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ABSTRACT OF THE DISSERTATION

Optimal Control for Autonomous Motor Behavior

by

Tom Erez

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2011

Research Advisor: Professor William D. Smart

This dissertation presents algorithms that allow robots to generate optimal behavior

from first principles. Instead of hard-coding every desired behavior, we encode the

task as a cost function, and use numerical optimization to find action sequences

that can accomplish the task. Using the theoretical framework of optimal control,

we develop methods for generating autonomous motor behavior in high-dimensional

domains of legged locomotion.

We identify three foundational problems that limit the application of existing optimal

control algorithms, and present guiding principles that address these issues. First,

some traditional algorithms use global optimization, where every possible state is

considered. This approach cannot be applied in continuous domains, where every

additional mechanical degree of freedom exponentially increases the volume of state

space. In order to sidestep this curse of dimensionality, we focus on trajectory opti-

mization, which finds locally-optimal solutions while scaling only polynoimally with

state dimensionality. Second, many algorithms of optimal control and reinforcement
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learning cannot be directly applied to continuous domains with contacts, due to the

non-smooth dynamics. We present techniques of contact smoothing that enable the

use of standard continuous optimization tools. Finally, domains of legged locomotion

give rise to extremely non-convex optimization, which is riddled with local minima.

This issue is addressed by using a shaping protocol (homotopy-continuation), whereby

the solution of an easier variant of the problem is used as initial guess for a harder

variant of the problem, gradually finding a solution to the original domain.

In dynamic environments, effective behavior requires feedback control, which provides

appropriate reaction to changing circumstance. We present tools that generate adap-

tive autonomous behavior through local optimization, and scale well to domains with

over 60 state-space dimensions. We present a series of experiments that demonstrate

robust and reactive motor behavior in domains of increasing complexity. First, a

multi-joint swimmer which can follow a moving target, withstand violent perturba-

tions, and avoid moving obstacles. Second, a one-legged hopper that can maintain

its gait through both perturbations and morphological alteration. And finally, two

bipeds: a planar walker, and a 3D runner that uses its arms to balance its gait.
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Chapter 1

Introduction

We are interested in developing tools that can endow artificial agents with motor in-

telligence — the capacity to behave autonomously in a complex physical environment,

anticipating the results of your actions, achieving goals and avoiding pitfalls. Many

of the robotic systems built today derive their motor controllers from a patchwork of

heuristics, hard-coded by a dedicated team of control engineers. This approach can

generate effective and robust feedback control, such as Boston Dynamics’ Big Dog

robot, which can recover its gait even when violently perturbed. In contrast, we wish

to develop algorithms that can generate reactive motor behavior from first princi-

ples, and can be applied to a variety of domains without demanding human input

and excessive manual tuning. The optimization methods presented here allow for the

emergence of robust controllers in a variety of domains, and our experiments show

simulated robots that can demonstrate “motor creativity”, i.e., open-ended behavior,

which was not pre-programmed.

We take a model-based approach, studying tasks which are defined by a general-form

cost function2 and a dynamic model, both treated as a black box (meaning that no

analytic manipulation of these functions is needed). This is an appealing paradigm,

because it offers an intuitive scheme — it is easier to specify which states are desirable

than to directly craft the policy that realizes these goals. We focus on optimizing

behavior in continuous, high-dimensional domains, and particular attention is given

to legged locomotion, which is studied as a test-case for domains with contacts. In

such cases, the dynamics change dramatically according to whether a contact is made

or broken, giving rise to particularly challenging optimization problems.

2In this dissertation I make the arbitrary choice of defining optimization in terms of minimizing
costs, instead of the equivalent formulation of maximizing rewards.
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This work is couched in two sibling domains: Computational Reinforcement Learn-

ing [Sutton and Barto, 1998], a theoretical framework for optimizing sequential decision-

making (i.e., behavior), and Optimal Control [Stengel, 1994], a discipline within con-

trol theory that deals with a similar set of questions. The methods presented in

this dissertation draw on the knowledge of both fields in equal amounts, and the

terminologies of both are used interchangeably.

1.1 Three challenges

This work stems from the identification of three major challenges which must be

overcome when applying optimal control to high-dimensional domains with contacts.

Here I explain the fundamental difficulty in each case, and review the guiding prin-

ciples I propose to handle them. The main contribution of this dissertation is the

development of methods that are effective in the face of these issues.

1.1.1 The curse of dimensionality

Many techniques of reinforcement learning and optimal control identify the globally-

optimal policy by applying some form of dynamic programming to an enumeration

of all possible states. However, this global approach does not scale well to continuous

domains, whose states cannot be enumerated; worse yet, the volume of a continu-

ous state space (i.e., the “number” of states) grows exponentially with each added

degree of freedom, a phenomenon known as the curse of dimensionality. Therefore,

finding a globally-optimal policy is prohibitively hard in high-dimensional, nonlinear

continuous models in the general case.

In light of this observation, my dissertation develops techniques for identifying lo-

cally optimal behavior, by focusing on optimizing a single trajectory. I argue that

this compromise is not only computationally imperative, but that it is also stands

in agreement with the way motor behavior develops in the natural world, whether

2



through phylogeny (where genetic variations occur locally and independently) or on-

togeny (where radically novel ways of performing a certain task are rarely introduced,

if ever).

1.1.2 Physics modeling

The algorithms presented in this dissertation are model-based — the behaving agent

has access to a model of the world’s physics, and this model is used to identify

optimal behavior. In this class of algorithms, simulating the dynamics is the most

computationally-intensive component of the optimization. As such, an efficient way

to compute the dynamics is crucial to enable effective optimization. This dissertation

makes use of MuJoCo, a new software tool developed by Todorov [2011a], which is

described in more detail in section 2.4.1.

In order to study terrestrial locomotion, the reaction forces between the ground and

the feet must be modeled. However, these collisions have a discontinuous nature,

which may cause standard algorithms of numerical optimization to fail. Various ap-

proaches have been proposed to simulate the reaction forces due to contact. Adding a

spring-damper unit at every contact point yields a continuous-state, continuous-time

approximation, but the parameters of the underlying equations are notoriously hard

to tune, and the simulation of the resulting stiff differential equation can be numer-

ically challenging. One alternative is to use a hybrid model, where the state space

is augmented with discrete variables indicating the contact state, and the continu-

ous dynamics change for every possible contact state. Hybrid modeling is commonly

used in the control theory community for bipedal locomotion [e.g., Chevallereau et al.,

2003], but standard algorithms of optimal control cannot tackle the hybrid state space.

Another alternative works is to pose a Linear Complementarity Problem (LCP) at

every time-step (section 2.4.2). LCP is widely used in the graphics community [e.g.,

Wang et al., 2009, Muico et al., 2009], but results in discontinuous dynamics, again

disallowing the use standard continuous optimization.

The work presented here takes a different approach to contact modeling and employs

two different algorithms for contact smoothing. This smoothing is grounded in the

work of Tassa and Todorov [2010] (reviewed in section 2.4.2), who show that when

3



considering LCP in the presence of stochastic dynamics, the expected next state is

a smooth function of the current state. This leads to a model of smooth dynamics

in a discrete-time, continuous-state system, thereby allowing the use of standard

optimization tools. In addition to stochastic LCP, section 6.3.5 reviews a different

smooth contact model which follows a similar scheme, and has the added benefit of

allowing inverse computations.

1.1.3 Sparse success

In addition to the curse of dimensionality and the challenge of modeling contacts,

another source of difficulty can be identified by considering the variability of perfor-

mance across the space of all possible policies.

In the swimming task discussed in chapter 3, for almost all possible body configu-

rations there exists an action that would decrease the cost. Furthermore, the vis-

cous interaction between swimmer and medium ensures that spurious actions will be

quickly dampened. These factors give rise to a situation where, if we are given some

good policy, we can expect that a minor perturbation of this policy would result in

a minor perturbation of the system’s performance. This means that there are entire

areas of policy space which yield acceptable performance. In short — you cannot fall

when you swim.

This is not the case for bipedal locomotion. Here, the reaction forces provided by the

environment are limited by friction cones, and would not dampen spurious actions;

instead, balance may be lost when the center of mass moves outside the range of

support by the feet, at which stage falling might be unavoidable. In such cases, minor

perturbations to a good policy may have catastrophic results, and so the subset of

policies which yield acceptable behavior is sparse in policy space. This gives rise to

an optimization problem that is riddled with local minima.

This can be overcome through shaping. This concept is drawn from the vocabulary

of behaviorist psychology, and it describes a process in which a solution to a difficult

task is found by first solving a simple variant of this task, and then using that solution

as a first guess for solving progressively harder variants of the task; the equivalent

4



mathematical notion is a homotopy-continuation method [Allgower and Georg, 2003].

Every aspect of the task can be subject to shaping, from the physical properties of

the domain to the parameters of the cost function (see section 2.5); all the legged

behaviors presented in this dissertation are the result of shaping.

1.2 Topics not covered in this dissertation

Before delving into the body of this dissertation, I would like to briefly mention what

this dissertation is not about.

First, I am not making the claim that the control algorithms described here have

direct neural correlates. While I believe that a phenomenological study of motor

behavior would prove useful in the quest for a mechanistic model of motor behavior,

this would be a colossal undertaking, which falls outside the scope of this dissertation.

Generating novel motion patterns in a biomechanically accurate model could be of

great scientific merit, and the algorithms presented here are designed with this goal

in mind. However, careful tuning would be required to make the model a valid

representation of reality, and therefore biomechanical realism is left for future work.

Policy search methods are a popular approach to designing motor behavior in high-

dimensional systems [Theodorou et al., 2010, Wang et al., 2009, Yin et al., 2007,

Riedmiller et al., 2007]. However, these methods require the parameterization of the

policy to be carefully designed in advance. This approach can be effective in many

particular cases, since the parameterization of the policy allows the designer to express

prior knowledge on the system and the expected behavior. Yet, in this dissertation I

try to take a more general approach, describing algorithms that can work even in the

absence of prior expectations on the optimal behavior.

The unobservability of the system’s true state is an important aspect of real-world

behavior that is also not considered here. When physical objects move in space,

their dynamic properties (position and velocity) are often unknown, and must be

inferred from a limited set of noisy observations, whether visual, somatosensory or

electronic. The algorithms I discuss here assume that the state is fully known, and
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leave state estimation as an independent problem. This separation can be justified

by the principle of certainty equivalence, which guarantees that the most likely state

(as identified by an independent estimation process) can reliably serve for feedback

control. In order to maintain a coherent narrative, I do not include in this dissertation

my studies on control in partially observable domains; the interested reader may find

more information in the work of Erez and Smart [2010].

Finally, while the systems studied in this dissertation are stochastic, I am not em-

ploying risk-sensitive and adversarial techniques, which may offer an additional level

of robustness in some cases; for further reading, the interested reader is referred to

Erez and Smart [2009].

1.3 Outline

The remainder of this document is organized into 6 chapters.

• Chapter 2 reviews the mathematical theory and terminology that underpins this

work. I define the various mathematical terms and the optimization criteria

used throughout the dissertation, and review the relevant aspects of physics

modeling. I conclude with a discussion about computational shaping.

