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ABSTRACT OF THE DISSERTATION

Accurate Docking is Achieved by Decoupling Systematic Sampling From Scoring

by

Jianwen A. Feng

Doctor of Philosophy in Computational Biology

Washington University in St. Louis, 2009

Research Advisor: Professor Garland R. Marshall

This dissertation discusses two main projects from my thesis work. The first project

focuses on the development of a small molecule docking program, SKATE, for drug

discovery. The second project focuses on the critical analysis of the thermal stability

of a mini-protein, FSD-1.

SKATE is a novel approach to small molecule docking. It removes any inter-dependence

between sampling and scoring to improve docking accuracy. SKATE systematically

and exhaustively samples a ligand’s conformational, rotational and translational de-

grees of freedom, as constrained by a receptor pocket, to find sterically allowed poses.

A total of 266 ligands were re-docked to their respective receptors to assess SKATE’s

performance. The results show that SKATE was able to sample poses within 2 Å

RMSD of the native structure for 97% of the cases. The best performing scoring

function was able to rank a pose that is within 2 Å RMSD of the native structure as

the top-scoring pose for 83% of the cases. Compared to published data, SKATE has

a higher self-docking accuracy rate than or is at least comparable to GOLD, Glide,
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MolDock and Surflex. The cross-docking accuracy of SKATE was assessed by docking

83 ligands to their respective receptors. The cross-docking results were comparable

to those in published methods.

Mini-proteins that contain fewer than 50 amino acids often serve as model systems

for studying protein folding because their small size makes long time-scale simula-

tions possible. However, not all mini-proteins are created equal. The stability and

structure of FSD-1, a 28-residue mini-protein that adopts the ββα zinc-finger motif

independent of zinc binding, was investigated using circular dichroism (CD), differen-

tial scanning calorimetry (DSC), and replica-exchange molecular dynamics (REMD).

FSD-1’s broad melting transition, similar to that of a helix-to-coil transition, was

observed in CD, DSC, and REMD experiments. The N-terminal β-hairpin was found

to be flexible. FSD-1’s apparent melting temperature of 41 oC may be a reflection

of the melting of its α-helical segment instead of the entire protein. Thus, FSD-1’s

status as a model system for studying protein folding should be reconsidered despite

its attractiveness for being small in size and it was designed to contain essential helix,

sheet, and turn secondary structures.

An electronic copy of this dissertation is available online at www.ccb.wustl.edu/˜jafeng
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Chapter 1

Introduction

1.1 Computer-aided drug discovery

Application of docking to drug discovery and understanding mini-protein stability are

the two main topics discussed in this work. Developing a marketable drug is estimated

to take 15 years and a billion dollars. Computer-aided drug discovery (CADD) tools

are critical in reducing the time and cost of drug development. The early stages of

drug development are where CADD tools can make significant impact in guiding the

direction of a therapeutic program.

Chapter 2 introduces the application of high throughput screening (HTS) in drug

discovery and how computational tools can be applied to optimize the expensive,

random hit-identification strategy of HTS. Cheminformatics tools can filter out prob-

lematic compounds that may aggregate, contain known toxic groups, or are non-

specific binders. If a crystal structure of the receptor target is available, then virtual

screening methods can be applied to eliminate compounds that are less likely to bind.

Virtual screening tools like docking programs increase the odds of hit-identification

and are complementary to HTS in drug discovery. However, the inter-dependence
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of sampling and scoring in current docking programs makes it difficult to determine

whether a sampling error, or a scoring error, caused a program to fail in validated

docking experiments. We have developed a novel docking program, SKATE, that

decouples systematic sampling from imperfect scoring. Chapter 3 describes the im-

plementation and results of SKATE.

SKATE was written to prove the concept that systematic sampling improves docking

accuracy. It has not been optimized for speed or usability. Chapter 4 discusses

improvements to the SKATE docking program that will make it more user-friendly

and more likely to be adopted by the drug discovery community.

1.2 Mini-proteins

Mini-proteins that contain fewer than 50 amino acids and fold independently of metal-

binding centers or disulfide cross-linking sites are considered model structures for in-

vestigating the driving forces behind protein folding. These minimal model systems

contain essential features of larger proteins: defined structures, important intramolec-

ular contacts that stabilize the folded state and, in some instances, co-operative fold-

ing and unfolding. Their small size makes it feasible to study folding pathways and

protein-energy landscapes with long time-scale, molecular-dynamics (MD) simula-

tions.

Chapter 5 provides a detailed analysis of the thermal stability of FSD-1, a 28-residue

mini-protein designed to fold into the zinc-finger ββα motif independent of zinc bind-

ing. FSD-1 was an attractive target in simulations studies mostly because of its

small size, its sequence consisting of only natural amino acids, and its design has

2



both α-helix and β-sheet secondary structures as well as assumed accessibility of its

thermal unfolding transition. However, FSD-1’s apparent melting temperature of 42

� and its reported NMR structure have been assumed in subsequent studies with-

out further experimental validation. In Chapter 5, we present a critical analysis of

FSD-1’s stability by studying its thermal unfolding and solution structure by circular

dichroism (CD), differential scanning calorimetry (DSC), replica exchange molecular

dynamics (REMD), and NMR spectroscopy. The results suggest an alternative inter-

pretation; the apparent melting temperature reflects a local helix-coil transition and

not a protein unfolding transition. FSD-1 is not necessarily a robust mini-protein

model system for studying protein folding.

To design more robust model systems, Chapter 6 discusses the impact of pre-organization

in protein design and how it can be applied to design mini-proteins that exhibit higher

thermal stability. Different semi-rigid reverse-turn mimetics and their impact on pro-

tein stability are discussed. A D-proline–Proline turn mimetic was incorporated into

FSD-1 and the stability of the resulting chimeric protein was estimated by long time-

scale molecular dynamics simulations. Simulation results suggest that the Dpro-Pro

mimetic could stabilize the β-hairpin in the chimeric protein but further experimental

validation is required.
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Chapter 2

Drug discovery

2.1 Introduction

The modern drug discovery process for validated biomolecule targets start with the

identification of small-molecule hits that modulate a desired function. Receptors and

enzymes make up more than 70% of known therapeutic targets[1]. High throughput

screening (HTS) of diverse libraries of drug-like compounds is a widely used strategy

for identification of hits. Compounds in a HTS library are derived from, but not

limited to, combinatorial chemistry, natural products and legacy programs[2]. Hits

are active compounds with non-promiscuous binding behavior and they meet certain

activity thresholds for given assays. Validated hits are progressed into lead series

that are synthetically accessible, exhibit well-defined structure-activity-relationships

(SAR), and have good physico-chemical properties (absorption, distribution, metabolism,

and excretion (ADME)). To reduce the attrition rates in later, more costly, stages of

of drug-development, lead-series must have good in vitro affinity and selectivity, but

more importantly, they must be optimized for solubility, permeability and metabolic

4



stability. For a review on hit-and-lead generation, see Bleicher et al.[2]. Select com-

pounds in the lead series are further optimized in the lead refinement stage to produce

clinical candidates with drug-like properties.

2.2 High throughput screening

High throughput screening is a corner stone technology in identifying hit compounds

in the pharmaceutical industry. It is also increasingly being used by academia[3].

Screening libraries of over a million compounds per target is becoming the standard

practice in major pharmaceutical companies[4]. HTS, despite its ability to produce

enormous amount of information, is not a panacea because the results depend on the

composition of the libraries screened. Without a thoughtfully designed compound

library, HTS is essentially a very expensive, random hit-identification, strategy. The

success rate of finding hits using current HTS technology is approximately 0.1-0.2%.

Practitioners are increasingly recognizing that the quality of screening libraries and

the accuracy of HTS assays are more important than the number of compounds

screened[4]. Using focused libraries for specific therapeutic target classes, kinases for

example, will reduce the cost of finding hits. The goal is to perform fewer but high

information-content experiments.

2.3 Computational methods in drug discovery

Computational methods play important roles in every stage of the drug development

process, from target validation to optimizing lead compounds into clinical candidates.

5



Often, computer-aided drug discovery makes its largest impact in the early stages. In

the case of HTS, cheminformatics tools can be used to filter out poor candidates (ex:

compounds containing known toxic subunits) in the compound databases. Filtering

tools generally require only 2D information about the molecules and are computa-

tionally efficient. Millions of compounds can be processed in a relatively short period

of time. Common chemical descriptors are used to filter out compounds that do not

meet ADME and toxicity requirements. If specific information about the receptor

is available, additional descriptors can be added to further reduce the size of the

compound library. The compounds in the resulting smaller library can be priori-

tized using ligand-based or structured-based virtual screening. If a pharmacophore

or structure of the receptor target is available, then 3D screening can be applied to

further screen out compounds that are less likely to bind. Molecular docking is a 3D

screening technology that finds optimal binding pose(s) of a given ligand. The ligands

in a compound library are ranked by their estimated affinity for the receptor. High

affinity compounds will then be tested first. Prioritizing the order that compounds

in the library are tested will lead to cost savings and faster hit-identification.

2.4 Molecular docking

Small molecule docking programs are used extensively in the pharmaceutical industry

and in academia for the discovery of novel lead compounds. A number of docking

programs are available as commercial software and from academic labs[5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17]. Molecular docking programs have three major components:

a representation of the system, a sampling algorithm and a scoring function[18]. A

docking program must be able to sample near-native poses in order to rank them
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as top-scoring poses. A pose defines the relative orientation and conformation of a

ligand when bound to a receptor.

2.4.1 Historical perspective

Kuntz and colleagues developed one of the earliest docking programs, DOCK[19], to

geometrically match the shapes of ligands to the complementary shapes of the binding

pocket. The goal was to find small molecules with high degrees of shape complemen-

tarity to the receptor binding pocket. The binding pocket was represented by a set

of overlapping spheres of varying radii. Each sphere touches the molecular surface at

two points. Another set of spheres represented the rigid ligand. Geometrically similar

sphere-clusters between the ligand and binding pocket were identified by matching the

internal distances of the clusters, subjected to some error limit. The rigid ligand was

then transformed by rigid body rotation and translation to fit into the binding site.

Top scoring orientations of the ligand poses were selected for subsequent analysis.

In the quest to solve the docking problem, subsequent docking programs by Kuntz’s

group and others have incorporated features like ligand flexibility, local optimization,

receptor flexibility, and advanced scoring functions. However, docking programs have

yet to deliver on the promise of predicting binding affinity of compounds, in silico,

with much consistency or accuracy. One major problem with existing stochastic-

based docking programs is that they must couple sampling with imperfect scoring

functions. The dependency of sampling on scoring makes it difficult if not impossible

to determine whether a sampling or a scoring problem caused a docking program to

fail in validation studies.

7



2.4.2 Interdependence of sampling and scoring

Evolutionary algorithms and other stochastic search methods are a common type of

sampling algorithm. They rely on scoring functions to guide their stochastic steps,

so the search and scoring processes are necessarily coupled. Scoring functions need

to evaluate anywhere from thousands to millions of poses in a docking experiment.

To speed up the calculations, the energy functions are simplified so that they can

be evaluated quickly. The tradeoff is a less accurate energy function that at best

approximates the binding energy of a pose. If a coarse energy function scores a near-

native pose poorly, it will be discarded. This problem of false negatives is often the

root cause of poor performance. A more rigorous sampling method is systematic

search. Implementation of this method can be divided into two subcategories, those

that approximate conformational space and those that exhaustively search conforma-

tional space. Rigid-body docking of low energy conformers[20], incremental fragment

construction[6, 7, 13], and hybrid methods that combine systematic pose generation

and stochastic optimization are examples of implementations that approximate a

complete systematic search[17, 14]. To the authors’ knowledge, only eHiTS[16] and

SKATE systematically and exhaustively sample a ligands conformational, rotational

and translational degrees of freedom that are constrained by a binding site.

2.5 Summary

Computational tools like docking programs are complementary to HTS in drug dis-

covery. However, the inter-dependence of sampling and scoring in current docking

programs makes it difficult to determine whether a sampling error or a scoring error

8



caused a program to fail in a docking experiment. We have implemented a novel

docking program, SKATE, which decouples systematic sampling from imperfect scor-

ing.
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Chapter 3

SKATE: A docking program

3.1 Introduction

The inter-dependence of sampling and scoring in current docking programs makes it

difficult to determine whether a sampling error or a scoring error caused a program

to fail in a docking experiment. SKATE is a novel docking program that decouples

systematic sampling from imperfect scoring. It employs a rigorous search method to

systematically sample conformational, orientation and rotational degrees of freedom

of a ligand to find optimal docking poses. A näıve brute force approach, literally

rotating each bond, results in combinatorial explosion and becomes computation-

ally intractable. Efficient systematic and exhaustive sampling is achieved by pruning

the combinatorial tree using aggregate assembly, discriminant analysis, adaptive sam-

pling, radial sampling and clustering. The resulting sterically allowed poses of a ligand

bound to a receptor are then ranked independently with three scoring functions. The

docking performance of SKATE is evaluated by three large test sets in terms of self-

docking, and two test sets in terms of cross-docking. Compared to state-of-the-art

docking programs, SKATE is more accurate.
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3.2 Overview of docking methodology

3.2.1 Sampling

Hydrogen-bonding interactions are essential in drug specificity and high affinity bind-

ing. SKATE takes advantage of this natural phenomenon by forming all possible

hydrogen-bonds between the ligand and the receptor pocket to anchor systematic

search. Once a sterically allowed hydrogen-bond is formed between a receptor atom

and a ligand atom, SKATE then systematically and exhaustively samples the ligand’s

torsional degrees of freedom. The simplest systematic approach to find all sterically

allowed conformations of a flexible ligand is to rotate each rotatable bond. Assuming

a ligand molecule of N atoms with T rotatable bonds, and a receptor pocket of M

atoms, if each rotatable bond of the ligand is explored at angular increments of A

degrees, there are
360

A
values to be examined for each T resulting in

(
360

A

)T

possible

conformations to be examined for steric conflict. The 3D coordinates that determine

the geometry of a conformation can be generated by applying appropriate transfor-

mation matrices to different subsets of atoms. These conformers must be checked for

van der Waals (VDW) overlap to eliminate sterically impossible conformations. To

a first approximation, there are
N(N − 1)

2
pair-wise distance calculations that must

be performed for each conformation. Then M × N pair-wise distance calculations

must be performed between atoms in each conformation and those in the receptor

pocket. These distances are checked against the allowed sum of VDW radii for the

two atoms involved. The number of VDW comparison V for a single hydrogen-bond

formed between the receptor and the ligand is given by

V =

(
360

A

)T

×
(
N (N − 1)

2
+M ×N

)
(3.1)
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The rate-limiting step in this brute force approach is the sheer number of VDW

comparisons that must be performed in order to find sterically allowed poses. As an

example, sampling at torsional increments of 10 degrees for a ligand with 6 rotatable

bonds and 50 atoms and a receptor pocket of 1000 atoms will result in 1.4 × 1013

VDW calculations. Assuming there are a combination of 50 possible hydrogen-bonds

that can be formed, it would take 22 years to complete this calculation on a modern,

single CPU computer that is capable of processing 1 million VDW comparisons per

second.

Such a brute force approach to systematic search is inefficient and unnecessary.

SKATE implements a number of strategies that truncate the combinatorial explo-

sion. Sterically allowed poses of a ligand as constrained by a receptor pocket are

systematically sampled by a step-wise build up of aggregates (Figure 3.1). An aggre-

gate is defined as a set of atoms whose relative positions are invariant to rotational

degrees of freedom[21]. A ligand is divided into individual aggregates around in-

ternal rotatable bonds (Figure 3.2). An aggregate capable of hydrogen-bonding is

transformed by rigid-body translation and rotation to form an energetically favorable

hydrogen-bond with the receptor. The geometries of the newly formed hydrogen-

bond are determined by a set of hydrogen-bonding geometric parameters. A second

aggregate that shares a common rotatable bond with the first aggregate is spliced

onto the partial molecule by applying the appropriate transformations. The range of

sterically allowed torsions for this rotatable bond is analytically determined by dis-

criminant analysis[21]. Discrete values in the range of allowed torsions are sampled

by rotating the second aggregate around the rotatable bond that joins the first and

second aggregates. The step-wise assembly of sterically allowed conformations of the

ligand within the receptor pocket continues until all aggregates have been added. As
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Figure 3.1: The tree structure of systematic search of conformational space for a
ligand hydrogen-bonded to a receptor. Vertices of the tree represent ligand

aggregates; edges represent discrete torsion values of a ligand’s rotatable bonds and
a ligand-receptor hydrogen-bond. Red edges represent “pruning” of the search tree
by eliminating branches of the tree where the addition of an aggregate is sterically

prohibited for any torsion value. Sterically allowed conformations are represented by
the tree leaves that are connected by black edges. The first aggregate is

hydrogen-bonded to the receptor and the bonding geometries are determined from a
set of geometric parameters. At each branch point, a new aggregate may be added

to the existing partial conformation if it is sterically allowed (black lines). Each
black line represents a torsion value of a rotatable bond where an aggregate is added
to the existing partial molecule. The assembly of a sterically allowed conformation
continues until aggregates along every branch have been systematically evaluated.

shown in Figure 3.1, the possible conformations of a flexible ligand hydrogen-bonded

to a receptor can be represented by a search tree. The tree is anchored by a recep-

tor atom that forms a hydrogen bond with the ligand. SKATE systematically finds

sterically allowed ligand poses (tree leaves) by performing a depth-first search of the

tree. Systematic search is performed for each possible pairing of hydrogen-bonding

atoms between the ligand and receptor. A more detailed explanation of systematic

search and discriminant analysis is provided in the methods section.
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Figure 3.2: A simple molecule (left) is divided into its aggregates (right) by
partition at its rotatable bonds.

