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Abstract of the Dissertation 

Perhaps the most prominent feature of the central nervous system is its ability to 

respond to experience and its environment.  Understanding the processes and 

mechanisms that govern adaptive behavior provides insights into its plastic nature.  

Capitalizing on this plasticity is of critical importance in response to injury and recovery 

(35, 106), and the importance of its promotion is increasingly recognized by 

rehabilitation scientists.  Neurophysiological techniques permitting study of cortical 

function in vivo may play a significant role in validating exercise interventions and 

disease management approaches (14).  It may be possible that with these advances we 

may better understand the relationship between brain function and therapeutic 

approaches.  For this purpose, we present data on both cumulative and acute effects of 

motor training to better understand adaptive processes. 

 Neural adaptations accompany resistance training, but current evidence regarding 

the nature of these adaptations is best characterized as indirect, particularly with respect 

to adaptation within central or supraspinal centers (56).  To this end, we recorded 

movement-related cortical potentials (MRCP), i.e. electroencephalography (EEG)-

derived event-related potentials, in healthy adults prior to and following a program of 

lower body resistance training.  The cumulative effects of nine progressive training 

sessions resulted in attenuation of relative MRCP amplitudes.  We interpreted these 

findings in terms of neural efficiency such that for the same pre-training load, central 

effort is diminished post-training.  These data demonstrate the impact of cumulative 

motor training sessions in fostering a reduction in the level of cortical motor activation.  
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Such a program may be of a particular utility for individuals with limited motor reserves 

such as those with Parkinson disease (PD). 

Although cumulative effects may foster a more efficient cortical network, the 

acute demands of a training session have received less attention.  It is reasonable to 

assume that the reverse might be expected (i.e. augmented amplitude) during a motor 

training session, much like the muscular system is taxed during resistance training 

exercise.  At the level of the cortex, neural activity was studied by recording the MRCP 

during 150 repetitive handgrip contractions at a high intensity.  The goal of this work was 

to examine whether central adaptive processes used to maintain task performance vary as 

a function of age or PD.  We found that for healthy young adults, augmented activation of 

motor cortical centers is responsible for maintaining performance.  However, this was not 

observed for older adults with and without PD, where minimal changes in cortical 

activity were observed over the duration of the protocol.  Our findings suggest that older 

adults and those with PD may rely on alternative mechanisms (i.e. mobilization of 

additional cortical and subcortical structures) to maintain task performance as compared 

to increasing activity locally as seen with younger adults.  Taken together, our work 

further supports the adaptable nature of the central nervous system. We note in passing 

the utility of the MRCP paradigm for observing such effects. 

 

  



iv 

 

Acknowledgements 

Foremost, I would like to thank Dr. Gammon Earhart for her mentoring, guidance, and 

patience throughout the studies comprising this dissertation.  Her intelligent, practical, 

and compassionate approach to research, are attributes I will forever work towards.  I 

would like to thank Dr. Michael Mueller and Dr. Susie Deusinger for providing me the 

means to study at this University and for their commitment to developing independent 

scientists in the area of Movement Science.  My dissertation work would have remained 

an idea if not for the efforts of Drs. John Rohrbaugh and Erik Sirevaag who welcomed 

me into their laboratory without hesitation, and offered their expertise, equipment, and 

supplies to a novice researcher with no EEG experience.  Our collaboration underscores 

the interdisciplinary nature of our University as well as their individual commitments to 

mentoring graduate students.  Further, I will be forever indebted to Dr. Erik Sirevaag for 

his long hours invested in helping me turn research ideas into tangible data.  I want to 

also thank my committee members not yet mentioned, Drs. Catherine Lang and Joel 

Perlmutter, for their time and careful review of my work.  Lastly, I am forever grateful 

for the unwavering love and support of my wife, family, and friends.  I am incredibly 

blessed to have had the opportunity to be a part of this research environment.   



v 

 

Table of Contents 

 
Abstract of the dissertation                ii 

 

Acknowledgements                 iv 

 

List of Figures                vii 

 

List of Tables                  ix 

 

Chapter 1: Introduction                  1 
  

 Neuroplasticity                  1 

 Movement-Related Cortical Potentials               2 

 Cortical Plasticity in Response to Resistance Training             4 

 Cortical Plasticity in Response to Repetitive Grasping             7 

  Voluntary Motor Action in Healthy Aging and  

Parkinson Disease                         10 

 Summary                 12 

 

Chapter 2:  Resistance Training Induces Supraspinal Adaptations:                      17 

Evidence from Movement-Related Cortical Potentials 

 
 ABSTRACT                 18 

 INTRODUCTION                19 

 METHODS                 22 

  Subjects and Design               22 

  Apparatus                23 

  Electrophysiological Recordings             24 

  Resistance Training               24 

  Strength and Muscle Activity Assessment            25 

  MRCP Acquisition and Analysis             26 

  Statistical Analysis               28 

 RESULTS                 29 

  Reliability                29 

  Maximal Strength Assessment             29 

  Submaximal Leg Extension Performance            29 

  MRCP Parameters               30 

 DISCUSSION                 31 

  Implications of Reduced Cortical Activity            31 

  Comparison to Evoked Responses             33 

  Paradigm Considerations              35 

  Conclusion                37 

 ACKNOWLEDGEMENTS               37 

 

 



vi 

 

Chapter 3:  Central Adaptations to Repetitive Grasping in Healthy                      47                             

Aging and Parkinson Disease 

 
 ABSTRACT                 48 

 INTRODUCTION                49 

 METHODS                 52 

  Subjects                52 

  Experimental Procedures              53 

  Electrophysiological Recording             54 

  EEG Analysis                55 

  EMG and Force Analysis              57 

  Clinical and Subjective Rating Scales            57 

  Statistics                58 

 RESULTS                 58 

  Experiment 1                58 

  Experiment 2                60 

  Experiment 3                61 

 DISCUSSION                 62 

  Effects of Aging (Experiment 1)             62 

  Effects of Parkinson Disease (Experiment 2)            65 

  Effects of Antiparkinson Medication (Experiment 3)          67 

  Study Considerations               69 

  Conclusions and Future Directions             70 

 ACKNOWLEDGEMENTS               71 

 

Chapter 4:   Conclusion                88 
 

 Summary of Findings                88 

 Limitations                 89 

 Clinical Implications and Suggestions for Future Studies           90 

 References                 93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

List of Figures 
 

Chapter 1: 
 

Figure 1 Measurement windows of the movement-related cortical potential          13 

(MRCP): Bereitschaftspotential (BP), motor potential (MP),  

and movement-monitoring potential (MMP). Note:  The time of  

‘0 s’ on the x-axis indicates movement onset. 

 

Figure 2 Circuit diagram of the basal ganglia.  Basal ganglia structures          15 

are shaded and include: striatum, internal (GPi) and external  

(GPe) segments of the globus pallidus, substantia nigra pars  

compacta (SNc) and reticulata (SNr), and the subthalamic  

nucleus (STN).  Through GPi and SNr, the basal ganglia  

output to the thalamus, pedunculopontine nucleus (PPN), and 

the superior colliculus (SC).  GABAergic, glutamatergic,  

and dopaminergic projections are represented by solid, dashed, 

and dotted lines, respectively.     

 

Chapter 2: 
 

Figure 3 Illustration of experimental setup.             39 

  Note:  Individual adjustments were made to accommodate 80°  

and 120° of knee and hip flexion, respectively. 

 

Figure 4 2D topographical maps of component amplitudes           41 

Note:  Each map is oriented such that the anterior-posterior                               

axis is arranged vertically (i.e. nasion is located at the top). 

    

Figure 5 MRCP amplitude measures (µV).               43 

Note:  Amplitudes for each component before (black) and after                

(gray) training.  Error bars are standard deviation.  Hotelling t
2
:                  

†P < 0.05; Paired t-test: ** P < 0.01, *P < 0.05. 

 

 

Figure 6 Grand average waveforms of MRCP and multi-channel display.         45 

Note:  Grand average waveforms are presented for Cz, C1, and                       

C2 both before (black) and after (gray) training.  Dashed line                

represents the onset of movement.  Multiple electrode sites  

around those of interest (e.g. Cz, C1, C2) are also displayed.   

 

Chapter 3: 

 
Figure 7 Illustration of experimental protocol.  Note:  Subjects were           72 

seated in a semi-recumbent position and computer monitor  

was placed at eye-level at a distance of approximately 0.5 m. 



viii 

 

 

Figure 8  Ratings of perceived exertion (RPE) recorded at baseline (Pre)          74 

and immediately following their final set of 30 trials (Post).  The  

RPE scale (12) ranges from a score of 6 (very light) to 20  

(maximum effort).  Error bars are standard error units. 

 

Figure 9 Grand averaged BP, MP, and MMP amplitude for central           76 

mesial (CM) and left motor (LM) electrode sites across the top  

and bottom panels, respectively.  Results from experiments 1 (A),  

2 (B), and 3 (C) are shown from left to right.  Error bars are  

standard error units. 

 

Figure 10   Grand average MRCP waveform at CM (top) and LM (bottom)          78 

electrode sites for experiment 1. 

 

Figure 11 2D topographical maps of component amplitudes.  Note, each map         80 

is oriented such that the anterior-posterior axis is arranged  

vertically with nasion located at the top. 

 

Figure 12 Grand average MRCP waveform at CM (top) and LM (bottom)          82 

electrode sites for experiment 2. 

 

Figure 13 Grand average MRCP waveform at CM (top) and LM (bottom)          84 

electrode sites for experiment 3. 

 
 

  



ix 

 

List of Tables 
 

Chapter 3: 
 

Table 1 Clinical profile of 10 individuals with Parkinson disease                         86 

 

Table 2 Maximum grip strength (kg)              87



1 

 

Chapter 1:  Introduction 

Neuroplasticity 

Adaptive alterations can be induced in the central nervous system (CNS) in 

response to development, pathology, injury, and activity.  The latter is particularly 

attractive to the rehabilitation scientist given the potential to modify neural circuits 

through experience (i.e. motor skill training, exercise).  Adaptation, both acute and 

chronic, may be brought about through increases in synaptic strength (24), neurogenesis 

(32), cortical re-mapping (160), and recruitment of novel brain regions (27).  

Electrophysiological and neuroimaging techniques offer the ability to study the human 

brain in vivo which may enhance our understanding of the relationship between brain 

physiology and functional outcomes. 

The underlying assumption of these techniques is that observable changes in 

neurophysiology are reflected in changes in motor behavior (14).  For example, 

establishing normal patterns of neural activation (i.e. structures, timing) in healthy 

populations can serve as a model to which activity patterns of individuals with 

neurodegeneration or brain injury may be compared.  Moreover, neuroimaging may offer 

the opportunity to monitor recovery as well as ascertain the efficacy of a therapy 

approach.  Insight into the central adaptive processes associated with neuroplastic change 

may have widespread impact in clinical neurophysiology.  To this end, we studied these 

adaptive processes in the contexts of resistance training and repetitive grasping in health 

and disease. 
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Movement-Related Cortical Potentials 

 Movement-related cortical potentials [MRCP; (82)] are obtained by reverse 

averaging the electroencephalogram (EEG) with respect to movement onset as an 

individual performs self-paced movement (149).  Therefore, the MRCP is a composite 

measure of postsynaptic potentials from a large number of cortical pyramidal cells.  Due 

to their perpendicular orientation to the cortical surface, cortical pyramidal cells produce 

dipolar currents orthogonal to cortical gray matter (147).  This, along with synchronous 

activation of numerous cells, permits an electrical potential to be detected at the scalp in 

the form of a slow negative wave.  This slow wave is suggested to index motor 

preparation (82) by reflecting facilitation of underlying cortical areas (9); therefore, the 

MRCP may provide insight into the cortical contribution to movement (132).   

Over 40 years ago, Kornhuber & Deecke (82) first identified this pre-movement 

component and referred to it as the Bereitschaftspotential or readiness potential.  Since 

then, considerable work has been performed to identify the physiological and clinical 

application of the MRCP, which is underscored by a recent book devoted entirely to this 

area (77).  As reviewed previously (77, 132), the MRCP begins approximately 1.0 – 2.0 s 

prior to movement onset is maximal at vertex (i.e. midline centro-parietal area) and is 

symmetrically distributed about that point.  Its waveform is characterized as having 

distinct early and late phases, distinguishable by an increase in the slope (131) which 

occurs approximately 400 to 500 ms prior to movement onset (e.g. late phase).  [Please 

see Figure 1 for an illustration of this waveform and its components].  Understanding the 

neural structures that contribute to generation of this cortical activity has been achieved 

through combination of MRCP recordings with positron emission tomography (PET), 
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functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG) 

(98).  Significant evidence supports bilateral activation of the mesial frontal cortex (e.g. 

supplementary motor area, SMA) responsible for early phase activity whereas late phase 

activity is generated by the contralateral primary motor cortex (M1) with somatotopy.  

The amplitude of the late phase MRCP is correlated with the level of force produced by 

the muscle, suggesting that cortical motor commands may scale the level of muscle 

activation (136).  Taken together, early and late phases likely represent non-specific 

preparation (26) as well as specific execution of the movement (50).  Secondary to this 

serial activation (i.e. SMA, M1), descending volleys are sent via the corticospinal tract to 

produce movement (28, 122).  Several additional lines of evidence support 

decomposition of this waveform into early and late phases. 

