
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2014-30

2014

CloudPowerCap: Integrating Power Budget and Resource CloudPowerCap: Integrating Power Budget and Resource

Management across a Virtualized Server Cluster Management across a Virtualized Server Cluster

Yong Fu, Anne Holler, and Chenyang Lu

In many datacenters, server racks are highly underutilized. Rack slots are left empty to keep the

sum of the server nameplate maximum power below the power provisioned to the rack. And the

servers that are placed in the rack cannot make full use of available rack power. The root cause

of this rack underutilization is that the server nameplate power is often much higher than can be

reached in practice. To address rack underutilization, server vendors are shipping support for

per-host power caps, which provide a server-enforced limit on the amount of power that the

server can draw. Using... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Fu, Yong; Holler, Anne; and Lu, Chenyang, "CloudPowerCap: Integrating Power Budget and Resource
Management across a Virtualized Server Cluster" Report Number: WUCSE-2014-30 (2014). All Computer
Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/106

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/106?utm_source=openscholarship.wustl.edu%2Fcse_research%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/106

CloudPowerCap: Integrating Power Budget and Resource Management across a CloudPowerCap: Integrating Power Budget and Resource Management across a
Virtualized Server Cluster Virtualized Server Cluster

Yong Fu, Anne Holler, and Chenyang Lu

Complete Abstract: Complete Abstract:

In many datacenters, server racks are highly underutilized. Rack slots are left empty to keep the sum of
the server nameplate maximum power below the power provisioned to the rack. And the servers that are
placed in the rack cannot make full use of available rack power. The root cause of this rack
underutilization is that the server nameplate power is often much higher than can be reached in practice.
To address rack underutilization, server vendors are shipping support for per-host power caps, which
provide a server-enforced limit on the amount of power that the server can draw. Using this feature,
datacenter operators can set power caps on the hosts in the rack to ensure that the sum of those caps
does not exceed the rack’s provisioned power. While this approach improves rack utilization, it burdens
the operator with managing the rack power budget across the hosts and does not lend itself to flexible
allocation of power to handle workload usage spikes or to respond to changes in the amount of powered-
on server capacity in the rack. In this paper we present CloudPowerCap, a practical and scalable solution
for power budget management in a virtualized environment. CloudPowerCap manages the power budget
for a cluster of virtualized servers, dynamically adjusting the per-host power caps for hosts in the cluster.
Integrated with VMware Distributed Resource Scheduler, CloudPowerCap can provide better use of power
than per-host static settings, while respecting virtual machine resource entitlements and constraints

https://openscholarship.wustl.edu/cse_research/106?utm_source=openscholarship.wustl.edu%2Fcse_research%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/106?utm_source=openscholarship.wustl.edu%2Fcse_research%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2014-30

CloudPowerCap: Integrating Power Budget and Resource Management
across a Virtualized Server Cluster

Authors: Yong Fu, Anne Holler, Chenyang Lu

Abstract: In many data centers, server racks are highly underutilized. Rack slots are left empty to keep the sum
of the server nameplate maximum power below the power provisioned to the rack, while the servers placed in
the rack cannot make full use of available rack power. The root cause of this rack underutilization is that the
server nameplate power is often much higher than can be reached in practice. To address rack underutilization,
server vendors are shipping support for per-host power caps, which provide a server-enforced limit on the
amount of power that the server can draw. Using this feature, datacenter operators can set power caps on the
hosts in the rack to ensure that the sum of those caps does not exceed the rack's provisioned power. While this
approach improves rack utilization, it burdens the operator with managing the power budget across the hosts
and does not lend itself to flexible allocation of power to handle workload usage spikes or to respond to changes
in the amount of powered-on server capacity. This paper presents CloudPowerCap, a practical and scalable
solution for dynamic power budget management in a virtualized server cluster. Integrated with VMware
Distributed Resource Scheduler, CloudPowerCap can provide better use of power than per-host static settings,
while respecting virtual machine resource entitlements and constraints.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

CloudPowerCap: Integrating Power Budget and Resource Management
across a Virtualized Server Cluster

Yong Fu
Washington University in St. Louis

Anne Holler
VMware

Chenyang Lu
Washington University in St. Louis

Abstract
In many datacenters, server racks are highly underutilized.
Rack slots are left empty to keep the sum of the server
nameplate maximum power below the power provisioned
to the rack. And the servers that are placed in the rack
cannot make full use of available rack power. The root
cause of this rack underutilization is that the server name-
plate power is often much higher than can be reached
in practice. To address rack underutilization, server ven-
dors are shipping support for per-host power caps, which
provide a server-enforced limit on the amount of power
that the server can draw. Using this feature, datacenter
operators can set power caps on the hosts in the rack to
ensure that the sum of those caps does not exceed the
rack’s provisioned power. While this approach improves
rack utilization, it burdens the operator with managing
the rack power budget across the hosts and does not lend
itself to flexible allocation of power to handle workload
usage spikes or to respond to changes in the amount of
powered-on server capacity in the rack. In this paper we
present CloudPowerCap, a practical and scalable solution
for power budget management in a virtualized environ-
ment. CloudPowerCap manages the power budget for a
cluster of virtualized servers, dynamically adjusting the
per-host power caps for hosts in the cluster. Integrated
with VMware Distributed Resource Scheduler, Cloud-
PowerCap can provide better use of power than per-host
static settings, while respecting virtual machine resource
entitlements and constraints.

1 Introduction

In many datacenters, server racks are as much as 40 per-
cent underutilized [7]. Rack slots are intentionally left
empty to keep the sum of the servers’ nameplate power
below the power provisioned to the rack. And the servers
that are placed in the rack cannot make full use of the
rack’s provisioned power. The root cause of this rack un-
derutilization is that a server’s peak power consumption
is in practice often significantly lower than its nameplate
power [6]. This server rack underutilization can incur
substantial costs. In hosting facilities charging a fixed
price per rack, which includes a power charge that as-
sumes the rack’s provisioned power is fully consumed,
paying a 40 percent overhead for rack underutilization is
nontrivial. And in a private datacenter, the amortized cap-
ital costs for the infrastructure to deliver both the racks’
provisioned power and the cooling capacity to handle the
racks’ fully populated state comprises 18 percent of a dat-

acenter’s total monthly costs [10]. If that infrastructure
is 40 percent underutilized, then 7 percent of the data
center’s monthly costs are wasted for this reason.

Due to the significant cost of rack underutilization,
major server vendors are now shipping support for per-
host power caps, which provide a hardware or firmware-
enforced limit on the amount of power that the server
can draw [12, 5, 13]. These caps work by changing
processor power states [11] or by using processor clock
throttling, which is effective since the processor is the
largest consumer of power in a server and its activity is
highly correlated with the server’s dynamic power con-
sumption [6, 12]. Using per-host power caps, data center
operators can set the caps on the servers in the rack to en-
sure that the sum of those caps does not exceed the rack’s
provisioned power. While this approach improves rack
utilization, it burdens the operator with manually man-
aging the rack power budget allocated to each host in a
rack. In addition, it does not lend itself to flexible allo-
cation of power to handle workload spikes or to respond
to the addition or removal of a rack’s powered-on server
capacity.

Many datacenters use their racked servers to run virtual
machines (VMs). Several research projects have investi-
gated power cap management for virtualized infrastruc-
ture [18, 16, 17, 14, 24, 4]. While this prior work has con-
sidered some aspects of VM Quality-of-Service (QoS) in
allocating the power budget, it has not explored operating
in a coordinated fashion with a comprehensive resource
management system for virtualized infrastructure. So-
phisticated cloud resource management systems such as
VMware Distributed Resource Scheduler (DRS) support
admission-controlled resource reservations, resource en-
titlements based fair-share scheduling, load-balancing to
maintain resource headroom for demand bursts, and re-
spect for constraints to handle user’s business rules [9].
The operation of virtualized infrastructure resource man-
agement can be compromised if power cap budget man-
agement is not tightly coordinated with it.

