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Dynamic wake models have been used in real-time flight simulations for over thirty years.  The 

models have evolved from the earliest, three-degree-of-freedom models (derived from 

momentum theory) to full finite-state models derived from potential flow theory by a formal 

Galerkin method.  These models are widely used in industry, but still have some drawbacks that 

need to be remedied.  These drawbacks include: 1.) lack of good convergence both on the disk 

and off the disk (one can use one or the other but not both), 2.)  poor results downstream in the 

limit of shallow skew angles, 3.)  poor convergence inside of the rotor wake, 4.) lack of the 

effects of wake curvature and wake contraction, and 5.) lack of other important nonlinearities.  

This thesis uses applications of adjoint theorem, a special change of variable and effective 

introduction of solution blending to overcome these obstacles.  The resultant model is well-

behaved in all regimes and is applicable to use in realistic problems of flight simulation, even 

when only a few states are allowed. 



1 

 

Chapter 1: Introduction 

1.1 Motivation 
The analysis of any rotary-wing system requires a calculation of the flow field that is created 

by the lifting rotors that are part of the system.  For real-time flight simulation and for 

preliminary design purposes, the computation of the induced-flow field must be very efficient.  

For this reason, finite-state models have been developed through the years to represent the flow 

in terms of state variables that represent induced flow shape functions.  These will be discussed 

in detail in a later section.  For now, it suffices to say that the models have evolved from simple 

models of the normal flow at the disk––in terms of a uniform component and flow gradients––to 

models that now include a complete expansion of all three components of flow everywhere in the 

flow field.  The most sophisticated of these is the Fei model [1]. 

The major drawbacks of the more sophisticated models have been: 1.) they are not as well-

conditioned as models that only give the normal component of inflow on the disk, such as the He 

model; 2.) they diverge downstream as the skew angle approaches 90º (edgewise flow); and 3.) 

the more sophisticated models are linear, as opposed to the He-type models which are nonlinear, 

and important necessity for rotor analyses.  Therefore, it is desirable to find a new type of model 

that combines the robustness of models like the He model with the generality of more flow 

information of models like the Fei model. 

The first part of the approach taken here is to compute both the He second-form (which we 

call the Nowak-He variables) and the Fei states (which is called as Morillo-Duffy variables) from 



2 

 

a single set of unified inflow states.  Those solutions can then hopefully be blended to obtain the 

well-behaved solution both on the disk and away from the disk. 

The second task taken here is to eliminate the tendency of the flow to become divergent as 

one approaches edgewise flow.  The reason for this issue is that, as the flow approaches the 

edgewise condition, the trailing wake moves closer and closer to the downstream rotor plane––so 

that the induced flow downstream does not decay.  As a result, the Legendre Functions (which 

are the expansion functions and which all decay in the far field) are unable to converge to the 

velocity downstream.  To remove this deficiency, the second part of the approach taken here is to 

use the Adjoint Theorem of Fei to compute the ill-behaved downstream velocity based on the 

well-behaved upstream velocity field.  Therefore, the Adjoint Theorem is extended to the case of 

perfectly edgewise flow to show that the flow downstream can be computed from the velocity 

upstream. 

The third and final task here is to make the appropriate nonlinear extensions to the more 

sophisticated Fei model so that it is ready to be used in production codes.  In order to do this: 1.) 

the mass-flow parameter should be defined, 2.) the wake contraction effect must be considered 

according to the continuity equation, and 3.) the effect of wake curvature must be added to the 

formulation. 

These all must be done in an integrated and unified way such that the simpler He-type models 

remain special cases of the new, unified, sophisticated model.  That is the purpose of this work. 

1.2  Previous Work 
In the early 1980s, based on Mangler’s actuator-disc theory [2], Dale Pitt and David Peters 

developed a linear, unsteady theory that relates the transient rotor loads (thrust, roll moment and 
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pitch moment) to the overall transient response of the rotor induced flow field, which is known 

as the Pitt-Peters model [3].  The perturbed induced inflow and the pressure distribution are 

defined as 

   0 sin coss cr r                                              (1.1) 

       
1 3

0 1

cos sin
m

m m m m

n n n n

m n m

P P Q i C m D m   


  

                          (1.2) 

where  , 
 
and 

 
are ellipsoidal coordinates defined in Appendix 1.  m

nP
 
and m

nQ  are 

associated Legendre functions of the first and second kinds, and m

nC  and m

nD  are coefficients 

which are functions of time and are governed by a set of ordinary differential equations.  With 

the assumption of superposition of pressure, in which the velocity field is derived from 

superimposing the unsteady pressure and static pressure of the flow, they obtained a set of 

differential equations to obtain the dynamic inflow derivatives for a helicopter rotor with an 

unsteady loading and induced flow distribution.  The equations are expressed as: 

   
0 0

1
T

s s L

c c M

C

M L C

C

 

 

 





     
     

       
          

                                                      (1.3) 

where  M  and  L  are apparent mass matrix and the dynamic inflow gain matrix, respectively.  

They are defined as follows 
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                    (1.5) 

where V  is the flow velocity, and   is the skewed angle of the free streamline, changing from 

0
 to 90

. 

One can see from (1.3) that there are three states in this model, and each has a physical 

meaning.  They represent, respectively, uniform flow, a side-to-side gradient, and a fore-to-aft 

gradient.  The theory was verified experimentally [4].  At present, it is used in virtually every 

stability and handling quality application.  The limitation for the Pitt-Peters model is that it is a 

low-order approximation to the rotor induced flow field with only one harmonic and one radial 

shape function for each harmonic.  Thus, the model is only the crudest wake description of 

uniform flow since it lacks higher-harmonic terms of the flow field.  

Due to the limitation of the Pitt-Peters model, researchers desired a higher-harmonic theory 

which could be more accurate.  In 1987, David Peters and Chengjian He developed a higher-

harmonic theory, which is known as the Peters-He generalized dynamic wake model [5, 6].  The 
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pressure distribution for the Peters-He model was extended from Pitt’s pressure distribution to 

include higher harmonic terms and arbitrary number of radial functions for each harmonic 

       
0 1, 3,

1
cos sin

2

m m mc ms

n n n n

m n m m

P P Q i m m     
 

   

                  (1.6) 

The inflow distribution is expanded to include an arbitrary number of harmonics and radial 

functions, which is similar as the expression of the pressure 

 
   

0 1, 3,

cos sin

m

n m m

z n n

m n m m

P
v m m


   



 

   

                          (1.7) 

where  m

nP   and  m

nQ i  are associated normalized Legendre functions of the first and second 

kind, respectively.   (See Appendix 2) 

Both Pitt and He began with the complete potential flow equations and then assumed 

"superposition of pressures," which implies that inflow modes with no induced velocity on the 

rotor disk are neglected.  As a result, the Peters-He model takes the form 

      
1 1

2

m c m mc

n n nM V L  




                                      (1.8) 

      
1 1

2

m s m ms

n n nM V L  




                                     (1.9) 

where  m

n  and  m

n  
are the coefficients of the axial induced velocity component on the disk, 

and  mc

n  
and  ms

n  
represent cosine and sine pressure coefficients.  The matrix  M

 
is the 

apparent mass matrix; and cL 
   

and sL 
   are the cosine and sine influence coefficient matrices, 
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respectively.  These are all given in closed form.  The Peters-He model is widely used in many 

production codes including FLIGHTLAB (Advanced Rotorcraft Technology), COPTER (Bell 

Helicopter), RCAS (U. S. Government) and ONERA-DFVLR (European Community), etc, as in 

[7]. 

The Peters-He model expands the flow in terms of Legendre functions, because they are the 

natural solution to Laplace’s Equation with a discontinuity at a circular disk.  However, the 

Peters-He model contains only Legendre functions that have m n odd   (where m is the 

harmonic number and n is a radial expansion number).  The functions with m + n odd represent 

pressure discontinuities at the disk.  As the result of discarding the m n even   terms, which are 

related to mass-sources, the Peters-He model cannot describe the inflow distribution caused by 

mass-injection.  Even more important, however, is the fact that the neglect of the even terms 

precludes computation of the flow off the disk (as was learned in latter research).  Thus, the 

Peters-He model treats only the normal component of flow on the rotor disk. 

Subsequent researchers have attempted to extend the Peters-He model to include all 

components of flow throughout the field.  In 1996, Wen-Ming Cao and David Peters [8] made an 

attempt to compute the flow off of the rotor disk as well as on the disk.  This work demonstrated 

that there must be a second set of wake states (besides the He states) for flow off the rotor to be 

calculated; but it was not known what these states should be.   

In 2001, Jorge Morillo and David Peters [6] addressed these issues and showed that the extra 

states could be found rigorously (with no need for the limiting assumption of superposition of 

pressures) by writing the velocity field as a gradient of velocity potentials and by including the 
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mass source terms in the expansions, so that the m n odd   terms and m n even   terms are 

all included in the model, 

0 1

mc mc ms ms

n n n n

m n m

P  
 

  

                                              (1.10) 
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(1.11) 

where m

n  and m

n  are the pressure and velocity potentials.  This set of functions was also used 

by Pitt and He, but they only considered the odd functions and considered them only for the 

normal component of velocity.  With these definitions, Morillo and Peters were able to use a 

Galerkin approach to obtain a closed-form set of equations for all three components of the 

velocity potential––and thus of the velocity field everywhere in the upper hemisphere (i.e., 

upstream hemisphere)––including the plane of the rotor disk.  The governing equations are 

obtained from this Galerkin procedure in closed form and take the following form: 

     
*

1
c m c c c m c mc

n n nM a D L M a D 


                                            
(1.12) 

     
*

1
s m s s s m s ms

n n nM b D L M b D 


                                           
 (1.13) 

where  D  is the damping matrix.  All matrices are in closed form, and mass sources are also 

allowed.  The Peters-Morillo model gave excellent agreement with a class of closed-form 

solutions for step response and frequency response above the rotor disk, but convergence was 

slow due to ill-conditioned matrices.  However, the Peters-Morillo model could not treat non-

zero flux mass sources, which are the fundamental mass-source terms (the terms with m n ). 
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In 2005, Yu and Peters [9] tried to develop an improved state-space representation that 

included the non-zero mass flux forcing terms.  They extended the  D  matrix in the right-hand 

side to incorporate the mass source terms into the governing equation 

      
*

cos sinc m c c m c mc

n n nM a D C a D                                     (1.14) 

where  C  is a secondary damping matrix,   is the inflow angle, and D    is the extended 

matrix.  However, they were unable to find the potential functions for m n  and, consequently, 

still had not added the missing states.  Despite the extended  D  matrix, the model remained ill-

conditioned and converged slowly. 

Hsieh and Peters [10] found the here-to-fore illusive potential functions for m n .  The 

special case 0m n   still involved a singularity, but they replaced the infinite integral with an 

approximate solution for the infinite kinetic energy that converges as the number of terms is 

increased.  Later, Garcia-Duffy and Peters [11] incorporated these into a complete dynamic 

inflow model for all components of flow in the upper hemisphere––and with good convergence.  

This model with the m n  term will be referred to as the Hsieh/Duffy model.  All of these 

models are only valid for the flow on or above the plane of the rotor disk.  What remains, then, is 

to find a solution for the flow below the plane of the rotor, and apply the new method to finite 

blade systems and find the inflow within the wake region.  

Recently, Fei [12, 13] extended Hsieh/Duffy model and found a rigorous solution for the flow 

below the plane of the rotor, which allows application of finite-state methods within the rotor 

wake––giving the entire velocity field at all points.  The ability to find the flow field everywhere 
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impacts not only rotor flight simulation but also wind energy applications, as in [14].  It also 

allows treatment of multi-rotor systems for which the induced flow from one rotor impinges 

upon another.  The cost of finding flow below the disk is that one must also compute the adjoint 

of the velocity (i.e., the co-states of the flow).  Once that is done, the complete flow below the 

plane follows directly.  The co-state method insures that the flow below the disk converges at 

least as well as the flow above the disk.   The adjoint methodology has been validated for both 

step response and frequency response throughout the range of skew angles.  It is interesting to 

note that the three-dimensional inflow model has an analog in two-dimensional flow and can be 

applied to airfoil theory, as in [15].  This has also led to applications to the locomotion of 

organisms by the above finite-state methodology, as in [16]. 

For the helicopter at the hover condition, the linearized equations will become singular when 

𝑉∞ goes to 0.  Peters, Hsieh, and Garcia-Duffy [11] described an approximate method whereby 

the equations could be extended to the nonlinear case; but the method is not generally valid.  

Here, the correct formulation will be demonstrated. 

