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ABSTRACT OF THE DISSERTATION 

Identification and characterization of novel astroviruses 

by 

Stacy Renee Finkbeiner 

 

Approximately 1.8 million children die from diarrhea annually, and millions 

more suffer multiple episodes of nonfatal diarrhea. Despite the availability 

of improved molecular diagnostics to detect the known viral agents, the 

etiology of a large proportion of diarrheal cases is unknown. In fact, it is 

estimated that no causative agent can be identified in up to 40% of 

sporadic cases or in gastroenteritis outbreaks. Detection of novel or 

unexpected viruses is the first step in identifying agents that could 

potentially close the diagnostic gap and pave the way for the 

development of more comprehensive preventative measures and better 

treatments.  

 This dissertation encompasses the first application of cutting edge 

mass sequencing approaches to the analysis of viruses present in fecal 

specimens from patients with diarrhea. Known enteric viruses as well as 

multiple sequences (with only limited sequence similarity to viruses in 

GenBank) from putatively novel viruses were detected in pediatric 

sporadic diarrhea specimens. One virus, Astrovirus MLB1 (AstV-MLB1), was 

fully sequenced and determined to be a highly divergent, novel astrovirus 
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based on phylogenetic analysis. AstV-MLB1 was further detected by RT-

PCR in 4/254 fecal specimens collected at the St. Louis Children’s hospital 

in 2008, indicating that AstV-MLB1 is currently circulating in North America.  

 A second highly divergent, novel astrovirus, Astrovirus VA1 (AstV-

VA1), was identified in two specimens from a gastroenteritis outbreak at a 

child care center.  Mass sequencing yielded nearly the entire genome of 

AstV-VA1 which appears to be most closely related to astroviruses found 

in mink and sheep.  One additional sample also tested positive for AstV-

VA1 by RT-PCR, resulting in detection of the virus in 3/5 specimens 

collected from the outbreak.  This presents the possibility that further 

investigations might reveal that AstV-VA1 is a causative agent of 

gastroenteritis outbreaks. 

 The identification of two novel astroviruses in fecal specimens from 

children with diarrhea suggests that astroviruses may cause a larger 

fraction of diarrhea cases than previously recognized. Furthermore, the 

identification and characterization of novel astroviruses MLB1 and VA1 

lays the foundation for future investigations into their potential roles as 

etiologic agents of diarrhea. 
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Chapter 1: Introduction 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Portions of this chapter will be published in “New Virus Discovery in the 21st 

Century.” Molecular Microbiology: Diagnostic Principles and Practice. ASM Press  
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Background on detection of novel viruses 

 The detection of novel viruses has traditionally relied heavily on the 

ability to culture viruses in a laboratory setting. This has limited our ability to 

detect a large number of viruses due to the fact that many viruses do not 

grow well, or at all, in cell culture.  Of the ones that do grow in cell culture, 

it is often a tedious process to determine a permissive cell line(s) in 

combination with the optimal culturing conditions that allow a virus to be 

successfully propagated. Furthermore, the ability to culture a virus does 

not inherently lead to easy identification or characterization of the virus. In 

the past, the identification and characterization of unknown viruses grown 

in culture was based primarily on visual inspection of viral particle size and 

morphology using electron microscopy (EM) or serological cross reactivity 

with antibodies to known viruses. The ability to determine the viral family to 

which a given virus belongs to based on EM observations is severely 

hampered by the fact that many viral families exhibit similar morphologies, 

making it difficult to easily distinguish between them. Serological assays 

also have their limitations in that the unknown virus must cross react with a 

known virus for which there are serological reagents available. It also 

requires having some a priori knowledge about the possible identity of the  
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Figure 1.1: Methods for virus discovery in the past 20 years 

 

unknown virus, since screening has to be done individually for each viral 

family.  

Since the advent of the polymerase chain reaction (PCR) in the 

1980s, PCR has become a common method for detecting viral genomes.   

Once the genome sequence for a given virus is available, it is a 
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straightforward endeavor to design primers that detect the target virus.  

Application of PCR to highly conserved regions of a given virus family or 

taxa has enabled the identification of many novel viruses related to 

known viral families, much as PCR targeting 16S ribosomal genes in 

bacteria has resulted in the identification of novel bacteria.  While the 

cases of viruses discovered in this fashion are too numerous to 

exhaustively list, some notable examples include sin nombre virus (Figure 

1.1A) [1] and human coronavirus HKU1 [2]. Various computational 

strategies for design of consensus PCR primers for novel virus identification 

have been described [3,4]. However, one fundamental limitation of PCR 

assays, which is shared with serological approaches, is that the breadth of 

these assays is limited to interrogating a single taxa, typically a given viral 

family.  Thus, one must have some idea of which viral family or families one 

wants to examine, which can be a daunting task given the abundance of 

possibilities.  

As a consequence of these limitations, other methods not subject to 

this form of bias, such as representational difference analysis (RDA) [5], 

have been applied to virus discovery. This method is a form of subtractive 

hybridization involving the hybridization of nucleic acids between 

putatively infected samples and carefully chosen controls (uninfected 

samples).  Unique sequences present only in the infected specimens are 

preferentially amplified during subsequent PCR cycles leading to 
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dramatic enrichment for the unique sequences.  The most notable 

application of RDA to date resulted in the identification of human 

herpesvirus-8 in Kaposi’s Sarcoma lesions (Figure 1.1A) [6].  Following this 

landmark event in the use of molecular methods for virus discovery, many 

other efforts to use RDA to identify novel viruses ensued, but generally with 

only limited success.   In one recent successful case, RDA was used to 

identify viral sequences from the novel murine norovirus 1 following serial 

passage of a putative infectious agent in mice lacking innate immunity, 

which effectively served to amplify the virus to much higher titers in vivo 

[7].   A major technical limitation is that it is difficult to obtain a well 

matched negative control for the specimen of interest, and frequently the 

amplified differences between the samples reflect differences in host 

gene expression rather than foreign microbial sequences.    

Another landmark discovery, that of hepatitis C, relied upon a 

unique strategy that combined both molecular cloning techniques with 

serological methods [8]. In cDNA library immunoscreening (Figure 1.1A), 

nucleic acids were extracted from putatively infected specimens and 

used to generate bacterial cDNA clones.  Serum from a patient suffering 

from non-A, non-B hepatitis was used to screen the cDNA clones to 

identify polypeptides that were bound by serum antibodies. One reactive 

clone was identified that contained an insert that was not present in 

control samples.  Furthermore, the sequence of this clone did not hybridize 
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to host sequences, suggesting that the clone represented sequence 

unique to the infected sample.  Sequencing of the clone yielded a new 

member of the Flavivirus family, hepatitis C virus.  While this technique 

identified the etiologic agent of non-A, non-B hepatitis, its application to 

other diseases has been limited, and no other significant viruses have 

been identified to date using this approach.  

 

The 1st decade of the 21st century:  the Dawn of Sequence based 

Discovery Methods  

Sequence-independent PCR strategies and new technologies such 

as microarrays and mass sequencing, while not without their own 

limitations, circumvent many of the limitations associated with traditional 

virus discovery methods and consequently have revolutionized the 

process of virus discovery. These approaches, which can be applied 

either alone or in concert with traditional methods such as tissue culture, 

have enabled unbiased and massively parallel analysis of the nucleic 

acid composition of a given specimen.   It must be emphasized however, 

that these approaches complement and do not replace traditional 

virologic methods.  For example, recent discoveries of viruses, such as 

Chapare hemorrhagic fever virus [9] and Melaka virus, a zoonotic bat 

virus associated with respiratory disease [10], continue to demonstrate the 

effectiveness of culture and serological methods.  However, it is clear that 
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there are viruses that do not grow in culture or that are so highly divergent 

that they are not amenable to traditional methods but can be unveiled 

by these newer molecular methods.    In this review, we will focus on those 

viruses where molecular methods have played a critical role in their 

discovery.  

 

Sequence-independent PCR amplification strategies for virus detection 

  PCR screening for novel viruses using primers designed to 

conserved features of viral families offers a powerful approach to virus 

identification, provided there is adequate rationale to select a given 

candidate viral family to test.  In the absence of a logical set of 

candidates to screen, it is typically not feasible to target every viral family 

individually, which would be prohibitively laborious, time-intensive, and 

reagent intensive.  The development of methods in which nucleic acids 

could be amplified in the absence of primers designed to a specific 

target sequence has played a critical role in the latest methods for virus 

discovery.  These sequence independent methods are capable of 

increasing the quantity of an unknown agent to detectable levels.   

Various post amplification detection strategies have been devised to 

‘visualize’ the products of interest that include gel electrophoresis based 

differential display approaches (e.g. VIDISCA), hybridization to pan viral 

microarrays, and high throughput mass sequencing. 
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Identification of human metapneumovirus. The discovery of a novel 

human pneumovirus in 2001, called human metapneumovirus (hMPV), 

relied upon a sequence independent PCR approach in conjunction with 

viral culture to identify a previously unknown virus. [11]. In this study, 28 

serologically related, but otherwise unidentifiable viruses were isolated in 

cell culture from patients with respiratory tract infections. One of the virus 

isolates grown in cell culture was amplified using a technique called 

arbitrarily primed PCR [12,13]. In this technique, primers such as the 

commonly used Universal M13, T7, and T3 primers are arbitrarily selected 

for use in amplification. The amplification scheme involves low stringency 

annealing in the early cycles so that mismatches will be accommodated 

during the annealing of the primers to many different sequences in the 

sample. In the later cycles, a higher stringency annealing temperature is 

used in which amplicons that can be efficiently amplified will 

predominate and create a fingerprint of the sample. The fingerprint, 

consisting of various sized amplicons, can then be compared to control 

samples in order to identify the unique PCR products to then be 

subsequently sequenced. In the case of hMPV, 10/20 PCR products that 

were sequenced had amino acid similarity to avian pneumovirus (APV). 

Upon further sequencing, it was determined that this novel virus encoded 

proteins that were 52-87% similar to avian pneumovirus at the amino acid 
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level. Preliminary animal studies showed that hMPV was able to replicate 

and cause mild upper respiratory symptoms in monkeys, but did not cause 

any symptoms in birds nor showed any signs of replication. Finally, the 

seroprevalence of hMPV was shown to be 100% by age 5. As a result of 

numerous follow up studies [14], it is now believed that hMPV is a 

significant cause of respiratory tract infections. It is interesting to note that 

the initial report of hMPV also noted that hMPV has been circulating in the 

human population for at least 50 years, but that it eluded detection 

because it did not grow well under typical cell culturing conditions, it had 

low nucleotide similarity to known viruses, and lacked apparent 

serological cross reactivity with antibodies generated against other viruses.  

 

Viruses identified using DNase-SISPA. Another approach known as 

sequence-independent single primer amplification (SISPA) [15] involves 

the ligation of a common primer binding sequence to both ends of cDNA 

molecules, which can then be amplified with a cognate primer. A 

refinement of this approach called DNase-SISPA involves the treatment of 

samples with DNase prior to nucleic acid extraction  [16]. The theory 

behind DNase-SISPA is that the DNase should degrade host DNA, but viral 

nucleic acid should be protected by the protein capsid and for some 

viruses also by the lipid viral envelope. Therefore, nucleic acids that survive 

the DNase treatment step should be enriched for sequences of viral origin. 
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In the initial description of the method, the extracted nucleic acid was 

digested using restriction enzymes and the resulting restriction fragments 

were then subjected to SISPA. The SISPA products were visualized by gel 

electrophoresis and prominent bands were sequenced. Amplicons 

derived from novel bovine parvoviruses were identified in this initial proof 

of concept (Figure 1.1B).  Subsequently, DNase-SISPA has been used to 

identify novel viruses from human plasma (parvovirus 4 (PARV4) and two 

TTV-like anelloviruses [17]).  PARV4 has since been detected in human 

serum in multiple studies, but its role in human disease is not currently 

known.   In addition, application of DNase-SISPA to tissue cultures 

inoculated with human stools has led to identification of the novel human 

adenovirus 52 (HAdV-52) [18] and a novel cardiovirus, Saffold virus (SAF-V) 

[19].  Multiple other studies have since demonstrated that viruses related 

to Saffold are circulating in the human population [20-22]. The fact that 

novel viruses from multiple different viral families have been identified with 

this approach highlights its utility as an unbiased means for viral discovery.   

 

 Viruses identified using VIDISCA. Another approach called VIDISCA, 

which stands for Virus-Discovery-cDNA-amplified restriction fragment-

length polymorphism, was used in the discovery of a novel human 

coronavirus, NL63 (HCoV-NL63), in 2004 (Figure 1.1B) [23]. Like DNase-SISPA, 

the VIDISCA method begins with a viral enrichment step that entails 
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centrifugation to remove residual cells and mitochondria and then DNase 

treatment to degrade non-enveloped or non-encapsidated DNA.  Upon 

RNA extraction, double stranded cDNA is synthesized and then the cDNA 

is digested with restriction enzymes that are known to cut frequently 

occurring DNA sequences so as to generate smaller amplifiable 

sequences. Two different adapters are ligated onto the cDNA fragments 

so that only sequences which have a different adapter on each end can 

be subsequently amplified. To clearly visualize the products following gel 

electrophoresis and compare the products to those obtained from a 

control sample, another round of amplification reactions is carried out in 

which the adapter primers are modified to include one extra random 

nucleotide. Since one random nucleotide is added to each primer, there 

are a total of 4 variations of each of the two different adapter primers 

that can be used in 16 primer pair combinations to amplify subsets of the 

original pool of amplicons.  Bands present in the experimental sample 

lanes that are absent in the controls are excised from the gel and 

sequenced. 

The first application of VIDISCA to virus discovery resulted in the 

identification of human coronavirus NL63 (Figure 1.1B). An unidentified 

virus was propagated in tertiary monkey kidney cells after inoculation of a 

nasopharyngeal aspirate from a patient with respiratory infection.   

VIDSCA was performed on the supernatant from the infected cells and a 
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cell culture supernatant from uninfected cells was used as a negative 

control. PCR bands that were specific to the virus infected sample and 

not present in the uninfected control were then sequenced. The initial 

fragments shared limited sequence identity to known coronaviruses. 

Subsequently, the full genome of a novel coronavirus was sequenced that 

shared on average 65% identity to its closest relative HCoV-229E. 

Furthermore, HCoV-NL63 contained unique genomic features, such as an 

insertion in the spike protein, which is involved in receptor binding and is 

thought to determine the tropism of the virus. In the original study, HCoV-

NL63 was also detected in up to 7% of patients with respiratory disease.  A 

follow-up study suggested that NL63 is associated with croup [24].   Shortly 

following the identification of NL63, yet another coronavirus, HKU1, was 

discovered using degenerate PCR screening strategy [2].   The 

identification of these two human viruses immediately following the SARS-

coronavirus outbreak of 2003 has greatly increased awareness of the role 

of coronaviruses in human disease, and suggested that the importance of 

coronaviruses as etiologic agents of respiratory infections and their 

diversity has been vastly underestimated. VIDISCA has also been used to 

identify a new strain of human parechovirus type 1 [25].  

These examples used sequence-independent PCR assays followed 

by selective sequencing of a subset of “unique” PCR products and have 

highlighted how powerful unbiased approaches are in the discovery of 
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novel viruses. In many ways, these techniques provide the foundation for 

the higher-throughput techniques that will be discussed in the rest of this 

chapter.  

 

Sequence independent PCR followed by microarray hybridization for virus 

discovery 

 DNA microarrays first emerged in the mid 1990s as powerful tools to 

measure gene expression or genomic content changes in various 

organisms [26-28]. While many flavors of microarrays exist, the 

commonality to all microarrays is that a high density of DNA probes, 

numbering from thousands to hundreds of thousands,  is attached to a 

surface or surfaces enabling the analysis of complex mixtures of input 

nucleic acid [26-28] in a single assay.  Capitalizing on the inherently 

massively parallel nature of microarrays, Wang et al. described in 2002 the 

first microarray designed to detect large numbers of viruses [29].  This 

prototype DNA microarray (the “ViroChip”) harbored 1,600 70mer 

oligonucleotides derived from 140 different virus species with an average 

of ~ 10 oligonucleotides per virus species.  Conventionally, microarrays 

had been designed primarily with probes from a single organism of 

interest.  The rationale for development of this microarray was twofold:  (1) 

the microarray would enable simultaneous screening for hundreds to 

thousands of known viruses in a single assay, thus making it an ideal 
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diagnostic tool; (2) by careful selection of highly conserved sequences, it 

was anticipated that novel viruses related to known virus families could be 

detected.   

  Experimentally, viral nucleic acids extracted from clinical samples 

are subject to random PCR amplification, fluorescently labeled and 

hybridized to the microarray.  The resulting hybridization patterns observed 

between the nucleic acids in the sample and the oligonucleotides on the 

array can be analyzed to identify whether a known or novel virus is 

present in the sample. The performance of the ViroChip was validated on 

both cultured viruses as well as on clinical samples.   It was demonstrated 

that a wide variety of viruses could be detected by the array, including 

representatives of both RNA and DNA viruses [29].  With the development 

of this technology, it quickly became apparent that objective 

computational approaches for analysis and interpretation of the raw 

microarray data were needed.   In 2005, the first algorithm for objectively 

interpreting microarray hybridization data to infer the presence of 

microbial species, E-predict, was described [30].   In one follow-up study, 

the ViroChip detected known viruses in 53/82 (65%) nasal lavage samples 

whereas only 14 (17%) of these samples yielded viruses by culture  [31].   In 

another follow-up study, the ViroChip demonstrated sensitivity in the 

range of 85-90% and specificity of ≥99%, as compared to virus specific 

PCR/RT-PCR reactions for respiratory syncytial virus, influenza and rhinovirus 
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[32].   These results demonstrated the feasibility of using sequence 

independent PCR amplification of clinical specimens in combination with 

microarrays to detect a broad range of known viruses.  Critically, in 

contrast to traditional screening strategies, a priori assumptions regarding 

the types of virus present do not need to be made. 

DNA microarrays using long (70mer) oligonucleotide probes have 

also proven to be more robust to viral mutations than conventional PCR.  

For example, in one case, ViroChip analysis indicated that a patient 

specimen contained human metapneumovirus even though multiple 

assays using metapneumovirus PCR primers were negative.   Sequencing 

of the virus present in the sample ultimately revealed that mutations 

present in the primer binding sites were most likely the cause of the false 

negative PCR result [33].  This case illustrates two features of microarray 

based diagnostics:  (1) depending on the length of the microarray probe, 

varying degrees of mutation can be tolerated, enabling detection of 

variant species; (2) the presence of multiple oligonucleotide probes for 

each target virus (i.e. redundancy) provides greater opportunities to 

detect variant viruses.   

