Witten Index and spectral shift function

Abstract

Let D be a selfadjoint unbounded operator on a Hilbert space and let \{B(t)\} be a one parameter norm continuous family of self-adjoint bounded operators that converges in norm to asymptotes B_{\pm}. Then setting $A(t) = D + B(t)$ one can consider the operator $D_A = d/dt + A(t)$ on the Hilbert space $L^2(\mathbb{R}, H)$. We present a connection between the theory of spectral shift function for the pair of the asymptotes (A_+, A_-) and index theory for the operator D_A.

Under the condition that the operator $B_+ + t$ is a p-relative trace-class perturbation of A_- and some additional smoothness assumption we prove a heat kernel formula for all $t > 0$,

$$\text{tr}\left(e^{-tD_A D_A^*} - e^{-tD_A^* D_A}\right) = -\left(\frac{1}{\pi}\right)^{1/2} \int_0^1 \text{tr}\left(e^{-tA_s^2(A_+ - A_-)}\right) ds,$$

where $A_s, s \in [0, 1]$ is a straight path joining A_- and A_+.

Using this heat kernel formula we obtain the description of the Witten index of the operator D_A in terms of the spectral shift function for the pair (A_+, A_-).

Theorem. If 0 is a right and a left Lebesgue point of the spectral shift function $\xi(\cdot; A_+, A_-)$ for the pair (A_+, A_-) (denoted by $\xi_{L}(0_+; A_+, A_-)$ and $\xi_{L}(0_-; A_+, A_-)$, respectively), then the Witten index $W_s(D_A)$ of the operator D_A exists and equals

$$W_s(D_A) = \frac{1}{2}(\xi(0_+; A_+, A_-) + \xi(0_-; A_+, A_-)).$$

We note that our assumptions include the cases studied earlier. In particular, we impose no assumption on the spectra of A_{\pm} and we can treat differential operators in any dimension.

As a corollary of this theorem we have the following result.

Corollary. Assume that the asymptotes A_{\pm} are boundedly invertible. Then the operator D_A is Fredholm and for the Fredholm index $\text{index}(D_A)$ of the operator D_A we have

$$\text{index}(D_A) = \xi(0; A_+, A_-) = \text{sf}\{A(t)\}_{t=-\infty}^{+\infty},$$

where $\text{sf}\{A(t)\}_{t=-\infty}^{+\infty}$ denotes the spectral flow along the path $\{A(t)\}_{t=-\infty}^{+\infty}$.

Talk time: 2016-07-18 16:00—2016-07-18 16:20
Talk location: Cupples I Room 115

Session: Operator theory, singular integral equations, and PDEs. Organized by R. Duduchava, E. Shargorodsky, and J. Lang