1.3  Approach 

In this thesis, the Nowak-He and Huang-He inflow model will be shown to be related through a 

simple change of variable.  This implies that one can compute both sets of states from a single 

set of unified, state-variable equations.  By the blending of the two solutions, the axial 

component of velocity can be greatly improved as compared with the existing Morillo-Duffy 

inflow model and Nowak-He inflow model.  For the x and y components of the induced velocity 

(in-plane), the Morillo-Duffy solution and the Huang-He solution can be similarly blended.  The 

adjoint theorem is then employed to formulate both the induced velocity below the rotor disk and 

the induced velocity downstream.  This theorem is extended to compute the flow downstream as 



10 

 

the wake skew angle becomes small.  Finally, appropriate nonlinearities will be added to allow 

the model to be effective even down to hover, including the effects of wake contraction and 

wake skew. 
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Chapter 2: Solution Details 

2.1 Fluid Dynamics Equations 
The governing equations for Newtonian fluid are based on the basic conservation laws, which 

include conservation of mass, conservation of momentum, and conservation of energy.  Each of 

the conservation laws lead to either one or a set of differential equations.  Together these give the 

equations that describe the motion of Newtonian fluid [17]:  

  0t
t





 


                                                 (2.1) 

        t
t t t t tp f

t


         


           


  (2.2) 

   t t

e
e p k T

t
   


       


                            (2.3) 

 ,p p T                                                      (2.4) 

 ,e e T                                                       (2.5) 

where   is the fluid density, t  
is the total velocity, p  is the pressure,   and   are the second 

viscosity coefficient and the dynamic viscosity respectively, f  represents the external forces, e  

is the internal energy per unit mass, k  is the thermal conductivity of the fluid,   is the viscous 

dissipation function and T  is temperature.  

However, for a helicopter, it is reasonable to assume that the inflow at standard atmospheric 

conditions is incompressible and inviscid around the actuator disk [17].  Since there are no 
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significant body forces around an actuator disk, the equations are reduced to the following 

potential flow equations  

0t 
                                                       

(2.6) 

 t
t t p

t


   


   
                                           

(2.7) 

Herein, we initially consider the linearized equations written as a perturbation of velocity about 

the steady free-stream.  (Later on, some of the nonlinearities of the model will be added back.)  

The steady free-stream velocity is labeled as V .  The total velocity is represented by 

t V                                                        (2.8) 

where   is a unit vector that is along the free streamline and is skewed with respect to positive 

z  by an angel of   as shown in Figure 2.1; and  

x y zv i v j v k                                                 (2.9) 

 

Figure 2.1 Coordinate system 

Also, from the coordinates in Fig. 2.1, 
 
can be expressed as  
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   sin cosi k      

where i , j  and k
 
are unit vectors in x , y  and z  directions, respectively. 

Substitution of these equations into the momentum equations and continuous equation, 

considering that V  is constant, gives the linearized equations as 

0                                                      (2.10) 

V p
t

 
 




 
  

 
                                       (2.11) 

To normalize the variables, all lengths are divided by the rotor radius R ; and the velocities are 

all divided by V .  Therefore, Eqs. (10)-(11) can be rewritten as 

0v                                                                   (2.12) 

v v
P

 

 
  

 
                                                         (2.13) 

where P is defined as normalized pressure 2p V 
, v  as normalized induced velocity V   

and time as a reduced time  , which is 
tV

R
  ; and where the Laplacian operator is redefined as 

the gradient with respect to non-dimensional coordinates.  The boundary condition in the upper 

hemisphere is that velocity v  must be zero in all directions far upstream. 

Suppose v  can be represented by the gradient of some function,
 
 , then it may be written as 

v                                                               (2.14) 
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Then it is clear from Eq. (2.12) that   will be a potential function and will satisfy Laplace’s 

equation 

0                                                               (2.15) 

Substitution of this velocity potential in Eq. (2.14) into Eq. (2.13), followed by a divergence 

operation to the resultant equation, gives: 

P
 

 
  

 
                                           (2.16) 

Based on Eq. (2.15), the left hand side of Eq. (2.16) is equal to 0, so if one define  

P                                                                (2.17) 

Then it is known that   satisfies Laplace’s equation 

0                                                            (2.18) 

which implies that   is also a potential function, as that is related to pressure, so it is called as 

pressure potential.  Solution of Eqs. (2.15) or (2.18) will yield a family of functions in terms of 

which both   and may be expanded. 

2.2 Elliptical Potential Functions 
In order to write the equations, one expands the pressure in terms of potential functions which 

satisfy Laplace equations.  As discontinuities in pressure only occur across the disk, it is 

convenient to write Laplace’s equation in ellipsoidal coordinates.  The solutions to Laplace’s 

equation in these coordinates are Legendre functions of the first and second kind along with 
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sines and cosines.  One may then reconstruct the pressures in the flow field (See in Appendix 2) 

as an expansion in these functions.  The pressure potential can be expressed as 

       , , cosmc m m

n n nP Q i m                                   (2.19) 

       , , sinms m m

n n nP Q i m                                    (2.20) 

where  ,   and   are the ellipsoidal coordinates defined in Appendix 1; and m  takes values 

from  0,1,2,3,4,  and n  is from  , 1, 2, 3,m m m m   . 

The values of the coefficients depend upon the boundary conditions.  It is noted that the 

solution includes both odd terms and even terms of 𝜈 , which (respectively) are capable for 

describing pressure discontinuities and mass injections anywhere on the rotor disk.  In the plane 

of the rotor disk but off the disk (𝜈 = 0), the functions with m n odd   (  m

nP 
 
are odd 

functions) are zero.  For m n even   (  m

nP 
 
are even functions), the pressure potential has 

normal derivatives that are zero off the disk.  One can also see from Figure A1.1 that ellipsoidal 

coordinates take on the values 0 1   above the disk while 1 0    below the disk.  Since 

there is a jump in   across the disk, this implies a jump in   for the odd terms and a jump in the 

normal derivative of   for the even terms.  On the disk, 0   such that the m n odd   

potentials can be used to describe a pressure jump of the system; and m n even   potentials 

(which have a discontinuity in slope) can be used to represent a mass source in the flow field. 

The pressure can be expanded as a summation of all the pressure potential terms as 

 
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The pressure drop and the injected mass across the disk can be expressed by the flowing 

equations 

 
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 
0 0

0 , 2,

2 mc mc ms ms

lower upper n n n n

m n m m

m
P P

V  
 



 

 
  


                        (2.23) 

where P  is the net pressure drop across the disk going from negative to positive z , m  is the 

net mass per unit time per unit area being injected into the flow field at the disk. 

2.3  Prime Velocity Potentials 
There are two useful definitions of velocity potentials.  One set is defined as the prime 

potentials, and the other set is defined as derived potentials.  In order to satisfy the upstream 

boundary condition of zero velocity, the prime potentials are defined as 

 cosmc m

n n m d


 


                                                    (2.24) 

 sinms m

n n m d


 


                                                    (2.25) 

Since  lim 0m

nQ i





 , it is guaranteed that the definition of the prime potential will satisfy the 

boundary condition that the velocity field far upstream from the rotor is equal to zero.  Then the 

flow velocities can be written as 

 
0

ˆˆm mc m ms

n n n n

m n m

v a b
 

 

                                                 (2.26) 
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Substitution of Eqs. (2.24) and (2.25) into Eq. (2.26), and with note that ˆ ,mc

n
 

ˆ ,ms

n
mc

n  and 

ms

n  are only functions of non-dimensional coordinates and ˆ ,m

na ˆ ,m

nb
mc

n  (and that the ms

n are 

only functions of reduced time  ) gives: 

 
0 0

ˆ
ˆ

m mc
mc m mc mcn n
n n n n

m n m m n m

a
a 

 

   

   

  
    

  
                     (2.27) 

 
0 0

ˆ
ˆ

m ms
ms m ms msn n
n n n n

m n m m n m

b
b 

 

   

   

  
       

                     (2.28) 

There are no closed-form expressions for these prime velocity potentials at arbitrary skew 

angles.  Therefore, one must do preprocessing to integrate the gradients of m

n  at points in the 

flow field in order to calculate the velocity.  This can be accomplished by integration of the 

potentials along the streamlines, which is time consuming. 

The derived potentials, ˆ m

n , are defined as the prime potentials for the special case of axial 

flow.  These can be found in closed form, and thus their use avoids any numerical integration for 

calculating the induced velocity components.  Their disadvantage is that the   derivative in the 

potential flow equations is more complicated for these, and one must relate the derived potentials 

to the prime potentials through a change of variable.   Peters and Morillo found the change of 

variable (for m n ) in the following form: 

1 1
ˆ m m m m m

n n n n n                                                       (2.29) 

where 
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    
2 2

1

2 1 2 3 1

m

n
m

nK n n n m

 
    
 

                        (2.30) 

  2 2 2

1

4 1

m

n
m

n

n m
K n n m

  
 

                            (2.31) 

and 

 1

2

n m

m m

n nK H





 
  
 

                                            (2.32) 

   

   

1 !! 1 !!

!! !!

m

n

n m n m
H

n m n m

   


 
                                 (2.33) 

This definition is only valid above the rotor disk ( n m ).  For the case when 0m n  , 

Peters and Hsieh developed a formulation for the potentials in terms of an alternate type of 

"Legendre function" with subscript greater than superscript: 

         1 1 1 1
ˆ cosmc m m m m m

m m m m m mP Q i P Q i m        
                     (2.34) 

         1 1 1 1
ˆ sinms m m m m m

m m m m m mP Q i P Q i m        
                     (2.35) 

where 

 
 

 

 
 

   

   
 

2 2 11

1

0

12 !! 1 !2 12
1

! 1 !12 1 !!

m
nm nm

nm

m m
n

m m
P

n m n n mm


 

 

 





  
 

  
        (2.36) 

 
 

1
2 2

1

1

m

m m
Q i


 



                                               (2.37)
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Even here, the case for 0m n   is singular.  By solving the Laplace equation with 0m n 
 

and then adding a line singularity (which is not obtainable by separation of variables), Peters and 

Hsieh were able to find the 0m n   derived velocity potential as 

0 1 2

0 max

2 1 2 1 2ˆ 1 tan ln 1 ln 1 ln 0Z    
    


  

          
  

          (2.38) 

where maxZ  is a large number representing the radius to which the   integral is taken.  When the 

potential is evaluated at infinity, the last term cancels the logarithmic terms––so that the potential 

is zero at maxZ .  Of course, this additional constant has no effect on the velocity field because one 

needs only the gradients of the potential functions to obtain velocity.  This large number maxZ  

will, however, affect the Galerkin integrals to be derived in the following section so that this 

logarithmic constant will need to be dealt with.  (Derived velocity potentials are not defined 

below the rotor plane.) 

Because the velocity potentials all satisfy Laplace’s equation, the continuity equation in Eq. 

(2.12) is satisfied automatically.  That means it is sufficient to consider only the momentum 

equation as a governing equation for the velocity expansion coefficients.  Thus, to obtain a finite-

state wake model is equivalent to solve the problem of representing the momentum equations in 

finite-state form. 

2.4  Galerkin Method 

In order to transform the momentum equation into a set of ordinary differential equations, the 

Galerkin Method is adopted here in which velocities are expanded in terms of the prime 

potentials.  (Derived potentials will be considered later.)  The test functions for the Galerkin 

method are chosen to be the same Laplace solutions that are used as expansions for the pressure 
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potentials.  Since the velocity potentials are only defined in the upper hemisphere, the 

integrations will be done in the upper hemisphere, and all boundary conditions are matched.  As 

the integration is only considered over the upper hemisphere, the velocity solution will only be 

valid above the disk.  The complications of boundary conditions on velocity inside the wake 

make Galerkin below the disk impractical. 

After substitution of the proper expansions of pressure potentials, velocity potentials, and the 

expression of velocity into the momentum equation, volume integration is taken on both sides of 

the momentum equations.  With the divergence theorem, one can then transfer the volume 

integral into a surface integral, which vanishes at r  .  By the method shown in [6], the 

surface integral in the plane of the rotor is transformed to integrals on the rotor disk, itself, which 

have closed-form representations.  This leads to a set of ordinary differential equations.  The 

cosine and sine functions completely separate into two uncoupled sets during this procedure.  For 

the cosine parts, the Galerkin method gives: 

 

 

   

   

 

 

   

   

 

 

*

, , , , , ,

*

, , , ,, ,

ˆ ˆ

ˆ
ˆ

c c c cc c m m mc

n n no o o e o o o e o o o eo o o

c c c cm mcc c
m n ne o e e e o e ee ee o e e
n e

L L a aD D D D

aL L D D D D
a





 
                               
                          

 

   (2.39) 

where 

   0 0

rc

jc mc rc mc

n j n

s s

L d ds d ds
z z

 
    

                
                                       (2.40) 

rc mc
jc mc rc n

n j

s s

D ds ds
z z

   
               

                                                              (2.41) 
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The sine components are similar to Eq. (2.39).  Note that the subscript notation “ o ” stands for 

the terms with m n odd   and “ e ” is for the terms with m n even  .  For the cosine terms, 

0,1,2,3,m   and for the sine terms 1,2,3,m  , since 

     sinms ms ms

n n nP Q i m                                       (2.42) 

which implies that when 0m  , 0ms

n  .  In either the case of sine terms or cosine terms, 

, 2, 4,n m m m    or 1, 3, 5,n m m m     depending on the subscript of the partition is “

e ” or “ o ”. 

