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ABSTRACT OF THE DISSERTATION 

Geoarchaeology of the Danilo Bitinj and Pokrovnik sites, Dalmatia, Croatia 

by 

Cynthia M. Fadem 

Doctor of Philosophy in Earth & Planetary Sciences 

Washington University in St. Louis, 2009 

Associate Professor Jennifer R. Smith, Chairperson 

 

This dissertation examines the paleoecology of earliest European agriculture via 

geological and geochemical analysis of two Neolithic settlements in central Dalmatia, Croatia. 

The Early Farming in Dalmatia Project, of which this geoarchaeological study is a part, is a case 

study in the adoption and environmental impact of agricultural technology. Dalmatia served to 

transmit agriculture from the domestication centers of the Middle East to mainland Europe. The 

record of neolithization in this region is incomplete - biased toward caves, upland storage locales. 

The landscape setting of the foraging-to-farming behavioral evolution is missing, even as 

Neolithic transition research turns to more complex human behavioral ecological models. The 

Danilo Bitinj and Pokrovnik sites are open, lowland sites enabling detailed study of the early 

farming landscape. Pedology and geomorphology combine in the reconstruction of Neolithic 

paleoenvironments and the investigation of conditions affecting the preservation of archaeological 

remains. This site-specific geoarchaeology provides a dataset critical to the archaeological 

interpretation of and behavioral model-building for this momentous cultural change.  

The dissertation’s main objectives are characterizing dominant site materials (soils and 

ceramics) and their variation, and understanding Neolithic site choice in terms of potential 

differential productivity. Three summers were spent mapping site areas, conducting in-field 

geomorphology and pedology, and sampling natural and cultural materials. Laboratory analyses 

describing the chemistry and mineralogy of site soils and ceramics include pH, electric 

conductivity, organic carbon content, stable isotope chemistry, and X-ray diffraction. Results 
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indicate sodic (high pH, low conductivity) soil conditions in which Neolithic artifacts have resided 

for over 7000 calendar years. Both Danilo Bitinj and Pokrovnik subsoils contain quartz and 

potassium feldspar, revealing a non-karst, possibly volcanic origin. The valley-and-range 

topography of the central Dalmatian polje-karst field coupled with this fertile, fine-grained fill most 

likely served to enhance the agricultural settlement and productivity of this region. Site subsoil 

and ceramic mineralogies are similar, revealing a potential common source for these materials. 

The primary contributions of this dissertation are a differential regional productivity model 

explaining Neolithic settlement strategy, a comparative characterization demonstrating similarity 

between site soils and ceramics, and a ceramic typology enabling archaeological analysis of site 

assemblages.   
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Chapter 1. Introduction 

Researchers have traditionally characterized Southeast Europe as a bridge between 

Near East domestication and European farming, with technology-transmission methods as their 

primary focus (Tringham, 2000). Despite a long history of investigation, the process, character, 

and diversity of Southeastern European ‘neolithization’ remain largely unknown – perhaps due to 

the scale at which archaeologists have historically viewed this transition, and to the bias in the 

record toward sites that would have been unsuitable for farming. Tringham (2000) and Zvelebil 

and Lillie (2000) suggest this behavioural transformation is evidenced at a smaller scale and in far 

greater complexity than previously envisioned. Their perspective presages a paradigmatic shift 

from the currently dominant model of Southeast European neolithization via migration of Near 

East farmers to one integrating local Mesolithic foragers (Tringham, 2000; Harris, 1996). Such a 

shift requires re-examination of the archaeological record with an eye to greater complexity and 

subtlety of behavioural mechanisms.  

The Early Farming in Dalmatia Project (EFDP), under the direction of Andrew Moore 

(Rochester Institute of Technology) and Marko Menđušić (Šibenik Museum & Ministry of Cultural 

Heritage, Croatia), aims to satisfy this need through site-specific geoarchaeological, 

paleobotanical, zooarchaeological, and artifactual analysis at the Danilo Bitinj and Pokrovnik sites 

(Figure 1.1); inter-site comparison of these datasets; and regional paleoclimatology. Drs. Jennifer 

Smith and Robert Giegengack are leading regional paleoclimatological efforts, for which 

reconnaissance was conducted at Krka National Park in the summers of 2005 and 2006. My 

focus is on site-specific geoarchaeology, analysis of the site matrix and artifacts. The excavations 

at Danilo Bitinj and Pokrovnik provide a unique opportunity for re-examination and comparison of 

Neolithic expression – and expression of the foraging-to-farming behavioral evolution – at two 

open lowland sites in central Dalmatia. Korošec (1964, 1958) first excavated at Danilo Bitinj in 

1953; and Brusić (in press, 1980), at Pokrovnik in 1979 (Chapman and Müller, 1990).These sites  
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  Figure 1.1. Map of Croatia showing site locations. 
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have been occupied and farmed for at least the last 7000 calendar years (Moore et al., 2007a, 

2007b). Prehistoric cultural deposits contain Neolithic phase ceramic and lithic artifacts, and floral 

and faunal remains.  

Background & Setting 

Geology. The Danilo Bitinj site is located in the fertile plain of Danilo Polje, an elongate, flat-

bottomed karstic valley whose long axis aligns northwest-southeast with the Dinaric portion of the 

Alpine orogeny (Figure 1.2). Danilo Polje is part of the Dalmatian polje-karst field (White, 1988), 

thought to have been morphologically stable since their formation during the Pliocene-Pleistocene 

transition (~2.6 Ma) (Klär, 1957; Melik, 1954; Roglić, 1940). Despite sharing certain surface 

characteristics (flat plain, lens shape, and steep sides), these karstic valleys can vary in structure 

and age (Gams, 2005, 1978; Nicod, 2003; White, 1988; Gospodarič, 1981b; Wenzens, 1977). 

The fact that polje morphogenesis is not straightforward poses unique problems for establishing 

archaeological context. While not in a polje proper, the Pokrovnik site is also located in the polje-

karst region – ~10 km further inland and in closer proximity to tributaries of the Krka River (Rijeka 

Krka) than the Danilo Bitinj site (Figure 1.3). Both sites are located directly southeast of the Krka 

River between the cities of Šibenik and Drniš. 

In the area surrounding and between the Danilo Bitinj and Pokrovnik sites, bedrock is 

composed of carbonates (predominantly shallow water) alternating in NW-SE trending outcrops: 

Cretaceous limestones and dolomites, Eocene foraminiferous limestones, and Eocene/Oligocene 

conglomerates and marls (Mikes et al., 2008; Perica et al., 2005; Krizmanić and Prlj-Šimić, 2002). 

The densities of these rocks and their differential responses to tectonic forces control the region’s 

underlying structural fabric (Dragičević et al., 1999). Dalmatia is part of the Alpine orogen; its 

Cretaceous and Eocene carbonates form the Outer Dinaric Alps (Mikes et al., 2008). Regional 

structural history is complex, with the Adriatic micro-plate indenting the European plate to the 

north and bounding the retroarc (intramontane) Pannonian Basin of Hungary to the east.  



 
 
 

4 

  

Figure 1.2. Topographic map of the Danilo area. Cross marks the location of the Danilo Bitinj 

site. Modified from Zavod za izmjeru zemljišta (1996a, 1996b, 1996c, 1996d). 
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Figure 1.3. Topographic map of the Pokrovnik area. Cross marks the location of the Pokrovnik 

site. Modified from Geodetski zavod d.d. Osijek (2003) and Zavod za izmjeru zemljišta (1987a, 

1987b, 1987c). 
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Thrusting and faulting of the Dinaride Mountains occurred during the Neogene, with major 

deformation in the Outer Dinarides ending by ~10 Ma (Einsele, 2000). However, compression 

and rotation are ongoing processes in the Adriatic micro-plate, further complicating surface and 

cave morphology in this well-developed karst terrain (Roglić, 2004; Ford, 2002; Dragičević et al., 

1999).  

 Despite the great variety in polje manifestation, two factors appear most influential to their 

formation: structure and chemistry. Rock masses which differ in density often differ in chemistry. 

When these fault-bounded masses outcrop at the surface, they are subjected to differential 

weathering and erosion based on chemistry. Most poljes have a less-permeable rock type (in the 

Dinaric karst, dolostone) on one side or at their center (Gams, 1978). Lower permeability serves 

to focus erosive processes at the surface, forming surface depressions; whereas water is slowed 

and distributed in the more-permeable limestone, forming cave systems (Perica et al., 2002; 

Gospodarič, 1981a). Once initiated, this pattern reinforces itself as dissolution-aggressive 

meteoric water enters the limestone at the edges of the less-permeable rock, widening and 

deepening the feature through time (Perica et al., 2002; Gams, 1978). Regional structure and 

polje morphology continue to co-evolve today as the plate moves and karstification continues 

(Dragičević et al., 1999). These processes were likely more intense at wetter times in the past, 

like the Pliocene-Pleistocene transition during which most of the 130 Dinaric karst poljes are 

thought to have formed, as well as during periods of elevated Holocene sea-level (Surić et al., 

2005; Gambolati et al., 1998; Filipčić, 1992; Melik, 1954; Roglić, 1940).  

Continuous paleoclimate records in closest proximity to central Dalmatia are lake and 

sea-bottom sediments. Sediment cores from the central Adriatic indicate the Bölling/Alleröd 

oscillation (Greenland ice-core episode GI-1) took place from 14.6-12.6 ka, the Younger Dryas 

(GS-1) from 12.6-11.5 ka, and the Early Holocene from 11.5-9.2 ka (Asioli et al., 2001). A multi-

proxy lake core study from the Isle of Mljet, Croatia indicates a wet (pluvial) phase from 8.4-4.5 

ka, with tephra deposition occurring at 7.3 ka, a dry period at 7.1 ka, and the transition to the 
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current xeric moisture regime (most of annual precipitation falling in winter) between 6.3 and 5.5 

ka (Wunsam et al., 1999; Jahns and van den Bogaard, 1998). This evidence places the onset of 

Neolithic occupations at Danilo Bitinj and Pokrovnik following a volcanic event (most likely in 

Campania, Italy) and roughly at the time of a short-lived but profound dry phase, the effects of 

which are recorded in lake cores as far away as Spain (Wunsam et al., 1999).  

Archaeology. Current explanatory models for universal agricultural diffusion are human 

migration (the influx of farmers equipped with the necessary cultigens, livestock, and tools) 

(Ammerman and Cavalli-Sforza, 1971) and technology migration (the movement of cultigens and 

tools through natural and cultural process) (Dennell, 1985). Fort and Méndez (1999a, 1999b) 

presented reaction-diffusion equations for population dynamics to describe the human migration 

model. Davison et al. (2006) adapted these equations to include ecological variables, and 

Dolukhanov et al. (2005) suggest modification to account for interaction with local foraging 

populations. General origins of agriculture and Southeast Europe-specific research are both 

shifting toward more complex models of neolithization, in which human behavioral ecology is 

coming to the fore (Winterhalder and Kennett, 2006). This evolutionary paradigm is founded on 

the understanding that environmental attributes and their variance are as large a part of human 

adaptation as selection itself (Broughton and O’Connell, 1999; Winterhalder and Smith, 1992). 

Incorporating ideas of energy budget and subsistence strategy into origins-of-agriculture research 

means considering the costs and benefits of changes in technology and subsistence strategy 

(Bettinger et al., 2006; Ugan et al., 2003; Boone, 2002).  

Although environmental variables are being considered in current research on the spread 

of the Neolithic (e.g., Davison et al., 2006), general discussion and speculation of environmental 

conditions does not constitute a cost-benefit analysis (Winterhalder and Goland, 1997). This is 

not to say that climate is the only selective force that acted on Neolithic foragers and farmers, but 

that it is a vital force, and one of great prominence in current Neolithic explanatory models for 

Southeast Europe and worldwide (Turney and Brown, 2007; Mohen, 2006; Winterhalder and 
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Kennett, 2006; Richerson et al., 2001; Chapman et al., 1996; Watson, 1995). Increasingly, 

researchers in behavioral ecology are realizing the need for better measures of environment 

(Gremillion, 2002), the need to consider not only environmental attribute averages, as traditionally 

applied in evolutionary models (productivity, heterogeneity, etc.) (Bettinger, 1991; Winterhalder 

1981), but the scale and predictability of these attributes’ variability (Allen, 2004; Madsen et al., 

1999; Winterhalder and Goland, 1997). If researchers seek to explain the persistence of 

agricultural subsistence technologies and behaviours, they must observe them at appropriate 

scales and in selective context, asking: 

• Can we deduce the ecological context of the transition from foraging to farming in this 

place and time? and 

• Can we isolate the environmental attributes that would have selected for agricultural 

subsistence choices? 

Towards a Geoarchaeological Theory 

This geoarchaeological study characterizes the relationships between Neolithic 

Dalmatian culture and its matrices (sensu Schiffer, 1995) in an effort to understand subsistence 

strategy changes. These relationships take three forms: (1) conditional – paleoenvironment and 

landscape, (2) interactive – natural resource acquisition and manipulation, and (3) subsequent – 

site formation processes and taphonomy. Geoarchaeology is uniquely suited to address these 

relationships, as their treatment involves intimate knowledge of one or more Earth Sciences. In 

this case, these include Geomorphology (mapping, GIS modeling), Pedology (pH; electrical 

conductivity; stable isotope chemistry; calcium carbonate, and organic carbon content), 

Mineralogy (X-ray diffraction), and Geochemistry (neutron activation analysis). This approach 

enables analysis on multiple levels from landform to soil.  

A soil is essentially a palimpsest of its own life-history (Targulian and Goryachkin, 2004), 

so archaeological sites in living soils are geoarchaeological palimpsests. The conditions of human 

behavior are evidenced in soils and sediments. The conditions and mitigations of the 
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archaeological site (however long its life) are recorded in the same soil. Reconstructing this life-

history and deciphering condition from mitigation are also the particular province of 

Geoarchaeology, but in what frame of reference? The culture-matrix construct employed here is 

essentially a geoarchaeological theory capable of addressing both Earth Science-based 

archaeological inquiries and general descriptive needs. Here this theoretical framework is used to 

evaluate and characterize (1) the conditions of Neolithic occupation at Danilo Bitinj and 

Pokrovnik, (2) the interaction of Neolithic culture (as manifested at these two sites) with geologic 

raw materials, and (3) the subsequent development of the Danilo Bitinj and Pokrovnik sites from 

the Neolithic to the present.  

Fieldwork & Sampling 

I spent the summers of 2005 and 2006 conducting on-site pedology and sampling natural 

and cultural materials. These experiences, along with early laboratory analyses, made clear the 

complicated nature of the site materials. The source and nature of the subsoils at Danilo Bitinj 

and Pokrovnik were unclear. The soil parent materials at both sites are homogenous lowland 

deposits with no apparent relation to the bedrock, and no upland or lateral colluvial or alluvial 

source. Aside from Potok Dabar (an ephemeral stream at the center of Danilo Polje), there are no 

apparent surficial processes at work in either site plain. Danilo Polje soil survey revealed topsoil 

throughout the polje to be gravelly and cobbly (Figure 1.4, Table 1.1). Outside of these coarser 

clasts, soil textures are fine, with no hand-detectable constituent coarser than very fine sand. Soil 

colors are yellows and yellow-reds, with 87% of samples of Munsell1 hue 2.5Y. Almost the entire 

polje is under grape or hay cultivation, so topsoils are loose and well-aerated due to frequent 

hand-tillage. The few sampling locales not under cultivation were found to have hard, well-

structured blocky soils – including the site soils, which haven’t been under cultivation for the last 

~30 years. Farming practices in this area involve light to no machinery, indicating compaction is 

not an important process in these soils. Though I did not conduct a similar formal survey at  

                                                            
1 All Munsell colors in the dissertation are dry, taken from the inside of the peds.  
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Table 1.1. Soil survey data. 

Survey 

Point 
Easting Northing Texture 

Coarse Fraction 

/Structure 
Color Context 

1 582512 4839355 very fine sand, silt cobbly 10YR3/3 

2 584002 4841520 very fine sand, silt cobbly 10YR3/4 

3 583164 4839885 very fine sand, silt rocky 10YR4/4 vineyard

4 583266 4839860 very fine sand, silt 2.5Y4/3 hay 

5 583339 4839844 very fine sand, silt cobbly 2.5Y4/2 hay 

6 583426 4839805 silt rocky 2.5Y5/3 

7 583477 4839804 silt rocky 2.5Y4/3 vineyard

8 583515 4839794 silt rocky 2.5Y4/3 vineyard

9 583538 4839789 silt rocky 2.5Y4/3 hay 

10 583121 4839903 silt, clay very well structured 2.5Y3/2 hay 

11 583115 4839874 silt, clay very well structured 2.5Y3/2 hay 

12 583084 4839778 silt, clay very well structured 2.5Y3/2 hay 

13 583011 4839893 silt, clay very well structured 2.5Y3/3 hay 

14 584936 4839366 silt cobbly 2.5Y4/4 

15 584869 4839390 silt very rocky 2.5Y3/3 

16 584813 4839441 silt, clay rocky 2.5Y4/3 vineyard

17 584678 4839527 silt, clay rocky 2.5Y3/3 

18 584580 4839584 silt very rocky 2.5Y4/3 vineyard

19 584471 4839697 silt, clay very rocky 2.5Y4/4 vineyard

20 584387 4839811 silt very rocky 2.5Y4/3 vineyard

21 584271 4839874 silt rocky 2.5Y5/3 

22 584170 4839969 silt rocky 2.5Y4/3 vineyard
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Table 1.1. Soil survey data. 

Survey 

Point 
Easting Northing Texture 

Coarse Fraction 

/Structure 
Color Context 

23 583933 4840053 silt, clay very rocky 10YR3/3 vineyard

24 583677 4840127 silt 2.5Y4/3 vineyard

25 583597 4840184 silt rocky 2.5Y4/3 vineyard

26 583509 4840252 silt 2.5Y4/3 vineyard

27 583346 4840353 silt rocky 2.5Y3/3 vineyard

28 582562 4841040 silt, clay 5Y6/2 sinkhole 

29 582638 4841019 silt rocky 2.5Y4/3 vineyard

30 582777 4840922 silt, clay rocky 2.5Y4/4 vineyard

31 582854 4840833 silt, clay rocky 2.5Y4/4 hay 

32 583028 4840730 silt, clay rocky 2.5Y4/3 

33 583150 4840628 fine sand, silt rocky 2.5Y4/3 vineyard

34 583235 4840543 very fine sand, silt rocky 2.5Y4/4 vineyard

35 583105 4840104 silt, clay cobbly 2.5YR2.5/3 

36 582367 4841125 fine sand, silt rocky 2.5Y5/3 vineyard

37 582158 4841156 silt rocky 2.5Y5/3 vineyard

38 581965 4841170 silt rocky 2.5Y4/2 

39 581813 4841169 silt rocky 2.5Y4/3 

40 581561 4841148 silt rocky 2.5Y4/3 vineyard

41 581366 4841239 fine sand, silt rocky 2.5Y5/3 

42 581031 4841391 sand, silt 2.5Y4/3 

43 580860 4841546 fine sand, silt rocky 2.5Y4/2 

44 580610 4841798 fine sand, silt rocky 2.5Y4/3 vineyard
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Table 1.1. Soil survey data. 

Survey 

Point 
Easting Northing Texture 

Coarse Fraction 

/Structure 
Color Context 

45 580524 4841863 silt rocky 2.5Y4/4 

46 580283 4842060 silt, clay 2.5Y4/4 

47 580064 4842227 silt, clay rocky 2.5Y4/3 vineyard

48 582200 4840650 silt 2.5Y5/3 hay 

49 582305 4840544 silt rocky 2.5Y4/3 vineyard

50 582420 4840452 clay very rocky 5YR3/2 hay 

51 582536 4840364 sand, silt 10YR3/3 hay 

52 582604 4840350 loam rocky 2.5Y3/3 hay 

53 582720 4840275 silt, clay very well structured 2.5Y3/2 hay 

54 582698 4840150 silt, clay very well structured 2.5Y3/2 hay 

55 582719 4839843 sand, silt 2.5Y4/3 hay 

56 582706 4839678 very fine sand, silt 2.5Y4/3 

57 583624 4839791 silt, clay rocky 2.5Y4/2 vineyard

58 583709 4839928 silt rocky 2.5Y4/3 hay 

59 585213 4839251 silt, clay cobbly 2.5Y3/2 hay 

60 585070 4839296 fine sand, silt rocky 2.5Y4/2 vineyard

61 584810 4839368 silt, clay very rocky 10YR3/3 

62 584521 4839511 fine sand, silt rocky 2.5Y4/2 hay 

63 584407 4839647 loam rocky 2.5Y5/3 hay 

64 583813 4839972 silt rocky 2.5Y5/3 hay 

65 583771 4840036 fine sand, silt very rocky 10YR3/3 vineyard

66 583390 4840175 silt 2.5Y6/3 hay 
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Table 1.1. Soil survey data. 

Survey 

Point 
Easting Northing Texture 

Coarse Fraction 

/Structure 
Color Context 

67 583189 4840407 silt rocky 2.5Y4/3 vineyard

68 583137 4840206 fine sand, silt very well structured 2.5Y3/3 hay 

69 581535 4841113 fine sand, silt 2.5Y4/2 

70 581644 4841061 sand, silt rocky 2.5Y4/3 hay 

71 581858 4840958 silt 2.5Y4/2 hay 

72 581960 4840878 fine sand, silt 2.5Y4/4 

73 582070 4840799 sand, silt rocky 2.5Y6/2 

74 582080 4840582 silt very rocky 2.5Y5/2 

75 582005 4840504 fine sand, silt rocky 2.5Y4/2 hay 

76 582023 4840447 fine sand, silt rocky 2.5Y3.5/5 vineyard

77 582113 4840379 silt structured 2.5Y5/3 hay 

78 582067 4840301 very fine sand, silt rocky 2.5Y5/3 vineyard

79 581898 4840375 silt 5Y5/2 doline 

80 581853 4840067 sand, silt 2.5Y5/3 bedrock 

81 582131 4840084 silt, clay fluffy 2.5Y5/3 hay 

82 582247 4839965 silt 2.5Y4/3 vineyard

83 582409 4839848 silt, clay rocky 2.5Y6/3 hay 

84 582562 4840126 silt 2.5Y5/3 hay 

85 582847 4840208 silt 2.5Y3/3 hay 

86 582960 4840157 silt, clay 2.5Y4/3 hay 
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Pokrovnik, land-use practices are the same at both locales. Soils are fine and contain gravels, but 

are redder (7.5YR) and less structured than at Danilo.  

