
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2014-48 

2014 

Federated Scheduling for Stochastic Parallel Real-time Tasks Federated Scheduling for Stochastic Parallel Real-time Tasks 

Jing Li, Kunal Agrawal, Christopher Gill, and Chenyang Lu 

Federated scheduling is a strategy to schedule parallel real-time tasks: It allocates a dedicated 

cluster of cores to high-utilization task (utilization >1); It uses a multiprocessor scheduling 

algorithm to schedule and execute all low-utilization tasks sequentially, on a shared cluster of 

the remaining cores. Prior work has shown that federated scheduling has the best known 

capacity augmentation bound of 2 for parallel tasks with implicit deadlines. In this paper, we 

explore the soft real-time performance of federated scheduling and address the average-case 

workloads instead of the worst-case values. In particular, we consider stochastic tasks -- tasks 

for which execution... Read complete abstract on page 2. Read complete abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Li, Jing; Agrawal, Kunal; Gill, Christopher; and Lu, Chenyang, "Federated Scheduling for Stochastic Parallel 
Real-time Tasks" Report Number: WUCSE-2014-48 (2014). All Computer Science and Engineering 
Research. 
https://openscholarship.wustl.edu/cse_research/108 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/108?utm_source=openscholarship.wustl.edu%2Fcse_research%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/108 

Federated Scheduling for Stochastic Parallel Real-time Tasks Federated Scheduling for Stochastic Parallel Real-time Tasks 

Jing Li, Kunal Agrawal, Christopher Gill, and Chenyang Lu 

Complete Abstract: Complete Abstract: 

Federated scheduling is a strategy to schedule parallel real-time tasks: It allocates a dedicated cluster of 
cores to high-utilization task (utilization >1); It uses a multiprocessor scheduling algorithm to schedule 
and execute all low-utilization tasks sequentially, on a shared cluster of the remaining cores. Prior work 
has shown that federated scheduling has the best known capacity augmentation bound of 2 for parallel 
tasks with implicit deadlines. In this paper, we explore the soft real-time performance of federated 
scheduling and address the average-case workloads instead of the worst-case values. In particular, we 
consider stochastic tasks -- tasks for which execution time and critical-path length are random variables. 
In this case, we use bounded expected tardiness as the schedulability criterion. We define a stochastic 
capacity augmentation bound and prove that federated scheduling algorithms guarantee the same bound 
of 2 for stochastic tasks. We present three federated mapping algorithms for core allocation. All of them 
guarantee bounded expected tardiness and provide the same capacity augmentation bound; In practice, 
however, we expect them to provide different performances, both in terms of the task sets they can 
schedule and the actual tardiness they guarantee. Therefore, we performed numerical evaluations using 
randomly generated task sets to understand the practical differences between the three algorithms. 

https://openscholarship.wustl.edu/cse_research/108?utm_source=openscholarship.wustl.edu%2Fcse_research%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/108?utm_source=openscholarship.wustl.edu%2Fcse_research%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages


Department of Computer Science & Engineering

2014-48

Federated Scheduling for Stochastic Parallel Real-time Tasks

Authors: Jing Li, Kunal Agrawal, Christopher Gill, and Chenyang Lu

Corresponding Author: li.jing@wustl.edu

Abstract: Federated scheduling is a strategy to schedule parallel real-time tasks: It allocates a dedicated cluster
of cores to high-utilization task (utilization >1); It uses a multiprocessor scheduling algorithm to schedule and
execute all low-utilization tasks sequentially, on a shared cluster of the remaining cores. Prior work has shown
that federated scheduling has the best known capacity augmentation bound of 2 for parallel tasks with implicit
deadlines. In this paper, we explore the soft real-time performance of federated scheduling and address the
average-case workloads instead of the worst-case values. In particular, we consider stochastic tasks -- tasks for
which execution time and critical-path length are random variables. In this case, we use bounded expected
tardiness as the schedulability criterion. We define a stochastic capacity augmentation bound and prove that
federated scheduling algorithms guarantee the same bound of 2 for stochastic tasks. We present three
federated mapping algorithms for core allocation. All of them guarantee bounded expected tardiness and
provide the same capacity augmentation bound; In practice, however, we expect them to provide different
performances, both in terms of the task sets they can schedule and the actual tardiness they guarantee.
Therefore, we performed numerical evaluations using randomly generated task sets to understand the practical
differences between the three algorithms.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160



lel stochastic tasks that provide a soft real-time guarantee of

bounded expected tardiness on uniform multicores: These

algorithms provide a stochastic capacity bound of 2 for

general DAG tasks. To our knowledge, this is the first

result for stochastic parallel tasks. We also describe the

procedure for calculating the corresponding (upper bound

on) expected tardiness for all these algorithms.

2) Three different mapping algorithms for stochastic tasks: All

these algorithms satisfy the same stochastic capacity aug-

mentation bound and provide bounded tardiness. The three

algorithms differ in their calculation for core allocation.

They have increasing computation complexity (from linear-

time to pseudo polynomial time) and also have increasing

schedulability performance or expected tardiness.

3) A federated scheduling algorithm that uses randomized
work-stealing scheduler [3] (instead of greedy scheduling)

to schedule high utilization tasks: Work-stealing is a nearly-

greedy, distributed, and randomized scheduling algorithm

that is known to be more efficient than deterministic greedy

schedulers in practice [4]; therefore, it may provide better

overall efficiency to soft real-time applications.

4) We conduct numerical evaluations using randomly gener-

ated task sets to understand the efficacy of the different

stochastic mapping algorithms.

The outline of the paper is as follows: Section II discusses

related work. Section III defines stochastic task model and

stochastic capacity augmentation bound. Section IV presents

the stochastic federated scheduling strategy, expected tardiness

calculation and prove that expected tardiness is bounded;

Section V presents the three different mapping algorithms for

core allocation; Section VI proves that these algorithms provide

a capacity augmentation bound of 2; Section VII presents the

soft real-time strategy that uses work-stealing.

II. RELATED WORK

Real-time multiprocessor scheduling for deterministic tasks
(with worst-case task parameters) has been studied exten-

sively [5, 6]. In particular, for implicit deadline hard-real time

deterministic tasks, the best known utilization bound is ≈ 50%
using partitioned fixed priority scheduling [7] and partitioned

EDF [8]; this trivially implies a capacity augmentation bound

of 2. In comparison, GEDF has a capacity augmentation bound

of 2− 1
m + ε for small ε [9, 10].

For parallel tasks with hard real-time constraints and worst-

case task parameters, early work considered idealized models

for tasks such as moldable and malleable tasks [11–14]. Most

commonly considered model, recently, has been the parallel
synchronous model, which is a subcategory of directed
acyclic graph (DAG). Many strategies for this model use

task decomposition where parallel tasks are decomposed into a

set of sequential tasks [1, 15–18]. Without decomposition,

researchers have studied both synchronous tasks [19] and

general DAG tasks [20–24]. For hard real-time tasks with worst-

case parameters, best known capacity augmentation bound for

general DAGs is 2 [2] using federated scheduling (partition-like

strategy) without decomposition; 4 [24] using GEDF without

decomposition (and was recently improved to 2.6 in an as yet

unpublished result); 3.73 for general synchronous tasks [1];

and 3.42 [15] for a more restricted class of synchronous tasks.