The field of diagnostic microarrays has grown tremendously in the 

past few years, with multiple broad-range diagnostic microarrays 

described [34-37]. These have utilized a multitude of different microarray 

platforms, probe design strategies, and oligonucleotides of varying 
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lengths, demonstrating the robustness of the general methodology.  In 

parallel, there has been more limited progress in the development of 

algorithms for interpretation of diagnostic microarrays [38,39].   The 

published applications of these diagnostic microarrays to date have 

focused exclusively on detection of known viruses.  By contrast, the 

second goal in development of the ViroChip was to facilitate the 

discovery of novel viruses.  To date, this approach has been used to 

identify a number of novel viruses, from humans and animals.  

 

 Identification of SARS-CoV.  The World Health Organization (WHO) 

issued a global alert in 2003 regarding an illness described as “severe 

acute respiratory syndrome” (SARS) that was emerging in Southeast Asia 

with significant mortality.  A WHO coordinated collaboration was 

established between labs around the world to try and identify the 

causative agent of the highly contagious illness that had rapidly spread 

from Asia to other parts of the world. This was the first case in which a DNA 

microarray was employed to detect a novel virus (Figure 1.1B).  The then 

unknown virus was cultured in Vero cells [40].  Extraction of total nucleic 

acids from the culture followed by random amplification and hybridization 

to the ViroChip [41] yielded a significant signal intensity from just a few 

oligonucleotides derived from the viral families Coronaviridae and 

Astroviridae. Given the limited number of oligonucleotides that were 
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hybridized to the sample, it appeared that there may have been two 

novel viruses present in the sample. However, further analysis revealed 

that all of the oligonucleotides derived from the Astroviridae family came 

from a genetic element that is found in the 3’ untranslated region of the 

genomes of both viral families [42]. Therefore, based on the nature of the 

hybridization pattern, it appeared that a single virus, likely a coronavirus, 

was present in the sample.  Since only a small subset of the highly 

conserved probes from the family Coronaviridae were bound by the virus, 

it was reasoned that the virus was likely to be highly divergent.   In order to 

rapidly sequence parts of the novel virus genome, cDNA fragments 

derived from the unknown virus were physically recovered from the 

surface of the microarray, PCR amplified, cloned, and sequenced.   The 

largest clone contained a ~1.1kb fragment that had 33% amino acid 

identity to a protein derived from murine hepatitis virus, a mouse 

coronavirus, thus confirming that the SARS-CoV was a novel virus.  The 

coalition of scientists collaborating on the SARS effort was then able to 

show that SARS-CoV specific antibodies could be detected in 

convalescent-phase serum from SARS patients and that SARS-CoV RNA 

could be detected in respiratory specimens. This strongly suggested that 

SARS-CoV was in fact the etiological agent of the SARS outbreak 

[40,43,44]. 
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 Identification of XMRV. The ViroChip has also been applied in the 

search for novel human tumor viruses, which lead to the 2007 discovery of 

a novel human retrovirus in a subset of prostate cancer patients carrying 

mutations in the RNase L gene [45].  Germline mutations in RNase L have 

been reported to confer an increased susceptibility to prostate cancer 

[29,46-48]. It was also known that such mutations were also linked with 

hereditary prostate cancer, which is defined by having 3 or more 

affected family members and is often recognized by the early onset of 

the disease[49]. However, there were conflicting reports based on case-

controlled studies regarding the involvement of the RNase L mutations in 

the development of prostate cancer. This suggested to some that there 

were perhaps other environmental or population differences that 

affected the contribution of RNase L mutations to prostate cancer 

susceptibility. Given that RNase L has a well established antiviral function, 

Urisman, et al. hypothesized whether the observed differences in 

susceptibility could be explained by the fact that mutations in RNase L 

actually led to a greater susceptibility to a viral agent [45]. RNA derived 

from biopsied prostate tumors with and with out mutations in RNase L was 

hybridized to the ViroChip. A distinct gammaretrovirus was identified that 

was detected in 8/20 (40%) tumors homozygous for the mutation in 

RNASEL, while retroviral sequences were only detected in 1/66 (1.5%) 

tumors bearing at least one wild-type allele. This virus appeared to be 
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most closely related to xenotropic murine leukemia virus lending itself to 

the name Xenotropic Murine-like Retrovirus (XMRV) and represented the 

first of its kind to be detected in humans. In situ hybridization of prostatic 

tumors with XMRV derived probes and immunohistochemistry probing for 

viral retroviral proteins showed the presence of the virus in the tumors 

suggesting there could be a link between XMRV infection and prostate 

cancer. Later work has shown that XMRV is integrated in some tumor cells 

and that replication of the virus is susceptible to RNase L [50].  It is currently 

unclear whether XMRV plays a causal role in prostate cancer or whether 

its presence is a secondary event.  

 

Identification of HTCV-UC1.   In an effort to identify novel respiratory 

pathogens, respiratory secretions collected from patients with influenza-

like symptoms were screened by conventional assays for respiratory 

syncytial virus, influenza virus, parainfluenza virus, adenovirus, and 

picornaviruses (rhinoviruses and enteroviruses). Samples that remained 

negative after all diagnostic testing were then analyzed with the ViroChip. 

One array had a hybridization pattern suggesting that a cardiovirus was 

present in the sample [20]. Conventional diagnostic testing panels for 

respiratory viruses do not include any members of the Cardiovirus genus in 

the family Picornaviridae.   Primers were designed from the highest 

intensity oligonucleotides and from alignments of conserved regions of 
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the known cardiovirus genomes in order to try and amplify portions of the 

cardiovirus present in the sample. The full sequence of this cardiovirus, 

HTCV-UC1, was then obtained. Testing of 428 respiratory specimens failed 

to identify additional cases. However, similar viruses were identified in 6 

out of  767 stool samples tested [20].  HTCV-UC1 appeared to be closely 

related to Saffold-like cardioviruses, which were initially discovered using 

the DNase-SISPA strategy [19,21,22]. These studies define a new group of 

cardioviruses which seemed to be the first human cardioviruses and have 

tropism for both the respiratory and gastrointestinal tract.  The role of these 

viruses in human disease remains to be determined.  

 

 Identification of animal viruses. Two final examples demonstrate the 

universality of pan-viral microarrays designed using all available viral 

sequences. By including sequences from all viruses without restrictions 

based on either viral taxonomy or putative host species, not only human 

samples but plant and animal specimens can be analyzed.   In one 

instance, the ViroChip was used to analyze liver tissue from a beluga 

whale that had died mysteriously in an animal park.   A strong 

hybridization signature from conserved coronavirus probes was observed 

on the ViroChip, which ultimately led to the identification and complete 

sequence of a highly divergent, novel coronavirus [51].   
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The ViroChip was also used in the discovery of an avian bornavirus 

found in samples derived from cases of a disease called proventricular 

dilation disease (PDD) [52]. PDD is an inflammatory disease affecting over 

50 species of parrots as well as other orders of birds.  It had been long 

thought that there was an infectious etiology for this disease and a 

number of viral agents had been implicated over the years. For example, 

electron microscopy analysis led some to believe that a paramyxovirus 

was responsible, but this was later ruled out [52]. Other reports came out 

reporting the culturing of an unidentified virus, but this virus was never 

identified [52].  ViroChip analysis of PDD cases versus controls suggested 

that a novel bornavirus, referred to as avian bornavirus (ABV), was present 

in 62.5% of the PDD samples and none of the controls (0/8). Mass 

sequencing (described in the next section) was used to obtain the full 

bornavirus genome from one of the samples. Further PCR screening of 

additional PDD samples revealed that the avian bornavirus was detected 

in 71% (5/7) of PDD cases and none (0/14) of the controls. Given the high 

correlation of ABV with PDD samples and not controls, it is highly 

suggestive that this virus could in fact be the etiologic agent of PDD. This 

case perfectly highlights the limitations of conventional approaches since 

for years the etiology of this disease was unknown and now the ViroChip 

has identified what could potentially be the causative agent of PDD.  
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 Pan-viral microarrays have proven to be successful tools for the 

detection of known viruses and the identification of multiple novel viruses.  

In conjunction with sequence independent PCR, microarrays offer a 

robust readout to define the nature of viruses present in a specimen.   

However, one key limitation of pan-viral microarrays is that highly 

divergent viruses that have little to no nucleotide similarity with known 

viruses will not be detected since the technology depends on cross-

hybridization between the unknown virus and probes derived from known 

viral genomes.    

 

DNA sequencing methods 

 Dideoxy sequencing or Sanger sequencing, first described in 1977 

[53], has been the dominant DNA sequencing technology used during the 

last ~30 years.  In the dideoxy sequencing process, primers designed to 

bind to a template of interest are added with dideoxynucleotides to a 

polymerase extension reaction.  Incorporation of a dideoxynucleotide 

prevents further extension of the primer-driven DNA synthesis reaction.  In 

the automated form of Sanger sequencing, each of the 4 

dideoxynucleotides is labeled with a distinct fluorescent dye. The 

truncated synthesis products are then run through a capillary containing a 

denaturing polymer that provides single base pair resolution separation. 

As each product passes through the end of the capillary it is excited by 
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light and the resulting fluorescence is recorded as one of four 

wavelengths, each corresponding to a different base. In this way, the 

sequence of the template can be deduced by determining which 

dideoxynucleotide was incorporated at each position of the 

complementary sequence. The typical sequence read length can reach 

750-800 bp.  This technology has been the cornerstone of all significant 

sequencing projects up to 2005, including the sequencing of the human 

genome.   Efficiencies gained in the monumental effort to sequence the 

human genome have enabled the production costs of Sanger 

sequencing in large genome sequencing centers to fall to as little as $0.35 

per read (as of this writing).       

Starting in 2005, multiple new sequencing technology platforms 

(“NextGen”) emerged that have far surpassed conventional Sanger 

sequencing in terms of increased total sequence production capacity 

and decreased cost.   While there are many NextGen platforms, in this 

review, we will limit our discussion to those that have been effectively 

utilized to date in the efforts to identify novel viruses.   These include 454 

pyrosequencing [54], commercially available in the form of the Roche FLX 

instrument and Solexa technology, which is marketed as the Illumina 

Genome Analyzer.  

454 pyrosequencing technology differs from Sanger sequencing in 

that natural nucleotides are used in the sequencing reaction.   Rather 



 - - 24 - - - 24 -

than monitor the incorporation of nucleotides directly, successful 

incorporation of a nucleotide is inferred by measuring the quantity of 

inorganic phosphate (PPi) produced.  PPi is stoichiometrically converted 

to ATP, which provides energy for luciferase.  The quantity of light that is 

produced by luciferase as a given nucleotide is added to the reaction is 

indicative of the number of bases incorporated at that step.   By 

repeatedly adding dATP, dCTP, dGTP and dTTP into the reaction in series, 

up to 250 bp of contiguous sequence can be determined.   Another key 

feature of the 454 technology is that hundreds of thousands of these 

sequencing reactions are carried out simultaneously on independent 

beads.  This is accomplished by generating 1:1 DNA template:bead 

complexes.  First the target DNA to be sequenced is randomly sheared 

into fragments and then ligated to adapters.  Single stranded template 

DNA is isolated, mixed with the beads and then subject to emulsion PCR 

to clonally amplify the template on each bead.    Next, the beads are 

distributed into a fiber optically constructed plate (PicoTiterPlate) that 

contains millions of tiny wells.  Within each well that receives an individual 

bead, an isolated environment is created for the sequencing of each 

template, resulting in parallel sequencing of hundreds of thousand of 

templates at once. Currently, one 454 sequencing run produces ~400,000 

sequence reads of an average read length of ~250bp with imminent 

expansion of its capacity to ~1,000,000 reads of ~ 400 bp  [55].  
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Solexa sequencing also uses a synthesis approach, but differs from 

454 pyrosequencing in a number of ways. Unlike the bead format of the 

454 platform, templates to be sequenced via Solexa sequencing are 

affixed to a solid surface. Adapter sequences are ligated onto the 

templates just as with 454, however, in Solexa sequencing these adapters 

not only serve as priming sites for PCR and sequencing, but they are also 

critical for the affixation of complementary templates to the solid surface 

through a mechanism called bridge amplification. The bridge 

amplification generates clusters of amplified template on the solid surface, 

where each cluster represents a different template. Solexa uses a unique 

chemistry that incorporates fluorescently labeled reversible terminator 

nucleotides in the sequencing reaction. The nucleotides are fluorescently 

labeled with different colors so that all four can be added to the reactions 

simultaneously. Due to the termination property of the nucleotides, only 

one individual nucleotide can be incorporated into each sequence 

during one sequencing cycle. The color of the fluorescent label 

incorporated into the sequences of each cluster is recorded and discerns 

which nucleotide was incorporated.  Removal of the terminator group on 

the nucleotide just added enables incorporation of the next 

complementary nucleotides and the cycle is repeated. The length of the 

read is dependent on the efficiency of removing the chain terminator 
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group at each step.  Currently, Solexa sequencing generates ~40-50 

million sequences of a read length of ~35bp [55]. 

To date, all three of these technologies, Sanger sequencing, 454 

sequencing and Solexa sequencing, have been used to characterize 

novel viruses. A schematic for generalized strategies of virus detection 

using mass sequencing are outlined in Figure 1.2.  

 

Sequence-independent amplification and sequencing strategies for virus 

detection 

Meyerson and colleagues conducted the first proof of principle 

experiment to demonstrate that extensive sequencing of nucleic acids in 

a specimen in conjunction with computational subtraction could be used 

to detect pathogens [56]. They examined a tissue specimen from a case 

of post-transplant lymphoproliferative disorder (PTLD), knowing that most 

cases of PTLD are caused by Epstein Barr virus (EBV). A cDNA library with 

27,840 sequences was generated and each individual sequence was 

compared to the human genome in order to identify those sequences of 

human origin.   These sequences were then eliminated from further 

consideration in a process termed “transcript filtering”.  The remaining 

sequences that did not match human genomic sequences were 

postulated to be derived from microbial organisms present in the sample.  

In fact, from this library, 10 sequences that did not match any human  
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Figure 1.2: Schematic of mass sequencing strategies for detection of known and novel 

viruses  
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sequences but had similarity to EBV were identified. Furthermore, these 

sequences could only be amplified from EBV infected tissues and not from 

controls, thus showing the potential power of mass sequencing strategies.   

 

 Identification of human bocavirus. The discovery of human 

bocavirus (HBoV) marked the 1st example of discovery of a novel virus by 

direct high throughput sequencing of clinical specimens (Figure 1.1B) [57]. 

In this study, pools of respiratory samples were ultracentrifuged, filtered, 

and DNase treated to produce samples for analysis that were highly 

enriched for intact viral particles (in which the genome is protected from 

DNase treatment) and to minimize the amount of other contaminating 

DNAs. In contrast to the discovery of human metapneumovirus, in which 

primers were arbitrarily chosen for amplification, a random PCR 

amplification strategy was used for amplification in the HBoV study. The 

amplified products were then cloned and ~300-500 clones were 

sequenced without any effort to identify specific amplicons.  In this 

analysis, 20% of the sequences showed similarity to viral sequences, the 

majority of which were derived from known viruses. However, some of the 

sequences had only limited similarity to viruses in the Parvovirdae family, 

and more specifically the genus Bocavirus. The respiratory samples that 

were initially pooled together for sequencing analysis were independently 

screened by PCR for the presence of the novel bocavirus of which two 
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tested positive. Further PCR screening of other pediatric respiratory 

specimens revealed that HBoV could be detected in 3.1% of the samples.   

The potential role of human bocavirus in respiratory disease and 

gastroenteritis has been investigated in numerous subsequent studies.   

These epidemiologic and seroepidemiologic analyses have determined 

incidence rates of bocavirus between 2.7-19% (in respiratory secretions) 

and seroprevalence rates of 94.7-98.3% in healthy adults [14]. As with 

human metapneumovirus, this high seroprevalence rate suggests that 

HBoV may be well established in humans and could be an important 

human pathogen.  

 

Identification of novel polyomaviruses. For 36 years following the 

culture based discovery of JC virus (JCV) and BK virus (BKV) in 1971, it was 

assumed that these were the only two human polyomaviruses.  That 

picture changed dramatically in a 12 month span in 2007-2008 as 3 novel 

human polyomaviruses were discovered, all by use of high throughput 

sequencing strategies.   In 2007, sequencing of randomly amplified 

products generated from clinical respiratory samples resulted in the 

detection of 2 novel polyomaviruses, KI polyomavirus (KIV) and WU 

polyomavirus (WUV) [58,59].  KIV was identified using the same 

experimental strategy that led to the discovery of human bocavirus [57].  

The discovery of WUV followed a parallel approach with the exception 
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that individual respiratory specimens rather than pooled specimens were 

analyzed. In both cases, sequences were identified with limited similarity 

(≤50%) at the amino acid level to the known primate polyomaviruses at 

the time.  

The full genomes of KIV and WUV were sequenced and analyzed. 

Phylogenetic analysis demonstrated that KIV and WUV were actually most 

similar to each other (~65-70% amino acid identity) and appeared to 

represent a new subclass of polyomaviruses.   Both of these viruses shared 

many similarities that distinguish them from JCV and BKV, including the 

lack of an Agno protein, the absence of a C-terminal extension domain of 

the Large T antigen, and altered origins of replication. In terms of tropism, 

neither WUV nor KIV have been detected to date in urine, in contrast to 

JCV and BKV which are both frequently detected in urine.  Both WUV and 

KIV have been found to be prevalent in the respiratory tract, with WUV 

having a prevalence of up to 7% in respiratory infections with KIV’s 

prevalence generally slightly lower [60-65]. They are often found as part of 

a co-infection with other viruses and have also been found in respiratory 

secretions of asymptomatic individuals, so the pathogenesis of these 

viruses is presently unclear.  Persistence of WUV in respiratory secretions of 

immunocompromised individuals has been described [66].  

A third novel polyomavirus was discovered in 2008 in human merkel 

cell carcinomas (MCC) [67].  Merkel cell carcinoma is an aggressive form 
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of skin cancer that has a 33% mortality rate which has been increasing in 

incidence in recent years [68].  The rationale for pursuing a potential 

infectious etiology for MCC lies in the increased susceptibility among 

immunosuppressed patients [69].  Feng et al. generated cDNA libraries 

from four MCC tumors and subjected them to high-throughput mass 

sequencing using 454 pyrosequencing. ~400,000 sequences were 

generated. Poor quality sequences and those that aligned to known 

human RNA, human chromosomes, mitochondria, or immunoglobulin 

sequences were removed from the final analysis. Of the remaining 2,395 

sequences, one sequence was detected which had limited similarity to a 

primate polyomavirus. The full genome of the polyomavirus represented 

by this sequence, referred to as Merkel cell polyomavirus (MCV), was 

subsequently sequenced.  Phylogenetic analysis determined that MCV 

was most closely related to African green monkey polyomaviruses and 

was only much more distantly related to JCV, BKV, WUV and KIV.  Upon 

screening 10 other MCC tumors by PCR and Southern blotting, it was 

found that 80% of them were positive for MCV, whereas only 5/59 control 

tissues were positive.   The virus was also found in 4/25 (16%) skin and non-

MCC skin tumors. A striking observation was that the MCV DNA was 

clonally integrated into the MCC tumors, indicating that MCV integration 

is an early event during the transformation process and thus may 

contribute to tumorigenesis.  Mechanistically, this may be the 
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consequence of the putative transforming ability of the MCV T-antigen or 

alternately it may be due to cellular alterations resulting from integration 

of the MCV genome, or a combination of the two. Follow up studies have 

generally corroborated the detection of MCV in the majority of Merkel 

tumor specimens [70-73].   If future studies definitively implicate MCV in the 

etiology of Merkel cell carcinoma, it would be the first clear cut example 

of a polyomavirus playing a role in human cancer, after many years of 

debate over the role of polyomaviruses in human cancer [74].  The 

discovery of Merkel polyomavirus was the first published report using 454 

sequencing to discovery a novel virus.  Of relevance for the continuing 

quest to identify potential infectious etiologies of human cancers, the fact 

that only 1 out of 400,000 sequence reads yielded a viral sequence 

suggests that as sequencing technologies continue to improve, it will be 

possible to detect viral nucleic acid sequences present at even lower 

abundances.   