The  D  matrix is as follows for both cosine and sine case: 

1

;

;

rm

jn jn rmm

n

D
K

j r odd n m odd

j r even n m even

 

   

   

                                    (2.43) 

  

  
 

3 1

2
2 1 2 12

1
1

;

;

j n
rm nm
jn

m m

n j

j n
D

j n j nH H

j r odd n m even

j r even n m odd





  
 

  

   

   

                    (2.44) 

And the L 
   matrix is given by 

0 0
c

m m m

jn jnL X                                                 (2.45) 

 1
c lm r m rrm rm

jn jnL X X
          

                            (2.46) 
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 1
s lm r m rrm rm

jn jnL X X
          

                            (2.47) 

where 

   tan 2 , min ,X l r m                                  (2.48) 

 

  
, 1

2 1 2 1

; ;

; ;

rm

jn j n
m r

n j

sign r m

K K n j

r m odd j r odd n m odd

r m odd j r even n m even

 


 

 

     

     

                       (2.49) 

      

    

2

2

2

1 2 2 1 2 1

2 1

; ;

n j r

rm

jn
m r

n j

n j

H H n j n j n j

r m even j r odd n m odd

 

  
 

     
 

     

                        (2.50) 

      

    

2 2

2

22

1 8 2 1 2 1

2 1

; ;

n j r

rm

jn
m r

n j

n j

H H n j n j n j

r m even j r even n m even



  

  
 

     
 

     

                      (2.51) 

        

    

3 2 2

2

2

1 4 2 1 2 1

2 1

; ;

; ;

n j m r

rm

jn
m r

n j

sign r m n j

H H n j n j n j

r m odd j r odd n m even

r m odd j r even n m odd



  

   
 

     
 

     

     

               (2.52) 

  
, 1

1

2 1 2 1

; ;

; ;

rm

jn j n
m r

n jH H n j

j m even j r odd n m even

j m even j r even n m odd

  
 

     

     

                     (2.53) 
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The potential for 0m n  , has a logarithmic term, so the integral for   is formally infinite 

for the case of 0m r n j    .  However, based on [5], this integral can be expressed as a 

finite series that approaches infinity as the number of terms approaches infinity.  

max

00

00 2
1

4 1 1

2

N

n n 

 
   

 
                                              (2.54) 

where maxN  is the largest harmonic number.  In this way, the integral is finite for a truncated 

approximation.  This also allows a solution with a finite number of terms that provides formal 

convergence to the exact answer. 

2.5  Derived Potentials 
In the previous section, a closed form representation of the dynamic equations is shown for 

the velocity potential expansions in terms of prime potentials.  However, to overcome the 

limitations of prime potential, the velocity can be written in terms of derived potentials.  In order 

to do this, one needs to relate the variables which define the two sets of basic functions over the 

upper hemisphere.  In particular, the total velocity potential is written as 

     1 1
ˆ

T T
m mc m m mc m mc

n n n n n n na a   
                                      (2.55) 

When a Galerkin approach is applied to Eq. (2.55), then the following relationship is found 

   
1

ˆm c c m

n na L M a


                                                    (2.56) 

where 

0

rc

jc c mc

n

s

M L ds
z

 
            

                                   (2.57) 
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A similar transformation therefore exists between  ˆm

nb  and  m

nb  that involves sL    
and sM   , 

which relates to sine coefficients.  With this transformation of variables, the equation of motion 

for a skewed flow becomes 

   
*

1
c m c c c m c mc

n n nM a D L M a D 
 

                    
 

                   (2.58) 

The equation in Eq. (2.58) is a closed form expression for all components of the velocity above 

and on the rotor plane. 

For the special case of axial flow ( 0  ), cL 
   

and cM    are equivalent.  Therefore, the 

momentum equation can be simplified as  

   
*

c m c m c mc

n n nM a D a D 
 

            
 

                                      (2.59) 
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Chapter 3: Linear Extensions of the Morillo-

Duffy Model 

3.1 Flow below Disk by Adjoint Theorem 
One of the disadvantages of the Morillo-Duffy Model is that, because it is based on a Galerkin 

method, it only gives velocity in the hemisphere that includes the rotor plane and upstream of 

that plane.   A Galerkin method for flow below the plane of the rotor disk (which would include 

inside of the rotor wake) is out of the question because the boundary conditions within the wake 

are too complicated to allow simple Galerkin shape functions.  In fact, strictly speaking, the flow 

below the rotor wake and inside the wake is not potential flow.  There are vortex sheets in the 

wake; and, although the flow is potential between the sheets, the entire flow field is not 

irrotational. 

     In this chapter, a way around this difficulty is offered by noting that, although the flow is not 

potential flow in the wake, in nonetheless satisfies the continuity and momentum equations.  

Thus, this opens the door for perhaps a way to utilize the solution above the disk to find the 

solution below the disk plane.  The approach is to find a closed-form solution for flow below the 

disk in the frequency domain and then to use Fourier Transform arguments to convert this into a 

general solution.  As it will be shown shortly, this will involve the adjoint variables of the 

system. 

3.1.1  Exact Solution of Frequency Response 

The linearized potential flow equations can be written in non-dimensional form as: 

v v
P

 

 
  

 
                                                        (3.1) 
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where Eq. (3.1) is the momentum equation, v  is the local induced velocity vector,   is non-

dimensional reduced time,   is the stream-wise direction (positive downstream), and P  is the 

pressure field.  It is assumed that the velocities are expressed as the gradient of a potential 

function, thus ensuring continuity.  The derivation here is to show that, if one knows the velocity 

field in the upper hemisphere 0   (i.e., by the method of the previous chapter) then the 

velocity in the lower hemisphere can be found,
 

0  .  The derivation for the case of frequency 

response will first be introduced, and then Fourier Transform arguments will be used to extend 

the solution to the general time domain. 

The solution for simple harmonic excitation is found from a complex harmonic balance 

applied to the momentum equation.  The velocity is expressed as the real part of a complex 

quantity. 

   , , , , , iv x y z x y z e                                                     (3.2) 

where  , ,x y z  is a complex number and it is implicitly assumed that one takes only the real 

part of the right-hand side.  Further assume that the complex pressure field P  can be written as 

the summation of terms that includes both pressure discontinuities and mass injections: 

   
0

, , , , ,m m i i

n n

m n m

P x y z e Pe     
 

 

                                   (3.3) 

where m

n  are a complete set of potential functions with discontinuities across the disk, and 

terms with m n  odd represent pressure discontinues across the disk and terms with m n  even 

represent mass sources at the disk.  
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To obtain a closed-form frequency response, one can expand   into real and imaginary parts. 

     , , , , , ,x y z u x y z iw x y z                                        (3.4) 

Substitution of Eqs. (3.2) and (3.4) into Eq. (3.1) gives 

   
   , , , ,

, , , ,
u x y z w x y z

i u x y z iw x y z i P
 

  
           

               (3.5)  

One can collect the real and imaginary parts of the equation to give expressions for the real 

and imaginary parts of the flow. 

u
w P




   


                                                 (3.6) 

0
w

u



 


                                                      (3.7) 

Solving for u  from Eq. (3.7) and substituting it back into Eq. (3.6), it gives 

2
2

2

w
w P 




  


                                              (3.8) 

Similarly, solving for w  from Eq. (3.6) and substituting it back into the derivative of Eq. (3.7) 

gives 

2
2

2

u
u P

 

 
   

 
                                          (3.9) 

A Laplace transform in   of Eqs. (3.8) and (3.9) yields  
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   2 2

s
U s P s

s 
  


                                          (3.10) 

   2 2
W s P s

s




 


                                             (3.11) 

where  W s  is the Laplace transform of w ,  U s  is the Laplace transform of u  and  P s  is 

the Laplace transform of P . 

Based on the convolution inverse of a Laplace transformation, the exact solution can be 

obtained 

     

     

0

0

0 0 0 0

0 0 0 0

, , , cos

, , , sin

u x y P d

w x y P d





      

      





     

    




                      (3.12)  

Note that the only boundary condition on the flow is that the flow approach zero far upstream (

 ).  Thus, the lower limits are set at  .  The physical meaning of Eq. (3.12) is that, to 

obtain the exact solution, one must integrate the gradient of the pressure field along a streamline 

from far upstream down to the point within the flow field for which that component of velocity is 

desired.  For the real part of the flow, the integral includes the kernel  0cos      , and for 

the imaginary part it includes the kernel  0sin      .  Note that, for axial flow, z  .   

The above approach is not tractable for use in practical rotor calculations.  However, it is 

useful both as a way to determine an "exact" numerical solution against which to compare finite-

state solutions (and this has been done in previous work) and as the theoretical basis for an exact 
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time-domain solution.  Thus, the utility of Eq. (3.12) is in its usefulness in a proof of how to find 

the flow below the disk, as will be outlined below. 

3.1.2  Velocity below Disk 

Assume that the solution of the frequency response outlined above which is obtained by some 

method (such as the finite-state method) is known to be valid in the upper hemisphere.  The next 

step is to show how that solution can be used to find the solution for the complex velocity in the 

lower hemisphere.  In order to simplify the derivation to follow, one define the following 

quantities for 0 0   .  (Thus, they are defined only above the disk.) 

     

     

0

0

0 0 0

0 0 0

, , , cos

, , , sin

C x y P d

S x y P d





    

    





  

  




                            (3.13) 

Not that, for the special case 1r

j  , and all other ,m r n j  , 0m

n  , one can write from Eq. 

(3.13) with no loss of generality.  

       

       

0

0

0 0 0 0 0 0

0 0 0 0 0 0

, , , , , , cos

, , , , , , sin

r

j

r

j

C r C x y d

S r S x y d





       

       





   

   




               (3.14) 

where 0 0 0cosx r    and 0 0 0siny r  .  We rewrite  0 0 0, , ,u x y   and  0 0 0, , ,w x y   as 

             

       

             

       

0 0

0 0

0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0

, , , cos cos sin sin

cos , , , sin , , ,

, , , sin cos cos sin

sin , , , cos , , ,

u r P d P d

C x y S x y

w r P d P d

C x y S x y

 

 

          

     

          

     

 

 

    

 

   

  

 

 
   (3.15) 

The induced velocity above the disk is then 
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         

           

     

     

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

, , , , , , cos , , , sin

cos , , , cos sin , , , cos

sin , , , sin

cos , , , sin

v r u r w r

C r S r

C r

S r

          

         

    

    

 

 




   

 (3.16) 

which is equivalent to 

         0 0 0 0 0 0 0 0 0 0 0, , , cos , , , sin , , ,v r C r S r                         

  (3.17) 

In preparation for the solution of the flow below the disk, one need to compute C  and S  

from the finite-state solution above the disk.  Since the Morillo states are complex for a 

frequency response, they are broken into real and imaginary parts m

na
 
and m

nb .  This gives: 

   

       

   

       

0 0 0

0

0 0 0 0 0 0 0 0

0 0 0

0

0 0 0 0 0 0 0 0

ˆ, , , , ,

cos , , , sin , , ,

ˆ, , , , ,

sin , , , cos , , ,

m m

n n

m n m

m m

n n

m n m

u r a

C r S r

w r b

C r S r

     

       

     

       

 

 

 

 

 

 

 

  




      (3.18) 

where , ,    is the ellipsoidal coordinate location of 0 0 0, ,r   ; and ˆ m

n  is the derived Morillo 

velocity potential. 