3.2.2 Scoring

SKATE decouples systematic sampling from scoring. A unique feature of SKATE is

that any scoring function may be used to rank the poses generated by SKATE. SKATE

itself does not use a scoring function to determine if a pose is low energy. It uses

discriminant analysis and incremental build-up to find a set of sterically allowed poses.

Those poses are clustered with a heavy atom root-mean-square deviation (RMSD)

cutoff of 0.5 Å. In this work, we used energy functions in FRED[20], Rosetta[10] and

X-Score[22] to rank or score the poses generated by SKATE. These scoring functions

are made available by their respective authors at no charge to academic groups.

FRED or Fast Rigid Exhaustive Docking is a commercial docking program developed

by OpenEye Inc. that can also be used to score poses generated by other programs[20].

We used FRED’s default consensus scoring function that is an equal-weighted sum
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of ranks by chemgauss3, PLP, and oechemscore. Chemgauss3 uses smooth Gaussian

functions to represent the shape and chemistry of molecules[20]. PLP or Piecewise

Linear Potential is a minimal scoring function that includes a steric term and a

hydrogen-bonding term, but no electrostatic term[23]. Oechemscore is an OpenEye

variant of chemscore, an empirical scoring function[24]. We also examined how FRED

scoring is affected by a fast, rigid-body local optimization of SKATE-generated poses

prior to scoring.

Rosetta’s energy function was originally trained for protein structure prediction and

was extended to score protein-ligand interactions[25]. The energy function consists

of a weighted sum of force-field-based and knowledge-based terms calculated from

the receptor and ligand coordinates. Hydrogen atoms are explicitly treated. The

terms include VDW interactions, an implicit solvent model, an explicit orientation-

dependent hydrogen-bonding potential, and an electrostatics model. For this work,

we used Rosetta’s energy function, referred to as Rosetta-Score, to rank poses gen-

erated by SKATE. X-Score is an empirical scoring function that treats hydrophobic

effect by using three different functions and averaging the results[22]. Each of the

three functions includes a VDW interaction term, a hydrogen-bonding term, a hy-

drophobic effect term, a torsional-entropy penalty, and a regression constant. X-score

was trained to reproduce the known binding affinity of 200 protein-ligand complexes.

3.3 Methods

An aggregate is defined as a set of atoms whose relative positions are invariant to

rotational degrees of freedom[26]. Atoms in an aggregate could be directly bonded,

have a 1-3 relationship defined by a bond angle, be part of a ring system, or have bonds
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between them conjugated by resonance. Table 3.1 lists the number of rotatable bonds,

sampled by SKATE, for the ligands in the three self-docking test sets. Figure 3.2

illustrates how a simple molecule was divided into three aggregates. There are T + 1

aggregates and T torsional degrees of freedom in a flexible molecule. Sterically allowed

conformations of a ligand are generated by assembling its aggregates. Since the

distance between two atoms within an aggregate is constant, it is not necessary to

check for VDW clashes between atoms within the same aggregate.

In SKATE, sterically allowed poses of a ligand are constructed in a stepwise fashion by

re-assembling the aggregates comprising the ligand. Starting with an initial aggregate

that contains an atom that forms a hydrogen bond with a receptor atom, a second

aggregate is added via the rotatable bond that joins the two aggregates (Figure 3.1).

Some torsion values around this shared rotatable bond will lead to VDW overlaps

between atoms in aggregate two and atoms in aggregate one, as well as atoms in the

receptor. It is extremely inefficient to assemble two aggregates for a given torsion only

to find out that it is a sterically impossible conformation. Discriminant analysis solves

this problem by analytically calculating the range of sterically allowed torsions within

which two aggregates can be assembled together. The result is that only allowed

torsions are sampled. In theory, systematic sampling should find all sterically allowed

poses of a ligand. In practice, SKATE discretizes the continuous conformational

space and then uses adaptive torsion sampling and radial sampling to ensure sufficient

sampling[27].

Discriminant analysis was first applied to systematically search the conformational

hyperspace available to a flexible molecule to define three-dimensional quantitative

structure-activity relationships (3D-QSAR) and biological receptor mapping[26]. In

the construction of a molecule from stepwise addition of aggregates, there are two
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sets of atoms to consider. First are those in the sterically allowed partial molecule

(set A) previously constructed. Second are those in the next aggregate (set B) to be

added to the existing partial molecule. Atoms in set B must be checked against those

in set A to find torsions that are sterically allowed. Distance constraint equations are

used analytically to determine the possible torsion ranges such that a new aggregate

can be added without steric overlap between atoms in the new aggregate (set B) and

the partial conformation (set A). These equations, derived elsewhere[26], describe the

variable distance between any two atoms as a function of a single torsion angle (ω).

Figure 3.3: The variable distance between a fixed atom ai and a rotatable atom aj

is a function of a single torsional variable ω. Atoms ai, as and ar are rigid with
respect to each other and they belong to the sterically allowed conformation of a
partially docked ligand. Atoms as and ar forms the rotatable bond and determine

the rotational axis. û is a unit vector along the axis of rotation. The torsional
variable of ω is being evaluated by discriminant analysis to determine the range of
torsions where atom aj does not clash with any atoms in the partial conformation.

The square of the interatomic distance between aj and ai in Figure 3.3 is given by:

d2
ij(ω) = d1 + d2cos(ω) + d3sin(ω) (3.2)
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where coefficients d1, d2, and d3 are defined as follows:

d1 = |ŝ|2 + |v̂|2 − 2(ŝ · v̂1) (3.3)

d2 = −2(ŝ · v̂2) (3.4)

d3 = −2(ŝ · v̂3) (3.5)

v1, v2, and v3 are the three orthogonal components of the vector v in Figure 3.3 where

v̂ = aj − ar (3.6)

v̂3 = û× v̂ (3.7)

v̂2 = û× v̂3 (3.8)

v̂1 = v̂ − v̂2 (3.9)

Equation 3.2 can be rewritten as

d2
ij(ω) =

ax2 + bx+ c

1 + x2
(3.10)

where

a = d1 − d2 (3.11)

b = 2 × d3 (3.12)

c = d1 + d2 (3.13)

x = tan(
ω

2
) (3.14)
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Let cij be the sum of the VDW radii for atoms i and j, then differential distance

function

δ2
ij(ω) = dij(ω) − cij (3.15)

is evaluated to determine whether or not the two atoms are in contact. The differential

distance function can be converted to a quadratic form:

δ2
ij(ω) =

(a− c2ij)x
2 + bx+ (c− c2ij)

1 + x2
(3.16)

D = b2 − 4(a− c2ij)(c− c2ij) (3.17)

x =
−b±

√
D

2a
(3.18)

ω = 2tan−1(x) (3.19)

The resulting discriminant D can be used to determine if there is a real or imaginary

solution to δ2
ij(ω). If D > 0, then δ2

ij(ω) has real roots and the upper and lower

bound values of the torsional range (ω) can be calculated from the above equations.

If D ≤ 0, δ2
ij(ω) has complex or real double degenerate roots. For c− c2ij ≥ 0, δ2

ij(ω)

is positive for all values of ω implying that atom i and atom j never come in contact

for any torsional value of ω. For c− c2ij < 0, δ2
ij(ω) is negative for all values of ω and

there is no sterically allowed way to add the new aggregate. In this case, the new

partial conformation will be discarded and the search branch truncated.

The distance constraint equations minimize the number of pair-wise intramolecular

and intermolecular distances that must be evaluated in a systematic search. They

prune the search tree by analytically determining torsion ranges that result in ster-

ically allowed partial or complete conformers. The intersection of allowed torsion

ranges for every atom pair spanning a rotatable bond results in discontinuous slices

of torsion ranges in which a new aggregate is added during the step-wise construction
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process. The torsional ranges are discretized by adaptive sampling and radial sam-

pling to ensure sufficient sampling[27]. Adaptive sampling, as opposed to uniform

sampling, ensures that SKATE does not over-sample or under-sample a torsional

range. Radial sampling determines the increment in degrees between two sampled

torsions. In SKATE, a rotation of an aggregate around its rotatable bond displaces

an atom in the aggregate by a maximum of 0.25 Å.

SKATE pairs an H-bond donor of a receptor with an H-bond acceptor of a ligand,

and vice versa, to anchor systematic search. In SKATE, three parameters are used

to define a hydrogen bond, the distance between the hydrogen atom and the acceptor

atom; the angle formed by the acceptor, hydrogen, and donating atoms; the angle

formed by the acceptor base, acceptor, and hydrogen atoms. Figure 3.4 illustrates

Figure 3.4: Docking of a ligand to a receptor by pairing H-bonding partners.
Rotatable bonds in the ligand are searched systematically to find allowed torsions

that generate a bound pose for further evaluation.

how SKATE initializes its H-bond pairing and systematic search process. A receptor

H-bond donor is paired with a ligand H-bond acceptor. Rotation of the N–H bond
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on the receptor determines the 3D coordinate of the ligand acceptor atom. Using dis-

criminant analysis, SKATE quickly determines the allowed torsions of the N–H bond

such that the ligand acceptor atom does not clash with receptor atoms. The next

bond to be rotated is the H-bond between the receptor and the ligand. This deter-

mines the allowed torsions of the H-bond such that ligand atoms in the first aggregate

do not clash with the receptor atoms. The remaining aggregates are then system-

atically searched by recursion. Sterically allowed poses for a given ligand-receptor

hydrogen-bond represent leaves of a tree graph where nodes represent aggregates and

edges represent discrete torsions of rotatable bonds (Figure 3.1). SKATE travels this

tree using a depth first search approach as illustrated by the following pseudo code.
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Systematic Search Pseudo Code

MAIN()

DOCK(receptor, ligand)

SEARCH(receptor, ligand, torsions, agg_idx)

SEARCH(receptor, ligand, torsions, agg_idx)

UPDATE(ligand, agg_idx)

VALIDATE(receptor, ligand, torsions, agg_idx)

for each allowed torsion of aggregate agg_idx

ROTATE(ligand, torsions)

if last aggregate

RECORD(ligand)

else

SEARCH (receptor, ligand, torsions, agg_idx+1)

end if

end for

The DOCK procedure transforms the coordinates of a ligand H-bond partner such

that it forms a hydrogen bond with a receptor partner. The resulting H-bond geom-

etry is determined by a set of geometric H-bond parameters.

The UPDATE procedure transforms the atoms in aggregate agg indx to be in the

same local coordinates as the previously searched aggregates and partially assembled

molecule.

The VALIDATE procedure performs discriminant analysis to find allowed torsions

of the rotatable bond that connects aggregate agg indx with the previously searched
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aggregates of the ligand. A list of allowed torsions is stored in the torsions data

structure.

The ROTATE procedure simply rotates an aggregate to an allowed torsion that was

calculated by the VALIDATE procedure.

Due to inherent errors in X-ray structure determination, there are often VDW clashes

between ligand and receptor atoms in crystal structures. We employed a VDW scaling

factor to reduce the VDW radii of protein and ligand atoms to ensure the reproduction

of experimental structures[28]. A general scaling factor of 0.95 is applied to ligand

intramolecular interactions. A 1,4 scaling factor of 0.87 is applied to ligand atoms

in 1-4 relationships. Intermolecular interactions are scaled by a factor of 0.9 and

hydrogen-bond interactions are scaled by a factor of 0.6.

Experimentally determined structures of ligand complexes are used to define binding

pockets for the purpose of docking validation. A binding pocket in SKATE is defined

as any receptor atom that is within 5 Å of any atoms in a co- crystallized ligand.

To prevent SKATE from building ligand poses where the ligand extends into solvent

space, a shell of dummy solvent atoms is added to the receptor using Sybyl[29]. These

dummy solvent atoms surround the entire surface of the protein and do not occupy

the binding pocket. Dummy solvent atoms within 5 Å of atoms of a co-crystallized

ligand are discarded.
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3.4 Data Sets

SKATE was tested on five data sets in assessing its self-docking and cross- docking

performance. Results from four of the data sets can be compared directly to results

from published docking programs.

3.4.1 Astex/CDCC diverse set

Hartshorn et al. prepared a set of 85 high-quality and diverse protein-ligand com-

plexes and made them publicly available as a validation set for testing docking

performance[30]. Protein targets were selected based on their relevance to drug dis-

covery or agrochemical research. Consequently, only complexes with drug-like ligands

were allowed in this set. To ensure complex diversity, no receptor was represented

more than once. Furthermore, the ligands contained distinct molecular recognition

types. A special focus was placed on selecting very high-quality experimental struc-

tures of which the experimental binding mode of the ligands was easily assessed.

Protein structures were prepared by removing solvents and small ions. Exceptions

were made for water molecules that coordinate a metal ion and for small ions that

mimic a cofactor. His, Asn and Gln side-chain placements in the crystal structure

that were not consistent with hydrogen-bonding patterns were rotated if such ro-

tations would significantly improve hydrogen-bonding. This is reasonable because

crystallographers usually cannot place His, Asn, and Gln side chains with absolute

certainty based on electron density alone. This data set was downloaded from the

Cambridge Crystallographic Data Centre (http://www.ccdc.cam.ac.uk).
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3.4.2 Surflex set

To compile a test set for Surflex, Jain filtered 134 protein-ligand complexes in the

GOLD data set by removing complexes that (i) contained ligands with more than

15 rotatable bonds, (ii) were covalently attached to the protein, and (iii) contained

obvious errors in structure[5, 13]. The resulting 81 complexes were made available on

http://jainlab.ucsf.edu. The protein files in the original GOLD set were prepared by

removing water molecules and by adding hydrogen atoms while taking protonation

states into account. Exceptions were made to keep water molecules and metal atoms

that coordinated ligand binding[5].

3.4.3 Vertex set

Perola et al. prepared a test set of 150 protein-ligand complexes to compare the

performances of Glide, GOLD and ICM[31]. These complexes were selected for their

relevance to modern drug discovery programs. Ligands were selected for (i) their

drug-like properties; (ii) molecular weights between 200 and 600 Daltons; (iii) hav-

ing between 1 and 12 rotatable bonds; and (iv) structural diversity. The ligands

in the Vertex set were prepared by extracting them from their respective PDB files

and assigning bond orders and correct protonation states by visual inspection. Pro-

tein structures were prepared by removing subunits, ions, solvent and other small

molecules not involved in binding. Metal ions and tightly bound water molecules in

the ligand binding site were preserved[31]. Hydrogen atoms were added to the pro-

tein. The structures of ligand, protein, and co-factor were minimized as a complex

for 1,000 steps using Macromodel and the OPLS-AA force field. All heavy atoms

were constrained to their original positions during minimization. The structures with
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optimized hydrogen positions were saved. Of the 150 complexes, 100 are PDB entries

and 50 are corporate structures. The files of the 100 PDB complexes are available

on the Jain Lab website (http://jainlab.ucsf.edu)[32]. Seven complexes in the Vertex

set are also included in either the Astex/CDCC set or the Surflex set (Table 3.1).

3.4.4 Thymidine kinase set

Bissantz et al. tested the virtual screening capability of docking programs by using

the crystal structure of HSV-1 thymidine kinase (TK) (PDB ID: 1KIM), 10 known

ligands, and 990 randomly chosen decoys[33]. In this work, the 10 known ligands were

docked to the 1KIM structure to test SKATE’s performance in cross-docking. The

structures were prepared as described in Bissantz et al. No optimization of ligand or

receptor coordinates was performed.