Excavations at Danilo Bitinj and Pokrovnik took place in the summers of 2005 and 2006, 

respectively (Moore et al., 2007a, 2007b). Archaeological sites were not fully recovered – Andrew 

Moore (EFDP director, Rochester Institute of Technology) chose excavation locales within each 

site based on ground-penetrating radar profiles taken by Lawrence Brown (Cornell University). 

Archaeologists excavated five trenches at Danilo Bitinj and four at Pokrovnik, each designated 

with a letter. The Early Farming in Dalmatia Project soil sample inventory includes samples2 

taken from the surface downward in each archaeological trench, and in ~50 cm2 test pits in 

culturally sterile material surrounding each site: fourteen in Danilo Polje and nine in Pokrovnik, 

each designated with a number (Figures 1.5 and 1.6, Appendices 1 and 2). I photographed and 

described each profile and test pit that I sampled for horizonation, color (Munsell soil color 

scheme), texture, and structure (Figures 1.7 and 1.8, Tables 1.2 and 1.3). The systematic profile 

sampling strategy (Pansu et al., 2001; Tan, 1996) I used will enable in-depth inter- and intra-site 

analysis and comparison of soils and their biophysical data, by enabling acquisition of 

comparable data from on- and off-site at both Neolithic sites. Soil hardness and brittleness limited 

sampling ability. Greatest sampling resolution was achieved by dividing the profile into 10-cm 

vertical intervals and extracting every other one. Soil samples represent 10 cm of depth (10-20 

cm, 30-40 cm, etc.), with average depth for each sample occurring in 20-cm intervals (15 cm, 35 

cm, etc.).  I also attempted to take soil micromorphology samples from profile walls. Soil 

brittleness limited these sampling efforts as well. In the summer of 2008 on an excursion to 

Grofova Jama (Count’s Cave), Slovenia I sampled a clay deposit (Appendices 1 and 2). This 

yellow and white clay resembled the Danilo Bitinj subsoil, which I hoped would illuminate the 

nature of the subsoil material.  

                                                            
2 All samples were air‐dried prior to laboratory treatment. 
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A separate project question concerned the time-depth of the current practice of 

transhumance. I believe the best way to address this question is by comparison of modern and  

ancient soils and caprhine remains from the archaeological sites and Mt. Dinara. This strategy will 

allow quantification of any soil isotope gradient between central Dalmatian lowlands and uplands, 

as well as comparison of ancient animals with those we know to have single or mixed 

(lowland/upland) dietary inputs. To enable such a study I collected surface soils from Mt. Dinara 

(Appendices 1 and 2) and teeth from sheep slaughtered in the summer of 2006. Anthony Legge 

(project zooarchaeologist, University College London) provided archaeological sheep teeth for 

comparison.  

Methods 

 I used the following procedures to analyze EFDP soil samples in the laboratory. I 

conducted all laboratory work reported in the dissertation at Washington University between the 

summers of 2005 and 2009, except soil organic matter radiocarbon graphitization, which I 

performed at the University of Arizona in the spring of 2009. In accordance with USDA foreign soil 

regulations, all samples were heated at 100°C prior to handling and analysis.  

Wet chemistry. The following investigations represent methods I used and hypotheses I have 

toward the acquisition of standard biophysical data for EFDP soils. I performed soil wet chemical 

analyses in the Washington University Terrestrial Paleoecology Laboratory. I mixed all necessary 

reagents from chemical concentrates and powders.  

pH is the negative log of H+ ions in solution, a measure of soil acidity. Some consider pH 

the single most diagnostic soil chemical measurement, as it controls ion exchange, dissolution, 

precipitation, redox, adsorption, and complexation reactions (Thomas, 1996; McBride, 1994). 

Electrical conductivity (EC) is proportional to the ionic charge of a solution, a measure of soil 

salinity. Conductivity may be measured by electrodes in solution or by electrode array in situ; pH, 

by colorimetric and electrode potential methods. Field methods require soils to be moist, either 
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naturally or by the addition of water, and result in apparent pH and EC values due to uncontrolled 

moisture and soil mass conditions (Brady and Weil, 2000). As EC and pH are measurements of 

activity in aqueous solution, results are partially dependent on the solid to liquid ratio. For pH this 

effect is most pronounced in acidic soils, as the addition of neutral (or distilled/deionized) water 

can raise the pH to 7 (neutral conditions). Experimentally I have found differences in pH in acidic 

and basic soils to be much greater between a 1:1 and 1:2 soil:water3 paste (0.0-0.4 pH units) 

than between a 1:2 and 1:10 paste (0.0-0.2 pH units) (c.f. Thomas, 1996:480). A seasonal effect 

may also be observed in soils with variable salt content (whether natural or due to fertilization), in 

which case pH is lowest during humid summer growing months and highest at spring planting 

(Thomas, 1996). Soils in the area around each site are irrigated but not fertilized, while soil at 

Danilo Bitinj has been fallow for ~30 years. As the local moisture regime is xeric, soils at both 

sites have low salt content (inferred from EC), and Danilo Bitinj soil is alkaline and Pokrovnik soil 

neutral-to-alkaline, this effect does not seem applicable (at least not according to the scenario 

described above). If there are times of the year when salt content is higher, it would be difficult to 

assess without collecting soil seasonally. Because the primary crop in both site areas is grapes, 

and soil salts are known to be highest after planting and harvest (Thomas, 1996), I hypothesize 

that salt content is not substantially higher at other times of the year. (Soils were sampled in the 

summer.) Land use can also affect general soil pH – in most cases agricultural practices like 

fertilization decrease pH and increase toxicity through associated aluminum solubility (e.g., 

Fenton and Helyar, 2000; Mulvey and Elliott, 2000), such that pH remediation usually focuses on 

raising soil pH (Brady and Weil, 2008). However, the effect of land use practices on pH must be 

evaluated individually for each soil; for example, although slash-and-burn or field-burning 

practices are known to raise pH by the addition of ash, they can also lower pH by the addition of 

organic matter and attendant organic acids (Tinoco et al., 2006; Troeh and Thompson, 2005; 

Fenton and Helyar, 2000).  

                                                            
3 All water used in laboratory procedures is deionized water (6 MΩ). 
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I normally measure the EC and pH of a stirred 1:2 soil:water paste (ECw and pHH2O), but 

this method proved inadequate here, due to the inability of water to infiltrate the peds. Therefore, 

for both pH and EC I mixed a 1:5 soil:water paste mechanically for one hour (Rayment and 

Higginson, 1992). I measured ECw immediately and pHH2O after settling. I also experimented with 

measuring pH in a 0.01 M CaCl2 solution, normally used to stabilize the measurement and 

counteract the effect of salt in the soil (Brady and Weil, 2000). Outside of having a more stable 

meter reading, pHCaCl2 is usually only 0.2-0.5 lower than pHH2O; however, in this case addition of 

salt changed the pH of the soil paste more drastically (up to 1.1 pH units), and made 

measurement more erratic than that of water alone. As salt may be used to remediate sodic soils 

by changing their physical make-up and chemistry (Brady and Weil, 2008), I could not in good 

conscience view this change as a ‘pH correction’. This experiment also confirmed the sodic 

nature of the soil, as addition of salt caused the sample to flocculate and settle out of solution 

extremely quickly (within 30 min) (c.f. Brady and Weil, 2008:421). EC and pH meters are accurate 

to 0.1 μS/cm and pH unit. I calibrated each measurement with solutions of known activity and 

concentration.  

I measure organic carbon and carbonate content to understand the physical make-up of 

the soil and the proportional effects these constituents may exert on its chemistry. Soil organic 

matter in particular is integral to soil physics and chemistry due to its abilities to maintain pore 

structure, retain water, retain nutrients, adsorb potentially toxic organic compounds, and release 

nutrients via its decomposition (McBride, 1994). Organic carbon content may be measured by 

thermal gravimetry or wet combustion. Carbonate content may be measured by thermal 

gravimetry, dissolution gravimetry, or gas volumetry. I have personal experience with all of these 

methods. Gravimetric, or ‘loss’ analysis determines the weight percent of a soil constituent by 

exposing the bulk sample to conditions which remove the targeted constituent. Thermal 

gravimetric methods vary considerably in their selectiveness for the target; accuracy is dependent 

on (1) whether weight measurements are made within the closed combustion device or after 
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removal from the furnace, and (2) the ratio of number of weight measurements to temperature 

increases. In the first case, weight of the powdered sample inside the combustion device (LECO 

or other furnace) is the true remnant powder weight. Immediately upon removal from the furnace, 

the powder and the hot surfaces of the ceramic crucible or boat absorb atmospheric water, which 

increases their weight. In the second case, the number and proportion of variably combustible 

materials in the soil sample are increasingly discernible with increasing number of combustion 

steps (or decreasing change in temperature per weight measurement). For a simple soil make-up 

(e.g., quartz sand and calcium carbonate) number of combustion steps would be less important 

than for a soil with high colloid content, varying mineral crystallinity, or simply higher or unknown 

diversity of combustible constituents. Combustion temperatures are generally lower (300-500°C) 

for organic and higher for mineral (800-1000°C) constituents.  

Dissolution gravimetry is used to target carbonate content by exposure of the bulk 

sample to acid solution. A variety of acids and concentrations may be used; I usually use 2N 

hydrochloric, which proved inadequate here. Carbonate dissolution of both bedrock and soil 

samples required 5N hydrochloric acid in larger acid volume to sample weight ratios than any 

sediment or soil I have studied. Aggressive dissolution of bedrock samples (with up to 120 mL of 

5N HCl) was not problematic, probably because of their relatively simple crystalline carbonate 

nature. The soils under study, however, proved complex and unaccountable in two ways: 

improbable results and the apparent dissolution of non-carbonate constituents. Analysis of 

samples from Danilo Bitinj trench A resulted in carbonate contents of 81-106%. If no material 

remained, I could accept that 6% were within error, but such was not the case. These results 

seemed especially improbable in light of the fact that isotopic analysis (see below) required at 

least twice as much bulk sample as for analysis of pure carbonates. The supernatant was various 

shades of dark yellow-brown and black, leading me to conclude that organic, oxide, or other non-

carbonate soil constituents were forced into solution. It is possible that immersion of a high colloid 

content, highly alkaline soil in a strong acid solution caused a chemical change drastic enough to 
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alter overall soil make-up, leading to both curious mass change and dissolution of non-carbonate 

high-pH-stable substances.  

Carbonate content may also be measured by gas volumetry using a Chittick apparatus. 

This device measures the amount of gas evolved from carbonate dissolution via displacement, 

similar to a manometer. This method or an automated multi-step combustion would be most 

efficient for resolving carbonate content. I believe combustion over the entire range 25-1000°C in 

many increments may be one of the only ways to resolve the overall physical make-up of these 

soils. I was able to measure organic carbon content using the Walkley-Black wet combustion 

method. This technique measures only the decomposed, or humus, fraction of soil organic 

matter. Results do not include un-decomposed material like roots. I immersed fine-grained bulk 

sample in sulfuric acid and potassium dichromate, which broke apart and oxidized humus 

compounds respectively. Using an ortho-phenanthroline indicator and titration of ferrous sulfate, I 

measured the amount of oxidized material. This measurement represented soil organic carbon 

content, from which I calculated the soil organic matter (SOM) content (known to relate to organic 

carbon by a factor of 1.724) (Tan, 1996).  

Soil granulometry is useful for defining both soil texture and the character of the material 

from which the soil formed (Birkeland, 1999). A soil’s texture is one of its basic properties and can 

help elucidate its behavior (Brady and Weil, 2000). In the past I have analyzed grain size 

distributions for soil and sedimentary materials using wet sieve, dry sieve, and hydrometer 

methods. For the soils under study here, dry sieving was impossible, as the peds do not break up 

into grains. Wet sieving took multiple days per sample and did not provide very much information, 

as soils are extremely fine and smaller grains are indistinguishable by this method (for example, 

of Danilo Bitinj sample E1, 87% is smaller than very fine silt). Because of the high carbonate 

content, I had originally assumed hydrometer method would not be useful, as the procedure 

requires dissolution of carbonates to prevent flocculation. However, having confirmed the sodic 
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nature of the soil, I now believe its natural dispersive properties may allow for hydrometer 

granulometry, even without a sodium hexametaphosphate additive.  

Isotope chemistry. The stable isotope ratios examined in this study are δ13C of soil organic 

matter (δ13Com) and δ13C and δ18O of pedogenic carbonate (δ13Ccc, δ18Occ). Isotopic 

measurements are ratios between heavy and light isotopes of an element (13C/12C or 18O/16O) in 

parts per million (‰). The standard for reporting the 13C/12C composition of organic matter and 

the 13C/12C and 18O/16O composition of carbonates is PDB. Stable isotope measurements are 

reported in reference to the standard as a difference between the sample’s ratio and the 

standard’s ratio: 

δ13C = [ ( (13C/12C)sample – (13C/12C)PDB ) / (13C/12C)PDB ] x 103 ‰ 

δ18O = [ ( (18O/16O)sample – (18O/16O)PDB ) / (18O/16O)PDB ] x 103 ‰ 

In general carbon fractionation favors the light isotope (12C) during photosynthesis 

(leading to lower δ13Com values) and the heavy isotope (13C) in inorganic reactions (leading to 

higher δ13Ccc values) (Hoefs, 2009). Oxygen fractionation generally favors the light isotope (16O) 

more during evaporation than during evapotranspiration, leading to higher δ18Occ values in areas 

with little vegetative ground cover and lower δ18Occ values in areas with denser vegetation (Hoefs 

2009, Quade et al. 1989).  

Beyond these generalizations, plant metabolisms and soil processes have varying effects 

on δ13Com, δ13Ccc, and δ18Occ. The two dominant plant metabolic pathways are named for both the 

researchers that discovered them and the first intermediate molecule formed by the cycle’s 

carbon fixation: Calvin-Benson (C3) and Hatch-Slack (C4). Common C3 plants are trees, rice, 

wheat, oats, barley, rye, potato, sweet potato, sugar beet, most shrubs, and cool season grasses; 

common C4 plants are corn, sorghum, sugarcane, saltbush, saltgrass, crabgrass, savanna grass, 

and prairie grass (Sakamoto et al., 2003; Quade et al., 1998; Starr and Taggart, 1995; Cerling, 

1992; Quade et al., 1989). A third pathway fixes carbon through Crassulacean Acid Metabolism 
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(CAM), which involves chemical reactions of the C4 pathway. Rather than fixing carbon in 

different cells – as C4 plants do – CAM plants fix carbon at different times of the day. The δ13C 

ranges for the three types of plants are as follows: C3, -34 to -23‰; C4, -23 to -6‰; CAM, -33 to -

11‰ (Figure 8) (Hoefs, 2009). The average isotopic composition of C3 plants is -26‰; of C4 

plants, -12‰ (Cerling, and Quade, 1993; Cerling, 1992). Due to fractionation effects, the values 

of soil carbonates are enriched relative to organic matter by ~14‰; thus, the mean value of 

carbonates formed in C3 plant community soils is about -11‰, while the mean in C4 community 

soils is about +2‰ (Nordt, 2001; Cerling, 1992).  

In terms of climatic adaptation, C3 plants are less sensitive to cold and take advantage of 

cool temperature growing seasons, while C4 plants are found in warmer climates and flourish in 

areas with hot growing seasons (Starr and Taggart, 1995). Because the C4 metabolic pathway is 

more efficient than the Calvin cycle alone, C4 plants have much smaller stomata and lose less 

water during glucose manufacture, making them more tolerant to drier climates (Starr and 

Taggart, 1995; Cerling, 1992). CAM plants generally are adapted to climate extremes and flourish 

only in climates unsupportive of large C3 or C4 populations, because (1) C3 and C4 plants 

generally lose too much water during photosynthesis to survive in dry climate extremes, and (2) 

CAM plants grow far too slowly to compete with C3 and/or C4 plants in environments that support 

them (Starr and Taggart, 1995). The above generalizations coupled with isotopic data from 

throughout the United States allow the following assumptions: (1) as temperature decreases 

(depleting the δ18O of meteoric water) and the C3 pathway is favored over the C4 pathway, δ13C 

and δ18O should become depleted at the same rate as long as the primary water source to the 

plant community is meteoric (Davis et al. 2002; Cerling and Quade, 1993; Cerling, 1992), (2) 

because so many meteorological factors can affect δ18O, this relationship applies in areas with 

consistent rainfall sources (Davis et al., 2002; Amundson et al., 1996; Grootes, 1993); and (3) 

δ13C  applies to local variation and δ18O to regional variation, allowing for the discrimination of 

local plant communities (and by proxy temperature and moisture variation) from regional moisture 
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variation (Huckleberry and Fadem, 2007; Davis and Schweger, 2004; Davis et al., 2002). 

Currently in the area around the Danilo Bitinj and Pokrovnik sites there are presumably very few 

C4 plants and no known CAM plants. Site areas are arid, receiving only 8-10 cm of rainfall per 

year on average; and xeric, with the majority of rain coming in winter months and highest average 

rainfall occurring in November (Milković and Trninić, 2005). A cool growing season limits the plant 

population to a predominance of C3 plants. Meteoric water source is slightly more difficult to 

assess; however, winds have come predominantly from the north to north-northeast for at least 

the last 40 years (Zaninović, 2005). 

The complexity of soils and of pedogenic processes cannot be overstated; however, it is 

possible to make some generalizations on the sources of, and processes involved in, the genesis 

of soil organic matter and carbonates. Soil organic matter begins with plant and animal material. 

The sugars, starches, and amino acids of these tissues are most easily decomposed, followed by 

cellulose. Early decomposition releases carbon dioxide, water, energy, nitrogen, phosphorous, 

and sulfur back into the soil for re-consumption by organisms. The lignin in plant materials is 

resistant to decay. Even when the molecules are broken apart, it is theorized that their subunits 

remain intact and are chemically protected in soil humus (Brady and Weil, 2000). Humus contains 

this modified lignin along with other organic compounds from decomposition and is strongly 

resistant to further decay (Brady and Weil, 2000; Birkeland, 1999). This resistance may be the 

reason diagenetic alteration (the breakdown of compounds in older sediments and paleosols due 

to burial, compaction, microbial activity, groundwater composition and fluctuation, etc.) is known 

to have only a negligible effect on δ13Com (Kelly et al., 1998). Additionally δ13Com has been shown 

to reflect the δ13C of plant tissues themselves, as long as the soils have not been agriculturally 

enriched with exotic lime or fertilizer (Nordt, 2001; Amundson et al., 1998).  

Calcium carbonate (CaCO3) precipitates in soil via the following reactions (Birkeland, 

1999): 

(CO2)gas + (H2O)liquid 
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↕ 

(CaCO3)crystal + (H2CO3)solution ↔ (Ca2+ + 2HCO3
-)solution 

CaCO3 can move in and out of solution due to fluctuations in soil H2O and CO2 pressure. 

For example, high CO2 pressure at the soil surface can inhibit CaCO3 crystallization. Water 

leaching through the soil carries Ca2+ and HCO3
- with it. When Ca2+ and HCO3

- accumulate and 

CO2 pressure decreases, CaCO3 precipitates, forming pedogenic carbonate (carbonate formed 

via soil genesis) (Birkeland, 1999). Because in some soils this accumulation only occurs via 

illuviation, concurrently produced CaCO3 and organic matter may be vertically offset in the solum. 

In areas with carbonate bedrock, bulk soil carbonate stable isotope values may represent a 

mixture of bedrock and pedogenic signatures, as some carbonates may be detrital rather than 

pedogenic. In the case of pedogenic carbonates, δ13Ccc is in equilibrium with soil CO2 and, 

therefore, relates systematically to the proportion of varying photosynthetic pathways in the local 

ecosystem (Nordt, 2001). δ18Occ is known to be in equilibrium with local meteoric water at the time 

of precipitation (Amundson et al., 1998; Cerling and Quade, 1993). Soil diagenesis can affect 

δ13Ccc, but the use and comparison of multiple stable isotope measures can serve as a check on 

alteration.  

The utilization of stable isotope geochemistry as one of a suite of multiproxy data is a 

powerful paleoclimatic indicator that provides a record of environmental changes at the actual 

locus of human occupation. By deriving the fluctuation in percentages of C3 and C4 plants through 

time, Nordt et al. (1994) were able to distinguish periods with warmer and drier conditions from 

those that were cooler and wetter. Nordt (2001) suggests using the following equation for 

estimating relative percentages of C3 and C4 populations from δ13Com via 

δ13Com = (δ13C4)avg (x) + (δ13C3)avg (1 – x) 

where δ13Com is the value obtained for a given soil sample, δ13Cavg is the average known value for 

C3 and C4 plants, and x is the percentage of C4 plants contributing to soil organic matter. 

Expected values for pedogenic carbonate can also be calculated using  
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δ13Ccc = αCaCO3-CO2 (δ13Com + 1004.4) – 103 

where δ13Ccc is the value obtained for a given sample and α is the fractionation factor between 

soil CO2 and pedogenic carbonate, usually 1.0103. In practice carbonates yielding valid 

paleoclimate signatures can range from mathematically expected values (due to temperature and 

other variables), so validity judgements must be made on a case-by-case basis. Though the 

average is 14‰, valid enrichments usually range between 11 and 16‰ (Nordt, 2001). For 

example, Wang et al. (1993) determined that neither organic matter nor carbonate values were 

suspect since all coeval pairs of δ13Com and δ13Ccc were consistently different from one another 

with an average enrichment value of 15.3‰. Budd et al. (2002) determined that isotope values 

were paleoenvironmentally invalid when most samples showed a >18‰ difference in δ13Com and 

δ13Ccc values. 

I measured carbonate isotope ratios using a Finnigan MAT 252 gas-source mass 

spectrometer with a Finnigan GasBench II peripheral device. I prepared soil samples for analysis 

by grinding them to a powder. I loaded tubes with sample powder, evacuated them, and injected 

them with 100% ortho-phosphoric acid. The acid dissolved the carbonate in the sample, 

producing CO2 gas. This automated on-line method uses the continuous flow mode, programmed 

to deliver sample CO2 to the mass spectrometer in a stream of helium, measuring δ13Ccc and 

δ18Occ. I measured δ13Com using off-line sample preparation and the dual-inlet mode for delivering 

CO2 to the mass spectrometer. Off-line organic matter preparation involves manual conversion of 

each sample from organic solid to CO2 gas, a procedure I personally implemented in the 

Washington University Stable Isotope Research Laboratory under the direction of Dr. Robert 

Criss. The method I implemented was originally described by Sofer (1980) and later evaluated by 

Tao et al. (2001), Vandeputte et al. (1996), Engel and Maynard (1989), McGaw et al. (1988), and 

Boutton et al. (1983). Soil organic matter is measurable by gas-source mass spectrometers via 

organic carbon combustion, oxidation to form CO2 gas, and CO2 gas purification. I powdered, 

measured, and combined samples with CuO powder, an oxidation substrate. I evacuated and 



 
 
 

41 

sealed tubes on a vacuum chemical extraction line. I combusted tubes and transferred the 

sample gas to the extraction line for purification. I then resealed the purified CO2 in tubes and 

transferred it to the dual-inlet ports on the Finnigan MAT 252 for measurement of δ13Com. 