Therefore, Eq. (3.18) allows us to express the C  and S  integrals in terms of the known finite-

state result. 
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         

         

0 0 0 0 0

0 0

0 0 0 0 0

0 0

ˆ ˆ, , , cos , , sin , ,

ˆ ˆ, , , sin , , cos , ,

m m m m

n n n n

m n m m n m

m m m m

n n n n

m n m m n m

C r a b

S r a b

          

          

   

   

   

   

   

   

 

 
   (3.19) 

The above are valid above the disk plane which is for 0 0   .  However, below the disk, 

where 0 0  , one must integrate Eq. (3.14) from upstream down to the disk of the rotor plane 

and then below the plane.  For simplicity, we will assume the single term r

jP   , where 

     cosr r r

j j jP Q i r    .  Since any pressure can be represented as a sum of these, as in Eq. 

(3.3), this assumption poses no restriction on generality.  The below-plane result is: 

 

   

           

           

       

     

0

0 0

0

0 0 0

0

0 0

0 0

0 0
0 0

0 0 0 0 0 0

0
0

, , ,

cos

cos cos sin sin

cos cos sin sin

cos , , ,0 sin , , ,0

cos cos sin

r

j

r r

j j

r r

j j

r

j

u r

d

d d

d d

C r S r

d



 



  

    

       

       

     

   



 

    

   

   

 

  



 

 

      
0

0
0

sin r

j d


   

 

 

   

           

           

       

     

0

0 0

0

0 0 0

0

0 0

0 0

0 0
0 0

0 0 0 0 0 0

0
0

, , ,

sin

sin cos cos sin

sin cos cos sin

sin , , ,0 cos , , ,0

sin cos co

r

j

r r

j j

r r

j j

r

j

w r

d

d d

d d

C r S r

d



 



  

    

       

       

     

   



 

     

    

   

  

  



 

 

      
0

0
0

s sin r

j d


   

 

                      (3.20) 
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where the integrals are broken into two parts: one from downstream infinity to the disk, and one 

from the disk to the desired point below the disk.  However, due to the symmetries in the system, 

the integral segments below the disk can be written in terms of integral segments above the disk.  

Thus, for 0 0  :   

         

     

         

     

0

0

0

0

01

0

1

0 0 0 0 0

0

0

0 0 0 0 0

cos 1 cos

1 , , ,0 , , ,

sin 1 sin

1 , , ,0 , , ,

jr r

j j

j

jr r

j j

j

d d

C r C r

d d

S r S r









     

    

     

    









   

     

   

     

 

 
           (3.21) 

The reasons for the form of Eq. (3.21) are as follows.  First, with the exception of sign, the 

downstream streamline emanating from 0 0,r   is identical in functionality to the upstream 

streamline emanating from 0 0,r   (where 0 0    ).  The differences in sign are due to the 

following: 

a) For r j  odd, the pressure potential is of opposite sign above and below the disk, 

whereas the gradient of pressure is the same sign above and below the disk.  For r j  even, the 

opposite is true.  Since the integrals involve gradient of pressure, there is a factor of  
1

1
r j 

 . 

 

Figure 3.1 3-D perspective of co-states 
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b) The fact that 0  is on the opposite side of disk as 0  implies that every   along the 

upstream streamline will differ by   from   along the downstream streamline.  Therefore, the 

 sin r  and  cos r  terms in r

j  will yield a factor of  1
r

 . 

Consequently, we have a total sign change for the cosine integral of: 

       
1 2 1 1

sign 1 1 1 1
r j r r j j    

                                (3.22) 

An extra  1
 
appears in the sine integral because    sin sin    .  Thus, the terms 

 
1

1
j

  and  1
j

  appear in the last lines of Eq. (3.21).  Then, from Eqs. (3.19) and (3.20), the u  

and w  for 0 0 
 
can be obtained as: 

 

          
          

 

          
 

0 0 0

1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0

1

0 0 0 0 0 0 0 0

0

, , ,

cos , , ,0 1 , , ,0 , , ,

sin , , ,0 1 , , ,0 , , ,

, , ,

sin , , ,0 1 , , ,0 , , ,

cos ,

j

j

j

u r

C r C r C r

S r S r S r

w r

C r C r C r

S r

  

       

       

  

       

 





      

      

       

         0 0 0 0 0 0 0, ,0 1 , , ,0 , , ,
j

S r S r          

 

 (3.23) 

Note that the above terms from the integrals below the disk are rewritten in terms of integrals 

above the disk (i.e., the terms with  1
j

  or  
1

1
j


 
which are functions of 0  rather than of 0

).  These mirror the 0  terms with the exception that the C  terms are multiplied by  
1

1
j

  

while the S  terms are multiplied by  1
j

 .  As a result of these sign differences, when the 
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complex below-disk velocity from Eq. (3.23) is put back into the time domain––as was done for 

the above-disk velocity in Eq. (3.16)––the terms involving  0sin       are of the opposite 

sign from those in Eq.  (3.17).   

 

       

          

          

0 0 0

0 0 0 0 0 0 0 0

1

0 0 0 0 0 0

1

0 0 0 0 0 0 0 0

, , ,

cos , , , sin , , ,

1 cos , , ,0 sin , , ,0

1 cos , , , sin , , ,

j

j

v r

C r S r

C r S r

C r S r

  

           

         

           





         

          

            

    

(3.24) 

From Eq. (3.24), one can write the general, time-domain version of the induced flow below 

the rotor disk. 

       * *

0 0 0 0 0 0 0 0 0 0 0 0, , , , ,0, , ,0, , , ,v r v r v r v r                      (3.25) 

where 
*v  is  

1
1

j
  times the velocity that would be obtained from the adjoint equations (i.e., 

the equations with a negative sign on the time derivatives).  Equation (3.25) is the fundamental 

result of this derivation and represents the general form of the velocity below the disk in the time 

domain and/or frequency domain.   0 0 0, , ,v r     is the velocity below the rotor disk at point a 

along the streamline;  0 0 0, ,0,v r     is the velocity at point b where the free streamline 

intersect the rotor plane;  *

0 0 0, ,0,v r     is the adjoint velocity at point c which is centro-

symmetric to point b;  *

0 0 0, , ,v r     is the adjoint velocity at point d which is centro-

symmetric to point a.  In other words, it is: 
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       

   

1*

1

, , , 1 cos sin

1 , , ,

j

j

v r u w

v r

    

  





    

 
                         (3.26) 

where v  is defined in Eq. (3.26) as conjugate velocity. 

The reason that Eq. (3.24) can be generalized to Eq. (3.25) is that any general time-domain 

solution can be expressed as a Fourier Transform in terms of frequency components.  Since Eq. 

(3.24) would be true for any frequency in that transform, then it is true in general for the inverse 

transform when written in terms of 
*v  as in Eq. (3.25).  In the general time-domain solution, 

*v  

is defined as the solution to the adjoint equations––i.e., the solution of the differential equations 

in which the time derivative terms are multiplied by  1 .  In addition, this adjoint velocity is 

defined for the condition in which each forcing function in those time-domain equations––i.e., 

each  m

n   in Eq. (3.3)––is multiplied by  
1

1
n

  in the forcing functions of the adjoint 

equations, which is exactly as the following equation: 

     
*

1 1
1c m c c c m c mc

n n n

n
M D L M D 

 
 
 
 
 
 
 
 
 

                        
 

           

(3.27) 

Then the conjugate velocity could be expressed as 

   *

0

ˆ, , , , ,m mc

n n

m n m

v r v    
 

 

                            (3.28) 

It should be noted that the solution in Eq. (3.25) does not include the jump in velocity across the 

actuator disk due to the mass sources. 
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3.2 Nowak-He Solution 
In the previous section, the drawback of the Moriilo-Duffy solution (that is for flow only 

above the disk plane) has been removed.  Now, one needs to correct the second drawback—that 

the method is not well converged on the disk.  A change of variable will be used to make the 

Morillo-Duffy solution more like the well-converged Peters-He solution.  Recall that the Peters-

He solution is in terms of the expansion functions ( ) /P    (which are polynomials in r) whereas 

the Morillo-Duffy solution is in terms of ( )P   which all go to zero at the rotor edge for m+n 

odd.  The question now is, can the odd Morillo-Duffy variables be converted into Peters-He 

variables? 

In the previous chapter, Eq. (2.58) is given in order to calculate the Morillo-Duffy variables.  

The influence coefficient matrix [M] can be also written as 

oo oec

eo ee

M M
M

M M

 
     

 
                                                      (3.29) 

Through the method of changing variable, a new [M] matrix can be obtained which is given in 

Eq. (3.30). 

1new

oec

eo ee

I M
M

M A M

 
     

 
                                            (3.30) 

where 

 

2

2

2

( 1) 2 2 1 2 1
[ ]

( )( 2) ( ) 1

n j r

m

nj
r r

n j

n j
A

H H n j n j n j

 

  


      

                                           (3.31) 
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( 1)!!( 1)!!

( )!!( )!!

m

n

n m n m
H

n m n m

   


 
                                                                       (3.32) 

Then the Nowak-He variables { }m

n  can be computed from the following set of linear 

differential equations. 

   
*

1

new new

c m c c c m c m

n n nM D L M D  
 

                    
 

                         (3.33) 

Therefore, the axial induced velocity based on the Nowak-He variables and its adjoint state 

will be 

1

,

1

,

1
( ) ( )cos( )

( ) ( ) cos( )

m m m

NH n n m

m n
odd

m m m

n n m

m n
even

V P v Q i m
v

a P v Q i m

  

 
















                                        (3.34) 

 

*

1

,

1

,

1
( ) ( )cos( )

( ) ( ) cos( )

m m m

NH n n m

m n
odd

m m m

n n m

m n
even

V P v Q i m
v

P v Q i m

 

 









 

 




                                     (3.35) 

where { }m

n  and { }m

n  are Morillo-Duffy adjoint variables and Nowak-He adjoint variables, 

respectively.  For the special case ( 0  ), it has 

{ } { } and { } { }m m m m

n j n na                                                 (3.36) 
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The beauty of this approach is that both the Morillo-Duffy variables and the Peters-He 

variables can be obtained from a single set of state-variable questions.  No new states are 

required to have both representations available to the user.  The combination of odd Peters-He 

and even Morillo-Duffy will be called as the Huang-He variables. 

3.3  Huang-He Solution 
The previous section allows all z-components of velocity on the disk to be expanded in terms 

of the P()/ which are polynomials in the radial coordinate r (rather than in the z derivative of 

the potentials).  It makes sense that it would be good also to expand the x and y velocity 

components in terms of P()/ (rather than in  terms of the x and y derivatives of the potentials).  

Unlike the z component, however, the x and y derivatives involve a shift of harmonic number due 

to the sin() and cos() that appear in the change of variable.  Thus, a change of variable to give 

well-converged x and y velocities will involve a coupling between harmonics in the transform.  

In this section, an appropriate transform is derived.  The new variables will be called Huang-He 

variables. 

The Huang-He variables can be transformed from the Morillo-Duffy variables with another 

transform matrix [S], as is shown in Eq. (3.37). 

   r rm m

j j n nS a                                                        (3.37) 

where  

         0,  for 1rm

j nS r m    
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         for m = 0, 

 

 

0

10 0

1 , for 1

1 , for 1

0, for 1

n

jn n

j j j n

S j j j n

j n





   



   


 

 

         for m > 0, 

  

  

1
1 , for 1

2

1
1 , for 1

2

0, for 1

m

n

r m m

j n n

j m j m j n

S j m j m j n

j n






    




     


 



  

Then the x component of the induced velocity above the rotor disk ( 0z  ) based on Huang-

He variables can be expressed as 

     

,

1

, ,

,  for 0

1
cos ,  for 0

m m

n nx

m n

HH m m m m m

n m n n nx

m n m n
odd even

a v x

V
m Q i P a v x   




 



 
 





 
              (3.38) 

where 

           
   

   

1

1 1 1 1

1

1 1 2

cos 1

cos 1

mm m m m m

nx n n n n m

m m m m m

n n n n m

v F F m Q i

G G m Q i

   

   



   



  

      

      

, for m n                  (3.39) 

and where 

               2

2

1
1

2 2 1

m
m mk

k k

dP m
F P

d


  
  


                                                     (3.40) 

               2

2

1
1

2 2 1

m
m mk
k k

dP m
G P

d


  
  


                                                     (3.41) 
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                 
1

2

2

( ) ( )1 1
1 1 ( )

1

m m
mk k

k

P P
k m k m mP

 
 

   

 
      

   
     (3.42) 

For the special case 0m n  , 

   

   

1

1 1 1 1

1

1 1 2

cos 1

cos 1

mm m m m

nx m m m m

m m m m

m m m m

v F F m Q i

G G m Q i

  

  



   



  

      

      

                                  (3.43) 

For 0m n  , 

   1

2

2 1
cos

1

m

nxv Q i


 
 





                                                               (3.44) 
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Chapter 4: Blending of Solutions 

4.1  Blending Function 

Since the change of variable solution such as Nowak-He solution for the axial induced 

velocity and Huang-He solution for x component of the induced velocity behaves well on the 

disk and the Morillo-Duffy solution is more accurate away from the disk, the blending function 

is designed to transition from the change of variable solution on the disk quickly to Morillo-

Duffy solution off the disk.  Such a blending function should be such that it gives the pure 

Huang-He solution on the disk and the pure Morillo-Duffy solution once one is significantly 

away from the disk.  A simple, convex, linear blend seems to be the most logical choice for such 

a blend. 