Most prior work on bounded tardiness (and other soft real-

time guarantees) considers deterministic sequential tasks with

worst-case parameters [25]. For these tasks, earliest-pseudo-

deadline-first scheduler [26] and GEDF [27, 28] both provide

bounded tardiness with no utilization loss; these results were

generalized to many global schedulers [29]. Lateness guarantees

have also been studied for GEDF-like scheduling [30]. For

parallel tasks, Liu [20] for the first time provide a soft real-time

response time analysis for GEDF.

For stochastic analysis, there is some prior work on sequen-

tial stochastic tasks. For a resource reservation scheduler, a

lower bound on the probability of deadline misses was derived

in [31]. For multiprocessor scheduling, [32] shows that GEDF

guarantees bounded tardiness to sequential tasks if the total

expected utilization is smaller than the number of cores. We use

this result directly in our algorithms and analysis to guarantee

bounded tardiness to low-utilization tasks. There has also been

some work on stochastic analysis of a system via Markov

process or approximation [33, 34]. We are not aware of any

work that considers stochastic parallel tasks.

There has been significant work on purely parallel systems,

which are generally built to execute single parallel programs on

pre-allocated cores to maximize throughput. Examples include

parallel languages and runtime systems, such as the Cilk

family [4, 35], OpenMP [36], and Intel’s Thread Building

Blocks [37]. While multiple tasks on a single platform have

been considered in the context of fairness in resource alloca-

tion [38], none of this work considers real-time constraints.

III. STOCHASTIC PARALLEL TASK MODEL

In this section, we formalize the stochastic task model in
which execution time and critical-path length are described

using probabilistic distributions, which is consistent with the

task model for sequential tasks in existing work on stochastic

real-time analysis [32]. We also define the capacity augmen-

tation bound for stochastic tasks with soft real-time tardiness

constraint. Throughout this paper, we use the calligraphic letters

to represent random variables.

Stochastic tasks have a fixed relative deadline Di (= Pi, the

period, for implicit deadline tasks). However, each stochastic

task is described using its stochastic work Ci — execution time

on 1 core, and stochastic critical-path length Li — execution

time on an infinite number of cores, where Ci and Li are random

variables. We assume that the expectations E [Ci] and E [Li]
of these random variables are known. Given these parameters,

we can calculate the expected utilization of a stochastic task

τi as E [Ui] = E [Ci] /Di, and the total expected utilization of

the entire task set as
∑

i E [Ui].
The exact distributions of δCi and δLi are not explicitly

required in all three schedulability tests. Our linear-time algo-

rithm can calculate mappings that provide bounded tardiness

using just these parameters. Providing the distributions, another

algorithm can generate potentially better mappings.



We now specify a few additional parameters that are needed

only if we wish to calculate an upper bound on the tardiness

itself or to optimize this tardiness using our third (ILP-based)

mapping algorithm. First, for all tasks, we must know the

standard deviations δCi and δLi
of the execution time and the

critical-path length. Second, for low-utilization tasks, we need

the finite worst-case execution time ĉi for calculating tardiness.

Finally, for high-utilization tasks, we need the covariance

σ(Ci,Li) between work and critical-path length.

In addition, for analysis purposes, we define some job

specific parameters: ci,j is the actual execution time of the job

j of task i and li,j is its actual critical-path length; these are

drawn from distributions Ci and Li respectively. We say that

the release time of job j of task i is ri,j and its response time
(or completion time) is ti,j . Tardiness Ti,j of the job j of is

defined as max (0, ti,j −Di). Tardiness Ti of a task τi is also
a random variable; E [Ti] is its expected value.

We now define the capacity augmentation bound for stochas-

tic tasks. In particular, we consider the schedulability condition

of bounded expected tardiness; that is, a task set τ is deemed

schedulable by a scheduling algorithm S if the expected

tardiness of each task is guaranteed to be bounded under S .
Definition 1. A scheduling algorithm S provides a stochastic
capacity augmentation bound of b if, given m cores, S can
guarantee bounded expected tardiness to any task set τ as
long as it satisfies the following conditions:

Total available cores, m ≥ b
∑

E [U ]i (1)

For each task, Di ≥ b(E [L]i + εi) (2)

where εi is 0 if the variances of Ci and Li are 0 and is an
arbitrarily small positive constant otherwise.

Note that when Ci and Li are deterministic, the variance of Ci
and Li is 0, so εi = 0 and the definition of stochastic capacity

augmentation bound reduces to the deterministic definition for

hard real-time constraints.

IV. STOCHASTIC FEDERATED SCHEDULING
GUARANTEES BOUNDED TARDINESS

In this section, we firstly describe the stochastic federated

scheduling; Secondly, we prove that if the federated scheduling

can produce a mapping, then it guarantees bounded expected

tardiness; Finally, we calculate the expected tardiness.

A. Stochastic Federated Scheduling Strategy

Just like the corresponding federated scheduling strategy for

hard real-time tasks, the stochastic federated scheduling strategy

classifies tasks into two sets: τhigh contains all high-utilization
tasks — tasks with expected utilization at least 1 (E [Ui] ≥ 1),
and τlow contains all the remaining low-utilization tasks. The
federated scheduling strategy works in two stages:

1) Given a task set τ , a mapping algorithm either admits τ
and outputs a core assignment, or declares that it cannot

guarantee schedulability of τ . Different mapping algorithms

differ in the assignment of ni dedicated cores to each high-

utilization task τi, but ni >
E[Ci]−E[Li]
Di−E[Li]

is always required.

All low-utilization tasks share the remaining nlow = m−∑
τi∈τhigh

ni cores. All the mapping algorithms only admit

a task set, if nlow >
∑

τi∈τlow E [Ui] always holds.
2) Once the mapping is done, the scheduling is straightforward.

The high-utilization tasks are scheduled on their dedicated

cores using a greedy (work-conserving) scheduler. The low-

utilization tasks are scheduled and executed sequentially

on the remaining cluster of cores using GEDF scheduler.

Note that we chose GEDF to schedule low-utilization tasks,

because we use an existing result that shows that GEDF

provides bounded tardiness to sequential stochastic tasks [32];

we can directly apply this result to low-utilization tasks since

they are executed sequentially by our federated scheduler. Other

multiprocessor scheduling algorithms can be used only if they

provide guarantees of bounded tardiness for sequential tasks.

B. Mapping Algorithms Guarantee Bounded Tardiness

We first analyze high-utilization tasks. Since each of them

has dedicated cores and does not suffer any interference from

other tasks, we can analyze each task τi individually. We use

the following result from queueing theory [39] which indicates

that if the service time of jobs is less than the inter-arrival

time, then the expected waiting time is bounded.

Lemma 1. [KING70] For a D/G/1 queue, customers arrive
with minimum inter-arrival time Y , and the service time X is
a distribution with mean E [X ] and variance δ2X . If E [X ] < Y ,
then the queue is stable and the expected waiting time W is
bounded E [W] ≤ δ2X

2(Y−E[X ]) .

In our context, for each high-utilization task, jobs are

the customers; the inter-arrival time is Y = Di (= Pi);

the response time ti,j is the service time for job j of

task τi. For a high-utilization job τi,j , its tardiness Ti,j

depends on its response time ti,j , the tardiness Ti,j−1 of

previous job τi,j−1 and deadline Di. In particular, we have

Ti,j+1 ≤ max{0, Ti,j−1 + ti,j −Di}. Therefore, the waiting

time W is a bound on the tardiness T .
For a greedy scheduler on ni cores, there are two straight-

forward lemmas (Lemma 1 and 2) derived in [24]. Using the

two Lemmas, we can easily bound the finish time ti,j .