• Host power cap changes may cause the violation
of VMs’ resource reservations, impacting end-users’
Service-Level Agreements (SLAs).

• Host power cap changes may interfere with the de-
livery of VMs’ resource entitlements, impacting re-
source fairness among VMs.

• Host power cap changes may lead to imbalanced re-
source headroom across hosts, impacting peak per-
formance and robustness in accommodating VM de-
mand bursts.

1

• Power cap settings may limit the ability of the in-
frastructure to respect constraints, impacting infras-
tructure usability.

• For resource management systems supporting power
proportionality via powering hosts off and on along
with changing the level of VM consolidation, host
power cap settings may cause the power budget to
be inefficiently allocated to hosts, impacting the
amount of powered-on computing capacity available
for a given power budget.

This paper presents CloudPowerCap, an autonomic
computing approach to power budget management in a
virtualized environment. CloudPowerCap manages the
power budget for a cluster of virtualized servers, dynami-
cally adjusting the per-host power caps for servers in the
cluster. It allocates the power budget in close coordina-
tion with a cloud resource management system, operating
in a manner consistent with the systems resource manage-
ment constraints and goals. To facilitate interoperability
between power cap and resource management, Cloud-
PowerCap maps a servers power cap to its CPU capac-
ity and coordinate with the resource management system
through well defined interfaces and protocols. The inte-
gration of power cap and resource management results in
the following novel capabilities in cloud management.

• Constraint satisfaction via power cap realloca-
tion: Dynamic power cap reallocation enhances the
systems capability to satisfy VM constraints, includ-
ing resource reservations and business rules.

• Power-cap-based entitlement balancing: Power
cap redistribution provides an efficient mechanism
to achieve entitlement balancing among servers to
provide fairness in terms of robustness to accom-
modate demand fluctuation. Power-cap- based enti-
tlement balancing can reduce or eliminate the need
for moving VMs for load balancing, reducing the
associated VM migration overhead.

• Power cap redistribution for power manage-
ment: CloudPowerCap can redistribute power caps
among servers to handle server power-off/on state
changes caused by dynamic power management.
Power cap redistribution reallocates the power bud-
get freed up by powered-off hosts, while reclaiming
budget to power-on those hosts when needed.

We have implemented and integrated CloudPowerCap
with VMware Distributed Resource Scheduler (DRS).
Evaluation based on an industrial cloud simulator demon-
strated the efficacy of integrated power budget and re-
source management in virtualized servers clusters.

2 Motivation

In this section, we motivate the problem CloudPowerCap
is intended to solve. We first describe the power model

mapping a host’s power cap to its CPU capacity, which
enables CloudPowerCap to integrate power cap manage-
ment with resource management in a coordinated fash-
ion. We next discuss some trade-offs in managing a rack
power budget. After a brief introduction of the resource
management model, we then provide several examples
of the value of combining dynamic rack power budget
management with a cloud resource management system.

2.1 CloudPowerCap Power Model

The power model adopted by CloudPowerCap maps the
power cap of the host to the CPU capacity of the host,
which is in turn managed by a resource management sys-
tem directly. A host’s power consumption Pconsumed is
commonly estimated by its CPU utilization U and the
idle Pidle and peak Ppeak power consumption of the host
via a linear function, which is validated by real-world
workloads in previous measurements and analysis [15, 6],

Pconsumed = Pidle +(Ppeak−Pidle)U. (1)

The power Pidle represents the power consumption of the
host when the CPU is idle. Pidle intentionally includes the
power consumption of the non-CPU components, such as
spinning disk, since in enterprise datacenter shared stor-
age is usually employed and their power draw does not
vary significantly with utilization. The power Ppeak repre-
sents the power consumption of the host when the CPU is
100% utilized at its maximum CPU capacity Cpeak, with
the CPU utilization U expressed as a fraction of the max-
imum capacity.

We note that the power estimate Pconsumed is an upper-
bound if a host power management technology such as
dynamic voltage and frequency scaling (DVFS) is used.
DVFS can deliver a percentage of maximum CPU ca-
pacity at a lower power consumption, e.g., DVFS could
deliver the equivalent of 50 percent utilization of a 2 GHz
maximum capacity processor at lower power consump-
tion by running the processor at 1 GHz with 100 percent
utilization. Computing Pconsumed as an upper bound is de-
sirable for the resource management use case, to ensure
sufficient power budget for worst case.

For a host power cap Pcap set below Ppeak, Equation (1)
can be used to solve for the lower-bound of the CPU
capacity Ccapped reachable at that power cap, i.e., the
host’s effective CPU capacity limit which we refer to
as its power-capped capacity. In this case, we rewrite
Equation (1) as:

Pcap = Pidle +(Ppeak−Pidle)(Ccapped/Cpeak). (2)
and then solve for Ccapped as:

Ccapped =Cpeak(Pcap−Pidle)/(Ppeak−Pidle). (3)

2

2.2 Managing a Rack Power Budget
To illustrate some trade-offs in managing a rack power
budget, we consider the case of a rack with a budget
of 8 KWatt, to be populated by a set of servers. Each
server has 34.8 GHz CPU capacity comprising 12 CPUs,
each running at 2.9 GHz, along with the other parameters
shown in Table 1.

CPU Memory Nameplate Peak Idle

34.8 GHz 96 GB 400 W 320 W 160 W

Table 1: The configuration of the server in the rack.

Given the power model presented in the previous sec-
tion and the servers in Table 1, the rack’s 8 KWatt power
budget can accommodate various deployments includ-
ing those shown in Table 2. Based on the 400 Watts
nameplate power, only 20 servers can be placed in the
rack. Instead setting each server’s power cap to its peak
attainable power draw of 320 Watts allows 25 percent
more servers to be placed in the rack. This choice maxi-
mizes the amount of CPU capacity available for the rack
power budget, since it best amortizes the overhead of the
servers’ powered-on idle power consumption. However,
if memory may sometimes become the more constrained
resource, the memory made available by placing addi-
tional servers in the rack may be critical. Setting each
server’s power cap to (say) 250 Watts allows 32 hosts to
be placed in the rack, significantly increasing the memory
available for the given power budget. Note that the addi-
tional hosts may also be desirable in use cases in which
a constraint on the number of powered-on VMs per host
has been set to limit the workload impact of a single host
failure.

By dynamically managing the host power cap values,
CloudPowerCap allows the kinds of trade-offs between
CPU and memory capacity illustrated in Table 2 to be
made at runtime according to the VMs’ needs.

Power
Cap(W) Count CPU Memory

Capa(GHz) Ratio Size(GB) Ratio

400 20 696 1.00 1920 1.00

320 25 870 1.25 2400 1.25

285 28 761 1.09 2688 1.40

250 32 626 0.90 3072 1.60

Table 2: Server deployments in a rack with 8 KWatt
power budget with different power caps

2.3 Resource Management Model
The comprehensive resource management system with
which CloudPowerCap is designed to interoperate com-

Host A Host B

VM 1

VM 2
VM 3

CC CC

Host A Host B

VM 1
VM 3

VM 2CC

(a) Enable VMs movement

Host A Host B

VM 2

VM 1

VM 3

CC CC

Host A Host B

VM 2 VM 3

VM 1CC

(b) Improve robustness

Host A

VM 1

Host B

VM 2

VM 3

CC CC

Host A

VM 1

Host B

VM 2

VM 3
CC

(c) Reduces overhead of entitlement balancing

Host A

VM 1

Host B

VM 2

CC CC

Host A

VM 1

VM 2

Host B

Stand-by

(d) Improves robustness after powering off a host

Host A

VM 1

VM 2

Host B

Stand-by

Host A

VM 1

Host B

VM 1

CC CC

(e) Balance robustness after powering on a host

Figure 1: Power cap distribution scenarios. Left-
hand figures correspond to hosts status before dis-
tribution; right-hand figures show hosts status after.
Power-capped capacity is not shown when the power
cap of the host equals its peak power. (CC: Power-
capped capacity)

3

putes each VM’s entitled resources and handles the on-
going location of VMs on hosts so that the VMs’ enti-
tlements can be delivered while respecting constraints,
providing resource headroom for demand bursts, and op-
tionally reducing power consumption.

