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Abstract One of the key enablers of shape and growth in plant cells is the
cortical microtubule (CMT) system, which is a polymer array that forms an
appropriately-structured scaffolding in each cell. Plant biologists have shown
that stochastic dynamics and simple rules of interactions between CMTs can
lead to a coaligned CMT array structure. However, the mechanisms and condi-
tions that cause CMT arrays to become organized are not well understood. It is
prohibitively time-consuming to use actual plants to study the effect of various
genetic mutations and environmental conditions on CMT self-organization. In
fact, even computer simulations with multiple replications are not fast enough
due to the spatio-temporal complexity of the system. To redress this shortcom-
ing, we develop analytical models and methods for expeditiously computing
CMT system metrics that are related to self-organization and array structure.
In particular, we formulate a mean-field model to derive sufficient conditions
for the organization to occur. We show that growth-prone dynamics itself is
sufficient to lead to organization in presence of interactions in the system. In
addition, for such systems, we develop predictive methods for estimation of
system metrics such as expected average length and number of CMTs over
time, using a stochastic fluid-flow model, transient analysis, and approxima-
tion algorithms tailored to our problem. We illustrate the effectiveness of our
approach through numerical test instances and discuss biological insights.
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Keywords stochastic fluid-flow models · mean-field theory · simulation ·
spatio-temporal bio-processes · plant cell cortical microtubules

1 Introduction

The cortical microtubule (CMT) cytoskeleton of plant cells (see Figure 1) is
essential for development of cell shape, maintenance of cell structure, and other
critical functions including directional transport of cellular material. CMTs
are polymers of tubulin subunits that are organized into distinctive arrays
according to the cell type and function. They reside on an approximately
planar area, as they are attached to the cell surface (cortex) (Barton et al,
2008; Hardham and Gunning, 1978). As a result of their dynamic behavior on
the cortex, CMTs encounter each other which result in interactions that change
their orientation or their dynamic state (Dixit and Cyr, 2004a). Starting as
disorganized CMTs that are distributed randomly over the cortex and growing
in random directions, CMTs are observed to self-organize into a coaligned
pattern over time (Dixit and Cyr, 2004b; Ehrhardt and Shaw, 2006; Wasteneys
and Ambrose, 2009). Our objective is to develop methods to model and analyze
the self-organization in this system as well as other key measures that define
the CMT array structure such as average CMT length and number.

Fig. 1 Cortical microtubules in epidermal cells of the hypocotyl (i.e., embryonic stem) of
an Arabidopsis plant expressing green fluorescent protein-labeled tubulin.

CMT organization is achieved despite the lack of any central control mech-
anism, relying primarily on the individual dynamics of CMTs and interactions
among them. Exploring mechanisms that drive CMT organization is crucial,
as the degree of aligned CMT organization and array structure are critical de-
terminants of cell shape. This motivates the question of whether it would be
possible to replicate this self-organization by simulating CMT dynamics and
interactions. For this, we previously developed a computer simulation model
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Stochastic Models for Plant Microtubule Self-Organization and Structure 3

(Eren et al, 2010) that replicates CMT dynamics and interactions based on
the data from biological experiments (microscopy studies of live plant cells)
in rapidly elongating wild-type cells (Shaw et al, 2003) and two different mu-
tants (Burk and Ye, 2002; Burk et al, 2001; Kawamura and Wasteneys, 2008).
This study revealed that an initially disorganized set of CMTs can indeed
self-organize into ordered arrays as seen in the snapshots of the system at
different time points of the simulated example in Figure 2 (also reported in
Allard et al (2010), Tindemans et al (2010) and Deinum et al (2011)). Simulat-
ing with different parameter sets from wild-type cells and mutants as well as
self-generated data, the impacts of different mechanisms on organization were
identified, some of which we will refer to while building the models presented
in this paper as well as discussing results.

Fig. 2 Snapshots of the Simulated CMT System at Different Time Points (Parameter Set
I in Appendix 1)

Despite providing a means to model the CMT system by mimicking its
spatio-temporal complexity as close as possible to that in cells, simulations
are nonetheless computationally expensive to conduct enough replications to
yield generalized conclusions. This is more emphasized for the settings with
growth-prone dynamics as seen in wild-type cells (Kawamura and Wasteneys,
2008; Shaw et al, 2003) due to the system getting too crowded relatively early
in the course of the simulations. Hence, in this paper, we formulate analyt-
ical techniques that are more efficient and lead to more generalized results
and conclusions based on our conjectures from the simulations. We develop
a fluid model to theoretically determine a region of system parameters that
guarantee CMT organization. Subsequently, focusing on that region, we de-
velop predictive methodologies for other measures that characterize the CMT
array structure such as average length and number, which -to the best of our
knowledge- have not been analytically studied earlier.
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4 Ezgi C. Eren et al.

Several groups have developed quantitative models with varying assump-
tions to study CMT organization, which show that CMT dynamics and in-
teractions can produce ordered arrays as observed in plant cells under differ-
ent conditions (Allard et al, 2010; Baulin et al, 2007; Dixit and Cyr, 2004a;
Hawkins et al, 2010; Shi and Ma, 2010; Tindemans et al, 2010). In addition to
computer simulations, there are various analytical techniques that have been
used to model CMT systems and their organization. Baulin et al (2007) for-
mulated diffusion equations that represent CMT dynamics and interactions,
and approximated the impact of interactions based on the kinetic theory of
gases. Hawkins et al (2010) built a continuum model where different types of
CMT interactions were considered and conducted a bifurcation study around
the isotropic (disorganized) solution to investigate parameter regions where
organization is possible. Shi and Ma (2010) conducted a similar bifurcation
analysis for their model, in which they formulated interactions using mean-
field theory. A more detailed review of the methodologies and results of these
previous studies can be found in Eren et al (2012).

The results from previous studies differed in terms of the impact of dif-
ferent mechanisms on CMT organization, probably because of differences in
microtubule dynamicity parameters and the assumptions for interaction mech-
anisms between these studies (Eren et al, 2012). Here, we define two regimes
called ’bounded growth’ and ’unbounded growth’ based on the state transition
parameters of single CMT dynamics similar to Dogterom and Leibler (1993).
Hawkins et al (2010) and Tindemans et al (2010) consider parameters that
fall under ‘bounded growth’ regime only and the possibility of organized solu-
tions for that region. Dynamicity parameters used in simulations of Allard et al
(2010) include data sets that fall under both regimes, however the mean length
seems to stay finite in all their simulations suggesting existence of another pa-
rameter that bounds microtubule length explicitly. Baulin et al (2007) study a
relatively simplistic setting with no state transitions, which is a limiting case
of ‘unbounded growth’ with deterministic movements at both ends. Shi and
Ma (2010) seems to be the only study to consider the impact of dynamicity
parameters in both regions, however keeping growth bounded by an explicit
upper bound on maximum length that can be reached by any CMT. Our pa-
per brings a different approach where we do not explicitly limit CMT length
mainly as the major limiting factors on CMT growth have not been measured
yet. Our choice of growth-prone dynamics is supported by experimental data
from independent studies (Ishida et al, 2007; Kawamura and Wasteneys, 2008;
Shaw et al, 2003; Vos et al, 2004; Zhang et al, 2013), some of which we use
to build the data sets used in our study. Our analysis reveals that a quasi-
steady-state can still be reached due to the CMT interactions, which points to
an intrinsic mechanism to keep growth limited for a finite amount of time as
organization settles. In addition, we explicitly consider the stochastic nature
of CMT dynamics and interactions, and use a variety of analytical techniques
to model and develop descriptive and predictive methods for different CMT
array characteristics.
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Stochastic Models for Plant Microtubule Self-Organization and Structure 5

This paper is organized as follows. In Section 2, we describe the system, in-
troduce the modeling details and the mathematical framework for our models.
In Section 3 we describe the mean-field model for system organization together
with its analysis and results. In Section 4, we present the fluid model for sin-
gle CMT dynamics and related methods for estimation of system metrics. We
refer to simulations as relevant and include a numerical comparison of outputs
to simulation results. Finally, we conclude in Section 5 with a discussion of the
major insights derived from this study, summary of contributions, and possible
extensions and applications of the developed methodologies.

2 System Description, Mathematical Notation and Framework

We begin by describing the CMT system in detail and constructing a math-
ematical notation and framework employed in the rest of the paper (Section
2.1). We mostly include details relevant to the modeling approach and refer
the reader to Eren et al (2010) for an explanation of the system with further
biological details. Following this, we introduce the quantification metrics used
for characterization of system properties and organization (Section 2.2).