3.4.5 Cyclin dependent kinase 2 set

Seventy-three known ligands that have been co-crystallized with cyclin dependent

kinase 2 (CDK2) were docked to a single high resolution CDK2 structure (PDB ID:

2B54, 1.85 Å)[34]. These ligands occupy the ATP-binding site of CDK2. To prepare

the receptor, water molecules and co- crystallized ligands were removed from the 2B54

structure, and hydrogen atoms were added to the receptor using Sybyl 8.1[29]. The

ligand structures were extracted from their respective complexes, and were assigned

correct bond orders and protonation states by visual inspection. To create reference

coordinates of the 73 known ligands, their respective co-crystallized receptors were
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aligned to the 2B54 structure and the ligands were extracted and saved as mol2 files.

The CDK2 data set is available for download at http://www.ccb.wustl.edu/˜jafeng.

3.5 Docking setup

The files in the Astex/CDCC, Surflex and Vertex sets were downloaded from their

respective websites and used as obtained. Hydrogen atoms were already added to

protein and ligand structures by the test sets’ respective authors. No further opti-

mization of protein or ligand geometries were performed since it could lead to biased

results[35]. For the Vertex set, its author did minimize the ligand and receptor hydro-

gen atoms while constraining the heavy atoms to their original locations[31]. Ligand

and protein files in PDB or MOL formats were converted to the mol2 format and as-

signed Tripos atom types. The coordinates of these ligand files were used as references

when calculating RMSD values.

In this study, the experimentally determined ligand was used to define the binding

pocket for the purpose of docking. Any receptor atom that is within 5 Å of an atom

in the co-crystallized ligand was considered part of the binding pocket. A list of

potential hydrogen-bond donors and acceptors were created by inspecting the atoms

in the pocket. SKATE attempted to dock all possible pairings of ligand hydrogen-

bond donors with protein hydrogen-bond acceptors, and vice versa. A vast majority of

these attempted pairings resulted in immediate search termination because they were

not sterically allowed. The resulting sterically allowed poses generated by SKATE

were written to a file in the mol2 format to be ranked by scoring functions.
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To delete conformational memory of the experimentally determined ligands, SKATE

set the torsions of all rotatable bonds to 180 degrees. Experimentally determined

bond angles and bond lengths were not modified. The current version of SKATE does

not sample ring conformations; instead experimentally determined ring conformations

were used.

3.6 Results and discussion

3.6.1 Sampling accuracy

In order to rank a near native pose as the top-scoring pose, a docking program must be

able to sample such poses. The inter-dependence of sampling and scoring in current

docking programs makes it difficult to determine whether it is a sampling error or

a scoring error that caused a program to fail in a test case. SKATE approaches

the docking problem by decoupling systematic sampling from scoring. It anchors a

search by pairing a ligand hydrogen-bond donor to a receptor hydrogen-bond acceptor

and vice versa. For each hydrogen-bond formed, SKATE systematically samples a

ligand’s torsional degrees of freedom to find poses that sterically fit within a receptor

pocket. Figure 3.5 shows the cumulative proportion of best poses, as measured by

RMSD to the experimental structure (reference), that were generated by SKATE for

the complexes in the Astec/CDCC, Surflex and Vertex self-docking test sets. A pose

is considered best if its heavy atom RMSD to the reference structure is the lowest.

Table 3.1 lists the RMSD values of the best poses and top-scoring poses for each

complex in the three test sets.
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Figure 3.5: Cumulative proportion of best RMSD poses for the Astex/CDCC (red),
Surflex (green), and Vertex (blue) sets. There are 85 complexes in the Astex/CDCC

set, 81 complexes in the Surflex set and 100 complexes in the Vertex set.
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Table 3.1: Results for SKATE on the Astex/CDCC, Surflex and Vertex complexes1

Vertex Set Astex/CDCC Set Surflex Set
PDB
code

no
rot
bonds

best
pose
rmsd

top
rank
rmsd

PDB
code

no
rot
bonds

best
pose
rmsd

top
rank
rmsd

PDB
code

no
rot
bonds

best
pose
rmsd

top
rank
rmsd

13gs 3 0.49 0.83 1g9v 5 1.49 1.51 1abe 0 0.45 0.45
1a42 8 0.77 1.41 1gkc 8 1.27 0.95 1acj 1 0.46 0.68
1a4k 5 0.66 1.81 1gm8 4 1.59 2.24 1ack 2 0.53 3.83
1a8t 8 1.00 7.99 1gpk 1 0.27 0.30 1acm 6 0.70 0.65
1afq 9 0.86 8.23 1hnn 1 0.67 0.98 1aco 2 0.27 0.35
1aoe 3 0.48 0.86 1hp0 2 0.45 0.36 1aha 0 0.26 0.18
1atl2 8 0.91 1.26 1hq2 1 0.43 0.26 1atl 9 1.35 2.86
1azm 2 0.51 1.28 1hvy 8 1.77 1.64 1baf 4 0.64 0.92
1bnw 5 0.64 5.48 1hwi 9 0.61 1.11 1bbp 9 0.75 0.76
1bqo 6 0.30 0.48 1hww 1 0.22 0.14 1bma 9 1.65 2.47
1br6 3 0.39 1.14 1ia1 2 0.26 0.36 1cbs 0 0.20 0.36
1cet 7 0.93 7.45 1ig3 4 0.44 1.20 1cbx 5 0.29 0.43
1cim 3 0.28 1.09 1j3j 2 0.18 0.30 1com 4 0.46 0.79
1d3p 12 1.14 1.19 1jd0 1 0.72 3.36 1coy 1 0.32 0.51
1d4p 3 0.24 0.60 1jje 7 0.58 7.97 1dbb 1 0.25 0.51
1d6v 7 0.92 2.17 1jla 7 0.70 0.77 1dbj 1 0.32 0.54
1dib 7 0.80 2.88 1k3u 6 0.27 0.29 1dr1 3 0.28 1.48
1dlr 4 0.42 0.64 1ke5 1 0.34 0.29 1dwd 8 1.16 2.97
1efy 3 0.42 1.76 1kzk 9 0.65 0.89 1eap 10 0.82 0.81
1ela 8 0.44 0.68 1l2s 2 0.31 0.51 1epb 0 0.91 0.74
1etr2 8 0.46 0.60 1l7f 8 0.33 0.44 1etr 8 0.92 0.93
1ett 6 0.51 0.98 1lpz 6 0.71 1.00 1fen4 0 — —
1eve 6 1.38 1.01 1lrh 2 1.32 1.42 1fkg 9 0.78 1.60
1exa 4 0.25 0.32 1m2z 3 0.19 0.60 1fki 0 0.30 0.34
1ezq 10 0.39 0.71 1meh 7 1.12 1.07 1frp 7 0.26 0.92
1f0r 4 0.40 0.75 1mmv 8 0.81 0.58 1glq 12 1.62 9.14
1f0t 5 0.73 2.57 1mzc 7 1.27 2.26 1hdc 6 1.41 1.61
1f4e 2 0.41 1.09 1n1m 3 0.82 0.57 1hdy 0 0.90 0.74
1f4f 8 0.67 2.23 1n2j 4 0.67 0.47 1hri 9 2.87 10.18
1f4g 11 1.23 1.49 1n2v 3 0.45 1.08 1hsl 4 0.36 0.42
1fcx 4 0.28 0.32 1n46 5 0.43 0.66 1hyt 5 0.65 0.78
1fcz 3 0.26 0.39 1nav 5 0.39 0.73 1lah 6 0.36 0.36
1fjs 8 1.16 2.01 1of1 2 0.32 0.32 1lcp 4 0.56 1.13
1fkg2 9 0.64 1.33 1of6 4 0.32 0.64 1ldm 0 0.18 0.39
1fm6 6 0.68 0.74 1opk 2 0.35 0.56 1lic 15 5.05 5.07
1fm9 11 0.48 2.31 1oq5 3 0.37 5.00 1lna 10 0.64 0.74
Continued on Next Page. . .
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Table 3.1 – Continued
Vertex Set Astex/CDCC Set Surflex Set

PDB
code

no
rot
bonds

best
pose
rmsd

top
rank
rmsd

PDB
code

no
rot
bonds

best
pose
rmsd

top
rank
rmsd

PDB
code

no
rot
bonds

best
pose
rmsd

top
rank
rmsd

1frb 5 0.24 0.23 1owe 2 1.01 1.84 1lpm 8 0.89 6.82
1g4o 5 1.04 3.59 1oyt 4 0.40 0.62 1lst 7 0.29 0.21
1gwx 10 1.61 2.19 1p2y 1 1.67 4.87 1mdr 3 0.20 0.47
1h1p 3 0.43 0.43 1p62 3 0.16 0.40 1mrg 0 0.29 0.59
1h1s 4 0.46 0.66 1pmn 6 2.51 6.70 1mrk 3 0.36 0.99
1h9u 3 0.26 0.39 1q1g 3 0.36 0.69 1nco 9 0.91 0.68
1hdq 5 0.98 1.03 1q41 1 0.34 0.54 1phg 3 0.87 4.39
1hfc 10 0.60 0.52 1q4g 3 0.27 0.64 1rds 8 1.03 1.74
1hpv 12 0.88 0.89 1r1h 10 0.43 0.53 1rob 5 0.94 1.41
1htf 13 0.92 2.10 1r55 8 0.98 0.86 1snc 6 0.54 0.80
1i7z 5 0.39 0.48 1r58 9 0.77 0.91 1srj 2 0.40 0.40
1i8z 6 4.82 4.80 1r9o 3 0.52 0.76 1stp 5 0.40 0.79
1if7 7 0.88 5.13 1s19 5 0.38 0.62 1tka 8 1.21 1.46
1iy7 5 0.30 0.64 1s3v 5 0.38 0.73 1tmn 13 0.75 1.48
1jsv 1 0.46 0.39 1sg0 3 0.32 0.49 1tng 2 0.10 0.69
1k1j 8 0.45 1.61 1sj0 6 0.54 0.66 1tni 5 0.57 1.92
1k22 9 0.42 0.49 1sq5 6 0.81 1.68 1tnl 2 0.19 0.40
1k7e 4 0.18 1.00 1sqn 2 0.22 0.27 1trk 9 0.40 0.58
1k7f 5 0.66 1.20 1t40 6 0.65 0.69 1ukz 4 0.20 0.24
1kv1 1 0.24 0.81 1t46 4 0.43 0.38 1ulb 0 0.20 0.46
1kv2 6 0.53 0.55 1t9b 3 0.61 0.47 1wap 4 0.17 0.32
1l2s3 1 0.17 0.42 1tow 4 0.56 4.81 2ada 3 0.15 0.19
1l8g 3 0.33 2.13 1tt1 4 0.29 0.73 2ak3 4 0.42 0.55
1lqd 5 0.56 1.00 1tz8 5 0.58 2.29 2cgr 5 1.66 1.80
1m48 7 0.56 0.96 1u1c 6 0.60 1.12 2cht 3 0.67 1.36
1mmb 13 0.82 6.79 1u4d 1 0.28 0.91 2cmd 6 0.57 0.45
1mnc 10 0.80 1.55 1uml 9 0.54 0.62 2ctc 4 0.24 0.41
1mq5 3 0.26 0.41 1unl 6 0.55 0.95 2dbl 6 1.62 1.35
1mq6 4 0.27 0.32 1uou 2 0.73 0.73 2gbp 2 0.19 0.26
1nhu 8 0.44 0.46 1v0p 6 0.50 0.45 2lgs 5 1.13 1.74
1nhv 8 1.15 7.46 1v48 6 0.45 0.35 2phh 2 0.25 0.41
1o86 12 7.97 8.63 1v4s 3 0.29 0.28 2r07 8 1.64 8.96
1ohr 11 0.39 0.46 1vcj 8 0.59 0.84 2sim 5 0.40 1.21
1ppc 8 1.08 1.96 1w1p 0 0.24 0.28 3aah 3 0.79 0.39
1pph 6 0.76 2.03 1w2g 2 0.39 0.56 3cpa 6 0.88 0.92
1qbu 10 0.72 0.77 1x8x 4 0.44 0.78 3hvt 1 2.33 1.62
1qhi 4 0.25 0.40 1xm6 5 0.53 1.23 3ptb 1 0.23 0.42
Continued on Next Page. . .
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Table 3.1 – Continued
Vertex Set Astex/CDCC Set Surflex Set

PDB
code

no
rot
bonds

best
pose
rmsd

top
rank
rmsd

PDB
code

no
rot
bonds

best
pose
rmsd

top
rank
rmsd

PDB
code

no
rot
bonds

best
pose
rmsd

top
rank
rmsd

1ql9 3 0.37 0.37 1xoq 5 0.95 4.03 3tpi 7 0.26 0.26
1qpe 2 0.42 0.55 1xoz 1 0.26 0.28 4cts 2 0.27 0.44
1r09 3 0.75 0.60 1y6b 6 0.39 0.34 4dfr 8 0.84 1.19
1syn 7 0.59 2.48 1ygc 10 2.55 3.85 6abp 1 0.34 0.39
1thl 11 0.82 0.95 1yqy 4 0.18 0.51 6rnt 4 0.38 7.01
1uvs 8 1.30 1.49 1yv3 2 0.30 0.31 6rsa 2 0.47 0.76
1uvt 5 0.49 0.45 1yvf 4 0.58 0.60 7tim 3 0.47 1.13
1ydr 1 0.36 0.36 1ywr 5 0.54 0.45 8gch 8 1.56 2.20
1yds 4 0.44 0.37 1z95 5 0.31 0.34
1ydt 7 0.87 3.46 2bm2 7 0.45 1.48
2cgr2 5 0.60 0.78 2br1 6 1.12 1.58
2csn 4 1.54 3.01 2bsm 6 0.50 0.74
2pcp 2 0.24 0.30
2qwi 5 0.24 1.01
3cpa2 7 0.45 1.07
3erk 3 0.25 0.60
3ert 8 0.48 1.03
3std 5 0.26 0.26
3tmn 6 0.47 0.71
4dfr2 8 0.98 1.42
4std 4 0.26 0.35
5std 4 0.52 0.32
5tln 9 0.80 1.06
7dfr 8 0.77 1.44
7est 6 0.43 0.82
830c 7 0.29 0.52
966c 7 0.30 0.63

1Top rank poses were scored by FRED-Opt-Score
2Complex is also part of the Surflex set.
3Complex is also part of the Astex/CDCC set.
4The ligand in complex 1fen does not have any atom that is capable of hydrogen bonding.
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For an RMSD threshold of 2 Å, sampling accuracy rates are 98%, 95%, and 98% for

the Astex/CDCC, Surflex and Vertex sets, respectively. For an RMSD threshold of 1

Å, the respective sampling accuracy rates are 86%, 80%, and 88% for the three self-

docking sets. Highly accurate ligand poses that approximate the native pose below

1 Å RMSD are a prerequisite to improving solutions to the scoring problem[25]. For

all but a few test cases in the three test sets, SKATE was able to sample poses

that were within 2 Å. The highly accurate sampling of SKATE can be attributed to

the systematic sampling algorithm. It is essential for a docking program to sample

near-native poses in order to give scoring functions the opportunity to rank them as

top-scoring poses.

Perola et al. evaluated some of the most advanced docking programs (ICM, Glide and

GOLD) in docking 150 drug-like ligands to their respective receptors[31]. To measure

the sampling performance of these three programs, the RMSDs between the closest

of top 20 docking poses (nearest native) and the corresponding crystal structure for

each complex were reported. Glide identified a docked pose, among the top 20, that

was within 2.0 Å of the experimental structure in 79% of the cases, versus 77%

by GOLD, and 67% by ICM. The corresponding performance of SKATE sampling

coupled with FRED-Score ranking was 91%. This study was limited to docking only

100 PDB entries out of the 150 complexes because the rest were confidential corporate

structures.

Systematic sampling in SKATE never repeatedly samples the same point in confor-

mational space. In practice, two conformations can be clustered when their only

difference is a 10 degree torsional variation in a terminal rotatable bond. To speed up

sampling, SKATE implements heuristics to further reduce conformational space. As

shown in Figure 3.1 the possible conformations of a ligand that is hydrogen-bonded
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to a receptor can be represented by a search tree. The edges, nodes, and leaves of

the tree represent torsion values of rotatable bonds, aggregates and sterically allowed

poses, respectively. SKATE traverses this tree using a depth-first search approach.