Although fully-automated, on-line methods for organic matter combustion and sample gas 

introduction exist, the necessary equipment is costly, limits sample size (effectively increasing the 

minimum organic carbon content requirement), and can introduce ‘memory effects’ (retention and 

imprint of one measurement on subsequent measurements) (Ertl and Spitzy, 2004).  

SOM radiocarbon dates are considered minimum ages for the onset of soil organic 

carbon accumulation (Driese et al., 2005; Scharpenseel and Schiffmann, 1977). These dates, 

although not instantaneous like those of wood or bone, provide a rough chronology of soil 

development. I prepared SOM samples for radiocarbon analysis the same way as for stable 

isotopic analysis. I took purified CO2 in breakseal tubes to the accelerator mass spectrometry 

(AMS) laboratory at the University of Arizona, where I measured CO2 volume and converted it the 

carbon within to graphite under the direction of Dr. Tim Jull. The graphite was then packed into 

targets on the AMS and measured for 14C by technician Richard Cruz. 

Thin section preparation. Soils, like other unconsolidated materials, require epoxy impregnation 

before they may be sliced, ground, and mounted. I prepared soils for thin sectioning in order to 

control impregnation and the orientation of the samples within the block. I mixed Buehler EpoThin 

high viscosity epoxy and impregnated soil samples under vacuum. Vacuum impregnation insures 

infiltration of pore spaces with epoxy. I cut and ground the blocks using rock saws and a grinding 

wheel and notated the blocks for orientation and slide position. As Washington University no 

longer maintains a thin section machine, I sent the samples to commercial facilities for slide 

manufacture. Because soil micromorphology examines both the structure and nature of the soil, 

samples were only impregnated and thin sectioned if some amount of material remained intact 

inside the sample container. Due to the difficulties of sampling the dry, hard, brittle soils, some 

samples were lost due to crumbling/disaggregation during sampling and/or shipment. I took 14 



 
 
 

42 

micromorphology samples from archaeological trench profiles at the Danilo Bitinj site, of which 12 

survived shipment and preparation. Of the 12 impregnated samples, I was only able to recover 

enough material to fill 4 of the large slides standard in soil micromorphology (5 x 7.5 cm). I 

processed the other 8 samples regardless, hoping to recover some information; however, these 

samples may prove less useful for micromorphological study. 

X-ray powder diffraction. I ground soil and ceramic samples with an agate mortar and pestle in 

preparation for X-ray diffraction (XRD). I placed sample powders in an aluminum slide, which I 

then placed inside the diffractometer. The Rigaku Geigerflex D-MAX/A Diffractometer directs 

CuKα radiation at the powdered sample. Automated rotation of the goniometer changes the angle 

of bombardment. Minerals within a sample diffract the X-rays, producing a spectrum of changes 

in diffraction intensity with 2θ angle (2 * goniometer angle). As mineral lattices diffract X-rays in a 

characteristic manner, I was able to analyze the resultant spectra to obtain sample mineralogy 

using MDI Jade software.   
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Chapter 2. Pedologic Analysis of the Danilo Bitinj Site, Central Dalmatia, Croatia* 

Abstract  

As part of the Early Farming in Dalmatia Project, an interdisciplinary effort toward understanding 

the origins of European agriculture, we are performing a site-specific geoarchaeological study of 

the Middle Neolithic Danilo Bitinj site and the Early and Middle Neolithic Pokrovnik site. Here we 

present the soil description and analysis for Danilo Bitinj. The site, farmed for at least 7000 years, 

is located at the center of Danilo Polje, a valley in Dalmatia’s well-developed karst terrain. Soils 

both on- and off-site are fine-grained and carbonate-rich. Other measured pedologic properties 

indicate a stable valley-bottom environment throughout the life of the analyzed solum. The 

longevity of agriculture corresponds with the high measured calcite content, while electric 

conductivity and pH measurements indicate a sodic, plant-toxic chemical environment. Soil 

organic matter stable carbon isotope data indicate a local environment heavily dominated by C3 

plants. Soil carbonate stable carbon and oxygen ratios were also measured, but appear to be out-

of-equilibrium with those for organic carbon, and therefore invalid for paleoclimatic interpretation. 

According to regional paleoclimatic studies, the earliest agricultural occupation at Danilo 

coincided with a significant drought. This evidence for regional drought is at odds with the on-site 

isotope data indicating relatively cool, moist conditions. These findings present an interesting 

scenario in terms of human behavioral ecology: that despite the soil’s sodicity, Danilo may have 

represented a moist and productive resource refuge. 

Introduction 

The Early Farming in Dalmatia Project (EFDP) aims to elucidate the origins of European 

agriculture through site-specific geoarchaeological, paleobotanical, zooarchaeological, and 

artifactual analysis; and regional paleoclimatology. Despite nearly 100 years of investigation, the 

process, character, and diversity of Southeastern European ‘neolithization’ remain largely 

                                                            
* Published as: Fadem, C.M., Smith, J.R., Moore, A., and Menđušić, M. (2009). Pedologic 
Analysis of the Danilo Bitinj Site, Central Dalmatia, Croatia. Catena, 78:181-184. 



 
 
 

56 

unknown – perhaps due to the bias in the record toward sites that would have been unsuitable for 

farming (Tringham, 2000). The sites under investigation are Danilo Bitinj (Middle Neolithic) and 

Pokrovnik (Early and Middle Neolithic) (Figure 2.1). These EFDP excavations provide a unique 

opportunity for re-examination and comparison of Neolithic expression at two open lowland sites 

in central Dalmatia, the bridge between Near East domestication and European farming. The 

geoarchaeological and paleoclimatological components of this project aim to construct the first 

multi-scale (local and regional) climate records for Central Dalmatia, and to elucidate site 

taphonomy. We focus here on description and analysis of the Danilo Bitinj soils.  

The Danilo Bitinj site is located at the center of Danilo Polje, an elongate, flat-bottomed 

karstic valley (Figure 2.2). This valley is part of the Dalmatian polje-karst field, whose structure 

originated in the northwest-southeast structural trend of the Dinaric section of the Alpine orogeny 

(White, 1988). This region is subject to the Mediterranean, or xeric, moisture regime, in which the 

majority of annual precipitation falls in winter months. Danilo Bitinj, the type-site for the Dalmatian 

Middle Neolithic, has been occupied and farmed for at least 7000 years (cal BP) (Moore et al., 

2007). Prehistoric cultural deposits contain lithic, ceramic, faunal, and botanical artifacts. Field 

observation reveals fine soils (clay and silty-clay), and lime- and dolostone bedrock. The reason 

for the site’s long agricultural use-life may be its soils – their texture, parent material, and 

landscape-setting promote fertility, making the valley-bottom ideal for agriculture, even in times of 

drought or resource-stress.  

Methods and materials 

Samples are from a single 150-cm profile in Danilo Bitinj archaeological trench ‘A’ (Figure 

2.2), taken every 20 cm from the surface to the parent material (sample A1 – 10-20 cm depth to 

sample A7 – 130-140 cm) (Table 2.1). Soils throughout the site are locally-termed ‘brown soils’ 

(smeđe zemlište or terra fusca), typically having variable depth, poor drainage, and hard structure 

(Antić et al., 1982). Site soils are dark brown (2.5Y 3/2 and 3/1), developed from a silty yellow (5Y 

5/6) parent material. A and B horizons have blocky structures; the B horizon is distinguished by  
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larger, harder peds. We analyzed all seven samples for pH, electrical conductivity, organic carbon 

content, and pedogenic carbonate and soil organic matter (SOM) δ13C. We evaluated soil 

mineralogy through x-ray diffraction (XRD) of two soil samples (70-80 cm, B horizon; and 130-140 

cm, C horizon). We prepared samples for electrical conductivity and pH measurement by mixing 

a 1:5 soil:water paste with an electronic mixer for 1 h (Rayment and Higginson, 1992). We used 

the Walkley-Black digestion-oxidation method to measure organic carbon content. XRD lets us 

identify soil minerals based on the characteristic way a mineral’s crystal lattice diffracts x-rays. 

We analyzed the resultant spectra using MDI Jade software. 

SOM (carbon) and pedogenic carbonate (carbon and oxygen) stable isotope 

measurements are valuable sources of paleoclimatic information, in terms of vegetation regime 

and relative local moisture variations (Nordt, 2001; Boutton, 1996; Cerling and Quade, 1993). 

Vegetation populations contain varying proportions of plant metabolic pathways – in this region 

both C3 and C4 plants, with the former favored by cooler, wetter conditions; the latter by warmer, 

more arid conditions. These pathways fractionate carbon differently, leaving a direct record of 

average plant population – and therefore environmental conditions – in SOM stable carbon. δ13C 

averages -26‰ for C3 populations and -14‰ for C4 (Nordt, 2001). Stable isotope chemistry is 

particularly valuable for geoarchaeology, as it provides paleoclimatic data from the actual locus of 

human use or occupation (Huckleberry and Fadem, 2007; Davis and Schweger, 2004). This site-

specific data allows inquiry at the level of human-landscape interaction, something not 

necessarily afforded by regional climate proxies.  

The following processes make the SOM sample utilizable in the gas-source mass 

spectrometer: combustion of organic carbon, oxidation to form CO2 gas, and isolation of the CO2. 

We implemented the organic carbon off-line preparation method for δ13C-determination described 

by Sofer (1980) and evaluated by Tao et al. (2001), Vandeputte et al. (1996), Engel and Maynard 

(1989), McGaw et al. (1988), and Boutton et al. (1983). For soil carbonate analysis, samples must 

be powdered and acidified with ortho-phosphoric acid to produce CO2 gas. We prepared 
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carbonates by powdering soil samples, and used an on-line Gas Bench II device to liberate the 

carbon and oxygen. For both SOM and carbonate analyses, we analyzed two to four replicates of 

each sample using a MAT-252 mass spectrometer. 

Results and analyses 

Results of the Danilo Bitinj soil analyses are shown in Figure 2.3 and reported in Table 

2.1. Results show general stability throughout the soil column. Organic carbon ranges from 1.9 to 

0.4%, decreasing down the soil profile. Soils are basic, with pH ranging 9.0-9.5. Electrical 

conductivity (EC) is very low (10.30-13.53 mS/m), essentially non-conductive, for the entire 

profile. XRD spectra of samples A4 and A7 reveal a consistent mineralogy dominated by calcite 

(~90%) with quartz, clay mineral, and amorphous components. High pH and low conductivity 

indicate sodic conditions, which normally cause plant-toxicity and soil infertility (Brady and Weil, 

2000). Because the soil contains such a large amount of calcite and has supported agriculture for 

7000 years, we reason that high Ca/Mg-content must mitigate the sodicity. This high buffering 

capacity leads us to classify the soils as eutric in addition to sodic and xeric.  

Soil carbonate isotope ratio measurements are known to incorporate carbon and oxygen 

from sources other than prehistoric climate, like detrital inputs or modern precipitates (Nordt, 

2001; Boutton, 1996). SOM serves as an assessment of carbonate stable isotope data validity via 

(1) the greater chemical stability and resistance of soil humates (McCarthy, 2001; Brady and 

Weil, 2000; Birkeland, 1999; Kelly et al., 1998), and (2) the known fractionation between 

concurrently produced pedogenic carbonate and organic matter (Nordt, 2001; Cerling and Quade, 

1993). If carbonate precipitation is concurrent with organic matter production, the enrichment in 

carbonate δ13C relative to that of SOM is 11-16‰ (Nordt, 2001; Cerling and Quade, 1993). 

Enrichment values here range from 15-22‰ with an average of 17‰ (Table 2.1). Stable isotopic 

analysis of the SOM (δ13C of 23.5-24.4‰) shows the plant community to be C3-dominant (82-

89% according to Nordt, 2001) and reveals a maximum variation of <1‰ for the life of the solum, 

indicating great stability in average plant metabolism. 
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The soil isotope data from Danilo Bitinj reveal that (1) soil carbonate isotope chemistry is 

an unfeasible climate proxy in this case, and (2) the site supported a heavily C3-dominated plant 

community throughout the life of the solum. While further field or laboratory investigation may 

reveal a valid pedogenic carbonate isotopic signal, we will not interpret the carbonate data here, 

as equilibrium with SOM data should be demonstrated. The superior chemical stability of SOM 

allows us a view of paleovegetation irrespective of carbonate utility (McCarthy, 2001; Brady and 

Weil, 2000; Birkeland, 1999; Kelly et al., 1998). 

Discussion and conclusions  

The δ13C-stability and C3-dominance of the plant community through the solum indicate a 

stable, relatively cool and moist valley-bottom environment (Huckleberry and Fadem, 2007; Krull 

et al., 2005; Davis et al., 2002; Nordt, 2001; Boutton, 1996; Cerling and Quade, 1993). Multi-

proxy lake core studies on the Isle of Mljet, Croatia indicate a substantial dry period beginning 

~7000 BP (Wunsam et al., 1999; Jahns and van den Bogaard, 1998). The importance of the 

rough coincidence of Danilo’s occupation and a prolonged Early Holocene dry period is clear. 

What remains to be uncovered is how this climate change translated into resource productivity 

and availability. Geoarchaeological investigation in the Columbia Plateau of North America has 

revealed a climate-stress buffering mechanism specific to xeric valley-bottoms (Huckleberry and 

Fadem, 2007; Davis and Schweger, 2004; Davis et al., 2002). This research shows that the 

coupling of fine-grained lowland soils with a xeric moisture regime (wet winters and dry summers) 

produces plant communities essentially unaffected by resource stress. It is likely that this 

scenario holds true for our valley-bottom site as well, leading us to classify Danilo Polje as an 

insulated resource patch, or refugium, retaining productivity and biological diversity in the face of 

regional limiting climate conditions (Weiss and Ferrand, 2007). These data lead us closer to 

understanding site-choice, one of the Early Farming in Dalmatia Project’s primary inquiries: 

during times of resource-stress in central Dalmatia, productive locales like Danilo Bitinj would 

certainly have been targeted for exploitation.  
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The Danilo Bitinj soils are sodic (alkaline, nonconductive, and high in Na+), eutric (high in mobile 

cations relative to cation exchange capacity), and xeric (subject to dry summers and wet winters). 

They are composed primarily of calcite, with quartz and clay mineral components. The general 

pedologic picture is one of a living, moderately developed, fertile Mediterranean soil containing 

Middle Neolithic cultural remains. Questions remain as to the longevity and chronology of soil 

development: whether these artefacts and their soil matrix are a true paleosol recently revealed 

by erosive processes, or a living, stable, 7000-year-old surface. While the chemical data 

presented here reflect stability, further investigation of the polje’s sedimentary history and dating 

of artefacts and soil humates may reveal greater complexity. Additionally, comparable data from 

the Early-Middle Neolithic Pokrovnik site will enhance our understanding of the conditions of early 

agriculture.   
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Chapter 3. Ceramic typology & material characterization for the Neolithic Danilo Bitinj and 

Pokrovnik sites, central Dalmatia.* 

Introduction & Setting  

As a case study in the spread of agriculture from western Asia to Mediterranean Europe, 

the Early Farming in Dalmatia Project (EFDP) is an international, interdisciplinary effort toward 

understanding the transition to agriculture and its environmental impacts (Moore et al., 2007a, 

2007b). Currently under investigation are two open, lowland sites: Danilo Bitinj and Pokrovnik, 

excavated by EFDP researchers in 2005 and 2006, respectively. Cretaceous limestones and 

dolomites, Eocene foraminiferous limestones, and Eocene/Oligocene calcareous conglomerates 

and marls make up the bedrock in the area surrounding the two sites (Perica et al., 2005). Sites 

are located in the central Dalmatian polje-karst (White, 1988). Poljes, which dominate local 

geomorphology, are karstic valleys with a lens shape, steep sides, and flat bottom. Danilo Bitinj, 

the type-site for the Danilo phase of the Middle Neolithic, is located near the coastal city of 

Šibenik in the bottom of Danilo Polje (Figure 3.1). Pokrovnik is located further inland near the 

town of Drniš in flat-lying fields – though not in a polje proper. Site assemblages are dominated 

by ceramics, but also contain faunal, paleobotanical, and lithic artifacts. Initial radiocarbon dates 

of charred wheat grains from Danilo Bitinj fall between 6737 and 7253 calendar years BP (Moore, 

2007a). This study is part of the EFDP geoarchaeological effort to understand the conditions and 

raw materials of earliest European agriculture via the characterization of ceramics and soil parent 

materials. 

Central Dalmatian Early and Middle Neolithic ceramics are identified by exterior designs 

– hatches, zig-zigs, and/or spirals pressed into the outside of the vessel prior to firing (e.g., 

Moore, 2007a; Miracle and Forenbaher, 2005; Brusić, 1980, 1976). While many EFDP ceramics 

have clearly impressed patterns, often sherd exteriors are worn or absent entirely, making the  

                                                            
* Prepared for submission to the journal Archaeometry with co-authors Jennifer R. Smith, Andrew 
Moore, and Marko Menđušić. 
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artifacts impossible to classify based on exterior decoration (Figure 3.2). Additionally potsherd 

assemblages are large, containing many thousands of artifacts lacking diagnostic features; thus, 

systematic analysis of a large portion of the assemblage is currently impossible. Understanding 

the ceramics, the largest single artifact category of both Danilo Bitinj and Pokrovnik site 

assemblages (Moore, 2007a, 2007b), is thus essential to understanding the archaeology of 

earliest European agriculture, as pottery is a technology in which investment entails costs as well 

as benefits. Ceramic technology is so strongly associated with the European Neolithic that the 

presence of ceramic artifacts is viewed as evidence for neolithization and cultural phases are 

named for their pottery design elements (e.g., Linearbandkeramik culture) (Rice, 1999; Dennell, 

1983). Neolithic ceramic artifact materials in neighboring areas are described simply as coarse or 

fine ware, sometimes with description of internal or slip color (Srejović, 1988; Marković, 1985; 

Mellaart, 1975).   

Outside of decorative elements, the assemblages display a wide range of variation in 

color and some variation in fabric (Figure 3.2). Color differences are quite dramatic – with some 

sherds featuring sharply differentiated bands or regions. We used petrography to describe 

ceramic fabrics and to determine whether color variation could be attributed to physical 

differences not visible in hand sample. Our resulting fabric typology provides a basis for the 

classification and subsequent archaeological analysis of Danilo Bitinj and Pokrovnik 

assemblages. This study also establishes the feasibility of a systematic ceramic provenance 

investigation (sensu Neff, 1998). Assigning provenance to artifacts requires comparison with a 

large database of chemical data (Goren et al., 2002). We know of no Dalmatian or Balkan 

ceramic sourcing studies; so we have no chemical database of natural or artifactual materials 

with which to compare EFDP ceramics. The material characterization closest to our study area is 

of a single illite and smectite clay source in western Serbia (Simić et al., 1997). To begin to 

understand their composition and variability, we characterized a small set of sherds and possible 

ceramic source materials using X-ray diffraction. Neolithic Dalmatia is one of the farthest reaches  



 
 
 

71 

Figure 3.2. Ceramic sherds typical of the Danilo Bitinj assemblage.
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of culturally displaced Italian obsidian and flint (Robb and Farr, 2005), but the assemblages at 

Danilo Bitinj and Pokrovnik are predominantly ceramic and contain few stone artifacts (Moore et 

al., 2007a, 2007b). In light of assertions concerning connections between Dalmatia and northern 

Italy made on the presence or absence of Danilo Culture influence in ceramic assemblages 

(Biagi, 2004), the potential for Dalmatian ceramics to be traced to their source(s) opens new 

avenues of research concerning the travel and/or trade of Neolithic cultural materials.  

Fabric Typology 

After excavations were complete at each site, Barbara Moore (EFDP Curator) selected a 

subset of sherds representing maximum visual diversity (Appendix 2). Danilo ceramic samples 47 

and 48 are relatively unconsolidated and thought to be daub rather than potsherds. The forty-nine 

Danilo Bitinj sherds were thin-sectioned by Quality Thin Sections (Tucson, Arizona); the twenty 

Pokrovnik sherds, by Applied Petrographic Services (Greensburg, Pennsylvania). We examined 

each of the sixty-nine sherds in hand sample, and under stereoscope and petrographic 

microscope, as analytical types – in order to be useful in studying thousands of sherds – would 

have to be distinguishable with the naked eye or hand lens. In describing the sherds there are 

two primary constituents: temper and clay matrix. The clay matrix may either be clay mineral or 

any other material of the requisite texture and chemistry to partially reorganize molecularly and 

harden at firing temperature. The temper is used to increase the structural integrity of the ceramic 

ware and may be any material distinctly coarser than the clay matrix (roughly sand-size). If this 

coarser material does not combust at firing temperatures or dissolve in the soil environment, it 

remains within the ware and may be identified as pieces of shell, grit (mineral or rock), or grog 

(preexisting ceramic ware). 

We observed three mutually exclusive fabrics distinct at all levels of analysis (Figure 3.3). 

These divisions are non-automatic groupings based on observation alone, rather than statistical 

analysis of codified attributes (Cau et al., 2004). All three types are variable in color, with type one 

varying more than two and three; we observed no physical variation correlating to color, although  
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Figure 3.3. Thin sectioned ceramics sorted by site and type. 
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Figure 3.3. Thin sectioned ceramics sorted by site and type. 
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in some cases it did vary from inner to outer sherd. Excluding color, ceramic matrices are 

homogenous and amorphous, with no distinguishing features even at high magnification. Types 

are therefore based on inclusions or lack thereof. Type one is characterized by white mineral 

inclusions. Grit consists of poorly sorted carbonate and quartz up to 1 mm in size. Carbonate 

inclusions are of two varieties: (1) translucent in hand sample, and exclusively angular and often 

rhombohedral in thin section; and (2) opaque and angular in hand sample, with undulose 

extinction of aggregate, interlocking grains in thin section. Opaque carbonate grains are more 

common, and are mixed with translucent inclusions when the latter are present. Quartz grains are 

rounded and far rarer than carbonate grains. Type two appears completely homogenous with no 

inclusions. Type three has fine non-crystalline black and dark red inclusions, which are in many 

cases not dispersed evenly through the sherd. Black inclusions are round, wavy, and/or dendritic; 

red inclusions are round or rectangular.  