2.1 CMT System, Modeling Details and Notation

Our description and modeling of the CMT system are based on experimental
evidence from relevant literature (Dixit and Cyr, 2004a; Shaw et al, 2003).
CMTs are filamentous structures that have an approximately linear shape.
They are formed by head-to-tail assembly of tubulin dimers which are the
building blocks (see Figure 3). One end of the CMTs is highly dynamic and
“grows” on average, which is designated as the “leading end”; whereas the other
end is less dynamic, “shortening” on average and accordingly called the “lagging
end”. More specifically, the leading end stochastically switches between growth
(G), shortening (S) and pause (P ) phases, whereas the lagging end alternates
only between shortening (S) and pause (P ) phases. Growth occurs by the
addition of tubulin subunits to the leading end, and shortening occurs by loss
of tubulin subunits from either end.

We indicate CMTs by i = 1, ..., I(t), where I(t) is the total number of
CMTs in the system at time t. Note that a CMT can have more than one
segment as a result of bundling with other CMTs. Let Ni(t) be the number of
segments of CMT i at time t, for all i = 1, 2, ..., I(t). We denote the orientation
and length of nth segment of the ith CMT at time t by θni (t) and lni (t) respec-
tively, where θni (t) ∈ Φ360 = {00, 10, ..., 3590} (see Figure 4 for a representative
sketch). Note that the segments of CMTs are counted according to the order
they appear. Hence, the leading end of CMT i is located at its Ni(t)th seg-
ment at time t, whereas the lagging end is always at the first segment. The
total length for CMT i at time t is given by Li(t) =

∑Ni(t)
n=1 lni (t). Note that

a CMT i disappears and departs the system if it shrinks to length zero. The
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6 Ezgi C. Eren et al.

Fig. 3 A. CMT Tubulin Structure with Leading (+) and Lagging (-) Ends. B. Leading
end dynamics consist of Growth, Pause and Shortening phases. C. CMTs show treadmilling
dynamics due to net growth at the leading end and net shortening from the lagging end.

indices are renumbered accordingly every time a CMT departs or a segment
disappears due to shortening of the lagging end. Dynamics of CMT i are

i
2

i
3

i
1

l
i
1

l
i
2

l
i
3

Fig. 4 Sketch of a CMT with Multiple Segments and the Corresponding Variables

governed by independent and identical environment process {Mi(t) : t ≥ 0}
corresponding to its state which is defined as a combination of leading and
lagging end phases. The environment process is modeled as a continuous-time
Markov chain (CTMC) with an infinitesimal generator matrix Q = [qm,n],
m,n ∈ {GS,GP, SS, SP, PS, PP}, by assuming that both ends spend an ex-
ponentially distributed amount of time in each phase and switch to one of
the other possible phases, similar to the assumption in Allard et al (2010).
A sample path for the state of a CMT with the corresponding length graph
is plotted in Figure 5. Note that while in a growth or shortening state, the
length of the CMT changes with a constant velocity during the sojourn in
that state. The absolute speeds corresponding to each phase are given by
the matrix v+ = diag(vG+ , vS+ , vP+) for the leading end, and by the matrix
v− = diag(vS− , vP−) for the lagging end. Note that vP+ = vP− = 0, since the
speed is zero in the pause phase. As a result, we can define a diagonal net speed
matrix V = diag(vm) = diag(vG+−vS− , vG+ ,−vS+−vS− ,−vS+ ,−vS− , 0) that
composes of the net speeds for each statem ∈ {GS,GP, SS, SP, PS, PP}, gen-
erated according to Q.
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GS 

GP 
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PP 
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t 

L(t) 

t5 t4 t3 t2 t1 0 

M(t) 

Fig. 5 Realization of the Length Process, L(t) of a CMT Based on its State, M(t)

CMTs appear randomly over time from multiple locations that are dis-
persed throughout the cell cortex. The orientation of CMTs is determined by
the growth direction of their leading ends. As a result of the distinct dynamics
at both ends, a CMT moves in the direction that its leading end grows (Shaw
et al, 2003). Because CMTs are attached to the plasma membrane surface,
they run into other CMTs in the system, which results in CMT interactions.
These interactions occur on an approximately planar area and can affect the
dynamics and orientation of the CMT as illustrated in Figure 6. It is possible
to state some basic rules to explain the CMT interactions based on the exper-
imental data (Dixit and Cyr, 2004a). The outcome of any interaction depends
on the collision angle, α, and a critical interaction angle specific to the system,
θc. If a CMT runs into another one (that we call the barrier) with a collision
angle that is less than the critical interaction angle, i.e. α ≤ θc (see Figure 6),
with probability pb, its leading end bends in the direction of the barrier and
continues to grow along it forming a bundle at the point of collision. This
“bundling” would happen with some curvature, however we are approximating
it by a linear shape in the figure and accordingly modeling it as generation of
an additional segment with a parallel orientation to that of the barrier. As a
result, the leading end is located at the tip of the new segment, whereas the
lagging end stays at its original location on the already existing segment. If
the collision angle is greater than the critical interaction angle, i.e. α > θc,
the CMT undergoes catastrophe, which means that its leading end immedi-
ately leaves the growth phase and transitions into the shortening phase, with
probability pc. The third possible outcome is that the CMT crosses over the
barrier neither changing its orientation nor state, which happens with proba-
bility (1− pb) for the α ≤ θc case and with probability (1− pc) for the α > θc

case.
In summary, the matrices Q and V regulate the single CMT dynamics, and

the interactions are controlled by θc, pb, and pc parameters, which are mea-
sured experimentally and observed to take on different values depending on
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8 Ezgi C. Eren et al.

Fig. 6 Outcomes of CMT Interactions. A preexisting barrier CMT is shown as a solid line,
while a new CMT is shown as a dashed line with the arrow head indicating its leading end.
At contact angles less than theta, CMTs either reorient their leading end and grow along the
barrier CMT (with probability pb), or cross over the barrier CMT. In contrast, at contact
angles more than theta, CMTs switch to depolymerization (with probability pc) or cross
over the barrier CMT.

plant cell type, genetic background and environmental conditions as reported
by independent studies (Burk and Ye, 2002; Burk et al, 2001; Kawamura and
Wasteneys, 2008; Shaw et al, 2003), which we use as data sets (listed in Ap-
pendix 1) for our study.

Additionally, new CMTs are introduced into the system following a Poisson
process with an appearance rate of λa at a location uniformly distributed
across the cell surface. The initial length of any CMT, l0, is typically tiny and
the initial angle (orientation) assigned to it belongs to the set Φ360. Initially
there are I(0) CMTs in the system with a length of l0, and orientation for each
CMT sampled from a discrete uniform distribution. The complete set of input
parameters including the ones for the initial conditions of the system is given
in Table 1.

2.2 Metrics for Quantification of System Organization and Structural
Properties

In order to analyze conditions that lead to CMT organization, we need a
method to quantitatively measure the level of organization in the system.
To characterize the degree of coalignment in a given CMT array, we first
describe angular distributions of CMTs weighted with respect to their length.
We classify CMT segments according to their orientation, so that each segment
belongs to one of the classes θ′ ∈ Φ180 = {0, ..., 179}. For this, each segment
with θni (t) in {00, ..., 1790} is assigned to the same class as its angle, whereas
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Stochastic Models for Plant Microtubule Self-Organization and Structure 9

Table 1 Input Parameters

Notation Parameter
Dynamicity Parameters
Q = [qm,n] infinitesimal generator for the state process
V = diag(vm) velocity matrix for the CMT states
Interaction Parameters
θc critical interaction angle
pb bundling probability
pc catastrophe probability
Parameters Related to the Arrival Process and Initial Conditions
λa appearance rate for new CMTs
l0 initial length of an appearing CMT
I(0) initial number of CMTs in the system

each segment with θni (t) in {1800, ..., 3590} is mapped to class θni (t) − 180.
In other words, we distinguish CMT segments by their slopes rather than
their exact orientations, as their alignment is the actual determinant of the
organization level. For each θ′ ∈ Φ180, we calculate

k(θ′, t) =

∑I(t)
i=1

∑Ni(t)
n=1 lni (t)1{θni (t)→θ′}∑I(t)
i=1

∑Ni(t)
n=1 lni (t)

, (1)

where 1{θni (t)→θ′} stands for the indicator function of whether the angle θni (t)
belongs to class θ′. Note that Equation (1) represents the ratio of the total
length of segments which belong to class θ′ to the total length of all CMT
segments in the system at time t.

In order to characterize the angular distribution of CMTs, we employ Shan-
non’s entropy formula (Martin et al, 2006; Shannon, 1948), which quantifies
the diversity or uniformity level of a system for any property of interest and
is widely used in the literature as a measure of the uncertainty in a random
variable and to quantify organization (Gray, 1990; Lu et al, 2008). Applying
the entropy metric on the angle distributions of CMTs given by Equation (1),
entropy of the system at time t, H(t), is given by

H(t) = −
179∑
θ′=0

k(θ′, t)ln (k(θ′, t)) . (2)

Equation (2) would approach its maximum value of − ln(1/180) = 5.19 if
CMTs were perfectly uniformly distributed with respect to their alignment
and a minimum value of 0 if all CMTs had the same alignment. Simulations
that lead to organized CMT systems starting with a disorganized array show
decreasing entropy (after a small transient increase early in the simulations),
as CMTs continuously transform into better ordered arrays over the course of
the experiment (See Figure 7(i) for sample entropy plots of ten independent
simulation runs with the same data set).

