FAKi and overcomes FAKi resistance.