Equations (4.1) and (4.2) give the blending function for the axial induced velocity, and Eqs. 

(4.3) and (4.4) are for x component of the induced velocity. 

1

1 1
BL NH MD

bh
V V V

bh bh
 

 
                                             (4.1) 

* * *1

1 1
BL NH MD

bh
V V V

bh bh
 

 
                                        (4.2) 

1

1 1
BL HH MD

bh
V V V

bh bh
 

 
                                            (4.3) 

 * * *1

1 1
BL HH MD

bh
V V V

bh bh
 

 
                                        (4.4) 

where 
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0, if 

, if 

h

h

 

   

 


  
                                                                                (4.5) 

The concept of Eqs. (4.1)−(4.4) is that there is a simple blend with a gain factor b based on 

some measure of the distance from the disk, which is called as “h”.  Since the variable η is a 

measure of the distance from the disk in ellipsoidal coordinates, η represents a natural measure 

for h.  However, because there is a singularity in the Morillo-Duffy equations at η = 0, there 

needs to be a small area around the disk where no blending is done.  Eq. (4.5) gives one method 

of representing the distance h by utilization of a buffer zone ε to be determined later. 

This form of the equation was tested against exact solutions for various values of ε and b over 

a wide range of frequencies and pressure inputs.  A fixed value of ε was decided upon, and the 

best b was plotted as a function of η for various skew angles χ.  These optimum values were then 

fit by the following approximate functions. 

2

2

2

2 2

2 2

2

2 2

2 2

sin( )
0, 1, 20 1

1

sin( )
0, 1, 20 1

1 0.615( 1)

( )sin( )
0, 1, 20 1

1

( )sin( )
0, 1, 20 1

1 0.615( 1)

y
x y b

y
x y b

y

x y
x y b

x y
x y b

y

















 
    

 

 
    

   

 
    

 

 
    

   

                                       (4.6) 

One needs not to calculate Morillo-Duffy velocity either on the disk or close to the disk edge (

0.01  ) where it is ill-conditioned.   
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4.2  Downstream Adjoint Theorem 
Now, two issues of the Morillo-Duffy Model have been addressed: 1.) the flow below the 

disk, and 2.) the poor convergence on the rotor disk.  The third drawback to be addressed is the 

divergence downstream as the skew angle goes to 90
o
.  The issue is that, as the flow becomes 

edgewise, the induced flow downstream does not decay because the trailing wake effect then 

remains in the rotor plane even far behind the disk.  The Galerkin test functions, however, 

naturally decay; and thus they cannot converge to a non-decaying value of induced flow.  The 

approach which is taken for this third drawback is to note that, for perfectly edgewise flow, one 

can utilize the same adjoint theorem−that was used to find the flow below the disk in terms of the 

flow above the disk−to find the flow downstream for edgewise flow from the flow upstream.  In 

this section, the adjoint theorem is extended to the case of perfectly edgewise flow.   

Let 0s  be the x-distance downstream in edgewise flow at which the flow is converged by the 

blended method.  This distance is taken to be on a sphere of radius ρ or else to be zero if 

2 2 2y z   .  For computing the axial induced velocity, ρ = 1; for the in-plane components of 

the induced velocity,  cos   

2 2 2 2 2 2

0

2 2 2

0

,  for 

0,  for 

s y z y z

s y z

 



     


  

                                          (4.7) 

Let x be a point (further downstream than 0s ) at which the velocity is desired.  Let the distance 

along the x-axis from ( 0s ) to that point at which the velocity is desired be called 0( )x s    .  

It follows that the distance along the streamline going through 0s  to the point on the streamline 
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that is closest to x (i.e., perpendicular) is then given by sin( )  .  Then the time delay for adjoint 

theorem is defined to be sin( )  .      

Thus, in the plane of the disk, 0z   and y    , one should place 0s  at the trailing edge 

of the disk (region ①); 0 0s   for 0z   and y   (region ②) which is illustrated in Fig. 4.1.  

The thick solid curve denotes the trailing edge of the rotor disk.   

 

Figure 4.1 Illustration of downstream in edgewise flow at the rotor disk. 

Then the downstream velocity ( 0x   and 
2 2 2 2x y z    ) can be found from the adjoint 

theorem.  Eqs. (4.8) and (4.9) are for the axial velocity; Eqs. (4.10) and (4.11) are used for the 

swirl velocity. 

0

0

* *

0 0

( , , , ) ( , , , )

( , , , sin( ))

( , , , sin( )) ( , , , )

DS DS

BL

BL BL

V x y z t V s y z t

V s y z t

V s y z t V s y z t



 

  

  

  

      

                            (4.8) 

* *

0

*

0

0 0

( , , , ) ( , , , )

( , , , sin( ))

( , , , sin( )) ( , , , )

DS DS

BL

BL BL

V x y z t V s y z t

V s y z t

V s y z t V s y z t



 

  

  

  

      

                           (4.9) 
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( , , , sin( ))

( , , , sin( )) ( , , , )

DS DS
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BL BL

V x y z t V s y z t

V s y z t

V s y z t V s y z t
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  
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                         (4.10) 

* *

0

*

0

0 0

( , , , ) ( , , , )

( , , , sin( ))

( , , , sin( )) ( , , , )

DS DS

BL

BL BL

V x y z t V s y z t

V s y z t

V s y z t V s y z t



 

  

  

  

      

                         (4.11) 

These formulas can be used for perfectly edgewise flow, but a model is needed that will work 

not just at χ = 90
o
 but at all skew angles as one approaches 90

o
.  Once again, the concept of a 

blending will be utilized.  The velocity from the downstream adjoint theorem will be blended 

with the previously blended Morillo-Duffy and Huang-He velocity.  The blend will be designed 

so that, at perfectly edgewise flow, it will be all downstream velocity; while as one moves away 

from edgewise, it will revert to the previous blend.  This will be done in the next section. 

4.3  Final Downstream Velocity 
The final piece of the blending is to combine the blending velocity BLV  and the downstream 

velocity DSV  to get the final downstream velocity FV , which is given in Eq. (4.12).  As with the 

previous blend, a convex linear blending function is utilized.  In this case, the function is 

assumed to be dependent on the distance downstream from a known convergent point (this 

distance is called σ’) and the skew angle.  The formula for either the regular velocity or the 

adjoint velocity *

FV  is given in Eqs. (4.12)−(4.13). 

[1 ( ', )] [ ( ', )]F BL DSV V f V f                                          (4.12) 

* * *[1 ( ', )] [ ( ', )]F BL DSV V f V f                                          (4.13) 
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For the axial induced velocity, '  , which is already defined in the previous section.  

[Note that for both on the disk and upstream (x > -s0), VF = VBL.]  Originally, many cases were 

run with an optimum value of f found for each case.  These were then plotted as functions of χ at 

various values of y.  The following functions were then found to be a good fit for these optimum 

data at all frequencies and inputs. 

 

2

2

2

2 2

sin ( )
,  for 1

sin ( ) ' ( )
( ', )

sin ( )
,  for 1

sin ( ) ' 1.5 1 ( )
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y g



  
 



  







 
 
   


                                   (4.14) 

where 

1/2 3/2( ) 1.84cos ( ) 4.06cos( ) 11.84cos ( )g                                               (4.15) 

For the swirl velocity (the x and y velocity components), a slightly different form was found 

to be optimum: 

 

 

5/3 2

2 1/ 2 3/ 2

1 cos sin ( )
( ', )

sin ( ) ' 1.84cos ( ) 4.06cos( ) 11.84cos ( )
f

 
 

    

  
  

            (4.16) 

where 

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2

0,  for < 1 and 

' 1 ,  for 1 and 

,  for 

x y z y z

x y z x y z y z

x y z

 

 



     


         

  

                             (4.17) 

For the special case when 1y  , 0xv   and 0yv  . 
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4.4  Numerical Results 

4.4.1  Axial Induced Velocity 

With the blending method discussed above, some typical results (four skew angles, two 

frequencies, and various cuts through the flow field) are presented to show the degree of 

accuracy of the solution.  Results are for the z-component (normal component) of velocity.  

Some results have 6 harmonic for the odd terms and 4 harmonics for the even terms (25 states).  

Other results have 12 harmonics for the odd terms and 8 harmonics for even terms (74 states).  

For example: 

m-odd = 12, m-even = 8 for  = 0 

m-odd = 12, m-even = 8 for  = 4 and 0 45     

m-odd = 6, m-even = 4 for  = 4 and 45 90     

The axial coordinate is z, with z > 0 downstream.  The fore-aft coordinate is x, with x < 0 

being downstream.  The lateral coordinate is y.  The rotor is given an elliptical pressure 

distribution for the first 20 plots.  The results for  = 0 (constant loading) and  = 4 (frequency = 

4 /V R ) are illustrated in Figs. 4.2−4.21.  The open circles on the plots are the exact solution for 

each case, which can be found from a convolution integral from upstream infinity along a 

streamline down to that particular point.  The solid lines are the new, blended solutions.  For 

comparison, each figure shows the various velocities that are blended together to obtain the final 

solution. The dashed-dot blue line is the Morillo-Duffy solution.  The long-dash green curve is 

the velocity from the Nowak-He variables. 
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Figures 4.2−4.5 give induced velocity at the rotor disk (y = 0.0 and z = 0.0), for  = 0, and 

there are no imaginary parts in the solution.  The skew angle is varied from 0
o
 to 85

o
.  Figures 

4.6 and 4.7 show the results for two cuts along the y axis (y = 0.5 and 1.26).  Since the flow is 

symmetric about the y axis, only the induced velocity for 0y   needs to be computed. Figure 4.8 

presents a y-traverse, and the blended solution catches the spike of exact solution accurately 

around the edge of the rotor disk due to the vortex.  Results above the disk (z = –0.4) are directly 

above the disk and are plotted versus x in Fig. 4.9.  In Fig. 4.10, results below the disk (z = +0.4) 

are plotted from the center of the skewed wake versus x0, which is the x location on the rotor disk 

through which a streamline would pass.  Thus, x0 = 0 is the streamline going through the rotor 

center.  

Figure 4.2, which shows flow on the disk, shows axial flow so that the Morillo-Duffy and 

Nowak-He variables work equally well on the disk, and the “downstream” correction has no 

physical meaning (and is not blended).  As skew angle is increased (Figs. 4.2−4.5), one can see 

the increase of downstream flow.  The Nowak-He change of variable becomes more and more 

accurate (with respect to Morillo-Duffy) as skew angle increases, and the velocity begins to 

approach the “downstream” solution (which becomes the exact solution as skew angle 

approaches 90º).  Notice that the blending function does an excellent job of combining the three 

solutions together to match the exact solution (from a convolution integral). 

Figure 4.7 is an x-plot located at 0.26 radii laterally from the edge of the disk.  Although this 

is very close to the trailing vortex that comes of off the disk edge, the velocity is still quite good.  

Figure 4.8 sheds further insight on this correlation by giving a plot of velocity versus lateral 

coordinate y off the edge of the disk.  The point y = 1.26 marks the location of the cross-plot in 
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Fig. 4.7.  One can see that the peak due to the trailing vortex is well-captured with the 

appropriate decay off of the disk. 

Figures 4.9−4.10 give velocity 0.4 radii above the disk and 0.4 radii below the disk, 

respectively.  The same good convergence at the disk is seen above the disk.  Here, the Nowak-

He variables have less effect; and it is basically a blending of downstream and Morillo-Duffy 

variables.  Below the disk, the improvement of the downstream blending at the disk is magnified.  

This is because the flow below the disk (in the adjoint method) is sensitive to the flow at the 

disk.  Figure 4.11, which is a traverse above the disk, illustrates that this above disk correlation is 

good not simply at z = –0.4 but continues at all locations. 

Ten similar cases for  = 4 are demonstrated in Figs. 4.12−4.21.  The real part and imaginary 

part of the induced velocity are given in the separate plots.  The results obtained through the 

blended method match the exact solution perfectly both upstream and downstream, above the 

rotor disk and below the disk. 

The same trends as were seen for  = 0 in Figs 4.2−4.11 are repeated at  = 4 in Figs. 