Lemma 2. If a job Ji,j executes by itself under a greedy
scheduler on ni identical cores and it takes ti,j time to finish
its execution, then ti,j ≤ (ci,j + (ni − 1)li,j)/ni.

Hence, the service time for a job is bounded by (ci,j+(ni−
1)li,j)/ni. Using properties of mean and variance, we get

E [X ] = (E [Ci] + (ni − 1)E [Li])/ni (3)

δ2X = δ2Li
((ni − 1)/ni)

2 + δ2Ci/n
2
i

+2σ(Li, Ci)(ni − 1)/n2
i (4)

Note that Lemma 1 states that if E [X ] < Y , then the queue

is stable and the tardiness is bounded. Therefore, to prove the

bounded expected tardiness of high-utilization task, we only

need to prove E [X ] = (E [Ci]+(ni−1)E [Li])/ni < Di = Y .



Theorem 1. A mapping algorithm of stochastic federated
scheduling guarantees bounded tardiness to high-utilization
task τi, if the assigned number of cores ni >

E[Ci]−E[Li]
Di−E[Li]

.

Proof: We first prove (E [Ci] + (ni − 1)E [Li])/ni < Di.

Dini − (ni − 1)E [Li] = ni(Di − E [Li]) + E [Li]

>
E [Ci]− E [Li]

Di − E [Li]
(Di − E [Li]) + E [Li] = E [Ci]

Hence, E [X ] = (E [Ci] + (ni − 1)E [Li])/ni < Di = Y and

by Lemma 1 the tardiness of τi is bounded.
In the stochastic federated scheduling strategy, ni >

E[Ci]−E[Li]
Di−E[Li]

is always required for any mapping algorithm. We

will show later that for all three proposed mapping algorithms,

it is indeed satisfied for high-utilization task.

Now we analyze the tardiness of low-utilization tasks, since

they share nlow cores and are executed sequentially using GEDF

scheduler. In [32], the following Lemma has been established.

Lemma 3. [Mills10] If a set of sequential tasks τlow is sched-
uled on nlow cores using GEDF and nlow >

∑
τi∈τlow

E [Ui],
then the expected tardiness of each task is bounded.

Since all the different mapping algorithms only admit a task

set if E [Ulow] =
∑

τi∈τlow E [Ui] < nlow and then schedules

these tasks using GEDF, we can conclude that the expected

tardiness of low-utilization tasks is also bounded.

Any task set that the mapping algorithm admits can be

scheduled while guaranteeing bounded expected tardiness;

hence, the mapping algorithm serves as a schedulability test.

C. Calculating Expected Tardiness

Here, we explain how the tardiness is calculated. Even though

all the mapping algorithms provide bounded expected tardiness,

the actual (upper bound on) tardiness can be different, because

the corresponding core assignments (ni for each high-utilization

task and nlow for all low-utilization tasks) are different.

Note that from Section V, we can see that for BASIC

and FAIR mapping algorithm, the tardiness calculation is not

necessary for producing core assignment. It is only needed in

ILP mapping or to actually get the expected tardiness.

1) Tardiness of High-Utilization Tasks: For each high-

utilization tasks with ni assigned dedicated cores, by Corollary

1 and Inequality (4), the bounded expected tardiness is:

E [Ti] ≤
δ2X

2(Y − E [X ])

≤
δ2Li

(ni − 1)2/n2
i + δ2Ci/n

2
i + 2σ(Li, Ci)(ni − 1)/n2

i

2(Di − (E [Li] (ni − 1) + E [Ci])/ni)
(5)

2) Tardiness of Low-Utilization Tasks: Since low-utilization

tasks are executed sequentially using GEDF, we can use the

linear-programming procedure described in [32] directly.

We first restate a couple of lemmas from [32] in our

terminology. The first lemma bounds the tardiness of a

hypothetical processor-sharing (PS) scheduler which always

guarantees an execution rate of ûi (henceforth called the PS
rate allocation) to each task τi.

Lemma 4. [Mills10] For a given PS rate allocation such that
E [Ui] ≤ ûi ≤ 1 and

∑
E [Ui] ≤ nlow, PS scheduler has a

bounded tardiness E [Fi] ≤
δ2Ci

/û2
i

2(Di−E[Ci]/ûi)
.

Using this PS tardiness bound, they can then provide a bound

on the tardiness provided by GEDF for low-utilization tasks.

Lemma 5. [Mills10] For low-utilization tasks scheduled by
GEDF scheduler on nlow cores, the expected tardiness of each
task E [Ti] ≤ E [Fi]+

η+nlowM
nlow−v +ĉi, where E [Fi] is the expected

tardiness of a hypothetical PS scheduler, ĉi is the worst-case
execution time of the task, η is the sum of the nlow − 1 largest
ĉi, M is the maximum tardiness in PS, and v is the sum of
nlow − 1 largest assigned ûi in PS.

All the parameters except E [Fi] are known or measurable

(and bounded). In order to calculate E [Fi], we must calculate

the PS rate allocation ûi for each task τi.
As will show in Section V, for BASIC mapping, there exists

a simple calculation of ûi; while for FAIR and ILP mappings,

the following linear program (LP) from [32] (can be derived

using Lemma 4) is used to calculate the PS rate allocations.

max ζ

s.t. Diûi −
δ2Ci
2
ζ ≥ E [Ci] ∀i,E [Ui] < 1∑

i,E[Ui]<1

ûi ≤ n̂low

ui ≤ ûi ≤ 1 ∀i,E [Ui] < 1

where ζ−1 ≥ maxi (
δ2Li

2(ûiDi−E[Li])
) = maxi E [Fi]. Therefore,

solving the linear program provides us with the PS rate

allocations ûi as well as a bound on the expected tardiness

E [Fi] of PS scheduler. Given these values, we can calculate

the tardiness of low-utilization tasks using Lemma 5.

V. MAPPING ALGORITHMS FOR STOCHASTIC
FEDERATED SCHEDULING

We propose three federated mapping algorithms for stochas-

tic federated scheduling. The three algorithms differ in their

calculation of ni for high-utilization tasks. They have increasing

computation complexity and also have increasing schedulability

performance or expected tardiness: The first algorithm, BASIC,

assigns cores based on utilization; The second algorithm, FAIR,

assumes that the distribution of execution time and critical-path

length is known, and it assigns cores based on the values with

same cumulative possibility from task parameter distributions

among all tasks; The last ILP-Based algorithm, (ILP), tries to
minimize the maximum expected tardiness.

A. BASIC Stochastic Federated Mapping Algorithm

For a high-utilization tasks τi, this mapping algorithm

calculates ni, the number of cores assigned to τi as follows:

ni =

{⌈
E[Ci]−E[Li]−αi

Di−E[Li]−αi

⌉
(E [Ui] > 1)

2 (E [Ui] = 1)
(6)

where αi = Di/b− E [Li] > 0 and b = 2.