The nature of these various inclusions is in most cases debatable. While one could refer 

to them as temper, it is uncertain whether any of the noted inclusions were purposely added to, 

simply present in, or formed during the firing of the original ceramic source material. The 

interlocking carbonates are clearly lime- and dolostone fragments, probably non-fossiliferous. 

Individual crystalline carbonate grains could be cleavage rhombohedra (broken fragments of a 

coarser material like marble or speleothem) or dolomite crystals precipitated in situ during firing 

(c.f., Adams and MacKenzie, 1998:133). Type three’s black inclusions may be carbonized organic 

residues or manganese accretions; red inclusions may be grog temper or iron oxide 

accumulations. Overall the inclusions in type three appear much more natural (i.e., native to the 

source material) than those in type two, due to their lack of crystallinity, wavy and dendritic 

shapes, and lack of even dispersal. While a directed material-analysis approach like laser 

ablation or microprobe could address the identity of the inclusions (bulk analyses like X-ray 

fluorescence would not work for this purpose), they could not address their source – one would 

still be faced with the question of whether they were present as aggregates in the source material 
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or aggregated during firing. These issues would probably be best addressed by experimental 

ceramics work attempting to replicate artifact features through manipulation of various local 

materials and additives. 

Of the forty-nine Danilo sherds, thirty-four are type one, eight are type two, and four are 

type three. Sixteen type one and four type three sherds make up the Pokrovnik sample set. 

(Though it is classified as type three, Pokrovnik sherd 15 may be a type one sherd with the 

carbonate inclusions dissolved out of the matrix, as evidenced by its many voids and 

resemblance to Pokrovnik sherds 3 and 5.) Type proportions are not culturally meaningful; due to 

population sampling for visual diversity rather than assemblage representation, type one may be 

overrepresented due to its extensive color variation. As there is no apparent material source for 

color differences, we surmise these are oxidation features. The earthy brown, black, yellow, and 

red colors could have developed in firing or during soil residence. As polje floors are wet in the 

winter and dry in the summer, soils undergo thorough wetting and drying each year.  If these 

burial conditions did variably alter sherd chemistry, such overprinting may complicate sourcing 

efforts, especially for type one ceramics. 

X-ray Diffraction (XRD) Analysis 

We chose geologic materials from three locales: the Danilo Bitinj and Pokrovnik sites, and 

Grofova Jama. In Slovenia in 2008 we were able to sample a deposit at Grofova Jama (Counts 

Cave) (Figure 3.4). This clay cave deposit resembled the Danilo Bitinj subsoil in texture and color. 

We had yet to identify or understand this parent material, which could be the source of the soil’s 

seemingly plant-toxic chemistry (Fadem et al., 2009). Hypothesized to be a montmorillonite clay 

altered from Italian volcanic ash, the yellow clay at Grofova Jama is a common regional cave 

deposit (Hajna, pers. comm. 2008; Osborne, pers. comm. 2007). Though we are not specifically 

testing the possibility of archaeological travel and/or trade between this locale and our 

archaeological sites, analyzing the Grofova Jama material helps us affirm the nature of the cave 

deposit and whether the Danilo subsoil may have a similar genetic history.  
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Figure 3.4. Sampling locations. 
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The Danilo Bitinj sample is subsoil from the deepest part of the site (211-220 cm). The 

Danilo subsoil is a yellow and white (Munsell 5Y 6/4 and 7/2) fine silt. It has no structure and 

contains no gravel. The Pokrovnik sample is also subsoil (170-205 cm), a very dark red-brown 

(Munsell 7.5YR 2.5/3 and 3/2) silt loam with a blocky structure and no gravel. Site subsoils are  

the only gravel-free portions of either profile. They feel silty in hand test and appear homogenous. 

We tested these soil parent materials to explore both genetic history (by comparison with the 

Grofova Jama sample and each other) and sourcing potential (by comparison with two ceramic 

sherds). All three geologic samples were heated at 100⁰C (per United States Department of 

Agriculture foreign soil regulations) and ground with an agate mortar and pestle for analysis. 

We chose ceramic sherds for analysis from the Danilo Bitinj assemblage that were 

relatively homogenous, yet as distinct from one another as possible. As we were only testing two 

ceramic samples, difference between them increased the likelihood they would be analytically 

distinct. Homogeneity within the sherd insured analyses would represent contributions from as 

few components as possible. Inclusions in pottery can be native to the source or added by 

potters. If a temper is added from a different source, bulk chemistry and mineralogy represent a 

mixing of the different source materials (Harbottle, 1982). The two tested Danilo sherds – 9 and 

34 – are of fabric types three and two, respectively (Figure 3.3). Ceramic samples were ground 

with an agate mortar and pestle in preparation for analysis. 

We performed powder diffraction analyses on a Rigaku Geigerflex D-MAX/A 

Diffractometer using CuKα radiation. Spectra record diffraction intensity from 2-70⁰2θ (Figure 3.5). 

We analyzed the spectra using MDI Jade software. Due to the relatively high amount of 

amorphous, colloidal, and organic material in soils versus other materials (Bish, 1994), we used 

splining for background curve interpolation. In each case we looked for the simplest and most 

parsimonious match – the smallest number of likely minerals to account for the modeled peaks.  

Though the Grofova Jama spectrum may look atypical, after a replicate test with the same 
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Figure 3.5. X-ray diffraction spectra with the following mineral diffraction peaks identified: m-

montmorillonite, p-potassium feldspar, q-quartz, c-calcite. 
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results, we postulate the sample is actually a purer clay than we normally see, with the 

asymmetrical peaks characteristic of clays (Figure 3.6). Full intensity montmorillonite spectra 

account for all peaks and provide a good visual match. Due to the hydrous nature of clays, it is 

likely the true sample spectrum was somewhat altered by heating during pretreatment; however, 

the peak seen here at 62°2θ corresponds to the diagnostic d(060) montmorillonite peak, 

confirming this identification (Moore and Reynolds, 1997).  

The soil and ceramic samples are more typical, with high-intensity phases distinct from 

the background. Calcite and quartz resolve the majority of the Danilo Bitinj subsoil spectrum 

peaks, with remaining peaks resolved by potassium feldspar. With the relatively large amount of 

quartz in the soil, it is difficult to determine which feldspar(s) is(are) present (Moore and 

Reynolds, 1997). Work directed at determining the K-spar polymorphs and their proportions, 

possibly ion microprobe or chemical separation studies, would inform hypotheses presented here 

and future work by providing formation temperature limitations. The Pokrovnik fines layer contains 

quartz and potassium feldspar, and – curiously for a karst soil – no calcite. The two ceramic 

samples share quartz and potassium feldspar as their primary components. If sherds are sourced 

in site soils, the differences between sherd and soil spectra are most likely a result of atomic 

reorganization during firing (Goffer, 2007). 

Discussion  

 The hypothesis that the Grofova Jama sample is a montmorillonite is confirmed by XRD 

analysis. While montmorillonite could be an ash weathering product, the mineralogy alone cannot 

confirm whether or which volcanic eruption was the source for the original deposit. A comparison 

would have to be made between elemental data from Grofova Jama clay and known volcanic 

materials to confirm its identity. The quartz and potassium feldspar of the archaeological site soil 

parent materials and sherds are more consistent with an alkaline felsic outfall than the Slovenian 

clay mineral deposit or typical karst residuum. The large quartz-rich deposits feeding the soils at 

both sites are incongruent with sediments and soils developing solely from local limestones and 
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dolostones, known as terra rossa. Terra rossa is well documented as being high in heavy metals 

and containing predominantly clay minerals and iron oxides (Durn, 2003; Yaalon, 1997).  

It is hematite (α-Fe2O3) that gives the soils their red colors. In the Mediterranean (xeric) 

moisture regime, precipitation comes predominantly in winter months. During the cool, wet 

months, clays (along with their oxide skins) translocate downward in the soil column. During the 

dry summer months, ferrihydrite (Fe2O3⋅9H2O) ‘dries out’ to form hematite, thus spreading its red 

color throughout the soil, often accompanied by argillic (clay-rich) B horizon formation (Yaalon 

1997). This pervasive iron-clay association is what gives these soils their name: fersiallitic. 

(Siallization is the formation of clay minerals.) Terra rossa is often called polygenetic, because it 

invariably has more than one parent material. The carbonate rock over which terra rossa 

develops does not form a regolith (parent material that ‘feeds’ a soil through its weathering), but 

rather dissolves, leaving small amounts of residual material. This residuum provides a chemical 

input to the soil, especially through saturated groundwater flow, but the solid parent material input 

comes from three other sources: Saharan dust, colluvium (sediments transported by gravity), and 

alluvium (sediments transported by rivers). Pedogenesis then alters these sediments, forming 

terra rossa (Yaalon, 1997; Durn, 2003). Due to the variation in terra rossa parent material input, 

establishing background values, or geochemical baselines for the area is difficult. Early studies 

focused on heavy metal concentration, and determination of ‘pollutedness’. Later when 

construction of a geochemical map for Croatia became the goal of the government and UNESCO, 

researchers turned to development of surface-sampling methods and baseline determination. In 

general there is disagreement not over the presence of heavy metals, but over their source 

(anthropogenic vs. geogenic) and the health threat they pose. Establishing background values is 

critical for the determination of anthropogenic or geogenic input to the soil system, but in terms of 

soil contamination the source is inconsequential. Either the soil is contaminated (i.e., unsafe for 

agricultural use) or it is not. What is certain is that heavy metals do exist in the area and that they 

are present in terra rossa. 
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 Prohic and Juracic (1989) analyzed Ni, Zn, Pb, Cu, Mn, and Cr content in sediments from 

the Krka River estuary and possible sources for these elements – cultural versus natural. They 

group these metals into three groups based on source and behavior in the estuary: (1) Ni and Zn 

are present in relatively high amounts in flysch, the source rock for the estuary, and behave 

irregularly in the sediment column. (2) Pb and Cu have low concentrations in both limestone and 

flysch, but are abundant in the upper sediment column, indicating an anthropogenic source. (3) 

Redox potential dictates the behavior of Mn and Cr, which are naturally abundant in limestone 

and flysch, respectively. Mn is more enriched near the surface due to oxidation and precipitation. 

Cr is depleted near the surface, but precipitates with increasingly reducing conditions lower in the 

sediment column. Surija and Branica (1995) analyzed the varying roles of exchangeable cations, 

carbonates, iron oxides, silicates, and organic matter in trace metal fractionation within sediments 

from the Krka River estuary. Concentrations in exchangeable cations were very low.  Pb and Zn 

were bound predominantly in Fe oxides and carbonates; Cd was bound predominantly in 

carbonates and organic matter; and Cu was bound in carbonates, Fe oxides, and silicates. These 

authors note the strange affinity of trace metals for carbonate and raise the possibility of Dinaric 

carbonates as trace metal collectors. Cr, Ni, V, Mn, Cu, Cd, and Mo have been found in high 

concentrations in Croatia’s relatively unpolluted karstic landscapes (Miko et al., 2003). 

 Durn et al. (1993) analyzed the heavy metal content of Croatian dolomite and limestone 

bedrock to gauge the danger posed in using these materials as a potential source rock for 

agricultural liming material. They analyzed heavy metal concentration in both the whole rock and 

in the insoluble residue. The bedrock contains Hg, Cd, Cu, Pb, Co, Zn, Mn, and Fe. The authors 

found concentrations high enough for concern only of Cd, an especially important heavy metal, 

being both mobile and bio-available in limed arable soils (Durn et al., 1993:153). Prohic et al. 

(1997) determined that for Istrian soils Pb, V, Cu, and Cr are mostly anthropogenic; radionuclides 

and Zn are of mixed origin; and Ba, Sr, Ti, Al, Na, Ca, Mg, Fe, Mn, Ni, and Co are geogenic. As 

part of the initial studies for a Croatian geochemical map, Miko et al. (1999) analyzed soils from 
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Sinjsko Polje in Dalmatia and Navigrad in Istria. They stated that the only promising sampling 

medium for a countrywide geochemical survey is the weathered bedrock in the form of soils – 

more specifically, terra rossa. Their findings show terra rossa to be highly chemically variable, 

thus attempts to apply normalizing factors or to use regression analysis on the data were mostly 

unsatisfactory. Miko et al. (2001:53) continued this work, using factor analysis to analyze the 

variability inherent in the soil data. Element associations derived from this analysis show that Al, 

As, Co, Cu, Fe, La, Mn, Pb, Ni, Mn, Th, V, Cr, Zn, Zr, and Nb are more abundant in carbonate 

terrains, while K, Na, Mg, and Ba are less abundant. Sr, P, and Ti are present in equal amounts 

in carbonate and non-carbonate Croatia (Miko et al., 2001:71). Miko et al. (2003) assessed the 

mobility and bioavailability of heavy metals in Croatian soils, finding that mobility is high in the 

topsoil and decreases down the soil column for every heavy metal except Cu, which stays high 

throughout the column. The authors suggest that this decrease in mobility with depth is due to the 

high sorption capacity of Fe oxides and oxyhydroxides (Miko et el., 2003:265). The authors also 

attribute inflated levels of Pb and Zn in topsoil to anthropogenic input, since natural soil processes 

should be easily removing these elements from the active horizons. 

The soils at Danilo Bitinj and Pokrovnik are not red fersiallitic soils – neither are they 

alfisols or mollisols (Fadem et al., 2009; chapters 4 and 5). We analyzed 15-20 g of five bedrock 

samples from each site for carbonate content (Table 3.1). Of carbonate bedrock at Danilo Polje, 

0.3-1.4% is insoluble; at Pokrovnik, 0.0-4.9%. The residues are fine dark brown, black, and red 

films. Aside from its lack of similarity to the well-documented carbonate residuum-based soils of 

the region, the 10-30 cm-thick yellow-white quartz-feldspar deposit at the base of Danilo Polje 

seems an unlikely carbonate residue. However, the Danilo Polje bedrock samples are from the 

sides of the polje (Appendix 1) rather than the plain in which the soils are located. (Bedrock was 

never reached, though excavations in some cases exceeded 2 m depth). The sides and plains of 

poljes are theorized to host different lithologies (Perica et al., 2002; Gams, 1978), lowering the 

certainty of genetic difference. For Pokrovnik, though it is possible dissolution of material with  
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Table 3.1. Bedrock carbonate content 

Site Area Sample # Sample weight (g) Insoluble weight (g) Insoluble weight (%)

Danilo Bitinj 5 15.931 0.227 1.42% 

 
7 20.824 0.112 0.54% 

 
8 20.484 0.155 0.76% 

 
10 19.417 0.109 0.56% 

 
19 20.255 0.064 0.32% 

Pokrovnik 1 20.252 0.003 0.01% 

 
4 15.360 0.011 0.07% 

 
5 15.674 0.000 0.00% 

 
9 16.537 0.748 4.52% 

 
10 18.132 0.891 4.91% 
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~5% insoluble residue could have left sizeable deposits, the likelihood of such a scenario is 

currently impossible to determine: the extent and distribution of the formations from which the 

bedrock samples come (whether lower or higher in insoluble residue) are unknown (Appendix 1). 

As Pokrovnik is not located inside a closed depression, it is also difficult to estimate the amount of 

material which would have potentially overlain the plain and dissolved. XRD analysis of the 

residues would assist in characterizing the differences in soils and bedrock, but dissolution of 

much larger samples (particularly from the site plains beneath the soils) would be necessary. To 

characterize local bedrock and explicitly rule it out as a source for the soil parent material at each 

locale, detailed geologic rather than soil surveys would have to be undertaken, as well as 

landform-scale carbonate rock geochemistry studies.  

Given the current ubiquity of carbonate bedrock and lack of inter-regional surface 

material transport, if the quartz and potassium feldspar of the soil parent material is not sourced 

in the bedrock, it is certainly foreign. The fact that both subsoils and sherds are characterized by 

quartz and feldspar rather than iron oxide and clay minerals suggests a non-local, possibly 

volcanic source for all four materials. While many years of pedogenesis may have altered the 

materials beyond eruption sourcing capability, it is possible for Italian volcanic material to have 

blanketed Dalmatia in the past. The largest known trachytic eruption is from the Campania 

volcanic region near Naples, dated to 14.9 ka ago with an estimated volume of 40 km3 (Deino et 

al., 2004).  Ash deposits as young as 7.1 ka are found in Dalmatian coastal lagoon cores (Jahns 

and van den Bogaard, 1998). Should eruption identification be possible, it would provide limiting 

ages for soil inception. Such a scenario raises further questions as to the deposition and 

preservation of volcanic outfall in Dalmatia. Deposits like that at Grofova Jama are known from 

cave contexts (Hajna, pers. comm. 2008; Osborne, pers. comm. 2007), indicating that surface 

processes collected local outfall and redeposited it in cave-systems where it was preserved. 

Surficial volcanic ash deposits are not currently known near the sites – Danilo Polje is mapped as 

Cretaceous limestone and dolomite, and Eocene foraminiferous limestone and flysch 
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(calcareous), overlain by Quaternary alluvium; the Pokrovnik site area as Eocene/Oligocene 

conglomerates and marls, and Eocene foraminiferous limestone (Mikes et al., 2008; Perica et al., 

2005). If volcanic material were only preserved in subterranean contexts, quartz-rich soils like 

those at our Neolithic sites would indicate cave features which collapsed post-deposition. 

Alternatively if the current polje-karst morphology had already developed, volcanic material may 

have been preserved or redeposited as basin fill, though a volcanic input to these deposits has 

not been previously recognized.  

Due to the similarity in XRD results for site subsoils and sherds, it is impossible to 

distinguish them in terms of source. Additionally, montmorillonite clays like the Grofova Jama 

deposit are known to be impractical for ceramics manufacture without heavy tempering due to a 

high degree of shrinking during firing (Goffer, 2007; Stimmell et al., 1982). If type one sherds 

prove a closer match to Grofova Jama or other montmorillonite deposits than type two or three 

sherds, this mineralogy would suggest that type one carbonate inclusions are a deliberately 

added temper. For a comprehensive archaeological sourcing analysis, a very large dataset (of 

both ceramics and potential source materials) characterized using neutron activation analysis 

would be necessary. The samples tested here do show a marked difference in mineralogy from 

the most proximal known ceramic clay source (illite-smectite) in western Serbia (Simić et al., 

1997). If there were movement of ceramic material throughout the Neolithic Balkans, we might 

expect differences of similar magnitude to be represented in Danilo Bitinj and Pokrovnik 

assemblages.  

The typology presented here will allow analysis at three levels of ceramic diversity: the 

Danilo Bitinj and Pokrovnik assemblages, between them, and with sites throughout the region 

(Rice, 1989). As with any classification, use may initiate change: analysis of large portions of the 

assemblage may reveal new types, or it may become apparent further division of these three 

types is beneficial. While we see no physical distinction between clay matrices of different colors 

in thin section, it is possible some of the variation relates to source materials (e.g., Simić et al., 
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1997). If such relationships exist, future classification and sourcing studies will inform one 

another. We have confirmed that Danilo Bitinj ceramics could have been sourced on-site, given 

both chemistry and mineralogy. If further materials analysis confirms a genetic relationship 

between site soils and ceramics, these central Dalmatian Neolithic sites would have been loci for 

both early farming and ceramics raw material acquisition. 
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Chapter 4. Central Dalmatian Soil Dynamics & Earliest European Agriculture.∗ 

Introduction 

The Early Farming in Dalmatia Project (EFDP) is an international interdisciplinary effort 

towards understanding the transmission of agriculture from western Asia to Mediterranean 

Europe. The Neolithic sites under investigation (Figure 4.1) are uniquely suited to illuminate this 

transition, as Dalmatia was the path of neolithization into Europe (Moore et al., 2007a, 2007b; 

Tringham, 2000). The work presented here is part of the geoarchaeological investigations of the 

EFDP, aimed ultimately at answering the question, ‘Why here?’ For if we view the transition to 

agriculture not as a natural progression, but as a conscious change in subsistence strategy, we 

must assume that farming technologies in this temporal and spatial situation presented a higher 

perceived benefit-to-cost ratio than precursor Mesolithic hunting-gathering technologies (e.g., 

Ugan et al., 2003). Our initial geomorphological and pedological investigations led to more 

questions than answers about the setting of earliest European agriculture (Fadem et al., 2009; 

Moore et al., 2007a). As we’ve begun to understand the site matrices more fully, it has become 

clear that the unanticipated combination of valley-bottom soils and geomorphology supports 

agriculture to the exclusion of the surrounding terrain. Seemingly incongruous soil attributes are 

most likely related to a volcanic parent material. Sizeable deposits of this material occurring in 

lowlands of the dramatic central Dalmatian polje-karst would cause localized karst cessation by 

blanketing permeable local material and serve as a rich agricultural substrate.  

Poljes are karst landforms, valleys with steep-sides and flat-bottoms. Though they occur 

in many well-developed karst terrains, the central Dalmatian polje-karst hosts the largest 

concentration of poljes of any region in the world (White, 1988). Various karst researchers, in 

defining the polje landform, cite the fact that the word ‘polje’ means ‘field’ (e.g., Gracia et al., 

2003; Biondić et al., 1998; Prohić et al., 1998; White, 1988). While ‘field’ is an English translation  

                                                            
∗ Prepared for submission to the journal Geoderma with co-authors Jennifer R. Smith, Andrew 
Moore, and Marko Menđušić. 
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Figure 4.1. Site locations.
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of ‘polje’, it does not fully express the cultural conflation of landform and land-use (c.f., Gams, 

1978). In this region arable land is often found only inside polje landforms, as the surrounding 

karst is incapable of supporting larger-scale plant productivity due to the lack of productive soil 

cover of sufficient depth (Durn, 2003; Prohić et al., 1998; Božičević, 1992:16). In the Croatian 

language, many words dealing with agriculture carry the prefix ‘polje’ (e.g., 

agriculture/poljoprivreda, literally ‘economy of the polje’; and farmer/poljodjelac, lit. ‘polje worker’). 

We propose that in this region Neolithic subsistence choices evolved coincident with 

geomorphology, granting the central Dalmatian polje-karst preference in Neolithic occupation, 

and its fields subsequent predominance in archaeological site location. Here we present new 

pedologic data for the Danilo Bitinj and Pokrovnik sites and review our previously published data 

in light of these assertions. 