Given the strong basal ganglia-thalamocortical projections to the SMA, it is not 

surprising that MRCPs are abnormal in Parkinson disease (PD).  [Please see Figure 2 for 

an illustration of the basal ganglia circuitry].  To this end, a reduced MRCP amplitude in 

PD is widely acknowledged (114).  Specifically, early phase activity in those with PD is 

reduced compared to control subjects (25), which is consistent with the clinical 

manifestation of bradykinesia, the slowing of movement.  However, when patients are 

provided external cues to initiate movement, their performance is enhanced (78).  Touge 

and colleagues (150) extended these findings in a study comparing two types of self-

paced voluntary movement, repetitive forward movement or random-choice.  While 

amplitude of the MRCP increased in healthy subjects for the random-choice movement, 

no differences were found for those with PD.  The authors suggest self-selection 

processes are abnormal in PD which, combined with results from related studies (30, 78), 
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supports the hypothesis that provision of external cues may bypass defective basal 

ganglia circuits.     

Although there are data to support distinct contributions to the early and late 

phase components of the MRCP, it is unlikely that delineations are exact.  For example, 

intracranial recordings have demonstrated consistent SMA activation during the entire 

time course of the MRCP (75).  In addition, segregating these waveforms during data 

reduction has been performed somewhat arbitrarily, and resulted in the empirical 

identification of varied and numerous pre-movement components [c.f. Table 1; (132)].  

However, several authors have decomposed the MRCP into three main components: the 

Bereitschaftspotential (BP), motor potential (MP), and movement-monitoring potential 

(MMP) [(22, 45, 83, 138)].  These components are illustrated in Figure 1 and denote 

general motor preparation, specific preparation, and motor execution, respectively.  

 

Cortical Plasticity in Response to Resistance Training 

Exercise training-induced increases in EMG amplitude have been observed in 

many investigations, but represent only one component of the neural chain of adaptation.  

Duchateau and Enoka (47) outline a six-component scheme to describe areas of neural 

adaptation evoked by chronic physical activity, which includes central motor command.  

Attempts to study central neural adaptation have employed a variety of experimental 

approaches, including use of evoked responses and cross-education. 

Transcranial magnetic stimulation (TMS) applied over the motor cortex produces 

a motor-evoked potential (MEP), which purportedly offers a method to quantify neural 

drive to muscle.  Changes in MEPs, as detected by surface EMG at the muscle of interest, 
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reflect only the excitability of the motor cortex which may complicate the interpretation 

of voluntary drive.  In humans, increased excitability has been reported following motor 

skill training (79), but this has not been found following a resistance training program 

(21, 79).  Some have suggested that adaptations elicited via resistance training are 

specific to the spinal cord circuitry and are dissimilar to those of motor skill acquisition.  

Despite these TMS data (21, 79), many still hypothesize that supraspinal 

adaptations, occurring with motor skill training, are also likely present with resistance 

training.  The contralateral strength training effect, whereby unilateral training induces 

strength gains in the contralateral homologous muscles, has been reviewed in detail 

elsewhere (20, 71).  This response appears to be specific to the contraction type 

performed during training (i.e. specificity), and may even be revealed through imagined 

contractions (165).  This contralateral response is not associated with hypertrophy, but 

could result from “spillover” of cortical activity to contralateral pathways, and/or 

adaptations in the control system for the trained ipsilateral limb that may be accessed by 

the contralateral limb (20). Recently, Farthing et al. (52) reported new activation, 

detected using fMRI, of the contralateral sensorimotor regions for the untrained limb 

following unilateral strength training.  These findings are the first to provide direct 

support for supraspinal adaptation as a mechanism for cross-education.  In addition, this 

is the first study to demonstrate cortical activation changes following six weeks of 

strength training (ulnar deviation).   

There is much additional evidence beyond the scope of this review (e.g. motor 

unit synchronization, evoked spinal reflexes, bilateral deficit phenomenon, transfer of 

training effect) that is suggestive of supraspinal adaptation.  Again, this supportive 
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evidence for supraspinal adaptation brought about by resistance training is generally 

obtained from indirect measurement acquired at the periphery and therefore distant from 

the cortex.  Neuroimaging and neurophysiological techniques may circumvent some of 

these limitations, but have seen infrequent use.  

If, secondary to resistance training, individual motor units are capable of 

producing more force, then fewer motor neurons are required to accomplish a physical 

task.  Presumably, a reduction in recruitment would be reflected in diminished cortical 

activation.  Carroll et al. (21) hypothesized that a reduction in cortical activation would 

be beneficial in reducing the activation of neural elements unrelated to the intended 

movement, thereby resulting in enhanced performance.  This hypothesis is grounded in 

observations of increased motor unit synchrony following resistance training (34), as well 

as cross-sectional data demonstrating greater synchrony in the hand muscles of weight 

lifters compared to controls (130).  Additionally, neuroimaging (e.g. fMRI, PET) studies 

have demonstrated reduced activity at several cortical sites including pre-motor and 

parietal cortices (73, 153) following motor skill training.  Collectively, these data imply 

resistance training may evoke changes in corticospinal control to enhance efficiency. 

Neuroimaging findings appear consistent with EEG studies as well, specifically 

MRCP paradigms.  Those participating in chronic skilled activity, such as rifle shooters 

pulling the trigger of a rifle, consistently demonstrate decreased MRCP amplitude in 

comparison to novices (39, 53).  These adaptations, e.g. reduced cortical activity, suggest 

more efficient movement preparation and execution (68).  MRCPs are also capable of 

distinguishing between athletes and non-athletes.  Kita et al.
 
(81) reported that the early 

phase of MRCPs preceding wrist extension were shorter and smaller in athletes (e.g. 
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kendoists and gymnasts) than in non-athletes.  In addition, topographical mapping 

demonstrated more localized activity in the contralateral motor area in athletes rather than 

non-athletes.  These authors speculate that habitual physical training involving wrist 

extension has caused diffuse brain activation to become specific. 

Several investigations have examined the association between movement kinetics 

and the components of the MRCP.  Siemionow et al. (136) demonstrated MRCPs (e.g. 

late phase of supplementary- and sensori-motor areas) to be significantly correlated (r = 

0.84 – 0.95) with joint force, rate of force development, and muscle activation during 

elbow flexion exercise.  Similar relationships have also been demonstrated in lower 

extremity (e.g. plantar flexor) movements (44).  Presumably, if MRCPs are able to 

accurately distinguish between force amplitudes and rates (44, 136), as well as athletes 

and non-athletes (81), the MRCP paradigm may be effective in identifying supraspinal 

adaptation elicited via resistance training.  This approach was undertaken in Chapter 2. 

 

Cortical Plasticity in Response to Repetitive Contractions 

 Rodrigues and colleagues (121) recently highlighted that numerous studies have 

explored the limits of the motor system with finger tapping tasks, but have concentrated 

predominantly on aspects of motor control, and less so on dynamic changes (i.e. 

deterioration) in performance over time.  As volitional movement necessitates a series of 

proximal to distal events, each level of the neuraxis may contribute to performance 

deterioration during repetitive or sustained muscle contractions.  Similarly, each level 

may also contribute to performance compensation.  While substantial data are available 

to support peripheral changes (e.g. metabolic/biochemical changes, motor unit 
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recruitment and firing rates), significantly less information is available detailing changes 

higher up the neuraxis (i.e. central adaptations).  Several studies (8, 11, 91, 121, 127) 

support the notion that central adaptations occur in order to maintain motor performance, 

and it is these adaptations that are the focus of the present work in Chapter 3. 

 In order to study central adaptations, researchers have employed the ubiquitous 

repetitive handgrip paradigm, designed to be physically demanding.  In these studies, 

participants are asked to perform intermittent or sustained contractions at a certain level 

of maximal voluntary contraction (MVC).  Frequently, TMS has been applied to the 

cortex prior to and following such a protocol in order to examine changes in cortical 

excitability via MEPs.   Indeed, a number of studies have utilized these methods during 

repetitive contractions (7, 8, 74, 99, 125, 145, 146); collectively, they have reported 

modulation of excitatory and inhibitory pathways or increased corticomotor excitability 

and decreased intra-cortical inhibition, respectively.  It is suggested that these adaptations 

act concurrently to increase central motor drive and maintain task performance. 

 Central changes in response to submaximal handgrip exercise have also been 

observed using fMRI and are consistent with augmented central motor drive observed in 

TMS studies (6, 90, 92).  Specifically, during the handgrip protocol an increase in the 

fMRI signal measured from the contralateral primary sensorimotor cortex was observed.  

It was suggested that this sign of activation reflected enhanced sensory processing and 

corticomotor drive in order to maintain task performance (6).  A linear rise in the fMRI 

signal is not confined to primary motor areas but has also been demonstrated in 

secondary and association cortices (e.g. supplementary motor, prefrontal, and cingulate 

areas) as well subcortical structures (e.g. cerebellum, cingulate gyrus) (90, 92).  Authors 



9 

 

suggest these findings reflect integrated processing of sensory information as well as the 

brain increasing its output to maintain task performance (92).  This recruitment of an 

extended cortical network is in keeping with the shifting of activation center hypothesis 

whereby if neurons in one location become unable to maintain adequate output, the brain 

may shift activation to another group of neurons in order to maintain task performance 

(91).  Through EEG source reconstruction, Liu and colleagues (91) were able to 

demonstrate a shift in the location of the center of cortical activation in response to 200 

intermittent handgrip contractions.  The authors reasoned this shift represents neural 

strategies to produce sufficient drive in order to maintain task performance.  

 Studying central changes in response to repetitive handgrip contractions has also 

been approached utilizing the MRCP paradigm (57, 80, 93, 127).  Similar to TMS and 

fMRI studies, marked increases in MRCP amplitude are demonstrated over the duration 

of the handgrip protocol (57, 80, 127).  Schillings et al. suggested the extent of MRCP 

increase reflects compensation by primary motor cortex and supplementary motor area 

for force-reducing factors (127).  Therefore, irrespective of methodology (e.g. TMS, 

fMRI, or EEG), there appears some consistent evidence regarding central adaptive 

processes.  Also consistent with these studies is the pervasive use of healthy young adults 

as study participants.  Therefore, very little is known regarding adaptive-effects during a 

repetitive motor task in healthy aging as well as individuals with central activation 

impairments (e.g. Parkinson disease).  
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Voluntary Motor Action in Healthy Aging and Parkinson Disease 

 Neuronal processes governing volitional motor action changes with healthy aging 

(155) and Parkinson disease (PD) (67, 118, 119, 124, 164).  As reviewed previously (88, 

89), several studies have demonstrated that advancing age is associated with a faster rate 

of motor progression in individuals with PD.  Therefore, it is necessary to understand the 

independent and interacting effects of healthy aging and PD (72).  To this end, a number 

of neuroimaging studies have been performed comparing brain activity in individuals 

with PD (‘on’ and ‘off’ states) with that of healthy controls.  These designs have focused 

primarily on ‘simple’ movements such as button presses, finger-thumb oppositions, or 

joystick movements. 

 During these simple tasks, neural activity in older adults has been suggested to 

follow the HAROLD model of cognitive aging (17) whereby there is a reduced 

lateralization of neural activity.  A proposed mechanism for these patterns may be 

changes in transcallosal inhibitory connections (107), and these phenomena appear to 

occur gradually across the lifespan (72).  In addition to these robust findings, studies have 

demonstrated specific increases in activity amongst motor and premotor cortices and 

SMA (100, 107, 156), including evidence of reorganization (e.g. ipsilateral motor 

recruitment) (107, 156).  Although these features of neural activity are well characterized 

in simple discrete movements, very little is known regarding the dynamic changes over 

the duration of a motor task (e.g. repetitive grasping). 

 Several unique patterns characterize neural activity during simple motor actions in 

individuals with PD.  According to classical models of PD (38), basal ganglia 

dysfunction reduces the excitatory thalamic drive to the cortex by imposing an increased 
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inhibitory drive on thalamic nuclei.  Keeping with this model, dorsolateral prefrontal and 

medial frontal cortices (e.g. SMA) are impaired during execution of simple movements 

(43, 124, 164).  This impairment is exacerbated in the absence of external cues when 

movement is self-initiated (78).  Strategies of central nervous system compensation in 

order to maintain task performance have been suggested and are supported by findings of 

hyperactivation in the primary motor cortex (67, 124, 164), cerebellum (119, 164), and 

lateral premotor cortex (40, 67, 124).  Impairments in task-related activations are 

attenuated with dopaminergic medication (40, 67, 119) and have been shown to reverse 

abnormal cortico-motorneuron activity (96).  Similar to studies on aging, these findings 

have not yet been extended to motor paradigms that consider the dynamic aspects of 

performance (e.g. deterioration with repetition).   

To our knowledge, only one study has addressed the independent and interactive 

effects of aging and PD using fMRI (72).  These authors found that aging differentially 

affected those with PD and controls and interacted with dopaminergic medication (72).  

In agreement with previous studies, they found aging to increase activity in bilateral 

motor and premotor regions.  In those with PD ‘off’ their medication, task-related activity 

increased with age and was similar to controls, except right cerebellar activation which 

was increased in young patients but declined with age.  When tested ‘on’ their 

medication, cortical activation (e.g. superior orbital gyrus, anterior cingulate, insula, 

temporal cortex, and thalamus) was greater in younger patients and declined with age, 

independent of disease severity.  This finding of increased activity in younger ‘on’ 

patients was suggested to reflect a greater ability to utilize dopamine for compensatory 

changes that may not be possible in older patients (72).  However, categorical 
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comparisons of ‘on’ and ‘off’ medication therapy were not significant when age was not 

considered.   Collectively, these studies suggest clear differences between healthy aging 

and PD which underscore the influence of age. 