4.12−4.21.  In this second set of figures, there are both real and imaginary plots (for the in-phase 

and out-of-phase velocities); but the same trends persist as were found for the steady case.  

Figures 4.15, 4.16, and 4.20 clearly show the oscillations in the induced flow behind the disk.  

This is due to the fact that vorticity is being shed into the wake at a frequency of 4.0.  Thus, there 

are oscillations in the velocity downstream that decay slowly (and which cease to decay at all as 

the skew angle approaches 90º).  Neither the Morillo-Duffy variables nor the Nowak-He 

variables can predict such oscillations, but the adjoint velocity gives the precise oscillations that 
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are needed.  After blending, the solution is virtually exact at all skew angles.  This accuracy 

naturally persists downstream from the rotor disk, which is shown in Fig. 4.20. 

To demonstrate that the method of blending still works well for other pressure distribution 

cases, the results with second collective mode ( 0

3 ) and cyclic pressure distribution ( 1

2 ) are 

illustrated in Figs. 4.22−4.25 and 4.26−4.29, respectively.  For both of those cases, the blending 

results still show excellent correlation with the exact solution either on the rotor (z = 0) or 0.4 

radii below the rotor (z = 0.4) for static loading and dynamic loading. 

 

Figure 4.2 Real part of axial velocity vz for y = 0.0, z = 0.0 with 0

1  for ω = 0, χ = 0
o
.
  
(m-odd = 12, m-even = 8) 
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Figure 4.3 Real part of axial velocity vz for y = 0.0, z = 0.0 with 0

1  for ω = 0, χ = 30
o
.
  
(m-odd = 12, m-even = 8) 

 

Figure 4.4 Real part of axial velocity vz for y = 0.0, z = 0.0 with 0

1  for ω = 0, χ = 60
o
.
 
(m-odd = 12, m-even = 8) 

x

-2.0 -1.0 0.0 1.0 2.0

R
ea

l 
P

ar
t 

o
f 

A
x

ia
l 

In
d

u
ce

d
 V

el
o

ci
ty

, 
v z

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Blended method

Nowak-He method

Morrilo-Duffy method 

Exact solution

Downstream

m-odd = 12

m-even = 8

x

-2.0 -1.0 0.0 1.0 2.0

R
ea

l 
P

ar
t 

o
f 

A
x

ia
l 

In
d

u
ce

d
 V

el
o

ci
ty

, 
v z

-2.0

-1.0

0.0

1.0

2.0

3.0

Blended method

Nowak-He method

Morrilo-Duffy method 

Exact solution

Downstream

m-odd = 12

m-even = 8



52 

 

 

Figure 4.5 Real part of axial velocity vz for y = 0.0, z = 0.0 with 0

1  for ω = 0, χ = 85
o
.
 
(m-odd = 12, m-even = 8) 

 

Figure 4.6 Real part of axial velocity vz for y = 0.5, z = 0.0 with 0

1  for ω = 0, χ = 85
o
.
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Figure 4.7 Real part of axial velocity vz for y = 1.26, z = 0.0 with 0

1  for ω = 0, χ = 85
o
.
 
(m-odd = 12, m-even = 8) 

 

Figure 4.8 Real part of axial velocity vz for x = 0.0, z = 0.0 with 0

1  for ω = 0, χ = 85
o
.
 
(m-odd = 12, m-even = 8) 
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Figure 4.9 Real part of axial velocity vz for y = 0.0, z = -0.4 with 0

1  for ω = 0, χ = 85
o
. (m-odd = 12, m-even = 8) 

 

Figure 4.10 Real part of axial velocity vz for y = 0.0, z = 0.4 with 0

1  for ω = 0, χ = 85
o
. (m-odd = 12, m-even = 8) 
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Figure 4.11 Real part of axial velocity vz for x = -0.25, y = 0.0 with 0

1  for ω = 0, χ = 85
o
. (m-odd = 12, m-even = 8) 
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(b)  

Figure 4.12 Axial velocity vz for y = 0.0, z = 0.0 with 0

1  for ω = 4, χ = 0
o
: (a) real part and (b) imaginary part. (m-

odd = 12, m-even = 8) 
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m-odd = 12

m-even = 8

x

-2.0 -1.0 0.0 1.0 2.0

Im
ag

in
ar

y
 P

ar
t 

o
f 

A
x

ia
l 

In
d

u
ce

d
 V

el
o

ci
ty

, 
v z

-0.8

-0.6

-0.4

-0.2

0.0

0.2

Blended method

Nowak-He method

Morrilo-Duffy method

Exact solution

Downstream

x

-2.0 -1.0 0.0 1.0 2.0

R
ea

l 
P

ar
t 

o
f 

A
x

ia
l 

In
d

u
ce

d
 V

el
o

ci
ty

, 
v z

-0.7

-0.5

-0.3

-0.1

0.1

0.3

0.5

Blended method

Nowak-He method

Morrilo-Duffy method

Exact solution 

Downstream

m-odd = 12

m-even = 8



57 

 

(b)  

Figure 4.13 Axial velocity vz for y = 0.0, z = 0.0 with 0

1  for ω = 4, χ = 30
o
: (a) real part and (b) imaginary part. (m-

odd = 12, m-even = 8) 
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(b)  

Figure 4.14 Axial velocity vz for y = 0.0, z = 0.0 with 0

1  for ω = 4, χ = 60
o
: (a) real part and (b) imaginary part. (m-

odd = 6, m-even = 4) 
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(b)  

Figure 4.15 Axial velocity vz for y = 0.0, z = 0.0 with 0

1  for ω = 4, χ = 85
o
: (a) real part and (b) imaginary part. (m-

odd = 6, m-even = 4) 
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(b)  

Figure 4.16 Axial velocity vz for y = 0.5, z = 0.0 with 0

1  for ω = 4, χ = 85
o
: (a) real part and (b) imaginary part. (m-

odd = 6, m-even = 4) 
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(b)  

Figure 4.17 Axial velocity vz for y = 1.26, z = 0.0 with 0

1  for ω = 4, χ = 85
o
: (a) real part and (b) imaginary part. (m-

odd = 6, m-even = 4) 
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(b)  

Figure 4.18 Axial velocity vz for x = 0.0, z = 0.0 with 0

1  for ω = 4, χ = 85
o
: (a) real part and (b) imaginary part. (m-

odd = 6, m-even = 4) 
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(b)  

Figure 4.19 Axial velocity vz for y = 0.0, z = -0.4 with 0

1  for ω = 4, χ = 85
o
: (a) real part and (b) imaginary part. (m-

odd = 6, m-even = 4) 
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(b)  

Figure 4.20 Axial velocity vz for y = 0.0, z = 0.4 with 0

1  for ω = 4, χ = 85
o
: (a) real part and (b) imaginary part. (m-

odd = 6, m-even = 4) 
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(b)  

Figure 4.21 Axial velocity vz for x = -0.25, y = 0.0 with 0

1  for ω = 4, χ = 85
o
: (a) real part and (b) imaginary part. 

(m-odd = 6, m-even = 4) 

 

Figure 4.22 Real part of axial velocity vz for y = 0.0, z = 0.0 with 0

3  for ω = 0, χ = 85
o
.
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Figure 4.23 Real part of axial velocity vz for y = 0.0, z = 0.4 with 0

3  for ω = 0, χ = 85
o
.
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(b)  

Figure 4.24 Axial velocity vz for y = 0.0, z = 0.0 with 0

3  for ω = 4, χ = 85
o
: (a) real part and (b) imaginary part. (m-

odd = 6, m-even = 4) 
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(b)  

Figure 4.25 Axial velocity vz for y = 0.0, z = 0.4 with 0

3  for ω = 4, χ = 85
o
: (a) real part and (b) imaginary part. (m-

odd = 6, m-even = 4) 

 

Figure 4.26 Real part of axial velocity vz for y = 0.0, z = 0.0 with 1

2  for ω = 0, χ = 85
o
.
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Figure 4.27 Real part of axial velocity vz for y = 0.0, z = 0.4 with 1

2  for ω = 0, χ = 85
o
.
 
(m-odd = 12, m-even = 8) 
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(b)  

Figure 4.28 Axial velocity vz for y = 0.0, z = 0.0 with 1

2  for ω = 4, χ = 85
o
: (a) real part and (b) imaginary part. (m-

odd = 6, m-even = 4) 
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(b)  

Figure 4.29 Axial velocity vz for y = 0.0, z = 0.4 with 1

2  for ω = 4, χ = 85
o
: (a) real part and (b) imaginary part. (m-

odd = 6, m-even = 4) 

4.4.2  In-plane Component of the Induced Velocity 
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solutions have no imaginary part.  Figures 4.30 and 4.31 give the x component of induced 

velocity at the rotor disk (y = 0 and z = 0) for skew angle at 30
o
 and 85

o
.  For 85    in Fig. 
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4.31, the Morillo-Duffy solution has large discrepancy away from the rotor disk compared with 

the exact solution, and it has spike around the edge of disk.  The Huang-He solution has less 

oscillation within on-disk region, and the downstream velocity is more accurate away the disk 

for such skew angle.  While those three solution are combined together, the results get improved 

obviously everywhere.  Figure 4.32 presents a y-transverse, and for 1y  , the induced velocity 

is zero.  In Fig. 4.33, the velocity above the disk (z = -0.4) varying x is plotted.  Results below 

the disk (z = 0.4) are plotted from the center of the skewed wake versus x0, which is the x 

location on the rotor disk through which a streamline would pass.  Therefore, x0 = 0 is the 

streamline going through the rotor center.  All of these results give good convergence compared 

with the exact solution. 

Similarly, another five cases for  = 4 (frequency = 4 /V R ) are presented in Figs. 4.35−4.39.  

The results for both real part (in-phase velocity) and imaginary part (out-of-phase velocity) of the 

induced velocity computed via the blended method agree with the exact solution very well both 

upstream and downstream, above the rotor disk and below the disk.  The same trend persists as 

were found for the steady case. 

For other pressure distribution 0

3  and 1

2 , the results with blending method proposed above 

which is shown in Figs. 4.40−4.47 also perform very well.  Therefore, it is evident that the 

blending is robust in all situations. 



73 

 

 

Figure 4.30 Real part of x component of induced velocity vx for y = 0.0, z = 0.0 with 0

1  for ω = 0, χ = 30
o
.
 
(m-odd = 

12, m-even = 8) 

 

Figure 4.31 Real part of x component of induced velocity vx for y = 0.0, z = 0.0 with 0

1  for ω = 0, χ = 85
o
.
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Figure 4.32 Real part of x component of induced velocity vx for x = 0.0, z = 0.0 with 0

1  for ω = 0, χ = 85
o
.
 
(m-odd = 

12, m-even = 8) 

 

Figure 4.33 Real part of x component of induced velocity vx for y = 0.0, z = -0.4 with 0

1  for ω = 0, χ = 85
o
. (m-odd 

= 12, m-even = 8) 
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Figure 4.34 Real part of x component of induced velocity vx for y = 0.0, z = 0.4 with 0

1  for ω = 0, χ = 85
o
. (m-odd = 

12, m-even = 8) 
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(b)  

Figure 4.35 x component of induced velocity vx for y = 0.0, z = 0.0 with 0

1  for ω = 4, χ = 30
o
: (a) real part and (b) 

imaginary part. (m-odd = 12, m-even = 8) 
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(b)  

Figure 4.36 x component of induced velocity vx for y = 0.0, z = 0.0 with 0

1  for ω = 4, χ = 85
o
: (a) real part and (b) 

imaginary part. (m-odd = 6, m-even = 4) 
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(b)  

Figure 4.37 x component of induced velocity Vx for x = 0.0, z = 0.0 with 0

1  for ω = 4, χ = 85
o
: (a) real part and (b) 

imaginary part. (m-odd = 6, m-even = 4) 
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(b)  

Figure 4.38 x component of induced velocity vx for y = 0.0, z = -0.4 with 0

1  for ω = 4, χ = 85
o
: (a) real part and (b) 

imaginary part. (m-odd = 6, m-even = 4) 
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(b)  

Figure 4.39 x component of induced velocity vx for y = 0.0, z = 0.4 with 0

1  for ω = 4, χ = 85
o
: (a) real part and (b) 

imaginary part. (m-odd = 6, m-even = 4) 

 

Figure 4.40 Real part of x component of induced velocity vx for y = 0.0, z = 0.0 with 0

3  for ω = 0, χ = 85
o
.
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Figure 4.41 Real part of x component of induced velocity vx for y = 0.0, z = 0.4 with 0

3  for ω = 0, χ = 85
o
.
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12, m-even = 8) 
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(b)  

Figure 4.42 x component of induced velocity vx for y = 0.0, z = 0.0 with 0

3  for ω = 4, χ = 85
o
: (a) real part and (b) 

imaginary part. (m-odd = 6, m-even = 4) 
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(b)  

Figure 4.43 x component of induced velocity vx for y = 0.0, z = 0.4 with 0

3  for ω = 4, χ = 85
o
: (a) real part and (b) 

imaginary part. (m-odd = 6, m-even = 4) 

 

Figure 4.44 Real part of x component of induced velocity vx for y = 0.0, z = 0.0 with 1

2  for ω = 0, χ = 85
o
.
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Figure 4.45 Real part of x component of induced velocity vx for y = 0.0, z = 0.4 with 1

2  for ω = 0, χ = 85
o
.
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(b)  

Figure 4.46 x component of induced velocity vx for y = 0.0, z = 0.0 with 1

2  for ω = 4, χ = 85
o
: (a) real part and (b) 

imaginary part. (m-odd = 6, m-even = 4) 
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(b)  

Figure 4.47 x component of induced velocity vx for y = 0.0, z = 0.4 with 1

2  for ω = 4, χ = 85
o
: (a) real part and (b) 

imaginary part. (m-odd = 6, m-even = 4) 
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Chapter 5: Reduced Number of States 

For the results in Chapter 4, either 25 states or 74 states are used.  A large number of states 

were employed in order to verify that the present methodology does converge to the exact 

solution.  For many applications of real-time simulation, it is valuable to be able to produce low-

fidelity results with many fewer states−but still with sufficient accuracy for valid flight 

mechanics.  Therefore, it is necessary to seek a solution with many fewer states and acceptable 

accuracy.  Many runs have been done in this research that involve varying both the number of 

even states and the number of odd states in order to find the lower bound of the number of states 

necessary for a realistic solution for the average and gradients of flow over the disk.  This 

chapter presents the results of that search. 