The Danilo Bitinj Site 

 Located in the fertile plain at the base of Danilo Polje, Danilo Bitinj is the type-site for the 

Danilo Phase of the Middle Neolithic (Figure 4.2). Seemingly as important to its Neolithic 

occupants as it is to archaeologists, Danilo Bitinj represents a sizeable and relatively complex 

locus of early farming (Moore, 2007a). Yet the site’s long history of agricultural productivity seems 

at odds with its soil chemistry: initial investigation revealed Danilo soil to have high pH (9.0-9.5), 

low electric conductivity (0.103-0.120 dS/m), and low organic carbon content (0.36-1.89%) 

(Fadem et al., 2009). The soil’s severe sodicity (inferred from high pH and very low conductivity 

rather than direct Na-measurement) and low organic carbon content seem inconsistent with both 

its apparent fertility (cultivation from the Neolithic to the present) and the local lime- and dolostone 

bedrock (Brady and Weil, 2008; Moore et al., 2007a; Perica et al., 2005; Sposito, 1989). SOM 

accumulation is critical to agricultural yield, with a minimum recommended organic carbon 

content of 1.75% for arability (Hodges, 1991; Johnston, 1991). With a lime-and dolostone parent, 

one would expect Ca2+ and Mg2+ to be the dominant cations in the soil solution and exchange 

complex, and pH to be limited, with a maximum of 8.5 (Brady and Weil, 2008; Birkeland, 1999).  
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 Soil chemistry directly contradicted these expectations. There is no evidence in these 

soils for the long-term agricultural degradation (overgrazing, salinization, erosion, waterlogging)  

which would directly inhibit or preclude plant growth; however, soil organic carbon content is near 

the recommended minimum. Though there is always a decrease in soil organic matter at the 

onset of cultivation (especially tillage) (Riffaldi et al., 2002), the soil eventually reaches a steady-

state (experimentally shown to occur after 10-30 years), which it maintains unless agronomic 

practices change (Janzen et al., 1997). Steady-state is achieved due to the addition and removal 

of organic matter by the plants under cultivation (Hodges, 1991). While in the past there may 

have been a different steady-state organic carbon level for Danilo soils, the fact remains that this 

value is unexpected for a soil known to support crops. Even if organic matter levels were higher in 

the past and agronomic practices were degradative, it is unlikely that they were high enough to 

continuously decrease for 7000 years and still support plant life.  

 Alkalinity may also be contributing to low organic carbon content, as soil organic matter 

can dissolve at high pH (Brady and Weil, 2008). Though exchangeable sodium percentage was 

not directly measured, high soil pH alone indicates the dominance of OH- and HCO3
- over H+, as 

well as Na+ over Ca2+ in the soil solution, despite ubiquitous carbonate bedrock (Brady and Weil, 

2008; Birkeland, 1999; McBride, 1994). In the absence of salt, the major source of alkalinity is 

mineral weathering: silicate hydrolysis and Na- and K-carbonate dissolution (McBride, 1994). 

Even if there is not a particularly large amount of Na+ in the soil (as in the case of silicate 

hydrolysis or K-carbonate dissolution), the continuous production of anions may be greater than 

the buffering capacity of the soil. If Ca2+ were the dominant cation, it would buffer soil pH (limiting 

it to 8.5) by pulling anions out of solution through precipitation of calcite (Brady and Weil, 2008). 

Thus, the high pH indicates not a necessarily high bulk Na+ content, but a relative dominance of 

this cation due to anion activity. This relationship may be the reason alkalinization and 

solonization are synonymous in soil science (Chesworth, 1992).  
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 Physically, sodicity degrades soils – low salt, high pH conditions limit flocculation, which 

limits the formation of soil pores. Sodic conditions are often toxic due to low plant Na+, OH-, and 

HCO3
- tolerances, and growth-limiting due to low air and water permeability (Brady and Weil, 

2008). Soils throughout the site consistently displayed the high dispersion and low permeability 

characteristic of sodic soils in the field and laboratory, indicating this particular chemistry is not a 

localized phenomenon. As the Danilo Bitinj soils supported one of the largest early farming 

occupations in the region and continue to produce crops today (Moore et al., 2007a), these initial 

results led to a reexamination of the soil in search of the inputs or processes which could resolve 

detrimental chemistry and productive land-use (i.e., soil characteristics which compensate for the 

seemingly plant-toxic conditions). As the polje subsoil and parent material, a yellow and white silt, 

had yet to be identified, further investigation began with it.  

X-ray diffraction (XRD) analysis reveals the subsoil to be composed of calcite, quartz, and 

potassium-feldspar, with calcite and quartz as the dominant phases (see chapter 3). Figure 4.3 

shows diffraction spectra through the soil column using three of the samples tested previously for 

pH, conductivity, organic carbon content and stable isotope chemistry (Fadem et al., 2009). 135 

cm corresponds to Danilo subsoil, 55 cm to the B horizon, and 35 cm to the A horizon. This 

mineralogy – consistent through the soil column – reveals a non-karst, possibly volcanic origin 

(see chapter 3). Aside from detrital input of lime- and dolostone clasts, weathering of karst 

bedrock produces only a small amount of residual material, including trace elements and heavy 

metals, such that without the addition of unconsolidated material soil development and depth are 

limited (Durn, 2003; chapter 3). Though Saharan aerosols may contribute a fine-grained 

carbonate and quartz component, it is unlikely these would form a continuous ~10-30 cm thick 

deposit in the base of a Dalmatian polje, as they are known to contribute only 0-20 μm yr-1 to soils 

throughout the Mediterranean (Kapur et al., 2001; Yaalon, 1997). As quartz is one of the two 

primary constituents of this soil from subsoil to surface (up to 2 m deep in places), we must infer a 

non-native origin for the soil parent. Underlying bedrock is consolidated interbedded Cretaceous 
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and Tertiary lime- and dolostones (Perica et al., 2005). The only noticeable change through the 

profile from subsoil to surface is increased focus in some of the lower-intensity peaks. This effect 

could be achieved through eluviation of amorphous components in the absence of sufficient 

organic acids for further mineral degradation (Tan, 1986). One would expect calcite in 

Danilo soils regardless of parent material, due to high calcium and bicarbonate ion content in 

karst surface and groundwater (Dreybrodt and Gabrovšek, 2002; White, 1988). Alluvial waters at 

nearby Krka National Park (as well as at Plitvice Lakes National Park ~150 km to the north) 

continuously precipitate waterfall and barrier tufas (Lacković, 2005; Chafetz et al., 1994). 

However, quartz and K-Al-silicate indicate a foreign, possibly volcanic source (see chapter 3). 

This mineralogy, along with high soil pH is consistent with an alkaline volcanic parent material. 

Though the soil grain size is fine throughout (silty clay loam in hand test), consistent with the silty 

subsoil, the upper profile also contains 10-40% 0-10 cm carbonate gravel. If the parent is indeed 

volcanic rather than carbonate, the gravel component of the upper profile must have an alluvial or 

colluvial source.  

 Previously we published stable isotope data for Danilo Bitinj soil carbonates, but declined 

to interpret these data for paleoenvironmental information due to higher than ideal enrichment of 

δ13Ccc relative to δ13Com and – subsequently – presumed contamination by detrital carbonates 

(Fadem et al., 2009). Here we re-examine these conclusions, given evidence suggesting the 

carbonates of the non-gravel component are in fact pedogenic rather than detrital. To confirm 

δ13C organic matter values were not incorporating carbon from mineral phases, we altered the 

preparation method. Traditionally offline combustion methods for organic carbon call for 

combustion at 550°C (Tao et al., 2001; Vandeputte et al., 1996; Engel and Maynard, 1989; 

Boutton et al., 1983; Sofer, 1980; Buchanan and Corcoran, 1959). However, research has shown 

organic materials yield consistent isotopic results with combustion temperatures as low as 300°C 

(Ertl and Spitzy, 2004; Holt and Abrajano, 1991). Table 4.1 lists revised values for Danilo Bitinj 

SOM δ13C combusted under vacuum in a CuO substrate at 375°C and purified to CO2 using a  
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Table 4.1. Revised soil organic matter stable carbon isotope data. 

Depth 

(cm) 

δ13Com 

(‰ PDB) 

δ13Com δ 13Ccc  

Enrichment (‰) 

15 -23.6 ± 0.8 17.0 

35 -23.5 ± 0.1 17.3 

55 -22.1 ± 0.2 13.1 

75 -23.5 ± 0.2 15.6 

95 -24.2 ± 0.5 16.5 

115 -23.3 ± 0.7 18.2 

135 -24.0 ± 0.0 18.4 
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vacuum extraction line. We measured isotopic ratios of oxidized SOM carbon samples using a 

Thermo MAT 252 mass spectrometer. The enrichment in carbonate δ13C compared to that of 

SOM should ideally be 11-16‰ if carbonates are viable paleoenvironmental proxies precipitated 

as organic matter is produced (Nordt, 2001; Cerling and Quade, 1993). Though the average 

enrichment is 0.5‰ lower with the new combustion temperature (16.6‰, previously 17.1‰), 

range and standard deviation are higher (2.1‰ and 1.8‰, previously 1.4‰ and 0.9‰, 

respectively). Highest enrichment values occur in the subsoil. The lowest enrichment value 

occurs at 55 cm depth (near the top of the B horizon). Though the range of variation in δ13C is 

higher, all values are still well within the range for C3 plants (those tolerant to cool, moist 

conditions) (Hoefs, 1997).  

 Soil chemistry argues against the incorporation of detrital carbonate in the soil carbonate 

pool. The solubility of Ca- and Mg-carbonates decreases with increasing pH (Pokrovsky et al., 

2005; Pokrovsky et al., 1999; Pokrovsky and Schott, 1999; Birkeland, 1990; Morse, 1990). 

Carbonate dissolution is inhibited due to the high carbonate and bicarbonate anion content of 

alkaline solutions (Pokrovsky and Schott, 1999). Thus the carbonate gravels of the upper profile 

should remain intact, while any Ca2+ ions entering the soil in solution should precipitate. 

Additionally, though local bedrock is interbedded lime- and dolostone (Perica et al., 2005), XRD 

spectra exhibit no Mg-carbonate contribution (Figure 4.3). If Mg were present in the soil 

carbonate mineral lattice in any amount, diffraction peaks at 48 and 49°2θ would shift to the right, 

probably due to variation in Ca-O versus Mg-O bond-length (Doner and Lynn, 1989). Thus soil 

parent material is non-carbonate, soil conditions do not serve to break down colluvial carbonates, 

and mineralogy exhibits no detrital Mg-carbonate component. 

 Lastly, the soil carbonate stable isotope chemistry itself argues against contamination by 

marine carbonate material. Modern marine carbonates have positive δ18O and δ13C values (Rao, 

1996), while values for ancient marine materials fall between -2 and 2‰ PDB (Ryskov et al., 

2000). Carbonate rock units may be isotopically depleted if subjected to meteoric diagenesis, but  
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Figure 4.4. Cross-plot of Danilo Bitinj soil pedogenic 

carbonate stable isotope ratios. Points are labelled with 

sample depth (cm). 
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such depletion is in fact due to the depleted δ13C of soil CO2 (Morse and Mackenzie, 1990). A 

cross-plot of our carbonate stable isotope data showing Morse and MacKenzie’s (1990) meteoric 

calcite line shows that our carbonates are at or below the minimum range of values for marine-

affected carbonates (Figure 4.4), indicating a low likelihood of contribution to these ratios by 

isotopes fractionated in equilibrium with marine conditions. Isotopic analysis of local bedrock and 

of soil gravels from inner to outer clast would help us better understand the particular carbonate 

kinetics of this soil body and confirm the identity of its soil carbonates.  

 Comparing revised soil organic matter δ13C data with carbonate data, relative changes 

(increases and decreases in the profile) are consistent (Figure 4.5). This relationship is expected 

for local plant populations responding to changing meteoric/regional water conditions (i.e., 

populations more tolerant to drought in times of drought). Paleoclimatic inferences from soil 

stable isotopes are based on the direct relationships between (1) plant carbon fractionation 

(characteristic to cold and moisture tolerant C3 vs. heat and drought tolerant C4 metabolism) and 

SOM δ13C; and (2) meteoric water fractionation (with increasing dryness enriching rain-/snowfall 

in δ18O) and pedogenic carbonate δ18O (Nordt, 2001; Cerling and Quade, 1993). Soil isotopic 

composition at the base of the profile (110-140 cm) indicates conditions similar to those creating 

the modern soil (Figure 4.5). The slight decrease in δ13C and δ18O from 90-100 cm indicates 

cooler, moister conditions with plant populations responding in kind by becoming less drought-

tolerant. δ18O remains stable through 50 cm depth, indicating relatively stable meteoric water 

conditions, while δ13C steadily increases from 80-50 cm, indicating more drought-tolerant plant 

populations. The topsoil from 0-40 cm reflects modern conditions: local plants are predominantly 

grasses and grapevines; the moisture regime is Mediterranean/xeric with cool, wet winters and 

very hot, dry summers.  

 Though the differences in isotopic ratios with depth are real (i.e., larger than the deviation 

within individual samples), sample-to-sample variations are within 1.4‰ for δ13C and 1.8‰ for 

δ18O, which may imply local paleoclimatic stability, as large-scale changes in plant population  
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and/or moisture regime involve changes of 5-10‰ (e.g., Nordt, 2001, 1994). The time period 

during which any paleoclimatic changes indicated by the isotopic profile occurred remains to be 

seen, though Middle Neolithic artifacts dating to ~7000 radiocarbon years BP were uncovered 

throughout (Moore et al., 2007a). Additionally the range in carbonate δ18O (2.3‰) is close to the 

range in SOM δ13C (2.1‰), indicating a similar range of variation in fractionation by plant 

populations and of meteoric waters for the life of the soil. While regional climate records are also 

important for archaeological interpretation, local and regional records are fundamentally different 

sources of information. A given landscape may be located in a stressed region while containing 

resource-buffered refugia (sensu Gustafson and Wegener, 1998). As humans occupy discrete 

portions of the landscape, it is important to investigate both the local and regional climate records 

to understand the environmental factors impacting behavioral decisions. Geoarchaeological 

investigation in the Columbia Plateau has revealed a climate-stress buffering mechanism specific 

to xeric valley-bottoms with predominantly fine-grained deposits (Huckleberry and Fadem, 2007; 

Davis and Schweger, 2004; Davis et al., 2002). If Danilo were a climate refuge, we would expect 

a much lower range of variation in SOM δ13C than carbonate δ18O, due to local vegetation 

community stability in the face of changing regional moisture conditions (Huckleberry and Fadem, 

2007; Davis et al., 2002). These soil stable isotope data indicate productivity-limiting climate is 

not the cause of differential productivity in this area (at least during the life of this soil). Leone et 

al. (2000) present the only regional soil isotope study similar to that here, a pedogenic carbonate 

isotope analysis of a continuous 2.5 Ma profile in central Italy. They also interpret relative 

paleoclimatic stability through time even though their data exhibit a slightly greater range of 

variation than those here (~3‰ in δ13C and δ18O). Their soil is also higher overall in δ18O and 

lower in δ13C, indicating either hotter, drier conditions in central Italy than in central Dalmatia for 

at least the last ~2000 years or contamination from marine carbonates. 
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The Pokrovnik Site 

  The village of Pokrovnik is located ~10 km north-northeast of Danilo Polje. The 

Pokrovnik site is found adjacent to the village at ~260 m above sea level (Figure 4.6). Although 

the surrounding morphology cannot undeniably be termed ‘polje’, the site lies in planar fields with  

ridges up to 360 m elevation directly to the northeast and east. Accompanying plains extend 

northwest-southeast, as would be expected of polje-bottom plains. It is therefore possible the 

Pokrovnik site once resided in a polje like Danilo, whose landform characteristics have been 

overwritten by the nearby Krka alluvial system. Samples are from a single 220-cm profile in 

Pokrovnik archaeological trench ‘A’ (Figure 4.6), taken every 20 cm from the surface to the parent 

material (i.e., from sample A1 – 10-20 cm depth to sample A11 – 210-220 cm) (Table 4.2). The 

soil is fine (clay, silty-clay, and silt loams) and dark to very dark brown in color (7.5 YR Munsell 

hue) with medium blocky and prismatic structures (Figure 4.7). There are two fines layers 

separated by a thin gravel layer at the base of the profile. The fines themselves are the only 

portion of the profile without a gravel component; the upper profile consists of 10-30% gravel. 

There is a transitional zone between the lower fines layer and the bedrock consisting of 80% 0-50 

cm gravel and 20% clay loam. The fines appear to have no relationship to the bedrock; thus they 

are the soil parent material.  

 We tested 11 samples from Trench A of the Pokrovnik site taken in 20-cm intervals 

(Figure 4.7). As with Danilo Bitinj, we measured organic carbon content using the Walkley-Black 

method, and pHH2O and electric conductivity after 1 h of mechanical mixing of a 1:5 soil paste 

(Table 4.2 and Figure 4.7). Mechanical mixing was necessitated by soil hardness and 

impermeability. For the eleven Pokrovnik samples, conductivity ranges from 0.067-0.201 dS/m; 

pH, from 7.7-9.1; and organic carbon, from 0.59-3.05%. These attributes indicate very low salt 

content, neutral to alkaline soil solution, and moderate fertility. In all three attributes there is 

variation both at the surface and in the subsoil, while the B horizon (sample depth 55-135 cm) is 

relatively stable. Conductivity is lower and pH higher in the fines layers of the subsoil, with 
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Table 4.2. Pokrovnik soil chemical data. 

Depth 

(cm) 

Conductivity 

(dS/m) 
pH % Organic C 

% Organic 

Matter 

15 0.165 8.3 3.05 5.26 

35 0.201 9.0 1.91 3.29 

55 0.192 8.5 2.17 3.74 

75 0.184 8.4 1.92 3.30 

95 0.171 8.6 1.63 2.81 

115 0.164 8.6 1.27 2.19 

135 0.146 8.5 1.00 1.73 

155 0.094 9.1 0.83 1.44 

175 0.088 7.7 0.83 1.44 

195 0.067 8.6 0.59 1.02 

215 0.135 8.6 0.68 1.18 



 
 
 

109 

diversions between them at the gravel interlayer. There is also a slight increase at the gravel 

interlayer in organic carbon, which otherwise increases steadily from the subsoil to the living 

surface. We attribute surface variations in all three parameters to the immediate A horizon 

processes of depletion and contribution of salts, nutrients, and organic acids from plant life and 

decay (c.f., Birkeland, 1999). Overall the Pokrovnik soil is not as sodic as Danilo Bitinj soil; 

however, Pokrovnik subsoil fines layers exhibit a roughly equivalent combination of high pH and 

low conductivity (Figure 4.8). Pokrovnik soil contains more organic carbon than Danilo soil – by 

more than double (1.55%) at the surface. pH alone does not affect organic carbon accumulation 

(Martin and Haider, 1986), but sodicity promotes its dissolution and dispersion (Brady and Weil, 

2008). Though many factors affect differential pedogenesis, the enhanced ability of the Pokrovnik 

soil to accumulate organic matter appears to have provided the appropriate feedback for greater 

soil development and departure from parent material chemistry.  

 Initial measurements (prepared and taken in the manner described above) of Pokrovnik 

site SOM δ13C ranges from -22.8 to -25.8‰ PDB, indicating unequivocally C3-dominant 

populations similar to those at Danilo. Due to further similarity between Pokrovnik and Danilo 

Bitinj in subsoil mineralogy, we believe more detailed investigation of Pokrovnik soil isotope 

chemistry will prove fruitful. X-ray diffraction analysis of the Pokrovnik lower fines layer reveals 

quartz and potassium-aluminum-silicate, but no crystalline carbonates (see chapter 3). Most likely 

the original deposit contained no carbonate and its fine-grained nature impedes groundwater flow 

(and subsequent carbonate influx). It is also possible the deposit once contained calcite, which 

has since eluviated, but this is not likely given its proximity to the carbonate bedrock (40-80 cm), 

distance from the soil surface (125-165 cm), and relatively high pH (8.5). The upper profile may 

contain calcite, as it has a more neutral pH, is more permeable, and consists of 10-30% 0-10 cm 

carbonate gravel. How much calcite there is and whether it precipitated in isotopic equilibrium 

with soil CO2 remains to be seen. 
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Soil Organic Matter Radiocarbon 

 We prepared samples the same way for radiocarbon as for stable carbon isotope 

analysis: as CO2 gas isolated from whole soil combusted under vacuum at 375°C in a CuO 

substrate. Samples were then graphitized to pure carbon and analyzed for 14C/13C at the 

University of Arizona National Science Foundation Accelerator Mass Spectrometry Facility (Table 

4.3). F values are the fraction of modern carbon in the sample, where F=1 is equivalent to 0 

radiocarbon years (1950 C.E.) and F=0 is equivalent to 49,900 radiocarbon years (Donahue et 

al., 1990). We used the University of Oxford OxCal 4.1 program to calibrate radiocarbon dates to 

calendar years BP. Each date represents the apparent mean residence time of the soil organic 

carbon, or average age of the carbon in the sample, rather than an instantaneous date like those 

of wood, bone, or shell (Trumbore, 1996; Stein, 1992; Geyh et al., 1971; Scharpenseel, 1971).  

One may also consider SOM 14C dates as minimum ages for the onset of soil organic carbon 

accumulation (Driese et al., 2005; Scharpenseel and Schiffmann, 1977).  

 The Danilo soil ranges in mean age from 0-2052.5±143.5 years BP, while Pokrovnik soil 

ranges from 624±65 to 6028±154 BP (Table 4.3). At both sites mean age increases from the 

surface downward, except in the case of the deepest sample. Figure 4.9 displays how soil 

chemistry varies with mean age. The surface soil at Danilo contains over 100% modern carbon, 

indicating no measurable contribution from carbon older than 1950 in the A horizon (Krull et al., 

2005). The organic carbon in Danilo Bitinj soil and the upper Pokrovnik profile is much younger 

on average than the archaeological material it contains (dated to ~7000 calibrated years BP) 

(Moore et al., 2007a). While this discrepancy is consistent with soil processes that dissolve 

organic matter through time (leaving fewer ancient residues), analyzing more of the profile for 

radiocarbon would help us better understand the nature of the variation. We may still correlate 

organic matter δ13C values with 14C ages, as these are isotope ratios for the same soil aliquot. 
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Table 4.3. Soil organic matter radiocarbon data. 