The remaining nlow = m−∑
high ni cores are assigned to

the low-utilization tasks. The mapping algorithm admits a task

set as long as E [Ulow] =
∑

low E [Ui] ≤ nlow/b for b = 2.
Note that the major difference between this ni and the one

in [2] is the extra term αi. αi is used to accommodate the

variation of execution time and critical-path length. We set this

value of αi to assign roughly same number of cores relative to

utilization. Hence, variances are not required to assign cores.
Bounded Tardiness (Schedulability Test): The tardiness

can be bounded for any positive αi since: For E [Ui] = 1,
E[Ci]−E[Li]
Di−E[Li]

= 1, so ni = 2 > E[Ci]−E[Li]
Di−E[Li]

. For E [Ui] > 1,

ni ≥
E [Ci]− E [Li]− αi

Di − E [Li]− αi
>

E [Ci]− E [Li]

Di − E [Li]
> 1, since

Di − E [Li] > αi > 0. Also, E [Ulow] ≤ nlow/2 < nlow. By

Theorem 1 and Lemma 3, BASIC can guarantee bounded

tardiness for both high and low-utilization tasks. Therefore, the

BASIC serves as a schedulability test that runs in linear time.
Tardiness calculation: Now we describe a faster and simpler

method to calculate the upper bound on the expected tardiness

of low-utilization tasks when using BASIC mapping. This

method relies on the requirement of BASIC that nlow ≥
b
∑

low E [Ui] for b =2. We can simply set PS rate allocation

for a task τi as ûi = min (bE [Ui] , 1). This allocation satisfies

the requirement in Lemma 4; therefore, the PS tardiness is

E [Fi] ≤
δ2Ci

2(û2
iDi − ûiE [Ci])

,

and by Lemma 5 the expected tardiness of low-utilization task

under GEDF can be calculated directly as

E [Ti] ≤
δ2Ci

2(û2
iDi − ûiE [Ci])

+
η + nlowM

nlow − v
+ êi, (7)

Therefore, unlike the FAIR and ILP algorithms, tardiness

calculation here does not require solving a linear program; it

can be done in linear time.

B. FAIR Federated Mapping Algorithm
We now present FAIR mapping that admits more task

sets than the BASIC, while still providing same theoretical

guarantees. The schedulability test of FAIR still runs in linear

time; however, the calculations of the core assignment and

the expected tardiness are more complex, requiring near linear

time and linear programming respectively.
We donate Ci(p) as the value ci of random variables Ci

when its cumulative distribution function (CDF) FCi(ci) = p
(meaning that the possibility of Ci ≤ ci is equal to p). We

denote Li(p) and Ui(p) similarly.
Note that when p = 0.5, Ci(p) = E [Ci] and Li(p) = E [Li].

Additionally, Ci(p) and Li(p) will increase when p increases.
In FAIR mapping, the number of cores assigned to high-

utilization task τi (represented by n̂i) is calculated as follows.

n̂i(0.5 ≤ p < 1) =

⌊Ci(p)− Li(p)

Di − Li(p)
+ 1

⌋
(8)

=

⎧⎨⎩
⌈
Ci(p)−Li(p)
Di−Li(p)

⌉ (
Ci(p)−Li(p)
Di−Li(p)

is not integer
)

Ci(p)−Li(p)
Di−Li(p)

+ 1
(
Ci(p)−Li(p)
Di−Li(p)

is integer
)

FAIR mapping will admit a task set if nlow = m −∑
high n̂i(p) >

∑
low E [Ui(p)] for p = 0.5.

Bounded Tardiness (Schedulability Test): It is obvious

that n̂i(p = 0.5) =
⌊
E[Ci]−E[Li]
Di−E[Li]

+ 1
⌋

> E[Ci]−E[Li]
Di−E[Li]

. Also

nlow >
∑

low E [Ui(p = 0.5)] =
∑

low E [Ui]. Then by Theorem

1 and Lemma 3, FAIR guarantees bounded tardiness for all

tasks. The FAIR also serves as a linear time schedulability test.

Dominance in Schedulability: In Section VI, we will show

that n̂i(p = 0.5) ≤ ni (of BASIC mapping) for any task τi and
hence n̂low ≥ nlow. Also, the FAIR algorithm allows E [Ulow]
to be as high as n̂low (instead of nlow/2 allowed by BASIC).

Therefore, FAIR admits strictly more tasks than BASIC.

Core Allocation: n̂i(p = 0.5), name as minimum core
assignment, is the minimum number of cores required to

guarantee bounded tardiness for high-utilization tasks. However,

directly using it will result in large tardiness for high-utilization

tasks, because more cores are assigned to low-utilization tasks.

To be fair to all tasks, FAIR mapping further improve the

minimum core allocation by increasing p until the largest p̂
when nlow = m −∑

high n̂i(p̂) >
∑

low(Ci(p̂)/Di). By doing

this, FAIR in fact increase the core assignment and PS rate

allocation for each task by the same amount according to the

CDF of execution time and critical-path length. This ensures

fairness among all tasks, because p̂ is independent of τi. The
complexity of this core assignment depends on the number of

p tested until reaching p̂. In practice, a binary search will only

need 6 times at most to find p̂ with an accuracy of 0.01.

C. ILP-Based Federated Mapping Algorithm

We now present a third ILP-Based mapping algorithm for

stochastic federated scheduling. This algorithm admits exactly

the same task sets as FAIR (though it may find a different

mapping for these task sets); therefore, it also provides the

same theoretical guarantees. However, BASIC and FAIR make

no attempt explicitly to balance maximum tardiness among

high and low-utilization tasks.

The ILP algorithm converts the mapping problem for high-

utilization tasks into a integer linear program (ILP) that tries

to minimize the maximum tardiness; When combined with

the linear program for low-utilization tasks stated in Section

IV-C2, the resulting mixed linear program indirectly tries to

balance the tardiness among all tasks.

We convert Inequality (5) into a form similar to the expected

tardiness of the PS schedule; that is, we define ζi where ζ
−1 =

maxi E [Ti] and ζ is defined in terms of ni’s. First, for task τi,
let δ2i = max

(
δ2Li

(m− 1)2/m, δ2Ci/2, σ(Li, Ci)(m− 1)/m
)
.

Note that, δ2i is bounded and can be calculated using only

the expectation and variance of the task’s execution time and

critical-path length without knowing ni. Now we use the fact

that 2 ≤ ni ≤ m for high-utilization task τi and see that

δ2i ≥ δ2Li
(m− 1)2/m = δ2Li

(m− 1)(1− 1/m)

≥ δ2Li
(ni − 1)(1− 1/ni) = δ2Li

(ni − 1)2/ni

δ2i ≥ δ2Ci/2 ≥ δ2Ci/ni

δ2i ≥ σ(Li, Ci)(m− 1)/m = σ(Li, Ci)(1− 1/m)

≥ σ(Li, Ci)(1− 1/ni) = σ(Li, Ci)(ni − 1)/ni.



Now we calculate the upper bound on the variance of δ2X
(from Inequality (4)) using δ2i

δ2X = δ2Li
(ni − 1)2/n2

i + δ2Ci/n
2
i + 2σ(Li, Ci)(ni − 1)/n2

i

=
δ2Li

(ni − 1)2/ni + δ2Ci/ni + 2σ(Li, Ci)(ni − 1)/ni

ni

≤ 4δ2i /ni

By Corollary 1, the expected tardiness is bounded by

E [Ti] ≤ δ2X
2(Y − E [X ])

≤ 4δ2i /ni

2(Di − (E [Li] (ni − 1) + E [Ci])/ni)

≤ 2δ2i
niDi − (E [Li] (ni − 1) + E [Ci])

=
2δ2i

ni(Di − E [Li])− (E [Ci]− E [Li])
(9)

Now we can set ζ−1 ≥ maxi (
2δ2i

ni(Di−E[Li])−(E[Ci]−E[Li])
) ≥

maxi E [Ti] for high-utilization tasks and get inequality (11).