CloudPowerCap interoperates with support for the fol-
lowing kinds of resource controls, used to express alloca-
tion in terms of guaranteed service-rate and/or relative
importance (assuming a mapping between service level
and delivered resources).

• Reservation: A reservation specifies the minimum
amount of CPU or memory resources guaranteed to
a VM, even if the cluster is over-committed. This
control is expressed in absolute units (e.g., MHz or
MB).

• Limit: A limit specifies the upper bound of CPU
or memory resources allocated to a VM, even if the
cluster is under-committed. This control is also ex-
pressed in absolute units.

• Shares: Shares specify relative importance and rep-
resent weights of resource allocation used if there is
resource contention.

Each VM’s CPU and memory resource entitlement is
computed according to its configuration and resource con-
trol settings, along with an estimate of its CPU and mem-
ory resource demand, a metric expressed in absolute units
that estimates the amount of CPU and memory the VM
would use to satisfy its workload if there were no con-
tention. To clarify the CPU entitlement model, a VM’s
entitlement indicates the amount of CPU capacity the
VM deserves to be given by the hypervisor over time in
a shared environment (assuming homogeneous hosts in
the cluster). To illustrate, if a server has an CPU capacity
of 4 GHz, it can (for example) accomodate 2 VMs, each
with an entitlement of 2 GHz.

CloudPowerCap interoperates with the following kinds
of operations to manage the ongoing location of VMs.

• VM Placement: VM placement involves initial
placement of VMs for power-on and relocation
of VMs for constraint correction to respect user-
defined business rules. During initial placement, hy-
pervisor hosts are selected to accomodate powering-
on VMs. User-defined business rules restrict VMs’
locations on physical hosts.

• Entitlement Balancing: Entitlement balancing re-
sponds to entitlement imbalance by migrating VMs
between hosts to avoid potential bottlenecks and en-
sure fairness on performance.

• Distributed Power Management: To optionally
reduce power consumption, the VMs distributed
across hosts may be consolidated on a subset of the
hosts, with the vacated hosts powered-off. Powered-
off hosts can subsequently be powered back on to
handle workload increases.

A number of cloud resource management systems, includ-
ing VMware Distributed Resource Scheduler (DRS), Mi-
crosoft System Center, and Xenserver [27] provide such
functionality, with proposals to include load balancing
and power management in OpenStack as well [26, 1].

2.4 Powercap Distribution Examples
We use several scenarios to illustrate how CloudPower-
Cap can redistribute host power caps to support cloud
resource management, including enabling VM migration
to correct constraint violations, providing spare resource
headroom for robustness in handling bursts, and avoiding
migrations during entitlement balancing. In these scenar-
ios, we assume a simple example of a cluster with two
hosts. Each host has an uncapped capacity of 2x3GHz
(two CPUs, each with a 3GHz capacity) with a corre-
sponding peak power consumption of 600W (values cho-
sen for ease of presentation).

Enforcing constraints: Host power caps should be re-
distributed when VMs are placed initially or relocated,
if necessary to allow constraints to be respected or con-
straint violations to be corrected. For example, a cloud
resource management system would move VM(s) from
a host violating affinity constraints to a target host with
sufficient capacity. However, in the case of static power
cap management, this VM movement may not be feasible
because of a mismatch between the VM reservations and
the host capacity. As shown in Figure 1a, host A and B
have the same power cap of 480 W, which corresponds
to a power-capped capacity of 4.8 GHz. Host A runs two
VMs, VM 1 with reservation 2.4 GHz and VM 2 with
reservation 1.2 GHz. And host B runs only one 3 GHz
reservation VM. When VM 2 needs to be colocated with
VM 3 due to a new VM-VM affinity rule between the two
VMs, no target host in the cluster has sufficient power-
capped capacity to respect their combined reservations.
However, if CloudPowerCap redistributes the power caps
of host A and B as 3.6 GHz and 6 GHz respectively, then
VM 2 can successfully be moved by the cloud resource
management system to host B to resolve the rule viola-
tion in the cluster. Note that host A’s capacity cannot be
reduced below 3.6 GHz until VM 1’s migration to host B
is complete or else the reservations on host A would be
violated.

Enhancing robustness to demand bursts: Even
when VM moves do not require changes in the host power
caps, redistributing the power caps can still benefit the
robustness of the hosts to handling VM demand bursts.
For example, as shown in Figure 1b, suppose as in the
previous example that VM 1 needs to move from host
A to host B because of a rule. In this case, a cloud re-
source management system can move VM 1 to host B
while respecting the VMs’ reservations. However, after
the migration of VM 1, the headroom between the power
capped capacity and VMs’ reservations is only 0.6 GHz

4

on host B, compared with 2.4 GHz on host A. Hence,
host B can only accommodate as high as a 15% work-
load burst without hitting the power cap while host A can
accommodate 100%, that is, host B is more likely to intro-
duce a performance bottleneck than host A. To handle this
imbalance of robustness between the two hosts, Cloud-
PowerCap can redistribute the power caps of host A and
B as 3.6 GHz and 6 GHz respectively. Now both hosts
have essentially the same robustness in term of headroom
to accommodate workload bursts.

Reduce overhead of VM migration: Before entitle-
ment balancing, power caps should be redistributed to
reduce the need for VM migrations. Load balancing of
the resources to which the VMs on a host are entitled is
a core component of cloud resource management since it
can avoid performance bottlenecks and improve system-
wide throughput. However, some recommendations to
migrate VMs for load balancing among hosts are unnec-
essary, given that power caps can be redistributed to bal-
ance workload, as shown in Fig 1c. In this example, the
VM on Host A has an entitlement of 1.8 GHz while the
VMs on host B have a total entitlement of 3.6 GHz. The
difference in entitlements between host A and B are high
enough to trigger entitlement balancing, in which VM 3
is moved from host B to host A. After entitlement bal-
ancing, host A and B have entitlements of 3 GHz and 2.4
GHz respectively, that is, the workloads of both hosts are
more balanced. However, VM migration has an overhead
cost and latency related to copying the VM’s CPU con-
text and in-memory state between the hosts involved [19],
whereas changing a host power cap involves issuing a
simple baseboard management system command which
completes in less than one millisecond [12]. CloudPow-
erCap can perform the cheaper action of redistributing
the power caps of hosts A and B, increasing host B’s
power capped capacity to 6 GHz after decreasing host
A’s power capped capacity to 3.6 GHz, which also results
in more balanced entitlements for host A and B. In gen-
eral, the redistribution of power caps before entitlement
balancing, called powercap based entitlement balancing,
can reduce or eliminate the overhead associated with VM
migration for load balancing, while introducing no com-
promise in the ability of the hosts involved to satisfy the
VMs’ resource entitlements. We note that the goal of en-
titlement balancing is not absolute balance of workload
among hosts, which may not be possible or even worth-
while given VM demand variability, but rather reducing
the imbalance of hosts’ entitlements below a predefined
threshold [9].