Site Depth
Fraction  

Modern C 
14C Age BP

Calibrated  

Age BP 

Danilo Bitinj 35 1.0208 ± 0.0043 post-bomb  

95 0.6340 ± 0.0038 3,661 ± 49 2052.5 ± 143.5 

135 0.6919 ± 0.0038 2,958 ± 44 1194.5 ± 172.5 

Pokrovnik 35 0.8297 ± 0.0038 1,500 ± 37 624.0 ± 65.0 

95 

 

0.6746 ± 0.0033 3,162 ± 39 1379.0 ± 67.0 

 0.6823 ± 0.0032 3,070 ± 38 

155 0.4021 ± 0.0032 7,319 ± 63 6208.0 ± 154.0 

215 0.4975 ± 0.0034 5,609 ± 55 4445.5 ± 99.5 
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Discussion  

 Our re-examination of the Danilo Bitinj soil revealed its parent material does not conform 

to a priori expectations. The coupling of the Danilo Bitinj and Pokrovnik datasets reveals a pattern 

of arable lowland development in volcanic parent materials involving two primary soil inputs: 

mineral contributions from the parent material and ions in groundwater solution (Figure 4.10). 

This dynamic resolves the observed soil characteristics, including the suite of minerals present in 

the soil column.  As quartz is the mineral most resistant to weathering, and potassium feldspar 

the most resistant of the feldspars (Brady and Walther, 1989), these may be the remnants of a 

more diverse pre-pedogenesis deposit, which could inhibit sourcing efforts. In particular we 

suspect Na-feldspars to have been present and possibly contributed to soil sodicity, although as 

stated above, a high bulk Na+ content is not necessary to attain alkalinity. We hypothesize that 

localized acidity at plant roots counteracts soil sodicity allowing sufficient remediation for support 

of plant life as observed by Qadir et al. (2005). In this case the initial crop introduced to sodic 

conditions would have to have at least limited resistance to sodic conditions, unlike wheat 

(Triticum aestivum) (Murtaza et al., 2009). However, the abundant Ca2+ and Mg2+ in groundwater 

may provide enough buffering capacity to allow plants of low tolerance to take root and initiate the 

localized remediation. These hypotheses would best be tested experimentally. Such a feedback 

mechanism would account for the difference in pH between Danilo Bitinj and Pokrovnik: if the two 

parent materials began with similar pedochemical conditions, their chemical divergence may be 

the result of the Danilo Bitinj soil’s lying fallow for a substantial amount of time. Continued 

cultivation at Pokrovnik may have allowed for maintenance of more neutral pH and accumulation 

of soil organic matter. Conversely cessation of cultivation at Danilo Bitinj would have reduced 

phytoremediative effects, raising the pH and promoting the dissolution of soil organic matter.  

A polje-bottom soil with non-carbonate parent material – despite ubiquitously carbonate terrain – 

coincides with the apparent cessation of karstic surface processes within the polje (Fadem et al., 

2009), as burial of soluble bedrock with volcanic material typically inhibits further 
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Figure 4.10. Scenario of soil inputs and precipitates based on soil 

chemistry and mineralogy. 
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karst development (Osborne, 2002). Soil stable isotope data also supports a non-climatic cause 

for differential productivity, as Danilo Bitinj – though a stable and archaeologically exploited 

resource patch – does not appear to have been a climate refuge. If this scenario is born out in 

other central Dalmatian poljes, the soil dynamic observed at Danilo and Pokrovnik would define 

the systematic interaction of volcanic outfall, karst geomorphology, and agricultural land-use for 

central Dalmatia for at least the last 7000 calendar years. A regional pattern of non-karst basin fill 

would also explain the classification of polje-bottoms as a separate Croatian engineering geology 

region, the remaining three of which are bedrock-delimited (Janjić, 1985). This scenario would 

also imply a pattern (and mutual exclusivity) of silicic, sodic, light-colored agriculturally viable soils 

in geomorphic depressions; and fersiallitic, iron oxide-rich, heavy and trace metal-rich, non-arable 

terra rossa wherever else soil cover occurs. Further regional implications include the ability of 

volcanic episode identification – if possible – to provide limiting ages for soil inception, and the 

ability of soil survey to identify other potential early farming locales. 

As the characteristics we would use for direct comparison with Italian volcanic soils of a 

variety of ages (up to 100 ka) are by nature largely amorphous (Barbera et al., 2008; Egli et al., 

2008; Mirabella et al., 2005; García-Rodeja et al., 2004) it is difficult to evaluate their similarity 

given the current datasets. For a full comparison and evaluation of these soils as Italian ejecta-

based andisols, we recommend analysis of pHNaF, ∆pH(H20-KCl), and acid oxalate extraction to 

ascertain colloid content and the presence of alumino-mineral complexes. Should direct 

measurement of plant-available Na+ prove necessary, this attribute may be analyzed using 

atomic absorption spectroscopy. Geological and geochemical mapping of the local bedrock 

surrounding the sites would inform both polje and soil dynamics. Acquisition of other Central 

Dalmatian paleoclimate records and continuing efforts to characterize and understand local soil 

stable isotope chemistry will further enhance our understanding of the environmental context of 

earliest European agriculture.   



 
 
 

117 

Works Cited 

Barbera, V., Raimondi, S., Egli, M. and Plötze, M., 2008. The influence of weathering processes 

on labile and stable organic matter in Mediterranean volcanic soils. Geoderma, 143: 191-

205. 

 Beckmann, G.G., 1971. The assessment of relative and absolute ages of soils - illustrated by 

some Hawaiian paleosols. In: D.H. Yaalon (Editor), Paleopedology; Origin, Nature and 

Dating of Paleosols. Israel Universities Press, Jerusalem, pp. 139-147. 

Biondić, B., Biondić, R. and Dukarić, F., 1998. Protection of karst aquifers in the Dinarides in 

Croatia. Environmental Geology, 34(4): 309-319. 

Bird, M., Santruckova, H., Lloyd, J. and Lawson, E., 2002. The isotope composition of soil organic 

carbon on a north-south transect in western Canada. European Journal of Soil Science, 

53: 393-403. 

Bird, M.I. and Gröcke, D.R., 1997. Determination of the abundance and carbon isotope 

composition of elemental carbon in sediments. Geochimica et Cosmochimica Acta, 

61(16): 3413-1423. 

Birkeland, P.W., 1999. Soils and Geomorphology. Oxford University Press, Oxford, 372 pp. 

Boutton, T.W., 1996. Stable carbon isotope ratios of soil organic matter and their use as 

indicators of vegetation and climate change. In: T.W. Boutton and S.-i. Yamasaki 

(Editors), Mass Spectrometry of Soils. Marcel Dekker, Inc., New York City, pp. 47-82. 

Boutton, T.W. et al., 1983. Comparison of quartz and Pyrex tubes for combustion of organic 

samples for stable carbon isotope analysis. Analytical Chemistry, 55: 1832-1833. 

Božičević, S., 1992. Fenomen Krš. Školska knjiga, Zagreb, 102 pp. 

Brady, N.C. and Weil, R.R., 2008. The Nature and Properties of Soils. Pearson-Prentice Hall, 

Upper Saddle River, New Jersey, 965 pp. 

Brady, P.V. and Walther, J.V., 1989. Controls on silicate dissolution rates in neutral and basic pH 

solutions at 25°C. Geochimica et Cosmochimica Acta, 53(11): 2823-2830. 



 
 
 

118 

Bronger, A., 1971. Zür Genese und Verwitterungsintensität fossiler Lössboden in Jugoslawien/On 

the origin and weathering intensity of loessial paleosols in Yugoslavia. In: D.H. Yaalon 

(Editor), Paleopedology; Origin, Nature and Dating of Paleosols. Israel Universities 

Press, Jerusalem, pp. 271-281. 

Buchanan, D.L. and Corcoran, B.J., 1959. Sealed tube combustions for the determination of 

carbon-14 and total carbon. Anaytical Chemistry, 31(10): 1635-1638. 

Campbell, C.A., 1978. Soil organic carbon, nitrogen, and fertility. In: M. Schnitzer and S.U. Kahn 

(Editors), Soil Organic Matter. Developments in Soil Science. Elsevier Scientific 

Publishing Company, Amsterdam, pp. 173-271. 

Chafetz, H.S., Srdoc, D. and Horvatinčić, N., 1994. Early diagenesis of Plitvice Lakes waterfall 

and barrier travertine deposits. Géographie physique et Quaternaire, 48(3): 247-255. 

Cerling, T.E. and Quade, J., 1993. Stable carbon and oxygen isotopes in soil carbonates. In: P.K. 

Swart, K.C. Lohmann, J. McKenzie and S. Savin (Editors), Climate Change in 

Continental Isotope Records. Geophysical Monograph 78. American Geophysical Union, 

pp. 217-231. 

Davis, L. G., K. Muehlenbachs, C. E. Schweger, and N. W. Rutter, 2002, Differential response of 

vegetation to postglacial climate in the lower Salmon River canyon, Idaho, 

Palaeogeography, Palaeoclimatology, Palaeoecology, 185, 339-354. 

 Donahue, D.J. and Linick, T.W.J., A J T, 1990. Isotope-ratio and background corrections for 

accelerator mass spectrometry radiocarbon measurements. Radiocarbon, 32(2): 135-

142. 

Doner, H.E. and Lynn, W.C., 1989. Carbonate, halide, sulfate, and sulfide minerals. In: J.B. Dixon 

and S.B. Weed (Editors), Minerals in the Soil Environment. SSSA Book Series Number 1. 

Soil Science Society of America, Madison, Wisconsin, pp. 279-330. 

 



 
 
 

119 

Dreybrodt, W. and Gabrovšek, F., 2002. Basic processes and mechanisms governing the 

evolution of karst. In: F. Gabrovšek (Editor), Evolution of Karst: from Prekarst to 

Cessation. Institut za rasiskovanje krasa, Znanstvenoraziskovalni center, Slovenske 

akademije znanosti in umetnosti, Ljubljana, pp. 115-154. 

Driese, S.G., Li, Z.-H. and Horn, S.P., 2005. Late Pleistocene and Holocene climate and 

geomorphic histories as interpreted from a 23,000 14C yr B.P. paleosol and floodplain 

soils, southeastern West Virginia, USA. Quaternary Research, 63: 136-149. 

Durn, G., 2003. Terra rossa in the Mediterranean region: Parent materials, composition, and 

Origin. Geologia Croatica, 56: 83-100. 

Egli, M. et al., 2008. Clay minerals, oxyhydroxide formation, element leaching, and humus 

development in volcanic soils. Geoderma, 143: 101-114. 

 Engel, M.H. and Maynard, R.J., 1989. Preparation of organic matter for stable carbon isotope 

analysis by sealed tube combustion: A cautionary note. Analytical Chemistry, 61: 1996-

1998. 

Ertl, S. and Spitzy, A., 2004. Low-temperature sealed tube combustion of gaseous, liquid and 

solid organic compounds for 13C/12C and 14C analysis. Isotopes in Environmental and 

Health Studies, 40(2): 163-170. 

Fadem, C.M., Smith, J.R., Moore, A. and Menđušić, M., 2009. Pedologic analysis of the Danilo 

Bitinj Site, Central Dalmatia, Croatia. Catena, 78: 181-184. 

Ford, D., 2002. From pre-karst to cessation: the complicating effects of differing lithology and 

geologic structure on karst evolution. In: F. Gabrovšek (Editor), Evolution of Karst: from 

Prekarst to Cessation. Institut za rasiskovanje krasa, Znanstvenoraziskovalni center, 

Slovenske akademije znanosti in umetnosti, Ljubljana, pp. 31-41. 

García-Rodeja, E., Nóvoa, J.C., Pontevedra, X., Martínez-Cortizas, A. and Buurman, P., 2004. 

Aluminium fractionation of European volcanic soils by selective dissolution techniques. 

Catena, 56: 155–183. 



 
 
 

120 

 Geyh, M.A., Benzler, J.-H. and Roeschmann, G., 1971. Problems of dating Pleistocene and 

Holocene soils by radiometric methods. In: D.H. Yaalon (Editor), Paleopedology; Origin, 

Nature and Dating of Paleosols. Israel Universities Press, Jerusalem, pp. 63-75. 

Gracia, F.J., Gutiérrez, F. and Gutiérrez, M., 2003. The Jiloca karst polje-tectonic graben (Iberian 

Range, NE Spain). Geomorphology, 52(3-4): 215-231. 

Hodges, R.D., 1991. Soil organic matter: its central position in organic farming. In: W.S. Wilson 

(Editor), Advances in Soil Organic Matter Research: The Impact on Agriculture and the 

Environment. Special Publication No. 90. The Royal Society of Chemistry, Cambridge, 

England, pp. 355-364. 

Holt, B.D. and Abrajano Jr, T.A., 1991. Chemical and carbon isotopic alteration of organic matter 

during stepped combustion. Analytical Chemistry, 63: 2973-2978. 

Hoefs, J., 1997. Stable Isotope Geochemistry. Springer Verlag, Berlin. 

Huckleberry, G., and C. M. Fadem, 2007, Environmental change recorded in sediments from the 

Marmes rockshelter archaeological site, southeastern Washington state, USA, 

Quaternary Research, 67, 21-32. 

 Janjić, M., 1985. Inženjerska Geologija sa Osnovama Geologije. Naučna Knjiga, Beograd, 447 

pp. 

Janzen, H.H., Campbell, C.A., Ellert, B.H. and Bremer, E., 1997. Soil organic matter dynamics 

and their relationship to soil quality. In: E.G. Gregorich and M.R. Carter (Editors), Soil 

Quality for Crop Production and Ecosystem Health. Developments in Soil Science. 

Elsevier, Amsterdam, pp. 277-291. 

Johnston, A.E., 1991. Soil fertility and soil organic matter. In: W.S. Wilson (Editor), Advances in 

Soil Organic Matter Research: The Impact on Agriculture and the Environment. Special 

Publication No. 90. The Royal Society of Chemistry, Cambridge, England, pp. 299-314. 



 
 
 

121 

Kapur, S. et al., 2000. Carbonate pools in soils of the Mediterranean: a case study from Anatolia. 

In: R. Lal, J.M. Kimble, H. Eswaran and B.A. Stewart (Editors), Global Climate Change 

and Pedogenic Carbonates. Lewis Publishers, Boca Raton, Florida, pp. 187-212. 

Krull, E.S. et al., 2005. Recent vegetation changes in central Queensland, Australia: Evidence 

from δ13C and 14C analyses of organic matter. Geoderma, 126: 241-259. 

Lacković, D., 2005. Geološki izleti Nacionalnim Parkom "Krka"/Geological tour of Krka National 

Park. In: D. Marguš (Editor), Simpozij: Rijeka Krka i Nacionalni Park "Krka": prirodna i 

kulturna baština, zaštita i održivi razvitak. Nacionalni Park "Krka", Šibenik, pp. 127-141.  

Leone, G., Bonadonna, F. and Zanchetta, G., 2000. Stable isotope record in mollusca and 

pedogenic carbonate from Late Pliocene soils of Central Italy. Palaeogeography, 

Palaeoclimatology, Palaeoecology, 163: 115–131. 

McCarthy, P., 2001. The principles of humic substances: An introduction to the first principle. In: 

E.A. Ghabbour and G. Davies (Editors), Humic Substances: Structures, Models and 

Functions. Special Publication No. 273. Royal Society of Chemistry, Cambridge, 

England, pp. 19-30. 

Martin, J.P. and Haider, K., 1986. Influence of mineral colloids on turnover rates of soil organic 

carbon. In: P.M. Huang and M. Schnitzer (Editors), Interactions of Soil Minerals with 

Natural Organics and Microbes. SSSA Special Publication Number 17. Soil Science 

Society of America, Madison, Wisconsin, pp. 283-304. 

Mirabella, A., Egli, M., Raimondi, S. and Giaccai, D., 2005. Origin of clay minerals in soils on 

pyroclastic deposits in the island of Lipari (Italy). Clays and Clay Minerals, 53(4): 409-

421. 

 Moore, A., Menđušić, M., Smith, J. and Podrug, E., 2007a. Project "Early Farming in Dalmatia": 

Danilo Bitinj 2004-2005. Vjesnik Arheološkog Muzeja u Zagrebu, 40: 15-24. 

Moore, A., Menđušić, M., Smith, J., Zaninović, J. and Podrug, E., 2007b. Project "Early Farming 

in Dalmatia": Pokrovnik 2006. Vjesnik Arheološkog Muzeja u Zagrebu, 40: 25-34. 



 
 
 

122 

Morse, J.W. and Mackenzie, F.T., 1990. Geochemistry of Sedimentary Carbonates. 

Developments in Sedimentology 48. Elsevier, Amsterdam, 707 pp. 

Murtaza, G., Ghafoor, A., Khalon, U.Z., Bhatti, A.S. and Sabir, M., 2009. Evaluation of rice and 

wheat cultivars for tolerance to salinity and sodicity in soils. Communications in Soil and 

Plant Science, 40: 1268-1281. 

 Nordt, L.C., 2001. Stable carbon and oxygen isotopes in soils, Applications for archaeological 

research. In: P. Goldberg, V.T. Holliday and C.R. Ferring (Editors), Earth Sciences and 

Archaeology. Plenum Publishers, New York City, pp. 419-448. 

Nordt, L.C., Boutton, T.W., Hallmark, C.T. and Waters, M.R., 1994. Late Quaternary vegetation 

and climate changes in central Texas based on the isotopic composition of soil organic 

matter. Quaternary Research, 41: 109-120. 

 Osborne, R.A.L., 2002. Paleokarst: cessation and rebirth? In: F. Gabrovšek (Editor), Evolution of 

Karst: from Prekarst to Cessation. Institut za rasiskovanje krasa, Znanstvenoraziskovalni 

center, Slovenske akademije znanosti in umetnosti, Ljubljana, pp. 97-114. 

Perica, D., Bognar, A. and Lozić, S., 2002. Geomorphological features of the Baške Oštarije karst 

polje. Geoadria, 7(2): 23-34. 

Perica, D., Orešić, D. and Trajbar, S., 2005. Geomorfološka obilježja doline Rijeke Krka s 

posebnim osvrtom na klisuru od Knina do Bilušića Buka/Geomorphological 

characteristics of the Krka River valley, with special focus on the ravine from Knin to 

Bilušić Buk. In: D. Marguš (Editor), Simpozij: Rijeka Krka i Nacionalni Park "Krka" 

prirodna i kulturna baština, zaštita i održivi razvitak. Nacionalni Park "Krka", Šibenik, pp. 

109-125. 

Pokorná, L., Gajdošová, D., Mikeska, S., Homolác, P. and Havel, J., 2001. The stability of humic 

acids in alkaline media. In: E.A. Ghabbour and G. Davies (Editors), Humic Substances: 

Structures, Models and Functions. Special Publication No. 273. Royal Society of 

Chemistry, Cambridge, England, pp. 133-149. 



 
 
 

123 

Pokrovsky, O.S., Golubev, S.V. and Schott, J., 2005. Dissolution kinetics of calcite, dolomite and 

magnesite at 25°C and 0 to 50 atm pCO2. Chemical Geology, 217: 239-255. 

Pokrovsky, O.S. and Schott, J., 1999. Processes at the magnesium-bearing carbonates/solution 

interface: II. Kinetics and mechanism of magnesite dissolution. Geochimica et 

Cosmochimica Acta, 63(6): 881–897. 

Pokrovsky, O.S., Schott, J. and Thomas, F., 1999. Processes at the magnesium-bearing 

carbonates/solution interface: I. A surface speciation model for magnesite. Geochimica et 

Cosmochimica Acta, 23(6): 863–880. 

Prohić, E., Peh, Z. and Miko, S., 1998. Geochemical characterization of a karst polje - an 

example from Sinjsko polje, Croatia. Environmental Geology, 33(4): 263-273. 

Qadir, M., Noble, A.D., Oster, J.D., Schubert, S. and Ghafoor, A., 2005. Driving forces for sodium 

removal during phytoremediation of calcareous sodic and saline-sodic soils: a review. 

Soil Use and Management, 21: 173–180. 

 Rao, C.P., 1996. Modern Carbonates: Tropical, Temperate, Polar. The Printing Authority of 

Tasmania, Hobart, Tasmania, 206 pp. 

Rayment, G.E. and Higginson, F.R., 1992. Australian Laboratory Handbook of Soil and Water 

Chemical Methods. Australian Soil and Land Survey Handbook, 3. Inkata Press, 

Melburne, 330 pp. 

Riffaldi, R., Saviozzi, A., Levi-Minzi, R. and Cardelli, R., 2002. Biochemical properties of a 

Mediterranean soil as affected by long-term crop management systems. Soil & Tillage 

Research, 67: 109-114. 

Ryskov, Y.A., Borisov, A.V., Oleinik, S.A., Ryskova, E.A. and Demkin, V.A., 2000. The 

relationship between lithogenic and pedogenic carbonate fluxes in steppe soils, and 

regularities of their profile dynamics for the last four millennia. In: R. Lal, J.M. Kimble, H. 

Eswaran and B.A. Stewart (Editors), Global Climate Change and Pedogenic Carbonates. 

Lewis Publishers, Boca Raton, Louisiana, pp. 121-133. 



 
 
 

124 

Scharpenseel, H.W., 1971. Radiocarbon dating of soils - problems, troubles, hopes. In: D.H. 

Yaalon (Editor), Paleopedology; Origin, Nature and Dating of Paleosols. Israel 

Universities Press, Jerusalem, pp. 77-88. 

Scharpenseel, H.W. and Schiffmann, H., 1977. Soil radiocarbon analysis and soil dating. 

Geophysical Surveys, 3: 143-156. 

Schnitzer, M., 1978. Humic substances: chemistry and reactions. In: M. Schnitzer and S.U. Kahn 

(Editors), Soil Organic Matter. Developments in Soil Science. Elsevier Scientific 

Publishing Company, Amsterdam, pp. 1-64. 

Schnitzer, M., 1986. Binding of humic substances by soil mineral colloids. In: P.M. Huang and M. 

Schnitzer (Editors), Interactions of Soil Minerals with Natural Organics and Microbes. 

SSSA Special Publication Number 17. Soil Science Society of America, Madison, 

Wisconsin, pp. 77-101. 

Sofer, Z., 1980. Preparation of carbon dioxide for stable carbon isotope analysis of petroleum 

fractions. Analytical Chemistry, 52: 1389-1391. 

Sposito, G., 1989. The Chemistry of Soils. Oxford University Press, New York City, 277 pp. 

Stein, J.K., 1992. Organic matter in archaeological contexts. In: V.T. Holliday (Editor), Soils in 

Archaeology, Landscape Evolution and Human Occupation. Smithsonian Institution 

Press, Washington D.C., pp. 193-216. 

