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ABSTRACT 
 
Chloroplasts depend on the nucleus for much of their proteome.  Consequently, strong 

transcriptional coordination exists between the genomes, which is attuned to the developmental 

and physiological needs of the organelle.  Recent studies highlight that the post-translational 

modifier ubiquitin adds another layer to plastid homeostasis and even helps eliminate damaged 

chloroplasts.  
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The household we call a plant cell is actually a complex amalgam of compartments and 

compartmentalized genomes that arose from the primordial soup during the endosymbiosis of 

several free-living bacteria to form a single-celled eukaryotic photoautotroph.  The signature of 

this relationship is the chloroplast (and the collection of other plastid types), a double 

membrane-bound compartment that arose from an engulfed cyanobacterium over 1 billion years 

ago and contains the photosynthetic machinery and other essential metabolic pathways, 

including those devoted to amino acid, tetrapyrrole, and lipid biosynthesis [1].  The plastid 

progenitor presumably began with its full complement of cyanobacterial genes, but as plastids 

evolved in the shadows of the nucleus, much of their coding capacity was transferred such that 

the nuclear genome now encodes for over 90% of the several thousand resident plastid 

proteins.  These nuclear-encoded precursors are translated in the cytoplasm and then delivered 

to the organelle via partially conserved N-terminal transit sequences, which are recognized by 

specialized import machineries (i.e., translocons) on the inner and outer envelope membranes.  

Following precursor uptake, the transit peptide is removed proteolytically.   

 To help coordinate expression of the nuclear-encoded pool with their plastid brethren, 

especially those that assemble into complexes, plants also evolved retrograde signaling 

pathways that relay information from plastids back to the nucleus to ensure that the nucleus is in 

tune with the developmental and metabolic needs of the plastid.  While not completely 

understood, several plastid-derived signaling intermediates are involved, including tetrapyrroles, 

small metabolites, and reactive oxygen species (ROS) [2].  The ultimate targets are numerous 

nuclear genes that are needed to develop plastids appropriate for the tissue or cell type, 

developmental state, and environment of the plant, such as etioplasts in dark-grown seedlings, 

root amyloplasts for starch storage, carotenoid-rich chromoplasts found in flowers and fruits, 

chloroplasts in photosynthetic tissues, and gerontoplasts in senescing organs. 

 While many studies have focused on the transcriptional steps, emerging data 

surprisingly indicate that plants also evolved post-translational mechanisms to maintain plastid 

homeostasis, synchronize organelle development, and control lifespan.  These mechanisms 

engage selective turnover of chloroplast proteins or even whole chloroplasts via ubiquitin-

mediated events.  Ubiquitin functions in turnover by first becoming covalently attached to 

proteins destined for degradation often as chains of polyubiquitin [3].  This conjugation is 

mediated by an ATP-dependent E1-E2-E3 reaction cascade, with a myriad of ubiquitin ligases 

(or E3s) choosing the correct substrates.  Once ubiquitylated, the proteins are degraded, most 

often by the 26S proteasome, a multisubunit self-compartmentalized protease bearing receptors 

that recognize bound ubiquitin moieties.  For protein complexes, insoluble protein aggregates, 

or even whole organelles, all of which are too large for the 26S proteasome, autophagy 
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becomes engaged [4].  These bulky ubiquitylated species are engulfed by cytoplasmic 

autophagosomes, which are then deposited into the vacuole (lysosome in animals) for 

breakdown.   

While first thought to be restricted to nuclear and cytoplasmic events, the first clues that 

ubiquitin controls chloroplast fate came from genetics studies on the Arabidopsis E3 CHIP 

(Carboxy-terminus of Hsc-70-Interacting Protein), which when overexpressed generates 

defective chloroplasts with increased ROS production [5].  Subsequent studies revealed that 

CHIP in combination with the heat shock protein cognate HSC70-4 assist in degrading unfolded 

precursors of various nuclear-encoded chloroplast proteins that have a propensity to aggregate 

in the cytosol.  HSC70-4 binds to CHIP and recognizes the transit sequence of these defective 

precursors [5], thus promoting precursor ubiquitylation and 26S proteasome-mediated 

degradation before they accumulate to toxic levels or interfere with the import of properly folded 

proteins (Figure 1).   