The identification of 3 novel polyomaviruses within a 12 month span 

by use of similar high throughput sequencing strategies underscores both 

the promise of such strategies as well as the fact that the diversity of 

viruses that constitute the human virome is vastly underestimated. 

Moreover, the identification of a novel human polyomavirus that appears 

to be strongly associated with a human tumor greatly broadens our 

paradigms of polyomaviruses.   As the application of mass sequencing 
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strategies gain favor, we anticipate that most viral families will gain new 

members that may similarly broaden our understanding of those virus 

families.  Even more tantalizing is the possibility that completely novel 

families of viruses may be identified through the use of such approaches.  

 

Detection of an arenavirus in a fatal transplant cluster. Another 

example of the utility of 454 pyrosequencing in detecting viruses comes 

from identification of an arenavirus associated with a cluster of fatal 

transplant-associated diseases [75]. Cerebrospinal fluid, serum, and tissue 

samples from two individuals who died 4-6 weeks after receiving organ 

transplants from the same donor were sequenced.  14 fragments out of 

94,043 sequence reads had sequence similarity to LCMV.  The results of 

this analysis suggested the specimens contained an arenavirus, which was 

then isolated in tissue culture from an infected kidney homogenate. 

Serum antibodies of both individuals reacted with the viral culture and 

were used to show immunostaining of viral antigens in the tissue 

specimens. While significant debate over whether this virus is indeed novel 

is ongoing [76], this case nonetheless illustrates two important points: (1) 

high throughput sequencing is a robust methodology for detection of 

viruses both known and novel; (2) as strictly sequence based methods 

gain prominence, viral taxonomy needs to be restructured to 

accommodate sequence based classification. 
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Avian bornavirus sequencing. The initial discovery of a novel avian 

bornavirus (as discussed previously)  was based upon hybridization of 

specimens to a pan-viral microarray [52].  In order to sequence the 

complete genome of the avian bornavirus, Kistler et al. utilized Solexa 

sequencing technology.  A total of 1.4 million 33 bp reads were obtained 

from specimens positive for the virus. The sequences were filtered for read 

quality, sequence complexity, and the presence of inserts which reduced 

the number of usable reads to 600,000. Host sequences, approximately 

50% of all the reads, were computationally subtracted from this pool by 

comparison to sequences of all available avian species.  Comparison of 

the remaining sequence reads to all Borna Disease virus sequences 

identified 1,400 sequences that appeared to be derived from this novel 

virus.  Conventional PCR-based methods were required to fill in the gaps 

of the genome where no sequences were identified in the mass 

sequencing. Retrospective analysis once the full genome of the avian 

bornavirus was obtained showed that there were twice as many 

sequences derived from the virus than initially identified. In total, 

sequences from the virus constituted 1% of all the sequence reads.   This 

study was the first to use Solexa technology for de novo sequencing of a 

novel virus genome.     
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Identification of seal picornavirus. As demonstrated with some of 

the other methods, mass sequencing is not limited to the analysis of 

human samples.  Application of mass sequencing to the supernatant of 

cells inoculated with a nasal swab from a seal yielded sequences that 

had 22-41% amino acid identity to known picornaviruses [77]. The degree 

of divergence of this virus, called seal picornavirus 1 (SePV-1), to other 

picornaviruses suggests that this virus might represent a new genus in the 

family Picornaviridae.  Moreover, this is the first example of a picornavirus 

infecting a marine mammal, which again underscores our relative 

ignorance regarding the diversity of viruses that surround us. 

 

 Mass sequencing of human stool. Recently, high throughput 

sequencing has been applied to the analysis of human stool samples 

collected from healthy individuals [78,79].  Sequences from phage and 

plant viruses were dominant in the analysis of healthy stools. However, the 

question: “What is viral content of diarrheal stools?” remained a major 

question. Specifically, I wanted to know what viruses could be found in 

diarrheal stools, if I could find novel viruses, and if I found novel viruses, 

might they be linked to diarrhea or some other human disease?  It 

therefore became my interest to apply cutting edge technologies like 

mass sequencing to examine which viruses are present in diarrhea 
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specimens and to search for novel viruses potentially associated with 

diarrhea.   

 

Impact of diarrheal disease 

Diarrhea is estimated to be the third leading cause of death due to an 

infectious disease [80]. While data from socioeconomically developing 

countries is sparse, mathematical modeling based on the data that is 

available suggests that ~2 - 2.5 million children under the age of 5 die 

every year from diarrhea. The overall disease burden is much greater with 

an estimated 1.4 billion episodes of diarrhea occurring each year in 

developing countries and 9 million of these episodes requiring 

hospitalization [81]. In developing countries, conditions such as poor 

sanitation, malnutrition, poor healthcare, and the rising rates of HIV 

infections in many regions all contribute to the burden of diarrheal disease 

[81,82]. In developed countries, mortality rates have been drastically 

reduced by the use of oral rehydration therapy as a treatment for 

diarrhea. Despite this, there are still an estimated 211-375 million episodes 

of acute diarrhea that occur each year in the United States, with 1.8 

million episodes resulting in hospital admissions [83]. 

 There are over 20 known enteropathogens which include bacteria, 

viruses and parasites. A small percentage of the annual cases of diarrhea 

are attributable to parasite infections with most occurring in developing 
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countries. Viruses are responsible for causing the greatest number of  the 

annual cases of diarrhea, while bacteria are responsible for a significant 

portion of the cases, but still less than those caused by viruses [84-86]. 

Rotaviruses, astroviruses, caliciviruses, and adenoviruses are the major 

causes of viral diarrhea [87,88]. These viruses were all identified as 

etiologic agents of diarrhea in the 1970s [89-92]. While there are other 

viruses that have been suggested to be linked to diarrhea, there have 

been no major discoveries of new enteric viruses since the initial 

identification of the four major viral diarrhea pathogens [87,88]. This 

becomes important in light of the fact that ~20-40% of cases of acute 

sporadic diarrhea are caused by unknown etiology [93]. Likewise, it is 

estimated that up to ~12-40% of gastroenteritis outbreaks are also of 

unknown etiology even after extensive testing, suggesting that there is a 

diagnostic gap [94,95]. In the United States alone, it is estimated that there 

are 5,000 yearly deaths which occur as a result of gastroenteritis of 

unknown etiology (GUE), accounting for 77% of the deaths in U.S. caused 

by diarrhea [96]. Given that viruses play such a large role in the disease 

burden of diarrhea, that no new viral cause of diarrhea has been 

discovered in the last 30 years,  and given that a number of viruses have 

been described morphologically upon observation of their presence in 

loose stools but not characterized further, there is good reason to believe 
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that there are other viral agents of diarrhea that have yet to be 

discovered [97-99].   

 Mass sequencing of pediatric diarrhea samples which were 

determined to be negative for known enteric agents by conventional 

assays such as PCR and enzyme immunoassays was carried and is 

described in Chapter 2. Use of this methodology in screening of acute 

sporadic diarrhea samples resulted in the identification of a novel 

astrovirus which will be referred to as Astrovirus MLB1 (AstV-MLB1), and 

which is described in Chapters 2-4. In addition, the use of mass 

sequencing to analyze diarrhea samples from a gastroenteritis outbreak 

resulted in the identification of an additional novel astrovirus referred to as 

Astrovirus VA1 (AstV-VA1), which is described in Chapter 5. 

 Astroviruses were first described in 1975 by electron microscopic 

examination of fecal extracts [100,101]. Since this first discovery, 

astroviruses infecting cattle, sheep, cats, dogs, deer, chickens, turkeys, 

ducks, and bats have also been described in addition to the eight human 

serotypes that have been identified [102,103]. The human astroviruses 

most frequently cause diarrhea in children under the age of 2, the elderly, 

and immunocompromised individuals [104]. Typical symptoms are watery 

diarrhea, while vomiting, headache, fever, abdominal pains, and 

anorexia occurring to a lesser extent. Symptoms usually last 2-4 days. 

Astroviruses account for 10% of sporadic cases of non-bacterial diarrhea 
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and the magnitude of their impact on disease burden seems to be 

increasing with the development of more sensitive technologies for 

astrovirus detection and increased surveillance [105].   

The name astrovirus comes from the observation that ~10% of the 28 

nm particles have a star like morphology. Astroviruses are non-enveloped, 

single stranded, positive sense RNA viruses. The genomes, which range 

from 6.4 kb to 7.9 kb in length, are polyadenylated, contain 3 open 

reading frames (ORFs 1a, 1b, and 2), and have both 5’ and 3’ 

untranslated regions (Figure 1.3). Their genomic organization, which is 

similar to that of caliciviruses, is:  (from 5’ to 3’) ORF 1a, which encodes a 

serine protease; ORF1b, which encodes the RNA dependent polymerase; 

and ORF 2, which encodes the structural proteins. A frameshift must occur 

during the translation of ORF 1a in order for ORF 1b to be translated. ORF 2, 

on the other hand, is translated from a sub-genomic RNA and produces a 

polyprotein which is cleaved by cellular proteases [106].  

 

 

Figure 1.3: Schematic of genomic organization of astroviruses. Sizes of the open reading 

frames correspond to those of Human Astrovirus 1. 
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This dissertation manuscript describes work that was done to first 

identify which viruses can be found in diarrhea samples and which then 

led to the discovery of multiple novel astroviruses (AstV-MLB1 and AstV-

VA1). The remaining body of this manuscript describes the efforts to further 

characterize these newly discovered astroviruses and to begin answering 

important questions raised by their discoveries. Characterization of these 

viruses may reveal that astroviruses contribute more to the global disease 

burden of gastroenteritis than previously recognized. Furthermore, the 

discovery of two novel astroviruses in such a short time frame indicates 

that there may be more astroviruses waiting to be discovered and that 

perhaps more energy should be devoted to studying astroviruses since 

the work described herein only begins to scratch the surface in terms of 

our understanding of astrovirus biology.  
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Chapter 2:  

Metagenomic Analysis of Human Diarrhea:  

Viral Detection and Discovery 
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ABSTRACT 

Worldwide, approximately 1.8 million children die from diarrhea annually, 

and millions more suffer multiple episodes of nonfatal diarrhea.   On 

average, in up to 40% of cases, no etiologic agent can be identified.  The 

advent of metagenomic sequencing has enabled systematic and 

unbiased characterization of microbial populations; thus, metagenomic 

approaches have the potential to define the spectrum of viruses, 

including novel viruses, present in stool during episodes of acute diarrhea.  

The detection of novel or unexpected viruses would then enable 

investigations to assess whether these agents play a causal role in human 

diarrhea.  In this study, we characterized the eukaryotic viral communities 

present in diarrhea specimens from 12 children by employing a strategy of 

‘micro-mass sequencing’ that entails minimal starting sample quantity 

(<100 mg stool), minimal sample purification and limited sequencing (384 

reads per sample).  Using this methodology we detected known enteric 

viruses as well as multiple sequences from putatively novel viruses with only 

limited sequence similarity to viruses in Genbank.  

 

 

INTRODUCTION 

 While traditional sequencing approaches are designed to 

characterize genomes of a single species of interest, metagenomic 
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approaches, such as mass sequencing, transcend species boundaries 

allowing one to explore the makeup of microbial communities. Such 

methods provide a holistic look at microbial diversity within a given 

sample, completely bypassing the need for culturing [107-111]. Previous 

efforts in this field have explored the structure of virus communities in 

ecosystems as diverse as the ocean [107,112] and the human gut [78,79].  

To date, the reported metagenomic studies of human stool have been 

limited to analysis of 4 specimens collected from 3 healthy patients [78,79].  

To our knowledge, no metagenomic investigation of the viral diversity 

found in human diarrhea has previously been described.  Human diarrhea 

is the third leading cause of infectious deaths worldwide and is responsible 

for ~ 1.8 million deaths in children under age five each year [80].  Bacteria, 

protozoa and viruses have all been implicated as causal agents.  Chief 

among the known etiologic agents are rotaviruses, noroviruses, 

astroviruses, and adenoviruses [113]  However, it is estimated that on 

average up to 40% of diarrhea cases are of unknown etiology, suggesting 

that unrecognized infectious agents, including viruses, remain to be 

discovered [85,93,114-116].  Mass sequencing affords an opportunity to 

explore the viral diversity (including both known and novel viruses) present 

in stool during acute episodes of diarrhea in a systematic and unbiased 

fashion, thereby laying the foundation for future studies aimed at 
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assessing whether any novel or unexpected viruses detected play a 

causal role in human diarrhea.   

In this study, mass sequencing was applied to explore specifically 

the viral communities present in pediatric patients suffering from diarrhea.  

We anticipated that the viral communities would vary significantly from 

specimen to specimen and that it would be desirable to sample broadly 

from multiple patients to obtain an overall perspective on the diversity of 

viruses that might be present.   Toward this end, a simple yet robust 

experimental strategy was developed that circumvented certain 

technical and economic limitations of conventional mass sequencing.  In 

both previous viral metagenomic studies of the human gut, large 

quantities of fecal matter (~500g) were collected from adults and then 

extensively purified to enrich for viral particles [78,79].  In contrast, 

pediatric samples provide considerably smaller volumes of stool; therefore, 

our strategy was designed to minimize the number of physical purification 

steps so that as little as 30 mg of archived fecal matter could be analyzed.  

Here we present data generated by performing what we refer to as 

‘micro-mass sequencing’ of several hundred sequence reads per sample 

from 12 different patients with acute diarrhea.  This analysis provides 

evidence for the detection of known enteric viruses, viral co-infections, 

and novel viruses.   
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RESULTS 

Aggregate library analysis.  Metagenomic analysis was carried out 

on fecal samples collected from 12 distinct pediatric patients suffering 

from acute diarrhea. Patient characteristics are shown in Table 2.1. A 

sequence independent PCR strategy was employed to amplify the 

extracted nucleic acids from each sample [41]. 384 clones were 

sequenced for each sample library. Because the goal of this project was 

to define the diversity of viruses present in the clinical specimens 

regardless of their relative abundance, nearly identical sequence reads 

were clustered to generate a set of non-redundant sequence reads. 

Unique, high quality sequence reads were then classified into broad 

taxonomic groups based on the taxonomy of the most frequent top 

scoring BLAST matches for each sequence. A total of 4,608 sequences 

were generated, of which 3,169 passed through a quality filter and 2,013 

of those contained unique sequence information. Of the unique 

sequences passing through the filter, 1,457 (72%) could be identified by 

similarity to sequences in the Genbank nr database based on tBLASTx (E-

value ≤10-5) alignments. The remaining 556 (28%) sequences had no 

significant similarity to any sequences in the nr database and were  

therefore categorized as being of ‘unknown’ origin. The 1,457 identifiable 

sequences were further classified into categories based on their proposed 

origin (Figure  2.1). 519 (35.6%) were most similar to eukaryotic viruses, 25 
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Table 2.1: Sample Information. 

Sample 
Year 
Collected Age of Patient 

# of high quality 
sequence reads 

# of 
unique 
reads 

Average 
unique read 
length (bp) 

D01 2005 14 mo 365 166 526 
D02 1998 10 mo 348 104 499 
D03 1984 NA 302 281 506 
D04 1984 4 mo 311 154 626 
D05 1980 NA 243 168 563 
D06 2003 11 mo 153 132 393 
D07 1999 23 mo 352 186 617 
D08 1999 35 mo 302 167 255 
D09 1981 NA 302 294 491 
D10 1983 20 mo 195 146 447 
D11 1978 NA 253 103 367 
D12 2005 8 mo 198 129 300 

 

 (1.7%) to phage, 857 (58.8%) to bacteria, 3 (0.2%) to fungi, and 20 (1.4%) 

to human sequences.  The remaining 33 (2.3%) were most similar to 

sequences that did not fall into the other previous categories and were 

consequently labeled as ‘other’. For example, some of the sequences 

had significant hits to mouse, fish, and plant genomes. 

Individual library statistics. 384 clones were sequenced for each 

individual sample. The proportion of high quality sequences for each 

sample varied between 40% and 95% of the total clones (Table 2.1). The 

percentages of unique sequences per sample ranged from 41% to 97% of 

the high quality reads (Table 2.1). The average length of the unique, high 

quality sequences ranged from 255 to 626 bp. Viral sequences constituted  
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Figure 2.1: Composite analysis of all 

sequences 

Sequences from all 12 libraries were 
categorized based on the best 
tBLASTX scores (E-value: <10-5) as 
viral, phage, bacterial, human, 
fungal, other, or unassigned. 
Numbers in parenthesis represent 
the number of sequences in each 
category.  

 

 

 

between 0-100% of the reads in each library (Figure 2.2). Some libraries 

(e.g., D01 and D05) were predominantly composed of viral sequences 

(64% and 95% respectively), whereas others consisted largely of bacterial 

(e.g., D08 and D12) or unassigned (e.g., D03 and D07) sequences. Based 

on the initial BLAST classification criteria, sequences with similarity to viruses 

from 7 different viral families and three unclassified genera (picobirnavirus, 

anellovirus and mimivirus) were detected in the 12 different samples (Fig. 

2.2).  Five of the samples (D03, D05, D06, D08, and D12) contained 

sequences from at least two different virus families known to infect 

humans. 
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Figure 2.2: Categorization of sequence reads based on best tBLASTX scores  

(E-value: <10-5)  

Pies on the left side of each box depict the categorization of sequences from individual 
samples by phylotype: viral (V); phage (P); bacterial (B); human (H); fungal (F); other (O); 
and unassigned (U). Pies on the right side of each box depict further characterization of 
viral sequences by viral families/taxa: Reoviridae (Reo); Caliciviridae (Calici); Astroviridae 
(Astro); anellovirus (Anello); picobirnavirus (Picobirna); Picornaviridae (Picorna); mimivirus 
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(Mimi); Nodaviridae (Noda); Adenoviridae (Adeno); Parvoviridae (Parvo). Numbers in 
parentheses indicate the number of sequence reads in each category. 