• Chapter 3 describes our experiments with Differential Dynamic Programming

(DDP), a sequential algorithm for trajectory optimization. DDP is put to use

in the control of a robotic swimmer in two different settings: first, a library

of optimal trajectories is constructed offline, and a locally-linear feedback con-

troller is employed to control the swimmer simulation in real time. Second,

DDP is used online for Model-Predictive Control (MPC). This chapter is based

on research that is presented by Tassa, Erez, and Smart [2008] and Tassa, Erez,

and Todorov [2011b].

• Chapter 4 presents a Bayesian approach to trajectory optimization, casting the

problem in terms of likelihood estimation. This leads to simultaneous optimiza-

tion of an entire trajectory, and allows for the optimization of limit cycles, as

well as the construction of locally-linear feedback controller around the optimal
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trajectory. The effectiveness of this approach is demonstrated by generating a

stable forward simulation of planar walking and running. This chapter is based

on the work presented by Tassa, Erez, and Todorov [2011a].

• Chapter 5 presents an algorithm called Infinite-Horizon Model-Predictive Con-

trol (IHMPC), which combines offline limit-cycle optimization (using Bayesian

estimation) and online trajectory optimization (using DDP). This chapter shows

how the approximation of a quadratic value function around an optimized limit

cycle can be employed online for augmenting the effective planning horizon of

MPC. IHMPC is demonstrated by controlling a planar hopping task; we derive

a complete solution to the hopping domain, in the sense that the hopper can

effectively recover from any perturbation. As further evidence of robustness,

I present experiments where intentional modeling errors are introduced, and

robust behavior is maintained despite the discrepancy between planning and

simulation. This chapter is based on work that is presented by Erez, Tassa, and

Todorov [2011].

• Chapter 6 presents an alternative algorithm for simultaneous trajectory opti-

mization via inverse dynamics. By relying on the invertability of the convex

contact model described therein, this algorithm allows for rapid and efficient

limit cycle optimization, as demonstrated by the design of a running gait for

a 3D humanoid. This chapter is based on work that is presented by Erez and

Todorov [2011].

• Finally, chapter 7 concludes with a summary of the dissertation, and offers an

array of future research directions that extend the presented work.
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Chapter 2

Background

This chapter provides the mathematical grounding for the algorithms described through-

out the dissertation. We start by making the following definitions (for more in-depth

discussion, the reader may refer to Sutton and Barto [1998] or Stengel [1994]):

State: The systems studied here occupy a unique state x at any given time. In

principle, the state-space may be discrete or continuous, finite or infinite; here

we focus on the case where the state space is continuous and n-dimensional:

x ∈ Rn. Often the state is a concatenation of generalized coordinates q (usually

representing a Cartesian position and joint angles) and the associated velocities

vector q̇ (see section 6.3.2).

Time: We focus on fixed-step integration of continuous equations of motion (sec-

tion 2.4.1). As a general rule, time index is denoted as superscript xk. In the

handful of cases where superscript is needed to denote something different (e.g.

matrix inversion), the time index is relocated to a subscript (e.g., Σ−1
k ).

Action/Control signal: The agency of the behaving agent is realized by the choice

of an action uk at every time step, which affects the next state. In this con-

text, we focus on the continuous, m-dimensional control signal u ∈ Rm, often

representing joint torques.

Dynamics: The evolution of the system’s state over time is a function of the current

state and action. In the context of discrete-time systems, the forward dynamics

are described by a time-stepping function f , specifying the next state x′ as a
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function of the current state and control:

x′ = f(x,u). (2.1)

Stochasticity: We may also consider the case where the state dynamics is subject

to a random perturbation:

x′ = f(x,u) + ξ,

where ξ ∼ N (0,Σ) is an n-dimensional random variable whose distribution is

assumed to be multivariate normal with mean zero and a constant covariance

matrix Σ.

Trajectory: Given an initial state x1 and a control sequence U = u1:N−1, we can

compute the resulting trajectory by integrating the dynamics forward in time

from x1 through N − 1 repeated application of the dynamics (2.1), giving rise

to the trajectory X = x1:N .

Policy: the agent’s behavior is defined in terms of a plan of action. We focus on

the case of a deterministic policy, mapping every state to a particular action:

u = π(x). The conjunction of a policy and an initial state serve to define a

trajectory according to xk+1 = f
(
xk, π(xk)

)
.

2.1 Optimality Criteria

The notion of optimal behavior depends on the definition of a cost function `(x,u),

specifying the penalty the agent incurs from every state-action pair. In addition, a

terminal cost function `N(x) may be evaluated at the last state of a trajectory.

For a given policy π(x), we define the scalar value function (or the cost-to-go function)

V π(x), which denotes the future cumulative cost the agent expects to collect when

starting at state x and acting according to π.

Given a dynamical system and a cost function, the optimal behavior is realized by the

policy π∗, which prescribes at every state the action that would minimize future costs.

The literature considers several alternative definitions for this cumulative cost, which
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are applicable to different circumstances, and may yield different behaviors. Here we

present finite-horizon and infinite-horizon average cost ; finite-horizon optimization is

used in chapter 3, and also in chapter 5 as part of the IHMPC algorithm. Infinite

horizon average cost is used in chapters 4, 5 and 6. For other criteria, such as

discounted infinite-horizon or first-exit, the reader may refer to Sutton and Barto

[1998].

2.1.1 Finite-horizon optimality

In this case, we seek the policy which minimizes the N -step simple cumulative cost.

Given a state x1, the dynamics are integrated for N − 1 steps, and the value of x1 is

simply the sum of all costs along this trajectory:

V π
1 (x1) =

N−1∑
k=1

`
(
xk, π(xk)

)
+ `N(xN). (2.2)

Note that the value is time-indexed, because the planning horizon is different for

every state along the trajectory: while the first state sees the full N -step planning

horizon, state k sees only (N − k)steps ahead, which may lead to myopic behavior.

We can define the value recursively:

V π
k (x) = `

(
x, π (x)

)
+ V π

k+1

(
f(x, π(x)

)
, (2.3)

with the boundary condition V N(x) = `N(x).

The optimal value function V ∗(x) describes the minimal cost-to-go from any state:

V ∗k (x) = min
u

[
`(x,u) + V ∗k+1

(
f(x,u)

)]
, (2.4)

which is a Bellman equation (see section 2.2). By writing the derivative with respect

to u and equating to zero, we recover the optimal policy: u∗ = −`−1
uu(`u + fuV

∗
x ).

We define the Hamiltonian, also known as Q-function [Watkins, 1989], over state-

action pairs:

Qπ
k(x,u) = `(x,u) + V π

k+1

(
f(x,u)

)
, (2.5)
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which considers the current action as a free variable, and follows the designated policy

thereafter. The Bellman equation can be written in terms of the Q-function:

V ∗(x) = min
u
Q∗(x,u). (2.6)

2.1.2 Infinite-Horizon Average Cost

In this case, the optimal policy π∗ minimizes the average cost along the trajectory in

the limit of infinitely-long horizon:

c∗ = min
π

lim
N→∞

1

N

N∑
k=1

`
(
xk, π

(
xk
))
. (2.7)

Given a policy, the value function of the infinite-horizon problem is defined as the

total deviation of the future cumulative cost from the average:

Ṽ π
(
x1
)

= lim
N→∞

[
N∑
k=1

`
(
xk, π

(
xk
))
−Ncπ

]
. (2.8)

In this case, the recursive definition of the optimal value function is not time depen-

dent:

c+ Ṽ ∗(x) = min
u

[
`(x,u) + Ṽ ∗

(
f(x,u)

)]
. (2.9)

A terminal cost is inapplicable in this case (since the trajectory never ends). This

infinite sum can be difficult to compute in the general case; however, when the optimal

behavior results in a limit cycle, the infinite-horizon average cost is simply the average

cost along the closed trajectory.

2.1.3 Comparing optimality criteria

The choice of an optimality criterion has significant implications on the required com-

putational procedure and the resulting behavior. The finite-horizon criterion is easy

to evaluate, but as mentioned above, the optimal policy may exhibit myopic behavior:

towards the end of the trajectory, the planning horizon is limited, and this reduces the
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motivation to take actions of long-term benefit, resulting in greedier optimal behavior

(see figure 3.2). The optimization criterion of infinite-horizon average-cost is immune

to the myopia that plagues the finite-horizon formulation. In the general case, it is

difficult to compute, but in this dissertation the infinite-horizon criterion is only used

in the context of limit-cycle optimization, where it is reduced to minimizing the total

cost along the closed trajectory.

2.2 Value-Function Approximation

The finite-horizon domain has the key property of optimal substructure: given the

current state, the optimal action (in the finite-horizon sense) is independent of any

past states or actions, and the action taken at this time step can only affect costs

(and states) in the future. Therefore, for a given state xk (and horizon N − k), the

problem of finding the optimal behavior in the remaining time is well-defined, and

can be considered independently of the history which led to this state.

This identifies the problem of finding the optimal behavior as amenable to dynamic

programming. In domains with a discrete and finite state space, the finite-horizon

optimal policy may be found by tabulating all state-action pairs, and filling in the

Q-values for every pair. If the domain has terminal states, this can be done through

a single backwards-pass from the terminal states (where the cost-to-go is simply

the immediate cost) through the transition graph, integrating the optimal cost-to-go

backwards:

Q∗(x,u) = `(x,u) + min
u′

Q∗
(
f(x,u),u′

)
.

If there are no terminal states, we may still solve the domain by creating a tabular

approximation Q̃ for every state-action pair, and update it using the Q-learning rule:

Q̃(x,u)← (1− α)Q̃(x,u) + α
[
`(x,u) + min

u′
Q̃
(
f(x,u),u′

)]
, (2.10)

where 0 < α ≤ 1 is the learning rate. For a proper choice of α, this technique is

guaranteed to converge to the optimal Q-function [Watkins, 1989].
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In order to apply this method to a continuous domain, we can discretize the state- and

action- spaces, and build the Q-table over these finite sets. In the limit of infinitely-

fine discretization, the tabular approach is guaranteed to converge to the optimal

policy [Sutton and Barto, 1998]. However, note that this is a global approach, as it

finds the optimal policy for every element of state space. Naturally, the complexity

of a tabular approach scales linearly with the size of the table. Yet, the number

of elements in such a table grows exponentially with the number of state dimen-

sions. Therefore, such a discretization-based table becomes too big to manage in

high-dimensional domains.

One way to alleviate this exponential complexity is through the application of adap-

tive mesh techniques [e.g., Munos and Moore, 1999]. However, the fundamental dif-

ficulty remains, as the volume of state space (and hence, for example, the number of

nodes to prune) still grows exponentially with dimensionality.

2.3 Local methods

Since the globally-optimal policy is computationally intractable in the general case,

the only viable alternative is to focus on techniques that identify locally-optimal

policies. Local algorithms of optimal control fall into two broad categories [Diehl

et al., 2009]: Sequential and Simultaneous, named according to the way the search

space is represented.

2.3.1 Sequential representation

In the finite-horizon case, we can use a sequential approach, and optimize only the

action sequence U. Given a fixed initial state x1, we can measure the total cost of

any given action sequence. For the locally-optimal U∗, any perturbation of the action

sequence δU would result in a higher cumulative cost. It is important to note that this

framework cannot represent (nor optimize) limit cycles, because only specific action

sequences result in an identity between the initial state and the terminal state (i.e.,
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closing the loop). Sequential representation underpins the DDP algorithm (described

in chapter 3, and used again in chapter 5).