Upon reaching a leaf of the tree by traversing down a branch from the root, a ster-

ically allowed conformation is found. SKATE determines if it is necessary to travel

down a branch of the tree by checking if the partial ligand constructed thus far is

similar to a ligand pose that was already found from visiting previous tree branches.

If the RMSD between atoms in a partial ligand and the corresponding atoms in a

previously generated pose is less than 0.3 Å, then SKATE terminates the search of

the current branch. If the search were to continue, the resulting poses would be very

similar to the previously generated poses and would be discarded by clustering.

Discriminant analysis determines the range of torsions that are sterically allowed

for a rotatable bond. The allowed range of torsions is discretized and converted

into a list of torsions to be sampled. Not all conformers assembled from this list

of values will be low in energy. Ligands in the receptor-bound state rarely adopt

strained conformations where the torsions of rotatable bonds deviate significantly

from the energy minima of the +gauche, -gauche and anti rotations. SKATE truncates

conformational space by limiting allowed torsions to be within 30 degrees of +gauche,

-gauche and anti torsions for rotatable bonds that (i) are not terminated by oxygen

or sulfur atoms, and (ii) contain atoms that are bonded to fewer than four heavy

atoms. For terminal aggregates of a ligand, only the three torsions that are nearest

to +gauche, -gauche and anti values are sampled for rotatable bonds that meet the

above criteria (i) and (ii). SKATE uses a combination of 180 geometric parameters

to predict potential hydrogen-bonding interactions between a ligand acceptor and

receptor donor, and vice versa. The parameters that represent the most common
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geometries are tried first. SKATE skips the remaining parameters if a pose is found.

These heuristics that reduce the search space and speed up performance are optional

and can be enabled or disabled by the user.

3.6.2 Analysis of failed sampling cases

SKATE was able to sample a pose that is within 2 Å RMSD of the reference structure

for 98%, 95%, and 98% of the test cases in the Astex/CDCC, Surflex, and Vertex data

sets, respectively. Two of the ligands in the 85 complexes Astex/CDCC set barely

missed the 2 Å RMSD threshold; their RMSD values were 2.51 and 2.55. SKATE was

unable to sample a pose that was within 2 Å RMSD of the native structure for test

cases 1O86 and 1I8Z in the Vertex set. In 1O86, lisinopril, an anti-hypertension drug,

is bound to the human angiotensin converting enzyme (ACE). There are 12 rotatable

bonds in lisinopril. The ACE active site consists of a zinc coordinated narrow center

flanked by two large hydrophobic pockets. Poses found by SKATE occupied either

one of the pockets exclusively but were not able to bridge the two. To correctly

dock lisinopril to ACE, a docking program must sample a pose where the carboxyl

group of lisinopril correctly coordinates the zinc atom and still fits sterically into a

very narrow channel. For test case 1I8Z, the ligand also coordinates a zinc atom, but

SKATE failed to generate a pose that captured this interaction. For the Surflex set,

SKATE failed to find near-native poses for 1FEN, 1HRI, 1LIC, and 3HVT. The 1FEN

ligand does not have any hydrogen-bonding atoms and SKATE could not anchor its

search since it could not form a hydrogen bond between the ligand and the receptor.

For 1HRI, the ligand does not form a hydrogen bond with the receptor. SKATE

sampled a pose (RMSD = 2.87 Å) where the ligand did form a hydrogen bond with

the receptor but its orientation was inverted. Similarly, the 3HVT ligand does not
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form a hydrogen bond with its receptor and the best pose RMSD value was 2.33 Å.

The 1LIC ligand is a simple alkyl chain molecule that has 15 rotatable bonds; it is a

poor candidate for testing docking programs because it does not represent drug- or

lead-like compounds and should not have been included in the Surflex test set. For

the Astex/CDCC and the Vertex sets, SKATE sampled near-native poses ( 2.0 Å) for

98% of the test cases. Ligands in the Astex/CDCC were selected for unambiguous

fitting to experimental electron density. Protons in the Vertex set were optimized to

alleviate poor steric contacts. The likelihood of intermolecular penetration of VDW

surfaces in these two test sets is lower because of high structural resolution in one

case and proton optimization in another.

PDB structures are static models that best fit the available electron density data.

Errors in lower resolution structures may result in poor modeling of small molecule

ligands. This could lead to poor intermolecular steric contacts and even incorrect

fitting of the electron density[36]. It is important to keep this in mind when assessing

a docking program’s ability to reproduce experimentally determined ligand poses.

3.6.3 Scoring accuracy

SKATE focuses on the systematic sampling of sterically allowed poses of a ligand

where its search space is constrained by a binding pocket. It does not provide a

scoring function to rank order the generated poses per se, but takes advantage of

the many published scoring functions’ ability to re-rank docked poses. In this paper,

we presented data from using X-Score, Rosetta, and FRED energy functions to rank

SKATE-generated poses. X-Score is an empirical scoring function that estimates the

hydrophobic effect by using three different functions and averaging the results[22].
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Rosetta’s energy function was originally trained for protein-structure prediction and

was extended to score protein-ligand interactions[10]. In this paper, Rosetta’s energy

function will be referred to as Rosetta-Score. FRED[20] itself is a docking program,

but could also be used to rank previously generated poses with a consensus scoring

function that consists of chemgauss3, PLP, and oechemscore. It will be referred to as

FRED-Score.

We also evaluated whether rigid-body, local optimization of SKATE-generated poses

would improve overall docking performance. SKATE allows some VDW penetration

by scaling atomic VDW radii within the systematic sampling algorithm (see methods

section for details). FRED’s consensus scoring function could rank a near native pose

poorly due to poor contacts. Prior to scoring, poses were optimized by performing

a fast, small-scale, rigid-body translations (0.75 Å) or rotations (0.5 Å), a total of

72 systematic transformations, using FRED[20]. The optimized pose was selected by

using the PLP scoring function. The receptor atoms were fixed throughout the opti-

mization process. We emphasize that we only used the rigid-body, local optimization

feature of FRED, not its full-fledged docking capabilities. The process of optimizing

and scoring with FRED will be referred to as FRED-Opt-Score.
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The results of using X-score, Rosetta-Score, FRED-Score, and FRED-Opt-Score to

rank SKATE-generated poses for the Astex/CDCC test set are shown in Figure 3.6.

For an RMSD threshold of 2.0 Å, the success rates were 87%, 85%, 73% and 66% for

FRED-Opt-Score, FRED-Score, Rosetta-Score and X-Score, respectively. SKATE

coupled with FRED-Opt-Score ranking performed particularly well in identifying

poses that were less than 1 Å RMSD as the best pose for the Astex/CDCC set.

Its accuracy rate was 72%. This is very encouraging because only 86% of the test

cases had a pose that was less than 1 Å RMSD. Taking that into account, the scoring

accuracy rate is 84% for ranking a pose that is within 1 Å RMSD from the native

structure. This could partly be attributed to the high quality of the x-ray structures

comprising the Astex/CDCC set.
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Figure 3.6: Cumulative proportion of top scoring RMSD for 85 complexes in the
Astex/CDCC set
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Similar to the results in the Astex/CDCC set, FRED-Opt-Score performed best in

identifying poses that were within 2 Å RMSD as the best pose for the Surflex set.

FRED-Opt-Score’s accuracy rate was 84% (Figure 3.7). FRED-Score, X-Score and

Rosetta-Score’s accuracy rates were 75%, 64% and 52%, respectively.
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Figure 3.7: Cumulative proportion of top scoring RMSD for 81 complexes in the
Surflex set
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The results for the Vertex test set are shown in Figure 3.8. For an RMSD threshold of

2.0 Å, the success rates were 77%, 73%, 70% and 69% for FRED-Opt-Score, FRED-

Score, Rosetta-Score and X-Score, respectively. For an RMSD threshold of 1 Å, the

scoring accuracy of FRED-Opt-Score was 53% and of FRED-Score was 50%. FRED-

Score and FRED-Opt-Score performance were comparable in identifying a pose that

is within 1 Å RMSD as the best pose.
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Figure 3.8: Cumulative proportion of top scoring RMSD for 100 complexes in the
Vertex set

Existing literature that evaluates docking program performances usually focuses on

overall docking results such as the fraction of correctly predicted protein- bound

conformations[31, 37]. However, this kind of comparison is not conducive to pin-

pointing the cause of the poor performance, i.e. whether it is attributable to poor
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sampling, inaccurate scoring or both, thereby making it difficult to isolate and fix

problem areas. In this work, the same set of high quality SKATE- generated poses

was ranked by FRED-Score, X-Score, and Rosetta-Score. Because the sampling and

the scoring are separated, it allows for a fair comparison of the scoring function

performances[38]. Although comparing scoring performance is not the main purpose

of this work, it is still valuable to discuss the results. In all three self-docking test sets,

FRED-Score was the most accurate scoring function (Figures 3.6, 3.7, 3.8). FRED-

Score summed the individual ranks by chemgauss3, PLP, and oechemscore to produce

a consensus rank. This rank- by-rank strategy was also employed by Wang et al. in a

study evaluating consensus scoring functions[38]. They showed that combining results

from three complementary scoring functions improved the recognition of near-native

poses ( 2.0 Å) as best poses. Coincidentally or not, FRED-Score and one of the best

consensus functions in Wang et al. both included the PLP scoring function. Rosetta-

Score is an extension of Rosetta’s energy function which was designed for in silico

protein structure prediction. It may not have been optimally parametrized to score

protein-ligand interactions. X-score was successful in ranking a pose that is within

2 Å of the experimental conformation in the range of 64% to 69% for the three test

sets. This is consistent with a 66% success rate observed by Wang et al. in evaluating

X-score on a 100 complexes test set[38].

Generally, rigid-body local optimization of SKATE-generated poses improved FRED

scoring. At RMSD thresholds between 1 Å and 2 Å, optimization followed by FRED

scoring improved accuracy by up to nine percentage points. Poses with RMSD values

under 2 Å are often considered near-native but some may contain poor contacts that

cause a scoring function to rank them poorly. A quick rigid-body local optimization

or minimization of those poses alleviated those poor contacts and resulted in better
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scores. PLP was the scoring function used in the rigid-body optimization of SKATE

poses. Despite its simplicity, PLP has been shown to be one of the top performing

scoring functions and is incorporated in multiple docking programs[15, 23, 38]. Results

from using oechemscore or chemgauss3 as the scoring function for optimization were

similar to those from using PLP.

3.6.4 Examples of scoring errors

The best poses for the 1JJE and 1OQ5 complexes in the Astex/CDCC were 0.52

Å and 0.37 Å, respectively. However, the RMSD of the top-scoring pose, ranked

by FRED-Opt-Score, for 1JJE was 7.97 Å and that for 1OQ5 was 5.00 Å. Upon

closer inspection of the 1JJE poses, we found the shapes of the top scoring pose and

the native pose were essentially superimposable. The middle parts of the two poses

overlap very well but the two ring systems on the ligand were placed in opposite

orientations in the top-scoring pose (Figure 3.9). Due to the symmetric nature of

this ligand, this was a challenging case for scoring, because a small difference in 3D

docked shape may be flipped to yield a large apparent RMSD.

Figure 3.9: The RMSD between the 1JJE native pose (blue) and top-scoring pose
(gray) of the ligand was 7.97 Å. The two ring systems of the top scoring pose were

oriented in opposite directions.
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FRED-Score, X-Score and Rosetta-Score also failed to rank a near-native pose as the

top-scoring pose. 1OQ5 is another example where the shapes of the top-scoring pose

overlapped well with the native pose (Figure 3.10). A phenyl group was swapped

with a trichloromethyl group in the top-scoring pose. FRED-Score, X-Score and

Rosetta-Score also failed to rank a near-native pose as the top-scoring pose.

Figure 3.10: The RMSD between the 1OQ5 native pose (blue) and top-scoring pose
(gray) was 5.00 Å. A phenyl group was swapped with a trichloromethyl group in the

top-scoring pose.
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3.6.5 Comparison with other docking programs

Perola et al.[31] prepared a test set of 150 protein-ligand complexes to compare the

performances of Glide, GOLD and ICM. Of the 100 publicly available PDB struc-

tures, Glide correctly identified a docked pose that was within 2.0 Å RMSD of the

experimental structure in 59% of the cases, versus 48% by GOLD (Figure 3.11). The
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Figure 3.11: Distribution of the RMSD values between the top-ranked docking poses
and the corresponding crystal structures in the Vertex set. RMSD values were
calculated on the coordinates of the heavy atoms of the ligands. X-axis: RMSD

cutoffs; Y-axis: percentage of top-ranked docking poses within a given RMSD cutoff
from the crystallographic pose.

success rate of ICM with this subset of 100 PDB structures was not available, but its

success rate with the entire 150 complexes was 45%. Jain docked the same 100 PDB
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complexes using Surflex and its success rate was 54%[32]. SKATE’s systematic sam-

pling coupled with FRED-Opt-Score ranking was successful in identifying a pose that

was within 2.0 Å RMSD of the native structure as the best pose for 77% of the cases.

This represented a 18 percentage point improvement over Glide, the best performing

docking program as tested by Perola et al. In this comparison, all docking programs

used the same coordinates for the proteins and ligands. Perola et al. prepared the

complexes by adding protons to both the bound ligand and the protein and optimized

those proton coordinates while constraining the heavy atoms in their original posi-

tions. One reason for SKATE’s improved results was improved sampling. SKATE

sampled poses that were within 1.0 Å RMSD for 88% of the complexes. Ninety-six

percent of the complexes had at least one pose that was within 1.5 Å RMSD of the

native conformation (Figure 3.5). Perola et al. and Jain analyzed the sampling effi-

ciency of ICM, Glide, GOLD and Surflex by calculating the RMSD values of the best

pose among the top 20 results returned by the respective docking program. Their

sampling accuracy rates were between 37% and 67% for a cutoff of 1.0 Å RMSD, and

between 65% and 74% for a cutoff of 1.5 Å RMSD. Improved sampling by SKATE

contributed to the overall higher success rates for the Vertex set.

Docking results for the Astex/CDCC set are available for RosettaLigand[39] and

GOLD[5]. RosettaLigand is part of the Rosetta suite of programs. RosettaLigand

modified Rosetta’s energy function to guide its stochastic search and to rank the re-

sulting poses. This is the same energy function as Rosetta-Score, one of the three

energy functions that we used to rank SKATE-generated poses. The docking accu-

racy of RosettaLigand[39] was 58% for an RMSD threshold of 2.0 Å. SKATE coupled

with Rosetta-Score achieved a higher success rate of 73% (Figure 3.6). For compari-

son, SKATE coupled with FRED-Opt-Score achieved an even higher success rate of
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87% (Figure 3.12). It appears that a limiting factor in RosettaLigand’s accuracy is
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Figure 3.12: Distribution of the RMSD values between the top-ranked docking poses
and the corresponding crystal structures in the Astex set. RMSD values were

calculated on the coordinates of the heavy atoms of the ligands. X-axis: RMSD
cutoffs; Y-axis: percentage of top-ranked docking poses within a given RMSD cutoff

from the crystallographic pose.

its scoring function. Rosetta’s energy function was optimized for in silico protein-

structure prediction but was only recently extended to flexible ligand docking. Using

an empirical scoring function that has been shown to work well in ligand docking

might improve RosettaLigand’s success rate. The success rate for GOLD[30] was

81% (Figure 3.12); which was 6% lower than SKATE.
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Seventy-seven of 81 complexes in the Surflex set were docked by the authors of

Glide[14]. Glide’s success rate for this subset was 82% for an RMSD threshold of

2.0 Å. The same subset was also docked by the authors of MolDock with a resulting

success rate of 87%. For comparison, the success rate of Surflex[13] was 77% and that

of SKATE/FRED-Opt-Score was 84% for the entire set of 81 complexes (Figure 3.13).

It is hard to directly compare the results of Glide, MolDock, Surflex, and SKATE for
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Figure 3.13: Distribution of the RMSD values between the top-ranked docking poses
and the corresponding crystal structures in the Surflex set. RMSD values were
calculated on the coordinates of the heavy atoms of the ligands. X-axis: RMSD

cutoffs; Y-axis: percentage of top-ranked docking poses within a given RMSD cutoff
from the crystallographic pose.

several reasons. First, Glide and MolDock’s success rates are based on 77 complexes,

a subset of the 81 complexes in Surflex. Both Surflex and SKATE’s success rates
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are based on the entire 81 complexes in the Surflex set. Second, MolDock basically

trained its scoring function on this set of 77 complexes as pointed out by Hawkins

et al.[36] Third, Glide calculated RMSD using optimized ligand coordinates instead

of experimentally determined coordinates. Glide also used the optimized ligand and

protein coordinates in its docking setup. The fact that the same energy function,

OPLS/AA, was used in both complex optimization and pose scoring means Glide

biased its methods by guaranteeing that the initial coordinates were at a local energy

minimum per the OPLS/AA scoring function[32, 14, 16, 36].