 

Summary 

 Cortical properties of the human brain maintain the ability to adapt throughout the 

life span, and these changes likely comprise the basis of learning and recovery (13).  

Recent advances in technology have prompted novel investigations permitting in vivo 

examination of the evolution of brain activity which has the potential to shape and guide 

clinical practice (14).  Capitalizing on the assumption of a relationship between motor 

behavior and brain activation, important distinctions may be made.  These include 

identifying categorical differences (i.e. effects of aging, neurodegeneration) in neural 

activity during performance of a motor task, and determining the efficacy of an 

intervention.  To this end, we have studied how the cortical motor system responds 

cumulatively to motor training (Chapter 2) as well as acutely to a progressive motor task 

(Chapter 3).  
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Figure 1: 

Measurement windows of the movement-related cortical potential (MRCP): 

Bereitschaftspotential (BP), motor potential (MP), and movement-monitoring potential 

(MMP). 

Note:  The time of ‘0’ on the x-axis indicates movement onset. 
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Figure 2: 

Circuit diagram of the basal ganglia.  Basal ganglia structures are shaded and include: 

striatum, internal (GPi) and external (GPe) segments of the globus pallidus, substantia 

nigra pars compacta (SNc) and reticulata (SNr), and the subthalamic nucleus (STN).  

Through GPi and SNr, the basal ganglia output to the thalamus, pedunculopontine 

nucleus (PPN), and the superior colliculus (SC).  GABAergic, glutamatergic, and 

dopaminergic projections are represented by solid, dashed, and dotted lines, respectively.     
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Chapter 2: 

Resistance training induces supraspinal adaptations: Evidence from movement-

related cortical potentials 
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Abstract 

Early effects of a resistance training program include neural adaptations at multiple levels 

of the neuraxis, but direct evidence of central changes is lacking.  Plasticity exhibited by 

multiple supraspinal centers following training may alter slow negative 

electroencephalographic (EEG) activity, referred to as movement-related cortical 

potentials (MRCP).  The purpose of this study was to determine whether MRCPs are 

altered in response to resistance training.  Eleven healthy participants (24.6 ± 3.5 yr) 

performed three weeks of explosive unilateral leg extensor resistance training.  MRCP 

were assessed during 60 self-paced leg extensions against a constant nominal load before 

and after training.   Resistance training was effective (P < 0.001) in increasing leg 

extensor peak force (+22%), rate of force production (+32%) as well as muscle activity 

(iEMG; +47%, P < 0.05).   These changes were accompanied by several MRCP effects.  

Following training, MRCP amplitude was attenuated at several scalp sites overlying 

motor-related cortical areas (P < 0.05), and the onset of MRCP at the vertex was 28% 

(561 ms) earlier.  In conclusion, the three week training protocol in the present study 

elicited significant strength gains which were accompanied by neural adaptations at the 

level of the cortex.  We interpret our findings of attenuated cortical demand for 

submaximal voluntary movement as evidence for enhanced neural economy as a result of 

resistance training. 
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Introduction 

Plasticity and adaptation of the human motor system in response to resistance 

exercise has been well documented [for reviews: (1, 56, 58, 63)].  The loci of these 

adaptations are not restricted; rather they appear diffuse throughout all levels of the 

neuraxis (47).  At the level of the motor unit, resistance training has been shown to 

enhance recruitment, firing rate, synchrony, and the incidence of doublets (152).  These 

observations may be a function of augmented volitional drive along the corticospinal 

pathway (2, 36, 48) which, in turn, may be preceded by increased cortical excitability 

(64).  Several attempts have been made to link training-induced plasticity in corticospinal 

pathways to increased force output [c.f. Fig. 8 (36); Fig. 1 (47); Fig. 4 (4)], yet the 

supporting evidence comes largely from data obtained via peripheral measures (e.g. 

surface electromyography) which may not adequately reflect changes in supraspinal 

centers.  Consistent with the limited character of existing evidence, the significance and 

presence of supraspinal adaptation has been questioned, particularly in the early stages of 

a program of resistance training (21, 79). 

Neural adaptations in response to resistance training may be reflected in 

coordination and learning which act to facilitate recruitment and activation of muscles 

engaged in a strength task (56).  Individuals may ‘learn’ to increase maximal force output 

as a form of motor learning (64), and therefore exhibit plasticity in motor cortical areas.  

Indirect support for supraspinal adaptation comes from studies reporting increased 

strength gain as a result of imagined contractions (117, 135, 165), cross-education or 

contralateral strength training effect (3, 52, 86, 105) as well as specificity of training (47).  

Although direct evidence of modified central motor activity influencing these phenomena 
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is lacking, supporting evidence can be adduced from investigations that have utilized 

evoked reflex (H-reflex) and motor evoked potential (MEP) paradigms demonstrating 

such an effect. 

Presumably, the H-reflex, the electrical analog to the stretch reflex, provides a 

means to assess net synaptic input (e.g. afferent and descending) as well as excitability of 

the α-motor neuron pool in vivo (103).  Additionally, the electrophysiological variant of 

the H-reflex (V-wave), obtained through supramaximal stimulation of a mixed nerve, has 

been used to assess the magnitude of efferent neural drive in descending corticospinal 

pathways (2).  When combined, the H-reflex and V-wave may provide estimates of spinal 

and supraspinal adaptations, respectively.  Facilitation of the H-reflex has been observed 

following short-term plantar flexor resistance training in some (70, 86), but not all 

experiments (36, 48, 55, 62).  In those studies unable to elicit changes in H-reflex 

amplitude (i.e. spinal excitability), increases in evoked V-wave responses were reported, 

suggesting an augmented volitional drive via supraspinal adaptation (36, 48, 55, 62).  

Lack of consistency amongst these studies may reflect limitations of the H-reflex 

measure, which has been shown to be highly modifiable and influenced by a variety of 

factors (103).   

MEPs elicited via transcranial magnetic stimulation (TMS) have been used to 

examine the neural adaptive effects of resistance training in three separate investigations 

with equivocal results.  Following four weeks of isometric tibialis anterior training MEP 

amplitude increased by 32% (64), but a depression in cortical excitability was noted for 

training of the biceps brachii (79) and first dorsal interosseous (21).  Griffin and Cafarelli 

(64) suggested that these differences may lie in the differing responses of certain muscle 
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groups to TMS and/or dissimilar training protocols.  Moreover, changes in the 

excitability of cortical, subcortical, or spinal neurons likely influence the TMS-induced 

MEP as the rise time is long enough to include multiple pathways (144).  For example, 

alterations at the spinal level (e.g. recruitment, rate coding, synchronization) could 

potentially influence the evoked force induced by TMS (37).  

An alternative to evoked responses which does not introduce artificial input to the 

central nervous system or involve the recording of responses distant from the cortex (e.g. 

surface EMG) (127), may be better-suited for detecting supraspinal adaptations 

secondary to resistance training.  Surface negative potentials, detected at the scalp via 

electroencephalography (EEG) around the time of voluntary movement, are referred to as 

movement-related cortical potentials (MRCP).  MRCP reflect the summed excitatory 

post-synaptic potentials of apical dendrites and are related to the preparation and 

execution of self-initiated movement [for review: (132)].  It is generally agreed that the 

temporal course of the MRCP waveform shows an onset 1 – 2 s prior to movement onset 

bilaterally in the supplementary motor area (SMA), followed by activity in contralateral 

premotor and motor cortices with a scalp representation that is somatotypically 

appropriate (132).  As a result, MRCP may be delineated into three consecutive pre-

movement periods (83, 139), referred to as 1) the Bereitschaftspotential (i.e. preparation), 

2) motor execution and 3) movement-monitoring potentials.  The amplitude of each 

component is a function of the number of active neurons, their synchrony and rate of 

discharge (136).  The later MRCP components have been correlated with force, rate of 

force development, and associated EMG amplitude for both elbow-flexion  (136), and  
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plantar-flexion movements (44) suggesting that MRCP may index the level of muscle 

activation.   

The present study investigated the possible involvement of supraspinal 

adaptations in resistance training, using MRCPs as a measure of brain activity.  We have 

noted above several attractive aspects of the MRCP method in this context, including 

their spatiotemporal resolution and known origins in the underlying cortices.  

Specifically, we hypothesized that strength training would allow the motor tasks to be 

performed with less relative effort resulting in adaptive changes in MRCP related to 

enhanced neural efficiency.  The present experiment is, to our knowledge, the first to 

utilize EEG (e.g. MRCP) as a tool for examining plasticity of the central nervous system 

in a resistance training paradigm.   

 

Materials and Methods 

Subjects and Design.  Eleven healthy volunteers (9 women; 2 men), with a mean 

age of 24.6 ± 3.5 yr and body mass of 63.8 ± 9.2 kg, participated in this investigation.  

All participants were right hand and foot dominant, as assessed through self-report, and 

had not participated in any resistance training for at least the past year.  Participants had 

no known history of musculoskeletal injury or neurological events, and were deemed 

eligible to participate in resistance exercise by the Physical Activity Readiness 

Questionnaire [PAR-Q; (148)].  Following a detailed verbal explanation of study 

procedures, participants provided their written informed consent and were then 

familiarized with the training and testing equipment.  The Washington University School 
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of Medicine Human Research Protection Office approved the experimental procedures, 

which were in accordance with the Declaration of Helsinki.   

To control inter-individual variance in the MRCP response, this study employed a 

quasi-experimental (i.e. pre/post) design where participants served as their own controls.  

Each participant participated in two experimental sessions separated by a three-week 

resistance training period.  During each experimental session, participants performed 

maximal and submaximal leg extensions of the dominant leg.  Maximal voluntary 

isometric contractions were performed first, followed by 60 submaximal repetitions.  

EEG data were recorded only during the submaximal repetitions, whereas force and 

EMG data were recorded during maximal and submaximal performance.  Prior to the 

training intervention, a subset of subjects (N = 7) also completed a second pre-test 

session within three to seven days of their first in order to confirm test-retest reliability of 

the MRCP measures.  All participants completed their post test between 1 to 3 days 

following their final training session.  

Apparatus.  Participants performed unilateral maximal and submaximal leg 

extensions on a modified leg press device (Champion Barbell; Dallas, TX) instrumented 

with four load cells (Transcell Technology Inc.; Buffalo Grove, IL) which were encased 

within the foot plate (Fig 3).  A custom-built mechanism was attached to the device that 

allowed 2 cm individual adjustments.  These adjustments were made, and were 

reproduced for post-testing, such that each participant was positioned in a recumbent 

seated position in 110° of hip flexion.  Locking of this mechanism enabled maximal 

isometric testing, but could be released for the submaximal MRCP protocol.  When 
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released, the leg press device became freely moveable and although no external weight 

was added, the device itself produced a constant load of approximately 18 kg. 

Electrophysiological recordings.  Participants were fitted with either an 

appropriately sized 61-channel elastic nylon Quick-cap (Compumedics; Charlotte, NC), 

and EEG data were acquired using the 70-channel Synamps2 amplifier system and 

recorded in the Acquire module of Scan 4.3 (Compumedics; Charlotte, NC).  This system 

has a common mode rejection ration of 100 dB, 24-bit A/D resolution, and input 

impedance of 10 MΩ.  Data were recorded with a bandwidth of DC-100Hz and sampled 

at 1KHz.  Impedances were kept below 5 kΩ for all electrodes.   

Vertical and horizontal electrooculograms (EOG) were recorded using Ag/AgCl 

electrodes placed above and below the right eye and the left and right outer canthi, 

respectively.  Electromyographic activity (EMG) of the vastus lateralis was recorded 

from bipolar electrodes with an inter-electrode distance of approximately 20 mm.  

Electrodes were arranged according to Surface ElectroMyography for the Non-Invasive 

Assessment of Muscles (SENIAM) (69) recommendations.  Prior to electrode 

application, the skin was cleaned and vigorously abraded.  EOG, EMG, EEG and force 

signals were all continuously and synchronously recorded through the Synamps2 

amplifier and Scan 4.3 software. 

Resistance training.  Supervised unilateral training of the leg extensors was 

conducted three times per week on non-consecutive days for three weeks (i.e., nine total 

sessions).  A relatively brief, three week training regimen was selected on the basis of 

evidence that neural plasticity governs early adaptive effects (70).  In addition, leg 

extensions were performed explosively in order to maximize neural adaptations (5, 65, 
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152).  Participants were encouraged to maximally accelerate the load in the concentric 

phase and slowly (e.g. 2 s tempo) return the load in the eccentric phase.  All training was 

progressive in nature as volume and intensity increased after the third and sixth sessions.  

Initial training loads were based upon one-repetition maximum (RM) strength, which was 

determined prior to the first training session.  Sessions 1-3 consisted of three sets of 10 – 

12 repetitions at 70-75% RM; Sessions 4-6 consisted of four sets of 8 – 10 repetitions at 

75-80% RM; Sessions 7-9 consisted of five sets of 6 – 8 repetitions at 80-85% RM.   

Strength and muscle activity assessment.  Maximal voluntary isometric 

contraction (MVIC) of the dominant leg extensors was determined from three separate 

maximal attempts in which subjects were instructed to contract as hard and as fast as 

possible and to maintain the contraction until they were instructed to release (~ 3 s).  