2.3.2 Simultaneous Representation

As an alternative, we may apply a simultaneous approach by explicitly representing

the entire trajectory X (and perhaps also the action sequence U). This leads to the

formulation of an optimization problem of the form:

min
X,U

N∑
k=1

`
(
xk,uk

)
s.t. ∀k : ψ

(
xk,uk,xk+1

)
= 0,

where the function

ψ(x,u,x′) = x′ − f(x,u)

imposes dynamical consistency between every consecutive pair of states, treating

equation 2.1 as a constraint. In order to apply this approach to a limit cycle of

period N , we define N + 1 ≡ 1 so that the last state xN is followed by the first state

x1.

Local methods of optimization that use a simultaneous representation include multiple

shooting [Bock and Plitt, 1984] and space-time constraints [Witkin and Kass, 1988].

This approach has also been applied to gait design [Wampler and Popovic, 2009,

Mombaur et al., 2010, Wu and Popović, 2010]. Simultaneous representation underpins

the algorithms discussed in chapters 4, 5 and 6.

2.3.3 Comparing local methods

So which representation is better? The answer, unsurprisingly, depends on the de-

sired goal. The sequential approach often employs fewer variables, and the resulting

trajectories are guaranteed to be dynamically consistent. Furthermore, dynamic pro-

gramming may be applied in this context, leading to efficient computation. However,

sequential algorithms only work with the finite-horizon optimality criterion, and are

therefore inherently inadequate for periodic tasks where a ground contact has to be
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planned in advance. The simultaneous approach allows the optimization to consider

infeasible trajectories; this may prevent getting stuck in some local minima, but

requires machinery for enforcing dynamical consistency, and might result in slower

convergence.

2.4 Modeling the dynamics

As stated in section 1.1.2, all the algorithms presented here rely on efficient com-

putation of the dynamics. This involves two components — simulating the continu-

ous multibody dynamics, and simulating the collisional interaction between feet and

ground.

2.4.1 Multibody simulation

For the mechanical systems considered here, the time-stepping dynamics equation

can be constructed using semi-implicit Euler integration of the equations of motion:

q̇′ = q̇ + hM−1(r +Bu), (2.11a)

q′ = q + hq̇′, (2.11b)

where h is the time-step, q is the configuration, Mk = M(qk) is the mass-matrix,

rk = r(qk, q̇k) is the vector of total Coriolis, centripetal and other intrinsic forces,

and B is the n×m matrix determining which degrees of freedom are actuated (with

m < n for underactuation). The first equation is an Euler integration of the velocity

following Newton’s second equation q̈ = M−1F ; the second equation is an Euler

integration of the position using the new velocity.3

This dissertation makes use of several physics engines that are written in Matlab.

However, chapters 3, 5 and 6 make use of MuJoCo, a new physics engine created by

3In explicit Euler, we use the current velocity to integrate the current position; in semi-implicit
Euler, the new velocity is computed according to the current position, but the position is updated
using the new velocity; in implicit Euler, the new position determines the new velocity, which
determines the new position.
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Todorov [2011a]. MuJoCo is extremely fast for multibody computation due to some

unique properties: it is written in C with no dependency on external libraries; all

the memory space in use is pre-allocated; and, most importantly, it is thread-safe.

This allows us to make maximal use of multi-core processors, and yields substantial

performance gain over most other simulation software.

The heart of the multibody physics computation is the calculation of the mass matrix

M(q) and the intrinsic forces r(q, q̇); for more information on how these are computed

in MuJoCo, see Todorov [2011a]. Most significantly, the complexity of a single call to

the dynamics engine is dominated by the factorization and back-substitution of M

at ∼ O(n3) (where n is the dimension of x). The algorithms presented here make

extensive use of the derivatives of the dynamics; we estimate these derivatives through

finite-differencing. Note that the mass matrix is independent of the velocity; this can

be used to shortcut some of the finite-difference computations.

2.4.2 Stochastic Linear Complementarity

The simulation of ground reaction forces is an open research question; as discussed in

section 1.1.2, we are interested in contact smoothing methods, since smooth dynamics

enable the use of standard optimization tools.

A contact model is expected to fulfil several conditions. Most importantly, the con-

tact forces are expected to fall within the friction cone; the linear complementarity

property [Cottle, 1992] states an additional requirement: a reaction force may only

be applied between objects that are in contact (prohibiting “action-at-a-distance”).

This is a difficult constraint to enforce, because the next contact state depends on

the reaction forces, which depend on the contact state. Modeling this relationship re-

quires the use of the discontinuous operator min(a, b), which results in contact forces

that are a non-smooth function of the state.

The theory of Stochastic Linear Complementarity Problems [Tassa and Todorov,

2010] shows that in the context of a stochastic dynamical system, the expected dy-

namic transition is a smooth function of the state. Here we only repeat the main re-

sult: instead of finding the contact force by solving a linear complementarity problem
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(which can be discontinuous in the inputs), the expected contact force in a stochastic

system can be found by minimizing the SLCP residual, which is a smooth function

of the state. This implies that the minimizing solution (i.e., the reaction force) is a

smooth function of the state.

As mentioned above, the algorithms presented here rely on computing the derivatives

of the dynamics function through finite-differencing, which involve re-computing the

dynamics at a “cloud” of points around the current state. In the context of SLCP,

a direct computation of the dynamics at such a cloud of very close states involves

re-minimization of the SLCP residual; by warm-starting the SLCP optimization with

the previous solution, this can be made computationally efficient. However, finite-

differencing the output of an optimization function is numerically tricky, since numer-

ical optimization involves setting thresholds and termination criteria, and therefore

the result cannot be expected to be accurate in the bits that are below the threshold.

Yet, since all the states in the cloud are very similar, the optimized reaction forces

identify on the leading bits. Therefore, full re-optimization may lead to numerical

inaccuracies and underflow artefacts.

This numerical challenge motivates an alternative approach for finite-differencing the

contact forces. Instead of performing full optimization for every point in the cloud,

the gradient is computed in two steps: first, we find the contact force at the current

state (the “center” of the cloud) by minimizing the SLCP residual as before; then, for

every state in the cloud we take a fixed number of optimization steps, starting from

the contact force at the center of the cloud. This ensures that all the points in the

cloud are subject to the same numerical conditioning, and yields smooth, accurate

derivatives.

2.5 Shaping

As discussed in section 1.1.3, the optimization problems formulated here often exhibit

many local minima; in such a case, a local search is prone to failure, in the sense that

the resulting local optimum might be prohibitively sub-optimal. In order to tackle

this issue, Erez and Smart [2008] discuss the different ways continuation-homotopy

methods may be used to facilitate the solution of optimal control problems.
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The key observation is that a good initialization of the optimization process is critical

in non-convex optimization problems of the type encountered here. This is the cor-

nerstone for the entire endeavor of shaping: the basic premise is to first solve an easy

variant, and then change the task and use the previous solution as an initial guess.

Thus, one tracks a homotopy path through the space of all possible domains, finding

a solution to a sequence of problems, and eventually producing a solution to the hard

variant. While such an approach is inherently limited to finding local optima, it can

enable the solution otherwise prohibitively-hard problems.

The standard shaping protocol involves a modification of the cost function, first re-

warding behavior that only roughly resembles the desired motion pattern, and gradu-

ally making the cost less forgiving. For example, the runner presented in section 4.5.4

is optimized by first solving for a walking behavior (section 4.5.2), and then modi-

fying the desired velocity. In some domains, the level of difficulty is related to some

specific parameters of the model (for example, staying upright is probably easier in

lower gravity, or when your center of mass is closer to the ground). The identification

of such bottleneck parameters can allow us to manipulate the difficulty of the domain

through changing the physics. As a specific example of morphological shaping, the

level of noise assumed to affect the dynamics can greatly affect the expected solu-

tion, as the expected presence of noise leads to smoother and more regular problems

(see figure 2.1). In particular, assuming more noise leads the SLCP algorithm (sec-

tion 2.4.2) to generate smoother ground reaction forces. We used this form of shaping

in the experiments described in chapters 4 and 5.
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Fig. 5. The smooth value function obtained forγ = 0.02. We note that the
HJB residual for this function was smaller by more than an order of magnitude
than for the “sharp” solution.

Fig. 6. Approximation of the optimal value function for the car-
on-the-hill problem. Compare to figs. 3 and 4 of [14] (available at
www.cmap.polytechnique.fr/∼munos).

force to the cart in order to achieve the goal of swinging the
pole up and then stabilizing it over the cart in the center
of the track. The volume of state-space where we solve
the problem isX = {(x, ẋ, θ, θ̇) ∈ R4 : |x| < 3m, |ẋ| <
5m/s, |θ| < π, |θ̇| < 10rad/s}. We used a reward function of
r(x, θ) = cos(θ)− 1

9x
2, cart mass1kg, pole length1m and pole

mass0.1kg. The parameters of eq. (8) wereumax = 3N and
c = 0.01, and the maximal horizon time-scale wasτ = 1.5s.
The learning took place over 10000 points generated quasi-
uniformly across the entire volume, and another 500 points
for clamping constraints at exit regions from the state space.
Here we used both the increase ofτ and the decrease ofγ.
As described earlier, we first increasedτ with a high constant
value ofγ and then decreasingγ after τ had plateaued. Using
a 1049-weight neural net, a typical simulation took about 250
iterations to converge in about 4 hours time. In figure 8 we
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Fig. 7. Approximate optimal policy obtained for the car-on-the-hill problem.
Gray and white areas indicate the maximum and minimum control values,
respectively. Lines indicate some trajectories integrated using this policy.
Compare to figure 4 of [11].
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Fig. 8. Time course of the swing-up trajectory for the cart-pole dynamical
system, starting from the motionless hanging-down position in the center of
the track. The solid line denotes the angle of the pole, the dashed line denotes
the position of the cart. Note that the horizon timescaleτ is only 1.5s, far
shorter than the total swing-up time.

show the solution trajectory starting from the difficult position
of the pole hanging straight down in the middle of the track
with no linear or angular velocity. From this position the
controller must jiggle the cart for a while to accumulate energy
in the pole, then swing the pole up and stabilize it around the
origin. Quite remarkably, the swing-up process requires almost
30 seconds to complete which is considerably longer than the
horizon time-scaleτ = 1.5s.

IV. CONCLUSION

In this paper we’ve shown how using batch least-squares
minimization of the squared HJB residual is a simple and ef-
fective method for solving nonlinear optimal control problems.
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show the solution trajectory starting from the difficult position
of the pole hanging straight down in the middle of the track
with no linear or angular velocity. From this position the
controller must jiggle the cart for a while to accumulate energy
in the pole, then swing the pole up and stabilize it around the
origin. Quite remarkably, the swing-up process requires almost
30 seconds to complete which is considerably longer than the
horizon time-scaleτ = 1.5s.

IV. CONCLUSION

In this paper we’ve shown how using batch least-squares
minimization of the squared HJB residual is a simple and ef-
fective method for solving nonlinear optimal control problems.

