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Michael A. Keim, Supervised by Professor Willem Dickhoff
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Introduction
Traditionally, elastic nucleon scattering experiments have been 

analyzed by parametrizing the interaction between a nucleon 

and the nucleus using optical potentials. Such analysis is 

unable to simultaneously describe both scattering and bound-

state data, even though, in principle, scattering experiments 

also yield information about bound state data [1]. However, 

Mahaux and Sartor were able to use Kramers-Kronig

dispersion relations with optical potentials in order to link 

nuclear reactions and nuclear structure [2]. The resulting 

dispersive optical model (DOM) is extensively reviewed in 

Ref. [3]. A extension of the DOM including a nonlocal, 

energy-independent Hartree-Fock (HF) term was implemented 

in Ref. [4], allowing for an interpretation of the DOM 

potential as a proper self-energy. Here we implement a self-

energy similar to that employed in Ref. [5] to describe 208Pb.  

The self-energy includes real part connected to an imaginary 

through a dispersion relation.

ℜΣ 𝒓, 𝒓′; 𝐸 = Σ𝐻𝐹 𝒓, 𝒓′ +ℜΣ𝑑 (𝒓, 𝒓′; 𝐸)

The real part includes a nonlocal HF term, a Coulomb term, 

and a local spin-orbit term.

Σ𝐻𝐹 𝒓, 𝒓′ = Σ𝑛𝑙
𝐻𝐹 𝒓, 𝒓′ + 𝛿(𝒓 − 𝒓′)(𝑉𝑠𝑜 𝑟 + 𝑉𝐶(𝑟))

Nonlocality is represented as a Gaussian in the form proposed 

by Perey and Buck in Ref. [6]. The imaginary part has both a 

nonlocal contribution and a local spin-orbit term.

ℑΣ 𝒓, 𝒓′; 𝐸 = ℑΣ𝑛𝑙 𝒓, 𝒓
′; 𝐸 + 𝛿(𝒓 − 𝒓′)𝒲𝑠𝑜 𝑟; 𝐸

The dispersion integral, as in Ref. [7], can be expressed as 

ℜΣ 𝒓,𝒓′; 𝐸 = ℜΣ 𝒓,𝒓′; 𝜀𝐹

+
1

𝜋
𝒫 

−∞

𝜀𝐹

ℑΣ 𝒓,𝒓′; 𝐸′ =
1

𝐸′ − 𝐸
−

1

𝐸′ − 𝜀𝐹
𝑑𝐸′

+
1

𝜋
𝒫 

𝜀𝐹

∞

ℑΣ 𝒓,𝒓′; 𝐸′ =
1

𝐸′ − 𝐸
−

1

𝐸′ − 𝜀𝐹
𝑑𝐸′

where 𝒫 represents the principal value and the Fermi energy 

εF is the average of the energy for adding and removing a 

nucleon. In this analysis, bound-state properties are given 

priority in constraining the self-energy since more positive 

energy data are available to fit. Presented are various 

properties derived from said self-energy and, specifically, the 

propagator, or Greens function as described in Ref. [5].

Motivation
Properties of heavy nuclei such as 208Pb have implications for 

the physics of neutron stars:

• Schwarzschild stars, spherically-symmetric neutron stars 

in hydrostatic equilibrium, are sensitive to the equation of 

state of neutron-rich matter alone [9]

• The skin of a heavy nucleus is also composed of neutron-

rich matter at a lower density [10]

• Ref. [10] proposes that the smaller the skin-thickness of 
208Pb, the smaller the size of neutron stars

• Ref. [11] proposes an inverse correlation between the 

neutron-skin thickness and the density of a phase 

transition from nonuniform to uniform neutron-rich matter

Results
Overlap functions for nucleon removal or addition and corresponding quasihole or 

quasiparticle energies are obtained from a Schrödinger-like equation [8] with discrete solutions 

in the domain where the self-energy has no imaginary part. Below, for protons (left) and 

neutrons (right), experimental levels (left) are compared to DOM calculated levels (right).

Spectral functions provide information on the likelihood of a particle with a specific l-j at a 

specific position and at a specific energy. Below, by radially integrating over the hole spectral 

function the spectral strength is obtained for negative energies:

Conclusions
Provided are selected results from an initial fit to bound-state 

data of parameters describing a 208Pb nonlocal self-energy. 

This analysis necessitated several modifications from previous 

applications of the DOM for smaller nuclei. In order to 

achieve reasonable results for weakly bound energy levels, it 

was necessary to enlarge the radial grid used for self-energy 

calculations. Additionally, particles were found at very low 

energies, necessitating a lower integration minimum. In fact, 

non-negligible spectral strength is calculated beyond just l-j 

combinations with bound levels. The next step for the analysis 

is to fit to elastic-scattering data, which will provide greater 

constraints for the self-energy, allowing for the generation of a 

more accurate neutron skin useful to astrophysicists.
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