Tan, K.H., 1986. Degradation of soil minerals by organic acids. In: P.M. Huang and M. Schnitzer 

(Editors), Interactions of soil minerals with natural organics and microbes. SSSA Special 

Publication Number 17. Soil Science Society of America, Madison, Wisconsin, pp. 1-27. 

Tao, F.-X. et al., 2001. Evaluation of the sealed-tube low-temperature combustion method for the 

13C/12C and 2H/1H ratio determinations of cellulose nitrate. Chinese Journal of Chemistry, 

19: 1089-1096. 



 
 
 

125 

Tringham, R., 2000. Southeastern Europe in the transition to agriculture in Europe: Bridge, buffer, 

or mosaic. In: T.D. Price (Editor), Europe's First Farmers. Cambridge University Press, 

Cambridge, pp. 19-56. 

Trumbore, S., 2006. Carbon respired by terrestrial ecosystems – recent progress and challenges. 

Global Change Biology, 12: 141-153. 

Trumbore, S.E., 1996. Applications of accelerator mass spectrometry to soil science. In: T.W. 

Boutton and S.-i. Yamasaki (Editors), Mass Spectrometry of Soils. Marcel Dekker, Inc., 

New York City, pp. 311-340. 

Ugan, A., Bright, J. and Rogers, A., 2003. When is technology worth the trouble? Journal of 

Archaeological Science, 30: 1315-1329. 

Vandeputte, K., Moens, L. and Dams, R., 1996. Improved sealed-tube combustion of organic 

samples to CO2 for stable carbon isotope analysis, radiocarbon dating and percent 

carbon determinations. Analytical Letters, 29(15): 2761-2773. 

Vrbek, B. and Pilaš, I., 2005. Tla Nacialnog Parka "Krka"/Soils of Krka National Park. In: D. 

Marguš (Editor), Simpozij: Rijeka Krka i Nacionalni Park "Krka": prirodna i kulturna 

baština, zaštita i održivi razvitak. Nacionalni Park "Krka", Šibenik, pp. 949-977. 

White, W.B., 1988. Geomorphology and Hydrology of Karst Terrains. Oxford University Press, 

Oxford, 464 pp. 

Yaalon, D., 1997. Soils in the Mediterranean region: What makes them different? Catena, 28: 

157-169. 



 
 
 

126 

Chapter 5. Conclusion 

 Agricultural diffusion research both globally and in our study region of Southeast Europe 

is turning from broad causal explanation to more complex explanatory models. Understanding the 

transition to agriculture therefore requires that we look not to a single primary forcing mechanism, 

but to the suite of environmental attributes impacting human behavioral decision-making. The 

transition to agriculture in central Dalmatia and, in particular, its manifestation at the Danilo Bitinj 

and Pokrovnik archaeological sites are the focus of Andrew Moore’s Early Farming in Dalmatia 

Project (EFDP) (Moore et al., 2007a, 2007b). When coupled with EFDP archaeological, 

zooarchaeological, and paleobotanical results, this geoarchaeological study will allow integrative 

understanding of Dalmatian neolithization. The culture-matrix theoretical construct applied here is 

an attempt to theoretically unify geoarchaeological subfields and objectives – from traditional 

descriptive site geology to archaeometry.  

 This unification enabled not only more fruitful problematization between geoarchaeologist 

and archaeologists, but ultimately greater understanding of human-landscape interaction by 

encouraging a flexible, experiential research methodology. Cultural matrices are the ecological 

and geomorphological conditions of occupation, the interaction of past cultures with the nature 

and distribution of material resources, and the subsequent geo- and anthropogenic impact to 

cultural remains following occupation. The better we understand the geologic matrices of cultural 

change, the closer we will be to understanding cultural evolution itself. The body of work 

presented here is a site-specific geoarchaeological study providing a fabric typology, the 

implementation of which enables characterization and comparison of large ceramic artefact 

collections; and investigating ecologic selective pressures, the awareness of which enables a 

richer understanding of human-landscape interaction in Neolithic Dalmatia. 

 In the case that the material identifications here are not contradicted by future study, and 

the fertile substrate of the Central Dalmatian Early and Middle Neolithic is indeed discrete lowland 

volcanic deposits as hypothesized here, the chronology of deposition settlement will become 
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crucial to the aims of the Early Farming in Dalmatia Project (EFDP). Chief factors affecting 

ultimate assessment of the transmission of agriculture into Dalmatia will be timing of ejecta 

deposition in relation to migration and/or communication and affect of volcanic outfall events on 

existing resource productivity and distribution. The pre-existing knowledge of the landscape and 

exploitation of resource by hunter-gatherers occupying Dalmatia prior to neolithization would have 

framed their interaction with farmers. Whether volcanic outfall severely limited or altered the 

distribution of those resources would have in turn greatly impacted the cost-benefit potential of a 

change in technology. In terms of greatest cultural significance, I would recommend focus on the 

chronology and magnitude of these depositional events as the focus of future EFDP 

geoarchaeological study.  

Pedology 

 The Danilo Bitinj soil is a modern, moderately developed Mediterranean soil containing 

Middle Neolithic cultural remains. This sodic (alkaline and nonconductive), xeric (subject to dry 

summers and wet winters) soil is composed primarily of calcite and quartz. The stable isotope 

stability and C3-dominance of the plant community through the profile indicate a stable, relatively 

cool and moist environment through the life of the solum (Huckleberry and Fadem, 2007; Krull et 

al., 2005; Davis et al., 2002; Nordt, 2001; Boutton, 1996; Cerling and Quade, 1993). Though the 

dispersive properties of sodic soils may aid in soil organic matter averaging, there is currently no 

evidence to identify the Danilo soil as a recently exposed paleosol, as the minimum age for the 

onset of organic carbon accumulation is 2052.5±143.5 cal BP (from a sample at 95 cm depth). 

The Pokrovnik soil is also a living, moderately developed, xeric soil with a stable C3 plant 

community over the life of the soil and sodic, quartz-rich parent material. In contrast to the Danilo 

soil, this further inland soil is less sodic in its upper horizons and contains Early and Middle 

Neolithic artifacts. The Pokrovnik parent material, which curiously contains no calcite despite 

surrounding carbonate bedrock, has a minimum age of 6028±154 cal BP (at 155 cm depth) with 

mean carbon residence time decreasing toward the surface (624.0 ± 65.0 at 35 cm depth).  
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 Given the pedologic analyses presented here, the Danilo Bitinj and Pokrovnik soils still 

present a particular problem for classification. The chief property of an andisol (USDA 

classification) or andosol (FAO classification) is that it form in volcanic ejecta. Under either 

classification scheme one cannot say whether soils do or do not have diagnostic andic soil 

properties without oxalate extraction (for which AAS or ICP analysis could possibly substitute), 

accompanied by bulk density and phosphate retention analyses (FAO/ISRIC/IUSS, 2006; Soil 

Survey Staff, 1999). Even if the diagnostic properties were present, classification would still be 

problematic. Of the currently recognized USDA soil order-subgroup-great group combinations, 

those closest to site soils given the current information are Typic Haploxerand and Sodic Xeric 

Haplocambid (Soil Survey Staff, 1999). While classifying soils to either aforementioned group 

would include key characteristics (sodicity, xeric moisture regime, clay skin presence), as a 

description it would be based more on what the soils lack than what they contain. For example, 

these names usually describe chromic (Munsell chroma >4) soils; those at Danilo Bitinj and 

Pokrovnik are very dark (chroma 2-3), yet overall do not have the organic carbon content to 

qualify for melanic subgroups (much less umbric or mollic). Of FAO classification the closest is 

Silandic Andosol, for which a pH>5 and oxalate-extractable Si content ≥0.6% is required 

(FAO/ISRIC/IUSS, 2006). While the soils here were not tested by traditional means (in terms of 

andosol evaluation), they certainly have a pH>5 and a high Si content. Site soils seem more 

appropriately classed as solonetz (black alkali, solonec) following the traditional/European 

systems of classification4 (Brady and Weil, 2008; Briggs et al., 1997; Antić et al., 1982). Solonetz 

sodicity naturally disperses humic matter, making soils appear dark despite low organic matter 

content (Brady and Weil, 2008; Briggs et al., 1997). Even for this classification, however, the 

manifestations seen in archaeological trenches and off-site test pits are atypical, as they lack a 

columnar B horizon.  

                                                            
4 The soils do not qualify as soil group Solonetz under FAO classification, as they do not exhibit a 
natric horizon (FAO/ISRIC/IUSS, 2006). 
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The Karst Landscape 

 The fact that central Dalmatia resides in the path of neolithization requires that it be 

understood in terms of differential resource stability and productivity (Winterhalder and Goland, 

1997). In other words, what selected the Danilo Bitinj and Pokrovnik sites for Neolithic settlement 

over others in the surrounding Dinaric karst? Soil stable isotope chemistry attests to plant 

population stability in these locales. The coincidence of the Danilo Bitinj and Pokrovnik 

settlements with non-carbonate soil parent materials, as well as lack of productivity in the 

surrounding karst terrain, point to an underlying geologic/geomorphic rather than a climatic 

control on resource distribution (patchiness) in the Dalmatian landscape. The interaction of karst 

geomorphology and non-carbonate fill defines the model for Neolithic site choice and modern 

agricultural land-use presented here. This geomorphic control does not mean that resources exist 

nowhere else, nor that climate has no influence. On the contrary, regardless of use or exposure 

prior to occupation (beginning at least 7000 cal BP) (Moore et al., 2007a), a dry period like the 

one evidenced in lagoon cores from the Dalmatian coast (also beginning ~7000 BP) (Wunsam et 

al., 1999; Jahns and van den Bogaard, 1998) would have focused procurement efforts on stable, 

productive resource patches like Danilo Bitinj and Pokrovnik.  

Future Work 

 Indeterminate soil type and uncertain polje-karst morphogenesis (Gams, 2005, 1978; 

Nicod, 2003; White, 1988; Wenzens, 1977) may be symptoms of a higher-order regional 

complexity. In fact Ford (2002:32) deems the Classical Karst region, in which central Dalmatia 

resides, ‘too complicated’ for the study of karst process and evolution, attributing the singularity 

and complexity of the Dinaric karst firstly to the complex geologic structure and secondly to the 

hydrologic and geomorphic dominance of poljes. The Dinaric karst hosts the largest number of 

poljes (130) of any karst terrain (Ford, 2002; Božičević, 1992; White, 1988; Gams, 1978), while 

bedrock structure and polje morphology continue to co-evolve due to tectonic activity in the 

Adriatic microplate (Dragičević et al., 1999). Thus the Dalmatian polje-karst is unsuitable as a 
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geologic case-study any single process and its evolution, both surficial and subterranean, 

presents an investigative challenge.  

 Nevertheless, there are several discrete lines of inquiry that will enhance our 

understanding of the central Dalmatian foraging-to-farming behavioural evolution. The 

confirmation and/or more specific identification of alkaline agricultural substrate in surficial 

sediment sinks would best be conducted through further elemental and mineralogical analysis of 

polje and valley subsoils and comparison to known tephra deposits. Tephrostratigraphy of 

Adriatic bottom and coastal Dalmatian lagoon sediments suggests that – at the very least – 

volcanic outfall is a noticeable contributor to sedimentary deposits in this region (Calanchi et al., 

1998; Jahns and van den Bogaard, 1998). Outfall event identification would be invaluable in 

limiting the ages of basin formation, soil inception, and site occupation. Systematic regional 

pedological and archaeological survey will help to confirm the co-occurrence of non-karst fill and 

early agriculture, as well as provide potential ceramic source materials for characterization and 

comparison to Neolithic assemblages. While the characterization and comparison of site parent 

materials and ceramic artifacts presented here suggests on-site deposits and ceramic sources 

may share a common chemical population, a true ceramics sourcing study will require analysis of 

many hundreds of artifacts and potential source materials by neutron activation analysis. Such a 

study would add greatly to our understanding of the central Dalmatian transition to agriculture, as 

the co-occurrence of food production and ceramics raw material acquisition would have localized 

subsistence efforts and decreased the costs of the drastic change in subsistence strategy implied 

by neolithization. Additional local and central Dalmatia-specific paleoclimatological study of lake 

cores and river tufas, as well as continuing examination of soil stable isotope chemistry will 

enhance our understanding of the scale and complexity of behaviour-selective mechanisms 

acting on these earliest European farming communities.   
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Appendix 1. Study locations. 

Site Easting Northing Type ID Sampled 

Danilo Bitinj 583916 4840705 Bedrock 5 Y 

Danilo Bitinj 583498 4840972 Bedrock 7 Y 

Danilo Bitinj 584001 4841519 Bedrock 8 Y 

Danilo Bitinj 581937 4841327 Bedrock 10 Y 

Danilo Bitinj 580489 4842325 Bedrock 11 Y 

Danilo Bitinj 580513 4841925 Bedrock 12 Y 

Danilo Bitinj 579598 4843173 Bedrock 13 Y 

Danilo Bitinj 579416 4842167 Bedrock 14 Y 

Danilo Bitinj 579621 4842500 Bedrock 15 Y 

Danilo Bitinj 580403 4841649 Bedrock 16 Y 

Danilo Bitinj 580513 4840611 Bedrock 17 Y 

Danilo Bitinj 581454 4840515 Bedrock 18 Y 

Danilo Bitinj 581978 4839940 Bedrock 19 Y 

Danilo Bitinj 582374 4838902 Bedrock 20 Y 

Danilo Bitinj 582493 4839683 Test Pit 1 Y 

Danilo Bitinj 582537 4840137 Test Pit 2 Y 

Danilo Bitinj 582998 4839754 Test Pit 3 Y 

Danilo Bitinj 583101 4839693 Test Pit 4 Y 

Danilo Bitinj 583048 4839579 Test Pit 5 Y 

Danilo Bitinj 582990 4839609 Test Pit 6 Y 

Danilo Bitinj 583199 4839953 Test Pit 7 Y 

Danilo Bitinj 583214 4840074 Test Pit 8 Y 

Danilo Bitinj 583193 4840148 Test Pit 9 Y 

Danilo Bitinj 582777 4840015 Test Pit 11 Y 
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Appendix 1. Study locations. 

Site Easting Northing Type ID Sampled 

Danilo Bitinj 582669 4839913 Test Pit 12 Y 

Danilo Bitinj 583118 4839870 Trench A Y 

Danilo Bitinj 583080 4839775 Trench B Y 

Danilo Bitinj 583127 4839919 Trench C Y 

Danilo Bitinj 583014 4839897 Trench D Y 

Danilo Bitinj 583046 4839873 Trench E Y 

Danilo Bitinj 583004 4839889 Well 1 N 

Danilo Bitinj 583749 4840080 Well 2 N 

Danilo Bitinj 585203 4839270 Well 3 N 

Danilo Bitinj 582725 4839820 Well 4 N 

Danilo Bitinj 582829 4839835 Well 5 N 

Danilo Bitinj 582078 4840637 Well 6 N 

Danilo Bitinj 581789 4840437 Well 7 N 

Danilo Bitinj 583008 4839687 Well 8 N 

Danilo Bitinj 583501 4840638 Well 9 N 

Danilo Bitinj 584953 4839183 Well 10 N 

Danilo Bitinj 583899 4839869 Well 11 N 

Danilo Bitinj 583740 4840612 Well 12 N 

Danilo Bitinj 583317 4839814 Well 13 N 

Danilo Bitinj 583677 4839790 Well 14 N 

Danilo Bitinj 582356 4840501 Well 15 N 

Danilo Bitinj 580516 4841928 Well 16 N 

Danilo Bitinj 583748 4840077 Well 17 N 

Danilo Bitinj 584424 4839802 Well 18 N 
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Appendix 1. Study locations. 

Site Easting Northing Type ID Sampled 

Danilo Bitinj 584424 4839802 Well 19 N 

Danilo Bitinj 581898 4840424 Well 20 N 

Danilo Bitinj 580224 4842074 Well 21 N 

Danilo Bitinj 583320 4839819 Well 22 N 

Danilo Bitinj 583702 4839720 Well 23 N 

Dinara 606333 4884128 Surface Soil 1 Y 

Dinara 606473 4883940 Surface Soil 2 Y 

Dinara 607758 4883573 Surface Soil 3 Y 

Pokrovnik 585695 4850749 Bedrock 1 Y 

Pokrovnik 585845 4850464 Bedrock 4 Y 

Pokrovnik 586132 4850695 Bedrock 5 Y 

Pokrovnik 587124 4850227 Bedrock 9 Y 

Pokrovnik 586087 4851189 Bedrock 10 Y 

Pokrovnik 585894 4850622 Test Pit 1 Y 

Pokrovnik 585868 4850683 Test Pit 2 Y 

Pokrovnik 585839 4850729 Test Pit 3 Y 

Pokrovnik 585829 4850602 Test Pit 4 Y 

Pokrovnik 585832 4850543 Test Pit 5 Y 

Pokrovnik 585733 4850703 Test Pit 6 Y 

Pokrovnik 585460 4850568 Test Pit 7 Y 

Pokrovnik 585860 4850789 Test Pit 8 Y 

Pokrovnik 586125 4850639 Test Pit 9 Y 

Pokrovnik 585949 4850623 Trench A Y 

Pokrovnik 585923 4850680 Trench B Y 
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Appendix 1. Study locations. 

Site Easting Northing Type ID Sampled 

Pokrovnik 585937 4850655 Trench C Y 

Pokrovnik 585933 4850648 Trench C Y 

Pokrovnik 585962 4850600 Trench D Y 

Pokrovnik 586013 4850559 Well N 
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Appendix 2. Early Farming in Dalmatia Project soil sample inventory. 

Sample # Average Depth Collection Date Site Residence 

A-1A 15 16-Jul-05 Danilo Bitinj Washington University

A-1B 15 16-Jul-05 Danilo Bitinj Washington University

A-1C 15 16-Jul-05 Danilo Bitinj Šibenik Museum 

A-2A 35 16-Jul-05 Danilo Bitinj Washington University

A-2B 35 16-Jul-05 Danilo Bitinj Washington University

A-2C 35 16-Jul-05 Danilo Bitinj Šibenik Museum 

A-3A 55 16-Jul-05 Danilo Bitinj Washington University

A-3B 55 16-Jul-05 Danilo Bitinj Washington University

A-3C 55 16-Jul-05 Danilo Bitinj Šibenik Museum 

A-4A 75 16-Jul-05 Danilo Bitinj Washington University

A-4B 75 16-Jul-05 Danilo Bitinj Washington University

A-4C 75 16-Jul-05 Danilo Bitinj Šibenik Museum 

A-5A 95 16-Jul-05 Danilo Bitinj Washington University

A-5B 95 16-Jul-05 Danilo Bitinj Washington University

A-5C 95 16-Jul-05 Danilo Bitinj Šibenik Museum 

A-6A 115 16-Jul-05 Danilo Bitinj Washington University

A-6B 115 16-Jul-05 Danilo Bitinj Washington University

A-6C 115 16-Jul-05 Danilo Bitinj Šibenik Museum 

A-7A 135 16-Jul-05 Danilo Bitinj Washington University

A-7B 135 16-Jul-05 Danilo Bitinj Washington University

A-7C 135 16-Jul-05 Danilo Bitinj Šibenik Museum 

B-1A 15 7-Jul-05 Danilo Bitinj Washington University

B-1B 15 7-Jul-05 Danilo Bitinj Washington University
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Appendix 2. Early Farming in Dalmatia Project soil sample inventory. 

Sample # Average Depth Collection Date Site Residence 

B-1C 15 7-Jul-05 Danilo Bitinj Šibenik Museum 

B-2A 35 7-Jul-05 Danilo Bitinj Washington University

B-2B 35 7-Jul-05 Danilo Bitinj Washington University

B-2C 35 7-Jul-05 Danilo Bitinj Šibenik Museum 

B-3A 55 7-Jul-05 Danilo Bitinj Washington University

B-3B 55 7-Jul-05 Danilo Bitinj Washington University

B-3C 55 7-Jul-05 Danilo Bitinj Šibenik Museum 

B-4A 75 7-Jul-05 Danilo Bitinj Washington University

B-4B 75 7-Jul-05 Danilo Bitinj Washington University

B-4C 75 7-Jul-05 Danilo Bitinj Šibenik Museum 

B-5A 95 7-Jul-05 Danilo Bitinj Washington University

B-5B 95 7-Jul-05 Danilo Bitinj Washington University

B-5C 95 7-Jul-05 Danilo Bitinj Šibenik Museum 

B-6A 115 7-Jul-05 Danilo Bitinj Washington University

B-6B 115 7-Jul-05 Danilo Bitinj Washington University

B-6C 115 7-Jul-05 Danilo Bitinj Šibenik Museum 

B-7A 135 7-Jul-05 Danilo Bitinj Washington University

B-7B 135 7-Jul-05 Danilo Bitinj Washington University

B-7C 135 7-Jul-05 Danilo Bitinj Šibenik Museum 

B-8A 155 7-Jul-05 Danilo Bitinj Washington University

B-8B 155 7-Jul-05 Danilo Bitinj Washington University

B-8C 155 7-Jul-05 Danilo Bitinj Šibenik Museum 

B-9A 175 7-Jul-05 Danilo Bitinj Washington University
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Appendix 2. Early Farming in Dalmatia Project soil sample inventory. 

Sample # Average Depth Collection Date Site Residence 

B-9B 175 7-Jul-05 Danilo Bitinj Washington University

B-9C 175 7-Jul-05 Danilo Bitinj Šibenik Museum 

B-10A 195 7-Jul-05 Danilo Bitinj Washington University

B-10B 195 7-Jul-05 Danilo Bitinj Washington University

B-10C 195 7-Jul-05 Danilo Bitinj Šibenik Museum 

B-11A 215 7-Jul-05 Danilo Bitinj Washington University

B-11B 215 7-Jul-05 Danilo Bitinj Washington University

B-11C 215 7-Jul-05 Danilo Bitinj Šibenik Museum 

C-1A 15 16-Jul-05 Danilo Bitinj Washington University

C-1B 15 16-Jul-05 Danilo Bitinj Washington University

C-1C 15 16-Jul-05 Danilo Bitinj Šibenik Museum 

C-2A 35 16-Jul-05 Danilo Bitinj Washington University

C-2B 35 16-Jul-05 Danilo Bitinj Washington University

C-2C 35 16-Jul-05 Danilo Bitinj Šibenik Museum 

C-3A 55 16-Jul-05 Danilo Bitinj Washington University

C-3B 55 16-Jul-05 Danilo Bitinj Washington University

C-3C 55 16-Jul-05 Danilo Bitinj Šibenik Museum 

C-4A 75 16-Jul-05 Danilo Bitinj Washington University

C-4B 75 16-Jul-05 Danilo Bitinj Washington University

C-4C 75 16-Jul-05 Danilo Bitinj Šibenik Museum 

C-5A 95 16-Jul-05 Danilo Bitinj Washington University

C-5B 95 16-Jul-05 Danilo Bitinj Washington University

C-5C 95 16-Jul-05 Danilo Bitinj Šibenik Museum 
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Appendix 2. Early Farming in Dalmatia Project soil sample inventory. 