For the test case, the pressure distribution is considered to be elliptical.  This is because this is 

the first-order approximation to disk loading.  All of the results have 2 harmonics for the odd 

terms (enough to give minimal spatial resolution) and 1 harmonic for the even terms (enough to 

give gradients in the x and y directions).  This model has only six states, which is comparable to 

the Pitt model used in most flight simulators.  Results are shown in Figs. 5.1−5.16.  Figures 

5.1−5.2 give the axial velocity with constant loading (ω = 0), and the induced velocity on the 

disk (z = 0.0) and below the disk (z = 0.4) are calculated.  The results with dynamic loading with 

different frequencies (ω = 2, 3, 4) are also investigated in Figs. 5.3−5.8.  For the axial velocity 

with ω = 0, the 6-state solution (m-odd = 2, m-even = 1) both on the disk and below the disk still 

show great correlation with the exact solution.  For the dynamic loading which ω = 2, the 6-state 

solution still gives good prediction, and it has the same oscillation compared with the exact 

solution.  However, the result start to deteriorate when ω > 3.  Figures 5.9−5.16 are the x 
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component of the induced velocity with 6 states.  The same phenomena can be observed that the 

result with reduced number of states matches the exact solution only if ω < 3. 

 

Figure 5.1 Real part of axial velocity vz for y = 0.0, z = 0.0 with 0

1  for ω = 0, χ = 85
o
.
 
(m-odd = 2, m-even = 1) 

 

Figure 5.2 Real part of axial velocity vz for y = 0.0, z = 0.4 with 0

1  for ω = 0, χ = 85
o
.
 
(m-odd = 2, m-even = 1) 
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(a)  

(b)  

Figure 5.3 Axial velocity vz for y = 0.0, z = 0.0 with 0

1  for ω = 2.0, χ = 85
o
: (a) real part and (b) imaginary part. (m-

odd = 2, m-even = 1) 

x

-2.0 -1.0 0.0 1.0 2.0

R
ea

l 
P

ar
t 

o
f 

A
x
ia

l 
In

d
u
ce

d
 V

el
o
ci

ty
, 

v z

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

Blended method

Nowak-He method

Morrilo-Duffy method

Exact solution 

Downstream

m-odd = 2

m-even = 1

m-odd = 2

m-even = 1

x

-2.0 -1.0 0.0 1.0 2.0

Im
ag

in
ar

y
 P

ar
t 

o
f 

A
x

ia
l 

In
d

u
ce

d
 V

el
o

ci
ty

, 
v z

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Blended method

Nowak-He method

Morrilo-Duffy method

Exact solution

Downstream



90 

 

(a)  

(b)  

Figure 5.4 Axial velocity vz for y = 0.0, z = 0.4 with 0

1  for ω = 2.0, χ = 85
o
: (a) real part and (b) imaginary part. (m-

odd = 2, m-even = 1) 
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(a)  

(b)  

Figure 5.5 Axial velocity vz for y = 0.0, z = 0.0 with 
0

1  for ω = 3.0, χ = 85
o
: (a) real part and (b) imaginary part. (m-

odd = 2, m-even = 1) 
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(a)  

(b)  

Figure 5.6 Axial velocity vz for y = 0.0, z = 0.4 with 0

1  for ω = 3.0, χ = 85
o
: (a) real part and (b) imaginary part. (m-

odd = 2, m-even = 1) 
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(a)  

(b)  

Figure 5.7 Axial velocity vz for y = 0.0, z = 0.0 with 0

1  for ω = 4, χ = 85
o
: (a) real part and (b) imaginary part. (m-

odd = 2, m-even = 1) 
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(a)  

(b)  

Figure 5.8 Axial velocity vz for y = 0.0, z = 0.4 with 0

1  for ω = 4, χ = 85
o
: (a) real part and (b) imaginary part. (m-

odd = 2, m-even = 1) 
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Figure 5.9 Real part of x component of induced velocity vx for y = 0.0, z = 0.0 with 0

1  for ω = 0, χ = 85
o
.
 
(m-odd = 

2, m-even = 1) 

 

Figure 5.10 Real part of x component of induced velocity vx for y = 0.0, z = 0.4 with 0

1  for ω = 0, χ = 85
o
.
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(a)  

(b)  

Figure 5.11 x component of induced velocity vx for y = 0.0, z = 0.0 with 0

1  for ω = 4, χ = 85
o
: (a) real part and (b) 

imaginary part. (m-odd = 2, m-even = 1) 

x

-2.0 -1.0 0.0 1.0 2.0

R
ea

l 
P

ar
t 

o
f 

x 
C

o
m

p
o

n
et

 o
f 

In
d

u
ce

d
 V

el
o

ci
ty

, 
v x

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Blended method

Huang-He method

Morrilo-Duffy method 

Exact solution

Downstream

m-odd = 2

m-even = 1

x

-2.0 -1.0 0.0 1.0 2.0Im
ag

in
ar

y
 P

ar
t 

o
f 

x 
C

o
m

p
o

n
et

 o
f 

In
d

u
ce

d
 V

el
o

ci
ty

, 
v x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Blended method

Huang-He method

Morrilo-Duffy method 

Exact solution

Downstream

m-odd = 2

m-even = 1



97 

 

(a)  

(b)  

Figure 5.12 x component of induced velocity vx for y = 0.0, z = 0.4 with 0

1  for ω = 4, χ = 85
o
: (a) real part and (b) 

imaginary part. (m-odd = 2, m-even = 1) 
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(a)  

(b)  

Figure 5.13 Real part of x component of induced velocity vx for y = 0.0, z = 0.0 with 0

1  for ω = 2.0, χ = 85
o
: (a) real 

part and (b) imaginary part. (m-odd = 2, m-even = 1) 
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(a)  

(b)  

Figure 5.14 Real part of x component of induced velocity vx for y = 0.0, z = 0.4 with 0

1  for ω = 2.0, χ = 85
o
: (a) real 

part and (b) imaginary part. (m-odd = 2, m-even = 1) 
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(a)  

(b)  

Figure 5.15 Real part of x component of induced velocity vx for y = 0.0, z = 0.0 with 0

1  for ω = 3.0, χ = 85
o
: (a) real 

part and (b) imaginary part. (m-odd = 2, m-even = 1) 

x

-2.0 -1.0 0.0 1.0 2.0

R
ea

l 
P

ar
t 

o
f 

x 
C

o
m

p
o

n
et

 o
f 

In
d

u
ce

d
 V

el
o

ci
ty

, 
v x

-2

-1

0

1

2

3

Blended method

Huang-He method

Morrilo-Duffy method 

Exact solution

Downstream

m-odd = 2

m-even = 1

x

-2.0 -1.0 0.0 1.0 2.0Im
ag

in
ar

y
 P

ar
t 

o
f 

x 
C

o
m

p
o

n
et

 o
f 

In
d

u
ce

d
 V

el
o

ci
ty

, 
v x

-4

-3

-2

-1

0

1

2

3

Blended method

Huang-He method

Morrilo-Duffy method 

Exact solution

Downstream

m-odd = 2

m-even = 1



101 

 

(a)  

(b)  

Figure 5.16 Real part of x component of induced velocity vx for y = 0.0, z = 0.4 with 0

1  for ω = 3.0, χ = 85
o
: (a) real 

part and (b) imaginary part. (m-odd = 2, m-even = 1) 
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It has been seen the 6-state model can give reasonable results both on and off the disk for all 

components of induced velocity when the reduced frequency is less than 3.0.  This frequency 

range is typical of the frequency range of flight mechanics and controls simulations.  Existing 

flight simulations that use the Pitt model have only 6 states, but they only compute the normal 

component of flow on the disk.  It implies that these simulations could upgrade to this new 

model with very little increase in computational costs over the present models.  With the 

upgrade, they could compute all three components of flow both on and off the disk.  The 

consequence of this is that the present model is very practical for use in helicopter flight 

simulation programs.  The model is ready to use in its present form for such applications with 

only a few states. 
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Chapter 6: Nonlinear Extensions 

For the models which are discussed in the previous chapters, the flows are linearized about 

the free-stream velocity V .  Such linear model is quite good in the cruise condition.  However, 

there are certain nonlinear terms that are also important for helicopters in low speed flight or 

hover.  The nonlinearities that we discussed here are: 1.) mass flow nonlinearity, 2.) wake skew 

nonlinearity, 3.) wake contraction, and 4.) wake curvature. 

6.1  Mass Flow Nonlinearity 

For a helicopter in hover, V  goes to zero; and the induced velocity computed from those 

equations will become infinity when the time increase.  The reason for this singularity is that the 

mass flow parameter in the linearized model is based purely on the free-stream velocity.  

According to momentum theory, the mass flow must also include the induced flow through the 

rotor.  This can be accomplished by attention to momentum theory to give the correct mass flow 

parameter.  When this is done, then the finite-state model in steady, axial flow will agree exactly 

with classical momentum theory.  To make the theory compatible with nonlinear momentum 

theory, it is necessary to replace the V  term with the total average flow at the rotor. 

2 2 2sin ( cos )T zV V V v                                           (6.1) 

The mass-flow parameter is defined by the perturbation quantity: 

 

2 2sin ( cos )( cos 2 )

z T

z

z z

T

d
V v V

dv

V V v V v

V

    



  


                    (6.2) 
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Then Eq. (3.33) with Nowak-He variables can be modified by inserting the  V  matrix on the 

left-hand side of the equations. 

     
*

1
c m c c c m c m

n n nnew new
M D V L M D  

 
                    

 
                 (6.3) 

where  V  is a diagonized matrix, 

[ ]

TV

V

V V

V

 
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 
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 
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                                                        (6.4) 

and 

  1

oe

new
eo ee

I M
M

M A M

 
  
 

                                                                          (6.5) 

   
1

1

0
3

0

c

z new
v L M 



 
 
 

    
 
  

                                                                   (6.6) 

Equations (6.3) to (6.6) give a nonlinear version of the model that reduces to momentum 

theory in hover. 

6.2  Wake Skew Nonlinearity 

The [L] matrix in Eq. (6.3) depends on the wake skew angle.  As with the mass flow 

parameter, the wake skew angle must also take into account the effect of the induced flow at the 
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rotor disk on the equivalent wake skew angle.  This introduces another set of nonlinearities into 

the model, since the [L] matrix will then depend on the states through the wake skew parameter 

tan( / 2)X  .  Based on the thesis by He [18], the effective skew angle and skew angle 

parameter are: 

   eff arctan sin / cos zV V v   
  
 

                                   (6.7) 

 effarctan( / 2) sin / cosT zX V V V v                          (6.8) 

Equations (6.7) and (6.8) give the effective nonlinearity on the wake skew parameter that is to go 

into the [L] matrix. 