(b) The deterministic value function (Σ = 0)

Figure 2.1: Approximation of the optimal value function for the car-on-the-hill prob-
lem when the domain is (a) stochastic and (b) deterministic. Notice how the sharp
discontinuities in the deterministic case are smoothed out in the stochastic case.
These results are from Tassa and Erez [2007].
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Chapter 3

Differential Dynamic Programming

3.1 Introduction

This chapter describes our experiments with Differential Dynamic Programming (DDP),

a sequential algorithm (section 2.3.1) for optimizing behavior under the finite-horizon

criterion (section 2.1.1). DDP is a second-order algorithm first described by Jacobson

and Mayne [1970], which makes use of the optimal substructure property (section 2.2),

allowing for efficient computation and rapid convergence. In order to overcome the

limitations of finite-horizon optimization, we present a receding-horizon scheme (sec-

tion 3.5.1).

This chapter describes how DDP can be used to optimize behavior in a dynamic

environment, studying a domain of robotic swimming with 10 to 27 dimensions, which

is described in section 3.6. We present two methods for deriving feedback controllers

from DDP: first, we use an offline receding-horizon scheme to construct a locally-linear

global feedback controller (section 3.5.1). We then apply the same receding-horizon

principle in an online fashion for Model-Predictive Control (section 3.5.3). In both

cases, the receding horizon structure gives rise to non-myopic behavior, generating

an unlimited diversity of swimming behaviors on-the-fly in a variety of environmental

conditions. Our results are best illustrated by a series of movies 4.

4Available at:
http://www.youtube.com/watch?v=3LagQ5_OQOg

http://www.youtube.com/watch?v=HO5TW-UfehQ

http://www.youtube.com/watch?v=m0PboYKQTCc
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3.2 The basic algorithm

DDP finds the optimal N -step trajectory emanating from a fixed state x1. Every

iteration of DDP is composed of two steps: first, the backward pass starts from a

nominal trajectory, integrating a quadratic approximation of the value function (2.4),

and deriving a modification to the policy along the way; subsequently, the forward pass

applies this modification, hopefully tracing a better trajectory. This basic structure

is shared with other algorithms, such as the ones presented by Bryson and Ho [1975]

and Dunn and Bertsekas [1989]; for a comparison, see Mizutani and Dreyfus [2005].

3.2.1 The backward pass

The input to the backward pass (BP) is some nominal action sequence U = {uk}N−1
k=1 ,

and the corresponding nominal trajectory X = {xk}Nk=1, as well as the total cumula-

tive cost (2.2):

C(U) , V (x1) =
N−1∑
k=1

`(xk,uk) + `N(xN).

The goal of the BP is to find a modification of the action sequence that would lead

to a trajectory with a lower cumulative cost. The BP constructs a quadratic approx-

imation of the value function around every time step:

V k(xk + δx) ≈ V k
0 + δxTV k

x + δxTV k
xxδx, (3.1)

and uses it to compute the locally-optimal action sequence U∗ = U + ∆∗U. As

the name suggests, the backward pass builds these quadratic models by stepping

backward along the nominal trajectory.

Every step of the BP derives a quadratic model {Vx, Vxx} around x from the quadratic

model {V ′x, V ′xx} around the next state x′. At every time-step, we construct a second-

order Taylor expansion of the Q-function (2.5) around x and u:

Qk(x + δx,u + δu) ≈ 1

2
[1 δxT δuT]T

 Q0 Qx Qu

Qx Qxx Qxu

Qu Qux Quu


 1

δx

δu

 . (3.2)
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We can write the coefficients of (3.2) around the current state x in terms of the

quadratic model around the next state x′:

Q0 = `+ V ′0 , Qxx = `xx + F k
xV
′
xxFx + V ′xFxx,

Qx = `x + V ′xFx, Quu = `uu + FuV
′
xxFu + V ′xFuu,

Qu = `u + V ′xFu, Qxu = `xu + FxV
′
xxFu + V ′xFxu.

(3.3)

Using this quadratic approximation, we can perform the minimization of (2.6) ana-

lytically, by taking the derivative of (3.2) with respect to δu and equating to zero:

0 = Qu + δuTQuu + δxTQxu, (3.4)

yielding a closed-form expression for the minimizing control:

∆∗u = −Q−1
uu(Qu +Quxδx). (3.5)

Note that this expression has two terms, the first being a modification to the open-

loop policy, and the second being a feedback term describing how the optimal control

u∗ should adapt to changes in the state. Therefore, we can rewrite it as:

∆∗u = l + Lδx, (3.6)

with l = −Q−1
uuQu and L = −Q−1

uuQux.

Using the quadratic model of Q, we can approximate the expected change in the

value due to switching from the nominal control u to the approximately-optimal one

u∗ = u + ∆∗u:

V0 = Q0 −
1

2
Qu

TQ−1
uuQu.

By taking the first and second derivatives of this equation with respect to x, we obtain

the following equations for a quadratic model around the current state:

Vx = Qx −QxuQ
−1
uuQu,

Vxx = Qxx −QxuQ
−1
uuQux.

(3.7)
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This quadratic model may now be used in equation 3.1 to take the next step back.

The BP is initialized by setting V N
x = `Nx , V

N
xx = `Nxx, and steps backward until the

quadratic model around x1 is computed.

3.2.2 The Forward Pass

The second phase of every DDP iteration involves integrating a new trajectory using

the optimal control modifications calculated during the backward pass. Starting from

the fixed initial state x̌1 = x1, we generate a new trajectory X̌ = x̌1:N and a new

control sequence Ǔ = ǔ1:N−1 by applying the following equations N − 1 times:

ǔk = uk + lk + Lk(x̌k − xk), (3.8a)

x̌k+1 = f(x̌k, ǔk). (3.8b)

Once the new trajectory is complete, we compute the sum of costs along the new

trajectory:

C(Ǔ) =
N∑
k=1

`(x̌k, ǔk) + `N(x̌N).

If C(Ǔ) ≤ C(U), i.e., the total cost of the new trajectory is lower than the total cost

of the current one, we accept the iteration, and begin a new backward pass along the

new nominal trajectory.

When the change in cost C(Ǔ)−C(U) and/or the magnitude of the open loop mod-

ification
∑∣∣∣∣lk∣∣∣∣ reach below some threshold, DDP halts, and the nominal trajectory

is pronounced locally-optimal (see section 3.3.1).

3.3 Analysis

3.3.1 Convergence Properties

The convergence properties of DDP can be compared with a naive approach, treating

U as one single multidimensional variable, and taking Newton steps with an exact
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Figure 3.1: An illustration of the quadratic convergence of DDP (drawn from the sim-
ulation of a 4D cart-pole problem). After about 30 iterations, both the change in cost
and the average change in the control sequence suddenly drop (note the logarithmic
scale).

Nm×Nm Hessian. As shown by Liao and Shoemaker [1992], DDP achieves similar

or better performance, due to the incorporation of the feedback term L. As figure 3.1

shows, the size of the improvement plummets super-exponentially near the minimum,

indicating that the Hessian is exact. In practice, this quadratic convergence provides

a natural stopping criterion, as it is evident when DDP has found a local minimum.

3.3.2 Computational considerations

Given a quadratic model of f and ` (whose terms are used in equation 3.3), the com-

putational complexity of one iteration of DDP itself is O(Nm3), as it is dominated by

the cost of inverting Quu at every step of the backward pass. However, the most signif-

icant part of the computational effort in practice is devoted to the finite-differencing

approximation of the quadratic model of f . Evaluating the first and second deriva-

tives of the dynamics function through finite-differencing requires O(n2) calls to the

dynamics function (where n is the dimension of the state-space, as in chapter 2) for

each of the N states, where every dynamics computation is approximately O(n3)

(section 2.4.1), leading to a total complexity of O(Nn5).

To see if we can reduce the burden of computing second derivatives, we may consider

equation 3.3 again. Since mechanical systems are control-affine, fuu = 0 identically,

and does not need to be computed. On the other hand, fxx is the largest data

structure (an n3 tensor) and the most expensive to compute. The iLQG algorithm
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described by Todorov and Li [2005] is a DDP variant that relies on the assumption that

fxx = 0. Here we make the following observation: if first derivatives fx are computed

with central differences, then the computation of the diagonal of fxx is free. This

reduces the complexity of computing the finite-difference gradients to O(Nn4), still

the dominating term, but significantly less expensive. In the experiments below we

explore the tradeoff of using full versus diagonal fxx.

Finally, a significant speedup can be achieved by parallelizing the finite-difference

computation across several cores on a modern multi-core processor. Here, we used

MuJoCo, a new physics simulator created expressly for this purpose, as described in

section 2.4.1.

In practice, when using MuJoCo, the computational effort for computing the deriva-

tives of the dynamics (in parallel) takes about 90% of CPU time. The backward pass

itself constitutes about 10% of the computational load, and the forward pass takes

only an order of 1% of the computational resources. With a Matlab-based physics

engine the computational effort for computing the derivatives of the dynamics is even

bigger, taking more than 99.9% percent of the computation time.

3.4 Modifications to the basic algorithm

3.4.1 Value divergence and regularization

In equation 3.5 we identify the optimal modification l to the control signal u according

to the quadratic model (3.2). However, this computation is only valid if the matrix

Quu is positive-definite. When this is not the case, the quadratic model is suggesting

that there is a direction of δu where the value is unbounded from below, and that the

greater the change in that direction, the better. This divergence of the value function

plagues the calculations of the backward pass.

In order to complete the backward pass, we must ensure that Quu is positive-definite,

and therefore l, as computed in equation 3.5, is indeed a descent direction. The

common regulation scheme presented in the literature is to add some scaled identity

matrix λI to Quu, so that l = −(Quu + λI)−1Qu. This has the effect of increasing
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all of Quu’s eigenvalues by λ; for a large-enough value of λ, this ensures that Quu is

positive-definite.

Recall that according to equation 3.3, Quu is additive in `uu. If we use a modified cost

function `λ(x,u) = `(x,u) + 1
2
λ
∣∣∣∣u− uk

∣∣∣∣2, we would get `λuu = `uu + λI. Therefore,

adding λI to Quu is equivalent to adding a cost term which incurs a quadratic penalty

for deviations from the current nominal control U.

This interpretation motivates an alternative regularization method: instead of adding

a cost term on deviations from uk, we introduce a similar cost term that incurs a

quadratic penalty for deviating from the current state xk. The modified cost function

`λ(x,u) = `(x,u) + 1
2
λ
∣∣∣∣x− xk

∣∣∣∣2 yields `λxx = `xx + λI, which additively modifies

Qxx, and therefore Vxx, affecting Quu (3.3) at the next step of the backward pass:

Q̃uu = `uu + Fu(V ′xx + λI)Fu + V ′xFuu,

Q̃xu = `xu + Fx(V ′xx + λI)Fu + V ′xFxu,
(3.9)

and using these modified matrices in (3.5) to compute l and L.