Adapting to host power on/off: Power caps should
be redistributed when cloud resource management pow-
ers on/off host(s) to improve cluster efficiency. A cloud
resource management system detects when there is ongo-
ing under-utilization of cluster host resources leading to
power-inefficiency due to the high host idle power con-

sumption, and it consolidates workloads onto fewer hosts
and powers the excess hosts off. In the example shown
in Figure 1d, host B can be powered off after VM 2 is
migrated to host A. However, after host B is powered-off,
it does not consume power and hence does not need its
power cap. And the utilization of host A is increased
due to migrated VM 2, which impacts the capacity head-
room of host A. Power cap redistribution after powering
off host B can increase the power cap of host A to 6
GHz, allowing the headroom of host A to increase to 3
GHz and hence increase system robustness and reduce
the likelihood of resource throttling. Similarly, power-
cap redistribution can improve robustness when resource
management powers on hosts.

On the other hand, if there are overloaded hosts in the
cluster, cloud resource management powers on stand-by
hosts to avoid performance bottlenecks as seen in Fig-
ure 1e. Due to dynamic power cap management, active
hosts can fully utilize the cluster power cap for robust-
ness. So a host to be powered-on may not have enough
power cap to run VMs migrated to it with suitable ro-
bustness. CloudPowerCap can handle this issue by re-
distributing the power cap among the active hosts and
the host exiting standby appropriately. For example, as
shown in Figure 1e, host B is powered on because of
the high utilization of host A, and can only acquire 3.6
GHz power-capped capacity due to the limit of the cluster
power budget. If VM 2 migrates to the host B to offload
the heavy usage of host A, the headroom of the host B
will only be 1.2 GHz, contrasting to the headroom of host
A, which is 3.6 GHz. However, after power cap redistri-
bution, the power caps of host A and B can be assigned
to 4.8 GHz respectively, balancing the robustness of both
hosts.

3 CloudPowerCap Design

In this section, we first present the design principles of
CloudPowerCap. We then give an overview of the opera-
tion of CloudPowerCap.

CloudPowerCap is designed to provide power budget
management to existing resource management systems,
in such a way as to support and reinforce such systems’
design and operation. Such resource management sys-
tems are designed to satisfy VMs’ resource entitlements
subject to a set of constraints, while providing balanced
headroom for demand increases and, optionally, reduced
power consumption. CloudPowerCap improves the op-
eration of resource management systems, via power cap
allocation targeted to their operation.

Existing resource management systems typically in-
volve nontrivial complexity. Fundamentally reimplement-
ing them to handle hosts of varying capacity due to power
caps would be difficult and the benefit of doing so is un-
clear, given the coarse-grained scales at which cloud re-

5

source management systems operate. In CloudPowerCap,
we take the practical approach of introducing power bud-
get management as a separate manager that coordinates
with an existing resource management system such that
the existing system works on hosts of fixed capacity, with
specific points at which that capacity may be modified by
CloudPowerCap in accordance with the existing system’s
operational phase. Our approach therefore enhances mod-
ularity by separating power cap and resource manage-
ment, while coordinating them effectively through well
defined interfaces and protocols, as described below.

CloudPowerCap is designed to work with a cloud re-
source management system with the attributes described
in Section 2.3. Since the aim of CloudPowerCap is to
enforce the cluster power budget while dynamically man-
aging hosts’ power caps by closely coordinating with
the cloud resource management system, CloudPowerCap
consists of three components, as shown in Figure 2, cor-
responding to the three major functions of the cloud re-
source management system. The three components, cor-
responding to main components in DRS, execute step by
step and work on two-way interaction with components
in DRS.

Constraints Correction Powercap Allocation

Entitlement Balancing Powercap-based
Entitlement Balancing

Dynamic Power
Management

Powercap Re-
distribution

InteractionWorkflow

DRS CloudPowerCap

Figure 2: Structure and two-way interaction of
CloudPowerCap working with DRS and DPM.

Powercap Allocation: During the powercap alloca-
tion phase, potential resource management constraint cor-
rection moves may require redistribution of host power
caps. Because CloudPowerCap can redistribute the host
power caps, the cloud resource management system is
able to correct more constraint violations than would be
possible with statically-set host power caps.

Powercap-based Entitlement Balancing: If the re-
source management system detects entitlement imbal-
ance over the user-set threshold, powercap based entitle-
ment balancing first tries to reduce the imbalance, by re-
distributing power caps without actually migrating VMs
between hosts. This is valuable because redistributing
power caps, which takes less than 1 millisecond [12],
is cheaper than VM live migration in terms of overhead.
VM live migration engenders CPU and memory overhead
on both the source and target hosts to send the VM’s vir-

tual device state, to update its external device connections,
to copy its memory one or more times to the target host
while tracing the memory to detect any writes requiring
recopy, and to make the final switchover [22]. While the
migration cost may be transparent to the VMs if there is
sufficient host headroom, reducing or avoiding the cost
when possible increases efficiency. Powercap Balancing
may not be able to fully address imbalance due to inher-
ent physical host capacity limits. If powercap balancing
cannot reduce the imbalance below the imbalance thresh-
old, the resource management entitlement balancing can
address the remaining imbalance by VM migration.

Powercap Redistribution: If the resource manage-
ment system powers on a host to match a change in
workload demands or other requirements, CloudPower-
Cap performs a two-pass power cap redistribution. First it
attempts to re-allocate sufficient power cap for that host
to power-on. If that is successful and if the system se-
lects the host in question after its power-on evaluation,
then CloudPowerCap redistributes the cluster power cap
across the updated hosts, to address any unfairness in the
resulting power cap distribution. Similarly, if the system
powers off a host, its powercap can be redistributed fairly
to the remaining hosts after the host power-off operation.

4 CloudPowerCap Implementation

We implemented CloudPowerCap to work with the
VMware Distributed Resource Scheduler (DRS) [20]
along with its optional Distributed Power Management
(DPM) [21] feature, though as we noted in Section 2.3,
CloudPowerCap could also complement some other dis-
tributed resource management systems for virtualiza-
tion environments. In this section, we first present an
overview of DRS and then detail the design of each
CloudPowerCap component and its interaction with its
corresponding DRS component.

4.1 DRS Overview
VMware DRS performs resource management for a clus-
ter of ESX hypervisor hosts. It implements the features
outlined in Section 2.3. By default, DRS is invoked ev-
ery five minutes. It evaluates the state of the cluster and
considers recommendations to improve that state by ex-
ecuting those recommendations in a what-if mode on an
internal representation of the cluster. At the end of each
invocation, DRS issues zero or more recommendations
for execution on the actual cluster.

At the beginning of each DRS invocation, DRS runs
a phase to generate recommendations to correct any
cluster constraint violations by migrating VMs between
hosts. Examples of such corrections include evacuating
hosts that the user has requested to enter maintenance
or standby mode and ensuring VMs respect user-defined

6

affinity and anti-affinity business rules. Constraint correc-
tion aims to create a constraint compliant snapshot of the
cluster for further DRS processing.

DRS next performs entitlement balancing. DRS em-
ploys normalized entitlement as the load metric of each
host. Denoted by Nh, normalized entitlement is defined
as the sum of the per-VM entitlements Ei for each VM
running on the host h, divided by the capacity of the host,
Ch, i.e., Nh = ∑Ei

Ch
. DRS’s entitlement balancing algo-

rithm uses a greedy hill-climbing technique with the aim
of minimizing the overall cluster entitlement imbalance
(i.e., the standard deviation of the hosts’ normalized enti-
tlements). DRS chooses as each successive move the one
that reduces imbalance most, subject to a risk-cost-benefit
filter on the move. The risk-cost-benefit filter considers
workload stability risk and VM migration cost versus the
increased balance benefit given the last 60 minutes of VM
demand history. The move-selection step repeats until ei-
ther the load imbalance is below a user-set threshold, no
beneficial moves remain, or the number of moves gener-
ated in the current pass hits a configurable limit based on
an estimate of the number of moves that can be executed
in five minutes.