Some other metrics that are essential to characterize the CMT array are
the total number of CMTs in the system and the average CMT length over
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10 Ezgi C. Eren et al.

time. Even for a perfectly organized system only based on angular alignment,
the CMT array can still be defective if there is not an ideal structure in terms
of the array density as well (some examples of perfectly organized defective
CMT arrays would be a few very long perfectly aligned CMTs, or a bunch
of very short perfectly aligned CMTs). For this, we develop methodologies to
predict metrics related to CMT density as well as studying CMT organization
for a given system. Total number of CMTs present in the system at time t is
given by I(t) as described in Section 2.1, and the average CMT length at time
t is given by

L̄(t) =

∑I(t)
i=1

∑Ni(t)
n=1 lni (t)

I(t)
. (3)

Those two metrics can also be used to define the total CMT length in the
system by ∑

L(t) = I(t)L̄(t), (4)

which also gives a measure of the crowdedness (or density) of CMTs for a given
area.

3 Mean-field Model for Microtubule Organization

3.1 Objectives and Relation to the Simulation Results

As discussed briefly in Section 1, different system behavior and properties are
observed in CMT simulations (as well as in plant cells) for different parameters
of dynamicity and interactions. Here, we classify these outputs into three dis-
tinct categories. Before introducing this classification of the system structure,
we introduce the related terminology that we use in Definitions 1 and 2.

Definition 1 A CMT system is defined as disorganized if the entropy metric
given by Equation (2) satisfies H(∞) = 5.19; and it is defined as ideally
organized if H(∞) = 0.

Note that one does not observe ideally organized conditions in plant cells
and simulations but a dominant angle (or range of angles) emerges that we
informally define as “organized” and H(∞) is significantly smaller than 5.19.

Definition 2 A deterministic system metric G(t) (particularly, I(t) or L̄(t))
is defined to be stable if G(∞) <∞; and it is defined to be unstable otherwise,
i.e. G(∞) =∞.

We use the term quasi-stable for the metrics that are unstable in the long-run,
however are able to stabilize temporarily for a finite amount of time.

Our classification of possible system behavior based on simulation results
is as follows:
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Stochastic Models for Plant Microtubule Self-Organization and Structure 11

1. Organized, quasi-stable case, where angle distributions of CMTs are bi-
ased towards a dominant angle in time and accordingly entropy values are
continuously decreasing; and system metrics such as average length and
number of CMTs temporarily stabilize around a constant value after an
initial increase as organization settles. Note that organized, stable case is a
sub-case of this where the system is able to reach a true steady state and
stay there continually rather than a finite amount of time.

2. Disorganized, stable case, where CMTs stay disorganized with non-decreasing
entropy values and a corresponding angle distribution close to uniform; and
system metrics stay finite around a rather low value. In such systems, CMTs
do not grow long and crowded enough to interact.

3. Disorganized, unstable case, where CMTs stay disorganized and system
metrics keep increasing indefinitely. In such systems, CMTs do not interact
enough to generate organization despite running into each other.

By stability, we refer to system metrics such as length and number remaining
finite over time as in Definition 2. Sample plots of independent simulation
results for all three cases are presented in Figure 7. The plots show realizations
of average length of CMTs vs. time, however the realizations for number of
CMTs vs. time show quite similar characteristics. Corresponding entropy plots
that give a measure of organization level in time are also provided.

L
(t

) 
L

(t
)

(ii) (i) (iii) ( )( )( )

H
(t

) 

Fig. 7 Sample Average Length and Entropy for Simulations of Cases (i), (ii) and (iii): (i)
Parameter Set I; pb = 1, pc = 0.3, θc = 40o; (ii) Parameter Set V; pb = 1, pc = 0.3,
θc = 40o; (iii) Parameter Set I; pb = 0, pc = 0, θc = 40o

Among the three, case (i) is what is observed in wild-type plant cells where
CMTs exist as organized arrays according to data from biological experiments
(Eren et al, 2010). This organization may be perturbed by genetic mutations
or environmental conditions (as discussed in Section 1) that cause a change in
system parameters, which results in one of the other cases. We are particularly
interested in exploring conditions for case (i) to be guaranteed, which would
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12 Ezgi C. Eren et al.

facilitate engineering of settings that will maintain or generate particular or-
ganization in plant cells.

3.2 Model Equations and Analysis

3.2.1 Problem Formulation

We consider a mean-field model where CMTs are distributed homogeneously
on a two-dimensional surface. We alter the bundling mechanism for modeling
purposes as follows: In the case of a bundling event, the colliding CMT of
length l completely aligns with the barrier CMT with probability pb(l) rather
than forming a new segment. That is, with a certain probability which is a
function of length, the CMT changes its orientation parallel to that of the
barrier. This assumption can be explained in terms of two possibilities after a
bundling event: Either the newly formed segment would shrink to zero length
as a result of leading end dynamics or the former segment(s) would disappear
as a result of shortening at the lagging end. Both of these events define stopping
times (let us call them τ1 and τ2 in relative order); and pb(l) can be expressed
as P (τ1 < τ2), which is a decreasing function of CMT length before bundling,
l. As a result, the bundling probability is considered as a decreasing function
of the CMT length to account for the fact that bundling is more likely to be
reversible for relatively longer CMTs due to different dynamics at the leading
and lagging ends; other than this assumption, it is kept as a general function.
This mechanism allows us to model each CMT as a single segment throughout
its lifetime. It was tested and verified using simulations that this assumption
does not change the overall system characteristics defined in Section 2.2. In
fact one supporting observation from our simulations is that average number
of segments per CMT stays well below 2 throughout the runs with our major
parameter sets that we use in this study. Based on these assumptions we derive
an integro-differential equation system as follows. We define pm(l, θ, t) as the
density of CMTs with length l and angle θ that are at state m at time t, where
m ∈ {GS,GP, SS, SP, PS, PP}. The generic equation can be stated to be of
the form:

∂pm(l, θ, t)

∂t
= −vm ∂pm(l, θ, t)

∂l
+
∑
n

qn,mpn(l, θ, t) + Jm(l, θ, t), (5)

where Jm(l, θ, t) correspond to the interactions (and the remaining due to
the dynamics), 0 < l, t < ∞ and θ ∈ Φ180 = {0, 1, ..., 179}. Formulation of
Equation (5) follows conditioning on state transitions into state m from all
states n in a positive small time interval (∆t) and factoring corresponding
transition probabilities and length change to get:

pm(l, θ, t+∆t) = pm(l−vm∆t, θ, t)(1+qm,m∆t)+
∑
n 6=m

pn(l−vn∆t, θ, t)qn,m∆t+o(∆t),

(6)
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Stochastic Models for Plant Microtubule Self-Organization and Structure 13

where o(∆t) is a collection of terms of higher order than∆t such that o(∆t)/∆t→
0 as ∆t→ 0. Subtracting pm(l, θ, t) from each side of the equation and divid-
ing by ∆t, we obtain the dynamics related terms in Equation (5) by letting
∆t→ 0. The interaction related term, Jm(l, θ, t) in Equation (5) is formulated
using the critical interaction angle θc to determine the relative frequencies
of bundling/catastophe for each angular value. pb(l) and pc are used as coeffi-
cients for loss/gain of density as a result of bundling and catastrophe relatively,
where the frequency of interactions are approximated as a function of sine of
the difference in angles of the two colliding CMTs similar to the methodology
in Hawkins et al (2010). Based on this, the formulation for state m = GS is
given by

JGS(l, θ, t) =− v+
GpGS(l, θ, t)

[ ∑
θ′∈Θ

pc|sin(θ − θ′)|
∫
l′
dl′l′p̄(l′, θ′, t) (7)

+
∑
θ′∈Θ∗

pb(l)|sin(θ − θ′)|
∫
l′
dl′l′p̄(l′, θ′, t)

]
+

(∫
dl′l′p̄(l′, θ, t)

) ∑
θ′∈Θ∗

v+
GpGS(l, θ′, t)pb(l)|sin(θ − θ′)

where
Θ = {θ + θc + 1, ..., θ + (180− θc)− 1} mod 180 ,

Θ∗ = {0, 1, ..., 179} −Θ − {θ} mod 180,

where the “mod” function is to adjust all the negative degrees and degrees
that are equal to or greater than 180 in Θ and Θ∗ to fall in the set Φ180; and
p̄(l, θ, t) denotes the total density of CMTs with length l and angle θ at time
t. The first term represented in the first two lines of Equation (7) stands for
the density loss due to CMTs in state GS with length l and angle θ running
into other CMTs and bundling with them or undergoing catastrophe. Since
bundling changes the angular orientation of a growing CMT, it results in a
density loss in the starting orientation (i.e., orientation prior to bundling),
and also a density gain in the new CMT orientation (i.e., orientation after
bundling). Hence, Equation (7) contains another term in the last line related
to bundling to represent the density gain from CMTs that are in state GS with
length l running into a CMT with angle θ and switching their orientation to
θ by bundling with it. The interaction frequencies are functions of the growth
speed of the leading end rather than the net speeds of growing CMTs, as
collisions are directly generated by the dynamics of the leading end.