Combining this definition of ζ with the linear program in

Section IV-C2, we get the following mixed linear program:

max ζ

s.t. Diûi −
δ2Ci
2
ζ ≥ E [Ci] ∀i,E [Ui] < 1 (10)

(Di − E [Li])ni − 2δ2i ζ ≥ E [Ci]− E [Li]

∀i,E [Ui] ≥ 1 (11)∑
i,E[Ui]<1

ûi +
∑

i,E[Ui]≥1

ni ≤ m (12)

ui ≤ ûi ≤ 1 ∀i,E [Ui] < 1 (13)

n̂i(p = 0.5) ≤ ni ∀i,E [Ui] ≥ 1 (14)

ni is integer ∀i,E [Ui] ≥ 1 (15)

We solve this ILP to calculate: integral ni— the number of

cores assigned to high utilization task τi; fractional ûi — a

valid PS rate allocation for low-utilization task τi; and ζ . Using
the resulting ni for high utilization tasks, we can calculate

nlow = m −∑
high ni, the number of cores assigned to low-

utilization tasks.

Explanation of Constraints: Constraints (14) and (15) guar-

antee that each high-utilization task τi gets at least n̂i(p = 0.5)
dedicated cores; therefore Theorem 1 guarantees its bounded

tardiness. Constraint (13) guarantees that the PS rate allocation

is larger than the utilization of low-utilization tasks; therefore

by Lemma 4 guarantees bounded tardiness to these tasks.

Constraint (12) guarantees that nlow + nhigh ≤ m. Finally,

Constraint (10) is inherited from the LP in Section IV-C2.

Optimal Greedy Solution to the ILP: General ILP problem

can be hard to solve. However, there is a unique property of

the above ILP — ζ will decrease if at least one ni or
∑

low ûi

increase and the rest ones remain the same. Relying on this,

we can easily see that a greedy algorithm — starting with

the core assignment (ni and ûi(p = 0.5)) from the minimum

core allocation of FAIR mapping, iteratively increase the one

ni or
∑

low ûi (a high utilization task or the sum of low

utilization tasks) with largest tardiness by 1 and stop when

Constraint (12) will not hold — will successfully find the

optimal solution to this ILP problem (providing the fact that

the LP in Section IV-C2 can directly calculate optimal solution).

By applying the greedy solution, we can reduce the mixed-ILP

problem to a iterative LP problem. Obviously. the maximum

number of iterations needed by the greedy algorithm is m.

Relationship to FAIR: The ILP mapping algorithm admits

exactly the same task sets that FAIR admits; If the FAIR admits

a task set (n̂i(p = 0.5); nlow = m−∑
high n̂i(p = 0.5)), then

that mapping is a trivially feasible solution to the ILP since

it satisfies all constraints for ζ = 0. On the other hand, if the

FAIR algorithm cannot find a solution, then there is no feasible

solution to the ILP. Therefore, since FAIR provides a capacity

augmentation bound of 2, so does this algorithm.

Faster Schedulability Test: As a consequence of the

relationship with FAIR, we do not have to solve the ILP

to check if the task set is schedulable using this ILP-based

mapping; we can simply run the schedulability test of FAIR

to check for schedulability and only solve the ILP to find the

mapping if the task set is, in fact, schedulable.

Tardiness Calculation: On solving the mixed linear pro-

gram, we get ni for each high utilization task and ûi for each

low utilization task. Therefore, we can use Inequalities (5)

and (7) to calculate the tardiness of these tasks, respectively.

Note that, the mixed linear program criterion is a little

imprecise; maximizing ζ does not directly optimize the overall

tardiness bound. Instead, it only tries to balance parts of

the tardiness. After applying the Inequalities (7) and (5) for

calculating tardiness, the resulting tardiness of high-utilization

tasks is actually less than the optimized bound ζ−1, while the

tardiness of low-utilization tasks is actually higher than ζ−1.

To further balance the overall tardiness, instead of using the

strict upper bound of δ2X (from Inequality (9)) in the calculation

of ζ , we can approximate it. The reason we cannot directly use

Inequality (4) to calculate δ2X is because we do not know ni

before we solve the integer linear program. However, we can

approximate δ2X by using n̂in̂i(p = 0.5) instead of ni. Then,

we have δ2X =
δ2Li

(n̂i−1)2/n̂i+δ2Ci
/n̂i+2σ(Li,Ci)(n̂i−1)/n̂i

ni
=

δ2i
ni
.

This may provide a better tardiness bound for all tasks.

However, when the worst-case execution time of a low-

utilization task is large, the achieved mapping may still result

in a larger maximum tardiness (from that task) than the optimal.

VI. STOCHASTIC CAPACITY AUGMENTATION BOUND
OF 2 FOR STOCHASTIC FEDERATED SCHEDULING

A. Stochastic Capacity Augmentation Bound for BASIC

Theorem 2. The BASIC federated scheduling algorithm has a
stochastic capacity augmentation bound of b =2.

In order to prove Theorem 2, we first prove that the BASIC

mapping strategy always admits all eligible task sets — task

sets that satisfy Conditions (1) and (2) in Definition 1 for b =2.

BASIC admits a task set if, E [Ulow] ≤ nlow/b for b = 2.
Therefore, we must prove that for all task sets that satisfy



Conditions (1) and (2), nlow is large enough for BASIC to

admit the task set.

First, we prove that the number of cores assigned to high-

utilization tasks nhigh is bounded by b
∑

high E [Ui].
Lemma 6. For a high-utilization task τi (1 ≤ E [Ui]), if Di >
bE [L]i (Condition (2)), then the number of assigned cores
ni ≤ bE [Ui] with b = 2.

Proof: For E [Ui] > 1, since b(E [Li] +αi) = Di, so E [Ci] =
b(E [Li]+αi)E [Ui] and Di−E [Li]−αi = (b−1)(E [Li]+αi).

ni =

⌈
E [Ci]− E [Li]− αi

Di − E [Li]− αi

⌉
<

E [Ci]− E [Li]− αi

Di − E [Li]− αi
+ 1

=
2(E [Li] + αi)E [Ui]− (E [Li] + αi)

E [Li] + αi
+ 1 = 2E [Ui]

For E [Ui] = 1, ni = 2 = 2E [Ui]. Therefore, nhigh =∑
high ni ≤ b

∑
high E [Ui] for b = 2.

Since the task set τ satisfies Condition (1), the total

utilization
∑

E [Ui] ≤ m/b for b=2. So we have nlow =
m − nhigh ≥ b

∑
i E [Ui] − b

∑
high E [Ui] = b

∑
low E [Ui].

Hence, BASIC’s admission criterion is satisfied and it admits

any task set satisfying Conditions (1) and (2). Since BASIC

always provides bounded tardiness to task sets it admits

(Section IV-B), by Definition 1 this establishes Theorem 2.

B. Stochastic Capacity Augmentation Bound for FAIR

Theorem 3. The FAIR federated scheduling algorithm has a
stochastic capacity augmentation bound of b =2.