A more direct connection between ubiquitin and plastids was revealed after screening for 

mutants with defective chloroplast biogenesis [6].  The E3 SP1 (Suppressor of Plastid Protein 

Import-1) was discovered to be a suppressor of mutations compromising one plastid import 

translocon.  SP1 associates with the cytosolic face of the outer membrane through two 

transmembrane spanning domains where it employs the rest of the ubiquitylation machinery to 

target the specificity components TOC33 and TOC159 of the import machinery [6].  Via 

ubiquitylation and subsequent 26S proteasome turnover, SP1 is uniquely positioned to control 

which nuclear-encoded proteins pass through the translocon (Figure 1).  Accordingly, sp1 

mutants inefficiently transition from one plastid developmental phase to another and are 

hypersensitive to abiotic stress.  Stress also triggers the SP1-mediated turnover of the import 

translocon [7], which could represent a rapid method to adjust the plastid proteome to the 

prevailing environment. 

In a recent study, Woodson et al. [8] intimately linked ubiquitin to plastid quality control 

and longevity.  Initial studies showed that Arabidopsis ferrochetalase-2 mutants (fc-2), which 

accumulate excess of the heme precursor protoporphyrin IXα in chloroplasts, produce 

abnormally high levels of ROS that damage the photosynthetic capacity and ultrastructure of the 

organelle.  In chloroplast populations, the fc-2 mutants degrade their chloroplasts 4-5 times 

faster than wild type, implying that plants can selectively remove damaged plastids.  A 

suppressor screen for factors that would impair this breakdown identified the E3 PUB4 (Plant U-

Box-4) [8].  When placed in the fc-2 background, pub4 mutants retained high levels of 

chlorophyll and concomitantly blocked defective chloroplast turnover.  Interestingly, fc-2 

chloroplasts became heavily ubiquitylated under light stress, but this modification was 
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substantially dampened in the fc-2 pub4 mutant, thus leading to the proposal that ROS stress 

triggers the PUB4-mediated ubiquitylation of damaged chloroplasts, which then promotes 

turnover.   

Currently, the chloroplast targets of PUB4 are unknown, as are the mechanism(s) that 

eliminate compromised organelles.  Unlike the smaller ubiquitylation targets of CHIP and SP1 

[5, 6], a chloroplast is much too large for the 26S proteasome.  One likely alternative is 

autophagy, which is known to remove chloroplasts by a process not yet connected to ubiquitin 

(Figure 1).  Assuming this connection, it is possible that PUB4-mediated quality control removes 

damage plastids much like the autophagic mechanism that clears defective mitochondria.  Here, 

the mitochondrial surface is first ubiquitylated by the E3 Parkin, which then promotes the 

autophagic delivery of mitochondria by the receptors optineurin/NDP52, which have affinity for 

polyubiquitin chains [9].  Unexpectedly, phosphorylated ubiquitin is central to the process.  It is 

reasonable to assume that similar receptor(s) exist for ubiquitylated chloroplasts given the 

rapidly expanding arsenal now linked to various facets of autophagy [4].  

Beyond the above studies, new connections between ubiquitin and chloroplasts are 

likely.  For example, a deep proteomic analysis of ubiquitin conjugates in Arabidopsis identified 

a number of chloroplast proteins that become ubiquitylated [10].  Whereas some of these 

conjugates likely represent nuclear-encoded precursors prone to CHIP-mediated modification, 

others could be normal plastid surface proteins regulated by ubiquitin addition.  Moreover, 

recent studies on the E3 component DIF revealed that it modulates chloroplast development by 

targeting the nuclear-encoded, plastid lumenal protein DAL for ubiquitylation and 26S 

proteasome turnover before its import.  Interestingly, DIF-dependent control of DAL is also 

intimately connected to plastid ROS production.  Consequently, despite the prevailing notion 

that ubiquitin should be restricted to regulating cytoplasmic and nuclear events, important 

controls on plant organelle functions should not be overlooked.  Stay tuned as the greening of 

ubiquitin continues. 
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Figure 1.  Ubiquitylation Mediated Regulation and Quality Control of Chloroplast.   

Many plastid proteins are expressed from nuclear genes and imported into the chloroplast via 

transit peptide signals.  Ubiquitin (orange color) controls this process and eliminates damaged 

chloroplasts by: (i) removing misfolded precursors by CHIP-mediated ubiquitylation; (ii) 

removing normal precursors before import through E3s such as DIF, (iii) controls plastid protein 

import by SP1-mediated ubiquitylation and subsequent 26S proteasome-directed degradation of 

components of the TOC import translocon, and (iv) eliminates damaged chloroplasts by 

ubiquitylation of unknown plastid outer membrane proteins by PUB4, which is possibly followed 

by autophagic breakdown in the vacuole (chlorophagy). 
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