Finally, the boundary condition is given as a function of the appearance
rate:

pGS(0, θ, t) =
λa

180A
, (8)

were A is the area of the surface that CMTs reside on. The boundary condition
indicates that CMTs appear with a 0 length in the GS state without loss of
generality. Equation (8) is just presented for the sake of completeness and does
not affect the analysis and results in the following sections.
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3.2.2 Equilibria Analysis

Having derived an integro-differential equation system for the dynamics and in-
teractions of CMTs, we begin by searching for equilibrium points and use Lya-
punov stability concepts to characterize them (Khalil, 2002; Long et al, 2008).
By stability, here we imply the convergence of solutions in time towards an
equilibrium point rather than the stability notion used to characterize system
properties in Section 3.1. Reaching an equilibrium point does not guarantee
stability, and recall that we denote this condition quasi-stability. An equilib-

rium point of (5) given by
δpm(l, θ, t)

δt
= 0 for allm ∈ {GS,GP, SS, SP, PS, PP}

is

P ∗ = {(pGS(l, θ, t), pGP (l, θ, t), pSS(l, θ, t), pSP (l, θ, t), pPS(l, θ, t), pPP (l, θ, t))

s.t. k(θ∗, t) = 1, k(θ, t) = 0 ∀θ 6= θ∗},
(9)

where k(θ, t) is given by Equation (1) in Section 2. Note that Equation (9)
corresponds to an ideally organized solution where all CMTs in the system
are aligned with the same orientation. We employ the entropy metric defined
in Equation (2) as a Lyapunov function to establish conditions for stability.
Use of entropy as a Lyapunov function is rarely seen in the related stability
literature. Here, its use is intuitive as organization is directly characterized by
entropy and the function meets Lyapunov criteria for the given equilibrium
point as follows. We reformulate the angle distribution used in Equation (2)
in line with the notation from the mean-field model as follows:

∀θ, t, k(θ, t) =

∫∞
0
lp̄(l, θ, t)dl∑179

θ=0

∫∞
0
lp̄(l, θ, t)dl

, (10)

For the solution given by Equation (9), since k(θ∗, t) = 1 and k(θ, t) = 0 ∀
θ 6= θ∗, the entropy of the system is zero, which we will denote by H(t) |P=P∗=
0. For all other solutions P 6= P ∗, the entropy is positive, i.e. H(t) |P> 0.
Hence, Equation (2) can be used as a Lyapunov function for characterizing
the equilibrium point P ∗. Prior to stating our main result of this section in
Proposition 1, we provide a lemma which is used in its proof.

Lemma 1 Given two different sequences (x1, x2, ...xN ) and (y1, y2, ...yN ) with
xi > 0, i = 1, ..., N and

∑N
i=1 xi = 1,

∑N
i=1 yi = 1; assume that for any two

pairs of xi, yi and xj , yj, i, j = 1, ..., N , xi ≥ xj if and only if yi ≥ yj and
(yi−xi) ≥ (yj−xj), i.e. sequences and their difference increase and decrease in
the same order. Let f(x) > 0 be a decreasing function of x. Then the following
inequality holds

N∑
i=1

f(xi)(yi − xi) < 0. (11)

Proof: See Appendix 2. 2
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Stochastic Models for Plant Microtubule Self-Organization and Structure 15

Proposition 1 For a system with pb(l), pc > 0, a sufficient condition for the
global asymptotic stability of P ∗ defined in (9) is given by

p+
G(t)vG+ − p+

S (t)vS+ − p−S (t)vS− > 0,

where p+
G(t) and p+

S (t) stand for the total density of CMTs that have a growing
and shortening leading end in respective order at time t. Similarly, p−S (t) stands
for the total density of CMTs that have a shortening lagging end at time t. In
other words,

p+
G(t) :=

∑
θ

∫ ∞
0

(pGS(l, θ, t) + pGP (l, θ, t))dl,

p+
S (t) :=

∑
θ

∫ ∞
0

(pSS(l, θ, t) + pSP (l, θ, t))dl,

p−S (t) :=
∑
θ

∫ ∞
0

(pGS(l, θ, t) + pSS(l, θ, t) + pPS(l, θ, t))dl.

Proof: See Appendix 2. 2
The inequality in the proposition ensures a positive net change in CMT

length on average. We conjecture that this condition will be satisfied if

πV := π+
Gv

+
G − π

+
S v

+
S − π

−
S v
−
S > 0, (12)

where π+
G and π+

S stand for the long-run probabilities that the leading end
is in growth and shortening phases in respective order; and π−S is the long-
run probability that the lagging end is in shortening phase. These long-run
probabilities are derived using infinitesimal generator Q and πQ = 0, where
π = [πGS πGP πSS πSP πPS πPP ] holds the long-run probabilities of CMT
dynamic states, and π+

G = πGS+πGP , π+
S = πSS+πSP , π−S = πGS+πSS+πPS .

πV stands for the net average length change for a single CMT ignoring in-
teractions in the system. Hence, having it positive as implied in Equation (12)
corresponds to growth-prone dynamics that we defined in Section 1. The sys-
tem reaches a quasi-stable state as a result of interactions increasing the tran-
sition from growth to shortening phase which is captured in the interaction-
related terms of Equation (5). Indeed, it is impossible to reach a true steady
state in the long run as the length grows unboundedly with organization set-
tling and interaction frequencies no longer limiting growth. Unbounded growth
is an artifact of simulation and analytical models as normally in plant cells
growth would be bounded by the limited tubulin amount in the system. How-
ever, as described in Section 1, we ignore this limit as it is not measured in
biological experiments so far. The unlimited growth seen after organization
does not impact the results of our study as we are interested in the time frame
until the end of quasi-stabilization phase. Note that the time to reach the
quasi-stabilization phase matches the time it takes for CMTs to organize in
plant cell experiments (Dixit et al, 2006; Eren et al, 2010).
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16 Ezgi C. Eren et al.

Table 2 πV Values for Different Parameter Sets

Parameter Set Status πV
I organized 0.260
II organized 0.017
III organized 1.733
IV organized -0.106
V disorganized -0.763
VI organized 0.963

Proposition 1 and our related conjecture show that CMT organization is
roughly robust to interaction parameters as long as CMTs are growing on
average. This outcome is expected since interactions are easily kept at a high
frequency regardless of the particular values of pb and pc as long as they are not
set to zero. In fact, for the case

∑
L′(t) < 0, following similar procedure as in

the proof of Proposition 1, our conjecture is that organization can be achieved
especially for values close to zero, but this is heavily dependent on interaction
parameters maintaining a certain frequency of bundling and catastrophe.

3.3 Comparison to Simulation Results

Results derived by analysis of the mean-field model are in line with our ob-
servations from simulations with different data sets. In order to test them
numerically, Table 2 lists the organization results for different parameter sets
given in the Appendix 2 according to simulations and the corresponding value
of πV for each case. Note that these are all experimentally derived data sets by
independent studies, where the behavior seen in real plant cells were success-
fully replicated using our simulations (Eren et al, 2010). As seen in Table 2,
cases I, II, III and VI satisfy the sufficient condition for organization given
in Equation (12) and result in organized arrays regardless of the interaction
parameters. In contrast, case V fails to produce organized arrays since the dy-
namicity parameters correspond to an average net velocity that is significantly
less than zero. On the other hand, case IV achieves organization despite not
satisfying the sufficient condition, but it is heavily dependent on the interac-
tion parameters as discussed in Section 3.2.2. As the condition we derived is a
sufficient one but not necessary, it might still be possible to have organization
when it is not satisfied, especially for the cases where the average net velocity
is close to zero.

4 Fluid Model for Lifetime of a Single Microtubule and
Approximation of System Metrics

Having analytically derived a sufficient condition for self-organization of CMTs,
we develop methods to estimate the average length and number of CMTs for
the parameter region that this condition holds. Among the cases discussed
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in Section 3.1, the organized quasi-stable case, which meets the derived orga-
nization condition in Equation (12), is the most challenging to estimate such
metrics, due to its complex and chaotic properties. Increased and time-varying
frequency of interactions over the course of organization results in a high vari-
ation of metrics between simulation runs as seen in case (i) of Figure 7. For
settings that are in the bounded growth region, regardless of their organiza-
tion state, the system will ultimately reach and persist at a stable state where
both the interaction and state transition frequencies stay at their long-run
average. For systems that stay disorganized and are in the unbounded growth
region (case (iii) in Figure 7), interactions can in general be ignored (in fact,
based on our main result of Section 3), such systems can stay disorganized
only in the absence of interactions) and the system metrics can be estimated
mainly based on single CMT dynamics. However, in organizing systems, inter-
action frequencies change dynamically according to the status of organization.
In order to develop a predictive method that can capture this dynamicity and
complexity, we employ a combination of various techniques including a fluid
model for single CMT dynamics, simulations and approximation algorithms.
We limit the time of estimation until the end of quasi-stabilization due to the
reasons explained in Section 3.2.2.

