Muckenhoupt Hamiltonians, triangular factorization, and Krein orthogonal entire functions

Abstract

According to classical results by M. G. Krein and L. de Branges, for every positive measure μ on the real line \mathbb{R} such that $\int_{\mathbb{R}} \frac{d\mu(t)}{1+t^2} < \infty$ there exists a Hamiltonian H such that μ is the spectral measure for the corresponding canonical Hamiltonian system $JX' = zHX$. In the case where μ is an even measure from Steklov class on \mathbb{R}, we show that the Hamiltonian H normalized by $\det H = 1$ belongs to the classical Muckenhoupt class A_2. Applications of this result to triangular factorizations of Wiener-Hopf operators and Krein orthogonal entire functions will be also discussed.