Comparing results from different docking programs are not always straightforward[35,

36]. Results depend on, by varying degrees, protein preparation, initial structure of

the ligand, docking site volume, and quality and composition of test sets. Generous

sharing of protein and ligand files by test set authors has made it easier to do fair com-

parisons. In this work, we aimed for unbiased comparisons by using the same docking

conditions as other docking programs whenever possible. The most visible improve-

ment in docking accuracy is shown in the Vertex set results (Figure 3.11). SKATE

results are 18 to 32 percentage points better for three different RMSD thresholds.

3.6.6 Cross docking

The thymidine kinase data set from the comparative paper of Bissantz et al.[33] and

the cyclin dependent kinase 2 data set from Yang et al.[34] were used to test the

cross-docking performance of SKATE. The TK set was originally used to quantita-

tively compare the performance of GOLD, DOCK, and FlexX. Data on this set are

also available for Glide and Surflex. The TK structure used for docking was the
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deoxythymidine-bound structure (PDB code 1KIM). Table 3.2 summarizes the top-

scoring RMSD values generated by the different docking programs for 10 thymidine

kinase ligands.
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Table 3.2: Accuracy in Cross Docking of Thymidine Kinase Inhibitors to the 1KIM
site

RMSD (Å) of top-scoring pose1

Ligand SKATE2 Glide DOCK FlexX GOLD Surflex
dT 0.62 0.45 0.82 0.78 0.72 0.74
ahiu 0.67 0.54 1.16 0.88 1.63 0.87
mct 0.56 0.79 7.56 1.11 1.19 0.87
dhbt 1.18 0.68 2.02 3.65 0.93 0.96
idu 0.41 0.35 9.33 1.03 0.77 1.05
hmtt 3.32 2.83 9.62 13.30 2.33 1.78
hpt 4.07 1.58 1.02 4.18 0.49 1.90
acv 3.29 4.22 3.08 2.71 2.74 3.51
gcv 3.34 3.19 3.01 6.07 3.11 3.54
pcv 3.80 3.53 4.10 5.96 3.01 3.84

1Data for DOCK, FlexX and GOLD are taken from Bissantz et al.[33]; data for Surflex are taken
from Jain[13]; data for Glide are taken from Friesner et al [14]

2FRED-Score was used to rank the poses generated by SKATE.
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The ligand and receptor structures were prepared as described in Bissantz et al.

FRED-Score was used to rank the poses generated by SKATE. Five of the 10 ligands

were docked to the 1KIM structure with an RMSD of less than 1.2 Å. Another five

failed to dock and their RMSD values were between 3 and 4 Å. Of the five failed cases,

SKATE generated poses that were less than 2.0 Å RMSD for four ligands. However,

neither FRED-Score nor FRED-Opt-Score ranked them as top-scoring poses. The

RMSD values of the best pose for ligands hpt, hmtt, gcv, pcv and acv were 0.35

Å, 1.19 Å, 2.11 Å, 1.65 Å, and 1.37 Å, respectively. As pointed out by Friesner et

al.[14], ligands acv, gcv and pcv are purine-based ligands and do not fit properly into

the pyrimidine-based ligand site. All six docking programs did not sufficiently sample

receptor flexibility and therefore failed to dock these three ligands. The cross-docking

results by SKATE are comparable to Glide, GOLD, and Surflex.

The CDK2 test set consists of 73 complexes and the ligands were docked to a single

CDK2 protein structure (PDB ID 2B54). The resolution of 2B54 is 1.85 Å and

is co-crystallized with 6-(3,4-dihydroxybenzyl)-3-ethyl-1-(2,4,6-trichlorophenyl)-1H-

prrazolo[3,4-d] pyrimidin-4(5H)-one. The 2B54 structure was selected to be the model

receptor because it is the best-resolution structure with no missing residues or side-

chain atoms. Two sets of VDW scaling parameters were tested in docking the 73

ligands to 2B54. The default VDW scaling value for intermolecular interactions is

0.9. A second set of parameters allows even more VDW penetration by using a scaling

value of 0.8. Reducing VDW radii is a technique docking programs can employ to

mimic receptor side-chain flexibility. Admittedly, this is a poor mimicry of receptor

flexibility, but nevertheless useful until more advanced features are added to SKATE.

To evaluate sampling and scoring accuracy, we used heavy atom RMSD from the
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native structure. To transform the reference coordinates into the same global coordi-

nates, 72 of the 73 complexes were structurally aligned to 2B54 using pymol[40] and

ligands were extracted and saved in the Tripos mol2 format. The sampling results

from using the two different VDW scaling parameters are shown in Figure 3.14 (top).

More permissive VDW parameters allow more VDW penetration; hence more recep-

tor flexibility resulted in improved sampling. SKATE was able to sample a pose that

was within 2 Å RMSD of the native structure for 81% of the ligands (Figure 3.14 top,

dotted curve). However, this level of VDW scaling was not accommodated in FRED-

Opt-Score. A low RMSD pose will score poorly if there are severe VDW penetrations.

The percentage of top-scoring poses as a function of RMSD is shown in Figure 3.14

(bottom). At an RMSD cutoff of 2.0 Å RMSD, the success rate was 38%. Scaling

atomic VDW radii by a factor of 0.8 improved sampling but a similar improvement

was not achieved in scoring. The percentage of top-scoring ligand poses plotted as a

function of RMSD threshold was similar for the two sets of VDW scaling parameters

(Figure 3.14 bottom). In terms of overall docking accuracy, there was no significant

advantage to using a VDW scaling value of 0.8. Thus, modifications to SKATE to

include receptor flexibility are under consideration.

3.6.7 Pitfalls in complex preparation

The Vertex data set was prepared by performing a constrained minimization of the

complexes using MacroModel and the OPLS/AA force field[41, 42]. Heavy atoms

were constrained to their original position while hydrogen atoms were allowed to op-

timize. While this alleviated poor contacts between software-added hydrogen atoms,

it could lead to artifacts where a hydrogen atom can bend out of plane to relieve steric

interactions. Shown in Figure 3.15 is an example where an aromatic hydrogen was
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Figure 3.14: Top: Cumulative proportion of best RMSD poses for the CDK2
cross-docking set using two sets of VDW scaling parameters. FRED-Opt-Score was
used to rank the poses. Bottom: Cumulative proportion of the RMSD between the
top-ranked poses and the native structure. FRED-Opt-Score was used to rank the
poses. The default intermolecular VDW scaling value was 0.9. The CDK2 VDW

scaling value was 0.8.
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bent 25 degrees out of plane during the minimization step. Hawkins et al. pointed out

additional pitfalls in complex preparation and x-ray structure quality[36]. However,

Figure 3.15: An aromatic proton in test case 13GS of the Vertex set was bent out of
plane by an optimization step in complex preparation. Heavy atoms in a complex

were fixed while protons were allowed to optimize. This proton (cyan) was bent out
of plane by 25o to relieve steric overlap with a proton on residue Pro202 of the

receptor.

not optimizing software-added hydrogen atoms also has its problems. A proton on

the ligand penetrated the VDW surface of a proton atom on a lysine side-chain in

complex 1YGC of the Astex/CDCC set. In this case, the poor contacts could have

been alleviated by a quick minimization.
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3.6.8 Computational time

Using SKATE, the average docking time per ligand-protein hydrogen-bond pair was

less than 5 minutes for ligands with 6 or fewer rotatable bonds, and 10 minutes for

ligands with 8 rotatable bonds. Total docking time was proportional to the num-

ber of possible hydrogen bonds that a ligand can form with the receptor. For the

Astex/CDCC set, the median docking time was 42 minutes and the average dock-

ing time was 98 minutes on a single CPU (Pentium 4, 2.4 GHz) computer running

Linux. SKATE allows simple parallelization by submitting each possible hydrogen-

bond pairing to a different CPU in a computing cluster.

SKATE has not been optimized as it is still under development, but it is expected

that with some optimization significant reduction in computational time could be

achieved. Further speed improvement in SKATE can be made by implementing look-

ahead technologies to further prune the combinatorial search tree [21, 27]. Knowledge

about distance constraints between pharmacophore points can also be used to prune

the search tree. Additional heuristics can be applied to reduce the number of discrete

torsions sampled. Speed improvement will make SKATE more amenable to virtual

screening applications of large compound libraries.

3.7 Conclusions

We implemented a novel docking concept in SKATE that decouples systematic sam-

pling from scoring to improve overall docking accuracy. SKATE’s systematic sam-

pling coupled with FRED’s optimization and scoring was more accurate in two large

data sets and was equally accurate in a third data set when compared to GOLD,
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Glide, ICM, MolDock, RosettaLigand, and Surflex. Improved sampling by SKATE

resulted in overall higher docking accuracy. Systematic sampling in SKATE was ro-

bust as tested by three large self-docking test sets and two cross-docking test sets.

The high-quality poses generated by SKATE could be used to train scoring functions

to distinguish between near-native and poorly docked poses.

The problem of false negatives is often the root cause of poor performance in docking

programs. If a docking program never samples near-native poses, then there is zero

chance that a scoring function can rank them as top-scoring poses. Unfortunately,

modern docking programs’ sampling methods are dependent on scoring functions

that at best approximate experimental binding energies. The inter-dependence of

sampling and scoring makes it difficult to determine whether a sampling error or a

scoring error caused a program to fail in a docking experiment. SKATE breaks this

dependence by systematically and exhaustively sampling sterically allowed poses of

a ligand that are constrained by a receptor pocket. It is evident from this work that

improved sampling contributed significantly to higher docking accuracy.

An executable version of SKATE and the five data sets are available for download

from http://www.ccb.wustl.edu/˜jafeng.
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Chapter 4

SKATE: Potential Improvements

4.1 Introduction

SKATE was written as a proof-of-concept program and has not been optimized for

speed or usability. The following proposed improvements will make it much more

user-friendly and more likely to be adopted by the drug discovery community.

4.2 Usability improvements

One of the limitations of SKATE is its dependence on SYBYL to generate a receptor

file. This receptor file containes dummy atoms that represente volumes in solvent

space that the ligand is prohibited from exploring. The receptor file generation step

can be eliminated by representing the disallowed solvent space using grid points. A

point in a grid could be marked as part of the protein, as part of the excluded solvent

volume, or as part of the binding pocket. A grid point is marked as part of the protein

if it is within 1 Å in Cartesian space of any protein atom. A grid point is marked as

part of the binding pocket if it is within a user-specified distance of a bound ligand.
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The most obvious instance of a bound ligand is the co-crystallized ligand. If a bound

ligand is not available, the binding pocket can be defined as a box centered on an

user specified point that represents the center of the binding pocket. The remaining

points on the grid will be marked as inaccessible (solvent) to the ligand. During the

systematic search process, solvent-grid points that are within an aggregate’s search

space will be checked using discriminant search. If an aggregate is in contact with

solvent-grid points, but not protein-grid points, then it may be safe to terminate that

branch of the search tree because the ligand is growing out of the binding site and

into solvent space.

4.3 Performance improvements

Protons were added to the receptor crystal structures without optimizing potential

hydrogen bonds with the ligand. Receptor O-H and N-H vectors could be pointing in

a suboptimal or incorrect direction for forming a potential hydrogen bond with the

ligand. It would then be necessary to rotate -OH and -NH groups in the receptor to

increase the number of near-native poses generated by SKATE. A simple implemen-

tation is to make the X-OH and X-NH bonds rotatable where X is the heavy atom

directly bonded to O or N. This can be done in SKATE by adding X as a part of the

flexible ligand.

The key to making SKATE faster is to terminate a branch of the search tree as early

as possible. Implementing look-ahead technology will improve performance by orders

of magnitude [27]. The formalism on how to implement look-ahead is described here.
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In Chapter 3, equation 3.10 (shown below) was derived from equation 3.2.

d2
ij(ω) =

ax2 + bx+ c

1 + x2
(4.1)

The two values of x that maximize or minimize d2
ij(ω) are given by

−

(
d2 ±

√
d2

2 + d2
3

d3

)
(4.2)

where coefficients d2, and d3 are defined as follows (see Figure 3.3 and its subsequent

equations for more details)

d2 = −2(ŝ · v̂2) (4.3)

d3 = −2(ŝ · v̂3) (4.4)

The two values of x may be substituted into equation 4.1 to find the maximum and

minimum distances between atoms i and j. If these maximum and minimum distances

lie outside the distance constraints for atoms i and j, then the current branch of the

search should be terminated. This would further trim the search space.
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4.4 Estimating Entropy

The Gibb’s free energy of binding is the sum of enthalpic (∆H) and entropic (∆S)

terms.

∆G = ∆H − T∆S (4.5)

Scoring function can do a good job of estimating the enthalpic energies of a binding

pose. However, estimating entropic contributions to binding is still quite primitive.

Assigning an energy penalty to each rotatable bond that is “frozen” in the bound

state is a common and crude method of calculating entropic penalties. Each docked

conformation of a ligand reported by SKATE represents a cluster of poses sharing the

same energy minimum. The number of poses in a cluster could be used to estimate

the width of that minimum-energy well. Clusters with a large number of members

will be more favorable because the entropic penalty of binding is reduced. Clusters

with only a few number of members will be less favorable because these poses freeze

the ligand into limited conformations, which incurs a large entropic penalty.

4.5 Summary

With the above mentioned improvements, SKATE should contribute significantly to

the drug discovery as one of the better docking programs in sampling near-native

ligand poses.
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Chapter 5

Stability of FSD-1

5.1 Introduction

Mini-proteins that contain fewer than 50 amino acids and fold independently of

metal-binding centers or disulfide cross-linking sites are considered model structures

for investigating the driving forces behind protein folding. These minimal model

systems contain essential features of larger proteins: defined structures, important

intramolecular contacts that stabilize the folded state and, in some instances, co-

operative folding and unfolding. At the same time, their small size makes it feasi-

ble to study folding pathways and protein-energy landscapes with long-time scale,

molecular-dynamics (MD) simulations [43] Mini-proteins often serve as benchmarks

for validating novel methods in molecular simulations, such as replica-exchange molec-

ular dynamics (REMD) [44, 45, 46]. Insights gained from studying mini-protein fold-

ing can be applied to protein-structure prediction, de novo protein design, and the

discovery of novel biologics for treating diseases.
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The zinc-finger motif consists of an N-terminal β-hairpin and a C-terminal α-helix

with the tertiary structure stabilized by a zinc metal center coordinated by two cys-

teines and two histidines. Mini-proteins designed to fold into the zinc-finger ββαmotif

independent of zinc binding are especially interesting because their folded structures

contain the helix, sheet, and turn secondary structures of the parent zinc finger.

The Imperiali group iteratively designed the 23-residue BBA5 protein to adopt the

ββα motif independent of zinc binding[47, 48]. A D-proline residue at position 4

was essential in stabilizing the β-hairpin in BBA5. The Mayo group used compu-

tational methods to design the 28-residue FSD-1 protein that also adopted the ββα

motif independent of zinc binding[49] (Figure 5.1). They started with the backbone

coordinates of the zinc-finger protein Zif268, and then selected side-chain rotamers

to optimize side-chain/side-chain and backbone/side-chain interactions. The folding

pathway, energy landscape, and stability of FSD-1 have been investigated by MD

simulations in implicit and explicit solvent and by using improved sampling methods

like replica-exchange molecular dynamics (REMD)[50, 51, 52, 53, 54, 55]. These sub-

sequent studies of FSD-1 were conducted mostly because of FSD-1’s small size, its

sequence consisting of only natural amino acids, and the assumed accessibility of its

thermal unfolding transition. However, FSD-1’s apparent melting temperature of 42

� and its reported NMR structure[49] have been assumed in previous studies without

further experimental validation.