6.3  Effect of Wake Contraction 

Based on the continuity equation, the rotor wake will contract downstream as the pressure in 

the wake expands to atmospheric pressure and the induced flow increases.  The amount of the 

induced flow increases for the nonlinear model—shown in Eq. (6.3)—is determined from the 

Adjoint theorem for the downstream velocity.  What remains, then, is to write a mapping from 

the linear velocity space of the original model, to a warped space that will produce the wake 

contraction necessary to ensure continuity.  The velocity field for the non-deformed geometry is 

shown in Eq. (6.8), and the geometric basis for this contraction mapping is illustrated in Fig. 6.1. 

2 1

1

0 0

1
( ) ( )z z

r

v v z a v z a rdrd





  

                                      (6.8) 

The average velocity within the circular cross-section of the wake at the plane of z = a is 

expressed in Eq. (6.7). 



106 

 

 

Figure 6.1 Contraction mapping. 

From the continuity equation, one obtains 

   2 2

0 0 0 1 1 1cos cosR W R W                                          (6.9) 

where 

0
0

0

1
1

1
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V v
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V v
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
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                                                                                                 (6.10) 

Then the radius of the rotor wake downstream can be found in (6.11). 

0
1 0

1

V v
R R

V v









                                                            (6.11) 

The contraction factor at that plane is defined as 

0

1

V v
K

V v









                                                                (6.12) 

For the hover case, 0V  , Eq. (6.12) will be reduced to Eq. (6.13). 
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0

1

v
K

v
                                                                    (6.13) 

When the contraction factor (K) is introduced, it gives 

1
0

0

01
0

0 0

,  for 1;

1
,  for 1.

r
K r

r

K rr
r

r r


 




   



                                          (6.14) 

For the nonlinear model with wake contraction, the Nowak-He variables are used; and only 

the constant loading case is illustrated.  The results have 4 harmonics for the odd terms and no 

harmonic for the even terms.  The z coordinate is the axial axis of the rotor disk and z > 0 for 

below the disk.  The average velocities on the rotor disk, below and above the rotor disk for 

different free stream velocities are tabulated in Table 6.1.  The contraction factor can also be 

computed using Eq. (6.12).  As it is shown in Table 6.1, the contraction ratio will approach unity 

when the free-stream velocity becomes large compared to the induced flow.  The wake will be 

contracted below the disk, while it will be expanded above the disk.  For the free-stream velocity 

equals zero, the wake curvature is the largest, and the rotor wake becomes rigid when it gets 

bigger.  For V∞ = 0.0, the real part of axial velocity for y = 0.0, with 0

1  for ω = 0 and χ = 0
o
 at z 

= 0, 0.4 and -0.4 is shown in Figs. 6.2−6.4, respectively.  The result with wake contraction is 

represented by the black solid line, and the velocity without wake contraction is denoted by the 

green dashed curve.  They are plotted in the same graph for comparison.  For the velocity on the 

disk (z = 0), the two curves are identical.  To better illustrate the rotor wake shape at the different 

free stream velocities, the wake contraction streamlines for V∞ = 0.0, 0.1 and 0.4 are 

demonstrated in Figs. 6.5−6.7, respectively.  The same parameters are used in those figures.  For 
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V∞ = 0.4, the wake contraction streamlines are almost flat, and little wake contraction 

phenomenon can be observed. 

Table 6.1 Average induced velocity and the contraction factor 

(y = 0.0, -1 < x < 1 with 
0

1  for ω = 0, χ = 0
o
, (m-odd = 4, even = 0)) 

z  
V∞ 

0.0 0.1 0.2 0.3 0.4 

0 0v  0.0581 0.0286 0.0172 0.012 0.0092 

0.4 1v  0.0863 0.0425 0.0256 0.0179 0.0137 

K 0.8205 0.9500 0.9812 0.9907 0.9945 

1.0 1v  0.1020 0.0502 0.0302 0.0212 0.0162 

K 0.7547 0.9253 0.9714 0.9856 0.9916 

-0.2 1v  

K 

0.0403 0.0198 0.0119 0.0083 0.0064 

1.2007 1.0361 1.0124 1.0060 1.0034 

-0.4 1v  

K 

0.0299 0.0147 0.0089 0.0062 0.0047 

1.3940 1.0589 1.0197 1.0094 1.0055 

 

 

Figure 6.2 Real part of axial velocity Vz for y = 0.0, z = 0.0 with 0

1  for ω = 0, χ = 0
o
, V∞ = 0.
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Figure 6.3 Real part of axial velocity vz for y = 0.0, z = 0.4 with 0

1  for ω = 0, χ = 0
o
, V∞ = 0.

 
(m-odd = 4, m-even = 

0) 

 

Figure 6.4 Real part of axial velocity vz for y = 0.0, z = -0.4 with 0

1  for ω = 0, χ = 0
o
, V∞ = 0.
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Figure 6.5 Wake contraction streamlines with 0

1  for ω = 0, χ = 0
o
, V∞ = 0.

 
(m-odd = 4, m-even = 0) 

 

Figure 6.6 Wake contraction streamlines with 0

1  for ω = 0, χ = 0
o
, V∞ = 0.1.
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Figure 6.7 Wake contraction streamlines with 0

1  for ω = 0, χ = 0
o
, V∞ = 0.4.

 
(m-odd = 4, m-even = 0) 

6.4  Nonlinearity due to Wake Curvature 
An important development in the history of dynamic inflow was the realization that wake 

curvature (during, for example, a pull-up maneuver) has a profound effect on the induced flow 

field which, in turns, changes the handling qualities.  This effect could be introduced into the 

Pitt-Peters model through a simple, curved momentum tube analysis or a curved vortex-tube 

analysis [19].  This resulted in extra terms in the [L] matrix that were functions of wake 

curvature κ and X.  Thus, the theory is for small curvature. 

This effect could also be incorporated into the He model through appropriate integrals [20].  

These also involved κ and products of κ and X.  Thus, the wake curvature effects are nonlinear.  

In Fig. 6.8, the wake distortion parameters for wake contraction, wake skew and wake curvature 

are illustrated.  The wake contraction is due to the helicopter in hover condition which has 

described in the previous sections.  The contraction parameter V is the summation of the non-

dimensional freestream velocity (η) and twice of the induced velocity at the rotor disk (ν).  For 
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the helicopter in forward flight, the wake will be skewed with an angle of χ.  For perfect 

edgewise flow, such skew angle will be 90
o
 and the skew parameter becomes 1.  The wake 

curvature parameter κ is 1/R, where R is the curvature radius of the wake.  This wake curvature 

parameter then will be put into the Peters-He finite state inflow model which is given in Eqs. 

(6.15) –(6.16).  In Eq. (6.16), nkC  represents wake curvature inflow coupling. 

     
*

11 1

new

1

2

c m

k k nM L  
 

     
 

                                   (6.15) 

where 

     
1 1
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                                                  (6.16) 

 

Figure 6.8 Wake distortion parameters 

Finally, Ref. [21] demonstrated that, for accurate correlations, the mass flow parameter V, the 

wake skew parameter X, and the wake curvature parameter κ should not be instantaneously 
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changed as the flow variables changes.  Rather, these three parameters need to be run through a 

first-order filter to give some time delay between a change of flight condition and the resultant 

changes in V, VT, X or κ.  Reference [21] found the correct time constants for these first-order 

time delays from experiments with free-wake analysis.  This wake curvature effect and the first-

order filters, introduce further nonlinearities into the model.   

Since the present model is now formulated in terms of Huang-He variables, the previous work 

on wake curvature and time delays applies directly to the present model exactly as prescribed in 

[21].  The extra curvature terms in the He [L] matrix can be directly placed into the odd-odd 

partition of the present [L] matrix when it is in the Huang-He form.  With this addition, the 

model posed here is a complete, nonlinear model for all three components of flow everywhere in 

the flow field. 
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Chapter 7: Conclusions 

This dissertation has introduced a new methodology to obtain rotor induced velocity either on 

the rotor disk or off the disk.  The induced velocity below the rotor disk can be computed 

through an adjoint theorem.  The Nowak-He variables and Huang-He variables are both obtained 

from a single set of states through a change of variables.  To make the solution converge well at 

all skew angles, the Morillo-Duffy solution and the change of variable solution (for example, 

Nowak-He solution for axial induced velocity, and Huang-He solution for x-component of the 

induced velocity) are blended with a closed-form downstream velocity (which is exact for 

perfectly edge-wise flow).  This downstream flow is also obtained through an application of the 

Adjoint Theorem.  Comparisons with the exact solution for steady and unsteady flow verify the 

effectiveness of the new approach.  The extended blending method also showed better 

correlation with the exact solution. 

In order to reduce the cost of computation, a version of the model with many fewer states has 

also been investigated.  The reduced-order model has 2 harmonics for odd terms and 1 harmonic 

for even terms.  Results with this reduced-order model for both axial velocity and swirl velocity 

still show good performance compared with the exact solution for reduced frequency less than 3. 

Finally, the model has been extended to include important nonlinear terms.  These are 

introduced to describe nonlinearities due to nonlinear momentum effects and nonlinear geometry 

effects due to wake deformations−including the wake contraction of the rotor slipstream.  The 

contraction ratio is introduced, and it varies from 0 to 1.  The contraction ratio approaches unity 

when the free stream velocity increases, which implies the rotor wake will become rigid when 

the free stream velocity increases, which implies the rotor wake will become rigid when the free 
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stream velocity is large enough.  Nonlinearities are also introduced due to wake skew and wake 

curvature, making the model complete. 

This new model is ready to be incorporated into production codes in the rotorcraft industry 

both for real-time flight simulation and for preliminary design calculations. 
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Appendix 1: Coordinate System 

The ellipsoidal coordinate system  , ,    is defined as 

 2 21 1 cosx      
                                     

(A1.1) 

 2 21 1 siny     
                                      

(A1.2) 

z                                                         (A1.3) 

where the coordinates ,   and   are restricted to the following range 

1 1                                                        (A1.4) 

0                                                      (A1.5) 

0 2                                                     (A1.6) 

Figure A1.1 shows the ellipsoidal coordinate system viewed in the xz  plane.  The surfaces for 

 constant are hyperboloids and the surfaces for   constant are ellipsoids.  For the special 

case, 0   represents the flat circular plane, and is anti-symmetric along the plane which 

contains the 0   circular plane.   is the azimuth angle measured from the negative x  axis, 

with counterclockwise direction viewed along the positive z  axis.   

The non-dimensional radial position with the ellipsoidal coordinates could be obtained from 

equations (A1.1) and (A1.2), which is 

  2 2 2 2 2 2 2 21 1r x y z          
                       

(A1.7) 
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Similarly, from equation (A1.1), (A1.2) and (A1.1), the ellipsoidal coordinates ,  and   can 

be expressed in terms of ,x y  and z as 

 
 

2
21 1 4

2

sign z
S S z


    

                          

(A1.8) 

 
2

21
1 1 4

2
S S z     

                                

(A1.9) 

1tan
y

x
   
  

                                            
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where 

2 2 2S x y z                                            (A1.11) 

 

Figure A1.1  Ellipsoidal coordinate system 
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Appendix 2: Normalized Associated 

Legendre Functions 

In the ellipsoidal coordinate system defined in Appendix 1, the Laplace's equation takes the 

form 

   
 

  

2 2

2 2

2 2
1 1 0

1 1

 
 

      

        
                        

(A2.1) 

Using the principle of separation of variables to solve equation (A2.1), the Laplace equation is 

expressed by a multiplication of three separated parts which are only functions of ,  and   

respectively.  

       1 2 3, ,        
                                  

(A2.2) 

Applying Eq. (A2.2) to Eq. (A2.1), the Laplace equation can be separated into the following 

three equations 

2
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(A2.5) 

where m  and n  are the constant of separation.  
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Equations (A2.4) and (A2.5) are Legendre's associated differential equations, and the 

solutions to which are the associated Legendre Functions of the first kind and the second kind (

 m

nP  ,  m

nP i ,  m

nQ   and  m

nQ i ).  Since  m

nP i  and  m

nQ   will yield an infinite 

pressure in the flow field, so they are omitted.  

For the purpose of this research, the associated Legendre functions of the first and second 

kind are normalized as 
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(A2.9) 

In this research, numerical codes are developed to compute all the required values of  m

nP   

and  m

nQ i  based on the following recurrence relations 
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In order to calculate to the derivation of  m

nP   and  m

nQ i , the recurrence relations for  are 

given by 
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where m

nK  is defined by Eq. (A2.22)   
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A2.2 Area Integrals 
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where 
m
jnA , 

m
jnG  and 

m
jnD  are defined as: 
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