 

Detection of known viruses.  The first specimen analyzed was a 

positive control stool specimen that had tested positive for rotavirus (D01) 

by enzyme immunoassay.  It was our expectation that this sample would  

yield sequences derived from the infecting rotavirus. In this library, 107 

non-redundant sequence reads were identified as viral in origin, almost all 

of which possessed ≥ 90% amino acid (aa) BLAST identity to known 

rotavirus sequences in Genbank. The sequence data included cloned 

fragments from all 11 RNA segments of the rotavirus genome.  

An additional 11 stool specimens were then selected that had 

tested negative in conventional PCR and enzyme immunoassays for the 

known diarrhea viruses (rotaviruses, caliciviruses, astroviruses, and 

adenoviruses). Despite such screening, sequences derived from the 

canonical enteric viruses were detected in a number of samples.  For 

example, calicivirus sequences were detected in D02 and D06, astrovirus 

sequences in D04, and adenoviruses were detected in D05 and D12. 

Almost all individual sequence reads in these cases possessed >90% aa 

identity to existing viral sequences in Genbank. 

Adeno-associated virus (AAV), a member of the Parvoviridae family, 

was detected in two samples, D11 and D12. These viruses are known to 

infect the gastrointestinal tract, but are not thought to be enteric 



 - - 50 - - - 50 -

pathogens. For productive infections or reactivation from a latent state, 

AAV requires co-infection with a helper virus that is most commonly an 

adenovirus or less typically, a herpesvirus [117]. In D12, adenovirus 

sequences were detected. No additional viruses were detected in D11. 

Detection of novel virus sequences.  In many of the libraries, 

individual sequence reads were detected that possessed ≤ 90% aa 

identity to their highest scoring BLAST hit (representative sequences are 

listed in Table 2.2) suggesting that these sequences might be derived from 

novel viruses.  In part because BLAST alignments are based on local 

sequence comparisons, BLAST is not an optimal method for making 

taxonomic assignments.  In order to more accurately and precisely assess 

the relationship of these sequences to known viruses, we generated 

phylogenetic trees using the maximum parsimony method [118]. In cases 

where more than one sequence read hit the same region of a genome, 

only one representative sequence read is listed in Table 2.2 and 

phylogenetic trees are shown for only these representative sequences (Fig. 

2.3, 2.4 and Fig. 2.S1-S4). Phylogenetic analysis revealed that many of the  
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Table 2.2: Selected sequence reads with limited BLAST identity to known viruses 

Sample 

Sequence 

Read 

Accession 

# Identity to top hit 

Top Hit 

(Accession #) Virus Family/Taxa 

D03 ET065742 78% 

Human 
picobirnavirus 
strain 1-CHN-97 
(AF246939) 

Picobirnavirus 

D03 ET065743 90% 
Human 
coxsackievirus A19 
(AF499641) 

Picornaviridae 

D06 ET067042 74% 
Human enterovirus 
91 (AY697476) 

Picornaviridae 

D06 ET067045 66% 
TTV-like mini virus 
(AB026931) 

Anellovirus 

D06 ET067040 79% 
Snow Mountain 
virus (AY134748.1) 

Caliciviridae 

D06 ET067041 88% 
Norovirus C14 
(AY845056.1) 

Caliciviridae 

D08 ET065575 57% 
Human astrovirus 4 
(AY720891) 

Astroviridae 

D08 ET065582 67% 
Human astrovirus 5 
(DQ028633) 

Astroviridae 

D08 ET065578 45% TT virus (AB041963) Anellovirus 

D09 ET066010 35% 

Epinephelus 
septemfasciatus 
nervous necrosis 
virus (AM085331) 

Nodaviridae 

D10 ET066456 81% 
Human 
picobirnavirus 2-
GA-91 (AF245701) 

Picobirnavirus 

 

sequences were divergent from known sequences on the order that 

approximated a distinct subtype or genotype (Figures 2.S1-S4).  This 

included two libraries with picobirnaviruses (D03, D10) (Figures 2.S1), two 

with picornaviruses (D03, D06) (Figures 2.S2), two with anelloviruses (D06, 

D08) (Figure 2.S3), and one with a norovirus (D06) (Fig. 2.S4). 
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Figure 2.3: Phylogenetic analysis of highly divergent astrovirus-like sequence reads. 

Maximum parsimony phylogenetic trees were generated by comparing the translated 
amino acid sequence of individual sequence reads to the corresponding sequences 
from known astroviruses.  1,000 replicates were generated with bootstrap values over 700 
shown. A) Representative sequence read mapping to astrovirus serine protease ORF 
(Accession number ET065575); B) Representative sequence read mapping to astrovirus 
RNA polymerase (Accession number ET065582). 

 

In several instances, much more highly divergent sequences were 

detected that suggested that novel virus species might be present.   The 

library generated for sample D08 included 7 unique sequence reads 

derived from two loci that displayed 52-67% aa identity to human 

astroviruses. Phylogenetic analysis of the individual sequence reads 

suggested that a novel astrovirus was present in D08 (Figure 2.3).  These 

sequence reads were assembled into two contigs, one of ~800 bp that 

mapped to ORF1a and one of ~500 bp that mapped to ORF1b.  RT-PCR 

and subsequent sequencing of the amplicon confirmed the presence of 

the contigs in the original RNA extract as well as the contig assemblies 

(data not shown). Phylogenetic analysis of the two contigs yielded trees 
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essentially identical to those generated from the individual sequence 

reads (data not shown).   

In sample D09, we detected one sequence read which exhibited 

limited similarity to viruses in the family Nodaviridae (Table 2.2). RT-PCR of 

this sample using primers designed from the sequence read confirmed the 

presence of a 229 bp fragment in the original RNA extract (data not 

shown). Phylogenetic analysis of the sequence of the RT-PCR product 

demonstrated that the nodavirus in sample D09 was highly divergent from 

other known nodaviruses (Figure 2.4). 

 

Figure 2.4: Phylogenetic analysis of a highly divergent nodavirus-like sequence read. 

Maximum parsimony phylogenetic trees were generated by comparing the translated 
amino acid sequence of one sequence read (Accession number ET066010) to the 
corresponding RNA polymerase sequences of nodaviruses. 1,000 replicates were 
generated with bootstrap values over 700 shown. 
 

 

Finally, one sample, D03, contained five sequence reads that, 

based on the top tBLASTX hits, contained 47% to 52% aa identity to 

endonuclease genes in the amoeba-infecting virus Acanthamoeba 
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polyphaga mimivirus. These sequences also possessed approximately 

similar levels of sequence identity to a number of bacterial genomes and 

phage genomes containing putative endonuclease proteins. 

Phylogenetic analysis comparing the sequence reads to the top scoring 

BLAST hits (Figure 2.S5) did not conclusively clarify the origin of these 

sequences. Further experimentation will be required to unambiguously 

determine if these sequences are derived from a mimi-like virus, phage, or 

a bacterial species. 

Unassigned sequences. Some sequences in the libraries had no 

significant hits to any sequences in the Genbank nr database. Samples 

D03 and D07 had a large abundance of these ‘unassigned’ reads. 

Relaxing E-value thresholds for designating various sequence categories 

resulted in the ability to classify a greater number of these unassigned 

sequences; however, many of these classifications likely represent 

artifactual alignments. Viral assignments remained largely unaffected, 

even when E-value thresholds as permissive as 10 were applied. 

 

DISCUSSION  

We examined the diversity of viral communities in stools from 12 

children with diarrhea using a strategy we describe as ‘micro-mass 

sequencing’.  This strategy, which entails crude purification of fecal 

suspensions, nucleic acid purification, random PCR amplification, and 



 - - 55 - - - 55 -

cloning and sequencing of several hundred colonies, effectively 

detected known enteric viruses, viral co-infections, and novel viruses.  In 

most traditional metagenomic studies, large sample volumes are 

subjected to multiple stages of filtration and purification before 

sequencing. For example, in previous metagenomic studies of the gut, 

500g of fecal samples were initially collected for the analyses. Because 

clinical pediatric diarrhea specimens are much more limited in volume, 

we chose to both minimally purify the samples and to employ a random 

PCR amplification strategy.  These combined steps enabled us to rapidly 

generate sequencing libraries from small quantities of archived stools (30-

100 mg).  Furthermore, we wished to sample broadly from multiple 

patients because of the large number of viruses known or suspected to be 

associated with diarrhea.  Therefore, rather than sequence few specimens 

in great depth as has been done previously (10,000 sequences per 

sample) [78], we focused on sequencing fewer clones (384 per sample) 

from more samples (12 specimens).  

Our analysis detected viruses, bacteria, host, phage and other 

sequences (Figures 2.1 and 2.2).  The presence of non-viral sequences in 

the libraries was not surprising as only minimal efforts were made to enrich 

for viral sequences.  In fact, the goal of this strategy was to manipulate 

the specimens as little as possible in the interest of simplicity.  Even so, in a 

few libraries, 100% of the sequence reads were of viral origin.   Additional 



 - - 56 - - - 56 -

processing, such as treating the specimens with DNase, reduced the 

background signal and increased the percentage of viral reads in some 

instances (data not shown).  

Viral sequences were detected in all but one sample. Interestingly, 

a number of DNA viruses (bacteriophages, adenoviruses, and adeno-

associated viruses) were detected in our analysis, despite our use of a 

methodology focused on purification of RNA.  While it is possible that RNA 

transcripts from these viruses were purified [119], it is more likely that viral 

DNA was co-purified with RNA, as is common in other RNA purification 

methods [120]. PCR analysis of samples D05 and D11 in the absence of 

reverse transcription, yielded positive results for adenovirus and adeno-

associated virus, respectively, indicating that viral DNA was present in the 

RNA preparations (data not shown).  

Analysis of this initial cohort of 12 specimens yielded a wealth of 

original findings. In contrast to previous metagenomic studies of stool [78], 

a number of known human viruses were detected in these clinical 

specimens. These included common enteric pathogens such as rotavirus, 

adenovirus, calicivirus, and astrovirus.  In addition, putatively benign 

adeno-associated viruses (AAV) were also detected which are not 

generally associated with human diarrhea. Aside from one sample known 

to contain rotavirus, we intended to analyze the viral communities present 

in samples that were not infected by known enteric pathogens in order to 
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identify viruses that might be responsible for the unexplained cases of 

diarrhea. The fact that micro-mass sequencing detected these canonical 

viruses in some of the specimens, despite conventional diagnostic testing 

by EIA and PCR, underscores the sensitivity limits of conventional 

diagnostics.  

Detection of novel viruses.  Sequences were detected in this study 

from at least 9 putatively novel viruses.   For 7 of these sequences, the 

degree of divergence observed based on phylogenetic analysis 

suggested that they might represent novel virus subtypes or genotypes of 

picobirnavirus, enterovirus, TT virus and norovirus (Figures 2.S1-S4).  

Picobirnaviruses belong to an unclassified genus of double stranded RNA 

viruses and have been detected in fecal matter from human and other 

animals both with and without diarrhea [121]. Only a limited number of 

picobirnavirus sequences have been previously described in the literature 

and thus the identification of two novel picobirnaviruses significantly 

expands the known diversity of this taxonomic group, underscoring the 

unrecognized viral diversity inhabiting the human body.   

Sequences representing a divergent norovirus were detected in 

sample D06 (Figure 2.S4).   Phylogenetic analysis of individual sequence 

reads that mapped to the RNA polymerase and the NS4 regions of human 

norovirus suggested that these sequences were derived from a novel or 
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unsequenced member of norovirus genogroup 2.  In the initial screening 

by conventional PCR, this sample tested negative for norovirus. Upon  

closer examination, four mutations were observed in one of the PCR 

primer binding sites, which plausibly hindered the PCR screening assay 

[85].   

In two samples, much more highly divergent sequences were 

detected.  In D08, phylogenetic analysis of 7 unique sequence reads 

strongly suggested that a novel astrovirus species was present (Figure 2.3).  

The observed sequence variation between these sequence reads and 

the known astrovirus genomes greatly exceeds the variation that exists 

between the 8 known serotypes of human astrovirus, suggesting that this 

virus is not simply another serotype of the known astroviruses.  Astroviruses 

are non-enveloped, single stranded, positive sense RNA viruses that 

account for up to 10% of sporadic diarrhea cases [105]. Infections with 

astroviruses most frequently cause watery diarrhea lasting 2-4 days, and, 

less commonly vomiting, headache, fever, abdominal pain, and anorexia 

in children under the age of 2, the elderly, and immunocompromised 

individuals [104].  The detection of this genetically distinct astrovirus raises 

the question as to whether or not this is an authentic human virus, and if so, 

whether or not it is a causal agent of human diarrhea.    

Another novel sequence detected appeared by phylogenetic 

analysis to belong to the family Nodaviridae (Figure 2.4).   Nodaviruses are 
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small single-stranded, positive sense, bipartite RNA viruses, divided into 

two genera, the alphanodaviruses (insect viruses) and the 

betanodaviruses (fish viruses). Currently, none of the established family 

members are known to naturally infect mammals although experimental 

manipulation of the viral genome has enabled viral replication in a wide 

array of organisms including mammals [122].  While it is tempting to 

speculate that this might represent the first instance of human infection 

with a nodavirus, further experimentation such as serological analysis is 

required to definitively answer this question.  Another plausible 

explanation is that the virus may be present simply as a result of 

consumption of fish infected by the virus. A prior report describing the 

presence of plant virus RNAs in human stool has similarly been attributed 

to dietary exposure [78].  Incidentally, some fish genomic sequences were 

detected in this particular sequence library (D09 “other” bin) supporting 

the possibility of dietary exposure.  However, the potential piscine origin of 

this virus would not necessarily preclude its role as an etiologic agent of 

human disease.  

The micro-mass sequencing approach, like any other experimental 

methodology capable of detecting novel viruses (such as culture or 

degenerate PCR), cannot of course by itself determine whether the newly 

detected agent is pathogenic.  However, this strategy can generate 

novel, testable hypotheses such as “Are these novel viruses involved in the 
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etiology of human diarrhea?” and “What is the true host of these viruses?” 

that could not be asked in the absence of the knowledge that these 

viruses existed.  

Unassigned reads.  556 out of the 2013 (28%) unique high quality 

sequences were binned as unassigned by the BLAST criteria.  Of these, 23 

were identified as containing repetitive elements or low-complexity 

sequence by RepeatMasker [123,124] thus explaining the lack of 

meaningful BLAST alignments.  The origin of the remaining 533 sequences 

that were unassigned is uncertain, but they could be derived from 

unannotated host genome, novel or unsequenced microbes, or dietary 

sources which have not been sequenced. However, it is also possible that 

some of these sequences could represent viruses that have no 

appreciable similarity to sequences of currently known viruses.  Extracting 

more telling information from these sequences is a challenging problem 

that will require the development of new computational measures 

capable of detecting more distant evolutionary relationships than is 

possible with existing methods.  In addition, as more genome sequences 

from diverse organisms and other genomic/metagenomic projects 

become available, sequence similarity based methods may identify a 

greater fraction of these currently unassigned sequences. 

Diagnostic Applications and Implications. Our data suggest that 

micro-mass sequencing might be of great diagnostic utility for a number 
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of reasons. First, viruses escaping detection in conventional assays were 

detected by micro-mass sequencing. In theory, the sensitivity of this 

strategy is limited only by the depth of sequencing. As demonstrated here, 

even shallow sequencing performed better than conventional diagnostics 

in some instances.  In addition, the unbiased nature of the method 

enabled detection of viruses not conventionally tested for.  Moreover, co-

infections were detected in multiple samples. Furthermore, for multi-

segmented viruses such as rotaviruses, reassortment of segments between 

species is a major mechanism of viral evolution that can lead to the 

emergence of more virulent strains [125].  Complete genome sequencing 

of all segments simultaneously would yield completely unambiguous 

identification of the viral genotype.  In contrast to typical PCR or antibody 

based assays that target a single segment or protein, micro mass 

sequencing detected all 11 genomic RNA segments of rotavirus. In terms 

of technical practicality, samples were only minimally manipulated 

relative to traditional metagenomic sequencing [78,107,109,112], thereby 

avoiding the time, labor, and use of specialized equipment required to 

concentrate the specimens, rendering this methodology potentially 

amenable to use in diagnostic laboratories. As sequencing costs diminish 

and efficiencies improve, mass sequencing could become a powerful 

diagnostic tool. 
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In summary, we have shown that micro-mass sequencing can 

define the diversity of viral communities found in fecal samples from 

diarrhea patients.  Both known viruses and novel viruses were detected by 

sequencing only a few hundred colonies from each sample library.  These 

studies will serve as the springboard for further interrogations of the roles of 

these diverse viruses in the gastrointestinal tract.   Finally, our detection of 

multiple novel viruses in this initial, limited exploration of a dozen samples 

suggests that broader sampling of patient specimens is likely to be highly 

fruitful in terms of identification of additional novel viruses. 

 

MATERIALS AND METHODS 

Clinical Archived Stool Specimens.  

Melbourne Cohort. Stool samples were collected from children under the 

age of 5 who were admitted to the Royal Children’s Hospital, Melbourne, 

Victoria, Australia with acute diarrhea between 1978 and 1999.  

 

Seattle Cohort. Stool samples were collected between 2003-2005 at the 

Emergency Department of the Children’s Hospital and Regional Medical 

Center in Seattle, Washington, USA as part of a prospective study 

attempting to discern the cause of unexplained pediatric diarrhea. 
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Diagnostic testing of stool specimens for known microbial diarrheagenic 

agents. 

Melbourne Cohort. Specimens were tested by routine enzyme 

immunoassays (EIA) and culture assays for rotaviruses, adenoviruses, and 

common bacterial and parasitic pathogens as previously described [85]. 

RT-PCR assays were used to screen specimens for the presence of 

caliciviruses and astroviruses [85,126] .  

 

Seattle Cohort. Specimens were tested for the presence of a number of 

bacterial species (Campylobacter jejuni, Escherichia coli O157:H7 and 

non-O157:H7 Shiga toxin-producing E. coli, Salmonella, Shigella, and 

Yersinia) following standard culture assays, Clostridium difficile toxin by a 

cytotoxicity assay, parasites by microscopy and antigen testing [84]. 

Additionally, samples were tested by EIA for rotaviruses, adenoviruses, 

noroviruses 1 & 2, and astroviruses (Meridian Biosciences, DAKO). This study 

was approved by the institutional review boards of the CHRMC and of 

Washington University. 

 

Library construction and mass sequencing. 

Chips of frozen archived fecal specimens (~30-150mg) were resuspended 

in 6 volumes of PBS.  A subset of the archived specimens had been 
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previously diluted and were further diluted 1:1in PBS. The stool suspensions 

were centrifuged (9,700 x g, 10 minutes) and supernatants were harvested 

and then passed through 0.45µm filters. RNA was extracted from 100µL of 

the filtrates using RNA-Bee (Tel Test, Inc., Friendswood, Texas) according to 

manufacturers instructions. Approximately, 100-300 nanograms of RNA 

from each sample was randomly amplified following the Round AB 

protocol as previously described [41]. The amplified nucleic acid was 

cloned into pCR4 using the TOPO cloning kit (Invitrogen, Carlsbad, CA), 

and transformed into Top10 bacteria. Positive colonies were subcloned 

into 384 well plates, DNA was purified using magnetic bead isolation, and 

followed by sequencing using standard Big Dye terminator (v3.1) 

sequencing chemistry and the universal primer M13 reverse. Reactions 

were ethanol precipitated and resuspended in 25uL of water prior to 

loading onto the ABI 3730xl sequencer.  