MVICs were preceded by several submaximal preconditioning contractions and a rest 

period.  Force signals and concomitant EMG of the vastus lateralis were synchronously 

sampled at 1KHz and digitally converted as described earlier.  

Offline, the summed force signals were digitally smoothed using a 4
th

 order, zero-

lag Butterworth filter (15 Hz cutoff).  Force-time histories were analyzed for MVIC and 

the rate of force development (RFD).  Maximal RFD was computed as the highest values 

of the slope coefficients of the tangent computed during a sliding 5 ms window (154).  

Onset of contraction was detected using a threshold criterion of 5 Newtons and was 

confirmed with visual inspection.  The average of three MVIC attempts was used for 

statistical analysis.   

Raw EMG signals were digitally high-pass filtered using a 4
th

 order, zero-lag 

Butterworth filter (5 Hz cutoff), and followed by a moving root-mean-square filter with a 
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50 ms time constant (2).  Onset of EMG was defined as the moment preceding the onset 

of contraction by 70 ms to account for the presence of electromechanical delay (2).  

Variables of interest included peak EMG during contraction (EMGpk), and the average 

integrated EMG in the 200 ms time interval prior to peak force (EMG200) as described 

elsewhere (85).  Force and EMG signal processing was performed using Datapac 2K2 

software (v3.16; Mission Viejo, CA).      

MRCP acquisition and analysis.  Following MVIC testing and a 5 min rest 

period, each participant performed three sets of 20 self-paced leg extensions of the 

dominant leg.  Interspersed rest periods of approximately 5 min were given to minimize 

possible physical and mental fatigue.  Participants started from an initial position of 110° 

hip flexion and 80° knee flexion. (See Fig 3)  Upon completion of the movement, they 

reached a position of 70° hip flexion and 0° knee flexion.  Participants were instructed to 

briskly extend their leg during the concentric phase then slowly lower the arm of the leg 

press to the starting position (i.e. eccentric phase).  Prior to commencing subsequent 

repetitions, participants were instructed to relax and wait calmly for at least 5 s.  To 

minimize the influence of eye movements on the EEG signal, participants were instructed 

to maintain an open-eye, fixed-gaze on a target located approximately 3 m in front of 

them.  They were also told to refrain from tensing muscles other than the involved leg 

extensors and to avoid eye blinks in the period before and during the leg extension to 

avoid generating artifacts.  Their arms gently rested on handles attached to the seat of the 

leg press device.  Between trials (i.e. repetitions), eye blinks were allowed as these 

periods were not included in the triggered averaging.   
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All offline analysis was performed utilizing custom MATLAB programs (v7.3.0; 

Math Works, Inc.; Natick, MA).  Raw EEG data were inspected visually to identify and 

remove artifacts.  Trials containing blink artifacts occurring during epochs of interest 

were excluded.  Data were high-pass filtered at 0.01 Hz (90 db) to eliminate the baseline 

shift generated by DC recording and were referred to a common average.  For each trial, 

the onset of force was used to synchronize a 4 s epoch, 3 s before the onset and 1 s after 

onset.  Force onset was defined as the point when the force signal exceeded a threshold of 

two standard deviations above the activity level at the beginning of the epoch and 

subsequently remained above that level for at least 500 ms.  Non-contaminated epochs 

were averaged together forming an average MRCP for each participant.    

MRCPs were decomposed into three distinct components (83, 138): 1) mean 

amplitude between -600 and -500 ms prior to movement onset, or Bereitschaftspotential 

(BP-600 to -500), 2) mean amplitude between -100 ms and movement onset, or motor 

potential (MP-100 to 0), and 3) mean amplitude from onset to +100 ms, or movement-

monitoring potential (MMP0 to 100).  Amplitudes were computed with reference to a 

baseline of -3500 to -3000 ms prior to movement onset. Latencies were also determined 

by computing the time interval from onset of MRCP negativity to force onset.  Onset of 

negativity (i.e. MRCP onset) was identified as the point when the baseline signal deviated 

from a 95% confidence interval and subsequently remained above that level for at least 

500 ms (159) from the period of -2500 to -2000 ms preceding movement.  Analysis 

focused primarily on three central electrode sites: Cz, C1, and C2.  These sites were 

chosen because leg movements are associated with high activity over the supplementary 

motor area and demonstrate bilateral motor cortex activation (97).  
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Also in each trial, the EMG signal was processed in the same manner as 

performed in MVIC, but was averaged over a 2500 ms epoch (e.g. 1000 ms prior to 1500 

ms after movement onset), and then averaged over all trials.  Mean amplitude and onset 

relative to movement onset (i.e. force onset) were calculated.  The criteria for EMG onset 

were equivalent to MRCP onset described above.  Mean force and maximal RFD were 

obtained by triggered averaging as well.   

Two-dimensional (2D) topographical maps were created to reflect spatial features 

of the MRCP considering the entire 61-electrode montage (Fig 4).  Separate 2D maps 

were created for each of the three distinct MRCP components for pre- and post-testing, 

using group mean data.  Group mean data rather than single-subject data were used to 

better demonstrate true cortical activity preceding movement (50). 

Statistical analysis.  Paired t-tests were used to compare force, EMG, and MRCP 

measures between pre- and post-tests.  As multiple electrode sites were compared, we 

additionally performed a Hotelling T
2
 test to maintain statistical power, as has been used 

previously in similar studies (50).  For MVIC measures one-tailed tests were performed 

to compare force and EMG as these measures are known to increase with resistance 

training.  Two-tailed tests were used to examine MRCP measures.  Pearson correlation 

coefficients were computed to assess the relationships between MRCP measures and 

force and EMG during the submaximal protocol.  Test-retest reliability was assessed via 

intraclass correlation coefficients (ICC3,1) (158) and ICCs greater than 0.60 were 

considered acceptable (23).  Data are presented as means ± SD and statistical significance 

was set at α ≤ 0.05.         
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Results 

Reliability. ICCs for each MRCP measure all exceeded the 0.60 criterion for 

acceptability as follows: BP-600 to -500 = 0.77, MP-100 to 0 = 0.82, MMP0 to 100 = 0.89, onset 

latency = 0.92.  No significant differences were observed between sessions for any of 

these measures across electrode sites (P > 0.05).   

Maximal strength assessment.  After three weeks of strength training, MVIC 

increased significantly by 21.6% from 1479.6 ± 579.2 to 1800.0 ± 533.6 N (P < 0.001).  

RFD also significantly increased by 31.6% from 5.3 ± 2.3 to 7.0 ± 2.6 N/ms (P < 0.001).  

In regards to EMG, no difference was found for EMGpk (P = 0.23), but a significant 

47.2% increase was observed for EMG200 (P = 0.04). 

Submaximal leg extension performance.  After rejection of contaminated epochs 

(approximately 35% of trials), the average number of trials analyzed per subject was 

similar for pre- (34.2 ± 10.8) and post-tests (35.5 ± 12.5).  Previous research has 

demonstrated that the MRCP is associated with the rate and magnitude of force 

production (44, 136, 138); therefore, these variables before and after training were 

analyzed to assess their possible contribution to any MRCP effects.  Overall, the findings 

indicated little if any change in submaximal force production.  No differences (P > 0.05) 

were observed for mean force (Pre: 277.4 ± 35 N; Post: 282.9 ± 22 N) or RFD (Pre: 2.6 ± 

1 N/s, Post: 2.2 ± 1 N/s).  Mean inter-trial response interval, defined as the interval 

between the offset and onset of force production, were also similar between sessions 

before and after training (Pre: 12.2 ± 1.7 s; Post: 11.4 ± 2.4 s).  Similarly, mean EMG 

amplitude (Pre: 366.6 ± 186.2 µV; Post: 378.4 ± 241.4 µV) and the onset of EMG (Pre: -

184.2 ± 93.9 s; Post: -168.91 ± 90.7) were not significantly different (P > 0.05).    
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MRCP parameters.  MRCP amplitude measures for Cz, C1, and C2 are illustrated 

in Figure 5, and the waveforms on which these measures are based are illustrated in 

Figure 6.  Irrespective of measure, amplitudes generally were attenuated following 

resistance training at each of the electrode sites.  However, these differences were 

statistically significant only for MP-100 to 0 and MMP0 to 100, as BP-600 to -500 did not satisfy 

the Hotelling t
2
 test (P = 0.09).  Our automatic detection methods did not consistently 

detect MRCP onsets at the C1 or C2 electrode sites, therefore latencies were computed 

only for Cz.  A significant difference (P = 0.02) was observed for onset latency (Pre: -

1939.9 ± 658.3; Post: -1378.2 ± 600.5), such that onsets, on average, began 

approximately 28% later at Cz after training.  Visual inspection of the 2D topographical 

maps (Figure 4) further confirms the attenuation of cortical activity during each of the 

three MRCP components.  Note statistical analysis was not performed on these maps, 

which are used for the purposes of illustrating in general form the spatial features and to 

confirm that the C1-Cz-C2 chain is an appropriate zone for measurement. 

No significant correlations were observed for the pre-testing session between 

MRCP measures and mean force or RFD (P > 0.05).  However, mean EMG amplitude 

was significantly associated with MP-100 to 0 (r = 0.68; P = 0.03) and MMP0 to 100 (r = 0.64; 

P = 0.05), but only at electrode site C2.    For post-testing, MMP0 to 100 at Cz was 

significantly correlated (r = 0.61; P = 0.05) with mean force.  No other significant 

associations were observed for RFD or mean EMG amplitude during the post test.      
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Discussion 

We hypothesized that following a brief program of resistance training, supraspinal 

adaptive changes would be reflected in the MRCP.  As expected, this 3-wk program 

elicited marked increases in MVIC, RFD, and EMG200 during maximal leg extensor 

contraction.  For repetitive submaximal leg extensions, we observed attenuation of 

MRCP amplitude at several motor electrode sides, supporting our hypothesis that by 

increasing strength, comparable motor tasks may be performed with a lower level of 

neural effort.  

We are confident that the observed changes were not artifactual in nature for two 

main reasons.  First, we were able to demonstrate that MRCP are repeatable (ICCs = 0.77 

– 0.92) for self-paced submaximal leg extensions, and without intervention, there were no 

changes in response amplitude measures or onset latencies as seen with our sub-group 

analysis.  Second, we found no differences in the manner in which leg extensions were 

performed (e.g. force applied, RFD, inter-trial interval) as well the number of trials 

analyzed before and after training.  In concert with the findings of significant differences 

in the associated MRCPs, these results indicate that MRCP may be a valuable method for 

evaluating adaptive neural changes in response to resistance training.   

Implications for reduced cortical activity. If, secondary to resistance training, 

individual motor units are capable of producing more force, then fewer motor neurons are 

required to accomplish a given physical task.  Presumably, a reduction in recruitment 

would be reflected in diminished cortical activation.  Carroll et al. (21) hypothesized that 

such a reduction would reduce activation of neural elements unrelated to the intended 

movement, thereby resulting in enhanced performance.  As such, enhanced performance 
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is likely to reflect a lower metabolic cost, as has been reported elsewhere.  For example, 

elite rifle shooters consistently demonstrate decreased MRCP amplitude in comparison to 

novices (39), suggesting more efficient movement preparation and execution (68).   

Such findings are consistent with results from the present study indicating that the 

amplitudes of later components, MP-100 to 0 and MMP0 to 100, were considerably reduced 

(effect sizes: 0.70 – 0.85) following three weeks of resistance training.  It has previously 

been reported that these same time intervals (e.g. MP-100 to 0 and MMP0 to 100) are sensitive 

to inertial loading, whereby amplitudes are greater at appropriate electrode sites when 

loading is higher (83).  In other words, when individuals were asked to perform muscle 

contractions under light- and heavy-loads, larger MP-100 to 0 and MMP0 to 100 responses (i.e. 

greater negativity) were observed under heavy-loading conditions.  We consider these 

findings directly applicable to the present study in which subjects performed movements 

at a constant load prior to and following resistance training.  At baseline, MP-100 to 0 and 

MMP0 to 100 amplitudes were 26.1 – 49.7% higher than after training.  Since subjects 

experienced significant gains in MVIC (+21.6%) and RFD (31.6%), it is reasonable to 

assume that strength gain altered the level of relative loading in which the constant load 

became lighter after training and thus easier to perform.  This is further confirmed by 

Slobounov et al. (138) who reported MRCP amplitudes to proportionally increase as a 

function of perceived effort on the part of the subject. 

In a cross-sectional study, the MRCP preceding wrist extensions was compared in 

athletes (e.g. kendoists, gymnasts) versus non-athletes (81).  The authors reported that the 

early component (e.g. BP) in athletes had a later onset and reduced amplitude in 

comparison to non-athletes.  Similarly, we observed that the onset of negativity at 



33 

 

electrode site Cz occurred on average 561 ms later following training (Fig 6).  However, 

we did not find a significant decrease in amplitude at BP-600 to -500 in our multi-channel 

comparison (t
2
; P = 0.09), but believe this to be reflective of statistical power as a 

substantial reduction in amplitude (e.g. 43 – 67%) was observed after training.  Post hoc 

power analysis using our sample size, α = 0.05, and our observed effect size d = 0.80 

yielded an achieved power estimate of 1 – β = 0.66.  Thus, although care must be taken in 

interpreting such results, a non-significant trend towards decreased BP-600 to -500 was 

observed. 