In this work, we present a critical analysis of FSD-1’s stability by studying its ther-

mal unfolding and solution structure by circular dichroism (CD), differential scanning

calorimetry (DSC), and REMD. Thermodynamic properties such as melting temper-

ature and enthalpy of unfolding were determined by analyzing changes in ellipticity

and excess heat capacity, as function of temperature, that were measured by CD and
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Figure 5.1: Structure of FSD-1 PDB: 1FSD). A: For clarity, side-chains of selected
residues are shown. B: The main-chain atoms in the β-hairpin of FSD-1 are shown
colors and the hydrogen bonds between Y3 and F12 highlighted by black dashes.The
α-helix is shown in light gray. Figures were generated using pymol[40]. Sequence:

QQYTAKIKGRTFRNEKELRDFIEKFKGR.
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DSC experiments. REMD simulations provided structural details that suggested pos-

sible explanations for the unusually broad melting transition of FSD-1. These results

suggest an alternative interpretation; the apparent melting temperature is a reflec-

tion of a local helix-coil transition and not a protein-unfolding transition. Therefore,

FSD-1 may not be a robust model system for studying protein folding.

5.2 Materials and methods

5.2.1 Peptide synthesis and purification

All reagents were obtained from commercial suppliers and used without further purifi-

cation. FSD-1 was synthesized by solid-phase peptide synthesis using an automated

microwave synthesizer, CEM Liberty (Matthews, NC). Fmoc amino acids were used.

2-chlorotrityl resin was preloaded with Fmoc-Arg. The Fmoc groups were depro-

tected by treatment of 20% piperidine in 0.1 M N-hydroxybenzotriazole (HOBT) in

N,N-dimetylformamide (DMF) at 35 W at 75 � for 30 seconds followed by a sec-

ond treatment at 35 W at 75 � for 3 min. Coupling was achieved with 5 equiv of

Fmoc-amino acids, 5 equiv of 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium

hexafluorophosphate (HBTU), and 10 equiv of diisopropylethylamine (DIPEA) at 35

W at 75 � for 5 min. Arginine residues were first coupled at 0 W at 25 � for

25 min then at 20 W at 75 � for 5 min. A second coupling for arginine was per-

formed at 35 W at 75 � for 3 min. FSD-1 was cleaved from the resin by treatment

with a mixture of 95% TFA, 2.5% H2O, and 2.5% triisopropylsilane (TIS) for 2 h at

room temperature. After filtration, TFA was removed by evaporation and the crude

peptides precipitated with diethylether.
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FSD-1 was purified by reversed-phase HLPC. Samples were prepared by dissolving

the peptides in a 1:1 mixture of Solvent A (0.05% TFA in H2O) and Solvent B

(0.05% TFA, 10% H2O in acetonitrile). The eluted samples were then monitored

at 220 nm with a Gilson UV/VIS-155. A preparative VyDac C18 column (Cat#

218TP1022) was used with a linear gradient of Solvent A to Solvent B (5%-50% B)

over 30 min with flow rate of 15 mL/min. The fraction containing the desired peptide

was concentrated and re-purified to greater than 95% purity with a linear gradient

of Solvent A to Solvent B (24.5%B to 25.5%B) over 30 min with a flow rate of 15

mL/min. Peptide purity was confirmed by NMR (Figure 5.2). Peptide identity was

confirmed by electrospray mass spectrometry on a Waters Quattro micro (Milton,

MA). The calculated average [M+H]+ mass was 3489 Da and the observed mass was

3489 Da.

5.2.2 Circular dichroism

CD measurements were performed on a Jasco J-810 (Easton, MD) equipped with

a Jasco PTC-424S Peltier temperature controller. Protein concentration was deter-

mined by UV-Vis absorbance at 280 nm using a calculated extinction coefficient of

1490 M−1cm−1. The protein concentration was 5 µM in 5 mM sodium phosphate

buffer at pH 5.0[49]. Spectra were collected prior to thermal unfolding at 4 � and

after thermal unfolding at 80 � in a 1 cm quartz cell, averaged over three scans from

260 to 190 nm with 2 s averaging, scanning speed of 20 nm/min and data pitch of 1

nm increments. For thermal unfolding, a thermometer was placed inside the sample

cuvette and the sample was constantly stirred. Thermal unfolding was monitored at

218 nm, with averaging time of 15 s, temperature increments of 1 �, temperature

slope of 30 �/h.
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Figure 5.2: NMR spectra of FSD-1 showing the TOCSY Hα-NH fingerprint region.
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5.2.3 Differential scanning calorimetry

Differential scanning calorimetry measurements were performed on a VP-DSC micro-

calorimeter from Microcal (Northamption, MA). Samples were degassed under vac-

uum for 10 min before they were used for calorimetric analysis. The start and final

temperatures were 10 � and 70 �, respectively, and the scan rate was 60 �/h.

A 15 minute pre-scan equilibration was employed. The buffer was 50 mM sodium

phosphate (pH 5.0), degassed. The sample cell was pressured to 25 PSI to prevent

evaporation. A 0.5 mg/mL protein solution was prepared. Thirteen scans with the

sample and buffer cell containing buffer were completed prior to the introduction of

protein to the sample cell during a cooling cycle. Reheating runs were repeated to

determine the calorimetric reversibility of the thermal-denaturation process. Data

analysis was performed using Origin 7.0 and the DSC add-on provided by Microcal.

5.2.4 NMR

NMR spectra were recorded with a Varian Inova-600 (Varian Inc., Palo Alto, CA)

spectrometer and the data were processed with VNMR software. NMR samples

(˜2 mM) were prepared in H2O-D2O (90:10/v:v) with 50 mM sodium phosphate at

pH 5.0 (uncorrected glass electrode). All spectra were collected at 7 �. The total

correlation (TOCSY) spectra were recorded using an MELV-17 mixing sequence of

80 ms flanked by two 2 ms trim pulses. Phase-sensitive 2D spectra were obtained by

employing the hypercomplex method. A total of 2 x 256 x 2048 data matrices with 16

scans per t1 increment were collected. Gaussian and sine-bell apodization functions

were used in weighting the t2 and t1 dimensions, respectively. After two-dimensional
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Fourier transformation, the 2048 x 2048 frequency domain representation was phase

and baseline corrected in both dimensions.

The NOESY spectrum resulted in a 2 x 256 x 2049 data matrix with 16 scans per

t1 increment. Spectra were recorded with 250 ms mixing time. The hypercomplex

method was used to yield phase-sensitive spectra. The time domain data were zero

filled to yield a 2048 x 2048 data matrix and was processed in a similar way as the

2D TOCSY spectrum described above.

5.2.5 Replica-exchange molecular dynamics

Replica exchange molecular dynamics simulations were performed using Gromacs

3.3.1[56]. An energy-minimized structure of FSD-1 (PDB code: 1FSV) was used as

the starting structure for the simulations. The termini were charged and the net

charge of the protein was plus 5. Five Cl− ions were added in random locations to

neutralize the system. The protein was solvated in a truncated dodecahedron box

of TIP4P water where the minimum distance between a protein atom and the edge

of the box was 12 Å. The system contained a total of 19,881 atoms. The OPLS-

AA/L 2001 force field was used. The system was minimized until the maximum

force was less than 100 kJ mol−1 nm−1. Sixty-four temperatures were chosen with

the average exchange rate of 20%. A one-nanosecond simulation was run to equili-

brate the minimized system at each of the sixty-four temperatures. Each trajectory

was assigned random initial velocities that were based on their respective tempera-

tures. The NPT ensemble was used, the temperature was coupled to the Berendsen

thermostat every 0.1 ps and the pressure was controlled by the Parrinello-Rahman

method every 1.0 ps. REMD simulations are often performed at constant volume
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(NVT), but constant pressure (NPT) was chosen to avoid extreme-pressure artifacts

at higher temperatures[46]. A potential problem of using the NPT ensemble is im-

proper solvation due to lower densities at high temperatures. The box volume at

the highest temperature, 445.2 K, was 20% larger than the box volume at the lowest

temperature, 226.2 K. This indicates that the protein was solvated in a liquid-like

environment at high temperatures. Bond lengths between hydrogen atoms and heavy

atoms were constrained with LINCS. Timestep was 2 fs. For each temperature, the

temperature-equilibrated system served as the starting coordinates. The resulting 64

structures were used as initial structures in the REMD simulations with attempted

exchanges every 1000 time steps (2 ps). Atomic coordinates were recorded every 2

ps for further analysis. 76 ns were simulated for each replica which resulted in 4.8

µs of simulation time. The simulations were run on Teragrid resources[57]. Data

from the last 75 ns were used in analysis. To determine the distribution of target

temperatures for the replicas, we followed a method described by Sanbonmatsu et

al.[45] with minor modifications. The minimized system was equilibrated for 500 ps

at temperatures 250, 300, 350, 400, 450, and 500 K. Their average potential energies,

U , were calculated and fitted to a linear function (R2: 0.99).

P (exchange) = exp

[(
1

kBT1

− 1

kBT2

)
× (U1 − U2)

]
(5.1)

Equation 5.1 was solved iteratively for the temperature distribution using P (exchange)

values of approximately 0.10. kB was the Boltzmann constant; Ti and Ui were the

temperature and potential energy of replica i, respectively. Initial test simulations

with the resulting temperature distribution actually resulted in an average exchange

rate of 0.20. P (exchange) of 0.20 is recommended to produce ample exchanges be-

tween replicas. Temperatures below 273 K were chosen to help establish a baseline.
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The resulting temperatures were 262.2, 264.4, 266.6, 268.8, 271.1, 273.4, 275.7, 278.0,

280.3, 282.7, 285.1, 287.5, 289.9, 292.3, 294.8, 297.3, 299.8, 302.3, 304.8, 307.4, 310.0,

312.6, 315.2, 317.9, 320.6, 323.3, 326.0, 328.8, 331.6, 334.4, 337.2, 340.0, 342.9, 345.8,

348.7, 351.6, 354.6, 357.6, 360.6, 363.6, 366.7, 369.8, 372.9, 376.1, 379.3, 382.5, 385.7,

389.0, 392.3, 395.6, 399.0, 402.4, 405.8, 409.2, 412.7, 416.2, 419.7, 423.2, 426.8, 430.4,

434.1, 437.8, 441.5, 445.2.

5.2.6 Curve fitting

Thermal-denaturation curves from CD melting and REMD melting were fit to a two-

state model to determine Tm and ∆HvH . The following function was used in the

fitting procedures[58, 59]:

f(T ) =
yf +mfT + (yu +muT ) ×K

1 +K
(5.2)

K = exp

(
h

RT
×
(

1

Tm

− 1

T

))
(5.3)

where f(T ) was the observed signal, yf was the folded-baseline intercept and mf was

the corresponding baseline slope, yu was the unfolded-baseline intercept and mu was

the corresponding baseline slope, T was the temperature (K), h was the van’t Hoff

enthalpy, R was the gas constant (1.987) and Tm was the temperature (K) in of the

transition point. DSC data were fitted to a two-state model using Origin 7.0.
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5.3 Results and discussion

5.3.1 Circular dichroism

FSD-1 was synthesized by solid-phase peptide synthesis and purified to greater than

95% purity by reverse-phase HPLC. Its molecular weight [M+H]+ of 3489 Da was

confirmed by mass spectrometry. The thermal unfolding of FSD-1 was monitored

by CD spectroscopy at 218 nm. The starting temperature was 4 � and the final

temperature was 80 �. The far-ultraviolet (UV) CD spectra of FSD-1 at 4 �, 80

� and 4 � after melting are shown in Figure 5.3A. The CD spectra at 4 � before

and after melting overlapped well, which confirms that FSD-1 unfolding is reversible

as originally reported by Dahiyat and Mayo[49]. Two minima observed at 207 nm

and 220 nm for spectra recorded at 4 � indicated that FSD-1 contains a well-formed

α-helical segment[60]. However, the CD spectra provided little information about

the formation of a β-hairpin. The CD spectra of a FSD-1 double mutant (I7PK8D-

proline) exhibited similar minima at 207 nm and 220 nm (Figure 5.3B), but the double

mutant did not contain a stable β-hairpin as determined by NMR (data not shown).

The melting curve of FSD-1 measured at 218 nm was fit to a two-state model (Eq.

5.2) assuming a ∆Cp value of zero[58, 59] (Figure 5.4). The melting temperature

(Tm) and van’t Hoff enthalpy (∆HvH) were determined from the least-square fit to

be 41 � and 18 kcal/mol, respectively. The Tm value reported by Dahiyat and

Mayo was 42 �[49]. Thermal unfolding of FSD-1 was measured by CD. The mean

residue ellipticity at 218 nm, [Θ]218, showed a broad transition with no clearly defined

unfolded or folded baselines (Figure 5.4). Lack of a baseline for the fully folded state
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Figure 5.3: A: Far-UV CD spectra of FSD-1 at 4 � and 80 �. Spectra were
measured at 4 � pre-melting (solid) and post-melting (dotted). B: Spectra of FSD-1
and an unfolded FSD-1 double mutant (I7PK8DP) at 4 �. DP denotes D-Proline.
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Figure 5.4: Thermal unfolding of FSD-1 monitored by CD at 218 nm. The melting
curve was fitted to a two-state model and the resulting Tm was 41 � and ∆HvH was

18 kcal/mol.
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indicated that FSD-1 was not well-folded even at 4 �. Since FSD-1 consists of only

28 residues, some flexibility was certainly expected, but a well-folded mini-protein

should exhibit a better-defined baseline. For instance, the thermal unfolding of a

10-residue mini-protein (CLN025) designed, synthesized, and crystallized by Honda

et al. showed a well-defined, folded-state baseline and a Tm of 70 �[61]. The broad

transition of FSD-1 with undefined baselines was similar to helix unfolding[62, 63, 64].

The broad melting transition observed by CD could be the result of the helix-to-coil

transition in the α-helical part of FSD-1, rather than the unfolding of its proposed

hydrophobic core between the helix and the hairpin.

5.3.2 Differential scanning calorimetry

DSC showed a broad melting transition for FSD-1 and its unfolding was reversible

(Figure 5.5). The broad transition made it difficult to determine the pre- and post-

transition baselines necessary for a complete analysis of the calorimetric data. The

unfolding of helical peptides also exhibits this behavior[62, 64, 65]. An initial base-

line was estimated by drawing a line connecting the heat-capacity values, Cp, at the

lowest and highest temperatures. The resulting excess heat-capacity curve obtained

by subtracting the baseline was fit to a two-state model while assuming a Cp value

of zero. The least-square fit was poor and resulted in high sum of squares-of-residual

(SSR) values. To obtain better fits, the baseline was systematically lowered by incre-

ments of 25 cal*mol−1 K−1. The estimated Cp baseline resulting in the lowest SSR

value for the two-state fit was taken as the best; excess heat capacity values obtained

from subtracting this baseline are shown in Figure 5.5. Estimation of baseline by

least-squares minimization was similar to that used by Scholtz et al. in determining

the baseline for the thermal melting of a 50-residue α-helix[62]. For the two-state fit,
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Figure 5.5: DSC melting curve fitted to a two-state model. Tm was determined to
be 41 � and ∆Hcal was determined to be 15 kcal/mol. Red and green circles

represent two back-to-back DSC scans.
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Tm was 41 � and ∆Hcal was 15 kcal/mol. Tm values calculated from using different

baselines were centered at 41 � and varied by less than a degree. However, ∆Hcal

values varied depending on which baseline was used in calculating excess Cp; the

values ranged from 12 to 15 kcal/mol.

The van’t Hoff enthalpy determined by CD was 18 kcal/mol, which was 3 kcal/mol

higher than the calorimetric enthalpy determined by DSC. The near unity ratio of

∆Hcal to ∆HvH suggests that FSD-1 unfolding approximated a two-state transition[66].

FSD-1 unfolding measured by DSC indicated that the unfolding transition began at

near -20 � and ended at over 100 �. This broad transition is nearly identical to the

helix-to-coil transition measured for a 50-residue α-helical peptide, Ac-Y(AEAAKA)8-

NH2, by Scholtz et al.[62]. They concluded that Ac-Y(AEAAKA)8-NH2 unfolding

was far from being a two-state process because ∆Hcal � ∆HvH [62]. GCN4brNC,

a 29-residue α-helical peptide with covalently-closed N- and C-terminal loops also

exhibited a broad folding-unfolding transition ranging from 5 � to over 80 �[64].

The covalent loops between residues 1 and 5 at the N-terminus and between residues

25 and 29 at the C-terminus stabilized this helix. GCN4brNC unfolding was found

to closely approximate a two-state transition[64]. Unfolding of the 35-residue sub-

domain of the villin headpiece was examined by Godoy-Ruiz et al[67]. Its unfolding

transition was much narrower, ranging from 40 � to 80 �. Its Tm was 65 � and it

was reported to fold via a two-state mechanism. The broad unfolding transition of

FSD-1 is more like the unfolding of α-helical peptides than that of the more stable

35-residue villin headpiece subdomain.
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5.3.3 Molecular dynamics simulations

In CD and DSC melting experiments, measurements such as mean residue ellipticity

or excess heat capacity are plotted as a function of temperature to calculate Tm.