 

Analysis of sequence reads.  

Sequence traces were subjected to quality assessment and base-calling 

using Phred [127,128]. Lucy [129] was used to trim vector and low quality 

sequences. Default parameters were used except that high quality 

sequences identified by Lucy were allowed to be as short as 75 

nucleotides. To define the set of reads with unique sequence content in 

each library, sequences that passed the quality filter were clustered using 
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BLASTClust from the 2.2.15 version of NCBI BLAST to eliminate redundancy. 

Sequences were clustered based on 98% identity over 98% sequence 

length, and the longest sequence from each cluster was aligned to the 

NCBI nr database using the tBLASTx algorithm [130].  An E-value cutoff of 

1e-5 was applied.  Sequences were phylotyped as human, bacterial, 

phage, viral, or other based on the identity of the best BLAST hit.  

Sequences without any hits having an E-value of 1e-5 or better were 

placed in the “Unassigned” category.  All eukaryotic viral sequences were 

further classified into viral families in similar fashion. 

Trimmed, high quality sequences that were not found by RepeatMasker to 

contain repetitive or low-complexity sequence have been deposited in 

Genbank (Accession numbers ET065304 through ET067293). 

 

Phylogenetic analysis. 

ClustalX (1.83) was used to perform multiple sequence alignments of the 

protein sequences associated with select sequence reads. Available 

nucleotide or protein sequences from known viruses were obtained from 

Genbank for inclusion in the phylogenetic trees.  Selected sequences 

from Genbank included those with the greatest similarity to the sequence 

read in question based on the BLAST alignments as well as representative 

sequences from all major taxa within the relevant virus family. The protein 

alignments created by ClustalX were input into PAUP [118], and maximum 



 - - 66 - - - 66 -

parsimony analysis was performed using the default settings with 1,000 

replicates.  

 

Astrovirus trees: Human astrovirus 1 (NC_001943); Human astrovirus 2 
(L13745);  Human astrovirus 3 (AAD17224); Human astrovirus 4 (DQ070852); 
Human astrovirus 5 (DQ028633); Human astrovirus 6 (CAA86616); Human 
astrovirus 7 (AAK31913); Human astrovirus 8 (AF260508); Turkey astrovirus 1 
(Y15936); Turkey astrovirus 2 (NC_005790); Turkey astrovirus 3 (AY769616); 
Chicken astrovirus (NC_003790); Ovine astrovirus (NC_002469); and Mink 
astrovirus (NC_004579).   
 

Nodavirus tree: Striped Jack Nervous Necrosis virus (Q9QAZ8); 
Macrobrachium rosenbergii nodavirus (Q6XNL5); Black Beetle virus 
(YP_053043.1); Flockhouse virus (NP_689444.1); Epinephelus tauvina 
nervous necrosis virus (NC_004136.1); Nodamura virus (NC_002691.1); 
Boolarra virus (NC_004145.1); Pariacoto virus (NC_003692.1); and 
Redspotted grouper nervous necrosis virus  (NC_008041.1). 
 

Picornavirus trees: Human coxsackievirus A1 (AAQ02675.1), Human 
coxsackievirus A18 (AAQ04836.1), Human coxsackievirus A19 
(AAQ02681.1), Human coxsackievirus A21 (AAQ04838.1), Human 
coxsackievirus A24 (ABD97876.1), Human poliovirus 1 (CAD23059.1), 
Human coxsackievirus A2 (AAR38840.1), Human coxsackievirus A4 
(AAR38842.1), Human coxsackievirus A5 (AAR38843.1), Human 
coxsackievirus A16 (AAV70120.1), Human enterovirus 89 (AAW30683.1), 
Human enterovirus 91 (AAW30700.1), Human enterovirus 90 (BAD95475.1), 
Human enterovirus 71 (CAL36654.1), Echovirus 1 strain Farouk 
(AAC63944.2), Human coxsackievirus B2 (AAD19874.1), Human enterovirus 
86 (AAX47040.1), Human coxsackievirus B5 (AAF21971.1), Human 
echovirus 29 (AAQ73089.1), Human enterovirus 68 (AAR98503.1), Human 
enterovirus 70 (BAA18891.1), Bovine enterovirus (NP_045756.1), Porcine 
enterovirus A (NP_653145.1), Porcine enterovirus B (NP_758520.1), Simian 
enterovirus A (NP_653149.1), Human rhinovirus A (ABF51203.1), Human 
rhinovirus B (NP_041009.1). 
 

Picobirnavirus trees: Human picobirnavirus strain 1-CHN-97 (AF246939.1), 
Human picobirnavirus strain 4-GA-91 (AF246940.1), Human picobirnavirus 
strain Hy005102 (NC_007027.1), Human picobirnavirus strain 2-GA-91 
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(AF245701.1), Human picobirnavirus strain 1-GA-91 (AF246612.1), Porcine 
picobirnavirus 2 (EU104360.1). 
 

 

Anellovirus trees:  TGP96 Torque teno virus (AB041962), Pt-TTV8-II Torque 
teno virus (AB041963),  CBD231 TTV-like mini virus  (AB026930), Mf-TTV9 
Torque teno virus (AB041959), Mf-TTV3 Torque teno virus (AB041958), 
KC009/G4 Torque teno virus (AB038621), TA278/G1 Torque teno virus 
(AB008394), Pt-TTV6 Torque teno virus (AB041957), TUS01/G3 Torque teno 
virus (AB017613), PMV/G2 Torque teno virus (AF261761), JT33F/G5 Torque 
teno virus (AB064606), MD1-073 Torque teno midi virus (AB290918), MD2-
013 Torque teno midi virus (AB290919), Tbc-TTV14 Torque teno virus 
(AB057358), Sd-TTV31 Torque teno virus (AB076001), Fc-TTV4 Torque teno 
virus (AB076003), Cf-TTV10 Torque teno virus (AB076002),  So-TTV2 Torque 
teno virus (AB041960), At-TTV3 Torque teno virus (AB041961). 
 

Calicivirus trees: Camberwell (AAD33960.1), MD-2004 (ABG49508.1), 
Carlow(ABD73935.1), Snow Mountain virus (AAN08111.1), Mc37 
(AAS47823.1), Hawaii(AAB97767.2), Norwalk(AAB50465.1), Southampton 
(AAA92983.1), Chiba(BAB18266.1), Hesse(AAC64602.1), BoJena-DEU-98 
(CAA09480.1), Murine (AAO63098.2), SU17(BAC11827.1), Dumfries 
(AAM95184.2), SU25-JPN(BAC11830.1), SU1-JPN(BAC11815.1), Desert Shield 
(AAA16284.1), Melksham (CAA57461.1), Toronto-24 (AAA18929.1), Sw918 
(BAB83515.1), OH-QW101 (AAX32876.1). 
 

Endonuclease-like sequences for D03 tree (mimvirus-like sequences): 
Bacteroides caccae (ZP_01959575.1), Acanthamoeba mimivirus 
(YP_142599.1), Eubacterium dolichum (ZP_02077753.1), Staphylococcus 
phage K (YP_024462.1), Lactobacillus phage LP65 (YP_164778.1), 
Lactococcus phage bIL170 (NP_047162.1), Lactococcus phage r1t 
(NP_695069.1), Burkholderia vietnamiensis G4 (YP_001119011.1), 
Streptococcus pyogenes (NP_607538.1), Tetrahymena thermophila 
(XP_001029162.1), Bacteroides vulgatus (YP_001300673.1) 
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Supplemental Figures: 

 
Supplemental Figure 2.S1: Phylogenetic analysis of picobirnavirus-like sequence reads. 
Phylogenetic trees were generated by comparing the translated amino acid sequence  
of individual sequence reads to members of the unclassified taxa picobirnavirus. The 
trees were created using the maximum parsimony method with 1,000 replicates. 
Bootstrap values over 700 are shown.  
 

 
 
Supplemental Figure 2.S2: Phylogenetic analysis of Picornaviridae-like sequence reads.  
Phylogenetic trees were generated by comparing the translated amino acid sequence 
of individual sequence reads to members of the Picornaviridae family. The trees were 
created using the maximum parsimony method with 1,000 replicates. Bootstrap values 
over 700 are shown. CVA=Coxsakievirus A, CVB=Coxsackievirus B, BEV=Bovine Enterovirus, 
EV=Enterovirus, HRVA=Human Rhinovirus A, HRVB=Human Rhinovirus B, PEV=Porcine 
Enterovirus, PV=Poliovirus, SEVA=Simian Enterovirus A. 
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Supplemental Figure 2.S3: Phylogenetic analysis of anellovirus-like sequence reads.  
Phylogenetic trees were generated by comparing the translated amino acid sequence 
of individual sequence reads to Anelloviruses. The trees were created using the maximum 
parsimony method with 1,000 replicates. Bootstrap values over 700 are shown.  
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Supplemental Figure 2.S4: Phylogenetic analysis of Caliciviridae-like sequence reads.  
Phylogenetic trees were generated by comparing the translated amino acid sequence  
of individual sequence reads to the A)  NS4 (3A-like) protein or B) NS7 (RNAP) protein of 
Caliciviruses. The trees were created using the maximum parsimony method with 1,000 
replicates. Bootstrap values over 700 are shown.  
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Supplemental Figure 2.S5: Phylogenetic analysis of endonuclease-like sequence reads.  
Phylogenetic trees were generated by comparing the translated amino acid sequence 
of two individual sequence reads to endonuclease sequences derived from mimivirus, 
phage, and bacterial species representing some of the top scoring BLAST hits.  The trees 
were created using the maximum parsimony method with 1,000 replicates. Bootstrap 
values over 700 are shown.  
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ABSTRACT 

Astroviruses infect a variety of mammals and birds and are causative 

agents of diarrhea in humans and other animal hosts.   We have 

previously described the identification of several sequence fragments with 

limited sequence identity to known astroviruses in a stool specimen 

obtained from a child with acute diarrhea, suggesting that a novel virus 

was present.  In this study, the complete genome of this novel virus isolate 

was sequenced and analyzed. The overall genome organization of this 

virus paralleled that of known astroviruses, with 3 open reading frames 

identified.  Phylogenetic analysis of the ORFs indicated that this virus is 

highly divergent from all previously described animal and human 

astroviruses.  Molecular features that are highly conserved in human 

serotypes 1-8, such as a 3’NTR stem-loop structure and conserved 

nucleotide motifs present in the 5’NTR and ORF1b/2 junction, were either 

absent or only partially conserved in this novel virus.  Based on the 

analyses described herein, we propose that this newly discovered virus 

represents a novel species in the family Astroviridae. It has tentatively 

been named Astrovirus MLB1.  

 

BACKGROUND 

Astroviruses are non-enveloped, single stranded, positive sense RNA 

viruses.  Their genomes range from approximately 6 to 8 kb in length, are 
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polyadenylated, and have both 5’ and 3’ non-translated regions (NTR) 

[131]. Their genomes have three open reading frames (ORFs) organized 

from 5’ to 3’ as follows: ORF 1a, which encodes a serine protease; ORF1b, 

which encodes the RNA dependent polymerase; and ORF 2, which 

encodes the structural proteins. A frameshift must occur during the 

translation of ORF1a in order for ORF1b to be translated.  ORF 2 is 

translated from a sub-genomic RNA and produces a polyprotein which is 

cleaved by cellular proteases [131].  

The family Astroviridae includes 8 closely related human serotypes 

as well as additional members that infect cattle, sheep, cats, dogs, deer, 

chickens, turkeys, and ducks [102]. Although some of the animal 

astroviruses are known to cause hepatitis or nephritis [104], astroviruses 

typically cause diarrhea in their hosts. Human astrovirus infections most 

frequently cause watery diarrhea lasting 2-4 days, and less commonly 

vomiting, headache, fever, abdominal pains, and anorexia in children 

under the age of 2, the elderly, and immunocompromised individuals 

[104]. The known human astroviruses account for up to ~10% of sporadic 

cases of non-bacterial diarrhea in children [84,85,105,132,133].  

Diarrhea is the third leading infectious cause of death worldwide 

and is responsible for approximately 2 million deaths each year as well as 

[80] an estimated 1.4 billion non-fatal episodes [81,82].  In children, 

rotaviruses, caliciviruses, adenoviruses and astroviruses are responsible for 
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the greatest proportion of cases [84-88]. Most epidemiological studies fail 

to identify an etiologic agent in  ~40% of diarrhea cases [89-93].  Recently, 

we conducted viral metagenomic analysis of diarrhea samples using a 

mass sequencing approach with the explicit goal of identifying novel 

viruses that may be candidate causes of diarrhea. One of the stool 

samples we analyzed was collected in 1999 at the Royal Children’s 

Hospital in Melbourne, Australia from a 3-yr old boy with acute diarrhea. 

Seven sequence reads were identified in this sample that shared ≤ 67% 

amino acid identity to known astrovirus proteins, suggesting that a novel 

astrovirus was present in the sample [134].  In this paper, we report the full 

sequencing and characterization of the genome of this astrovirus, referred 

to hereafter as astrovirus MLB1 (AstV-MLB1).  

 

RESULTS/DISCUSSION 

Genome sequencing and analysis.  In  the previous metagenomic 

study [134], we identified seven sequence reads with limited identity to 

known astroviruses that could be assembled into two small contigs in a 

clinical stool sample.  The contigs had 42-44%, and 59-61% amino acid 

identity to human astrovirus serine proteases and RNA-polymerases, 

respectively. In this study, the complete genome of the astrovirus present 

in the original stool specimen was sequenced to an average of >3X 

coverage [GenBank: FJ222451]. The virus has been tentatively named 
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Astrovirus MLB1 (AstV-MLB1). Analysis of the genome showed that AstV-

MLB1 has the same genomic organization as other astroviruses. Like other 

astroviruses, the AstV-MLB1 genome was predicted to encode three open 

reading frames (ORF1a, ORF1b, and ORF2) and contained both 5’ and 3’ 

non-translated regions (NTR), as well as a poly-A tail. The complete 

genome length of AstV-MLB1 was 6,171bp, excluding the poly-A tail, 

slightly shorter when compared to other astrovirus genomes which range 

in size between ~6,400 and 7,300bp [131]. A comparison of AstV-MLB1 

genomic elements with those of fully sequenced astroviruses is shown in 

Table 3.1.  

The ORF 1a of astroviruses encodes a non-structural polyprotein which 

contains a serine-like protease motif. Pfam analysis revealed a region of 

ORF1a that has homology to a peptidase domain. In addition, alignment 

of AstV-MLB1 with other astroviruses revealed that AstV-MLB1 contains the 

amino acids of the catalytic triad (His, Asp, Ser) which are conserved in 

the 3C-like protease motif found in other viruses (data not shown) [135]. 

The residues RTQ which have been suggested to be involved in substrate 

binding are conserved among the human astroviruses, but vary in other 

viruses which have the 3C-like motif [135]. In AstV-MLB1, the predicted 

substrate binding residues (ATR) are identical to those found in Ovine 

astrovirus and not those of the human astroviruses (data not shown).  
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Table 3.1: Genome Comparison of MLB1 to other astroviruses 

Virus 

Genome 

(bp) 

5' UTR 

(bp) ORF1a ORF1b ORF2 3' UTR 

Chicken AstV-1 6,927 15 3,017 1,533 2,052 305 

Turkey AstV-1 7,003 11 3,300 1,539 2,016 130 

Turkey AstV-2 7,325 21 3,378 1,584 2,175 196 

Mink AstV 6,610 26 2,648 1,620 2,328 108 

Ovine AstV 6,440 45 2,580 1,572 2,289 59 

Human AstV-1 6,813 85 2,763 1,560 2,361 80 

Human AstV-2 6,828 82 2,763 1,560 2,392 82 

Human AstV-4 6,723 84 2,763 1,548 2,316 81 

Human AstV-5 6,762 83 2,763 1,548 2,352 86 

Human AstV-8 6,759 80 2,766 1,557 2,349 85 

AstV-MLB1 6,171 14 2,364 1,536 2,271 58 

 

A second  feature of astrovirus ORF1a is the presence of a bipartite 

nuclear localization signal (NLS) found in human, chicken, and ovine 

astroviruses, but not turkey astroviruses [136]. A bipartite NLS is 

characterized as having two regions of basic amino acids separated by a 

10 aa spacer. The protein alignment of ORF1a revealed that AstV-MLB1 

has a sequence motif similar to the putative NLS of human astroviruses. 

This region of the genome has also been predicted to potentially encode 

for a viral genome-linked protein (VPg) [137]. The high sequence similarity 

observed between AstV-MLB1 and other astroviruses in the motifs 

identified as essential for a putative VPg suggests that AstV-MLB1 may also 

encode a VPg (data not shown). While no experimental data exists 

supporting the prediction of the presence of a Vpg being encoded in any 

of the astrovirus genomes, we should note that we did encounter difficulty 
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in obtaining the 5’ end of the MLB1 genome until treatment of the RNA 

with proteinase K prior to RNA extraction was added to the experimental 

protocol.  

Finally, the 2,364nt sequence of AstV-MLB1 ORF1a is shorter than 

ORF1a sequences of other astroviruses, which range between ~2,500-

3,300nt (Table 3.1). The shorter length of AstV-MLB1 ORF1a relative to the 

human astroviruses is largely attributable to two deletions totaling 57 

amino acids located within a highly conserved motif near the carboxyl 

terminus of human astroviruses 1-8. This deletion falls within a 144 aa region 

that has been mapped as being an immunoreactive epitope in human 

astroviruses [138] and is located in the non-structural protein p38 [135]. 

Recently, p38 has been reported to lead to apoptosis of the host cell 

which results in efficient virus replication [139] and particle release [140].  

However, it is unclear how the genome deletion identified in AstV-MLB1 

might influence these activities.  

Astrovirus ORF1b is classically generated by a -1 ribosomal frameshift 

induced by the presence of a heptameric ‘slippery sequence’ 

(AAAAAAAC). [102]. A conserved slippery sequence was identified near 

the end of ORF1a of Ast-MLB1 and FSFinder was used to determine if the 

downstream sequence was capable of forming a stem-loop structure, as 

found in other astoviruses [141]. The predicted start position of ORF1b was 

then determined by selecting the first amino acid in frame with the 
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slippery sequence. The 1b open reading frame of astroviruses encodes an 

RNA-dependent RNA polymerase (RNAP). Pfam analysis revealed that 

AstV-MLB1 ORF1b contains the RNA-dependent RNA polymerase domain 

found in other positive strand RNA viruses, suggesting this ORF does in fact 

encode for an RNAP.  