To prove Theorem 3, we simply prove if the BASIC admits a

task set, then FAIR does as well; since BASIC admits any task

set that satisfies Conditions (1) and (2) of Definition 1 for b =2,

FAIR also admits them. Since FAIR always provides bounded

tardiness to task sets it admits, this establishes Theorem 3.

First, we show that the minimum core assignment n̂i(p =
0.5) to each high-utilization task by the FAIR algorithm is at

most the number of cores ni that the BASIC algorithm assigns.

Lemma 7. If n̂i = n̂i(p = 0.5) =
⌊
Ci(p)−Li(p)
Di−Li(p)

+ 1
⌋

=⌊
E[Ci]−E[Li]
Di−E[Li]

+ 1
⌋

; and ni =
⌈
E[Ci]−E[Li]−αi

Di−E[Li]−αi

⌉
for E [Ui] > 1

and n1 = 2 for E [Ui] = 1; then n̂i ≤ ni.

Proof: To make the proof straightforward, now we use the two

cases definition of n̂i in Section V.

For E [Ui] > 1, obviously E[Ci]−E[Li]−αi

Di−E[Li]−αi
> E[Ci]−E[Li]

Di−E[Li]
> 1,

since Di − E [Li] > αi > 0. So we denote
E[Ci]−E[Li]−αi

Di−E[Li]−αi
=

E[Ci]−E[Li]
Di−E[Li]

+ ε, so ε > 0. When
E[Ci]−E[Li]
Di−E[Li]

is not integer,

n̂i =

⌈
E [Ci]− E [Li]

Di − E [Li]

⌉
≤

⌈
E [Ci]− E [Li]− αi

Di − E [Li]− αi

⌉
= ni

When
E[Ci]−E[Li]
Di−E[Li]

is integer, since ε > 0,

ni =

⌈
E [Ci]− E [Li]− αi

Di − E [Li]− αi

⌉
=

⌈
E [Ci]− E [Li]

Di − E [Li]
+ ε

⌉
≥ E [Ci]− E [Li]

Di − E [Li]
+ 1 = n̂i

For E [Ui] = 1, n̂i = 2 = ni. Therefore, for all cases,

n̂high =
∑

high n̂i ≤
∑

high ni = nhigh.

FAIR has more cores available for low utilization tasks than

BASIC does, since n̂low = m − n̂high ≥ m − nhigh = nlow. It

also allows the total utilization of low-utilization tasks to be as

high as nlow, while basic only allows it to be nlow/b. Therefore,
FAIR admits any task set that BASIC admits.

Note that FAIR will only increase n̂i to n̂i(p̂) if it can admits

the task set. Therefore, as far as schedulability and capacity

augmentation bound is concerned, this will not affect the proof

above. In this most loaded cases, n̂i(p̂) = n̂i(p = 0.5).

VII. WORK-STEALING FOR HIGH-UTILIZATION TASKS
We now switch gears and analyze federated scheduling of

stochastic tasks when high-utilization tasks are scheduled using

randomized work-stealing scheduler [3] instead of a purely

greedy scheduler. A (deterministic) purely greedy scheduler

often has high overheads, since it must maintain some sort of

centralized queue of available work and all cores potentially

suffer contention when they access this queue to get work. In

a real implementation, we would model these overheads by

inflating the tasks’ execution times, potentially decreasing the

real efficiency of the platform.

As comparison, work-stealing is an approximation of greedy

scheduling, which makes scheduling decision randomly in a

distributed manner. Each thread maintains a local queue of

ready work and takes work from this queue as needed. If

a thread’s local queue is empty, it randomly picks another

thread (running on another core) and steals some work from its

queue. Work-stealing is not a strictly greedy strategy. However,

it provide strong probabilistic guarantees of linear speedup

(“near-greediness”) [40]. In practice, it has less overheads and

provides good performance [4]. It is the default strategy used

in many parallel computing runtime systems such as Cilk, Cilk

Plus, TBB, X10, and TPL [4, 35, 37, 41, 42].

Since work-stealing is a randomized scheduler, the response

time of tasks is always a random variable despite of using

whether worst-case values or stochastic values; therefore, we

can easily extend the machinery developed so far to analyze

the expected tardiness bound for both types of tasks.

A. Work-Stealing for Tasks using Worst-Case Values

We denote the worst-case execution time as Ci and worst-

case critical-path length as Li for such tasks. Each high-

utilization task τi ∈ τhigh is assigned ni cores:

ni =

⌊
Ci

Di − 3.65Li − 1
+ 1

⌋
(16)

The remaining cores nlow = m −∑
high ni are assigned to

low-utilization tasks which are scheduled using multiprocessor

GEDF scheduler. The work-stealing mapping strategy admits

a task set as long as nlow ≥
∑

low Ui.

Proof of Bounded Tardiness: We first state known results

on work-stealing response time γi for task τi with total

execution time Ci and critical path-length Li [40].

Lemma 8. [Tchi.13] A work stealing scheduler guarantees a
completion time of γi, such that



E [γi] ≤ Ci

ni
+ 3.65Li + 1 (17)

P

{
γi ≥ Ci

ni
+ 3.65(Li + log2

1
ε ) + 1

}
≤ ε (18)

This probability distribution has mean μ = E [γi] =
Ci

ni
+

3.65Li + 1. In order to calculate its standard deviation, we

define the CDF of γi as F(x) = P{γi ≥ x}. In addition, we

pessimistically assume that F(x) = ε, i.e. the probability of a

longer completion time than x is ε, which is larger than the

real probability. By definition, we can calculate

x =
Ci

ni
+ 3.65(Li + log2

1

ε
) + 1 = μ+ 3.65 log2

1

ε

Therefore, for any ε, we get

F(x) = ε = 1− e−
ln 2
3.65 (x−μ);

This is a shifted exponential distribution with standard deviation

of ln 2
3.65 . Therefore, the standard deviation of the completion

time is no more than ln 2
3.65 ≈ 0.19.

The tardiness of job j of task i is Ti,j = max{0, Ti,j−1 +
γi,j −Di} where γi,j is drawn from the distribution γi above.
Therefore, Lemma 1 guarantees bounded tardiness if

E [X ] = E [γi] =
Ci

ni
+ 3.65Li + 1 < Di = Y

which is true for ni ≥
⌊

Ci

Di−3.65Li−1 + 1
⌋
. Therefore, we

have proven tardiness of high-utilization tasks since we assign⌊
Ci

Di−3.65Li−1 + 1
⌋

cores to them. The tardiness of low-

utilization tasks is bounded due to Lemma 3.

Upper Bound on Tardiness: The tardiness of high-

utilization tasks is computed using the D/G/1 queue described

in Lemma 1. Given ni cores, we can calculate the tardiness

of a high-utilization task τi using Lemma 1.