Since we are altering the quadratic model through regularization, we must modify

equation 3.7:

V0 = Q0 +Qu
Tl +

1

2
lTQ−1

uul, (3.10a)

Vx = Qx + LTQu +Qux
Tl + LTQ−1

uul, (3.10b)

Vxx = Qxx + LTQux +Qux
TL+ LTQ−1

uuL. (3.10c)

In the limit of large λ, ∆∗u ≈ λ−1Qu, and the Newton step in equation 3.5 is reduced

to a first-order gradient descent with a small step size λ−1; consequently, a larger

value of λ leads to smaller steps and slower convergence. In practice, we decrease λ

after every successful iteration, and increase it only when a non-positive-definite Q̃uu

is encountered (see section 3.4.3).
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3.4.2 Line search

The forward pass of DDP, given by equations 3.8, relies on the local models measured

around xk. Yet, the accumulation of the prior modifications ∆u1:k−1 might lead x̌k to

be very different from xk, where the local models approximated around the nominal

trajectory are no longer valid. At which case, uk + lk may well lead to an increase of

the total cost, and divergence can occur. In order to regulate the forward pass, we

introduce a line-search parameter 0 < α ≤ 1 into equation 3.8a:

ǔk = uk + αlk + Lk(x̌k − xk). (3.11)

α also affects the feedback term implicitly, since a smaller step leads to a smaller

deviation from the original trajectory, and hence smaller feedback terms. In the limit

of α = 0, the new trajectory is identical to the old one, and the feedback term remains

zero throughout.

Equation 3.10a allows us to estimate the expected total cost of the new trajectory by

summing the cost difference terms,

∆V k = V k
0 −Qk

0 = Qk
u
Tlk +

1

2
lkTQ−1

uul
k,

along the trajectory. In order to account for α, we modify this equation:

∆V k(α) = αlkTQk
u +

α2

2
lkTQk

uul
k. (3.12)

By saving the linear and quadratic terms separately, we obtain a quadratic model of

the expected reduction as a function of α.

As advocated in Jacobson and Mayne [1970], we may use this prediction during line

search. We compare the expected reduction ∆V (α) =
∑

k ∆V k(α) and the actual

reduction, measured as the difference between the total cost of the nominal trajectory

and the total cost of the new one:

z =
[C(U)− C(Ǔ)]

∆V (α)
.
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We accept the iteration only if this ratio is bigger than some minimal threshold γ:

γ < z. (3.13)

This is similar to the classic Armijo condition in optimization, but uses the more

accurate quadratic reduction model (3.12). In the experiments described below we

used γ = 0.5.

At every forward pass, we start with α = 1. If this does not lead to improvement,

we perform a simple halving backtrack α ← α/2 and try the forward pass again. If

α falls below 2−10 and no improved trajectory is found, we increase λ and repeat the

backward pass.

3.4.3 Parameter Schedules

The fast and accurate modification of the regularization parameter λ turns out to

be important due to three conflicting requirements. If we are near the minimum, we

want λ to quickly go to zero to enjoy the quadratic convergence. If the approxima-

tion diverges (a non-positive-definite Q̃uu), we want λ to be big enough to prevent

divergence, which can sometimes be very large. Finally, if we are in a regime where

some λ > 0 is required, we would like to accurately set it to be as close as possible

to the minimum value (though not smaller). Our solution is to use a log-quadratic

modification schedule. Defining some minimal value λmin (we use λmin = 10−6) and a

minimal modification factor Γ0 (we use Γ0 = 2), we adjust λ as follows:

increase λ:

Γ← max(Γ0,Γ · Γ0)

λ← max(λmin, λ · Γ)

decrease λ:

Γ← min( 1
Γ0
, Γ

Γ0
)

λ←

λ · Γ if λ · Γ > λmin,

0 if λ · Γ < λmin.
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Whenever λ increases or decreases consecutively across iterations, the size of the

change grows geometrically. If increase and decrease alternate, the change remains

small.

3.4.4 Algorithm Summary

0. Initialization: Given an initial state x1 and an initial control sequence U = {uk}N−1
k=1 ,

integrate the dynamics to obtain an initial trajectory X = {xk}Nk=1. Measure the total

cost C(U) =
∑N−1

k=1 `(x
k,uk) + `N(xN).

1. Dynamics: Given a nominal trajectory (X,U), compute the derivatives of ` and

f in the rhs of equation 3.3. Alternatively, compute the dynamics for all collocation

vectors around each state xk. This can be done in parallel for all k.

2. Backward pass: Iterate equations (3.3, 3.9, 3.10) for decreasing k = N−1, . . . 1. If

a non-positive-definite Q̃uu is encountered, increase λ and restart the backward pass.

If successful and λ is not increased, decrease λ.

3. Forward pass: Set α = 1. Iterate equations (3.11) and (3.8b) to compute a new

nominal sequence. If the integration diverged or condition (3.13) is not met, decrease

α and restart the forward pass.

4. Termination: If
∑

k

∣∣∣∣lk∣∣∣∣ or C(U)−C(Ǔ) are smaller than some threshold, stop.

Otherwise, return to 1.

3.5 DDP controllers

DDP, as presented above, cannot be directly applied to the general problem of syn-

thesizing autonomous motor behavior in a changing environment, for several reasons.

First, we wish to generate behavior over an arbitrarily-large time span, while DDP

requires the horizon N to be set in advance. Second, computing the optimal tra-

jectory in advance is impossible in a dynamic environment, because circumstances

might change during execution time, rendering the original plan suboptimal. Finally,
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(a) Time course of two angular velocities. (b) State projection.

Figure 3.2: Receding horizon trajectories for a swimmer with 3 segments (section 3.6).
(a) three snapshots of the receding horizon trajectory (dotted) with the current finite-
horizon optimal trajectory (solid) appended, for two state dimensions. (b) Projections
of the same receding-horizon trajectories onto the largest three eigenvectors of the
full state covariance matrix. As described in section 3.6.1, the linear regime of the
cost compels the receding horizon trajectories to a steady swimming gait – a limit
cycle.

as discussed in section 2.1.3, finite-horizon optimization results in myopic behavior

towards the end of the planning horizon. For example, the swimmer, discussed below

in section 3.6, tends to stop pushing itself forward and just “coast” during the tail

of the optimal trajectory (see the solid lines in figure 3.2). This results in behavior

that is intuitively sub-optimal, even as it meets the numerical criterion. In order to

address these difficulties, we propose a receding-horizon scheme.
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3.5.1 Receding horizon

In receding-horizon DDP, we use only the first step of the optimal solution, and re-

solve the optimization problem from the second state of that trajectory. The first

point of every trajectory optimizes a behavior with an N -step-lookahead planning

horizon; by using only the first point, we ensure that all the controls we use are

optimal for the same horizon, guaranteeing behavioral consistency.

Starting a run of N -step DDP from scratch at every step would be prohibitively

expensive. We therefore propose the following: After obtaining the solution starting

from x1, we save the local model at k = 1 and proceed to solve a new N -step problem

where x2 is the fixed initial state, and the control sequence is initialized with the policy

obtained on the previous run, shifted by one time-step: U′ = [u2,u3 · · ·uN − 1, 0].

Because this control sequence is very close to the optimal solution, the second-order

convergence of DDP is in full effect and the algorithm converges in 1 or 2 iterations.

Again saving the model at the first time step, we continue. We stress the that without

the fast and exact convergence properties of DDP near the maximum, this algorithm

would be far less effective.

3.5.2 Nearest-neighbor control with offline optimization

Here we show how we can use the receding horizon scheme offline to construct a

feedback controller. In order to synthesize a global controller from many local con-

trollers, it is essential that the different local components operate synergistically. In

our context this means that local models of the value function must all model the

same function. As mentioned before, this is not the case for the standard DDP so-

lution, since the local quadratic models around the trajectory are approximations to

V k(xk), the time-dependent value function. However, note that in a series of receding-

horizon trajectories, the locally quadratic model of V 1(x1) and a locally linear model

of π1(δx) = u1 +L1δx are manifestations of the same value function, since the reced-

ing horizon allows every x1 to “see” a full N -step planning horizon. Therefore, the

values and policies computed by receding horizon can be safely mixed.
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In particular, π1(δx) = u1 +L1δx generalizes the open-loop policy to a feedback term,

which generates a tube-shaped basin-of-attraction around the trajectory. Having lost

the dependency on the time k with the receding-horizon scheme, we need some space-

based method of determining which local gain model we select at a given state. The

simplest choice, which we use here, is to select the nearest Euclidian neighbor.

Outside of the basin-of-attraction of a single trajectory, we can expect the policy to

perform very poorly and lead to numerical divergence if no constraint on the size

of u is enforced. A possible solution to this problem is to fill some volume of the

state space with a library of local-control trajectories [Stolle and Atkeson, 2006], and

consider all of them when selecting the nearest linear gain model.

3.5.3 Online model-predictive control

Online trajectory optimization, also known as Model Predictive Control (MPC), finds

the optimal policy for only one particular state – the current one. The control is

applied to the system, the clock advances, and the problem is re-solved in sync with

(the simulation of) the real world.

MPC has been studied extensively (see reviews by Morari and Lee [1999], Bertsekas

[2005], Mayne et al. [2000], Diehl et al. [2009], and references therein), but its applica-

tion to robotic domains is only starting to gain popularity [Abbeel et al., 2007]. The

challenge in applying MPC in robotics is that optimization must happen in real-time,

matching the timescale of the robot. MPC was initially developed in the chemical

process industry, where timescales of 10sec or more are typical [Diehl et al., 2002]. In

robotics, a timescale of 10msec is not uncommon, demanding careful design of both

algorithm and implementation.

Constructing a feedback controller offline (section 3.5.2) is necessary in the case that

the optimization computations are too slow to allow for online application of DDP.

Fortunately, computational hardware (as well as apt simulation software) is constantly

becoming faster and cheaper, and has reached the point where DPP can be run at

these timescales.
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Figure 3.3: A 5-swimmer with the “nose” point at its tip and a ring-shaped target.

3.6 The d-link Swimmer

We describe a variation of the d-link swimmer dynamical system, a domain that was

first presented by Coulom [2002]. A link of length g, lying in a plane at an angle θ to

some direction, parallel to t̂ =
( cos(θ)

sin(θ)

)
and perpendicular to n̂ =

( − sin(θ)
cos(θ)

)
, moving

with velocity v̇ in a viscous fluid, is postulated to admit a normal frictional force

−κngn̂(v̇ · n̂) and a tangential frictional force −κtgt̂(v̇ · t̂), with κn > κt > 0. The

swimmer is modeled as a chain of d such links of lengths gi and masses mi. We define

θ as a d vector of link angles, xnose as the Cartesian position of the tip of the first

link, q =
( xnose

θ
)

as the vector of positions, and finally x =
( q

q̇

)
is the 2d + 4 state

vector. The control signal u is a d− 1 vector of torque action-reaction pairs applied

at each joint. These numbers hold for any tree topology of the links.

A 3D d-link model has 3 cartesian and 3d rotational degrees of freedom. In principle,

we could have ignored the rotational degrees of freedom of the joints in the axial

direction, using two hinges or even one hinge at each joint. However, using single

aligned hinges would essentially embed a planar swimmer in 3D space, and multiple

unaligned hinges can reach singular points (gimbal lock). We therefore chose to

represent all joints as normalized quaternions (ball joints), which have no singular

points. This means that each joint is described by 7 numbers, 4 for the normalized

quaternion, and 3 for the angular velocities, for a total state dimension of n = 6 + 7d

for a 3D d-link model. The actuated states in this case are of dimension m = 3(d−1).
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3.6.1 The cost function

The cost function we use is:

`(x,u) =cx log
(
cosh(‖xnose‖)

)
+co

∑
j

N (xnose|oj, I)

+cu‖u‖2.