In the study of Kita et al. (81), the distributions of potentials between athletes and 

non-athletes were also compared using topographical maps [c.f. Fig 2; (81)].  These maps 

indicated that activity was significantly more localized in athletes.  The authors 

speculated that habitual training involving wrist extensions caused initially diffuse brain 

activation to become specific.  Evidence of increased spatial localization of potentials 

was also observed in the topographical maps of the present study (Fig 4).  It is important 

to note that the absence of the lateralized activity normally associated with upper 

extremity movements is not surprising given the arrangement of the motor homunculi and 

is consistent with the findings of other studies examining lower extremity recordings (97, 

159).  Finally, it is interesting to observe changes after only nine training sessions in 

contrast to the years of habitual training examined by the Kita et al. study (81). 

Comparison to evoked responses.  Our findings are convergent with prior 

demonstrations of attenuated cortical activity in response to short-term training.  Taube et 

al. (143) reported a reduction in corticospinal excitability that was correlated with 

improved motor performance (e.g. postural stability) following four weeks of balance 
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training.  Excitability was assessed using a collision technique of sub-threshold TMS and 

H-reflex as described elsewhere (109).  In brief, this technique is able to attenuate the 

influence of spinal excitability by adjusting the H-reflex to a specific level, therefore if 

changes are observed they are most likely reflective of cortical excitability (143).  As a 

result, conditioning of the H-reflex with TMS is considered more reliable than TMS 

alone to infer changes in cortical excitability (103).  Schubert et al. (129) also used the 

conditioned H-reflex to identify supraspinal changes in response to either four weeks of 

balance or explosive resistance training of the lower limbs.  Both balance and resistance 

training improved RFD concomitant with a diminished facilitation of the conditioned H-

reflex after training.  In addition, they also observed no adaptation in reflex gain via the 

unconditioned reflex, suggesting that changes in the firing rate or intrinsic properties of 

spinal motor neurons were not responsible for the modulation of the conditioned H-reflex 

(129).  Consequently, observed changes were interpreted mainly as changes in cortical 

excitability.   

Schubert and colleagues’ interpretation is in contrast to that of Carroll et al. (21) 

who suggest that resistance training does not elicit substantial modification of motor 

cortical centers; rather, it exhibits its greatest influence on the functional properties of the 

spinal cord circuitry.  In that study, subjects performed four weeks of resistance training 

of the first dorsal interosseous.  After training, MVIC increased by 33%, but no change in 

TMS-induced MEPs was evident at rest or at contraction intensities below 40% MVIC.  

Only at higher contraction intensities (e.g. 40 – 60%) were MEPs reduced.  Similarly, 

Jensen et al. (79) found no evidence of increased cortical excitability following four 

weeks of biceps brachii resistance training that increased MVIC by 32%.  Unlike Carroll 
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and colleagues, they observed a significant depression in maximal MEP amplitude at rest, 

and only a similar trend during tonic contraction.  Decreased corticospinal excitability at 

rest was not correlated to changes with strength, leading the authors to suggest that the 

observed strength gain was unrelated to cortical changes.   

Jensen et al. (79) suggested that slight differences between their findings and that 

of Carroll et al. (21) may be explained by the variability of recordings during voluntary 

contractions, supported by the finding that cortical and spinal excitability is better 

maintained at low intensity stable contractions (33).  This variability underscores the role 

of voluntary effort and lack of consistency amongst studies.  For example, Griffin and 

Caffarelli (64) found no changes in MEP at rest following four weeks of plantar-flexion 

resistance training, but found a 32% increase in MEP during a 10% MVIC contraction.  

Although Jensen and colleagues studied the upper extremity, they did not find an increase 

in MEP during a baseline contraction of 5% MVIC.  Presumably, techniques such as the 

conditioned H-reflex (129, 143) as well as the methods of the present study may 

circumvent some limitations related to voluntary effort.       

Paradigm considerations.  Direct comparisons of results of the present study to 

those utilizing evoked responses are difficult for several reasons.  Foremost, 

interpretations of volitional drive and/or cortical excitability are drawn from peripheral 

EMG assessment whereas the present study records activity at the level of the cortex.  

Moreover, in order to resolve the MRCP from spontaneous EEG activity, multiple trials 

are necessary in order to generate a stable average and improve signal to noise ratio.  This 

is in contrast to H-reflex or MEP designs that elicit a response at rest or during tonic 

contraction.  While MRCPs  may rely more directly on central nervous system activity, 
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evoked responses may be more conducive for evaluating the functional state of the 

corticospinal pathway as they  represent excitatory and inhibitory interactions occurring 

at various levels of the neuraxis (10).  Unique features of each technique contribute to the 

understanding of cortical reactivity and connectivity and its resultant adaptations, as 

underscored by recent technical advances permitting the combination of TMS-EEG 

(102).  Future studies are warranted to compare changes amongst MRCP characteristics 

with modifications of cortical and spinal excitability. 

We acknowledge that the present investigation lacks a detailed assessment of 

peripheral adaptation (i.e. EMG sites).  Due to practical limitations (e.g. available 

channels for bipolar recording), we were unable to assess the full musculature involved in 

the leg extension task.  This may be a potential shortcoming by limiting our ability to 

quantify the relative amount of central and peripheral adaptation that occurs in response 

to resistance training.  Future studies should consider a larger EMG recording montage.   

The present study is unique in many aspects.  This is the first study to report 

supraspinal adaptations in response to short-term resistance training using the MRCP 

paradigm.  Moreover, recordings of MRCP associated with lower-extremity movements 

have been infrequently obtained (159).  To our knowledge, an examination of multi-joint 

movements as employed here has not been previously performed.  The greater MRCP 

responses in comparison to reports in the existing literature may, in fact, be the result of 

performing movements requiring action across several joints.  This is in agreement with 

increased responses observed when movements are more complex (50, 51).  The multi-

joint training protocol is also unique to the literature investigating neural adaptive effects 

with short-term resistance training which has primarily studied single-joint actions such 
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as index finger flexion (21), ulnar deviation (52), elbow- (79), and plantar- flexion (36, 

62, 70, 86).  We note in passing the importance of these findings in suggesting that the 

MRCP method may be useful in the study of multi-joint movements relating to key daily 

activities including gait and the maintenance of posture. 

Conclusion.  In advance of significant muscle architectural and contractile 

changes in the first few weeks of a program of resistance training, neural adaptive effects 

are thought to predominantly govern the observed increases in force output (i.e. MVIC).  

Evidence of adaptation at multiple levels of the neuraxis has been reported previously (1, 

56, 58, 63), yet direct evidence of supraspinal adaptation has been lacking.  The present 

data are consistent with the conclusion that adaptations in response to short-term 

resistance training at the level of the cerebral cortex, reflective of enhanced neural 

economy.  These insights into the mechanisms of neuronal plasticity have implications 

for disciplines such as neurorehabilitation.  The MRCP protocol offers an important 

approach to the study of early phase neural adaptations during a program of resistance 

training. 
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Figure 3:  

Illustration of experimental setup.   

Note:  Individual adjustments were made to accommodate 80° and 120° of knee and hip 

flexion, respectively.
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Figure 4:  

2D topographical maps of component amplitudes 

Note:  Each map is oriented such that the anterior-posterior axis is arranged vertically 

(i.e. nasion is located at the top).
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Figure 5:  

MRCP amplitude measures (µV).   

Note:  Amplitudes for each component before (black) and after (gray) training.  Error 

bars are standard deviation.  Hotelling t
2
: †P < 0.05; Paired t-test: ** P < 0.01, *P < 0.05 
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Figure 6:  

Grand average waveforms of MRCP and multi-channel display 

Note:  Grand average waveforms are presented for Cz, C1, and C2 both before (black) 

and after (gray) training.  Dashed line represents the onset of movement.  Multiple 

electrode sites around those of interest (e.g. Cz, C1, C2) are also displayed
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Chapter 3: 

Central adaptations to repetitive grasping in healthy aging and Parkinson disease. 
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Abstract 

 

Objective:  Augmented cortical activity during repetitive grasping mitigates a decrease in 

cortical efficiency in young adults.  It is unclear if similar adaptive processes occur with 

healthy aging and Parkinson disease (PD).  

Methods:  Movement-related cortical potentials (MRCP) were recorded during 150 

repetitive handgrip contractions at 70% of maximal voluntary contraction (MVC) in three 

experiments: 1) young versus old, 2) old versus PD ‘off’ medication, and 3) PD ‘off’ 

versus ‘on’.   MRCP data were grouped into blocks (block 1: trials 1 – 60; block 2: trials 

91 -150) and analyzed separately to determine the effects of aging, PD, and PD 

medication.       

Results:  We observed no change in EMG or MVC for any group.  Significant 

interactions (p < 0.05) were observed at mesial (FCz, Cz, CPz) and motor (C1, C3, Cz) 

electrode sites for young versus old comparison (experiment 1), with younger adults 

demonstrating significant increases in MRCP amplitude.  No interactions were found for 

experiments 2 or 3. 

Conclusions: Focal activity in cortical motor regions was uniquely augmented in 

younger adults, but minimal changes were observed in older adults with and without PD.   

Significance:  Central adaptive processes for the maintenance of task performance 

changes across the lifespan whereby activation is more localized in younger adults. 
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1. Introduction 

Age-related reorganization of the central nervous system is evident during simple 

motor tasks as characterized by electroencephalography (EEG) (61, 76, 126, 140, 162), 

functional imaging (fMRI) (107, 155-157), and transcranial magnetic stimulation (TMS) 

(112, 141, 142).  Some consistent findings have been reported regarding task-related 

activation whereby cortical activity is more diffuse and less lateralized in advancing age 

(16).  Presumably, these findings may be explained in terms of adaptive plasticity in the 

motor system by which older adults seek to maintain performance despite age-related 

changes in the brain (156).  Such changes include reduction of gray and white matter (60, 

95), degradation of cortical neurons (42), connectivity changes in cortical motor regions 

(123), and a reduction in intra-cortical inhibition (112, 142).  Activation of a wider 

cortical network should not be viewed simply as an effective compensatory mechanism to 

match performance with a younger counterpart, but also an indication of the inability to 

selectively activate a given cortical network or region (76).    

Subcortical brain structures, e.g. basal ganglia, significantly influence cortical 

motor regions during movement preparation and execution (29, 54, 113), and are also 

subject to the effects of aging as well as neurodegeneration.  [For review of basal ganglia 

circuitry: (151)].  Disruption in basal ganglia circuitry, as seen with Parkinson disease 

(PD), diminishes output to the supplementary motor area (SMA) resulting in 

hypoactivity.  The SMA is involved during movement preparation and functions to 

initiate movements and integrate them into ongoing motor sequences (30), particularly 

when those movements are internally guided.  Pre-movement hypoactivity has been 

associated with longer movement durations and slower reaction times in individuals with 
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PD (31), which is consistent with their clinical profile (i.e. bradykinesia).  The effects of 

PD extend beyond SMA hypoactivity and include dysfunction in several motor cortical 

areas [See for review: (87)].  Unlike the SMA, primary and premotor cortices 

demonstrate hyperactivity in PD, with consistent findings across EEG (41), fMRI (67), 

and TMS (96, 120) studies.  Lefaucheur (87) suggests dissimilar changes across motor 

cortical areas (i.e. hypo- and hyper-activity) may reflect primary or compensatory 

mechanisms of PD, and underscore the complexity of this disease. 

Age-related and neurodegenerative changes in the central nervous system are 

characterized by task-related central activation patterns, but the majority of these studies 

focus on simple motor tasks (e.g. button presses, finger-thumb opposition) performed 

with minimal effort.  These limitations may restrict our understanding of plasticity during 

ongoing motor actions.  Such changes may also predispose older adults to a progressive 

decline in neural drive during repetitive contractions (74), consistent with suboptimal 

neural output (59).  An exercise-related reduction in motor output is typically measured 

via motor-evoked potentials using TMS (59).  Indeed a number of studies have examined 

cortical excitability during fatiguing contractions (7, 8, 74, 99, 125, 145, 146).  Taken 

together, these studies describe an increase in central motor drive through modulation of 

excitatory (i.e. increase in corticomotor excitability) and inhibitory (i.e. decrease in intra-

cortical inhibition) networks (7).  Therefore, adaptations are made in order to compensate 

for diminished central motor drive and maintain performance of the motor task. 

However, changes in excitability may not be analogous with changes in voluntary 

drive (127).  Several studies (57, 80, 93, 127) have investigated central adaptations to 

repetitive contractions by analyzing movement-related cortical potentials (MRCP), EEG-
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derived cortical activity occurring around the time of movement.  [For review of MRCP 

see: (132)].  Contrary to motor-evoked potentials, recording of the EEG does not 

introduce artificial input into the system and indexes activity at the level of the cortex, 

and measurements are performed during, rather than following, repetitive contractions  

(127).  Further, as noted by Johnston and colleagues (80), TMS cannot assess global 

changes occurring simultaneously across the cortex, nor can it discern distinct periods of 

motor preparation, initiation, and execution.  To this end, several EEG studies (57, 80, 

93, 127) had subjects perform 120 – 200 repetitive hand grip contractions at a high 

intensity, and recorded MRCP over the duration of the protocol.  Over time, the 

amplitude of MRCP (i.e. electrocortical activation) significantly increased over SMA and 

contralateral sensorimotor areas.  This increase in MRCP amplitude was interpreted as a 

central adaptation to counteract suboptimal motor output (127).  Thus regardless of 

methodology (i.e. TMS or EEG) , there appear some consistency amongst findings 

concerning how the central nervous system may adapt in order to maintain performance 

during a repetitive or fatiguing task.  However, these results are limited primarily to 

young healthy adults.  What is lacking is an understanding of whether this adaptation is 

present with advancing age, as well as in individuals with central activation impairments 

(e.g. PD).    