E [Ti] ≤
δ2γ〉

2(Y − E
[
γ〉
]
)
≤

(
ln 2
3.65

)2
2(Di − (Ci

ni
+ 3.65Li + 1))

B. Work-Stealing for Stochastic Tasks

We can also provide bounded tardiness to stochastic tasks

in essentially the same manner. In particular, the mapping

algorithm simply uses the expected values for work and critical

path length, but otherwise is the same as Equation (16). We

can calculate the mean and the standard deviation of X using

essentially the same procedure as follows:

E [X ] = E [E [γi]] = E [Ci] /ni + 3.65E [Li] + 1

δ2X = δ2γi
= (ln 2/3.65)

2
+ δ2Li

(ni − 1)2/n2
i

+δ2Ci/n
2
i + 2σ(Li, Ci)(ni − 1)/n2

i

By Lemma 1, the tardiness of high-utilization tasks is

E [Ti] ≤
(0.19)

2
+ δ2Li

(ni − 1)2/n2
i

2(Di − (E [Ci] /ni + 3.65E [Li] + 1))

+
δ2Ci/n

2
i + 2σ(Li, Ci)(ni − 1)/n2

i

2(Di − (E [Ci] /ni + 3.65E [Li] + 1))

Compared with greedy scheduler, the additional 2.65E [Li]
on the denominator is the major contribution to additional

overhead. But if a task is highly paralleled, the performance

of work-stealing is nearly the same as a greedy scheduler.

VIII. NUMERICAL EVALUATION

To compare the different performances of three schedulability

tests for stochastic task sets, here, we present our numerical

evaluation on randomely generated task sets with probability

distribution on execution time and critical-path length.

A. Task Sets Generation and Experimental Setup
We evaluate the schedulability results on varying number

of cores m: 4, 8, 16, 32, and 64. For various total task set

utilizations U starting from 10% to 80%, we generate task

sets, add tasks and load the system to be exactly mU — fully

loading a unit speed machine. Results of 4 and 64 cores are

similar to the rest, so we omitted them due to space limit.

For each task, we assume a normal distribution of execution

time and critical-path length. We uniformly generate the

expected execution time E [Ci] between 1 and 100. Then for

tasks with small variance, we uniformly generate variance to

be from 5% to 10% of E [Ci]; for task with large variance, we

let it be from 5% to 500%. We generate the critical-path length

following the same rules and ensure the average parallelism

E [Ci] /E [Li] is 32. To ensure a reasonable amount of high-

utilization tasks in a task set on m cores, we uniformly generate

the task utilization ui between 0.4 to
√
m. Since we assume a

normal distribution for execution time and critical-path length,

with the expected mean and standard deviation, we can calculate

the worst-case execution time by calculating the value ĉi of
the distribution when the possibility of a longer execution time

is less than 0.01. Deadline is calculated by uiE [Ci]
Using the task set setups above, we run each setting for 100

task sets. We conduct two sets of experiments:

1) We want to evaluate the performance of the two schedula-

bility tests: BASIC and FAIR. In addition, we use the

simple schedulability test from the stochastic capacity

augmentation bound as baseline comparison.

2) We want to evaluate the different tardiness bounds of

each individual task using different federated mapping

algorithms. For task sets that are schedulable according the

BASIC test, we record the maximum, mean and minimum

tardiness of each task sets.

B. Experiment Results
1) Schedulability Performance: We evaluate the perfor-

mances of different schedulability tests: BOUND (as a baseline),

BASIC and FAIR. Note that, as we have proved, the schedu-

lability of ILP-based mapping algorithm is exactly the same

with FAIR mapping algorithm. Also since the exact variance

value of a task is not needed to run all these schedulability

test, the schedulability performances of task sets with small

variance and large variance are the same. Therefore, we do

not include these curves in the figures.

From Figure 1, we can see that for all different numbers

of cores, the FAIR/ILP algorithm performs the best, while

BOUND performs the worst. Even though the bound indicates

that task sets with total utilization larger than 50%m may not

be schedulable in terms of bounded tardiness, the two other

linear time schedulability tests can still admits task sets up to

around 60% for BASIC and 80% for FAIR.



(a) 8 cores (b) 16 cores (c) 32 cores

Fig. 1: Task Set Utilization vs. Schedulability Ratio (both in percentages) for different number of cores.

(a) BASIC mapping, small variance (b) FAIR mapping, small variance (c) ILP mapping, small variance

(d) BASIC mapping, large variance (e) FAIR mapping, large variance (f) ILP mapping, large variance

Fig. 2: Maximum, mean and minimum tardiness for parameters with small and large variances.

Also note that some task sets with 10% utilization are

deemed unschedulable by BOUND. This is due to the critical-

path length requirement for parallel tasks by BOUND. For

a few tasks with 100% utilization, the FAIR algorithm still

guarantees bounded tardiness, because all tasks in the set are

low-utilization tasks. And GEDF scheduler can ensure bounded

tardiness for sequential tasks with no utilization lost.

2) Tardiness of Tasks with Small and Large Variance: For

task sets that bounded tardiness is guaranteed, we would like to

compare the guaranteed expected tardiness. Note that both the

LP and ILP optimization in FAIR and ILP mapping algorithms

are only trying to optimize the maximum tardiness of the

entire task sets. Therefore, it would be more interesting to

see the different amount of expected tardiness bound for each

individual task.

Figure 2 shows the maximum, mean and minimum expected

tardiness calculated from the BASIC, FAIR and ILP mappings

for task sets with small and large execution time variations

respectively. To make it easy to compare, we sort all the figures

according to the maximum tardiness of ILP mapping of that

corresponding setting (low and high variances).

Not surprisingly, BASIC performs the worst among all three

mappings, if we count the number of task sets for which BASIC

generates the largest maximum tardiness. In fact, out of all

randomly generated task sets, 92% and 85% task sets have

smaller maximum tardiness by ILP than by BASIC, given small

and large variance respectively. Compare FAIR and BASIC,

58% and 76% have lower maximum tardiness under FAIR.

However, we can also see that the maximum tardiness from

BASIC mapping is comparable with (only slightly worse than)

that from FAIR mapping, when variance of execution time and

critical-path length is small. It is also comparable with ILP

when variance is large. This is probably because all compared

task sets satisfy the requirement of the bound. Therefore, there



is enough cores for BASIC mapping to approximate the better

core assignment. Hence, when variation is small, one could

use the BASIC mapping to bound the tardiness.

We also find that with large variance, the increase of

maximum tardiness of FAIR is not significant, compared to

that of BASIC and ILP. It is not surprising for BASIC result,

because it confirms our hypothesis that the mapping of BASIC

does not take into account of variation when allocating cores.

However, ILP does try to balance the tardiness of all tasks

considering variance similarly to FAIR.

In fact, comparing FAIR and ILP, we notice that 67% and

58% task sets have smaller maximum tardiness using ILP.

ILP results seem worse with large variance, only because

for some task sets, the maximum tardiness is from low-

utilization tasks, which can be quite large. Hence, even through

ILP can minimize the tardiness for high-utilization tasks, the

LP calculation for low-utilization cannot directly minimize

tardiness. As FAIR inflates the parameters for low-utilization

tasks, the LP calculation may result in a better PS rate allocation

and hence smaller tardiness.

IX. CONCLUSIONS
This paper analyze the soft real-time performance of fed-

erated scheduling for parallel real-time tasks of stochastic

task models. This strategy provides the stochastic capacity

augmentation bound of 2 for stochastic tasks with a soft real-

time constraint of bounded expected tardiness. This is the such

first result on stochastic parallel tasks. The federated scheduling

strategy is promising due to its simplicity since it separately

schedules high-utilization tasks on dedicated cores and low-

utilization cores on shared cores; therefore, one can potentially

use out-of-the-box schedulers in a prototype implementation.