Astrovirus ORF2 encodes a large structural polyprotein that is 

cleaved by cellular proteases to generate the viral capsid proteins. 

Following the convention of human astroviruses [142,143] by choosing a 

start codon for ORF2 located two nucleotides upstream of the ORF 1b 

stop codon resulted in a predicted protein length of 756aa. Pfam analysis 

of the predicted protein encoded by ORF2 identifies an astrovirus capsid 

motif, thereby congruent with the paradigm of astrovirus genome 

organization in which ORF2 encodes the structural capsid proteins.  

The AstV-MLB1 ORF2 protein sequence was divided into four 

subregions for more detailed analysis as described [144]. Pair-wise 

comparisons of each region were conducted between the AstV-MLB1 

sequence and the sequences of all astroviruses for which sequences were 

available. Consistent with previous reports, region I appeared to be the 

most conserved of the four regions and in each of the regions, AstV-MLB1 

shared the most similarity to known human astroviruses.  However, even in 

region I, AstV-MLB1 only exhibited 33-35% identity to known human 

astroviruses. In the less conserved regions II-IV, AstV-MLB1 shared only 5-
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27% amino acid identity to the known human astroviruses.  By contrast, the 

range of identities between human astrovirus serotypes 1-8 were, 43-75%,  

16-66% and 28-77% for regions II,  III and IV, respectively. Overall, ASTV-

MLB1 maintained higher conservation in region I of ORF2 than in other 

regions, consistent with paradigms established by analysis of other 

astroviruses.  

 

Non-coding features. 

Multiple independent 5’ RACE experiments were performed to 

determine the precise 5’ end of the genome.  Based on these 

experiments, the AstV-MLB1 5’ NTR was determined to be 14nt long.  This is 

similar in length to the ~10-20nt 5’NTRs of avian astroviruses [131], but 

much shorter than the 80-85 nt long 5’NTRs of the 8 human astrovirus 

serotypes (Table 3.1). Notably, the human astroviruses share a 20nt 

consensus sequence at the terminal 5’ nucleotides of the genome which 

is not conserved in other astroviruses (data not shown). AstV-MLB1 

contained 13 out of the 20 consensus nucleotides, including the most 

5’CCAA motif within the this region [145] (Figure 3.1A). These data support 

the notion that the sequence we generated does contain the very 5’ 

terminus of the genome.  
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Figure 3.1: Multiple sequence alignments of putative astrovirus regulatory regions. 

A.) Alignment of the 20 nucleotides at the very 5’ end of the Astrovirus MLB1 genome 
with those of fully sequenced astroviruses. MLB1 only shares 13 of the 20 conserved 
nucleotides present in human strains 1-8. B.) Alignment of the 52nt highly conserved 
nucleotide motif (shown in box) present immediately upstream of the ORF1b/ORF2 
junction of Astrovirus MLB1 and other astroviruses. (Note: there is no overlap in the Turkey 
Astroviruses). MLB1 lacks the high degree of sequence identity seen between the human 
astroviruses. The start codon of ORF2 is shown underlined and the stop codon of ORF1b is 
shown italicized in bold for each virus.   
 

Human astroviruses contain a 120nt region at the junction between 

ORF1b and ORF2 that is ~95-97% conserved between serotypes [146]. The 

most highly conserved core 52nt region of this sequence is 99-100% 

identical among the human astrovirus serotypes. The exact role of this 

sequence is not known, but it is hypothesized to be a regulatory element 

of the sub-genomic RNA that encodes for ORF2. Alignment between AstV-

MLB1 and other human astroviruses of the highly conserved 52nt at the 

ORF1b/ORF2 junction revealed that AstV-MLB1 possessed only 61.5% 

identity in this region (Figure 3.1B).  By contrast, the known animal 

astroviruses share only 44-59.6% identity in this 52nt region with human 
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astroviruses as determined by pair-wise comparisons.  Interestingly, AstV-

MLB1 shares 71.2% identity in this region to Ovine Astrovirus.  

All of the previously described astroviruses, with the exception of 

turkey astrovirus 2, have a conserved RNA secondary structure referred to 

as the stem-loop II-like motif (s2m) found at the 3’ end of the genome in 

the 3’ NTR [42]. This motif is also present in some coronaviruses and equine 

rhinovirus serotype 2. Mutations within this motif are generally 

accompanied by compensatory mutations that restore base pairing [42]. 

The conservation of such a sequence motif across multiple viral families 

suggests that it may play a broad role in the biology of positive stranded 

RNA viruses [42]. The exact function of this stem loop is not known, but it is 

hypothesized to interact with viral and cellular proteins needed for RNA 

replication. Nucleotide alignment of the 150 nucleotides at the 3’ terminus 

of the AstV-MLB1 genome and other viruses known to contain the stem-

loop motif suggested that AstV-MLB1 does not have this conserved 

nucleotide motif (data not shown). Furthermore, it also has the shortest 

3’NTR reported to date for an astrovirus. (Table 3.1) [131].  

Phylogenetic analysis.  Multiple sequence alignments of the three 

astrovirus open reading frames were performed and bootstrapped  
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maximum parsimony trees were 

generated (Figure 3.2). The trees 

confirmed initial assessments that 

AstV-MLB1 is a novel 

astrovirus[134]. The trees for ORFs 

1a and 1b (Figure 3.2A, B) both 

indicated that AstV-MLB1 is most 

closely related to the human 

astroviruses, although it is highly 

divergent from them. AstV-MLB1 

ORF1a only has 9-28% amino acid 

identity to other astrovirus ORF1a 

proteins and the pairwise 

sequence alignments of ORF1b 

revealed 35-54% amino acid 

identity between ORF1b proteins 

of AstV-MLB1 and other 

astroviruses (Table 3.2).  

Figure 3.2: Phylogenetic analysis of AstV-

MLB1 open reading frames.  

Phylogenetic trees are based on amino 
acid sequences and were generated 
using the maximum parsimony method 
with 1,000 bootstrap replicates. 
Significant bootstrap values are shown. 

(A) ORF1a; (B) ORF1b; (C) ORF2. HAstV = Human astrovirus; CAstV = Chicken astrovirus; 
MAstV = Mink astrovirus; TAstV = Turkey astrovirus; OAstV = Ovine astrovirus. 
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Table 3.2: Comparison of astrovirus proteins to predicted AstV-MLB1 proteins.  

Gene 

Est. 
Size 
(aa) % Amino Acid Identity to: 
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ORF 
1a 787 28 28 NA 29 29 NA NA 29 9 9 NA 10 22 24 
ORF 
1b 511 54 54 NA 54 54 NA NA 54 36 35 NA 36 47 44 

ORF 2 756 24 24 24 23 23 24 24 24 15 16 16 11 18 19 

 

The maximum parsimony tree for ORF2 (Figure 3.2C) shows that there is 

greater divergence among all of the sequences for ORF2, as is to be 

expected of the capsid region. However it is still evident that AstV-MLB1 is 

quite divergent from any of the known human astroviruses. Based on the 

predicted 756aa protein of ORF2, AstV-MLB1 has only 11-24% amino acid 

identity to other astrovirus capsid precursor proteins (Table 3.2). 

Origin of virus. At this point, the origin of AstV-MLB1 is unclear.   AstV-

MLB1 may be a bona fide human virus capable of infecting and 

replicating within the human gastrointestinal tract that had evaded 

detection until now.  Alternately, it may be a passenger virus present 

simply as a result of dietary ingestion, as has been described previously for 

plant viruses detected in human stool [78].  Of course, viruses derived from 

dietary intake that appear to cause human disease, such as Aichi virus, 

have been described previously [147,148].  Another possibility is that this 

virus may represent zoonotic transmission from some other animal species 
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that is the true host for Astrovirus MLB1.   Traditionally it has been thought 

that astroviruses have a strict species tropism. However, recent evidence 

has emerged that suggests that interspecies transmission does occur. For 

example, chicken astrovirus antibodies have been detected in turkeys 

[149] and an astrovirus was isolated from humans whose capsid sequence 

most closely resembled that of feline astrovirus[131]. Because of the 

uncertainty as to the identity of the true host species and the host range 

for this virus, we have tentatively named this novel virus Astrovirus MLB1 

(AstV-MLB1).  Efforts to define whether AstV-MLB1 is a novel human 

pathogen are underway. 

 

CONCLUSION 

Complete sequencing and genome analysis of Astrovirus MLB1 

revealed that the virus has three open reading frames sharing the same 

organization as other astroviruses. Phylogenetic analysis of the open 

reading frames clearly demonstrated that AstV-MLB1 is highly divergent 

from any of the known astroviruses. Furthermore, AstV-MLB1 lacks the 

conservation seen between human astroviruses 1-8 in the non-translated 

regions of the genome such as the 5’ and 3’ NTR and the ORF1b/2 

junction. The aggregate analysis of the non-coding features and ORFs as 

well as the phylogentic analysis clearly indicates that AstV-MLB1 is highly 

divergent from all previously described astroviruses.  



 - - 87 - - - 87 -

  The divergence of AstV-MLB1 from known astroviruses in the non-

translated regions of the genome is particularly interesting because these 

regions are nucleotide motifs that are thought to play regulatory roles in 

viral replication. This suggests that AstV-MLB1 may behave very differently 

from the known astroviruses and that additional studies on the regulation 

of AstV-MLB1 transcription and replication may broaden our 

understanding of astrovirus paradigms.  

Astroviruses are associated with diarrhea predominantly in young 

children and immunocompromised individuals.  The discovery of AstV-

MLB1 in a liver transplant patient fits well with the known clinical 

parameters of astrovirus infection. We previously reported that the only 

other virus detected in this stool was a TT virus [134], which is thought to be 

non-pathogenic [150]. It is therefore tempting to speculate that AstV-MLB1 

is the pathogenic agent that caused this case of diarrhea. However, 

whether AstV-MLB1 is a bona fide human virus capable of causing 

diarrhea will have to be established by further experimentation and 

epidemiological surveys.  

 

Materials and Methods 

Specimen. A stool sample was collected from a 3 year old boy admitted 

to the Royal Children’s Hospital with acute diarrhea in 1999. The child had 
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previously undergone a liver transplant one year prior to this episode of 

diarrhea, however the immunological status was unknown. 

 

RNA extraction. RNA was isolated from the primary stool filtrate using RNA-

Bee (Tel-Test, Inc.) according to manufacturer’s instructions. In some cases, 

the stool filtrate was treated with 2.5 mg\ml proteinase K (Sigma) for 30 

min prior to RNA extraction.  

 

Genome amplification and sequencing. The astrovirus sequence reads 

previously detected in the primary stool filtrate  [134] [GenBank 

accessions: ET065575, ET065576, ET065577, ET065579, ET065580, ET065581, 

ET065582] were assembled into two contigs, and the nucleic acid 

between the contigs was obtained by RT-PCR.  For reverse transcription 

reactions, cDNA was generated with MonsterScript RT at 65ºC and 

amplified with Taq (Invitrogen).  Subsequent 5’ and 3’ RACE reactions 

were done to obtain the entire genome.  To generate high quality 

sequence coverage, 7 pairs of specific primers that spanned the 

complete genome in overlapping ~1kb fragments were used in RT-PCR 

reactions and then cloned and sequenced using standard Sanger 

sequencing chemistry.   All amplicons were cloned into pCR4.0 

(Invitrogen). These 7 primer pairs were used to confirm the sequence of 

the viral genome from both the primary stool sample and the passage 2 
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tissue culture sample. The complete genome sequence of AstV-MLB1 has 

been deposited in [GenBank: FJ222451].  

 

ORF prediction and annotation.  Open reading frames 1a and 2 were 

predicted for AstV-MLB1 using the NCBI ORF Finder program. ORF1b was 

predicted based on the frameshift paradigm that occurs in other 

astroviruses by identifying a heptameric slippery sequence [151].  

Conserved motifs were identified using Pfam [152]. 

 

Pair-wise alignments. Bioedit was used to determine the percent identity 

between sequences as determined by pair-wise alignments.  

 

Phylogenetic analysis. ClustalX (1.83) was used to carry out multiple 

sequence alignments of the protein sequences associated with all three 

of the open reading frames of representative astrovirus types. Maximum 

parsimony trees were generated using PAUP with 1,000 bootstrap 

replicates [118].  

Available nucleotide or protein sequences of the following astroviruses 

were obtained: Human Astrovirus 1 [GenBank: NC_001943]; Human 

Astrovirus 2 [GenBank: L13745];  Human Astrovirus 3 [GenBank: AAD17224]; 

Human Astrovirus 4 [GenBank: DQ070852]; Human Astrovirus 5 [GenBank: 

DQ028633]; Human Astrovirus 6 [EMBL: CAA86616]; Human Astrovirus 7 
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[Gen Bank: AAK31913]; Human Astrovirus 8 [GenBank: AF260508]; Turkey 

Astrovirus 1 [GenBank: Y15936]; Turkey Astrovirus 2 [GenBank: NC_005790]; 

Turkey Astrovirus 3 [GenBank: AY769616]; Chicken Astrovirus [GenBank: 

NC_003790]; Ovine Astrovirus [GenBank: NC_002469]; and Mink Astrovirus 

[GenBank: NC_004579].  
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ABSTRACT 

 The prevalence of the recently identified astrovirus MLB1 in a 

pediatric diarrhea cohort in St. Louis, USA was defined by RT-PCR. Of 254 

stool specimens collected in 2008, 4 were positive for astrovirus MLB1. 

These results demonstrate that astrovirus MLB1 is currently circulating in 

North America. 

 

BACKGROUND 

Astroviruses infect a variety of hosts including humans, turkeys, 

chicken, cattle, sheep, dogs, cats, deer, ducks and bats [102,103]. There 

are 8 known human serotypes which are genetically very closely related. 

Astroviruses typically cause diarrhea in their hosts and in humans 

symptoms normally last 2-4 days [104]. Children under the age of 2, elderly 

people, or otherwise immunocompromised individuals are most 

commonly affected [104]. Epidemiological studies suggest Human 

astroviruses 1-8 are responsible for up to ~10% of cases of acute, non-

bacterial diarrhea in children [84,85,105,132,133].  

  Recently, a highly divergent astrovirus, referred to as astrovirus 

MLB1 (AstV-MLB1), was identified in the stool of a three year old boy in 

Australia [134]. The entire genome of this novel virus was subsequently 

sequenced and characterized [153] . To date, there have been no 

published reports describing the presence of AstV-MLB1 outside of the 
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index case. In this study, the prevalence of this novel virus was determined 

by RT-PCR screening of pediatric stool samples collected at the St. Louis 

Children’s Hospital in St. Louis, MO, USA.  

 

RESULTS/DISCUSSION 

Pediatric stool specimens sent to the clinical microbiology lab for 

bacterial culture at the Saint Louis Children’s Hospital were analyzed for 

the presence of AstV-MLB1.  This study was approved by the Human 

Research Protection Office of Washington University in St. Louis.  Samples 

were collected January-May of 2008. Stools were diluted in PBS at a 1:6 

ratio (w/v) and total nucleic acid (TNA) was extracted from 200µL of each 

stool suspension using the MagNAPure LC Automated Nucleic Acid 

Extraction System (Roche).  

Previously described astrovirus primers Mon269 and Mon270 [154] 

have frequently been used for the detection of human astrovirus 

serotypes 1-8 in clinical stool specimens. However, the extensive 

divergence of AstV-MLB1 to the known human astroviruses rendered these 

primers unable to amplify AstV-MLB1 (data not shown). Since it is possible 

that AstV-MLB1 represents a new grouping of astroviruses that could 

include multiple subtypes, we designed primers to conserved regions of 

the AstV-MLB1 genome in order to maximize the likelihood of detection of 
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Figure 4.1: Astrovirus ORF1b alignments for design of pan-astrovirus primers 

Astrovirus RNA polymerase sequences (ORF1b) were aligned at the amino acid level in 
order to define the conserved regions used for the design of primers SF0073 (A) and 
SF0076 (B). The numbers to the right of the sequences indicate the position of the last 
amino acid within each ORF1b sequence. The amino acids outlined in the red boxes 
represent the specific regions that were reverse translated into the corresponding 
nucleic acid sequences used for the design of SF0073 (C) and SF0076 (D).  The red 
sequences shown in the nucleotide alignments are the actual primer sequences for 
SF0073 (C) and SF0076 (D). 

 

any AstV-MLB1 variant viruses, or even other novel astroviruses. Conserved 

regions were identified by performing multiple sequence alignments of 

AstV-MLB1 amino acid sequences to all fully sequenced astrovirus 

genomes (Figure 4.1A, 4.1B). The corresponding nucleotide sequences for 

these regions were then aligned in order to define the most highly 

conserved regions (Figure 4.1C, 4.1D). Two regions within ORF 1b were 

identified that yielded primers SF0073 (5’GATTGGACTCGATTTGATGG) and 

SF0076 (5’CTGGCTTAACCCACATTCC) that are predicted to generate a 
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~409 bp product.  Control experiments validated that this primer pair 

could detect AstV-MLB1 as well as Human astrovirus 1 (Figure 4.2). Given 

that some of the canonical human astroviruses are identical in the primer 

binding sites, this data suggests that at least some of the canonical 

human astroviruses can be detected by the primer pair SF0073/SF0076. In 

theory, under appropriate experimental conditions, these primers may 

also be able to detect all other known human and animal astroviruses, 

although that remains to be experimentally tested. These primers were 

used with the QIAGEN One-Step RT-PCR kit using the following cycling 

conditions: 30 min RT step, 94ºC hold for 10 min, followed by 40 cycles of 

94ºC for 30s, 52ºC for 30s, and 72ºC for 50s.  

 

 

Figure 4.2: Validation of screening 

primers SF0073 and SF0076 

Primers SF0073 and SF0076 were tested 
on stool filtrate made from the original 
AstV-MLB1 positive stool (Lane 2) as well 
as a Human astrovirus 1 positive stool 
specimen (Lane 3) using the QIAGEN 
One-Step RT-PCR kit as described in the 
text.  The products were visualized on a 
1.2% agarose gel. The expected size of 
the RT-PCR product generated with 
these primers is ~400bp. Lane 1 shows 
the Invitrogen 100bp DNA ladder for a 
size comparison. 

 

Samples that tested positive with primers SF0073 and SF0076 were 

then tested in a second round of screening with two different primer sets 

in parallel to determine if the samples contained canonical human 
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astrovirus serotypes 1-8 or AstV-MLB1. The previously reported Mon269 

(5’CAACTCAGGAAACAGGGTGT) and Mon270 

(5’TCAGATGCATTGTCATTGGT) primers, which generate a 449 bp 

amplicon, were used to detect canonical human astroviruses [154]. 

Another set of primers, SF0053 (5’CTGTAGCTCGTGTTAGTCTTAACA) and 

SF0061 (5’GTTCATTGGCACCATCAGAAC), was designed to exclusively 

detect AstV-MLB1 and produce a 402bp PCR product. These primers 

target a region of the capsid gene. The second round of screening with 

both sets of primer pairs was performed as described above with the 

exception that an annealing temperature of 56ºC was used.  