DRS then optionally runs DPM, which opportunisti-
cally saves power by dynamically right-sizing cluster ca-
pacity to match recent workload demand, while respect-
ing the cluster constraints and resource controls. DPM
recommends evacuating and powering off host(s) if the
cluster contains sufficient spare resources, and powering
on host(s) if either resource demand increases appropri-
ately or more resources are needed to meet cluster con-
straints.

4.2 Powercap Allocation
Powercap Allocation redistributes power caps if needed
to allow DRS to correct constraint violations. DRS’s abil-
ity to correct constraint violations is impacted by host
power caps, which can limit the available capacity on tar-
get hosts. However, as shown in Fig 1a, by increasing
the host power cap, the DRS algorithm can be more ef-
fective in correcting constraint violations. Hence to aid
DRS constraint correction, Powercap Allocation supports
redistributing the cluster’s unreserved power budget, i.e.,
the amount of power not needed to support running VMs’
CPU and memory reservations. The unreserved power
budget represents the maximum amount of power cap
that can be redistributed to correct violations; insufficient
unreserved power budget prevents the correction of con-
straint violations.

CloudPowerCap and DRS work in coordination, as
shown in Figure 3, to enhance the system’s capability
to correct constraints violations.

1) Powercap Allocation first calls GetFlexiblePower to
get flexiblePower, which is a special clone of the

Constraints
Correction

Powercap
Allocation

DRS CloudPowerCap

Cluster Snapshot

1
GetFlexiblePower

2
ConstraintsCorrection3

MigrateVMs

4
RedivvyPowerCap

5
SetPowerCap

Figure 3: Coordination between CloudPowerCap
and DRS to correct constraints. Solid arrows indi-
cate invocations of CloudPowerCap functions while
dashed arrows indicate invocations of DRS functions.

current cluster snapshot in which each host’s host
power cap is set to its reserved power cap, i.e., the
minimum power cap needed to support the capacity
corresponding to the reservations of the VMs cur-
rently running on that host.

2) The flexiblePower is used as a parameter to call
ConstraintsCorrection function in DRS, which rec-
ommends VM migrations to enforce constraints
and update hosts’ reserved power caps for the new
VM placements after the recommended migrations.
Then DRS generates an action plan for migrating
VMs.

3) As a result of performing ConstraintsCorrection,
DRS generates VM migration actions to correct con-
straints. Note that when applying VMs migration
actions on hosts in the cluster, dependencies are re-
spected between these actions and any prerequisite
power cap setting actions generated by CloudPower-
Cap.

4) If some constraints are corrected by DRS, the power
caps of source and target hosts may need to be reallo-
cated to ensure fairness. For this case, RedivvyPow-
erCap of CloudPowerCap is called to redistribute
the power cap.

5) Finally Powercap Allocation generates actions to set
the power cap of hosts in the cluster according to the
results of RedivvyPowerCap.

The key function in Powercap Allocation is Redivvy-
PowerCap, in which the unreserved power budget is re-
distributed after the operations for constraint violation
correction. The inputs to this function are S (the current
snapshot of the cluster) and updated snapshot F (after
the constraint correction recommended by DRS). The ob-
jective of RedivvyPowerCap is to distribute the cluster
power budget according to proportional resource shar-
ing [23] for maintaining fairness of unreserved power
budget distribution across hosts after the constraint cor-
rection. The actions to change host power cap on hosts

7

are also generated if the hosts need more power cap than
those in S or less power cap without violating VM reser-
vation. Note these sets of power cap changes are made
appropriately dependent on the actions generated by DRS
to correct the constraint violations.

Algorithm 1 Powercap Allocation

S,F : cluster snapshots before and after constraints correc-

tion;

Ci,S,Ci,F power cap of the host hi in S and F ;

1: function REDIVVYPOWERCAP(S,F)

2: Cneeded ← 0, Cexcess ← 0

3: for each host hi in the cluster do
4: if Ci,F >Ci,S then
5: SetPowerCap(hi, Ci,F)

6: Cneeded ←Cneeded +(Ci,F −Ci,S)
7: else
8: Cexcess ←Cexcess +(Ci,S−Ci,F)
9: end if

10: end for
11: if Cneeded > 0 then
12: r←Cneeded/Cexcess
13: for each host hi in the cluster do
14: if Ci,F ≤Ci,S then
15: Ci,F ←Ci,F + r(Ci,S−Ci,F) �

Proportional sharing
16: SetPowerCap(hi, Ci,F)

17: end if
18: end for
19: end if
20: end function

4.3 Entitlement Balancing

Entitlement balancing is critical for systems managing
distributed resources, to deliver resource entitlements
and improve the responsiveness to bursts in resource de-
mand, and is achieved by migrating VMs between hosts.
For resource management systems like DRS without the
concept of dynamic host capacity, entitlement balancing
achieves both of these goals by reducing imbalance via
migrating VMs between hosts. However, with dynamic
power cap management, CloudPowerCap can alleviate
imbalance by increasing the power caps of heavy loaded
hosts while reducing the power caps of lightly loaded
hosts rather than migrating VMs between those hosts as
shown in Figure 1c. Considering the almost negligible
overhead of power cap reconfiguration comparing to VM
migration, Powercap-based Entitlement Balancing is pre-
ferred to DRS entitlement balancing when the cluster is
imbalanced. However, because power cap adjustment has
a limited range of operation, Powercap-based Entitlement
Balancing may not fully eliminate imbalance in the clus-
ter. But the amount of VM migration involved in DRS
entitlement balancing can be reduced significantly.

Entitlement
Balancing

Powercap-based
Entitlement Balancing

DRS CloudPowerCap

Cluster Snapshot

1
GetBalanceMetric 2

BalancePowerCap

3
SetPowerCap

4
EntitlementBalancing

5
MigrateVMs

Figure 4: Work flow of Powercap-based Entitlement
Balancing and its interaction with DRS entitlement
balancing. Solid arrows indicate invocations of Cloud-
PowerCap functions while dashed arrows indicate in-
vocations of DRS functions.

The process of powercap based entitlement balancing
and its interaction with DRS load balancing are shown in
Figure 4.

1) To acquire the status of entitlement imbalance of the
cluster, Powercap-based Entitlement Balancing first
calculates the DRS imbalance metric for the cluster
(i.e., the standard deviation of the hosts’ normalized
entitlements).

2) Then Powercap-based Entitlement Balancing tries
to reduce the entitlement imbalance among hosts by
adjusting their power caps in accordance with their
normalized entitlements.

3) If Powercap-based Entitlement Balancing is able to
impact cluster imbalance, its host power cap redis-
tribution actions are added to the recommendation
list, with the host power cap reduction actions being
prerequisites of the increase actions.

4) If Powercap-based Entitlement Balancing has not
fully balanced the entitlement among the hosts, DRS
entitlement balancing is invoked on the results of
Powercap-based Entitlement Balancing to reduce en-
titlement imbalance further.

5) DRS may generate actions to migrate VMs.

The sketch of the key function BalancePowerCap in
Powercap-base Entitlement Balancing is shown in Algo-
rithm 2, which was developed along the lines of progres-
sive filling to achieve max-min fairness [3]. The algo-
rithm progressively increases the host power cap of the
host(s) with highest normalized entitlement while pro-
gressively reducing the host power cap of the host(s) with
lowest normalized entitlement . This process is repeated
until either the DRS imbalance metric crosses the balance
threshold or any of the host(s) with highest normalized
entitlement reach their peak capacity and hence further
reduction in overall imbalance is limited by those hosts.