REMD simulations are analogous to thermal unfolding experiments in that a protein

is simulated over a range of temperatures and measurements are recorded at each tem-

perature. An advantage of molecular simulations is that atomic details are recorded

during the simulation. In REMD, a replica starts at one temperature and exchanges

its temperature, based on a Metropolis criterion, with a neighboring replica that

has a different temperature[44]. REMD-simulation temperatures were chosen so that

potential-energy overlaps between replicas would be consistent across all temperatures

and that there would be an optimal exchange rate near 20%[45]. Figure 5.6 shows

that the energy overlaps were consistent throughout the temperature range for the

last ten ns of the simulation, which was representative of the entire 76-ns simulation.

The essence of REMD is high-sampling efficiency achieved by temperature exchanges

Figure 5.6: Potential-energy overlap between neighboring replicas during the last
ten ns of the simulation. Each distribution curve represents the potential-energy
distribution at a single temperature. The left-most curve represents the potential
energy of the lowest-temperature replica, and the right-most curve represents the

potential energy of the highest-temperature replica.
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between neighboring replicas. As shown in Figure 5.7A, a wide range of temperatures

were sampled by three representative replicas. This indicates the high-quality sam-

pling of the simulation. For example, replica 1 started at 262.2 K. Through a series of

temperature exchanges, its temperature reached 445.2 K, the maximum temperature

of the simulation, at time point 14.426 ns. Replica 1 then continued to explore a wide

range of temperatures throughout the simulation. Figure 5.7B shows backbone root-

mean-square deviation (RMSD) between the native protein and trajectory snapshots

of the corresponding replicas in Figure 5.7A. A folding event was observed in replica

62 that started at 437.8 K with an unfolded structure (RMSD > 8Å). In the first 40

ns of the simulation, the replica’s temperature was limited to the upper half of the

allowed temperature space and the protein stayed unfolded. A folding event occurred

between 35 and 40 ns of the simulation, concurrent with replica 62 sampling much

lower temperatures (Figure 5.7). Unfolding events were observed in replica 1 and

replica 31. Replicas 1 and 31 were examples of protein unfolding that is analogous

to thermal denaturation. At lower temperatures, the conformations sampled were

similar to the native structure, whereas at higher temperatures, unfolded ensembles

of conformations were sampled.

Structural properties for each REMD trajectory were analyzed as a function of tem-

perature. Backbone root-mean-square deviation and C-alpha root-mean-square fluc-

tuation (RMSF) were calculated to provide different measures of protein unfolding

(Figure 5.8). RMSF is a measure of the average flexibility of an atom with respect

to itself. High RMSF values indicate highly flexible atoms. Terminal residues 1,

2 and 26-28 were excluded from RMSF calculations because they were extremely

flexible and distorted the overall flexibility of the entire protein. The RMSD and

RMSF values were fit to a two-state model (Eq. 5.2) to predict the melting point
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Figure 5.7: A (top): Temperatures sampled by 3 representative replicas, out of 64,
during the course of the simulation. Replicas 1, 31 and 62 started at 262.2 K, 337.4
K, and 437.8 K, respectively. B (bottom): RMS deviation of three replicas during
the course of the REMD simulation. A folding event is observed in replica 62, and

unfolding events are observed in replicas 1 and 31.
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of FSD-1. The average predicted Tm was 125 �, which was 84 � higher than the

experimental Tm - 41 � - determined by CD and DSC. The average FSD-1 Tm pre-

dicted by Li et al. was 152�, which was 111� higher than the experimental Tm[68].

Li et al. used the NVT ensemble instead of the NPT ensemble used in this study.

The NVT ensemble tends to stabilize the hydrophobic core at high temperatures[55].

High Tm values were the results of the simulations over-stabilizing proteins at high

temperatures[69]. This may be because the force-filed parameters used were originally

fit to room-temperature experimental values.

5.3.4 Structural analysis

Experimental and simulation melting curves showed that FSD-1 exhibited a broad

unfolding transition. There were difficulties in establishing a baseline for the folded

state of FSD-1 in both simulation and experimental melting curves. In the REMD

simulations, there were difficulties even though the lowest temperature was chosen

to be -11 � to help establish a baseline for the folded state. These results suggest

FSD-1 is only nominally stable even at -11 �, which is in agreement with DSC

results. To further investigate, we examined hydrogen-bonding patterns and native

contacts observed in the ensemble of FSD-1 NMR structures reported by Dahiyat

and Mayo[49] (PDB ID: 1FSD) and in the ensemble of trajectory snapshots from the

REMD simulation. In the NMR structures, residues 2 to 13 formed a β-hairpin and

residues 5 to 10 formed an EbaaagbE reverse turn[70]. The two β-stands in the hairpin

were connected by this six-residue loop instead of the more common four residues in

a traditional reverse turn. Two hydrogen bonds were formed between the amide and

carbonyl groups of Y3 and F12 at 7 � as determined by NMR nuclear Overhauser

effects (NOE)[49] (Figure 5.1B). No other hydrogen bonds were observed between
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Figure 5.8: Thermal unfolding monitored by RMSD and RMSF. The data were fit
to a two-state model. RMSF values were calculated for residues 3 to 25. The fitted

melting temperatures Tm are shown in the panels.
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main-chain atoms of the hairpin residues. The fact that only two hydrogen bonds

were observed in a hairpin of 12 residues indicates that the β-hairpin was minimally

stable. For comparison, four inter-strand hydrogen bonds were observed between

residues in the 8-residue β-hairpin of BH17[71], a 17-residue synthetic mini-protein

containing independent helical and β-hairpin domains. A D-proline residue at position

13 nucleated the β-hairpin of BH17. For all temperatures of the REMD simulation,

the highest average number of hydrogen bonds formed between the main-chain atoms

of Y3 and F12 was 0.7 (Figure 5.9). This suggested that the limited β-hairpin of FSD-

Figure 5.9: Average number of hydrogen bonds formed between main-chain atoms
in residues Y3 and F12 (x) or between residues in strand 1 (residues 2-6) and strand

2 (residues 9-13) of the hairpin (+) during the REMD simulation.

1 was formed only 35% (0.7/2.0) of the time even at low temperatures. The average

number of hydrogen bonds formed between main-chain atoms of hairpin residues in

strands one (residues 2-6) and two (residues 9-13) were also plotted in Figure 5.9. At

most 1.5 hydrogen bonds were formed. The expected number of inter-strand hydrogen
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bonds for this β-hairpin of 12 residues would be six. Lack of detectable inter-strand

hydrogen bonds in FSD-1’s β-hairpin contributed significantly to a hypothesis of its

overall instability.

The overall fold and topology of FSD-1 as designed depend mostly on the small

hydrophobic core formed by residues Y3, A5, I7, K8, R10 and F12 in the β-hairpin and

residues L18, F21, I22 and F25 in the α-helix (Figure 5.1A). Two residues were defined

as in contact if their side chains have any two heavy atoms that are within 6.0 Å. Using

this criteria, 185 contacts were found between residues in the α-helix (18,21,22,25)

and those in the β-hairpin (3,5,7,8,10,12) in the ensemble of 41 NMR structures of

FSD-1 reported by Dahiyat and Mayo[49]. Contacts within the β-hairpin or α-helix

were not considered. The maximum percentage of native hydrophobic-core contacts

seen by REMD was 58% at -11 �. Li et al. calculated the protein and β-hairpin

native contacts for FSD-1 in their REMD simulation[68] to be 60% for the entire

protein, and 45% for the β-hairpin. Hydrogen-bond and native-contact information

from both Li’s simulations and the REMD reported herein both suggest that FSD-1

at low temperatures was very flexible and adopted multiple conformations.

In MD simulations of FSD-1, it was found to be marginally stable at room temperature[50,

53]. The plasticity of the β-hairpin, especially reverse-turn residues 7, 8 and 9 were

believed to contribute to the instability of FSD-1[50, 54]. Li et al. observed from their

REMD simulations that the C-terminal α-helix was more stable than the β-hairpin

by 33 �[68]. For the α-helix, the C-terminal helical turn consisting of residues E23,

K24, F25, and K26 was folded less than 10% of the time in their simulations. In

five 200-ns simulations of FSD-1 at 300 K, Lei et al. noted that the N-terminal β-

strand (Y3TAK) were mostly helical instead of forming the native β-strand[53]. They
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concluded that this was probably due to the high helical propensity of A5 and K6

according to the Chou-Fasman scale[72].

5.3.5 Alternative interpretation

Results from CD, DSC, and REMD experiments showed that FSD-1 was only min-

imally stable even at low temperatures. The FSD-1 thermal-unfolding curves mea-

sured by CD and DSC lacked baselines for the folded state, suggesting that FSD-1

adopts multiple conformations. Molecular dynamics simulations provided further ev-

idence of the plasticity of the β-hairpin. The C-terminal residues (26-28) were also

very flexible. The changes in ellipticity in the CD unfolding experiment and in heat

capacity in the DSC unfolding experiment at low temperatures were likely caused by

different dynamics of the β-hairpin and C-terminal residues. The broad melting tran-

sition observed by CD and DSC was probably the result of the helix-to-coil transition

in the α-helical part of FSD-1, rather than the unfolding of its limited hydrophobic

core. The melting temperature of FSD-1 was determined to be 41 � by CD and

DSC. Given the minimal stability of the β-hairping, it is quite plausible that the Tm

reflects mostly the melting of FSD-1’s α-helix, rather than melting of the entire pro-

tein. Burial of hydrophobic groups of FSD-1’s amphiphilic α-helix by residues in the

hairpin region, regardless of whether a hairpin was formed, likely shifted the helix’s

Tm to 41 �. Additional helix stability was gained by the presence of nine charged

residues on the hydrophilic side of the 14-residue helical segment.
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5.4 Conclusions

We have presented a critical analysis of FSD-1 stability by studying its thermal un-

folding and structure by CD, DSC, and REMD. Thermal unfolding experiments and

molecular dynamics simulations showed that the unfolding transition started at tem-

peratures much lower than 7 �. The plasticity of the β-hairpin contributed signifi-

cantly to the observed changes in ellipticity in the CD experiment and changes in heat

capacity in the DSC experiment. We propose that the apparent melting temperature

of FSD-1 – 41 � – primarily reflects the melting of FSD-1’s α-helix, not the entire

protein. While its small size makes FSD-1 an attractive target for studying protein

folding, these results question FSD-1’s status as a robust model system of a folded

mini-protein.
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Chapter 6

Protein Design

Protein stability can be enhanced by the incorporation of non-natural amino acids and

semi-rigid peptidomimetics to lower the entropic penalty upon protein folding through

preorganization. An example is the incorporation of aminoisobutyric acid (Aib, α-

methylalanine) into proteins to restrict the φ and ψ backbone angles adjacent to Aib

to those associated with helix formation. Reverse-turn analogs were introduced into

the sequences of HIV protease and ribonuclease A, which enhanced their stability and

retained their native enzymatic activity. Therapeutic proteins could be engineered

to contain peptidomimetics that survive longer in vivo or retain activity after oral

administration. Different reverse-turn analogs and their ability to nucleate β-hairpins

are discussed in this chapter.

6.1 Preorganization

Designing a protein sequence that folds into a designed three-dimensional shape is

known as the inverse protein-folding problem. In nature, protein sequences are limited

to combinations of the naturally occurring 20 amino acids and their post-translational
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modifications. The incorporation of non-natural amino acids and semi-rigid pep-

tidomimetics provides unique possibilities for designing proteins that adopt a stable

predetermined fold, allowing protein engineering to become a reality. Limiting seg-

mental dynamics may be a useful probe of enzyme mechanism and/or specificity and

also be of commercial interest in the production of super stable biocatalysts for green

chemistry. For example, multiple tons of the proteolytic enzyme subtilisin, engineered

to be stable in detergents at alkaline pH and elevated temperatures, are consumed

annually in laundry detergents[73].

As the simplest example of preorganization, incorporation of aminoisobutyric acid

into proteins restricts the φ and ψ backbone angles adjacent to Aib to angles associ-

ated with helix formation[74, 75]. It is believed that Aib lowers the entropic penalty

of helix formation upon protein folding due to preorganization. By the same princi-

ple, incorporating semi-rigid mimetics of α-helices, β-sheets, and reverse turns into

a protein would minimize the entropy lost on folding through preorganization, while

retaining the interactive surface features that optimize the favorable enthalpic interac-

tions in the folded state. The first examples include the incorporation of reverse-turn

analogs into the enzymes HIV protease and ribonuclease A. Chimeric proteins should

be thermodynamically more stable because their fold space is limited by semi-rigid

mimetics that reduce the entropic penalty upon folding into the desired 3D struc-

ture. In addition, semi-rigid mimetics should promote the rate of protein folding by

nucleation. Modular secondary structure mimetics can serve as building blocks in

the design of ultra-stable, catalytically active chimeric proteins that resist proteolytic

degradation and denaturation.
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6.2 Reverse-turn mimetics

Reverse-turn mimetics are designed to replace residues (i+1) and (i+2) of a turn with

a semi-rigid analog that stabilizes the turn without negatively altering the geometry

of the corresponding β-hairpin (Figure 6.1).

Figure 6.1: Type I reverse turn. Image reproduced from www.swissmodel.expasy.org

6.2.1 BTD

The impact of preorganization on energetics was first illustrated in a chimeric protein

that incorporated an unusual bicyclic dipeptide reverse-turn analog (bicyclic turn

dipeptide: BTD) into HIV protease. It showed an anticipated increase in fold stability,
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but of limited amount[76]. The BTD HIV-1 protease was fully active, specific for

native ligands, and more resistant to thermal inactivation.

Figure 6.2: Bicyclic turn dipeptide (BTD), a β-turn analog

6.2.2 D-Pro-Gly

The dipeptide D-Proline-L-Glycine (D-Pro-Gly) was found to be superior to L-Asn-

Gly for β-hairpin nucleation [77]. A 20-residue, mini-protein containing two D-Pro-

Gly dipeptides was found to form a three-strand β-sheet [78]. Replacing one or both

of the D-Pro residues with L-Pro resulted in the lost of long-range NOEs that were

indicative of sheet formation. In another example of preorganization, Imperiali and

co-workers used a D-Pro-Gly dipeptide to induce a type II’ β-turn centered about

residues 4 and 5 of their BBA series of mini-proteins[48, 47]. Although they did

not quantify the energetic contribution of incorporating such a rigid residue, it was

essential for the folding of the proteins.
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Figure 6.3: D-Pro-Gly turn mimetic
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6.2.3 Aib-Gly

The non-stereogenic α-Aminoisobutyryl-Gly (Aib-Gly) dipeptide was found to nucle-

ate type I’ β-turn in a 12-residue β-hairpin[79]. α-Aminoisobutyric acid is similar to

alanine but in Aib the C-alpha proton was replaced with a methyl group, making it

non-sterogenic. An advantage of using the Aib-Gly sequence was the elimination of

potential cis-tran isomerization of the Xxx–D-Pro peptide bond in sequences contain-

ing the D-Pro-Gly dipeptide[79, 47, 48].

Figure 6.4: Aib-Gly turn mimetic

6.2.4 R-Nip-S-Nip

Nipecotic acid (Nip) is a β-peptide [80, 81] that is similar to proline but it has a

six-member ring instead of a five-member ring sidechain. Ribonuclease A is a solu-

ble 124-residue protein that catalyzes the endonucleolytic cleavage of nucleosides[82].