The first term penalizes the norm of xnose = [x1 x2]T, the 2-vector from the tip of

the first link to the target (the origin in internal space). This cost is minimized when

the nose is brought to rest on the target. The functional form of the target-cost

term is designed to be linear in ||xnose|| when far from the target and approximately

quadratic when close to it (figure 3.4). Because of the differentiation in equation 3.5,

the solution is independent of V0, the constant part of the value. Therefore, in the

linear regime of the cost function, the solution is independent of the distance from the

target, and all the trajectories are quickly compelled to converge to a one-dimensional

manifold in state-space which describes steady-state swimming (figure 3.2(b)). Upon

nearing the target, the swimmer must initiate a braking maneuver, and bring the

nose to a standstill over the target. For targets that are near the swimmer, the

behaviour must also include various turns and jerks, quite different from steady-state

swimming, which maneuver the nose into contact with the target. This cost term

should not be confused with the desired state cost of classical optimal control since

values are specified only for 2 out of the 2d + 4 coordinates. This effectively defines

a target manifold (configurations where the nose is on the target), rather than a

single target state. The freedom to reach this manifold on different paths manifests

as diverse swimming and twisting behaviors.

The second term describes interaction between the swimmer’s nose and a set of ob-

stacles, represented by unit Gaussians N (·|oj, I). Note that the means oj can move

along predefined trajectories, and so the controller must react predictively to their

motion. Finally, the last term is a standard quadratic control-cost.
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Figure 3.4: The functional form of the state-cost component.

3.6.2 Receding horizon DDP

In order to asses the controllers we constructed a real-time interaction package5. By

dragging the target with a cursor, a user can interact with controlled swimmers of

3 to 10 links with a state dimension varying from 10 to 24, respectively. Even with

controllers composed of a single trajectory, the swimmers perform well, and manage to

turn, track and braking on approach to the target. These results are best illustrated

by movies6 which show real-time interaction with the swimmers.

All of the controllers in the package are for swimmers with unit link lengths and unit

masses. The normal-to-tangential drag coefficient ratio is kn/kt = 25. The time-step

length of the dynamics is ∆t=0.05s. The receding horizon window is 40 time-steps,

or 2 seconds.

When the state does not gravitate to one of the basins of attraction around the

trajectories, numerical divergence can occur. This effect can be initiated by the

user by quickly moving the target to a “surprising” location. Because nonlinear

viscosity effects are not modeled and the local controllers are also linear, exponentially

diverging torques and angular velocities can be produced. When adding as few as 20

additional trajectories, divergence is almost completely avoided.

5Available online at http://alice.nc.huji.ac.il/~tassa/pmwiki.php?n=Main.Code
6http://www.youtube.com/watch?v=3LagQ5_OQOg (5-swimmer)

http://www.youtube.com/watch?v=HO5TW-UfehQ (10-swimmer).
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3.6.3 DDP for MPC

Below, we demonstrate MPC on systems with 12 to 27 state dimensions, updating

the policy every 10− 30ms. We generate complex and robust swimming behavior on

the fly, letting the user interact with the system and modify various parameters in

real-time. These results are best illustrated by a movie7 documenting online inter-

action with a variety of swimmer topologies and environments. As the movie shows,

MPC can generate complex behavior in real-time, including: steady-state swimming,

coasting, braking, and various contortional maneuvers.

One of benefits of MPC is that because there is no offline component, all the param-

eters can be changed in real time. To that end, we designed a rich graphical interface

to allow a user to interact with the controller (figures 3.5, 3.6). The user can apply

forces to the masses and move the target with the mouse (with the left and right

buttons, respectively), and change a variety of parameters. These are:

• The number of time-steps N .

• The length of each time-step h.

• The control cost cu.

• The normal and tangential drag κn and κt.

• Springs and dampers at the joints.

• Gravity.

• The number of optimization iterations at each time-step.

• The velocity of the obstacles.

Additionally, the user can choose to use only the diagonal of the Hessian, as described

in section 3.3.2. In the lower left part of the window, the simulation displays the

computational time of every iteration, allowing the user to quantify the performance

implications of different parameter settings.

7http://www.youtube.com/watch?v=m0PboYKQTCc
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Figure 3.5: Screen capture of the user interacting with a swimmer. The nose point
is in blue, the target is the green circle, and the pink discs are the obstacles. The
user is pulling on the tail link with a linear spring (red line). A movie of the GUI in
action is available at http://www.youtube.com/watch?v=m0PboYKQTCc

Figure 3.6: A snapshot of a 3D swimmer in action while the user is moving the target
in real-time.
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3.7 Epilogue: Why MPC is not enough

This chapter shows how finite-horizon optimization can bring about effective real-

time behavior in a dynamic environment. The motor creativity exhibited by the

swimmers demonstrates the power of optimal control in general, and specifically online

MPC, as a general framework for simulating autonomous behavior. Unfortunately,

iterative re-application of finite-horizon optimization is not strong enough to generate

autonomous behaviors in all domains.

As mentioned above, the method of MPC is designed to avoid the problem of myopic

behavior in finite-horizon planning: while an entire trajectory is planned, only the

first action is executed, and planning starts again from the resulting new state. How-

ever, this process relies on warm-starting the optimization with the entire optimized

trajectory from the previous iteration (shifted one time-step back). The effectiveness

of MPC rests on the assumption that the solution at the previous timestep is simi-

lar to the solution at this timestep, and therefore the warm-start allows for efficient

optimization.

This assumption is disrupted if the tail of the trajectory falls into a local optimum.

This has no immediate effect, because only the first action is actually executed by

the MPC, but as the planning horizon recedes, more and more of the trajectory is

pushed into that local minimum. If at some stage the local optimality vanishes, the

trajectory used to initialize the re-planning is no longer almost-optimal. This usually

leads to the failure of MPC, since there is not enough time for re-optimization.

The problem of falling into inadequate local optima plagues all domains with ground

collision. The hopping domain studied in section 5.5.2 can be used to illustrate

this; this is a one-legged hopping robot whose task is to maintain a fixed horizontal

velocity. Intuitively, the optimal behavior we expect in such a domain is a hopping

gait. However, applying regular MPC to this domain results in catastrophic failure.

To understand why, consider a trajectory where the last few states could involve

ground collision. Such a collision would necessarily slow down the hopper, which

would impede the performance of the task in the short term. As such, in the absence

of an adequately long planning horizon, the optimal solution is myopic, causing the

hopper to retract its leg; by avoiding the ground, the hopper tries to maintain its
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air velocity just a few timesteps longer. However, as the planning horizon of the

MPC recedes, the locally-optimal avoidance maneouver becomes more complicated,

and eventually ground impact becomes inevitable. At that stage, the MPC must plan

the foot landing, but the optimization is initialized with a suboptimal trajectory that

involves a bizarre contortion towards the end. Unwinding this suboptimal behavior

is probably impossible within the time constraints of the robotic application, leading

to the failure of MPC. Even when computation time is not a constraint (e.g., during

offline optimization), recovering the new optimum when starting from a profoundly

suboptimal behavior is often prohibitively hard, because the nominal trajectory, being

far from optimal, would be plagued by value divergences (section 3.4.1).

In order to overcome this limitation of finite-horizon optimization, the next chapters

of this dissertation discuss infinite-horizon optimization schemes which are shown to

generate terrestrial locomotion behavior without falling into destructive local min-

ima.
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Chapter 4

Bayesian Estimation for Optimal

Control

4.1 Introduction

Finite-horizon optimization methods (such as DDP, discussed in the previous chap-

ter) suffer from myopic behavior (section 2.1.3), and the solution of receding-horizon

re-optimization (section 3.5.1) is ineffective in domains with ground collision (sec-

tion 3.7). Instead, we would like to have methods with similar efficiency but capable

of solving infinite-horizon problems, in particular problems that give rise to complex

periodic movements such as walking, running, or turning a screwdriver, all of which

involve contact and collision with the environment.

This requires optimization over cycles. Such optimization is difficult to cast as an

sequential decision problem because optimal substructure no longer holds in this

case. In finite-horizon optimization, the Markov property guarantees that the future

is independent of the past given the current state. However, in a limit cycle every

state is both before and after every other state.

Here we overcome this difficulty by replacing the control problem with a dual Bayesian

inference problem, and perform inference over a graphical model; this architecture al-

lows for the representation of loops without requiring special hacks. First, we create

a graphical model where every state along the trajectory is a node (see figure 4.1),

and associate with each one a binary variable whose log-likelihood matches some per-

formance criterion. Loosely speaking, these binary variables indicate the observation
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of “success”. We then postulate the observation of the value “1” at each of these

binary nodes, and perform Bayesian estimation to find a likely set of assignments for

the unobservable nodes given these observations. These assignments can be inter-

preted as the trajectory that maximizes the probability of success, hence maximizes

the performance criterion.

This approach is different from the one employed in the previous chapter. In DDP we

ask “what is the optimal control sequence?”; here, we ask “given that we observe suc-

cess, what is the most likely route we took?”. At the same time, the method presented

here uses similar computational machinery to DDP, finding local approximations of

the dynamics and cost functions around a nominal trajectory. Therefore, when the

dynamics are nonlinear we have to solve a sequential Bayesian inference problem: the

solution at each iteration is used to re-approximate the system locally, and define the

inference problem for the next iteration. When the algorithm converges, the mean

of the posterior gives the locally-optimal trajectory, and the covariance of the poste-

rior can be used to find the local feedback control law. Since computing the correct

covariance is important here, we perform inference using the variational approach of

Mitter and Newton [2004], leading to an algorithm based on sparse matrix factoriza-

tion rather than loopy belief propagation (where only the mean is guaranteed to be

correct, see Weiss and Freeman [2001]).

The estimation-control duality which is at the heart of our method arises within

the recently-developed framework of linearly-solvable optimal control [Kappen, 2005,

Todorov, 2009]. Several control algorithms exploiting this duality (sometimes implic-

itly) have been developed [Attias, 2003, Toussaint, 2009, Kappen et al., 2009], however

they are limited to finite-horizon formulations – which DDP can already handle, with

comparable (or, in our experience, better) efficiency. The algorithm presented here

applies the estimation-control duality to general graph structures for the first time.

We show how this method can lead to the optimization of a walking gait in a planar

humanoid (figure 4.3).

4.2 Related work

The method presented below is related to three lines of research.
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The first is sequential trajectory-optimization methods, such as DDP. It is possible

to use these methods to solve for limit cycles by “attaching” the first and last states.

This can be done either via penalty method, by imposing a large final cost over dis-

tance from the initial state, or exactly, by employing multipliers which enforce the

state constraint, as in the method of Lantoine and Russell [2008]. We tried both of

these approaches, and the inevitable result was a noticeable asymmetry around the

attachment point, either in the state trajectory (when using final cost), or in the

controls (when using multipliers). The main insight is that these algorithms assume

the Markov property, which does not hold for a loop. One could also use a finite-

horizon method with a very long horizon, that loops around the limit-cycle several

times. By truncating the transients at both ends, we can get a decent approximation

to the infinite-horizon solution. Clearly this is an inefficient use of computational re-

sources, but could potentially serve as a useful validation procedure for our algorithm.