4.1 Model and Analysis for Single CMT Dynamics

As described in Section 2, the total length of CMT i at time t is denoted by
Li(t). In the following, we remove index i from our notations, as we are con-
sidering single CMT dynamics. The length of a CMT at time t, L(t), changes
according to its state at time t,M(t) (see Figure 5). Accordingly, the dynamics
of the length process, {L(t), t ≥ 0} is given by

d(L(t))

dt
=

{
vm if M(t) = m, and L(t) > 0,
0, if L(t) = 0.

(13)

Note that the “L(t) = 0” condition on the last line of Equation (13) follows
from the fact that {(M(t), L(t)), t ≥ 0} is a Markov process with an absorbing
barrier at L(t) = 0, as a CMT disappears and departs the system if it shrinks
to zero length. Define hitting time as the random time for a stochastic process
to reach a barrier for the first time. The lifetime (τ) of a CMT that appears
at time t = 0 is given by the hitting time for the length process to reach zero
as

τ = inf{t > 0 : L(t) = 0}.

We next define a slightly different dynamics for the length process, replacing
the condition changing the absorbing barrier at L(t) = 0 to a reflective one as
follows:

d(L(t))

dt
=

{
vm if M(t) = m ∈ {GS,GP}; or M(t) = m ∈ {SS, SP, PS}, and L(t) > 0,
0, if M(t) = m ∈ {SS, SP, PS}, and L(t) = 0.

(14)
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According to Equation (14), a CMT stays in the system and continues its
dynamics even if it shrinks to zero length. That is, once it transitions into
a state with a positive net speed, it resumes growth. As the Equations (13)
and (14) define similar dynamics up until the first time that a CMT reaches
zero length, the lifetime distribution implied by both equations are equivalent.
Reformulation in Equation (14) lets us define the lifetime distribution following
similar methodology as in Narayanan and Kulkarni (1996). We define the joint
distribution function for the lifetime of a CMT and its final state conditioned
on the initial state and length as

Fab(l, t) = P{τ ≤ t,M(τ) = b|L(0) = l,M(0) = a},

where a, b ∈ {GS,GP, SS, SP, PS, PP} represent the initial and final states of
the CMT in respective order, and l stands for the initial length. We also define
the vector, Fb(l, t) = [FGSb(l, t) FGPb(l, t) FSSb(l, t) FSPb(l, t) FPSb(l, t) FPPb(l, t)]
for any final state, b. The following theorem states the partial differential equa-
tions for this joint distribution function, in terms of the infinitesimal generator
matrix Q, and the speed matrix V defined in Section 2,

Theorem 1 Fab(l, t) is a solution to the following partial differential equation

δFab(l, t)

δt
− va δFab(l, t)

δl
=
∑
c

qacFcb(l, t), (15)

or in the matrix form,

δFb(l, t)

δt
− V δFb(l, t)

δl
= QFb(l, t), (16)

where boundary and initial conditions are given by,

Fbb(0, t) = 1 for vb < 0,

Fab(0, t) = 0 for a 6= b, va < 0,

Fab(l, 0) = 0 for a 6= b, l ≥ 0,

Fbb(l, 0) = 0 for l > 0.

Proof: See Appendix 2. 2
Let F ∗b (l, w) be the Laplace transform (LT) of Fb(l, t) with respect to t.

We denote the LT of F ∗b (l, w) with respect to l by F ∗∗b (s, w). Next, we give
the equations for F ∗∗b (s, w).

Theorem 2 The solution to Equation (16) in transform space is given by

F ∗∗b (s, w) = (V s− wI +Q)−1(w−1(V ej)),

where I is the identity matrix and ej the jth unit vector, with sizes compatible
to V and Q.
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Proof: See Appendix 2. 2
The transform of the lifetime distribution independent of the final state of

the CMT can be stated as

F ∗∗(s, w) = (V s− wI +Q)−1(w−1(V e3 + V e4 + V e5)). (17)

Note that the reason we multiply V with ej , where j = 3, 4, 5 is that a CMT can
only disappear at one of the corresponding states in the set {GS,GP, SS, SP, PS, PP}
with a negative net speed. We follow the methodology in Kharoufeh and Gau-
tam (2004) to conduct a two-dimensional Laplace transform inversion for nu-
merical computation of F (l, t) for given l and t. For details of the derivation
of F (l, t), we refer the reader to Eren (2012).

4.2 Estimation of System Metrics

Next, we conduct a transient analysis to derive the expected number of CMTs
in the system according to the lifetime distribution calculated. As CMTs ap-
pear according to a Poisson process, and there is no upper bound on CMT
number in our model, we can formulate the expected number of CMTs at
time t, E[I(t)] similar to the approach in Wolff (1989), where the service time
distribution is given by F (l, t). According to this,

E[I(t)] = λa

∫ t

0

[1− F (l0, u)]du, (18)

Equation (18) would actually work to approximate only the early phase of
simulations, where the interactions are quite rare and ignorable.

In order to compute the integral in Equation (18), we use a summation
approximation, based on discrete time points, ti = 0, t1, t2, ...tn = t. Denoting
the approximation for

∫ ti
0

[1− F (l0, u)]du by
∫̂
F̄ (ti),∫̂

F̄ (tn) =

∫̂
F̄ (tn−1)+

(F (l0, tn−1)− F (l0, tn))

2
(tn−tn−1)+F (l0, tn)(tn−tn−1),

for n = 1, 2, ... where
∫̂
F̄ (0) = 0.

The approximation for Equation (18) is given by

E[I(t)] ≈ Ê[I(tn)] = λa

∫̂
F̄ (tn) + I(0)(1− F (l0, tn)). (19)

The second term in the right-hand side of Equation (19) is included to account
for the possibility of having an initial set of CMTs present in the system at
time t, i.e. I(0) > 0.

In order to speed up our algorithm, we select intervals such that they get
longer for larger t values, since the increment in F (l0, t) gets quite negligible
with increasing t values. More particularly, a CMT has a high disappearance
probability early after its appearance as it initially has a tiny length. Given
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that it survives, its length grows quickly due to the positive average net velocity
common to the parameter sets that we are considering, and the probability of
disappearance decreases rapidly.

To estimate E(L̄(t)), we do not use the fluid model for the length process,
as Equations (13) and (14) are no longer equivalent and would yield different
distribution functions of L(t). Instead, we employ a heuristic approach based
on simplified simulations for a single CMT with no interactions. Let us denote
the approximate expected average length based on these single CMT simula-
tions by L̄1(t) for different time points ti = 0, t1, t2..., tn given that a CMT
is still in the system at time t. Note that we use thousands of simulations to
estimate this average length, which is feasible as single CMT simulations are
computationally inexpensive. Defining Ai as the appearance time of CMT i
and Di as its disappearance time, based on the relation

E[L̄(t)] = E

[∑I(t)
i=1 Li(t)

I(t)

]
= E

[∑I(t)
i=1 Li(t)|Di > t,Ai

I(t)

]
,

E(L̄(t)) is approximated using the average of the following two estimates where
the expected average length and number of CMTs are treated as if independent:

Ê1[L̄(tn)] =

∑n
i=1 L̄

1(tn − ti)λa(ti − ti−1)(1− F (tn − ti)) + L̄1(tn)I(0)(1− F (tn))∑n
i=1 λa(ti − ti−1)(1− F (tn − ti)) + I(0)(1− F (tn))

,

(20)
and

Ê2[L̄(tn)] =

∑n
i=1 L̄

1(tn − ti−1)λa(ti − ti−1)(1− F (tn − ti−1)) + L̄1(tn)I(0)(1− F (tn))∑n
i=1 λa(ti − ti−1)(1− F (tn − ti−1)) + I(0)(1− F (tn))

,

(21)
such that

E[L̄(t)] ≈ Ê[L̄(tn)] =
Ê1[L̄(tn)] + Ê2[L̄(tn)]

2
. (22)

According to Equation (20), the CMTs arriving in [ti, ti+1) are assumed to
appear in the beginning of the time period, ti, whereas Equation (21) is based
on the assumption that the arrivals in [ti, ti+1) appear at the end of the time
period, ti+1. Both equations account for the initially existing CMTs similarly.