A di-β-peptide, R-Nip-S-Nip (or Nip-D-Nip), was used to nucleate a β-hairpin at

residues Asn113-Pro114 which enhanced stability without impacting enzymatic ac-

tivity(Figure 6.5)[83]. The melting temperature of RNase A containing R-Nip-S-Nip

was 1.6 � higher than the wild-type RNase A.
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6.2.5 Dimethyl-L-Proline

In further work on the RNase A enzyme, the Raines group mutated Pro114 with

5,5-dimethyl-L-proline and observed a melting temperature increase of 2.8 �(Figure

6.5)[84]. In X-ray crystal structures of RNAseA, Asn113-Pro114 forms a cis-amide

bond. Dimethyl-L-Proline was designed to stabilize the 113-114 cis-amide bond. This

mutant (dmP114) did not impact enzymatic activity but the folding rate was accel-

erated. The effect of adding two dimethyl groups at the 5 position of the proline

ring was hypothesized to shift the unfolded state, USII, to structures that are more

similar to that of the native protein. Alternatively, dmP114 could reduce or eliminate

slower folding subspecies within USII, thus shifting the equilibrium in favor of the

faster folding subspecies.
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Figure 6.5: RNase A (cartoon representation) has a beta turn at
Gly112-Asn113-Pro114-Tyr115 that was chemically modified using expressed

protein ligation to generate the chimeric proteins. Both 5,5-dimethylproline (dmP)
substitution for Pro114 and R-Nip-S-Nip for Asn113-Pro114 have been studied by
the Raines group. The native beta-turn residues are shown in atom-colored CPK

representation; the dmP modification (two methyls replacing hydrogens) is shown in
magenta, and the R-Nip-S-Nip modification (two six-member β-amino acids) is

shown in orange. Figure reproduced from Marshall et al.[85]
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6.2.6 D-Pro-Pro

The D-Proline-L-Proline (D-Pro-Pro) dipeptide has been employed as a template by

the Robinson group to synthesize cyclic β-hairpin peptide libraries via combinatorial

chemistry[86, 87, 88]. Their general strategy was to transplant a hairpin structure

Figure 6.6: D-Pro-Pro turn mimetic

from the protein to a D-Pro-Pro template that fixed the conformation of the N- and

C-terminal hairpin residues into a β-hairpin geometry. The resulting cyclic peptide

maintained its original β-hairpin structure and the N- and C-terminal residues were

stapled on to a D-Pro-Pro template. Libraries of β-hairpin mimetics based on the

protruding loop (loop III) of human platelet-derived growth factor B (PDGF-B) were

synthesized by transplanting residues Glu76 to Ile83, with selected mutations, to a

D-Pro-Pro template[88]. Interestingly, it was shown that β-hairpins cyclized by the

D-Pro-Pro template could mimic one face of a helix[89, 90]. A 10-residue cyclic β-

hairpin served as a scaffold to project key residues of the p53 trans-activation domain

to present a surface complementary to the p53 binding pocket of MDM2. A mimetic

was optimized to have a IC50 value of 140 nM.
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6.3 Impacts of reverse-turn mimetics on protein

stability

Ribonuclease A is a soluble 124-residue protein that catalyzes the endonucleolytic

cleavage of nucleosides[82]. A di-β-peptide, Nip-D-nip, was used to nucleate a β-

hairpin at Asn113-Pro114 that enhanced stability without impacting enzymatic activity[83].

To investigate what was felt to be a minimal effect on the melting temperature (∆Tm

= 1.2±0.3 �), the crystal structure of RNAse was minimized, the turn mimetic Nip-

D-nip inserted for Asn113-Pro114 and the chimeric structure re-minimized[85]. The

two additional methylenes of the two β-amino acids were readily incorporated into

the structure by simply extending the hairpin loop with nearly identical torsion an-

gles of the rest of the peptide backbone (Figure 6.7). Thus, no difference was found

between the minimum-energy structures of the two structures suggesting that Nip-

D-nip did not disrupt the extended β-sheet, and that enthalpic stabilization should

be maintained.

Figure 6.7: RNAseA β-hairpin and its turn mimetics. The native β-hairpin atoms
are shown in gold. (Reproduced from Feng et al. [54]

95



To quantitatively evaluate the relative propensity of reverse turn mimetics to stabilize

β-hairpins, Takeuchi and Marshall[91] monitored various parameters during an MD

simulation. For example, the relative time that the distance between the two α-

carbons of the first and fourth residue of a capped tetrapeptide containing the mimetic

was less than 7 Å. To investigate the proclivity of the newer reverse turn mimetics, the

native tetrapeptide sequence Gly112- Asn113-Pro114-Tyr115 was capped with acetyl

at the N-terminal and with N-methyl amide at the C-terminal. Starting with the

native sequence, nine mutants with potential reverse-turn mimetics were generated

in silico. MacroModel 9.1 was used to run 10-ns MD simulation of the modified

peptides in implicit solvent (GB/SA) at 300 K using the OPLS 2005 force field. The

distance between the C-alphas of Gly112 and Tyr115 and the distance between the

carbonyl oxygen of Gly112 and amide hydrogen of Tyr115 were recorded (Figure 6.8)

at each time step, after initial equilibration, similar to the method used by Takeuchi

and Marshall[91] to study reverse-turn propensity. The virtual dihedral angle defined

by the four C-alpha carbons of the reverse turn, as suggested by Tran et al.[92], of

Gly112, Asn113, Pro114, and Tyr115 was also monitored and the results are shown

in Figure 6.8. The results of the tetrapeptide simulations were quite revealing. In the

top two panels of Figure 6.8, the impacts of the nine different dipeptide substitutions

on frequency of observation versus distance between the glycine carbonyl oxygen

and the tyrosine amide nitrogen (prevalence of a classic hydrogen bond between the

i and i + 3 residue) are plotted. The middle two graphs of Figure 6.8 show the

frequency versus distance between the a-carbons of glycine and tyrosine, another

measure of the propensity to form conformations resembling reverse turns. In native

RNase, the distance between the two α-carbons was less than 7 Å over 80% of the

simulation; in the R-Nip-S-Nip chimeric protein, the distance was less than 7 Å for

only 10% of the time. While this difference does not directly estimate the amount of
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preorganization in the unfolded RNase versus the chimeric protein, it does indicate

that the introduction of two additional methylenes in the backbone of the hairpin

loop by R-Nip-S-Nip dramatically increases its inherent flexibility and compromises

any anticipated impact of preorganization of the entropy of folding. In contrast, the

use of the reverse-turn nucleators, Pro-D-Pro or D-Pro-Pro, enhanced the reverse-

turn potential to equal or greater than native Asn113-Pro114 in the simulations,

which is consistent with previous estimates of reverse-turn nucleation by Takeuchi

and Marshall[91]. It is clear from these graphs that the R-Nip-S-Nip or S-Nip-R-Nip

dipeptides do not dynamically stabilize the reverse turn seen with Asn-Pro (red line

in all graphs) while Asn-dmP, D-Pro-Pro, and Pro-D-Pro mimic and stabilize the

reverse-turn as well as or better then Asn-Pro itself; in fact, the two bottom graphs

of Figure 6.8, where the distribution of virtual dihedral angle values between the four

α-carbons is shown, further confirm the stabilization of the reverse turn by these

three dipeptides. These graphs can be used to give a crude estimate of the entropic

consequences of these dipeptide substitutions. From these results, one could predict

that the thermal stability of a chimeric RNase with either Pro-D-Pro or D-Pro-Pro

replacing Asn113-Pro114 would be greater than that of the chimeric RNase with R-

Nip-S-Nip. More sophisticated computations using replica exchange are underway

to estimate the changes in melting temperature seen for small chimeric proteins in a

model system described later.
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6.4 Stabilizing FSD-1

In chapter 5, the stability of FSD-1 was critically analyzed using circular dichroism,

differential scanning calorimetry, and molecular dynamics. The plasticity of its β-

hairpin was found to be the main contributor to the lack of a well-defined folded

state of FSD-1. The β-hairpin could be stabilized by introducing a reverse-turn

mimetic to nucleate hairpin formation. The Robinson group’s experimental data and

our prior simulation data showed that D-Pro-Pro is good reverse turn mimetic. The

D-Pro-Pro dipeptide was explored as a reverse-turn mimetic that could enhance the

stability of FSD-1 by pre-organizing its β-hairpin. Residues 2 to 13 of FSD-1 formed

a β-hairpin and residues 5 to 10 formed an EbaaagbE reverse turn[70]. The two

β-stands in the hairpin were connected by this six-residue loop instead of the more

common four-residue loop in a traditional reverse turn. FSD-EY, a FSD-1 double

mutant containing mutations N1E and I7Y, formed a type I’ β-turn. FSD-EY was

suggested to be slightly more stable than FSD-1, but definitive melting temperatures

were not obtained[70].

Residues Ile7 and Lys8 were mutated to the D-Pro-Pro turn mimetic in silico. Gly9

was mutated to Ala to reduce backbone flexibility at position 9. To investigate the

impact of incorporating D-Pro-Pro dipeptide into FSD-1, ten 100-ns, explicit solvent,

simulations of the Dp7P8A9 mutant were performed, five at 300K and five at 307K.

6.4.1 Molecular dynamics

Residues 7, 8, and 9 of an energy minimized structure of FSD-1 (PDB code: 1FSV)

were mutated to Dpro7, Pro8, and Ala9 in silico using Sybyl. The mutant protein
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was denoted FSD-DPP. The Gromacs MD software package was used to set up and

run the simulations[56]. The termini were charged and the net charge of the protein

was plus 4. Four Cl− ions were added in random locations to neutralize the system.

The protein was solvated in a truncated dodecahedron box of TIP4P water where

the minimum distance between a protein atom and the edge of the box was 10 Å.

The system contained a total of 16,306 atoms. The OPLS-AA/L 2001 force field

was used. The system was minimized until the maximum force was less than 100

kJ mol−1 nm−1. The system was heated to 300K from 0K using 50K increments

followed by a 1-ns equilibration using the NPT ensemble. Production runs of 100-ns

were performed using the NVT ensemble at 300K and 307K. Hydrogen bonds were

constrained with LINCS. Timestep was 2 fs. Atomic coordinates were recorded every

2ps for further analysis. The simulations were run on Teragrid resources[57]. Tools

provided by the Gromacs package and in-house scripts were used to analyze the MD

data.

6.4.2 Results

The global fold of FSD-DPP and its local contacts were analyzed to determine the

impact of mutating Ile7, Lys8 and Gly9 to D-Pro, Pro and Ala, respectively. In

chapter 5, the importance of inter-strand H-bonds in the β-hairpin and native con-

tacts between the hydrophobic core residues were established. We analyzed the MD

trajectories focusing on these local contacts.

In the ensemble of FSD-1 NMR structures, the main-chain atoms of residues Tyr3 and

Phe12 formed two hydrogen bonds (Figure 5.1). The formation or maintenance of this

pair of hydrogen bonds was determined for ten 100-ns MD simulations (five at 300 K
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and five at 307 K). The simulations started with the presumed “folded” structure of

FSD-DPP. It was our hypothesis that incorporating the D-Pro-Pro residues would not

introduce steric repulsions that might disrupt the overall hairpin structure. In fact, it

was expected to stabilize the hairpin, in turn, maintaining the Tyr3-Phe12 main-chain

hydrogen bonds. The number of hydrogen bonds formed between main-chain atoms of

Tyr3 and Phe12 was calculated for the ten 100-ns simulations and shown in Figures

6.9 and 6.10. At 300 K, only simulation D maintained the Tyr3-Phe12 hydrogen

bonds. The remaining four simulations showed that the Tyr3-Phe12 hydrogen bonds

were lost after 15 to 40 nanoseconds of simulations. At 307 K, Simulations B and E

maintained the Tyr3-Phe12 hydrogen bonds, where as simulations A, C and D lost

these key hydrogen bonds in the first 20 nanoseconds of the simulations. Simulations

D at 300 K, B and E at 307 K all showed the breaking and then reformation of

both hydrogen bonds. In addition to monitoring specific hydrogen bonds between

residues Tyr3 and Phe12, inter-strand main-chain hydrogen bonds between residues

2 to 7 of β-stand 1 and residues 8 to 13 of β-strand 2 were analyzed (Figures 6.11,

6.12). For simulations D at 300 K, B and E at 307 K where the Tyr3-Phe12 H-bonds

were maintained, up to two more additional H-bonds were observed. Formation of

additional H-bonds suggested zipping of the β-hairpin.
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Tyr3−Phe12 H−bonds (300K)
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Figure 6.9: Number of hydrogen bonds formed between main-chain atoms of
residues Tyr3 and Phe12 for the FSD-DPP mutant. Five independent simulations

were performed at 300 K.
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Tyr3−Phe12 H−bonds (307K)
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Figure 6.10: Number of hydrogen bonds formed between main-chain atoms of
residues Tyr3 and Phe12 for the FSD-DPP mutant. Five independent simulations

were performed at 307 K.
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Inter−strand H−bonds (300K)
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Figure 6.11: Number of hydrogen bonds formed between main-chain atoms of
residues in strand one and strand two of the β-hairpin. Five independent

simulations were performed at 300 K.
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Inter−strand H−bonds (307K)

 0

 2

 4

 0  20  40  60  80  100

A

 0

 2

 4

 0  20  40  60  80  100

B

 0

 2

 4

 0  20  40  60  80  100

C

 0

 2

 4

 0  20  40  60  80  100

D

 0

 2

 4

 0  20  40  60  80  100
Time (ns)

N
um

be
r 

of
 H

−
bo

nd
s

E

Figure 6.12: Number of hydrogen bonds formed between main-chain atoms of
residues in strand one and strand two of the β-hairpin. Five independent

simulations were performed at 307 K.
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Figure 6.13 shows representative states of various β-hairpin conformations of FSD-

DPP from trajectory B at 307K at 20 ns intervals.

(a) 0 ns (b) 20 ns

(c) 40 ns (d) 60 ns

(e) 80 ns (f) 100 ns

Figure 6.13: Representative folded structures of FSD-DPP at 0, 20, 40, 60, 80, and
100 nanoseconds of a simulation at 307K. The structures were oriented with the

helix shown behind the hairpin.
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For the seven simulations that did not maintain the key Tyr3-Phe12 hydrogen bonds,

the β-hairpin unfolded as indicated by the lack of inter-strand hydrogen bonds be-

tween residues 2-7 and residues 8-13 (Figures 6.9, 6.10, 6.11, 6.12). The more stable

α-helix was folded throughout these simulations. Some fraying of the flexible C-

terminal turn was observed. Figure 6.14 illustrates various unfolded structures of

FSD-DPP. Among the ensemble of unfolded structures, the N-terminal strand of the

β-hairpin shows the most flexibility.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.14: Representative unfolded structures of FSD-DPP. The structures were
oriented with the helix shown in the back.
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The amount of atomic contacts between residues in the hydrophobic core was not as

useful as hydrogen-bond formation in predicting the stability of the β-hairpin and that

of the overall protein. In the NMR ensemble of structures of FSD-1, residues 3, 5, 7, 8,

10, 12 of the hairpin and residues 18, 21, 22, 25 of the helix form a small hydrophobic

core. Simulations D at 300K, B and E at 307K indicated that the β-hairpin was not

disrupted because the Tyr3-Phe12 H-bonds were maintained. Table 6.1 listed the

average number of atomic contacts for ten 100-ns simulations. The average number

of contacts for the three simulations that maintained the β-hairpin was 120.4, 101.2,

and 120.4, respectively. These values are within the extrema of average contacts from

simulations that did not maintain the β-hairpin structure. Figures 6.15 and 6.16 show

the average number of contacts as a function of time for the ten 100-ns simulations.

Table 6.1: Average number of hydrophobic core contacts for ten 100-ns simulations

Simulation Avg. No. of Contacts

300K A 118.1

300K B 126.6

300K C 101.9

300K D 120.4

300K E 110.2

307K A 117.4

307K B 101.2

307K C 88.6

307K D 143.3

307K E 120.4
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6.5 Summary

Molecular dynamics simulations suggest that incorporating a turn mimetic into FSD-

1 should stabilize its overall fold by nucleating FSD-1’s β-hairpin. However, the data

was suggestive of nucleation and is not conclusive. Three out of ten simulations

showed that FSD-DPP maintained the hydrogen-bonding pattern necessary to form

a stable β-hairpin to maintain the overall ββα fold of FSD-1.
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Hydrophobic Core Contacts (300K)
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Figure 6.15: Hydrophobic core contacts between side-chain heavy atoms of residues
3, 5, 7, 8, 10, 12 of the hairpin and residues 18, 21, 22, 25 of the helix.
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Hydrophobic Core Contacts (307K)
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Figure 6.16: Hydrophobic core contacts between side-chain heavy atoms of residues
3, 5, 7, 8, 10, 12 of the hairpin and residues 18, 21, 22, 25 of the helix.
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Appendix A

Abbreviations and Acronyms

2D two-dimensional

3D three-dimensional

CD circular dichroism

DSC differential scanning calorimetry

FSD-1 full sequece design - 1

MD molecular dynamics

NMR nuclear magnetic resonance

NOE nuclear Overhauser effect

NOESY nuclear Overhauser spectroscopy

REMD replica exchange molecular dynamics

RMSD root-mean squared difference

RMSF root-mean squared fluxuation

TOCSY total correlation spectroscopy
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