We carried out three separate experiments, utilizing the aforementioned MRCP 

repetitive grasping paradigm (57, 80, 93, 127), to examine the influences of aging and PD 

on central adaptations.  In light of recent work describing age-related EEG differences for 

baseline motor performance (76), we chose to explore the possibility of an interaction 
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between age and MRCP amplitude change in experiment 1.  We hypothesized the 

magnitude of adaptation would be attenuated in older adults.   

Studies employing self-paced sequential motor tasks, as performed in the present 

study, have demonstrated reduced activity related to movement preparation for 

individuals with PD (30, 41, 137).  Yet it remains unclear if those with PD retain the 

relative capability to adapt over the duration of a repetitive motor task similar to those 

without PD.  Therefore, our aim for experiment 2 was to compare those with PD, while 

off of their antiparkinson medication, to age- and gender-matched controls.  Subjects with 

PD were tested off of their medication in order to obtain a more accurate assessment of 

the true pathological condition.  We hypothesized that their ability to adapt over the 

duration of the protocol would be compromised in comparison to older adults without 

PD.   

Levodopa has been shown to enhance EEG activity during movement preparation 

(41) and reverse abnormal cortico-motorneuron activity (96).  Consequently, experiment 

3 examined the effects of medication by comparing the same individuals with PD on and 

off of their antiparkinson medication.  We hypothesized greater adaptation would be 

observed in subjects in an optimally medicated state.   

  

2. Methods 

2.1. Subjects 

Thirty subjects volunteered to participate in experiments 1 – 3.  Subjects were 

subdivided into ‘young’ (age mean ± SD, 24.1 ± 1.0; age range: 22 – 25), ‘old’ (68.8 ± 

4.6; 59 – 78), and PD (68.1 ± 8.4; 59 – 78) groups.  Each group consisted of 10 subjects 
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(8 men and 2 women).  Old and PD groups were also age-matched.  Subjects with PD 

(18) were recruited from the Washington University Movement Disorders clinic and their 

clinical profiles are shown in Table 1.  

All subjects were right-handed according to the Edinburgh handedness inventory 

(110).  None had history of musculoskeletal injury or neurological events (other than 

PD), nor were any depressed or taking any psychoactive medication for at least 6 months 

prior to entry into the study.  All subjects gave their written informed consent to the 

experimental procedures, which conformed to the Declaration of Helsinki and was 

approved by the Washington University School of Medicine Human Research Protection 

Office. 

The paradigm for all three experiments was methodologically equivalent, but with 

unique research questions.  Experiments 1 – 3 addressed the effects of aging, PD, and 

antiparkinson medication, respectively.  All subjects performed a single-session protocol, 

with the exception of individuals with PD.  Those with PD performed the protocol after 

an overnight withdrawal (OFF) of their antiparkinson medication and in an optimally 

medicated state (ON), i.e. 1 – 2 hours after morning dose.  Relative ON and OFF testing 

sessions were randomized, performed at the same time of day, and separated by a 

minimum of 72 hours of rest.  Data from the old group were analyzed in both 

experiments 1 and 2, and data from the PD OFF group were analyzed in both experiments 

2 and 3. 

 

2.2. Experimental procedures 
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Subjects were comfortably seated in an armchair with their dominant hand and 

forearm stabilized in a semi-supinated position by a vacuum positioning pillow (See 

Figure 7).  A strain gauge grip dynamometer (Biopac SS25; Goleta, CA) was placed in 

their dominant hand from which isometric handgrip force was recorded.  This 

dynamometer did not allow for individual adjustments, but subjects were given 

instruction and practice on how to squeeze the device using a power grip configuration.  

Thereafter, a maximum voluntary contraction (MVC) was recorded as the largest force 

produced in a 3 – 5 second attempt.  Subjects were given three attempts and the average 

was used for subsequent analysis.  Standardized instructions were provided to all 

subjects.   

Each subject then performed 150 intermittent handgrip contractions at 70% of 

their MVC, segmented into five consecutive sets of 30 trials.  This repetitive grasping 

was self-initiated and subjects were instructed to contract once every 5 – 8 seconds.  In 

order to maintain the appropriate contraction intensity, real-time visual force feedback 

was provided by means of a custom LabVIEW program (v8.0, National Instruments).  A 

computer screen positioned at eye-level approximately 0.5 m in front of the subject 

displayed a large sphere that would illuminate once the subject reached the target force of 

70% MVC.  Once reached, subjects were instructed to relax immediately (127).  MVC 

was re-assessed following the completion of the fifth set of 30 trials.  These procedures 

were consistent across experiments 1 – 3. 

 

2.3. Electrophysiological recording  
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Continuous EEG was recorded using an appropriately sized 61-channel elastic 

nylon Quick-cap, and data were acquired using the 70-channel Synamps2 amplifier 

system using the Scan 4.3 software (Compumedics; Charlotte, NC).  Vertical and 

horizontal electrooculograms (EOG) were recorded using Ag/AgCl electrodes placed 

above and below the right eye and the left and right outer canthi, respectively.  Surface 

EMG was measured bipolarly using two Ag/AgCl electrodes placed 20 mm apart over 

the flexor digitorum superficialis (FDS) muscle belly of the dominant arm as identified 

through palpation.  Prior to EOG and EMG electrode application, the skin was cleaned 

and vigorously abraded.  EEG, EOG, EMG, and force from the grip dynamometer were 

all continuously and synchronously recorded through the Synamps2 amplifier and Scan 

4.3 software.  This system has a common mode rejection ration of 100 dB, 24-bit A/D 

resolution, and input impedance of 10 MΩ.  Data were recorded with a bandwidth of DC-

100Hz and sampled at 1KHz.  Impedances were kept below 5 kΩ for all electrodes.   

 

2.4. EEG analysis 

Offline analysis was performed utilizing custom MATLAB programs (v7.3.0; 

Math Works, Inc.; Natick, MA).  Raw EEG data were inspected visually to identify and 

remove signal artifacts.  Data were high-pass filtered at 0.01 Hz (90 db) to eliminate the 

baseline shift associated with DC recording and were referred to a common average.  For 

each trial (i.e. repetition), the onset of force was used to synchronize a 4 s epoch, 3 s 

before the onset and 1 s after.  Force onset was defined as the point when the signal from 

the grip dynamometer exceeded a threshold of two standard deviations above the activity 

level at the beginning of the epoch and subsequently remained above that level for at 



56 

 

least 500 ms.  Non-contaminated epochs were averaged together forming an average 

MRCP for each participant.  This averaging was performed separately on trials 1 – 60 

(block 1) and 91 – 150 (block 2), and therefore allowed us to analyze main effects 

associated with block. 

MRCPs were decomposed into three distinct components that have been 

described and analyzed previously (22, 45, 83, 138, 163): 1) mean amplitude between -

600 and -500 ms prior to movement onset, or Bereitschaftspotential (BP), 2) mean 

amplitude between -100 ms and movement onset, or motor potential (MP), and 3) mean 

amplitude from onset to +100 ms, or movement-monitoring potential (MMP).  These 

measurement windows were used to characterize the time course of the MRCP.  

Amplitudes were computed with reference to a baseline of -3000 to -2500 ms prior to 

movement onset.  Onset of negativity (i.e. MRCP onset) was identified as the point when 

the baseline signal deviated from a 95% confidence interval and subsequently remained 

above that level for at least 500 ms from the period of -2500 to -2000 ms preceding 

movement.  Our electrode sites of interest were consistent with prior MRCP studies 

utilizing this paradigm (57, 80, 93, 127) and included: Cz, FCz, CPz, C1, and C3.  These 

electrodes were then grouped into two regions of interest, e.g. left motor region (LM = 

Cz, C1, C3), and the central mesial region (CM = FCz, Cz, CPz). 

Two-dimensional (2D) topographical maps were created to reflect spatial features 

of the MRCP considering the entire 61-electrode montage.  Separate 2D maps were 

created for each of the three distinct MRCP components for each block, using group 

mean data.  Group mean data rather than single-subject data were used to better represent 

true cortical activity preceding movement (50). 
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2.5. EMG and force analysis  

EMG recorded during repetitive grasping and MVC attempts were band pass 

filtered in the 1 – 100Hz frequency range and rectified, and maximum amplitudes were 

calculated.  For repetitive grasping, maximum EMG amplitudes were calculated over a 

2500 ms epoch (e.g. 1000 ms prior to onset to 1500 ms after onset), and then averaged 

across trials similar to the MRCP described above.  For MVC attempts, maximum 

amplitudes were computed over the duration of the MVC attempt.   

The force signal from the dynamometer was digitally high-pass filtered using a 4
th

 

order, zero-lag Butterworth filter (5 Hz).  Force-time histories were analyzed for peak 

and mean force during grasping and MVC attempts, respectively.  Peak rate of force 

development (RFD) was also computed as the highest values of the slope coefficients of 

the tangent computed during a sliding 5 ms window (154). 

 

2.6. Clinical and subjective rating scales 

Subjects completed the fatigue severity scale (84) or Parkinson fatigue scale (15) 

depending on assignment to either experiment 1 or 2, respectively.  They were also asked 

to subjectively rate their perceived exertion, RPE (12), at rest and following completion 

of the repetitive contractions.  

The motor subsection of the Unified Parkinson Disease Rating Scale (UPDRS) 

was administered by the same blinded Movement Disorders Specialist to all individuals 

with PD, both ON and OFF their medication.  This clinician/investigator also rated the 

clinical disability of those with PD according to the Hoehn & Yahr (HY) scale.  Subjects 
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were also asked to subjectively rate how well they felt their Parkinson symptoms were 

controlled on a 10-cm visual analog scale prior to testing both ON and OFF conditions.  

A score of ‘0’ indicated they felt no control over their symptoms whereas a score of ‘10’ 

indicated they felt complete control over their symptoms.  This scale was used to confirm 

the OFF condition.   

 

2.7. Statistics 

MRCP, EMG, and force data were analyzed using a mixed ANOVA design with 

group and block (block 1, block 2) as between- and within-subject factors, respectively.  

To account for multiple repeated-measures analyses, p values were based on the Huynh-

Feldt corrected degrees of freedom.  Post-hoc analyses, with correction, were performed 

with independent or paired t-tests where appropriate.  All data are presented as mean ± 

SD and were analyzed using SPSS (v17; SPSS Inc., Chicago, IL).  For all comparisons, a 

probability of less than or equal to 0.05% was considered to be statistically significant.  

 

3. Results 

3.1. Experiment 1 

Young and old subjects scored similarly and low on the fatigue severity scale 

(average score = 2.1).  Their RPE following completion of the protocol was also similar 

(p = 0.751; Figure 8) and all were able to successfully complete all 150 contractions.  

Independent two-tailed t-test found no difference (p = 0.198) at baseline for average 

MVC for young (51.3 ± 21.9 kg) and old (39.8 ± 16.5 kg) groups, therefore repetitive 

grasping was performed at similar absolute and relative intensities (Table 2).  Two-way 
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ANOVA found no significant interaction or block main effect for any force or EMG 

variable during MVC testing.  Similarly, no differences were found in force or EMG 

variables during the repetitive grasping.  In addition, the absence of behavioral change 

between blocks suggests subjects performed the task similarly across blocks.  This is 

supported by similar (p > 0.05) inter-trial intervals during blocks 1 and 2 for young 

(block 1 = 8.6 ± 2.3 s; block 2 = 8.5 ± 2.2 s) and old (5.9 ± 1.6 s; 6.4 ± 1.9) groups.  Inter-

trial intervals are defined as the time period from force offset of one contraction to force 

onset of the ensuing contraction (i.e. inter-trial pacing). 

Using a mixed ANOVA we observed significant interactions (F(1,18) = 7.23 – 8.63, 

p = 0.009 – 0.015) and block main effects (F(1,18) = 7.62 – 9.89, p = 0.006 – 0.013) for 

each MRCP component in the CM region.  Similarly for LM, we found significant 

interactions (F(1,18) = 4.55 – 5.17, p = 0.033 – 0.044) and block main effects (F(1,18) = 4.67 

– 5.33, p = 0.035 – 0.047) for each component with the exception of BP which 

demonstrated an interaction (F(1,18) = 4.67, p = 0.044), but no block main effect (F(1,18) = 

2.44, p = 0.135).  Paired one-way t-tests with Bonferonni correction (α/6 = 0.008), 

indicated significant increases in amplitude from block 1 to block 2 in young subjects for 

CM (BP, p = 0.005; MP, p = 0.004; and MMP, p = 0.005) and LM (BP, p = 0.002; MP, p 

= 0.001; and MMP, p = 0.001) electrode clusters.   Paired t-tests failed to demonstrate 

significant block differences in the old group.  Onset times demonstrated a main effect 

for block for CM (F(1,18) = 9.07, p = 0.008) and LM (F(1,18) = 4.17, p = 0.054), but only 

LM showed a significant interaction (F(1,18) = 5.30, p = 0.033).  Paired one-way t-tests 

(α/2 = 0.025) found onsets began earlier for young subjects at CM (p = 0.006) and LM (p 

= 0.008), but only at CM (p = 0.036) for the old group.  Mean data are presented in 
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Figure 9A.  Waveforms in Figure 10 are representative of group mean data for CM and 

LM electrode clusters.  2D spatial plots (Figure 11) are also comprised of group mean 

data, and activity was plotted for time intervals defining the three MRCP components.  