8

Algorithm 2 Powercap-based Entitlement Balancing

S,F: cluster snapshot before and after Powercap Based

Entitlement Balancing

h, l: hosts with highest and lowest normalized entitlement

Ĉi: peak capacity of the host i
C̄i : capacity of the host i corresponding to average normal-

ized entitlement of the cluster

1: function BALANCEPOWERCAP(S)

2: F ← S, pcBal← false

3: while Cluster is imbalanced do
4: Choose h and l from the cluster

5: Cneeded ← min(Ĉh,C̄h)−Ch
6: Cavail ←Cl −C̄l
7: if Cneeded = 0 or Cavail = 0 then
8: break � Then invoke DRS entitlement

balancing
9: else

10: pcBal← true

11: end if
12: Add Cavail to h and reduce Cneeded from l
13: Recompute cluster balance metric on F
14: end while
15: if pcBal = true then
16: Set power cap of hosts according to F
17: end if
18: return F
19: end function

4.4 Powercap Redistribution

Powercap Redistribution responds to DPM dynamically
powering on/off hosts. When CPU or memory utilization
becomes high, DPM recommends powering on hosts and
redistributing the VMs across the hosts to reduce per-host
load. Before the host is powered on, Powercap Redistri-
bution ensures that sufficient power cap is assigned to the
powering-on host. On the other hand, when both CPU
and memory utilization are low for a sustained period,
DPM may recommend consolidating VMs onto fewer
hosts and powering off the remaining hosts to save en-
ergy. In this case, Powercap Redistribution distributes
the power caps of the powered-off hosts among the active
hosts to increase their capacity.

DPM Powercap
Redistribution

DRS CloudPowerCap

Cluster Snapshot

1
GetUtilization

2
RedistributePowerCap

3
TryPowerOnHost 5

SetPowerCap

4
PowerOnHosts

Figure 5: Coordination between CloudPowerCap
and DRS and DPM in response to power on/off hosts.
Solid arrows indicate to invoke CloudPowerCap func-
tions while dashed arrows indicate to invoke DRS
functions.

The coordination between Powercap Redistribution
and DPM when DPM attempts to power on a host is de-
picted in Figure 5.

1) If there is sufficient unreserved cluster power budget
to set the target host’s power cap to peak, the host
obtains its peak host power cap from the unreserved
cluster power budget and no power cap redistribu-
tion is needed.

2) If the current unreserved cluster power budget is not
sufficient, RedistributePowerCap is invoked to al-
low the powering-on candidate host to acquire more
power from those hosts with lower CPU utilization.

3) DPM decides whether to power on the candidate
host given its updated power cap after redistribution
and its ability to reduce host high utilization in the
cluster.

4) If the host is chosen for power-on, the normal DPM
function is invoked to generate the action plan for
powering on the host.

5) If DPM decides to recommend the candidate power-
on, any needed host power cap changes are recom-
mended as prerequisites to the host power-on.

The algorithm of redistributing power caps is straight-
forward. To acquire sufficient power caps to power on
a host, the hosts with lower utilization have their power
caps reduced under the constraint of not causing those
hosts to enter the high utilization range that would trigger
DPM to power on another host.

When a host is being considered for powering-off, the
portion of its host power cap currently above its utiliza-
tion could be made available for redistribution to other
powered-on hosts whose host power caps are below peak,
providing more target capacity for evacuating VMs.

9

4.5 Implementation Details
We implemented CloudPowerCap on top of VMware’s
production version of DRS. Like DRS, CloudPowerCap
is written in C++. The entire implementation of Cloud-
PowerCap comprises less than 500 lines of C++ code,
which demonstrates the advantage of instantiating power
budget management as a separate module that coordi-
nates with an existing resource manager through well-
defined interfaces.

As described previously in this section, DRS operates
on a snapshot of the VM and host inventory it is man-
aging. The main change we made for DRS to interface
with CloudPowerCap was to enhance the DRS method for
determining a host’s CPU capacity to reflect the host’s
current power cap setting in the snapshot. Other small
changes were made to support the CloudPowerCap func-
tionality, including specifying the power budget, intro-
ducing a new action that DRS could issue for changing a
host’s power cap, and providing support for testability.

During CloudPowerCap initialization, for each host,
the mapping between its current power cap and its effec-
tive capacity is established by the mechanisms described
in Section 2.1. For a powered-on host, the power cap
value should be in the range between the host’s idle and
peak power. When computing power-capped capacity of
a host based on the power model (3), it is important to
ensure that the capacity reserved by the hypervisor on the
host is fully respected. Hence, the power-capped capacity
Cmcapped managed by the resource management system,
i.e., managed capacity, is computed as:

Cmcapped =Ccapped−CH , (4)
where the power-capped raw capacity Ccapped is com-
puted using Equation (1) and CH is the capacity reserved
by the hypervisor.

The implementation of Powercap Allocation entailed
updating corresponding DRS methods to understand that
a host’s effective capacity available for constraint cor-
rection could be increased using the unreserved power
budget, and adding a powercap redivvy step optionally
run at the end of the constraint correction step. Power-
cap Balancing, which leverages elements of the powercap
redivvying code, involved creating a new method to be
called before the DRS balancing method. Powercap Re-
distribution changed DPM functions to consider whether
to turn on/off hosts based not only on utilization but also
on the available power budget.

5 Evaluation

In this section, we evaluate CloudPowerCap in the DRS
simulator under three interesting scenarios. The first ex-
periment evaluates CloudPowerCap’s capability to rebal-
ance normalized entitlement among hosts while avoiding
the overhead of VM migration. The second experiment
shows CloudPowerCap reallocates the power budget of a

powered-off host to allow hosts to handle demand bursts.
The third experiment shows how CloudPowerCap allows
CPU and memory capacity trade-offs to be made at run-
time. This experiment includes a relatively large host
inventory to show the capacity trade-offs at scale.

In these experiments, we compare CloudPowerCap
against two baseline approaches of power cap manage-
ment: StaticHigh and Static. Both approaches assign
equal power cap to each host in the cluster at the be-
ginning and maintain those power caps throughout the
experiment. StaticHigh sets power cap of the host to its
peak power, maximizing throughput of CPU intensive ap-
plications. However for applications in which memory
or storage become constrained resources, it can be ben-
eficial to support more servers to provision more mem-
ory and storage. Hence in Static, the power cap of a
host is intentionally set lower than the peak power of the
host. Compared with StaticHigh, more servers may be
placed with Static to enhance the throughput of applica-
tions with memory or storage as constrained resources.
However both approaches lack the capability of flexible
power cap allocation to respond to workload spikes and
demand variation.

5.1 DRS Simulator

The DRS simulator [8] is used in developing and testing
all DRS algorithm features. It provides a realistic execu-
tion environment, while allowing much more flexibility
and precision in specifying VM demand workloads and
obtaining repeatable results than running on real hard-
ware.

The DRS simulator simulates a cluster of ESX hosts
and VMs. A host can be defined using parameters in-
cluding number of physical cores, CPU capacity per core,
total memory size, and power consumption at idle and
peak. A VM can be defined in terms of number of con-
figured virtual CPUs (vCPUs) and memory size. Each
VM’s workload can be described by an arbitrary func-
tion over time, with the simulator generating CPU and
memory demand for that VM based on the specification.

Given the input characteristics of ESX hosts and the
VMs’ resource demands and specifications, the simula-
tor mimics ESX CPU and memory schedulers, allocating
resources to the VMs in a manner consistent with the be-
havior of ESX hosts in a real DRS cluster. The simulator
supports all the resource controls supported by the real
ESX hosts. The simulator calculates VMs migration cost
in accordance with several realistic factors, for example,
VMs’ read/write memory access and the available I/O
and network bandwidth. The simulator also models the
ESX hypervisor CPU and memory overheads.

The simulator is able to estimate the power consump-
tion of the ESX hosts based on the power model given
in Equation (1) in Section 2.2. For this work, the sim-

10

ulator was updated to respect the CPU capacity impact
associated with a host’s power cap.