REFERENCES

[1] J. Kim, H. Kim, K. Lakashmanan, and R. Rajkumar, “Parallel scheduling
for cyber-physical systems: Analysis and case study on a self-driving
car,” in ICCPS ’13.

[2] J. Li, A. Saifullah, K. Agrawal, C. Gill, and C. Lu, “Capacity augmenta-
tion bound of federated scheduling for parallel dag tasks,” Tech. Rep.
WUCSE-2014-44, Washington University in St Louis, USA, 2014.

[3] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-
tations by work stealing,” Journal of the ACM, vol. 46, no. 5, 1999.

[4] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
(Santa Barbara, California), pp. 207–216, July 1995.

[5] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comp. Surv., vol. 43, pp. 35:1–44, 2011.

[6] M. Bertogna and S. Baruah, “Tests for global edf schedulability analysis,”
J. Syst. Archit., vol. 57, no. 5, pp. 487–497, 2011.

[7] B. Andersson and J. Jonsson, “The utilization bounds of partitioned and
pfair static-priority scheduling on multiprocessors are 50%,” in ECRTS

’03, 2003.
[8] J. M. López, J. L. Díaz, and D. F. García, “Utilization bounds for edf

scheduling on real-time multiprocessor systems,” Real-Time Syst., vol. 28,
pp. 39–68, Oct. 2004.

[9] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller, “Im-
proved multiprocessor global schedulability analysis,” Real-Time Syst.,
vol. 46, no. 1, pp. 3–24, 2010.

[10] V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller, “A constant-
approximate feasibility test for multiprocessor real-time scheduling,”
Algorithmica, vol. 62, no. 3-4, pp. 1034–1049, 2012.

[11] W. Y. Lee and H. Lee, “Optimal scheduling for real-time parallel tasks,”
IEICE Trans. Inf. Syst., vol. E89-D, no. 6, pp. 1962–1966, 2006.

[12] S. Collette, L. Cucu, and J. Goossens, “Integrating job parallelism in
real-time scheduling theory,” Inf. Process. Lett., vol. 106, no. 5, 2008.

[13] G. Manimaran, C. S. R. Murthy, and K. Ramamritham, “A new approach
for scheduling of parallelizable tasks in real-time multiprocessor systems,”
Real-Time Syst., vol. 15, no. 1, pp. 39–60, 1998.

[14] S. Kato and Y. Ishikawa, “Gang EDF scheduling of parallel task systems,”
in RTSS ’09.

[15] K. Lakshmanan, S. Kato, and R. R. Rajkumar, “Scheduling parallel
real-time tasks on multi-core processors,” in RTSS ’10.

[16] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time
scheduling for generalized parallel task models,” in RTSS ’11.

[17] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic, “Techniques
optimizing the number of processors to schedule multi-threaded tasks,”
in ECRTS ’12.

[18] H. S. Chwa, J. Lee, K.-M. Phan, A. Easwaran, and I. Shin, “Global
edf schedulability analysis for synchronous parallel tasks on multicore
platforms,” in ECRTS ’13, 2013.

[19] B. Andersson and D. de Niz, “Analyzing global-edf for multiprocessor
scheduling of parallel tasks,” in Principles of Distributed Systems, 2012.

[20] C. Liu and J. Anderson, “Supporting soft real-time parallel applications
on multicore processors,” in RTCSA ’12.

[21] L. Nogueira and L. M. Pinho, “Server-based scheduling of parallel
real-time tasks,” in International Conference on Embedded Software,
2012.

[22] S. Baruah, V. Bonifaciy, A. Marchetti-Spaccamelaz, L. Stougiex, and
A. Wiese, “A generalized parallel task model for recurrent real-time
processes,” in RTSS ’12.

[23] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese, “Feasi-
bility analysis in the sporadic dag task model,” in ECRTS ’13.

[24] J. Li, K. Agrawal, C.Lu, and C. Gill, “Analysis of global edf for parallel
tasks,” in ECRTS ’13.

[25] U. C. Devi, Soft real-time scheduling on multiprocessors. PhD thesis,
University of North Carolina, 2006.

[26] A. Srinivasan and J. H. Anderson, “Efficient scheduling of soft real-time
applications on multiprocessors.,” in ECRTS, vol. 3, pp. 51–54, 2003.

[27] U. C. Devi and J. H. Anderson, “Tardiness bounds under global edf
scheduling on a multiprocessor,” Real-Time Systems, vol. 38, no. 2,
pp. 133–189, 2008.

[28] J. Erickson, U. Devi, and S. Baruah, “Improved tardiness bounds for
global edf,” in ECRTS ’2010.

[29] H. Leontyev and J. H. Anderson, “Generalized tardiness bounds for
global multiprocessor scheduling,” Real-Time Systems, vol. 44, no. 1-3,
pp. 26–71, 2010.

[30] J. P. Erickson and J. H. Anderson, “Fair lateness scheduling: Reducing
maximum lateness in g-edf-like scheduling,”

[31] L. Palopoli, D. Fontanelli, N. Manica, and L. Abeni, “An analytical
bound for probabilistic deadlines,” in Real-Time Systems (ECRTS), 2012
24th Euromicro Conference on, pp. 179–188, IEEE, 2012.

[32] A. F. Mills and J. H. Anderson, “A stochastic framework for multipro-
cessor soft real-time scheduling,” in RTAS ’10, IEEE, 2010.

[33] J. M. López, J. L. Díaz, J. Entrialgo, and D. García, “Stochastic analysis
of real-time systems under preemptive priority-driven scheduling,” Real-
Time Systems, vol. 40, no. 2, pp. 180–207, 2008.

[34] J. L. Díaz, D. F. García, K. Kim, C.-G. Lee, L. Lo Bello, J. M. López,
S. L. Min, and O. Mirabella, “Stochastic analysis of periodic real-time
systems,” in RTSS ’02, IEEE, 2002.

[35] “Intel CilkPlus.” http://software.intel.com/en-us/articles/intel-cilk-plus.
[36] “OpenMP Application Program Interface v3.1,” July 2011. http://www.

openmp.org/mp-documents/OpenMP3.1.pdf.
[37] J. Reinders, Intel threading building blocks: outfitting C++ for multi-core

processor parallelism. O’Reilly Media, 2010.
[38] K. Agrawal, C. E. Leiserson, Y. He, and W. J. Hsu, “Adaptive work-

stealing with parallelism feedback,” ACM Trans. Comput. Syst., vol. 26,
pp. 112–120, September 2008.

[39] J. Kingman, “Inequalities in the theory of queues,” Journal of the Royal
Statistical Society. Series B (Methodological), pp. 102–110, 1970.

[40] M. Tchiboukdjian, N. Gast, D. Trystram, J.-L. Roch, and J. Bernard,
“A tighter analysis of work stealing,” in Algorithms and Computation,
pp. 291–302, Springer, 2010.

[41] O. Tardieu, H. Wang, and H. Lin, “A work-stealing scheduler for
x10’s task parallelism with suspension,” in Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’12, pp. 267–276, 2012.

[42] D. Leijen, W. Schulte, and S. Burckhardt, “The design of a task parallel
library,” in Acm Sigplan Notices, vol. 44, pp. 227–242, ACM, 2009.


	Federated Scheduling for Stochastic Parallel Real-time Tasks
	Recommended Citation
	Federated Scheduling for Stochastic Parallel Real-time Tasks

	tmp.1415131658.pdf.uPsZG