However, note that such a long trajectory might be prohibitively-hard to optimize

sequentially, mostly due to value divergence (section 3.4.1).

The second related body of work involves directly optimizing the total cost of a limit-

cycle, while enforcing periodicity, formulating a simultaneous trajectory optimization

problem. Wampler and Popovic [2009] and Ackermann and den Bogert [2010] are

two recent examples from (respectively) the computer graphics and biomechanics

communities. The log-likelihood that we end up maximizing below is indeed analogous

to such a cost, however our method generates a feedback controller around the limit-

cycle, rather than simply open-loop controls.

Finally, the last several years have seen research into the subclass of stochastic non-

linear Optimal Control problems which are dual to Bayesian estimation. Specifically,

Toussaint [2009] explores message-passing algorithms (Expectation Propagation) for

the solution of Optimal Control problems. Murphy et al. [1999] and others have

shown that when a graph has a loopy structure, message passing converges to the

right mean but the wrong covariance. The procedure we describe below does not

suffer from this drawback.
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4.3 Optimal control via Bayesian inference

The basic intuition behind the duality we use here is that the negative log-likelihood

in estimation corresponds to a state-dependent cost in control, and the difference

(in terms of KL divergence) between the prior and the posterior corresponds to a

control-dependent cost. The class of stochastic optimal control problems which have

Bayesian inference duals in the above sense have received a lot of attention recently,

because these problems have a number of other interesting properties, including the

fact that the (Hamilton-Jacobi-) Bellman equation becomes linear after exponentia-

tion [Kappen, 2005, Todorov, 2008].

4.3.1 Background on LMDPs and inference-control dualities

A linearly-solvable MDP (or LMDP) is defined by a state cost q (x) ≥ 0 and a tran-

sition probability density p (x′|x) corresponding to the notion of passive dynamics.

The controller is free to specify any transition probability density π (x′|x) with the

restriction that π (x′|x) = 0 whenever p (x′|x) = 0 . In infinite-horizon average-cost

problems, p and π are further required to be ergodic. The cost rate function is:

`
(
x, π (·|x)

)
= q (x) +DKL

[
π (·|x) ||p (·|x)

]
.

The KL divergence term is a control cost which penalizes deviations from the passive

dynamics. Defining the desirability function z (x) , exp
(
−V (x)

)
(where V (x) is the

optimal value function), the optimal control is

π (x′|x) ∝ p (x′|x) z (x′) ,

and the exponentiated Bellman equation becomes linear in z. In particular, for finite

horizon problems this equation is:

zk (x) = exp
(
−q (x)

)∑
x′
p (x′|x) zk+1 (x′) ,

43



with zN (x) initialized from the final cost (compare to equation 2.3). One can also

define the function r (x) as the solution to the transposed equation:

rk+1 (x′) =
∑

x
exp
(
−q (x)

)
p (x′|x) rk (x) ,

with r1 (x) being a delta function over the fixed initial state. Then the marginal

density under the optimally-controlled stochastic dynamics µ can be shown to be:

µk (x) ∝ rk (x) zk (x) .

The duality to Bayesian inference is now clear: z is the backward filtering density,

r is the forward filtering density, p is the dynamics prior, q (x) is the negative log-

likelihood due to observation, and µ is the marginal of the Bayesian posterior. We

can also write down the density p∗ over trajectories generated by the optimally-

controlled stochastic dynamics, and observe that it matches the Bayesian posterior

over trajectories in the estimation problem:

p∗
(
x2,x3, · · ·xN |x1

)
∝∏N

k=2 exp
(
−q
(
xk
))
p
(
xt|xk−1

)
. (4.1)

These LMDPs can be used to model continuous dynamics: for controlled Ito diffusions

of the form:

dx = a (x) dt+B (x) (u dt+ σdω) , (4.2)

and cost functions in the form:

` (x,u) = q (x) +
1

2σ2
‖u‖2 , (4.3)

the stochastic optimal control problem is a limit of continuous-state discrete-time

LMDPs. The LMDP passive dynamics are obtained via explicit Euler discretization

with time step h:

p (x′|x) = N
(
x′|x + ha (x) , h σ2B (x)B (x)T

)
, (4.4)

where N denotes a Gaussian. The LMDP state cost is simply hq (x). Note that equa-

tion 4.2 defines control-affine dynamics, and therefore the h-step transition probability

of the controlled dynamics (with u 6= 0) is a Gaussian with the same covariance as
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equation 4.4 but the mean is shifted by hB (x) u. Using the formula for KL di-

vergence between Gaussians, the general KL divergence control cost reduces to a

quadratic control cost, like the one used in section 3.6.1.

4.3.2 Periodic optimal control as Bayesian inference

Our goal now is to write down the trajectory probability p∗ for infinite-horizon

average-cost problems, and then interpret it as a Bayesian posterior. This cannot

be done exactly, because equation 4.1 involves infinitely-long trajectories, which can-

not even be represented unless they are periodic. Therefore we restrict the density

to the subset of periodic trajectories with period N . This of course is an approxi-

mation, but the hope is that most of the probability mass lies in the vicinity of such

trajectories. Then p∗
(
x1,x2, · · ·xN

)
is the same as equation 4.1, except we have now

defined x1 = xN .

While the trajectory probability for the control problem is no longer exact, equa-

tion 4.1 is still a perfectly valid Bayesian posterior for a graphical model with a loop.

More precisely, exp
(
−q (x)

)
are single-node potentials which encode evidence, while

p (x′|x) are pair-wise potentials which encode the prior. One caveat here is that, since

the state space is continuous, the density may not be integrable. However, in prac-

tice we approximate p (x′|x) with a Gaussian, so integrability comes down to making

sure that the joint covariance matrix is positive definite – which can be enforced in

multiple ways (see below).

Once the Bayesian posterior over limit-cycle trajectories is computed, we need to

recover the underlying control law for the stochastic control problem. The obvious

approach is to set

π (x′|x) =
p∗ (x′,x)

p∗ (x)
,

where p∗ (x′,x) and p∗ (x) are the corresponding marginals of the trajectory probabil-

ity, and then recover the control signal u (x) by taking the mean of this distribution.

However, this yields N different conditional distributions, and we need to somehow

collapse them into a single conditional π (x′|x) because the control problem we are
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solving is time-invariant. We have explored two alternative ways to do the combina-

tion: average the π’s weighted by the marginals p∗ (x), or use the π corresponding

to the nearest neighbor. Empirically we found that averaging blurs the density too

much, while the nearest neighbor approach works well. An even better approach

is to combine all the p∗ (x′,x) into a mixture density, and then compute the condi-

tional π (x′|x) of the entire mixture. This can be done efficiently when the mixture

components are Gaussians.

4.4 The algorithm

Probabilistic graphical models [Jordan, 1998] are an efficient way of describing condi-

tional independence structures. A cycle-free directed graph (a tree) represents a joint

probability as a product of conditionals

p(X) =
∏
x∈X

p
(
x|parents(x)

)
.

This equation represents the factorization properties of the joint probability function

p. Message Passing algorithms, which involve sequentially propagating local distri-

butions along directed graphs, provably converge to the true posterior in such acyclic

graph structures.

An alternative to directed graphical models are Random Markov Fields, whose graph

is undirected, and may contain cycles. The joint distribution of a Markov Field is

given by

p(X) ∝
∏
c∈C

ψc(xc),

where C is the set of maximal cliques in the graph, and the ψ are called potential

functions. In this type of model, message-passing algorithms are not guaranteed

to converge correctly. In particular, for models where the nodes are distributed as

Gaussians (as we assume below), Weiss and Freeman [2001] show that posteriors and

marginals converge to correct means, but not to the correct variances.
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Figure 4.1: Illustration of the graphical model used in this chapter. State costs are
encoded in the leaf potentials ψ(xk). Dynamics and control costs are encoded in the
edge potentials ψ(xi,xj). See section 4.4.1.

4.4.1 Potential functions

Let {xk}Nk=1 be a set of variables with the conditional dependency structure of a cycle,

and let ij index over the pairs of sequential states ij ∈ {(1, 2), (2, 3), . . . , (N, 1)}. The

discrepancy between the controlled dynamics and the discrete-time passive dynamics

for each pair is

aij = xi + ha(xi)− xj. (4.5)

The Gaussian noise leads to pairwise potentials, corresponding to p(xj|xi),

ψ(xi,xj) = p(xj|xi) = exp(−1
2
aijTΣ−1

i aij).

Following equation 4.4, we might use Σi = hσ2B (xi)B (xi)
T
. However, in underac-

tuated systems this formulation leads to a matrix Σ that is not full rank, and therefore

cannot be inverted. In order to remedy that, we make B full-rank by allowing the

agent to apply helper forces, which make the system fully-actuated. The vector of

Ito-diffusion terms σ (4.2) is augmented accordingly with additional n−m terms who

take the value 1/γ2, which is equivalent to assigning a quadratic cost to helper force

actuation (as in equation 4.3), weighed by the coefficient γ. In the limit γ →∞, the

underactuated conditions are recovered.
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The leaf potentials ψ(xk) are composed of two parts, the state-cost q(xk), and an

optional prior on xk. This prior (not used below) could be useful when we wish to

clamp certain states to specified values. For example, in the finite-horizon case where

the graph is a chain, we could place a Gaussian prior on a known initial state

φ(x1) = exp(−q(x1))N (x1|m1,Σ1).

The joint distribution of the entire model is

p(X) = p(x1,x2, . . . ,xN) ∼
N∏
k=1

φ(xk)
N∏
ij=1

ψ(xi,xj),

where X = stack{xk} = [x1
Tx2

T · · ·xNT]T is the stacked vector of all states, repre-

senting the entire trajectory. The negative log-likelihood of the trajectory is

l(X) =
∑
k

q(xk) +
∑
ij

1
2
aijTΣ−1

i aij. (4.6)

The first term is the total state cost and the second term is the total control cost.

4.4.2 Gaussian approximation

Modeling p(·) as a Gaussian: p(X) ∼ N (X|X̄,S), is equivalent to fitting a quadratic

model to the negative log likelihood l(X) ≈ 1
2
(X− X̄)TS−1(X− X̄). This quadratic

form can be rewritten as:

1
2
(X− X̄)TS−1(X− X̄) = l0 + XTg + 1

2
XTHX, (4.7)

where the normalization term of the Gaussian 1
2

log(det(2πS)) is folded into the con-

stant l0. The equations which translate between the two quadratic forms are:

X̄ = −H−1g, (4.8a)

S = H−1. (4.8b)

It is important to note that the covariance matrix S, as well as the Hessian H, are

sparse. To see why, we focus again on equation 4.6: the terms which constitute the
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likelihood of the trajectory come from either individual states or consecutive pairs of

states. This sparsity is key to the numerical effectiveness of the algorithm.