Next, we develop two algorithms to adjust the estimations of expected av-
erage length and number of CMTs to account for the effects of interactions.
The impact of interactions on system metrics is observed to be roughly pro-
portionate to the total length reached in the system during organization,

∑̂
L,

among different settings with varying input parameters of simulations. This
is intuitive as

∑̂
L is a rough measure of crowdedness and density for a given

area, which is one of the main determinants of interaction frequency in the sys-
tem. As a result, we use simulation results for a baseline scenario with a single
set of pre-determined parameters to determine weights for smoothing approx-
imations of E[L̄(t)] and E[I(t)] using Algorithm 1 in Appendix 3. For any
problem with a new parameter set, only a single simulation is run to roughly
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determine the
∑̂
L value at which the system temporarily stabilizes, and its

ratio to the corresponding value for the baseline scenario,
∑̂
LB . According

to this ratio, β, the weights are adjusted and estimations are calculated using
the steps listed in Algorithm 2 in Appendix 3.

4.3 Numerical Results

Having described the proposed methodology for estimation of the expected
system metrics, next we compare results obtained with simulations. We first
apply Algorithm 1 on the baseline scenario (parameter set I in Appendix 1),
and determine weights to be used in Algorithm 2 for other scenarios. Due to
space limits, we only present a few examples here, and refer the reader to Eren
(2012) for more results.

The set of input parameters for all numerical examples are provided in
the Appendix 1. Here, we list the error and control parameters used for the
approximations and algorithms. For the approximations in Equations (19)
and (22), we use time points t = 0, 0.25, 0.5, 1, 2, ... (note that intervals get
larger for higher t values as explained in Section 4.2). For Algorithm 1, we
set ρcL = 0.02, ρgL = 0.01, ρcI = 0.04, ρgI = 0.03, based on our trials with
various values. According to this, the fitted values (dark solid line) for the
baseline scenario along with results of 10 independent simulation runs (jagged
light lines) are plotted in Figure 8. This case is used to estimate weights δt, γt
and corresponding total length (LB(t)) values to be fed into Algorithm 2 to
calculate estimations for the remaining scenarios.

Fig. 8 10 Independent Realizations of the Baseline Scenario (Parameter Set I) with Fitted
Values

Having calculated the weights (for estimation) using simulation results of
the baseline scenario, we follow with implementation of the prediction algo-
rithm on the other parameter sets. First we present two highly dynamic cases,
given by parameter sets II and III. For set II, β ≈ 2.2, which implies that
the total system length is roughly 2.2 times that of the baseline case around
the time organization settles. For set III, the system gets even more crowded
(β ≈ 6.1). Resulting estimations together with 10 independent realizations
from simulations are provided in Figures 9 and 10. The estimations of our
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Fig. 9 Estimations for β ≈ 2.2 case

Fig. 10 Estimations for β ≈ 6.1 case

proposed method seem to stay around the range of simulation results. Due to
the highly dynamic nature of both cases, organization occurs quite rapidly,
and the pseudo-stabilization of system metrics last for a very short time. Fur-
ther, as seen in Figures 9 and 10, metrics continue to slowly increase rather
than completely stabilizing while organization settles. However, the proposed
methodology still captures the average trend over time.

We continue with another numerical example, where we use a parameter
set that is relatively less dynamic, obtained by reducing the dynamicity pa-
rameters and appearance rate of the baseline data set by half. The resulting
β value is 0.95 and estimations are provided in Figure 11. Note that the total
length reached in this case (as well as the average length and total number
of CMTs) is quite close to that of the baseline scenario even though the dy-
namicity and appearance rate of CMTs are reduced by half in this case. This
is quite intuitive, as the system stabilizes around a point where the arrival
process and length dynamics balance each other. However, timewise, it is ob-
served that having a less dynamic system delays organization, as evidenced by
the duration it takes to reach quasi-stabilization relative to the baseline case.
Finally, in Figure 12, we present a case with different interaction parameters
(pb = 0.5, pc = 0.6, θc = 600) with respect to the baseline scenario and a
β value of 0.95, and see that estimations are pretty close to the simulation
results for that case as well.
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Fig. 11 Estimations for β ≈ 0.95 case

Fig. 12 Estimations for β ≈ 0.95 case (with different interaction parameters)

5 Discussion and Concluding Remarks

In this paper, we studied the self-organization of CMTs into linearly ordered
arrays, which are important for the morphogenesis of plant cells. Due to the
spatio-temporal nature of the stochastic dynamics and interactions of CMTs,
these arrays are challenging to analyze. By combining a range of methodolo-
gies, we were able to model the organization and important structural metrics
of this complex system in ways that would have been prohibitive or impossible
using real experiments. In particular, we derived a simple condition using a
mean-field model that can be used to instantaneously check if a set of input
parameters would result in organization. Likewise, our predictive algorithms
enable efficient estimation of system metrics such as number and length of
CMTs, which are difficult to measure experimentally because of the highly
bundled and crowded organization of CMT arrays. Figure 13 provides a flow
chart that summarizes the use of the developed methodologies in this study.

Our analytical models are able to reproduce results that were derived from
an earlier simulation study (Eren et al, 2010). This serves to validate the
developed models since the simulations were confirmed to mimic known CMT
system properties such as average length of CMTs, expected time frame for
organization, and abnormal CMT arrays observed in mutant plants (Eren et al,
2010). Thus, by comparing analytical results obtained directly to simulations,
we are able to conclude that the derived methodologies can be used as a
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Given 
 

(pre-determined using 
baseline simulations), 

Calculate lifetime distribution for a single CMT,            using 
 
 

and Laplace inversion algorithm;  
calculate expected average length values using single CMT simulations. 

Yes 

Check whether 
 

 
holds. 

For given 
 

 
and interaction parameters, 

Calculate 
 
 

Estimate expected values for number and 
average length of CMTs under no interactions, 

 

Run prediction algorithm 
to estimate 

 

Fig. 13 Flowchart for Estimation of System Metrics for a Given Set of Input Parameters

valid representation of real plant cell systems. Moreover, the analytical models
helped us generalize and explore the underpinnings of certain findings from
the simulation study such as the significance of proper dynamicity parameters
and the role of interactions between CMTs.

Our analytical methodologies also provided new biological insights that
would have been difficult to capture or generalize in real plant experiments.
Specifically, we observed that nature has selected parameters that ensure that
CMT organization occurs robustly (i.e. organization is independent of the in-
teraction parameters as long as the dynamics are in a growth-prone range),
while also allowing for array reorganization to occur in response to develop-
mental and environmental signals (as implied by the different array structures
that emerge with different parameters). The tubulin subunit levels in plant
cells appear to be selected so that they are just sufficient for organization
(i.e. to reach to the crowdedness at around quasi-stabilization phase), but also
constraining enough to prevent overproduction of CMTs (as seen in extended
simulations with no tubulin limit), which might hinder array organization and
impede array reorganization. Using our estimation methodology, we calculate
the tubulin dimer concentration at the cortex of plant cells to be roughly 10-20
micromolar. As new measuring technologies emerge, if this parameter becomes
available as an input, our predictive approach can be improved to eliminate
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its reliance on a single simulation run for each scenario with a given parameter
set.

Overall, our analytical methods provide new tools to predict important sys-
tem properties based on input parameters related to individual CMT dynamics
and interactions, which can also be used to engineer settings to maintain and
control organization. These methodologies can be applied to similar noncen-
trosomal microtubule arrays that are found in specialized animal cells such as
neurons and muscle cells, where ordered arrays are critical for the specialized
morphology and functions. This research is also related to the field of biofuel
engineering, as CMT organization directly influences the ordered deposition
of cellulose microfibrils, the most abundant biopolymer on the planet. Finally,
our work has implications for the design and assembly of microtubule-inspired
nanostructures for the directional transport of material (Goel and Vogel, 2008).

Finally, we note some limitations of our study and opportunities for future
work. Some immediate extensions would be consideration of continuous angles
and multiple CMT systems for the mean-field model. Although we capture
the alignment and density of CMTs in our analytical models, other features
of CMT arrays such as polarity and overall orientation with respect to the
cell axis are not incorporated. While the latter aspects can be easily included
in computer simulations (Eren et al, 2010), considering them in analytical
models is more challenging as they require formulation of system coordinates.
Furthermore, mechanical stress fields and their impact on CMT orientation
are additional components to consider, since these are important biologically
(Hamant et al, 2008). As the models are extended to include further aspects of
array structure, the quantification metrics must also be improved to capture
these properties.
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Appendix 1: Input Parameter Sets (Dynamics)

Q = [qm,n], m,n ∈ {GS,GP, SS, SP, PS, PP}
V = diag(vm), m ∈ {GS,GP, SS, SP, PS, PP}
Parameter Set I:

Q =


−8.925 6.72 1.485 0 0.72 0
2.427 −4.632 0 1.485 0 0.72
3.537 0 −11.192 6.72 0.935 0

0 3.537 2.427 −6.898 0 0.935
5.05 0 2.376 0 −14.1 6.72

0 5.05 0 2.376 2.427 −9.85

 .