Of 254 stool specimens screened, 9 (3.5%) tested positive in the 

initial round of screening using the newly designed pan-astrovirus primers, 

SF0073 and SF0076. Secondary screening demonstrated that 5 (2% of all 

samples) were canonical human astroviruses. This is likely to be an 

underestimate of the astrovirus serotype 1-8 prevalence in the cohort 

since the initial screening primers were biased towards the detection of 

AstV-MLB1.  The remaining 4 (1.6% of all samples) were positive for AstV-

MLB1 using primers SF0053 and SF0061. For each of the 4 samples positive 

for AstV-MLB1, two additional fragments were generated by RT-PCR for  
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Figure 4.3: Phylogenetic Analysis of AstV-MLB1 isolates 

A region of the serine protease (A) and the capsid (B) of each virus detected by the 
AstV-MLB1 specific primers was amplified and sequenced. Multiple sequence alignments 
were then generated with these sequences and the corresponding regions of known 
astroviruses using ClustalX. PAUP was used to generate phylogenetic trees and bootstrap 
values (>700) from 1,000 replicates are shown. 

 

phylogenetic analysis. A 1228 bp fragment of ORF1a, which encodes the 

serine protease, and a 920 bp fragment of ORF2, which encodes the 

capsid proteins, were amplified using AstV-MLB1 specific primers from 

each of the 4 samples designated WD0016, WD0055, WD0104, WD0227. 

The primers used for the ORF1a fragment are SF0080 (5’-

AAGGATAGTGCTGGTAAAGTAGTTCAGA-3’) and SF0094 

 (5’-CAAGAGCCTTATCAACAACGTA-3’) and the primers used for the 

ORF2 fragment are SF0064 (5’-GTAAGCATGGTTCTTGTGGAC-3’) and 

SF0098 (5’-TGCATACATTTATGCTGGAAGA-3’). The ORF1a fragments 

(Genbank # ’s: FJ227120-FJ227123) from these samples all shared ~92%  
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Table 4.1: Similarity of fully sequenced WD0016 genome  to MLB1 

 

ORF1a          
(Serine 

Protease) 

ORF1b            
(RNA 

Polymerase) 
ORF2            

(Capsid) 

Nucleotide identity 
between WD0016 and 

MLB1 92.60% 93.90% 91.90% 
 

nucleotide identity to the reference astrovirus MLB1 sequence (Genbank 

# : FJ222451) and 99% amino acid identity, indicating that most mutations 

were synonymous. The ORF2 fragments (Genbank # ’s: FJ227124-FJ227127) 

shared ~91-92% nucleotide identity and 95-96% amino acid identity to the 

reference astrovirus MLB1 sequence. The 4 positive St. Louis samples 

shared ~99% nucleotide identity to each other. The ORF1a and ORF2 

sequences were aligned to other astroviruses for which full genome 

sequences were available using ClustalX (1.83), and then maximum 

parsimony trees were generated using PAUP with 1,000 bootstrap 

replicates [118] (Figure 4.3). The entire genome of one of the isolates, 

WD0016 (Genbank # : FJ402983 ), was sequenced and was determined to 

have 92.6% identity overall to that of AstV-MLB1 based on a pairwise 

nucleotide alignment. Table 4.1 shows the identity of WD0016 to the 

original MLB1 isolate for each open reading frame of the genome. 

Clinical and demographic information of patients with AstV-MLB1 

positive stools is shown in Table 4.2. The patients with AstV-MLB1 positive 

stools were between the ages of ~4mo-4yrs. All patients had symptoms of  
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Table 4.2: Clinical and demographic information of patients with AstV-

MLB1 positive stools 

 WD0016 WD0055 WD0104 WD0227 

Age (months) 15 17 4 43 
Gender Female Female Male Male 
Diarrhea No* Yes Yes Yes 

Other 

Symptoms 

abdominal 
pain 

vomiting, 
fever 

fever, seizures, 
respiratory 

distress 
fever 

Hospitalization Yes No Yes Yes 

Bacterial 

Cultures† 
Negative Negative Negative 

Positive for 
E. coli 

0157:H7 
* Patient had diarrhea two days prior to stool collection, but not at time of collection 
† Tests were conducted for E. coli, Campylobacter, Shigella, Salmonella, and Yersinia 

 

diarrhea at the time of stool collection, except for patient WD0016 who 

reported having diarrhea 2 days prior to the collection of the stool 

specimen. All specimens were tested for the presence of E. coli, 

Campylobacter, Yersinia, Shigella, and Salmonella by standard bacterial 

culture. WD0227 tested positive for E. coli 0157:H7, while the other samples 

were negative for all bacterial cultures. A pan-viral microarray, the  

ViroChip [20], was used to examine whether there were other 

viruses present in the stool of three (WD0055, WD0104, and WD0227) of the 

four AstV-MLB1 positive samples for which there was enough material left 

for analysis. WD0055 and WD0104 were negative by array, but WD0227 

was positive for rotavirus as determined by the ViroChip.  
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CONCLUSIONS 

The newly identified AstV-MLB1 virus was discovered in a stool 

specimen collected in Melbourne, Australia in 1999.  In this study, we 

describe the detection of AstV-MLB1 in a cohort from St. Louis, USA 

collected in 2008.  This observation provides the first evidence that AstV-

MLB1 is present outside of Australia, and suggests that AstV-MLB1 is likely to 

be globally widespread.  In addition, these data demonstrate that AstV-

MLB1 is currently circulating in the human population.  The observed 

sequence divergence of ~8% at the nucleotide level between the 

reference AstV-MLB1 genome and the viruses detected in this study 

suggests that there may be significant sequence heterogeneity within the 

AstV-MLB1 group of viruses.  It is possible that multiple serotypes or 

subtypes of AstV-MLB1 exist, as is the case with the canonical human 

astroviruses.  More extensive screening of stool samples with PCR primers 

targeted toward detection of AstV-MLB1 such as those described in this 

paper may provide insight into the true diversity and prevalence of AstV-

MLB1-like viruses.  Finally, a critical direction for future investigation is 

determining whether AstV-MLB1, like the canonical astrovirus serotypes 1-8, 

is a causal agent of human diarrhea, and if so, what is the disease burden 

associated with this virus.  To begin addressing this question, further 

epidemiologic studies, including both case-control prevalence studies 
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and seroprevalence assays, and efforts to fulfill Koch’s postulates should 

be pursued. 
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ABSTRACT 

 

Viral gastroenteritis is one of the most common human illnesses worldwide 

and is a major cause of morbidity and mortality in infants and young 

children. Despite the availability of improved molecular diagnostics to 

detect known viral agents, the etiology of a large proportion of diarrheal 

cases is unknown.  The advent of metagenomic sequencing approaches 

has revolutionized the process of pathogen discovery.  In this study, 

parallel efforts applying both random Sanger sequencing and high 

throughput pyrosequencing were used to analyze fecal specimens 

obtained from an outbreak of acute gastroenteritis in a child care center. 

The specimens tested negative for known bacterial, parasitic and viral 

enteric pathogens by conventional assays.  Sequences consistent with 

astroviruses were identified by both techniques, 72 sequence reads by the 

low through-put Sanger sequencing and 1339 sequencing reads by high 

through-put pyrosequencing.  Assembly of these reads into contigs and 

subsequent RT-PCR and RACE experiments yielded a complete genome 

of 6,586 nucleotides.  Phylogenetic analysis of the three predicted open 

reading frames from this newly identified astrovirus, tentatively named 

Astrovirus VA1 (AstV-VA1), demonstrated that AstV-VA1 was highly 

divergent from all previously described human and animal astroviruses 

and most closely related to mink and ovine astroviruses.   Using AstV-VA1 

specific RT-PCR assays, 3 of 5 fecal specimens from symptomatic 
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individuals in this outbreak tested positive, raising the possibility that AstV-

VA1 may be a causal agent of acute gastroenteritis. 

 

 

INTRODUCTION 

 
Astroviruses are known to infect a variety of avian and mammalian 

species [102,103] and typically cause diarrhea [104].  They are thought to 

be host specific with little evidence for cross-species transmission [131].  In 

humans, 8 serotypes of astroviruses have been described [131].  Clinical 

symptoms usually last 2-4 days and consist of watery diarrhea and, less 

commonly, vomiting, headache, fever, abdominal pains, and anorexia 

[104].  

Astroviruses consist of a family of small, single-stranded, positive-

sense RNA viruses. Their genomes are organized into three open reading 

frames denoted ORFs 1a, 1b, and 2, which encode a serine protease, 

RNA-dependent RNA polymerase (RdRP), and a capsid precursor protein, 

respectively [131]. At both the 5’ and 3’ ends, non-translated regions (NTR) 

flank the 6.1-7.3kb sized genomes [131,153].  Two characteristic features of 

astroviruses are the dependency on a ribosomal frameshift for the 

translation of ORF1b and the generation of a sub-genomic RNA from 

which ORF2 is translated [131].  

Human astroviruses have been associated with up to ~10% of 

sporadic cases of viral diarrhea in children [84,85,105,132,133] and with 
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0.5-15% of outbreaks [94,95,155]. Significantly, in some reports the 

etiologies of 12-41% of the outbreaks remain undetermined even after 

extensive testing, suggesting that there is a diagnostic gap [94,95]. 

Similarly, on average, approximately 40% of the cases of sporadic 

diarrhea are unexplained [89-93].  In previous efforts to identify novel 

candidate pathogens present in sporadic cases of diarrhea in humans, 

we used high throughput sequencing to identify a novel astrovirus 

(Astrovirus MLB1) [134,153] and a novel picornavirus (Cosavirus E1) [156]. 

The role of these viruses in causing diarrhea remains unclear. In this paper, 

we applied mass sequencing to analyze specimens obtained from an 

unexplained outbreak of gastroenteritis. We report the identification and 

complete genome sequencing of yet another novel astrovirus, referred to 

as Astrovirus VA1 (AstV-VA1), associated with a gastroenteritis outbreak at 

a child care center.  

 
RESULTS 

  
Genome sequencing and analysis 

 Five fecal specimens (labeled A, B, C, D and E) were collected from 

a gastroenteritis outbreak at a child care center in Virginia (Table 5.1). 

Following high throughput pyrosequencing of RNA and DNA extracted 

from samples A, B, C and D (average of 12,730 reads per sample), we 

found 313 unique high quality sequence reads in sample B and 1,017 

unique high quality reads in sample C most closely related to astroviruses.    
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Table 5.1:  Epidemiologic data of the 5 specimens from a child care 

center outbreak of acute gastroenteritis. 

Sample 
ID 

Sex Age Onset 
Date 

Sample 
Date 

Symptoms 

A M 2 years 8/19/08 
 

8/19/08 
 

Diarrhea, 
vomiting 

B F 36 years 8/26/08 
 

8/28/08 
 

Diarrhea, 
vomiting 

C M 6 months 8/25/08 
 

8/25/08 
 

Diarrhea 

D M 19 
months 

8/5/08 
 

8/26/08 
 

Diarrhea 

E Unknown 20 
months 

8/5/08 
 

8/27/08 
 

Diarrhea 

 

A 6,376 nucleotide (nt) contig was assembled from the astrovirus-like 

sequences detected in sample B and 4 contigs totaling 6,026 nucleotides 

were assembled from sample C. The translated contigs had only limited 

sequence similarity (37-71% aa identity) to proteins from mink and ovine 

astroviruses, suggesting the presence of a potentially novel astrovirus in 

these samples.  Because the nucleotide sequences obtained in samples B 

and C were nearly identical, the five original contigs were assembled to 

generate a larger contig of 6,581 nucleotides in length. 

Independently, four of the five fecal samples (stool samples A, B, C 

and E) were analyzed by Sanger sequencing.  3 out of 96 clones from 

sample B and 69 out of 152 clones from sample C contained sequence 

signatures that were most closely related to previously known astroviruses 

by Blastn similarity searches.  Sequencing of 100 clones each from samples 

A and E yielded no clones with detectable similarity to astroviruses. The 
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sequences of the 69 clones from sample C were assembled into 4 contigs.  

Primers were then designed to generate a series of eight overlapping RT-

PCR amplicons with an average size of ~900 bp that yielded a genomic 

sequence of 6,537 nt.  In order to define the 5’ end of the genome, three 

independent 5’RACE reactions were performed and a total of 23 clones 

from these reactions were sequenced.  All clones extended the genome 

by 49 nt and yielded the identical 5’end sequence, suggesting that the 

genome was complete with a total length of 6,586 nt, excluding the poly-

A tail.  Comparison of the genome sequences generated by the two 

sequencing methods yielded nearly identical sequences, with the 

exception of 5 missing nucleotides at the 5’ end of the contig generated 

by pyrosequencing and 3 nucleotide substitution differences. These were 

resolved by direct PCR sequencing to generate the final, corrected 

sequence.  This virus has been provisionally named Astrovirus VA1 (AstV-

VA1). 

The genome of AstV-VA1 had three predicted open reading frames 

as well as non-translated regions (NTRs) at both the 5’ and 3’ ends of the 

genome.  Several conserved protein motifs were identified including a 

serine protease in ORF1a, an RNA dependent RNA polymerase in ORF1b, 

and capsid protein in ORF 2. ORFs 1a and 2 were predicted by the NCBI 

ORF Finder program; however the full coding region for ORF1b was not 

predicted by the program because translation of ORF1b is dependent on  
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Table 5.2: Genome Comparison of MLB1 to other astroviruses 

Virus 

Genome 

(bp) 

5' UTR 

(bp) ORF1a ORF1b ORF2 3' UTR 

Chicken AstV-1 6,927 15 3,017 1,533 2,052 305 

Turkey AstV-1 7,003 11 3,300 1,539 2,016 130 

Turkey AstV-2 7,325 21 3,378 1,584 2,175 196 

Mink AstV 6,610 26 2,648 1,620 2,328 108 

Ovine AstV 6,440 45 2,580 1,572 2,289 59 

Human AstV-1 6,813 85 2,763 1,560 2,361 80 

Human AstV-2 6,828 82 2,763 1,560 2,392 82 

Human AstV-4 6,723 84 2,763 1,548 2,316 81 

Human AstV-5 6,762 83 2,763 1,548 2,352 86 

Human AstV-8 6,759 80 2,766 1,557 2,349 85 

AstV-MLB1 6,171 14 2,364 1,536 2,271 58 

AstV-VA1 6,586 38 2,661 1,575 2,277 98 
 

a -1 ribosomal frameshift that occurs during translation [151]. This 

frameshift is thought to be mediated by the presence of a heptameric 

‘slippery sequence’ (AAAAAAAC) near the end of ORF1a [151], which 

was also conserved in the AstV-VA1 sequence, suggesting that this new 

virus follows the same paradigm.  The sequence 

AUUUGGAGNGGNGGACCNAAN5-8AUGNC located upstream of ORF2, 

which has been proposed as the promoter for subgenomic RNA synthesis 

in all previously known astroviruses [131], is also present in AstV-VA1 with 

only 2 nt differences.  The predicted size for each of the open reading 

frames is 2,661 nt, 1,575 nt, and 2,277 nt for ORFs 1a, 1b, and 2, 

respectively. These sizes are similar to the ORF sizes of mink and ovine 

astroviruses (Table 5.2). 
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The 5’ non-translated region (NTR) of AstV-VA1 is 38 nt in length, 

which is between the lengths of the 5’ NTRs of mink astrovirus (26 nt) and 

ovine astrovirus (45 nt). The 3’ NTR is 98 nt in length, which again is 

intermediate between the length of the NTRs of ovine astrovirus (59 nt) 

and mink astrovirus (108 nt). The 3’ NTR of nearly all astroviruses contains a 

highly conserved RNA secondary structure called the stem-loop II-like 

motif (s2m), which has also been identified in several coronaviruses and in 

equine rhinovirus 2 [42,157]. An alignment of the 150 nt just upstream of 

the poly-A tail of AstV-VA1 along with the 3’ terminal sequences of other 

astroviruses known to contain the s2m motif indicated that AstV-VA1 

contains the highly conserved ~33 nucleotide core of the s2m motif, with 

100% identity to other astroviruses in this region. The exact role of this motif 

is not understood; however its presence in multiple viral families suggests it 

may play an important role in the replication of these viruses. 

 

Phylogenetic analysis 

Multiple sequence alignments were independently carried out for 

each of the three predicted ORFs. Maximum parsimony trees confirmed 

that AstV-VA1 was highly divergent from but most closely related to mink 

and ovine astrovirus in all three ORFs (Figure 5.1). Furthermore, the greatest 

sequence identity between AstV-VA1 and mink and ovine astroviruses is in 

ORF1b with 61% amino acid identity to mink astrovirus and 62% to ovine  
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Figure 5.1: Phylogenetic analysis of 

AstV-VA1 open reading frames.  

Phylogenetic  trees were generated in 
PAUP using the maximum parsimony 
method with 1,000 bootstrap replicates. 
Significant bootstrap values are shown. 
(A) ORF1a-serine protease; (B) ORF1b-
polymerase; (C) ORF2-capsid. HAstV 
=Human astrovirus 

 

 

 

astrovirus. The ORF1a (serine 

protease) coding region was 

more divergent with 39% and 

40% amino acid identity with 

ovine astrovirus and mink 

astrovirus, respectively. In ORF2, 

AstV-VA1 shared 41% amino 

acid identity to mink astrovirus 

and 42% to ovine astrovirus.  

 

 

RT-PCR screening for AstV-VA1 

High throughput 

pyrosequencing yielded many 

AstV-VA1 sequences in samples B and C, but none were detected in 
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samples A or D.  Sample E was not analyzed by pyrosequencing due to 

technical problems with the sample preparation. Similarly, Sanger 

sequencing detected AstV-VA1 positive reads in samples B and C, but not  

in samples A and E (sample D was not initially tested). To determine 

whether low levels of AstV-VA1 might be present in samples A, D and E, 

real time RT-PCR and semi-nested RT-PCR assays were developed 

targeting regions in ORF1b and ORF2, respectively.  Using these assays, 

sample D tested positive and sequencing of the 250 bp amplicon 

confirmed the presence of AstV-VA1.  

 

 

DISCUSSION  

 

Despite the availability of improved molecular diagnostic methods 

for the detection of gastroenteritis viruses in humans such as norovirus, 

rotavirus, astrovirus, adenovirus, and sapovirus, the etiology of 12-41% of 

the outbreaks of gastroenteritis remain unexplained [94,95], In this study, 

we identified a novel astrovirus (AstV-VA1) in fecal samples from an 

outbreak of acute gastroenteritis in a child care center by two sequence 

independent genome amplification and sequencing methods, high 

throughput pyrosequencing and low throughput Sanger sequencing.  