5.2 Headroom Rebalancing

CloudPowerCap can reassign power caps to balance head-
room for bursts, providing a quick response to workload
imbalance due to VM demand changes. Such reassign-
ment of power caps can improve robustness of the cluster
and reduce or avoid the overhead of VM migration for
load balancing. To evaluate impact of CloudPowerCap on
headroom balancing, we perform an experiment in which
30 VMs, each with 1vCPU and 8GB memory, run on 3
hosts with the configuration shown in Table 1. Figures 6a
and 6b plot the simulation results under CloudPowerCap
and Static with a static power cap allocation of 250W per
host, respectively. Initially, at time 0 seconds, the VMs
are each executing similar workloads of 1 GHz CPU and
2 GB memory demand, and are evenly distributed across
the hosts. At time 750 seconds, the VMs on one host
spike to 2.4 GHz demand, thereby increasing the demand
on that host above its power-capped capacity. When DRS
is next invoked at time 900 seconds (running every 300
seconds by default), its goal is to rebalance the hosts’
normalized entitlements. Under the static power cap,
DRS migrates the VMs to balance the normalized entitle-
ments. In contrast, CloudPowerCap reassigns the hosts’
power caps to reduce the caps on the light-loaded hosts
(to 215W) and increase them on the heavy-loaded host
(to 320W). This addresses the host overutilization and
imbalance without requiring vMotion latency and over-
head, which is particularly important in this case, since
the overhead further impacts the workloads running on
the overutilized host. At time 1400 seconds, the 2.4 GHz
VM demand spike ceases, and those VMs resume running
at their original 1 GHz demand until the experiment ends
at time 2100 seconds. Again, CloudPowerCap avoids the
need for migrations by reassigning the host power caps
to their original values. In contrast, Static performs two
DRS entitlement balancing phases and migrates several
VMs at time 900 seconds and 1500 seconds.

 0 750 900 1400 1500
0

10

20

30

40

C
a

p
a

c
ity

 (
G

H
z)

Time (s)

Clipped VM demand
Power capped capacity
Satisfied VM demand

(a) CloudPowerCap

 0 750 900 1400 1500
0

10

20

30

40

C
a

p
a

c
ity

 (
G

H
z)

Time (s)

Clipped VM demand
Power capped capacity
Satisfied VM demand

(b) Static

Figure 6: Headroom balancing on a group of 3 hosts.
Hosts are grouped at each event time.

CPU Payload Ratio vMotion

CPC 0.99 0

Static 0.89 7

StaticHigh 1.00 0

Table 3: CloudPowerCap (CPC) rebalancing without
migration overhead

Table 3 compares the CPU payload delivered to the
VMs under CloudPowerCap, Static using 250W static
host power caps, as well as StaticHigh using the power
caps equivalent to the peak capacity of the host. For
Static, the vMotion CPU overhead has a significant over-
all impact on the CPU payload delivered to the VMs be-
cause the host is overutilized during the burst and the
cycles needed for vMotion directly impact those avail-
able for VM use. For CloudPowerCap, there is a rela-
tively small impact to performance after the burst and be-
fore DRS can run CloudPowerCap to reallocate the host
power caps. The power cap setting operation itself can be
executed by the host within 1 millisecond and introduces
minor payload overhead.

5.3 Standby Host Power Reallocation
CloudPowerCap can reallocate standby hosts’ power cap
to increase the capacity of powered-on hosts and thereby
their efficiency and ability to handle bursts. To demon-
strate this, we consider the same initial setup in terms of
hosts and VMs as in the previous experiment. In this case,
all VMs are running a similar workload of 1.2 GHz and
2 GB memory demand. At time 750 seconds, each VM’s
demand reduces to 400 MHz, and when DRS is next in-
voked at time 900 seconds, DPM recommends that the
VMs be consolidated onto two hosts and that another host
is powered-off. After the host has been evacuated and
powered-off at time 1200 seconds, CloudPowerCap reas-
signs its power cap to 0 and reallocates the rack power
budget to the two remaining hosts, setting their power
caps to 320W each. At time 1400 seconds, there is an un-
expected spike. In the case of statically-assigned power
caps, the host that was powered-off is powered back on to
handle the spike, but in the CloudPowerCap case, the ad-
ditional CPU capacity available on the 2 remaining hosts
given their 320 W power caps is sufficient to handle this
spike and the powered-off host is not needed.

CPU Payload Ratio vMotion Power Ratio

CPC 1.00 10 1.00

Static 0.98 19 1.36

StaticHigh 1.00 10 1.00

Table 4: CloudPowerCap (CPC) reallocating standby
host power

Table 4 compares the CPU payload in cycles delivered

11

to the VMs for CloudPowerCap, Static, and StaticHigh.
In this case, a number of additional vMotions are needed
for Static, but the overhead of these vMotions does not
significantly impact the CPU payload, because there is
plenty of headroom to accomodate this overhead. How-
ever, Static consumes much more power than the other
2 cases, since powering the additional host back on and
repopulating it consumes significant power. In contrast,
CloudPowerCap is able to match the power efficiency of
the baseline, by being able to use peak capacity of the
powered-on hosts.

5.4 Flexible Resource Capacity
CloudPowerCap supports flexible use of power to allow
trade-offs between resource capacities to be made dynam-
ically. To illustrate such a trade-off at scale, we consider
a cluster of hosts as described in Section 2.1. We model
the situation in which the cluster is used to run both pro-
duction trading VMs and production hadoop compute
VMs. The trading VMs are configured with 2 vCPUs
and 8 GB and they are idle half the day (off-prime time),
and they run heavy workloads of 2x2.6 GHz and 7 GB
demand the other half of the day (prime time). They
access high-performance shared storage and hence are
constrained to run on hosts with access to that storage,
which is only mounted on 8 hosts in the cluster. The
hadoop compute VMs are configured with 2 vCPUs and
16 GB and each runs a steady workload of 2x1.25 GHz
and 14 GB demand. They access local storage and hence
are constrained to run on their current hosts and cannot
be migrated. During prime time, the 8 servers running
the trading VMs do not receive tasks for the hadoop VMs
running on those servers; this is accomplished via an elas-
tic scheduling response to the reduced available resources
[25]. Figure 7 shows the simulation results of the clus-
ter under CloudPowerCap and the Static configuration of
power caps.

Prime time Off−prime time
0

0.5

1

1.5

C
a

p
a

c
ity

 R
a

tio Trading

Hadoop

Trading

Hadoop

Clipped VM demand
Power capped capacity
Satisfied VM demand

(a) CloudPowerCap

Prime time Off−prime time
0

0.5

1

1.5

C
a

p
a

c
ity

 R
a

tio

Trading

Hadoop TradingHadoop

Clipped VM demand
Power capped capacity
Satisfied VM demand

(b) Static

Figure 7: Trade-offs between dynamic resource ca-
pacities. Trading indicates a group of servers run-
ning production trading VMs while Hadoop repre-
sents servers run production Hapdoop compute VMs.

Table 5 compares the CPU and memory payload de-
livered for three scenarios, and shows the impact on the

trading VMs. The staticHigh scenario involves deploying
25 servers with power caps of 320 W, which immediately
and fully supports the trading VMs prime time demand
but limits the overall available memory and local disks
in the cluster associated with the 25 servers. The Static
scenario instead involves deploying 32 servers with each
host power cap statically set to 250 Watts. This scenario
allows more memory and local disks to be accessed, in-
creasing the overall CPU and memory payload delivered
because more hadoop work can be accomplished, but lim-
its the peak CPU capacity of each host, meaning that the
trading VMs run at only 62 percent of their prime time de-
mand. With CloudPowerCap, the benefits to the hadoop
workload of the static scenario are retained, but the power
caps of the hosts running the trading VMs can be dynam-
ically increased, allowing those VMs’ full prime time
demand to be satisfied.