Sample # Average Depth Collection Date Site Residence 

C-6A 115 16-Jul-05 Danilo Bitinj Washington University

C-6B 115 16-Jul-05 Danilo Bitinj Washington University

C-6C 115 16-Jul-05 Danilo Bitinj Šibenik Museum 

C-7A 135 16-Jul-05 Danilo Bitinj Washington University

C-7B 135 16-Jul-05 Danilo Bitinj Washington University

C-7C 135 16-Jul-05 Danilo Bitinj Šibenik Museum 

D-1A 15 11-Jul-05 Danilo Bitinj Washington University

D-1B 15 11-Jul-05 Danilo Bitinj Washington University

D-1C 15 11-Jul-05 Danilo Bitinj Šibenik Museum 

D-2A 35 11-Jul-05 Danilo Bitinj Washington University

D-2B 35 11-Jul-05 Danilo Bitinj Washington University

D-2C 35 11-Jul-05 Danilo Bitinj Šibenik Museum 

D-3A 55 11-Jul-05 Danilo Bitinj Washington University

D-3B 55 11-Jul-05 Danilo Bitinj Washington University

D-3C 55 11-Jul-05 Danilo Bitinj Šibenik Museum 

D-4A 75 11-Jul-05 Danilo Bitinj Washington University

D-4B 75 11-Jul-05 Danilo Bitinj Washington University

D-4C 75 11-Jul-05 Danilo Bitinj Šibenik Museum 

D-5A 95 11-Jul-05 Danilo Bitinj Washington University

D-5B 95 11-Jul-05 Danilo Bitinj Washington University

D-5C 95 11-Jul-05 Danilo Bitinj Šibenik Museum 

D-6A 115 11-Jul-05 Danilo Bitinj Washington University

D-6B 115 11-Jul-05 Danilo Bitinj Washington University
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Appendix 2. Early Farming in Dalmatia Project soil sample inventory. 

Sample # Average Depth Collection Date Site Residence 

D-6C 115 11-Jul-05 Danilo Bitinj Šibenik Museum 

D-7A 135 11-Jul-05 Danilo Bitinj Washington University

D-7B 135 11-Jul-05 Danilo Bitinj Washington University

D-7C 135 11-Jul-05 Danilo Bitinj Šibenik Museum 

E-1A 15 16-Jul-05 Danilo Bitinj Washington University

E-1B 15 16-Jul-05 Danilo Bitinj Washington University

E-1C 15 16-Jul-05 Danilo Bitinj Šibenik Museum 

E-2A 35 16-Jul-05 Danilo Bitinj Washington University

E-2B 35 16-Jul-05 Danilo Bitinj Washington University

E-2C 35 16-Jul-05 Danilo Bitinj Šibenik Museum 

E-3A 55 16-Jul-05 Danilo Bitinj Washington University

E-3B 55 16-Jul-05 Danilo Bitinj Washington University

E-3C 55 16-Jul-05 Danilo Bitinj Šibenik Museum 

E-4A 75 16-Jul-05 Danilo Bitinj Washington University

E-4B 75 16-Jul-05 Danilo Bitinj Washington University

E-4C 75 16-Jul-05 Danilo Bitinj Šibenik Museum 

E-5A 95 16-Jul-05 Danilo Bitinj Washington University

E-5B 95 16-Jul-05 Danilo Bitinj Washington University

E-5C 95 16-Jul-05 Danilo Bitinj Šibenik Museum 

E-6A 115 16-Jul-05 Danilo Bitinj Washington University

E-6B 115 16-Jul-05 Danilo Bitinj Washington University

E-6C 115 16-Jul-05 Danilo Bitinj Šibenik Museum 

E-7A 135 16-Jul-05 Danilo Bitinj Washington University
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Appendix 2. Early Farming in Dalmatia Project soil sample inventory. 

Sample # Average Depth Collection Date Site Residence 

E-7B 135 16-Jul-05 Danilo Bitinj Washington University

E-7C 135 16-Jul-05 Danilo Bitinj Šibenik Museum 

T1-1 15 12-Jul-06 Danilo Bitinj Washington University

T1-2 35 12-Jul-06 Danilo Bitinj Washington University

T1-3 55 12-Jul-06 Danilo Bitinj Washington University

T1-4 75 12-Jul-06 Danilo Bitinj Washington University

T1-5 95 12-Jul-06 Danilo Bitinj Washington University

T2-1 15 12-Jul-06 Danilo Bitinj Washington University

T2-2 35 12-Jul-06 Danilo Bitinj Washington University

T2-3 55 12-Jul-06 Danilo Bitinj Washington University

T3-1 15 12-Jul-06 Danilo Bitinj Washington University

T3-2 35 12-Jul-06 Danilo Bitinj Washington University

T3-40 cm 40 12-Jul-06 Danilo Bitinj Washington University

T4-1 15 13-Jul-06 Danilo Bitinj Washington University

T4-2 35 13-Jul-06 Danilo Bitinj Washington University

T4-3 55 13-Jul-06 Danilo Bitinj Washington University

T4-4 75 13-Jul-06 Danilo Bitinj Washington University

T5-1 15 13-Jul-06 Danilo Bitinj Washington University

T6-1 15 13-Jul-06 Danilo Bitinj Washington University

T7-1 15 14-Jul-06 Danilo Bitinj Washington University

T7-2 35 14-Jul-06 Danilo Bitinj Washington University

T7-3 55 14-Jul-06 Danilo Bitinj Washington University

T8-1 15 14-Jul-06 Danilo Bitinj Washington University
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Appendix 2. Early Farming in Dalmatia Project soil sample inventory. 

Sample # Average Depth Collection Date Site Residence 

T8-2 35 14-Jul-06 Danilo Bitinj Washington University

T8-3 55 14-Jul-06 Danilo Bitinj Washington University

T9-1 15 14-Jul-06 Danilo Bitinj Washington University

T9-2 35 14-Jul-06 Danilo Bitinj Washington University

T10-1 15 14-Jul-06 Danilo Bitinj Washington University

T10-2 35 14-Jul-06 Danilo Bitinj Washington University

T10-3 55 14-Jul-06 Danilo Bitinj Washington University

T11-1 15 18-Jul-06 Danilo Bitinj Washington University

T11-2 35 18-Jul-06 Danilo Bitinj Washington University

T11-3 55 18-Jul-06 Danilo Bitinj Washington University

T12-1 15 18-Jul-06 Danilo Bitinj Washington University

T12-2 35 18-Jul-06 Danilo Bitinj Washington University

T12-3 55 18-Jul-06 Danilo Bitinj Washington University

T13-1 15 21-Jul-06 Danilo Bitinj Washington University

T13-2 35 21-Jul-06 Danilo Bitinj Washington University

T13-3 55 21-Jul-06 Danilo Bitinj Washington University

T13-4 75 21-Jul-06 Danilo Bitinj Washington University

T13-5 95 21-Jul-06 Danilo Bitinj Washington University

T14-1 15 22-Jul-06 Danilo Bitinj Washington University

T14-2 35 22-Jul-06 Danilo Bitinj Washington University

T14-3 55 22-Jul-06 Danilo Bitinj Washington University

  
19-Jun-08 Grofova Jama Washington University

A-1A 15 20-Jul-06 Pokrovnik Washington University
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Appendix 2. Early Farming in Dalmatia Project soil sample inventory. 

Sample # Average Depth Collection Date Site Residence 

A-1B 15 20-Jul-06 Pokrovnik Washington University

A-1C 15 20-Jul-06 Pokrovnik Drniš Museum 

A-2A 35 20-Jul-06 Pokrovnik Washington University

A-2B 35 20-Jul-06 Pokrovnik Washington University

A-2C 35 20-Jul-06 Pokrovnik Drniš Museum 

A-3A 55 20-Jul-06 Pokrovnik Washington University

A-3B 55 20-Jul-06 Pokrovnik Washington University

A-3C 55 20-Jul-06 Pokrovnik Drniš Museum 

A-4A 75 20-Jul-06 Pokrovnik Washington University

A-4B 75 20-Jul-06 Pokrovnik Washington University

A-4C 75 20-Jul-06 Pokrovnik Drniš Museum 

A-5A 95 20-Jul-06 Pokrovnik Washington University

A-5B 95 20-Jul-06 Pokrovnik Washington University

A-5C 95 20-Jul-06 Pokrovnik Drniš Museum 

A-6A 115 20-Jul-06 Pokrovnik Washington University

A-6B 115 20-Jul-06 Pokrovnik Washington University

A-6C 115 20-Jul-06 Pokrovnik Drniš Museum 

A-7A 135 20-Jul-06 Pokrovnik Washington University

A-7B 135 20-Jul-06 Pokrovnik Washington University

A-7C 135 20-Jul-06 Pokrovnik Drniš Museum 

A-8A 155 20-Jul-06 Pokrovnik Washington University

A-8B 155 20-Jul-06 Pokrovnik Washington University

A-8C 155 20-Jul-06 Pokrovnik Drniš Museum 
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Appendix 2. Early Farming in Dalmatia Project soil sample inventory. 

Sample # Average Depth Collection Date Site Residence 

A-9A 175 20-Jul-06 Pokrovnik Washington University

A-9B 175 20-Jul-06 Pokrovnik Washington University

A-9C 175 20-Jul-06 Pokrovnik Drniš Museum 

A-10A 195 20-Jul-06 Pokrovnik Washington University

A-10B 195 20-Jul-06 Pokrovnik Washington University

A-10C 195 20-Jul-06 Pokrovnik Drniš Museum 

A-11A 215 20-Jul-06 Pokrovnik Washington University

A-11B 215 20-Jul-06 Pokrovnik Washington University

A-11C 215 20-Jul-06 Pokrovnik Drniš Museum 

A-fines1 187.5 20-Jul-06 Pokrovnik Washington University

A-fines1-bottom 202.5 20-Jul-06 Pokrovnik Washington University

A-fines1-middle 187.5 20-Jul-06 Pokrovnik Washington University

A-fines1-top 172.5 20-Jul-06 Pokrovnik Washington University

A-fines2 145 20-Jul-06 Pokrovnik Washington University

A-fines2-bottom 162.5 20-Jul-06 Pokrovnik Washington University

A-fines2-middle 147.5 20-Jul-06 Pokrovnik Washington University

A-fines2-top 127.5 20-Jul-06 Pokrovnik Washington University

B-1A 15 10-Jul-06 Pokrovnik Washington University

B-1B 15 10-Jul-06 Pokrovnik Drniš Museum 

B-2A 35 10-Jul-06 Pokrovnik Washington University

B-2B 35 10-Jul-06 Pokrovnik Drniš Museum 

B-3A 55 10-Jul-06 Pokrovnik Washington University
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Appendix 2. Early Farming in Dalmatia Project soil sample inventory. 

Sample # Average Depth Collection Date Site Residence 

B-3B 55 10-Jul-06 Pokrovnik Drniš Museum 

B-4A 75 10-Jul-06 Pokrovnik Washington University

B-4B 75 10-Jul-06 Pokrovnik Drniš Museum 

C-E-1A 15 19-Jul-06 Pokrovnik Washington University

C-E-1B 15 19-Jul-06 Pokrovnik Drniš Museum 

C-E-2A 35 19-Jul-06 Pokrovnik Washington University

C-E-2B 35 19-Jul-06 Pokrovnik Drniš Museum 

C-E-3A 55 19-Jul-06 Pokrovnik Washington University

C-E-3B 55 19-Jul-06 Pokrovnik Drniš Museum 

C-E-4A 75 19-Jul-06 Pokrovnik Washington University

C-E-4B 75 19-Jul-06 Pokrovnik Drniš Museum 

C-W-1A 15 19-Jul-06 Pokrovnik Washington University

C-W-1B 15 19-Jul-06 Pokrovnik Drniš Museum 

C-W-2A 35 19-Jul-06 Pokrovnik Washington University

C-W-2B 35 19-Jul-06 Pokrovnik Drniš Museum 

C-W-3A 55 19-Jul-06 Pokrovnik Washington University

C-W-3B 55 19-Jul-06 Pokrovnik Drniš Museum 

C-W-4A 75 19-Jul-06 Pokrovnik Washington University

C-W-4B 75 19-Jul-06 Pokrovnik Drniš Museum 

C-W-5A 95 19-Jul-06 Pokrovnik Washington University

C-W-5B 95 19-Jul-06 Pokrovnik Drniš Museum 

C-W-6A 115 19-Jul-06 Pokrovnik Washington University

C-W-6B 115 19-Jul-06 Pokrovnik Drniš Museum 
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Appendix 2. Early Farming in Dalmatia Project soil sample inventory. 

Sample # Average Depth Collection Date Site Residence 

D-1A 15 23-Jul-06 Pokrovnik Washington University

D-1B 15 23-Jul-06 Pokrovnik Washington University

D-1C 15 23-Jul-06 Pokrovnik Drniš Museum 

D-2A 35 23-Jul-06 Pokrovnik Washington University

D-2B 35 23-Jul-06 Pokrovnik Washington University

D-2C 35 23-Jul-06 Pokrovnik Drniš Museum 

D-3A 55 23-Jul-06 Pokrovnik Washington University

D-3B 55 23-Jul-06 Pokrovnik Washington University

D-3C 55 23-Jul-06 Pokrovnik Drniš Museum 

D-4A 75 23-Jul-06 Pokrovnik Washington University

D-4B 75 23-Jul-06 Pokrovnik Washington University

D-4C 75 23-Jul-06 Pokrovnik Drniš Museum 

D-5A 95 23-Jul-06 Pokrovnik Washington University

D-5B 95 23-Jul-06 Pokrovnik Washington University

D-5C 95 23-Jul-06 Pokrovnik Drniš Museum 

D-6A 115 23-Jul-06 Pokrovnik Washington University

D-6B 115 23-Jul-06 Pokrovnik Washington University

D-6C 115 23-Jul-06 Pokrovnik Drniš Museum 

D-7A 135 23-Jul-06 Pokrovnik Washington University

D-7B 135 23-Jul-06 Pokrovnik Washington University

D-7C 135 23-Jul-06 Pokrovnik Drniš Museum 

D-8A 155 23-Jul-06 Pokrovnik Washington University

D-8B 155 23-Jul-06 Pokrovnik Washington University
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Appendix 2. Early Farming in Dalmatia Project soil sample inventory. 

Sample # Average Depth Collection Date Site Residence 

D-8C 155 23-Jul-06 Pokrovnik Drniš Museum 

D-9A 175 23-Jul-06 Pokrovnik Washington University

D-9B 175 23-Jul-06 Pokrovnik Washington University

D-9C 175 23-Jul-06 Pokrovnik Drniš Museum 

D-10A 195 23-Jul-06 Pokrovnik Washington University

D-10B 195 23-Jul-06 Pokrovnik Washington University

D-10C 195 23-Jul-06 Pokrovnik Drniš Museum 

D-11A 215 23-Jul-06 Pokrovnik Washington University

D-11B 215 23-Jul-06 Pokrovnik Washington University

D-11C 215 23-Jul-06 Pokrovnik Drniš Museum 

T1-1 15 6-Jul-06 Pokrovnik Washington University

T1-2 35 6-Jul-06 Pokrovnik Washington University

T1-3 55 6-Jul-06 Pokrovnik Washington University

T2-1 15 8-Jul-06 Pokrovnik Washington University

T2-2 35 8-Jul-06 Pokrovnik Washington University

T2-3 55 8-Jul-06 Pokrovnik Washington University

T2-4 75 8-Jul-06 Pokrovnik Washington University

T2-37 cm 37 8-Jul-06 Pokrovnik Washington University

T3-1 15 7-Jul-06 Pokrovnik Washington University

T3-2 35 7-Jul-06 Pokrovnik Washington University

T3-3 55 7-Jul-06 Pokrovnik Washington University

T3-4 75 7-Jul-06 Pokrovnik Washington University

T4-1 15 8-Jul-06 Pokrovnik Washington University
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Appendix 2. Early Farming in Dalmatia Project soil sample inventory. 

Sample # Average Depth Collection Date Site Residence 

T4-2 35 8-Jul-06 Pokrovnik Washington University

T4-3 55 8-Jul-06 Pokrovnik Washington University

T5-1 15 10-Jul-06 Pokrovnik Washington University

T6-1 15 10-Jul-06 Pokrovnik Washington University

T6-2 35 10-Jul-06 Pokrovnik Washington University

T6-3 55 10-Jul-06 Pokrovnik Washington University

T6-4 75 10-Jul-06 Pokrovnik Washington University

T7-1 15 10-Jul-06 Pokrovnik Washington University

T8-1 15 19-Jul-06 Pokrovnik Washington University

T8-2 35 19-Jul-06 Pokrovnik Washington University

T8-3 55 19-Jul-06 Pokrovnik Washington University

T9-1 15 22-Jul-06 Pokrovnik Washington University

T9-2 35 22-Jul-06 Pokrovnik Washington University
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Appendix 3. Ceramic sample numbers and artifact provenance labels. 

Site Sample 
Collection 

Date 
Year Trench �  ∆ O 

Danilo Bitinj 1 12-Jul 2005 A 844 44 701

Danilo Bitinj 2 12-Jul 2005 E 164 12 137

Danilo Bitinj 3 11-Jul 2005 E 148 12 135

Danilo Bitinj 4 6-Jul 2005 E 95 7 84

Danilo Bitinj 5 5-Jul 2005 A 784 35 645

Danilo Bitinj 6 5-Jul 2005 A 784 35 645

Danilo Bitinj 7 8-Jul 2005 A 821 43 676

Danilo Bitinj 8 8-Jul 2005 A 812 42 672

Danilo Bitinj 9 9-Jul 2005 A 825 42 684

Danilo Bitinj 10 8-Jul 2005 A 812 42 672

Danilo Bitinj 11 12-Jul 2005 E 164 12 137

Danilo Bitinj 12 5-Jul 2005 A 784 35 645

Danilo Bitinj 13 11-Jul 2005 E 144 11 132

Danilo Bitinj 14 8-Jul 2005 A 812 42 672

Danilo Bitinj 15 12-Jul 2005 E 164 12 137

Danilo Bitinj 16 11-Jul 2005 E 144 11 132

Danilo Bitinj 17 12-Jul 2005 E 164 12 137

Danilo Bitinj 18 12-Jul 2005 E 157 14 149

Danilo Bitinj 19 12-Jul 2005 E 157 14 149

Danilo Bitinj 20 11-Jul 2005 E 144 11 132

Danilo Bitinj 21 6-Jul 2005 E 95 7 84

Danilo Bitinj 22 5-Jul 2005 A 784 35 645
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Appendix 3. Ceramic sample numbers and artifact provenance labels. 

Site Sample 
Collection 

Date 
Year Trench �  ∆ O 

Danilo Bitinj 23 12-Jul 2005 E 164 12 137

Danilo Bitinj 24 6-Jul 2005 E 95 7 84

Danilo Bitinj 25 11-Jul 2005 E 144 11 132

Danilo Bitinj 26 12-Jul 2005 E 164 12 137

Danilo Bitinj 27 13-Jul 2005 A 873 46 732

Danilo Bitinj 28 5-Jul 2005 A 784 35 645

Danilo Bitinj 29 13-Jul 2005 A 873 46 732

Danilo Bitinj 30 14-Jul 2005 E 190 14 180

Danilo Bitinj 31 13-Jul 2005 E 183 13 155

Danilo Bitinj 32 23-Jun 2005 C 15 151

Danilo Bitinj 33 14-Jul 2005 E 190 14 180

Danilo Bitinj 34 14-Jul 2005 E 190 14 180

Danilo Bitinj 35 14-Jul 2005 E 190 14 180

Danilo Bitinj 36 13-Jul 2005 E 183 13 155

Danilo Bitinj 37 14-Jul 2005 A 897 44 750

Danilo Bitinj 38 13-Jul 2005 E 182 14 163

Danilo Bitinj 39 14-Jul 2005 E 190 14 180

Danilo Bitinj 40 13-Jul 2005 A 190 46 180

Danilo Bitinj 41 14-Jul 2005 E 190 14 180

Danilo Bitinj 42 11-Jul 2005 E 144 11 132

Danilo Bitinj 43 13-Jul 2005 A 873 46 732

Danilo Bitinj 44 14-Jul 2005 A 897 44 750
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Appendix 3. Ceramic sample numbers and artifact provenance labels. 

Site Sample 
Collection 

Date 
Year Trench �  ∆ O 

Danilo Bitinj 45 15-Jul 2005 E 19 190

Danilo Bitinj 46 12-Jul 2005 E 164 12 137

Danilo Bitinj 47 12-Jul 2005 E 170 13 142

Danilo Bitinj 48 27-Jun 2005 A 660 34 544

Danilo Bitinj 49 11-Jul 2005 E 144 11 132

Pokrovnik 1 18-Jul 2006 D 367 19 319

Pokrovnik 2 18-Jul 2006 D 367 19 319

Pokrovnik 3 18-Jul 2006 D 367 19 319

Pokrovnik 4 18-Jul 2006 D 367 19 319

Pokrovnik 5 18-Jul 2006 D 367 19 319

Pokrovnik 6 18-Jul 2006 D 367 19 319

Pokrovnik 7 18-Jul 2006 D 367 19 319

Pokrovnik 8 15-Jul 2006 A 387 33 322

Pokrovnik 9 15-Jul 2006 A 387 33 322

Pokrovnik 10 15-Jul 2006 A 387 33 322

Pokrovnik 11 30-Jun 2006 D 114 6 106

Pokrovnik 12 30-Jun 2006 D 114 6 106

Pokrovnik 13 30-Jun 2006 D 114 6 106

Pokrovnik 14 20-Jun 2006 A 52 3 42

Pokrovnik 15 20-Jun 2006 A 52 3 42

Pokrovnik 16 21-Jun 2006 A 62 4 50

Pokrovnik 17 21-Jun 2006 A 62 4 50
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Appendix 3. Ceramic sample numbers and artifact provenance labels. 

Site Sample 
Collection 

Date 
Year Trench �  ∆ O 

Pokrovnik 18 21-Jun 2006 A 62 4 50

Pokrovnik 19 21-Jun 2006 A 62 4 50

Pokrovnik 20 21-Jun 2006 A 62 4 50
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