Hecke Algebra Characters Evaluated at Kazhdan-Lusztig Basis Elements Give the Betti Numbers of Hessenberg Varieties

Ryan Schneider
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/wushta_spr2018

Recommended Citation
https://openscholarship.wustl.edu/wushta_spr2018/113

This Abstract for College of Arts & Sciences is brought to you for free and open access by the Washington University Senior Honors Thesis Abstracts at Washington University Open Scholarship. It has been accepted for inclusion in Spring 2018 by an authorized administrator of Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.
Hecke Algebra Characters Evaluated at Kazhdan-Lusztig Basis Elements Give the Betti Numbers of Hessenberg Varieties

Ryan Schneider

Mentor: John Shareshian

A finite Coxeter group is a reflection group defined by a set of generating elements and a set of relations specifying the order of any product of two generators. These groups are related to a number of algebraic and geometric objects. Algebraically, Coxeter groups are associated to Hecke algebras, where each group element naturally corresponds to a basis element of the algebra. Geometrically, a Coxeter group is associated to both a root system—a set of vectors in a Euclidean space on which the group acts by reflection—and a Hessenberg variety.

In this thesis, we study the representations of Coxeter group Hecke algebras and the Betti numbers of Hessenberg varieties. Each Hecke algebra representation associates elements of the algebra to a matrix; the corresponding trace character of the representation maps an element of the algebra to the trace of its matrix under the representation. On a certain set of distinguished elements of the Hecke algebra—Kazhdan-Lusztig basis elements—these trace characters give polynomials. We prove for certain Hessenberg varieties and conjecture for all types that the Betti numbers of the variety are recorded as coefficients in these polynomials. Since the Betti numbers give information about the topology of the variety, as well as the geometry of the corresponding root system, our work illustrates a connection between the geometric and algebraic interpretations of finite Coxeter groups.