 

3.2. Experiment 2 

Subjects with PD reported to the laboratory after an overnight withdrawal of their 

medication (12.85 ± 2.7 hours).  Medication withdrawal was confirmed with significantly 

(p = 0.05) higher UPDRS motor scores (Average score; OFF = 28.3, ON = 25.3) as well 

as lower values on the 10 cm visual analog scale (p = 0.04; OFF = 6.5, ON = 8.5), 

analyzed using one-tailed t-tests.  Two of the subjects with PD were unable to complete 

their fifth block of 30 contractions; therefore, their data, along with their matched 

controls’ data were subsequently analyzed comparing trials 1 - 60 (block 1) and 61 – 90 

(block 2).  [Note that paired t-tests found no difference in amplitude for any component 

during block 2 whether computed from trials 61 – 90 or 91 – 150 in our two older adult 

control groups.  Therefore, figures were prepared using data from trials 91 – 150 to 

maintain consistency with experiment 1.] 

Individuals with PD had higher scores on the Parkinson Fatigue scale than older 

controls (PD: 2.3 ± 0.9, Old: 1.38 ± 0.4; p = 0.007), but this sample was not considered 

fatigued (15).   RPE following the protocol were higher (p = 0.008) in individuals with 

PD (Figure 8).  EMG and force variables from MVC attempts and repetitive grasping 

failed to show any significant differences using two-way ANOVA (p > 0.05).  Average 

MVC was similar (p = 0.35) between old (39.7 ± 16.4 kg) and PD OFF (32.4 ± 17.9 kg) 

groups at baseline, indicating task performance was performed at similar absolute and 
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relative intensities (Table 2).  In addition, inter-trial intervals were also similar across 

blocks for each group.  Two-way ANOVA failed to demonstrate any interaction or block 

main effects for any MRCP component or onset time at either electrode cluster (p > 

0.05).  MRCP amplitude data are shown in Figure 9B.  Group waveforms and 2D plots 

are illustrated in figures 12 and 11, respectively.     

 

3.3. Experiment 3 

Baseline MVC was similar (p = 0.456) for subjects irrespective of medication 

(ON, 35.3 ± 18.6 kg; OFF, 32.4 ± 17.9 kg; Table 2), thereby repetitive grasping 

intensities were also similar.  A paired one-tailed t-test indicated higher RPE following 

the protocol when subjects were OFF (p = 0.033; Figure 8).  Two-way ANOVA found no 

significant (p > 0.05) interaction or block effects for any EMG or force variable during 

MVC attempts or grasping.  Further, inter-trial intervals also demonstrated similar 

performances between blocks (p > 0.05). 

No significant group-by-block interactions were observed for any MRCP 

component or onset time at either CM or LM clusters (p > 0.05).  A block main effect 

was observed only at MP (F(1,18) = 7.34, p = 0.014) and MMP (F(1,18) = 7.89, p = 0.012), 

but only for CM cluster.  One-tailed paired t-tests, with correction (α/3 = 0.02), found 

significant amplitude increases at CM from block 1 to block 2 at BP (p = 0.038), MP (p = 

0.013), and MMP (p = 0.005).  These increases were only observed in PD ON, and PD 

OFF demonstrated no significant change in amplitude from block 1 to block 2 (p  > 0.05).  

Mean MRCP amplitude data are shown in Figure 9C.  Group waveforms and 2D plots are 

illustrated in figures 13 and 11, respectively.     
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4. Discussion 

In the present study, electrocortical activation was investigated during repetitive 

grasping to understand age, pathology, and medication influences on central adaptation.  

Therefore, the ensuing discussion will separately address each research question.   

 

4.1. Effect of aging (Experiment 1) 

Similar to prior MRCP studies in healthy young adults (57, 80, 93, 127), we 

observed a significant increase in activity over both central mesial and contralateral 

motor areas over time (Figure 10).  However, this adaptation was absent or minimal in 

older adults, indicating an age-related difference in central adaptation during repetitive 

grasping in agreement with our hypothesis. 

As mentioned in the introduction, task-related activation studies demonstrate less 

focused and more diffuse activity in older adults (16, 155) concomitant with over-

activation of mesial and sensorimotor areas (76, 107, 126, 140, 156).  These observations 

are derived from simple motor tasks (e.g. button presses, finger-thumb oppositions, 

joystick movements) that are less physically demanding than the cumulative effects of the 

repetitive grasping paradigm employed herein.  Though, if we consider only block 1 of 

the present study as representative of a more ‘simple’ motor task, we also observe more 

focused and lateralized activity (Figure 11) in agreement with previous studies.  Further, 

we found that older adults exhibit greater activation over CM and LM regions (Figure 10) 

when examining only block 1.  However, the purpose of our study was not to confirm 

well-established findings, but rather to extend these findings to better understand central 

adaptive processes during repetitive grasping paradigm.  To our knowledge, no studies 
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have examined age-related differences in brain activation patterns during such a 

paradigm, but several are available in healthy young adults (6-8, 57, 80, 92-94, 99, 127).  

From this, young adults demonstrate an increase in central motor drive (e.g. premotor, 

motor, sensorimotor) to counteract suboptimal voluntary drive.  Our results in young 

adults confirm these findings in that cortical activity increased progressively for each 

MRCP component (BP, MP, MMP) over CM electrodes and for most components (MP, 

MMP) over LM electrode sites.  In addition, MRCP onset began earlier over 

sensorimotor regions, further reflecting supraspinal adaptation responsible for movement 

preparation and execution.  However, similar findings were not obtained in older adults 

where adaptation was attenuated, i.e. no differences observed between blocks 1 and 2.      

In addition to adaptation within cortical motor centers, another possible 

countermeasure would be the involvement of additional brain regions to maintain 

sufficient neural drive, which has been interpreted as a increase in central effort (46).  In 

a previous study, fMRI data recorded during intermittent handgrip contractions 

demonstrated a progressive increase in activity in ipsilateral sensorimotor cortex, 

prefrontal cortex, cingulate gyrus, and cerebellum (92).  The investigators reasoned that 

similar to motor neuron pools in the spinal cord, the brain may also recruit more cells into 

action (92).  Enhanced brain activation may also be a function of the increase in sensory 

feedback during repetitive grasping (94).  Alternatively, Liu and colleagues have 

proposed the “shifting of activation center” hypothesis to explain the recruitment of 

additional brain regions (91).  They hypothesize that the brain has multiple motor control 

centers with parallel projections to motor neuron pools; therefore, if neurons in one 

location become unable to maintain adequate output, the brain may shift activation to 
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another group of neurons.  Through EEG source reconstruction, these authors 

demonstrated that during 200 unilateral maximal handgrip contractions, the center of 

brain activation shifted in the direction of anterior, inferior, and ipsilateral locations (91).  

This concept has recently been supported via EEG-EMG coherence maps recorded 

during sustained fatiguing elbow flexion which demonstrated augmented ipsilateral 

activation (161).  As simplified by Yang et al., under normal circumstances, contralateral 

M1 controls voluntary muscle contractions directly via monosynaptic corticospinal 

pathways which is underscored by strong beta (15 – 30 Hz) band coherence.  Presumably, 

as the brain shifts to more indirect polysynaptic pathways to muscle, i.e. shifting the 

activation center, a weakened coupling would be expected (161).   

There appears to be converging and consistent evidence of central adaptive 

processes during repetitive grasping, but adaptation appears significantly blunted in CM 

and LM regions of interest for older adults.  Several possible mechanisms may explain 

these findings.  In response to age-related deterioration of the nervous system (e.g. 

shrinkage of M1, loss of neurons), older adults recruit larger neuronal populations (76, 

155) to produce an intended movement.  Greater activation may also be the result of the 

normal aging process in which integration of sensorimotor processing becomes less 

efficient.  In other words, greater computational effort is required on the part of older 

adults to perform a task at the same level as a younger adult and this effort is reflected at 

the systems level (156).  This would seem plausible as information processing related to 

anticipation and preparation of a motor response changes with age.  These changes are 

related to alterations in cognitive processes that engage pre- and supplementary motor 

areas, areas subject to structural changes with aging (140).   
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Studies have also observed the absence of lateralized activity (140) or a shift 

towards ipsilateral M1 activation with increasing age (107, 141, 157), likely due to 

reduction in interhemispheric inhibition (112, 142).  Ipsilateral deactivation of M1 is 

believed to occur through transcallosal inhibition, which may be impaired or reduced in 

older subjects (156, 157).  Along with activation of a wider cortical network, this shift in 

activation may also be in agreement with Liu and colleagues’ shifting of activation center 

hypothesis.  All of these studies fit into a similar physiological concept, namely that the 

aging brain would need to mobilize additional primary and non-primary motor resources 

to accomplish successful task performance (126).  We speculate that given the finite 

resources available in central sensorimotor and premotor regions, older adults may need 

to recruit additional networks that subserve motor function. 

 

4.2. Effect of Parkinson disease (Experiment 2) 

Contrary to our hypothesis, we observed no between-group difference in MRCPs, 

a function of minimal (non-significant) changes across blocks 1 and 2 for both groups.  

Clearly, individuals with PD have central activation impairments given the noted lower 

MRCP amplitudes (Figure 12) in agreement with previous studies (30, 41, 137), but with 

regard to central adaptation there appears little difference between those with and without 

PD.   

Age-related changes discussed above (Section 4.1) are also applicable to 

individuals with PD as our samples were matched for age.  There are also several unique 

aspects of PD that may affect the potential for central adaptation, most notably the result 

of disrupted basal ganglia circuitry.  Abnormal drive along the basal ganglia-
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thalamocortical motor circuit impedes facilitation of desired movement and presents with 

cortical abnormalities.  Cortical excitability changes during movement preparation and 

execution demonstrate failure of volitional activation (49), supportive of clinical 

manifestations of bradykinesia and akinesia.  It has been suggested that intracortical or 

thalamocortical facilitatory inputs may fail to fully activate the cortical areas necessary 

for an intended movement (87).  This failure may be represented by the hypoactivity 

clearly demonstrated in Figures 11 – 12. 

Although the present study quantifies adaptation in terms of changes in MRCP 

amplitude, the spatial extent of activation (e.g. spatial depth) may reveal important 

changes that are unable to be captured by the present experiment.  A recent study has 

demonstrated that individuals with PD utilize active motive reserve, whereby novel motor 

areas are activated to compensate for  normal motor networks that are limited (111).  In 

this study, subjects were asked to perform a sinusoidal handgrip force task at different 

frequencies (0.25, 0.5, and 0.75 Hz) while OFF of their antiparkinson medication.  In 

healthy controls, activity of widespread motor networks increased monotonically with 

movement speed whereas those with PD recruited this ‘normal network’ to a greater 

extent even at the lowest frequency.  Palmer and colleagues suggest that although those 

with PD retain the ability to recruit the normal network, they do so to a greater extent 

albeit with greater physiological cost (111).  Further, a different PD-specific network 

emerged that included more involvement of the cerebellum concomitant with reduced 

activation of the thalamus and basal ganglia. Therefore activation of their motor reserve 

(i.e. increased effort) in order to maintain normal behavioral output is secondary to a 
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maximally recruited normal network and may likely include greater or lesser involvement 

of structures comprising the normal network.   

Although speculative, it is interesting to consider these findings in the framework 

of the present study.  Presumably, if the window for augmented activation is narrow in 

PD, very little adaptation over our protocol would be expected in our electrode regions of 

interest (i.e. normal network).  In other words, these regions of interest may be maximally 

activated during the initial phase of the repetitive grasping paradigm and those with PD 

must utilize their motor reserve (e.g. subcortical structures) to retain an optimal level of 

task performance.  This interpretation is consistent with age-related compensation (91, 

126) as well as our findings, but confirmation requires more sophisticated techniques 

than the present study.  Future investigations are needed to further resolve the 

mechanisms responsible for these central adaptive processes. 

 

4.3. Effect of antiparkinson medication (Experiment 3) 

In simple motor tasks, antiparkinson treatment has been shown to increase BP 

amplitude in individuals with PD (40) and normalize cortical excitability (96).  In the 

present study, we did not find any significant interactions for any variables suggesting 

medication did not significantly affect central adaptive processes herein.  However, we 

did observe a main effect for block at MP and MMP over CM regions.  This block main 

effect appears driven by changes observed in PD ON rather than PD OFF (Figures 9 and 

13).  In other words, what minimal adaptation we observed in PD OFF was enhanced 

during PD ON.  Specifically, amplitudes for each component were approximately 30% 

higher during block 2 for PD ON as compared to PD OFF. 
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Medication resulted in an approximately 10% improvement in UPDRS motor 

score which although small, exceeded the minimally clinically important change (128, 

134).  Dopaminergic drugs may exhibit influence over inhibitory parameters as assessed 

by TMS (104, 115) and these pathways are most affected in PD (19, 87).  By restoring 

inhibitory control, motor disturbances may be attenuated by selecting more appropriate 

motor programs.  As a result, various studies have shown dopaminergic treatment to 

reduce M1 hyperactivity and reverse hypoactivity in SMA (87).  Presumably, these 

effects may account for the significant increases in amplitude at BP, MP, and MMP over 

CM electrode sites. 