CPU Ratio Mem Ratio Trading Ratio

CPC 1.24 1.28 1.00

Static 1.21 1.28 0.62

StaticHigh 1.00 1.00 1.00

Table 5: CloudPowerCap (CPC) enabling flexible re-
source capacity. Trading ratio indicates the ratio that
production trading VMs demands in prime time are
satisfied.

6 Related Work

Several research projects have considered power cap man-
agement for virtualized infrastructure [18, 16, 14, 24, 17].
Among them, the research most related to our work
is [17], in which authors proposed VPM tokens, an ab-
straction of changeable weights, to support power bud-
geting in virtualized environment. Like our work, VPM
tokens enables shifting power budget slack which corre-
sponds to headroom in this paper, between hosts. How-
ever the power cap management system based on VPM
tokens are independent of resource management systems
and may generate conflicting actions without coordina-
tion mechanisms.

In contrast, interoperating with a cloud resource man-
agement system like DRS also allows CloudPowerCap
to support interesting additional features: 1) CloudPow-
erCap accommodates consolidation of physical servers
caused by dynamic power management while previous
work assumed a fixed working server set, 2) CloudPower-
Cap is able to handle and facilitate VM migration caused
by correcting constraints imposed on physical servers and
VMs, 3) CloudPowerCap can also deal with and enhance
power cap management in the presence of load balancing.
In most previous work, only part of these features are
provided.

12

The authors of [18] describe managing performance
and power management goals at server, enclosure, and
data center level and propose handling the power cap
hierarchically across multiple levels. Optimization and
feedback control algorithms are employed to coordinate
the power management and performance indices for en-
tire clusters. In [24], the authors build a framework to
coordinate power and performance via Model Predictive
Control through DVFS (Dynamic Voltage and Frequency
Scaling). To provide power cap management through the
VMs management layer, [16] proposed throttling VM
CPU usage to respect the power cap. In their approach,
feedback control is also used to enforce the power cap
while maintaining system performance. Similarly, the
authors in [14] also discussed data center level power
cap management by throttling VM resource allocation.
Like [18], they also adopted a hierarchical approach to
coordinate power cap and performance goals.

While all of these techniques attempt to manage both
power and performance goals, their resource models for
the performance goals are incomplete in various ways.
For example, none of the techniques support guaranteed
SLAs (reservations) and fair share scheduling (shares).
Some build a feedback model needing application-level
performance metrics acquired from cooperative clients,
which is rare especially in public clouds [2].

7 Conclusion

Many modern data centers have underutilized racks.
Server vendors have recently introduced support for per-
host power caps, which provide a server-enforced limit
on the amount of power that the server can draw, improv-
ing rack utilization. However, this approach is tedious
and inflexible because it needs involvement of human op-
erators and does not adapt in accordance with workload
variation. This paper presents CloudPowerCap to man-
age a cluster power budget for a virtualized infrastructure.
In coordination with resource management, CloudPow-
erCap provides holistic and adaptive power budget man-
agement framework to support service level agreements,
fairness in spare power allocation, entitlement balancing
and constraint enforcement.

References
[1] BELOGLAZOV, A., AND BUYYA, R. OpenStack Neat: A Frame-

work for Dynamic Consolidation of Virtual Machines in Open-
Stack Clouds - A Blueprint. Tech. rep., CLOUDS-TR-2012-4,
The University of Melbourne, 2012.

[2] BEN-YEHUDA, O. A., BEN-YEHUDA, M., SCHUSTER, A.,
AND TSAFRIR, D. The resource-as-a-service (RaaS) cloud. In
HotCloud’12 (2012).

[3] BERTSEKAS, D., GALLAGER, R., AND HUMBLET, P. Data
networks. Prentice-Hall, 1992.

[4] DAVIS, J., RIVOIRE, S., AND GOLDSZMIDT, M. Star-Cap: Clus-
ter Power Management Using Software-Only Models. Tech. rep.,
MSR-TR-2012-107, Microsoft Research, 2012.

[5] DELL INC. Dell Energy Smart Management.

[6] FAN, X., WEBER, W.-D., AND BARROSO, L. A. Power pro-
visioning for a warehouse-sized computer. SIGARCH Comput.
Archit. News 35, 2 (June 2007), 13–23.

[7] GARTNER RESEARCH. Shrinking Data Centers: Your Next Data
Center Will Be Smaller Than You Think.

[8] GULATI, A., HOLLER, A., JI, M., SHANMUGANATHAN, G.,
WALDSPURGER, C., AND ZHU, X. VMware Distributed Re-
source Management: Design, Implementation, and Lessons
Learned. VMware Technical Journal (Mar 2012).

[9] GULATI, A., SHANMUGANATHAN, G., HOLLER, A., AND AH-
MAD, I. Cloud-scale resource management: challenges and tech-
niques. In HotCloud (2011).

[10] HAMILTON, J. Overall data center costs.

[11] HEWLETT-PACKARD, INTEL, MICROSOFT, PHOENIX, AND

TOSHIBA. Advanced Configuration and Power Interface Spec-
ification. Tech. rep., 2011.

[12] HP INC. HP Power Capping and HP Dynamic Power Capping
for Proliant Servers.

[13] IBM INC. IBM Active Energy Manager.

[14] LIM, H., KANSAL, A., AND LIU, J. Power Budgeting for Virtu-
alized Data Centers. In USENIX ATC (2011).

[15] MINAS, L., AND ELISON, B. The problem of power consumption
in servers, 2009. http://software.intel.com.

[16] NATHUJI, R., ENGLAND, P., SHARMA, P., AND SINGH, A.
Feedback driven QoS-aware power budgeting for virtualized
servers. In FeBID (2009).

[17] NATHUJI, R., SCHWAN, K., SOMANI, A., AND JOSHI, Y. VPM
tokens: virtual machine-aware power budgeting in datacenters.
Cluster computing (2009).

[18] RAGHAVENDRA, R., RANGANATHAN, P., TALWAR, V., WANG,
Z., AND ZHU, X. No power struggles: Coordinated multi-level
power management for the data center. In ACM SIGARCH Com-
puter Architecture News (2008), vol. 36, ACM, pp. 48–59.

[19] STRUNK, A. Costs of Virtual Machine Live Migration: A Survey.
In IEEE Eighth World Congress on Services (2012).

[20] VMWARE, INC. Resource Management with VMware DRS,
2006.

[21] VMWARE, INC. VMware Distributed Power Management Con-
cepts and Use, 2010.

[22] VMWARE, INC. VMware vSphere vMotion: Architecture, Per-
formance, and Best Practices in VMware vSphere 5, 2011.

[23] WALDSPURGER, C. A., AND WEIHL, W. E. Lottery schedul-
ing: flexible proportional-share resource management. In OSDI
(1994), USENIX Association.

[24] WANG, X., AND WANG, Y. Coordinating Power Control and
Performance Management for Virtualized Server Clusters. IEEE
Transactions on Parallel and Distributed Systems 22, 2 (Feb.
2011), 245–259.

[25] WHITE, T. Hadoop: The Definitive Guide. O’Reilly Media, 2009.

[26] WUHIB, F., STADLER, R., AND LINDGREN, H. Dynamic re-
source allocation with management objectives - Implementation
for an OpenStack cloud. In CNSM (2012), IEEE.

[27] XENSERVER. Open Source Virtualization Features.

13

	CloudPowerCap: Integrating Power Budget and Resource Management across a Virtualized Server Cluster
	Recommended Citation
	CloudPowerCap: Integrating Power Budget and Resource Management across a Virtualized Server Cluster

	tmp.1415131658.pdf.bgth3

