Joseph Ball

Virginia Tech

Beurling-Lax representation for weighted Bergman-shift invariant subspaces

Abstract

The Beurling-Lax-Halmos theorem tells us that any invariant subspace \mathcal{M} for the shift operator $S: f(z) \mapsto zf(z)$ on the vectorial Hardy space over the unit disk $H_{\mathcal{Y}}^2 = \{f(z) = \sum_{j=0}^{\infty} f_j z^j : ||f||^2 = \sum_{j\geq 0} ||f_j||^2 < \infty\}$ (the Reproducing Kernel Hilbert Space with reproducing kernel $K(z, w) = (1 - z\overline{w})^{-1}I_{\mathcal{Y}}$) can be represented as $\mathcal{M} = M_{\Theta}H_{\mathcal{U}}^2$ where $M_{\Theta}: H_{\mathcal{U}}^2 \to H_{\mathcal{Y}}^2$ is an isometric multiplication operator $M_{\Theta}: u(z) \mapsto \Theta(z)u(z)$. We focus on three constructions of $\Theta(z)$:

(1) the wandering subspace construction of Halmos: $\mathcal{M} = \bigoplus_{j \ge 0} S^j(\mathcal{M} \ominus S\mathcal{M}) = M_{\Theta}H_{\mathcal{U}}^2$ where M_{Θ} is constructed so that $M_{\Theta} : H_{\mathcal{U}}^2 \to \mathcal{M} \ominus S\mathcal{M}$ is unitary;

(2) as the Sz.-Nagy–Foias characteristic function $\Theta_T(z)$ of the $C_{\cdot 0}$ contraction operator $T = P_{\mathcal{M}^{\perp}}S|_{\mathcal{M}^{\perp}}$, and

(3) via the **functional-model realization formula** $\Theta(z) = D + zC(I - zA)^{-1}B$ where $\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} S^* & S^*M_{\Theta} \\ \mathbf{ev}_0 & \Theta(0) \end{bmatrix}$: $\begin{bmatrix} \mathcal{M}^{\perp} \\ \mathcal{U} \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{M}^{\perp} \\ \mathcal{Y} \end{bmatrix}$ with $\mathbf{ev}_0 : f \mapsto f(0)$ is unitary.

We discuss analogues of these results for the weighted Bergman-shift operator $S_n: f(z) \mapsto zf(z)$ acting on the weighted Bergman space $\mathcal{A}_{n,\mathcal{Y}} = \{f(z) = \sum_{j\geq 0} f_j z^j : \|f\|^2 = \sum_{j\geq 0} \mu_{n,j} \|f_j\|_{\mathcal{Y}}^2 < \infty\}$ (where $\mu_{n,j} = 1/\binom{j+n-1}{j}$ are reciprocal binomial coefficients), or $\mathcal{A}_{n,\mathcal{Y}}$ is the Reproducing Kernel Hilbert Space with reproducing kernel equal to $K_{n,\mathcal{Y}}(z,w) = (1-z\overline{w})^{-n}I_{\mathcal{Y}}$, as well as for the freely noncommutative weighted Bergman shift-tuple $\mathbf{S}_n = (S_{n,1},\ldots,S_{n,d})$ where $S_{n,j}: f(z) \mapsto f(z)z_j$ $(j = 1,\ldots,d)$ on the weighted Bergman-Fock space $\mathcal{A}_{n,\mathcal{Y}}(\mathbb{F}_d)$ consisting of formal power series $f(z) = \sum_{\mathfrak{a}\in\mathbb{F}_d} f_\mathfrak{a} z^\mathfrak{a}$ for which $\|f\|^2 = \sum_{\mathfrak{a}\in\mathbb{F}_d} \mu_{n,|\mathfrak{a}|} \|f_\mathfrak{a}\|^2 < \infty$ (\mathbb{F}_d is the free semigroup (also called the monoid) on d generators $1,\ldots,d$, $z = (z_1,\ldots,z_d)$ is a d-tuple of freely noncommuting indeterminates, $z^\mathfrak{a}$ is the noncommutative monomial $z^\mathfrak{a} = z_{i_1} \cdots z_{i_N}$ if $\mathfrak{a} = i_1 \cdots i_N$, $|\mathfrak{a}|$ is the **length** of \mathfrak{a} (equal to N if $\mathfrak{a} = i_1 \cdots i_N$). This talk reports on joint work with Vladimir Bolotnikov of the College of William and Mary.

Talk time: 07/21/2016 6:00PM— 07/21/2016 6:20PM Talk location: Crow 206

Special Session: Non-commutative inequalities. Organized by J.W. Helton and I. Klep.