V = diag(0.91, 3.69,−8.66,−5.88,−2.78, 0)

Parameter Set II:

Q =


−7.234 6.72 0.236 0 0.278 0
2.427 −2.941 0 0.236 0 0.278

5 0 −13.27 6.72 1.55 0
0 5 2.427 −8.977 0 1.55

25.125 0 12.75 0 −44.595 6.72
0 25.125 0 12.75 2.427 −40.302


V = diag(0.72, 3.5,−11.78,−9,−2.78, 0)

Parameter Set III:

Q =


−9.617 6.72 2.338 0 0.559 0
2.427 −5.324 0 2.338 0 0.559
12.438 0 −21.908 6.72 2.75 0

0 12.438 2.427 −17.614 0 2.75
8.75 0 4.375 0 −19.845 6.72

0 8.75 0 4.375 2.427 −15.552


V = diag(3.72, 6.5,−15.18,−12.4,−2.78, 0)

Parameter Set IV:

Q =


−7.537 6.72 0.535 0 0.282 0
2.427 −3.244 0 0.53521 0 0.282
6.211 0 −16.036 6.72 3.105 0

0 6.211 2.427 −11.742 0 3.105
15.6 0 5.6 0 −27.92 6.72

0 15.6 0 5.6 2.427 −23.627
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V = diag(−0.28, 2.5,−8.98,−6.2,−2.78, 0)

Parameter Set V:

Q =


−11.806 6.72 2.343 0 2.743 0

2.427 −7.512 0 2.343 0 2.743
3.05 0 −15.82 6.72 6.05 0

0 3.05 2.427 −11.527 0 6.05
1.556 0 1.378 0 −9.653 6.72

0 1.556 0 1.378 2.427 −5.36


V = diag(−0.78, 2,−6.58,−3.8,−2.78, 0)

Parameter Set VI:

Q =


−8.925 6.72 1.485 0 0.72 0
2.427 −4.632 0 1.485 0 0.72
3.537 0 −11.192 6.72 0.935 0

0 3.537 2.427 −6.898 0 0.935
5.05 0 2.376 0 −14.1 6.72

0 5.05 0 2.376 2.427 −9.85

 .

V = diag(3.69, 3.69,−5.88,−5.88, 0, 0)

Appendix 2: Proofs

Lemma 1
Let us define zi = (yi − xi) i = 1, ..., N . We group zi values in three sets as
follows:

I+ = {i ∈ {1, N} : zi > 0}
I0 = {i ∈ {1, N} : zi = 0}
I− = {i ∈ {1, N} : zi < 0}.

As
∑N
i=1 yi −

∑N
i=1 xi = 0, it follows that

N∑
i=1

zi =
∑
i∈I+

zi +
∑
i∈I−

zi = 0. (23)

Let us divide zi values into infinitesimal pieces of the same size, denoted by
∆z > 0, such that for each i ∈ I+, zi = wi∆z and for each i ∈ I−, zi = −wi∆z,
i = 1, ..., N , where ∆z > 0 and wi are positive real numbers. Equation (23)
can be rewritten as ∑

i∈I+

wi −
∑
i∈I−

wi = 0. (24)
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Hence, we have an equal number (
∑
i∈I+ wi =

∑
i∈I− wi := W ) of ∆z pieces

that belong to sets I+ and I−. Note that ∀ zi with i ∈ I+ and zj with j ∈ I−, it
follows from the definition of zi values that zi > zj , and consequently xi > xj
from the given ordering relation between the sequences xi, and zi; and finally
f(xi) < f(xj) due to the decreasing property of f(·). Let us redefine the
sequence of xi, i = 1, ..., N such that its values are copied wi times for each
xi value so that every ∆z has its corresponding x′i′ and f(x′i′) values, where
i′ = 1, ...,W . Adjusting I+ and I− accordingly as I ′+, I ′−, for each ∆z value
that belongs to set I+, there is a ∆z which is multiplied with a larger value in
I− in the following equation:∑

i′∈I′+

f(x′i′)∆z −
∑
i′∈I′−

f(x′i′)∆z < 0,

which gives the desired result.
Proposition 1
According to Lyapunov’s stability theory, a sufficient condition for the global
asymptotic stability of an equilibrium point P ∗ is existence of a Lyapunov
function L(·) such that

– L(t) |P> 0, ∀P 6= P ∗ and L(t) |P= 0 only for P = P ∗,
– ∂L(t)

∂t |P< 0, ∀P 6= P ∗ and ∂L(t)
∂t |P=P∗= 0.

We set our Lyapunov function as the entropy metric, H(·) in Equation (??).
We already know that the first condition holds for H(·), as H(t) |P=P∗= 0
and H(t) |P> 0 ∀P 6= P ∗. What is left to check is the sign of the derivative of
the Lyapunov function with respect to t, which is given by

∂H(t)

∂t
= −

179∑
θ=0

k′(θ, t)ln(k(θ, t)) + k′(θ, t), (25)

where

k′(θ, t) =
∂ k(θ, t)

∂t
. (26)

Let us define the total density of CMTs with length l and angle θ at time t by

p̄(l, θ, t) := p̄G(l, θ, t) + p̄S(l, θ, t) + p̄P (l, θ, t).

Using Equation (10), we can rewrite Equation (26) as

k′(θ, t) =

(∫∞
0
l dp̄(l,θ,t)dt dl

)∑179
θ=0

∫∞
0
lp̄(l, θ, t)dl −

(∫∞
0
lp̄(l, θ, t)dl

)∑179
θ=0

∫∞
0
l dp̄(l,θ,t)dt dl(∑179

θ=0

∫∞
0
lp̄(l, θ, t)dl

)2 .

Summing equations in (5) side by side, multiplying both sides with l and
integrating with respect to l over (0,∞), we obtain the derivative of total
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length of all CMTs with angle θ at time t as

L′θ(t) :=

∫ ∞
0

l
dp̄(l, θ, t)

dt
dl

= (v+
G − v

−
S )p̃GS(θ, t) + v+

G p̃GP (θ, t)

− (v+
S + v−S )p̃SS(θ, t)− v+

S p̃SP (θ, t)− v−S p̃PS(θ, t)

− v+
G

∫ ∞
0

p̄G(l, θ, t)ldl
∑
θ′∈Θ∗

pb|sin(θ − θ′)|
∫
l′
dl′l′p̄(l′, θ′, t)

+ v+
G

∫
l′
dl′l′p̄(l′, θ, t)

∑
θ′∈Θ∗

pb|sin(θ − θ′)
∫ ∞

0

p̄G(l, θ′, t)ldl,

where p̃m(θ, t) :=
∫∞

0
pm(l, θ, t)dl, m ∈ {GS,GP, SS, SP, PS, PP} stands for

the total density of CMTs with angle θ at state m at time t. We denote the
sum of L′θ(t) over all θ by

∑
L′(t) :=

∑179
θ=0 L

′
θ(t), which gives the derivative of

total length of all CMTs in the system at time t. Defining total length of CMTs
with angle θ at time t as Lθ(t) :=

∫∞
0
lp(l, θ, t)dl, and the total length of all

CMTs at time t as
∑
L(t) :=

∑360
θ=1 Lθ(t), and plugging these into Equation

(25) results in

dH(t)

dt
= −

179∑
θ=0

L′θ(t) ln
(
Lθ(t)∑
L(t)

)∑
L(t)− Lθ(t) ln

(
Lθ(t)∑
L(t)

)∑
L′(t)

(
∑
L(t))2

.

Rearranging terms, we obtain

dH(t)

dt
= −

179∑
θ=0

L′θ(t)∑
L′(t) ln

(
Lθ(t)∑
L(t)

)
− Lθ(t)∑

L(t) ln
(
Lθ(t)∑
L(t)

)
∑
L(t)

∑
L′(t)

. (27)

Let us denote aθ :=
L′θ(t)∑
L′(t) and bθ := Lθ(t)∑

L(t) . By definition, it follows that∑179
θ=0 aθ = 1,

∑179
θ=0 bθ = 1, and bi > 0. Assuming

∑
L′(t) > 0, i.e. the net

total CMT length change in time is positive, we are interested in the sign of∑
− ln(bθ)(aθ − bθ). (28)

If the sign for Expression (28) is negative, then Equation (27) is negative,
i.e. dHdt < 0, and the stability condition is satisfied. A sufficient condition to
ensure this follows from Lemma 1 as −ln(b) is a decreasing function of b for
0 < b < 1. Accordingly, we require the two sequences aθ and bθ, and their
difference aθ − bθ to increase and decrease in the same order. This roughly
means that if CMTs with an angle θ have a larger total length compared to
the total length of CMTs with angle θ′ 6= θ, they also grow larger in ratio
in total length on average, and vice versa. This property follows by careful
observation of model equations and the property that pb(l) is decreasing in l.
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Finally, in order to fulfill
∑
L′(t) > 0, it is required that the problem

parameters satisfy∑
θ

(v+
G−v

−
S )pGS(θ, t)+v+

GpGP (θ, t)−(v+
S +v−S )pSS(θ, t)−v+

S pSP (θ, t)−v−S pPS(θ, t) > 0, ,

(29)
∀t, which can be stated as∑

θ

p+
G(θ, t)vG+ − p+

S (θ, t)vS+ − p−S (θ, t)vS− > 0, (30)

by rearranging terms.
Theorem 1
Consider Fab(l, t+h), where h is a small positive real number. It can be written
as

Fab(l, t+ h) = P{τ ≤ t+ h,M(τ) = b|L(0) = l,M(0) = a}.
Conditioning on the first transition from the initial state, we obtain

Fab(l, t+ h) =P{τ ≤ t+ h,M(τ) = b|L(0) = l,M(0) = a}

=
∑
c 6=a

P{τ ≤ t+ h,M(τ) = b|L(0) = l,M(0) = a,M(h) = c}

P{M(h) = c|M(0) = a, L(0) = l}
+ P{τ ≤ t+ h,M(τ) = b|L(0) = l,M(0) = a,M(h) = a}

P{M(h) = a|M(0) = a, L(0) = l}.