Alternatively, enhanced activation in these regions may also reflect focusing 

effects of levodopa (108, 111).  From the Palmer et al. study discussed in Section 4.2, 

individuals with PD were also tested ON their medication and authors reported that those 

with PD did not activate their motor reserve to the same extent as when OFF medication.  

This was achieved by a reduction in the spatial variance of activation within regions of 

interest in a manner that normalized motor activity (108, 111).  Ng and colleagues (108) 

suggest that levodopa may exhibit system-level effects by refocusing the activation of 

cortical and subcortical structures.  Even though the methods and paradigm of the present 

study do not allow a direct comparison, it appears plausible that focusing effects of 

levodopa may account for our observed increases in CM electrode sites.  It should be 

noted that such an effect may not be specific to PD, as levodopa has also been shown to 

influence premotor processing when administered to neurologically normal adults (40, 

66). 
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4.4. Study considerations 

A detailed assessment of multiple EMG sites is lacking in the present 

investigation as a result of practical limitations with our recording system, i.e. limited 

available channels for bipolar recording.  Therefore, it may be questioned whether 

cortical changes are manifested by recruitment of non-prime movers of the involved arm 

as well as activation of contralateral musculature (i.e. mirror movements).  We do not 

consider these significant problems for two reasons.  First, all subjects were provided a 

thorough familiarization that specifically focused on activating the involved hand for 

gripping and were continuously monitored.  Also, if unwanted movements were made 

during performance of a trial this would likely interject movement artifacts within the 

EEG recording which is screened for and eliminated during data analysis.  Second, larger 

EMG montages including assessment of contralateral musculature (e.g. finger, arm, 

shoulder sites) has been performed in three separate studies employing 100 – 200 

intermittent handgrip MVCs (91, 93, 94).  EMG activity of the prime and non-prime 

movers of the contralateral limb remained low and similar to pre-exercise values, and 

activity of the non-prime movers of the involved limb did not significantly change over 

the protocol and remained low (91, 93, 94).  As the present study utilized the same 

intermittent handgrip design, albeit at a 30% lower intensity, we expect minimal 

contribution from muscles outside of the prime movers of the involved hand.     

Despite substantial increases in RPE from baseline (young: + 47%; old: +45%; 

PD OFF: +96%; PD ON: +68%), we observed no significant changes in MVC or EMG.  

This differs from a previous study in young adults where following 120 handgrip 

contractions at 70% MVC, post-exercise MVC was 58% of its baseline value (80).  
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However, subjects of this study were asked to maintain 70% MVC contraction level for 

four seconds after reaching the target whereas in our study subjects immediately relaxed 

after reaching the target.  Despite this, our observed increases in MRCP are consistent 

with and support previous findings (80), albeit their MRCP amplitudes on average were 

higher particularly during the MP phase of the MRCP waveform.  Our protocol more 

closely replicates that performed by Schillings and colleagues (127) in which subjects 

were also instructed to relax after reaching the target 70% MVC.  Although their protocol 

included 50 more contractions than the present study, they also were unable to 

demonstrate a significant decrease in MVC or increase in EMG.  The authors suggested 

their observed increase in MRCP amplitude reflects diminished efficiency of the motor 

cortex.   

 

4.5. Conclusions and future directions 

Successful performance of repetitive grasping reflects the adaptable and plastic 

nature of cortical networks governing motor function.  Age-related and 

neurodegenerative changes that occur during normal aging and with pathology 

underscore this plasticity.  From our data, it appears that cortical regions relied upon for 

dominant hand grasping (premotor, contralateral motor) may sufficiently augment 

activity to maintain an appropriate level of motor output.  For this protocol, however, it 

appears this central adaptation is attenuated with aging.  As a result, older adults may rely 

upon mobilization of additional brain regions, in support of a shifting of activation 

hypothesis (91).  This adaptation is likely due in part to a greater central effort at 

baseline.  For individuals with PD who have known central activation impairments, they 
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may rely upon unique activation strategies in comparison to healthy older adults to 

successfully complete a motor task (111).  Further, administration of antiparkinson 

medication (PD ON) results in only minimal changes in comparison to PD OFF.  Future 

research is needed to clarify these mechanisms in individuals with and without PD, 

considering amplitude as well as spatial-depth changes, as amplitude alone may not be 

sensitive in discriminating effects (108, 111).   
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Figure 7: 

Illustration of experimental protocol.   

Note:  Subjects were seated in a semi-recumbent position and computer monitor was 

placed at eye-level at a distance of approximately 0.5 m.
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Figure 8:  

Ratings of perceived exertion (RPE) recorded at baseline (Pre) and immediately 

following their final set of 30 trials (Post).  The RPE scale (12) ranges from a score of 6 

(very light) to 20 (maximum effort).  Error bars are in standard error units. 
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Figure 9:  

Grand averaged BP, MP, and MMP amplitude for central mesial (CM) and left motor 

(LM) electrode sites across the top and bottom panels, respectively. Results from 

experiments 1 (A), 2 (B), and 3 (C) are shown from left to right.  Error bars are in 

standard error units.
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Figure 10:    

Grand average MRCP waveform at CM (top) and LM (bottom) electrode sites for 

experiment 1. 
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Figure 11:  

2D topographical maps of component amplitudes.  Note each map is oriented such that 

the anterior-posterior axis is arranged vertically with nasion located at the top.
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Figure 12: 

Grand average MRCP waveform at CM (top) and LM (bottom) electrode sites for 

experiment 2. 
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Figure 13:  

Grand average MRCP waveform at CM (top) and LM (bottom) electrode sites for 

experiment 3. 
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Table 1: 

 
Clinical profile of 10 individuals with Parkinson disease 

 

 

Subject Age (yrs) PD Duration UPDRS OFF H&Y 

1 59 9 23 2 

2 52 3.5 15.5 2 

3 75 9 30.5 2 

4 69 4 31 2 

5 68 7 28.5 2 

6 78 4 24 2 

7 73 18 40.5 3 

8 62 3 18.5 2 

9 78 5 28 2 

10 67 4 43 2 
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Table 2: 
 

Maximal grip strength (kg). 

 

Subject Young Older PD OFF PD ON 

1 72.7 41.1 45.0 51.0 

2 33.3 52.0 68.9 80.1 

3 18.6 44.1 40.6 31.3 

4 67.6 45.2 40.5 28.0 

5 57.1 36.9 28.4 38.9 

6 81.8 74.1 18.1 19.9 

7 32.3 19.3 29.2 29.7 

8 25.8 23.5 29.2 16.7 

9 64.8 20.5 28 35.4 

10 59.2 41.3 43 21.8 

Mean (SD) 51.3 (21.9) 39.7 (16.5) 32.3 (17.9) 35.3 (18.6) 
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Chapter 4:  Conclusion 

Summary of Findings 

Boyd et al. (14) recently summarized data demonstrating the potential for 

electrophysiology to inform clinical practice and serve as a supplement to assist in 

program design and evaluation.  Further, they highlighted that this technology, which has 

only recently been visible in rehabilitation science, may be used clinically to detect 

neuroplastic change and recovery.  Our work in Chapter 2 is the first to utilize 

electrophysiological evidence in such a manner by reporting alterations in cortical 

activity in response to short-term lower extremity resistance training.  We interpret our 

findings similarly to Carroll and colleagues (21) suggesting that a reduction in cortical 

activation is beneficial in reducing activation of neural elements unrelated to the intended 

movement, thereby resulting in enhanced efficiency.   

Reducing the activation of neural elements unrelated to the desired movement is 

advantageous in terms of neural efficiency.  However, this ability appears limited in older 

adults as previous studies have shown unique task-related activation whereby they recruit 

a much larger network than younger adults (16).  This diffuse activity represents 

compensatory adaptation, but also illustrates an inability to selectively activate a given 

cortical network (76).  The focus of Chapter 3 was to extend these findings to a model 

that allowed us to study activation over the duration of a protocol rather than during 

isolated movements which have been documented previously.  We found that young 

adults responded to central demands by augmenting activity within focal regions to 

maintain task performance.  Further, this was achieved in the absence of peripheral 

changes (e.g. EMG, MVC), thereby demonstrating a prominent adaptation of the cortex 
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during repetitive grasping.  However, we observed only minimal increases in these 

regions for older adults with or without PD.  In addition, we found a slight improvement 

when individuals with PD performed the protocol while optimally medicated.  Our results 

support the idea that age-related and neurodegenerative changes of the central nervous 

system alter the manner in which cortical activity responds to imposed demands. 

 

Limitations 

Our electrophysiological approach has the advantages of excellent temporal 

resolution and can provide a direct measure to assess changes at the level of the cortex 

without the confounds of introducing artificial input (e.g. TMS) into the system (166).  

However, it suffers from poor depth resolution and limits our understanding of the 

involvement of subcortical structures.   

One potential methodological limitation that is shared across studies is the limited 

EMG recording.  For Chapter 2, recording of additional musculature of the lower 

extremity may have permitted us to better delineate the relative peripheral and central 

adaptations that occurred as a result of resistance training.  In Chapter 3, we acknowledge 

our limited EMG recording does not adequately quantify peripheral adaptations (i.e. 

agonist/antagonist activation, synergist activation) that may have occurred over the 

duration of the 150 handgrip contractions.  Although our study aims were centered upon 

supraspinal changes, the addition of multiple EMG locations may have provided useful 

information.  However, due to our high-density EEG recording montage we had limited 

bipolar channels available for recording additional EMG, and our only alternative would 
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have been to omit EEG channels.  Additionally, in order to accurately synchronize EEG, 

EMG, and force signals we used a single amplifier system. 

A major disadvantage to EEG is its poor spatial-depth resolution.  Several recent 

studies have identified disparate effects for cortical and subcortical structures in healthy 

aging and PD (72, 108, 111). Remedying this approach may include combining EEG with 

other neuroimaging and neurophysiological technologies.  This has been shown to be 

quite advantageous in defining principal generator sources for components of the MRCP 

(98), and presumably would enhance the approaches taken in Chapters 2 – 3.  The 

combination of EEG with neuroimaging techniques such as fMRI has seen great interest 

and new hardware and software developments have enabled their simultaneous recording 

(116).  Along these same lines, the combination of EEG with the popular TMS technique 

is currently being investigated (10, 101).  Miniussi and Thut (101) recently proposed that 

co-registration of EEG and TMS may offer the ability to better understand the activation 

sequence of various cortical areas due to their excellent temporal resolution and timing, 

respectively.  The combination of brain stimulation or brain imaging with concurrent 

electrophysiological recording could dramatically enhance information obtained as 

compared to use of each method independently. 

 

Clinical Implications and Suggestions for Future Studies 

Understanding the plasticity of the nervous system is essential in advancing 

rehabilitation research and may be decomposed into two main pursuits; 1) identifying the 

intervention and dose necessary for adaptation, and 2) associating that adaptation with a 
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functional outcome (133).  These pursuits are made possible through neurophysiological 

techniques (i.e. EEG, fMRI, PET, TMS) that offer in vivo examination of brain plasticity.   

In Chapter 2, we examined the cumulative effects of a resistance training 

intervention as our understanding of the mechanisms driving these adaptations is not well 

developed.  We provide evidence that a dose of nine resistance training sessions induced 

adaptive alterations at the level of the cortex in young healthy adults.  We interpret these 

adaptive changes in terms of neural efficiency which would be of particular utility to 

older adults who demonstrate over-activation of cortical motor regions (67, 100, 107, 

156), as well as an inability to selectively activate cortical motor regions responsible for 

movement (76).  Presumably, resistance training may be effective in this population for 

reducing cortical demands related to performance of motor tasks and improving 

efficiency.  Although these studies have not yet been performed, we encourage research 

in this area to identify the optimal dose of activity as well as associating the response to 

activity with a functional outcome, such as sit-to-stand or six-minute walk performance.   

The opportunity for future research targeted at the aforementioned pursuits of 

rehabilitation research (133) is considerable.  However, intervention studies require 

careful design and consideration in order to best utilize resources and produce the 

greatest results, particularly when investigating clinical populations.  For example, in 

individuals with PD there are noted deficits in SMA activation that have been associated 

with bradykinesia and reduced reaction times (29, 31).  These cross-sectional 

investigations thereby provide a rationale for future interventions with the goal of 

enhancing SMA activation concomitant with improving clinical parameters of 

bradykinesia.  Similarly, in Chapter 3 we explored how central adaptive processes vary 
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as a function of aging, PD, and PD medication irrespective of baseline categorical 

differences.  This approach was important for extending findings of previous studies that 

examined only ‘simple’ motor tasks in that we employed a more practical paradigm (e.g. 

repetitive grasping) that may be utilized in motor training.  Therefore, our paradigm 

allowed us to monitor the central adaptive processes that take place during performance 

of a practical training session with respect to age, PD, and PD medication.  This 

information would be particularly useful in the design of future rehabilitation trials that 

avoid applying a “one size fits all” approach.  Future research may consider additional 

motor training paradigms as well as unique populations in a similar manner to that 

performed in Chapter 3.  The ability to characterize adaptive responses as a result of 

exercise therapy will not only validate exercise prescription in health and disease, but 

provide the evidence necessary to provide the best care.  The MRCP paradigm employed 

in Chapters 2 -3 may be an appropriate tool to index these changes. 
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