Both methods identified and thus confirmed the presence of a novel 

astrovirus.  
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Complete genome sequencing and phylogenetic analysis 

demonstrated that AstV-VA1 was highly divergent from all previously 

described astroviruses including the 8 human astrovirus serotypes and 

recently described astrovirus MLB1 (AstV-MLB1). AstV-VA1 appears to 

have diverged from a common ancestor of the mink and ovine 

astroviruses following their separation from the branch containing human 

astroviruses 1-8 and astrovirus MLB1.  The discovery of AstV-VA1 following 

the recent identification of AstV-MLB1 clearly demonstrates that a much 

greater diversity of astroviruses exists in humans than is commonly 

recognized. 

The detection of AstV-VA1 in three out of five samples of this 

gastroenteritis outbreak suggests a potential association between AstV-

VA1 and symptomatic infection. The fact that AstV-VA1 was only 

detected in sample D by targeted PCR assays and not by either of the 

mass sequencing methods may be due to the late timing of sample 

acquisition relative to the onset of symptoms (Table 1).  Further studies 

defining the frequency of detection of AstV-VA1 in additional samples 

from individuals with and without acute gastroenteritis are needed to 

define the role of AstV-VA1 in human diarrhea. It is likely that the 

application of sequence independent amplification and sequencing 

methods to other outbreaks of gastroenteritis of unknown etiology will 
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identify other novel viruses and expand our ability to determine the cause 

of diarrheal disease. 

 

 

MATERIALS AND METHODS 

 
Outbreak  

 

On Monday, 8/18/2008, the Eastern Shore Health District in Virginia was 

notified of cases of gastrointestinal illness among 26 teachers and children 

in a child care center over a period of 2 to 3 weeks. Symptoms included 

vomiting, and/or diarrhea.  Control measures were put in place 

immediately at the center including exclusion of symptomatic children, 

mandated testing of all symptomatic staff, testing of symptomatic 

children, environmental disinfection of surfaces and ultimately, temporary 

closing of the facility. Five fecal specimens (A- E) (Table 5.1)  that tested 

negative for enteric parasites, enteric bacteria by standard microscopy 

and culture, and negative for enteric viruses including rotavirus 

(RotaClone EIA), norovirus, sapovirus, human astrovirus, and adenovirus 

gp F by (RT)-PCR [92,158,159], were available for further testing.  

 

Genome amplification and Sequencing. 

 

The fecal specimens were further analyzed independently in two 

laboratories. At Washington University, the specimens were diluted in PBS 

at a 1:6 ratio (w/v) and total nucleic acid was extracted from 200µL of 

each fecal suspension using the MagNAPure LC Automated Nucleic Acid 
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Extraction System (Roche). Total nucleic acid was randomly amplified 

using the Round AB protocol as previously described with the exception 

that each sample was independently amplified with a different modified 

primer B containing a unique 6-nucleotide barcode at the 5’ end of the 

primer [41]. Amplification products from multiple samples were pooled, 

adaptor-ligated, and sequenced using the Roche GS-FLX Titanium 

platform (Roche) at the Washington University Genome Sequencing 

Center.  

Sequences from each sample were identified by the unique 

barcodes introduced during the Rd B amplification. Primer and barcode 

sequences were then trimmed off prior to analysis of the sequences. 

Sequences were clustered using CD-HIT [160] to reduce redundancy with 

the requirement that they had to be 98% identical over 98% of their 

lengths. The longest sequence from each cluster was selected for 

inclusion in the pool of unique sequences to be analyzed.  Unique 

sequences were filtered for repetitive sequences and compared with the 

human genome using BLASTn with an e-value cutoff of 1e-10. Sequences 

without significant similarity to the human genome were then compared 

to the GenBank nucleic acid nt database using BLASTn (cutoff: 1e-10) and 

tBLASTx (cutoff: 1e-5), and remaining sequences without significant hits to 

sequences in the database were then compared to the NCBI All Viral 

Genome database (ftp://ftp.ncbi.nih.gov/refseq/release/viral/) using 
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tBLASTx (cutoff: 1e-5)  [130].  Overlapping sequences with significant 

sequence identity were assembled into contigs using Newbler (454 Life 

Sciences) or CAP3 [161].  

At CDC, 10% fecal suspensions were first clarified by centrifugation 

at 

6,000×g for 10 minutes and the supernatant was then filtered through a 

0.22-um filter (Ultrafree MC; Millipore, Bedford, MA). Total nucleic acid 

(TNA) was extracted from 200 µl of the cleared supernatant fluid with the 

QIAamp MinElute Virus Spin kit (QIAGEN, Valencia, CA) according to the 

manufacturer’s instructions. After elution from the column in 50 µl of 

RNase-free water, TNA was randomly amplified using the Round AB 

protocol as previously described [41]. The 300-800bp amplicons were then 

cloned using the TOPO TA cloning kit (Invitrogen, Carlsbad, CA) and 

plasmids were sequenced with a BigDye Terminators v3.1 ready reaction 

cycle sequencing kit on an ABI Prism 3130 automated sequencer (Applied 

Biosystems, Foster City, CA).  Sequence analysis and generation of contigs 

were performed using Sequencher software (Ann Arbor, MI, USA). 

Sequence identification was performed through NCBI nucleotide–

nucleotide BLASTn similarity searches 

(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi).  In addition, a set of eight 

overlapping RT-PCR products with an average size of 900 bp which cover 

the entire genome including the 3’ end poly A tail were generated by 
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primer pairs designed from clone sequences as described above, using 

the SuperScript III First-Strand Synthesis System for RT-PCR and AccuPrime 

High Fidelity Taq DNA polymerase (Invitrogen, Carlsbad, CA, USA).  Both 

strands of each amplicon were sequenced with a BigDye Terminators v3.1 

ready reaction cycle sequencing kit as described above.   The 5’ end 

genome sequence was amplified and determined using the 5’ / 3’ RACE 

Kit (Roche, Mannheim, Germany) following the manufacturer’s instructions.  

The complete genome sequence of AstV-VA1 has been deposited in 

Genbank (number will be added once acquired).  

 

ORF Prediction and annotation. 

Open reading frames (ORFs) 1a and 2 were predicted by the NCBI 

ORF finder (http://www.ncbi.nlm.nih.gov/projects/gorf/). The end of 

ORF1b was predicted by the program, however the start of ORF1b was 

predicted based on the location of the heptameric slippery sequence 

found in other astroviruses [151]. Protein motifs were identified by 

conserved domain searches using BlastX and Pfam [152,162-164]. 

 

Pair-wise alignments.  

Bioedit was used to determine the percent identity between sequences 

as determined by pair-wise alignments.    
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Phylogenetic analysis.  

ClustalX (1.83) was used to carry out multiple sequence alignments of the 

protein sequences associated with all three of the open reading frames of 

astroviruses for which sequences were available. Maximum parsimony 

trees were generated using PAUP with 1,000 bootstrap replicates [118]. 

Available nucleotide or protein sequences of the following astroviruses 

were obtained: Human Astrovirus 1 [GenBank: NC_001943]; Human 

Astrovirus 2 [GenBank: L13745];  Human Astrovirus 3 [GenBank: AAD17224]; 

Human Astrovirus 4 [GenBank: DQ070852]; Human Astrovirus 5 [GenBank: 

DQ028633]; Human Astrovirus 6 [EMBL: CAA86616]; Human Astrovirus 7 

[Gen Bank: AAK31913]; Human Astrovirus 8 [GenBank: AF260508]; Turkey 

Astrovirus 1 [GenBank: Y15936]; Turkey Astrovirus 2 [GenBank: NC_005790]; 

Turkey Astrovirus 3 [GenBank: AY769616]; Chicken Astrovirus [GenBank: 

NC_003790]; Ovine Astrovirus [GenBank: NC_002469]; Mink Astrovirus 

[GenBank: NC_004579], Astrovirus MLB1 [GenBank:   NC_011400], and Bat 

Astrovirus [GenBank: EU847155]. 

 

Real Time assay: 

The real-time RT-PCR assay was performed using the SuperScriptTM III One-

Step RT-PCR kit (Invitrogen Corp., Carlsbad, CA) and the Mx4000® system 

(Stratagene, La Jolla, CA). Each 50ul reaction mixture contained 900 pmol 
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of forward primer (5' TAT CCA TAG TTG TGG ATA TTT GTC CA 3' ), 1000 

pmol of reverse primer (5' TGT CTT AGG GGA GAC TTG CAA A 3' ) and 100 

pmol of probe (5' TT CC CCCT GTC CTG GAT TGT CAC TTC 3'), 1x buffer, 

6.0 mM MgSO4 (final concentration), 20 units of RNase inhibitor, a 5 µl 

aliquot of RNA extracts, and 1 unit of SuperScript III RT/Platinum Taq Mix.  

Water was added to achieve a final volume of 50 µl.  The RT-PCR reaction 

mixture was incubated at 60ºC for 1 minute for denaturing, 50ºC for 30 

minutes (for RT), 94ºC for 2 minutes (for hot start), then 40 cycles at 94ºC for 

15 seconds; 55ºC for 30 seconds; 72ºC for 30 seconds and a final extension 

at 72ºC for 7 minutes. Fluorescence measurements were taken and the 

threshold cycle (CT) value for each sample was calculated by 

determining the point at which fluorescence exceeded a threshold limit 

set at the mean plus 10 standard deviations above the baseline.   

 

Semi-nested RT-PCR assay: 

The first round RT-PCR in the semi-nested assay was performed according 

to the protocol described previously [165] using forward primer (5' AGG 

GGT CGC TGG GAG TTT G 3') and reverse primer (5' GTC TAT TGT TTT GGG 

CGT CTG C 3'). The 2nd round PCR in the semi-nested assay PCR assay in 

50ul reaction mixture contained  1x buffer (Platinum Taq kit; Invitrogen), 2 

mM MgCI2, 200uM (each) of deoxynucleoside triphosphates, 50 pmol 

(each) of forward primer (5' AGG GGT CGC TGG GAG TTT G 3' ) and 
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reverse primer (5' CGG GGG TGG TGC GAC AT 3')  1 U Platinum Taq, one 

2-ul aliquot from the first reaction, and water to achieve a final volume of 

50 ul. The mixture was first heated to 94°C for 2 min. The cycling conditions 

were 40 cycles with the same conditions as for the first amplification: 94°C 

for 15 s, primer annealing at 55°C for 30 s, and 72°C for 30 s. A final 

extension was carried out at 72°C for 7 min. The final seminested PCR 

products were visualized by UV light after electrophoresis on a 2% agarose 

gel containing 0.5 ug/ml ethidium bromide in 0.5 x Tris-borate buffer. 

Amplicons from the final round of PCR were purified using the QIAquick 

PCR purification kit (Qiagen, Inc., Valencia, CA). Both strands of the 

amplicons were sequenced with a BigDye Terminators v3.1 ready reaction 

cycle sequencing kit as described above. 
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Chapter 6: Conclusions 
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In the developed world, diarrhea is not commonly thought of as a 

major health concern. However, diarrhea is a yet unsolved problem given 

that it is still the third leading cause of death due to an infectious disease. 

Since ~40% of all cases are of unknown etiology, there is a major gap in 

our understanding of the causes of diarrhea. Not fully understanding the 

problem hinders the development of comprehensive tactics for 

prevention and treatment of diarrhea. My doctoral thesis work was aimed 

at addressing the existing gap in knowledge and has served to make 

important strides towards potentially closing this gap.  

Currently, there is building excitement about the Human 

Microbiome Project which is a National Institutes of Health multi-institute 

iniative to use mass sequencing to determine the microbial populations 

associated with humans at various sites of the body. However, this is a 

new found excitement. Few people were talking about metagenomic 

analysis of human-associated microbial communities at the time in which 

this thesis work began. While some groups had examined the spectrum of 

viruses present in stools from healthy adults, and that is in part what the 

Human Microbiome Project proposes to do further, no one had previously 

examined what spectrum of viruses can be found in diarrhea samples. My 

initial analysis of 12 diarrheal stools was therefore the first snapshot of the 

diarrhea virome. This analysis revealed that the spectrum of viruses 

associated with diarrhea is highly varied in terms of the families of viruses 
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found in a given sample, the numbers of different viruses in a given 

sample, and the relative abundance of viruses in the samples. This 

suggests that the complexity of the human diarrhea virome is quite 

complex and highlights the difficulty of assessing the role of an individual 

virus in causing diarrhea when there is a complex mixture of viruses 

present in a sample.  

Perhaps the most exciting finding that came out of the 

metagenomic analysis of the first 12 diarrhea samples was that there were 

many novel viruses present in the samples. The identification of multiple 

novel viruses in just a small random sampling of diarrhea specimens 

provides confidence that there are still many unknown viruses to be 

discovered and provides further encouragement to continue searching 

for them.  

One of the novel viruses that was identified belongs to the family 

Nodaviridae. The identification of this virus perfectly exemplifies the 

possibility for paradigm shifting discoveries. Nodaviruses are known to 

infect fish and insects, but do not naturally infect humans. The 

identification of a novel nodavirus in a human diarrhea specimen presents 

the possibility that the virus infects humans. There are other explanations 

though. For example, it is possible that the virus was derived from some 

dietary source, perhaps an infected fish, and was simply passed through 

the gastrointestinal tract. However, if it can be demonstrated that this 
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novel nodavirus does infect humans, it would be an exciting finding since 

this virus would be the first nodavirus known to infect humans. Discoveries 

of viruses like this one points out the need to have an unbiased approach 

to search for novel viruses and furthermore for thinking about what the 

potential causes of diarrhea might be. Of course, much more work needs 

to be done in order to discern between the possible explanations for the 

nodavirus’ presence in the diarrhea sample. 

The most promising discovery of the initial metagenomic analysis 

was that of a novel astrovirus, AstV-MLB1, in an Australian diarrhea 

specimen. Phylogenetic analysis revealed that AstV-MLB1 is highly distinct 

from any of the known astroviruses, including the known human 

astroviruses, confirming that AstV-MLB1 is in fact a highly divergent, novel 

astrovirus. Given that astroviruses are known to infect humans and that 

they typically cause diarrhea in their hosts it is easy to believe that this 

astrovirus could also cause diarrhea in humans, however that has yet to 

be proven. The detection of AstV-MLB1 in additional diarrhea specimens 

from Saint Louis is the first report examining the prevalence of AstV-MLB1 

and the first detection of AstV-MLB1 outside of Australia. Detection of 

AstV-MLB1 on two continents suggests that the virus may be globally 

widespread, suggesting that if it is shown to be a human pathogen it may 

affect a wide distribution of people around the world.  
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The identification of MLB1 was followed by the identification of yet 

another highly divergent, novel astrovirus. This astrovirus, AstV-VA1, was 

found in 3/5 samples from a gastroenteritis outbreak. The identification of 

AstV-VA1 in association with a diarrhea outbreak presents a very strong 

possibility that this astrovirus is in fact associated with diarrhea.  

While astroviruses are known to cause diarrhea, they have generally 

been associated with at most 10% of both sporadic and outbreak cases 

of acute diarrhea. The identification of two novel astroviruses in human 

diarrhea samples hints that astroviruses may have a larger role in causing 

human diarrhea than previously believed. There are 8 known human 

astroviruses which are all very closely genetically related. Following that 

example, it is possible that each of these viruses represents a whole new 

cluster of astroviruses. One could furthermore hypothesize that these novel 

astroviruses may eventually be shown to cause diarrhea and allowing us 

to begin to close the gap in our understanding of the causes of diarrhea.  

Significant technological developments within recent years have 

greatly enhanced our ability to detect both known and novel viruses as 

evidenced by the work presented in this dissertation as well as work done 

by others.   Continuing evolution of these technologies will certainly lead 

to further increases in this arena.   Critically, while the identification of 

novel viruses is becoming increasingly more facile, the discovery is merely 

the introductory chapter into each virus’ story.   For example, with each 
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new virus identified, there are a host of questions that arise regarding 

each virus’ tropism, epidemiology, and potential link to disease.   To 

answer these questions will require many years of further investigation, 

using myriad tools of biology, virology and medicine.  

The scientific questions that need to be addressed for each virus are 

initially all the same. The major questions for both AstV-MLB1 and AstV-VA1 

are whether they are actually human pathogens and if so, whether they 

do in fact cause diarrhea. These questions are difficult to answer short of 

doing human infection trials. The founding principles for demonstrating 

microbial pathogenesis are based on satisfying Kochs postulates. Today 

we know that Kochs postulates cannot always be satisfied for every 

pathogen. The reasons for this can vary from ethical considerations of 

carrying out human experiments to the fact that not all pathogens can 

be cultured, which is a requirement for satisfying the postulates.  

Culturing of these novel viruses may present a major challenge for 

future research investigations. Since traditional virus discovery methods 

relied heavily on the ability to culture viruses, one might argue that these 

viruses are unlikely to grow well under standard culturing conditions or else 

they would have already been discovered. There are many important 

humans pathogens that have proven difficult to culture such as human 

noroviruses and hepatitis C virus.  For these viruses, significant effort has 

been exerted since their discoveries in trying to get them to grow in the 
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laboratory. It might be the case that significant creativity as well as a lot of 

trial and error will be required to establish culturing conditions for these 

novel astroviruses. This is a very important direction for future research on 

these viruses because having a culturable virus makes exploring other 

scientific questions easier and also facilities production of vaccines and is 

useful for other translational applications.  

Kochs first postulate is that an organism must be found in all disease 

cases and in no healthy cases in order for it to be considered a pathogen. 

Again, we know that these absolutes are not always true, especially when 

considering a polymicrobial disease like diarrhea. There are many factors 

such as the host immune system, co-infecting microorganisms, and 

environmental factors that are speculated to be involved in viral 

pathogenesis, but the extent of how these factors affect different viruses is 

not well understood. However, if AstV-MLB1 and AstV-VA1 can be 

statistically associated with diarrhea cases rather than healthy cases, then 

that will provide compelling evidence to say that these viruses cause 

diarrhea. Therefore, screening large cohorts of case-controlled diarrhea 

specimens is also an essential next step for the progression of research on 

these viruses.  

Finally, some of the best evidence to demonstrate that these viruses 

infect humans is seroconversion upon exposure to the virus. It is assumed 

that the generation of antibodies implies that the virus actually infected 
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the host as opposed to having been passed through the gastrointestinal 

tract. Again since there are ethical concerns for doing human 

experiments with novel viruses about which very little is known, the best 

proxy for directly monitoring seroconversion is to examining existing 

immunity to these viruses in the general population. Seroprevalence 

studies can give us some information about how common these viruses 

are in the human population and potentially at what age people are 

frequently exposed to them.  

Historically, it has been postulated that the identification of novel 

viruses in a given specimen or syndrome is the rate-limiting step in 

addressing the question of disease causality.   With the advent of new 

technologies, a shift has occurred such that in many instances, the rate-

limiting step is no longer discovery but understanding the biological 

relevance and impact of newly discovered viruses. The application of 

unbiased, culture independent discovery methods has already yielded 

many fruit in the form of new viruses, which are likely to be just the tip of 

the proverbial iceberg.   Undoubtedly many additional new viruses will be 

uncovered in the upcoming years, thereby providing new substrates for 

investigation and understanding of virology, virus host interactions, virus-

environment interactions, and of course disease pathogenesis.  
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