As M(t) process is independent of L(0), and the length would change by vah
by time h, when the CMT is in state a at time 0,

Fab(l, t+ h)

=
∑
c6=a

P{τ ≤ t+ h,M(τ) = b|L(h) = l + vah,M(h) = c}P{M(h) = c|M(0) = a}

+ P{τ ≤ t+ h,M(τ) = b|L(h) = l + vah,M(h) = a}P{M(h) = a|M(0) = a}

=
∑
c6=a

P{τ ≤ t,M(τ) = b|L(0) = l + vah,M(0) = c}P{M(h) = c|M(0) = a}

+ P{τ ≤ t,M(τ) = b|L(0) = l + vah,M(0) = a}P{M(h) = a|M(0) = a}.

As the transition probability from state a to c in time h is given by qach+o(h)
if c 6= a and 1 + qaah + o(h) if c = a, where o(h) is a collection of terms of
higher order than h such that o(h)/h→ 0 as h→ 0, it follows

Fab(l, t+ h) =
∑
c6=a

Fcb(l + vah, t)qach+ Fab(l + vah, t)(qaah+ 1) + o(h).

Subtracting Fab(l, t) from each side of the equation, dividing by h and rear-
ranging terms results in

Fab(l, t+ h)− Fab(l, t)
h

=
Fab(l + vah, t)− Fab(l, t)

h
+
∑
c

qacFcb(l+v
ah, t)+o(h)/h.
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Letting h → 0 yields Equation (15), and rewriting in the matrix form gives
Equation (16). Next, we describe the boundary conditions for all a, b and t. As
the lifetime would be zero if CMT appeared with zero length at state b such
that vb < 0, it follows

Fbb(0, t) = 1 for vb < 0.

The second boundary condition,

Fab(0, t) = 0 for a 6= b, va < 0,

follows from the fact that although the lifetime is zero, the probability that
the state is b when the lifetime is reached is zero (since at time t = 0 the state
is a with va < 0). Finally, the last two conditions follow from the fact that
lifetime cannot be reached at state b at time t = 0 if the initial state is a 6= b
for any initial length; or if the initial state is b for a positive initial length.
Theorem 2
Taking the LT of Equation (16) with respect to t gives

(wI −Q)F ∗b (l, w) = V
δF ∗b (l, w)

δl
. (31)

Taking the LT of Equation (31) with respect to l results in

(wI −Q)F ∗∗b (s, w) = V [sF ∗∗b (s, w)− F ∗b (0, w)]. (32)

Define ej as the jth unit vector. Plugging in the boundary condition

F ∗b (0, w) = w−1ej if vj < 0,

we get
(V s− wI +Q)F̃ ∗b (s, w) = w−1(V ej).

Rearranging terms yields Equation (17).

Appendix 3: Algorithms for Estimation of System Metrics

Algorithm 1 (Determination of weights)
0: Run R independent simulations of the baseline setting to obtain R re-
alizations of both system metrics: L̄r(t), Ir(t), r = 1, ..., R, t = 1, ..., T .
Calculate their minimum, maximum, and average values among independent
runs, minr L̄r(t), minr Ir(t); maxr L̄r(t), maxr Ir(t); ¯̄L(t), Ī(t) respectively for
t = 1, ..., T . Note that the total length in the system reaches

∑̂
L at time T .

1: Set the initial weight for E[L̄(t)], δ1 = 1 and the one for E[I(t)], γ1 = 1,
and error check and control parameters for both metrics, ρcL, ρ

c
I , ρ

g
L, ρ

g
I .

2: Initialize estimations Ẽ[L̄(1)] = Ê[L̄(1)], Ẽ[I(1)] = Ê[I(1)], and
∑̃
L(1) =

Ẽ[L̄(1)]Ẽ[I(1)]; and the vector used to store the total length values correspond-
ing to the base weights calculated in this algorithm, LB(1) = 1.
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3: FOR t = 1 TO T
4: Ẽ[L̄(t+ 1)] = Ẽ[L̄(t)] + δt(Ê[L̄(t+ 1)]− Ê[L̄(t)])

5: ρL = Ẽ[L̄(t+1)]− ¯̄L(t+1)
¯̄L(t+1)

//Calculate deviation from the average.

6: IF ρL < ρcL AND minr L̄(t+ 1) < Ẽ[L̄(t+ 1)] < maxr L̄(t+ 1) //Check
if deviation is lower than the critical value and if the estimation is in the range
between the minimum and maximum of realizations.
7: δt+1 = δt
8: ELSE
9: WHILE (ρL > ρcL OR Ẽ[L̄(t+1)] > maxr L̄(t+1)) AND δt+1 > 0.05
10: δt+1 = δt+1 − 0.05 //Update weight.
11: Ẽ[L̄(t+ 1)] = Ẽ[L̄(t)] + δt+1(Ê[L̄(t+ 1)]− Ê[L̄(t)]) //Update
estimation.
12: ρL = Ẽ[L̄(t+1)]− ¯̄L(t+1)

¯̄L(t+1)
//Update deviation from average.

13: END WHILE
14: END IF
15: Repeat similar cycle (steps 4-14) for estimating Ẽ[I(t+ 1)] and γt+1.
16:

∑̃
L(t + 1) = Ẽ[L̄(t + 1)]Ẽ[I(t + 1)] //Calculate the estimated total

length.
17: LB(t + 1) =

∑̃
L(t + 1) //Store the total length values corresponding

to the weights.
18: END FOR

Algorithm 2 (Prediction algorithm)

0: Calculate β =
∑̂
L∑̂
LB

//Ratio of total length capacity to that of the baseline.

1: Initialize estimations Ẽ[L̄(1)] = Ê[L̄(1)], Ẽ[I(1)] = Ê[I(1)], and
∑̃
L(1) =

Ẽ[L̄(1)]Ẽ[I(1)]; weights for estimations wL = wI = 1 and positions for these
weights pL, pI = 1 in the pre-determined weight vectors (see Algorithm 1).
2: FOR t = 1 TO T ′//A maximum time point for estimations.
3: IF

∑̃
L(t) <

∑̂
L //Total length cap not exceeded.

4: Ẽ[L̄(t+ 1)] = Ẽ[L̄(t)] + wL(Ê[L̄(t+ 1)]− Ê[L̄(t)])

5: Ẽ[I(t+ 1)] = Ẽ[I(t)] + wI(Ê[I(t+ 1)]− Ê[I(t)])
6: ELSE
7: Ẽ[L̄(t+ 1)] = Ẽ[L̄(t)]; Ẽ[I(t+ 1)] = Ẽ[I(t)].
8: END IF
9:

∑̃
L(t+ 1) = Ẽ[I(t+ 1)]Ẽ[L̄(t+ 1)]

10: FOR u = pL : Tmax
11: IF

∑̃
L(t+ 1) > βLB(u) //Updates weights if required comparing

total length values to the pre-calculated base values (Algorithm 1).
12: wL = δ(u), pL = u //Update weights and position in the base
vector.
13: Ẽ[L̄(t + 1)] = Ẽ[L̄(t)] + wL(Ê[L̄(t + 1)] − Ê[L̄(t)]) //Update
estimation.
14: END IF
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15: END FOR
16: Ẽ[L̄(t+ 1)] = Ẽ[L̄(t)] + wL(Ê[L̄(t+ 1)]− Ê[L̄(t)])

17: Repeat Steps 10-15 similarly for wI , pI and Ẽ[I(t+ 1)].
18: Ẽ[I(t+ 1)] = Ẽ[I(t)] + wI(Ê[I(t+ 1)]− Ê[I(t)])
19: END FOR
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