4.4.3 Iterative inference

Given a current approximation to the mean X̄ of the Bayesian posterior over trajec-

tories, we expand l(X̄ + δX) to second-order in δX by computing H and g, and then

take a Newton’s step to find a new mean:

X̄′ = X̄ + argmin
δX

l(X̄ + δX) = X̄−H(X̄)−1g(X̄), (4.9)

until convergence. Again, this process can be interpreted either as repeated estimation

of a joint Gaussian model, or sequential quadratic minimization of the total cost.

4.4.4 Dynamics model

We now turn to the computation of H and g. In order to obtain a quadratic ap-

proximation for equation 4.6, we re-arrange the cost Hessians in a the sparse block-

diagonal matrix qXX = diag{qxx(x̄k)} ∈ IRnN×nN and stack the local cost gradients

qX = stack{qx(x̄k)} ∈ IRnN . With q0 =
∑

k q(x̄
k), the first term of (4.6) can be ap-

proximated as: ∑
k

q(x̄k + δxk) ≈ q0 + δXTqX + 1
2
δXTqXXδX.

In order to quadratize the last term of (4.6), we must approximate the nonlinear

dynamics (or rather the dynamic discrepancies aij). We can do this using either

a linear or a quadratic model. The former is faster to compute at each iteration,

while the latter is more accurate and thus could yield convergence in fewer iterations.

Which approach is better probably depends on the problem; in the examples given

below we found that the quadratic model works better.
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Linear dynamics approximation:

We expand the dynamic discrepancies to first order around our current approximation,

aij(x̄i + δxi, x̄j + δxj) ≈ aij0 + ax(x̄i)(δxi − δxj).

We construct the sparse matrix A ∈ IRnN×nN as a stack of N block-rows of dimension

n×nN . For each pair ij, we place a negative identity matrix −In on the j-th column-

block and the dynamics Jacobians ax(xi) on the i-th column-block. Additionally

letting a = stack{ak} ∈ IRnN , we have in matrix form

a(X̄ + δX) = a0 + AδX.

If we define M = diag{Σ−1
k } ∈ IRnN×nN , the last term of (4.6) can be written as

1
2
(a0 + AδX)TM(a0 + AδX), and the second-order expansion around X̄ becomes

l(X̄ + δX) = l(X̄) + δXT(qX + ATMa0) + 1
2
δXT(qXX + ATMA)δX.

Comparison with equation 4.7 shows that

g = qx + ATMa0 (4.10a)

H = qxx + ATMA (4.10b)

Quadratic dynamics approximation:

We can achieve a more accurate approximation by considering a quadratic model of

the passive dynamics

aij(x̄i + δxi, x̄j + δxj) ≈ aij0 + ax(x̄i)δxi + 1
2
δxi

Taxx(x̄i)δxi − δxj,

where the left and right multiplications with the 3-tensor axx are understood as

contractions on the appropriate dimensions. Though the gradient g is unaffected by

the second order term, the Hessian picks up the product of second-order and 0th-order

terms. Given the n × n matrix Qij = aijTΣ−1
i axx(x̄i) (contracting with the leading

dimension of the tensor axx), we define the block-diagonal matrix Q = diag{Qij} ∈
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IRnN×nN . The new approximation is now:

g = qx + ATMa0, (4.11a)

H = qxx + ATMA+Q. (4.11b)

In the experiments described below, the addition of the U term is found to significantly

improve convergence.

4.4.5 Computing the policy

In this section, we describe how to obtain a local feedback control policy from the

posterior marginals (the means x̄k and the covariance S = H−1). Let Sk = cov(xk)

be the k-th diagonal n × n block of S, and Sij be the cross-covariance of xi and xj

(the n × n block of S at the ith n-column and jth n-row), so that the mean of the

conditional is

E[xj|xi] = x̄j + SijS−1
i (xi − x̄i).

The feedback policy is the control which produces the expected controlled dynamics:

u(xi) = B−1
(
x̄j + SijS−1

i (xi − x̄i)− a(x̄i)
)
. (4.12)

4.4.6 Algorithm summary

0. Initialization: An initial approximation of x̄.

1. Local approximation: Compute g(x̄) and H(x̄) with equation 4.11.

2. Estimation: Recompute x̄ with equation 4.9.

3. Termination: If ||g|| is smaller than some threshold, continue to 4; otherwise,

return to 1.
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4. Feedback policy: Compute S with equation 4.8b, and the feedback control law

with equation 4.12.

4.5 Experiments

We demonstrate our algorithm on two simulated problems. A toy problem with two

state dimensions and and a simulated walking robot with 23 state dimensions.

4.5.1 2D problem

The continuous diffusion consists of a non-linear spring damper system, subject to

process noise in the velocity variable:[
dx1

dx2

]
=

[
x2

−(x3
1 + x3

2)/6

]
dt+

[
0

1

]
(udt+ σdω)

with the cost function:

`(x2, u) = cx

(
1− e−(x2−2)2 − e−(x2+2)2

)
+

u2

2σ2

The state cost coefficient is cx = 4 and the noise variance is σ2 = 1/4 (and γ = 1e4).

In Figure 4.1g, we show the cost function, overlayed by a vector plot of the drift, and

one integrated trajectory of the passive dynamics.

We first solve this problem by discretizing the state-space and solving the resulting

MDP. We use a 201×201 grid, leading to a 40401×40401 state transition matrix with

1.2× 106 nonzeros. Discrete LMDPs can be solved by finding the leading eigenvector

of a related matrix [Todorov, 2007]. The results are shown in figure 4.2 (a)-(d).

Solving the MDP (using Matlab’s eigs function) took 86s on a computer powered

by an Intel T9300 dual-core processor at 2.5GHz.
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see caption on the next page
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Figure 4.2: [See figures in the previous page. In all figures, red depicts higher values,
blue depicts lower values. (a)-(h) show the area [−4, 4]2 ∈ (x1 × x2).]
(a)-(d), MDP solutions for a discretized state-space. (e), (f), (h), (i), solution ob-
tained by the proposed algorithm. (a) The exponentiated negative value function
z(x). (b) The forward filtering density r(x). (c) The optimally controlled steady-
state distribution, formed by element-wise product of z(x) and r(x). (d) The policy
generated by the MDP solution, superimposed with one instantiation of the controlled
dynamics. (e) The policy generated by the approximate solution. The color map is
clipped to the values in (d), so saturated areas indicate mis-extrapolation. (f) The
approximate distribution generated by our algorithm. For each pixel we measure the
marginal of the state whose mean is nearest in the Euclidean sense. Note the simi-
larity to (c). (g) The cost function, superimposed with a vector field of the passive
dynamics. (h) Snapshots of the means for a particular convergence sequence, show-
ing 8 configurations out of a total of 40. The red x’s are the random initialization,
followed by a jump to the center to decrease dynamical inconsistency, followed by a
gradual convergence to the limit-cycle solution. (i) Convergence of the cost. Averaged
over 15 runs with random initialization.

We then solve the same problem with our proposed algorithm. With 150 variables

on the ring, the matrix H is 300 × 300, with 1800 nonzeros. Full convergence from

a random initialization takes an average 0.3s. A direct comparison is not relevant,

since the MDP solver finds a global rather than local solution; yet the difference is

striking. Once convergence of equation 4.9 is achieved, we compute the posterior

with equation 4.8. In order to visualize the resulting distribution, we plot the value

of the marginal of the closest Gaussian for every pixel in figure (f). The similarity of

figures (c) and (f) is remarkable. Our proposed method only local, and by comparing

figures (d) and (e), we see that the generated policy is valid only close to the limit-

cycle. In figure (h), we see snapshots of the convergence process. Starting from a

random initialization, the means jump to the center in order to decrease dynamical

inconsistency, followed by a gradual convergence to the limit-cycle solution. In figure

(i), we show the cost averaged over 15 runs, relative to the minimum cost achieved

over all the runs. We see that all runs converged to the global minimum, with a

quadratic convergence rate towards the end.
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Figure 4.3: Frames from the limit-cycle solution of an optimal walking gait. See
section 4.5.2.

4.5.2 Simulated walking robot

Our planar walking model is made of two legs and a trunk, each leg having three

segments (thigh, shin and foot), and we imposed joint-angle constraints that ensure

a biomechanically-realistic posture. The equations of motion are simulated using a

planar physics engine8 implemented in Matlab; the parameter units are arbitrary,

but can be assumed to have the appropriate units of a self-consistent system (e.g.

MKS). The length of the foot segments is 1, and all other segments are of length 2.

The segment masses are 0.1 for the foot, 0.4 for the shin, 1 for the thigh, and 4 for

the trunk. A control signal of dimension 6 acts on the joints (hips, knees, ankles).

The seven segment angles, together with the planar position of center-of-mass, make

for a system with 9 degrees-of-freedom, or 18 state dimensions. In order to allow the

gait to take a limit-cycle form, we remove the horizontal position dimension of the

center-of-mass (see section 6.3.4), for a total of 23 state dimensions.

Ground reaction forces are computed using SLCP (section 2.4.2). However, the re-

sulting dynamics are not control-affine, and therefore do not conform to the LMDP

formulation (section 4.3.1). In order to recover control-affine dynamics, we augment

the state space with 6 first-order filters of the control signal, with a time constant of

0.025. This adds 6 activation dimensions (which determine the instantaneous torques)

to the state space.

We use 80 time-steps of length 1/80, for a step period of 1. The matrix H is of

dimension 1840 × 1840, with 105840 non-zeros. Each iteration took 0.2 seconds on

8Developed by Yuval Tassa, available at http://alice.nc.huji.ac.il/~tassa/pmwiki.php?

n=Main.Code
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the same computer as above, with about 300 iterations until convergence. The initial

trajectory is a fixed for all time-steps, positioned in a physically-unrealistic open-leg

stand at some distance above ground.

We find that starting with a high value of γ leads to poor convergence rate; this

is resolved by using a shaping protocol (section 2.5): we start from γ = 0.01 and

optimize until convergence; we then multiply γ and re-solve, repeating until γ = 1e4.

After the first optimization, subsequent shaping iterations usually converge within

10-20 iterations.

In order to produce upright walking, we use a cost function with three terms: First,

a quadratic penalty for deviation of the center-of-mass’s horizontal velocity vx from

a desired value of 2. Second, a linear reward for the vertical height of the trunk’s

upper tip hT , to promote upright posture. Third, a cost term that is quadratic in the

muscle activation dimensions c. The total weighted state-cost is

q(x) = (vx − 2)2 − 0.1hT + 0.01‖c‖2. (4.13)

Convergence for this problem is robust, with different initializations converging to the

same solution. The resulting gait is demonstrated in Figure 4.3, as well as a movie,

available at http://www.youtube.com/watch?v=HJdqOve5IEs.

4.5.3 Feedback control law

One of the main advantages of the algorithm presented here is that the generated

control law (4.12) includes feedback terms, forming an effective basin-of-attraction

around the optimal limit-cycle. In Figure 4.4, we illustrate convergence to the limit

cycle from perturbed states, of the simulated walking robot. The means x̄k are

projected onto {d1, d2} ∈ R23, the two leading eigenvectors of the covariance cov(x̄k)

(i.e. the two leading PCA directions). One state is then randomly perturbed, and used

as an initial state for a controlled trajectory. The distribution of the perturbations is

chosen so that most trajectories (solid) are within the basin-of-attraction and converge

to the limit-cycle (successful walking), while several (dashed) diverge (stumble and

fall).

56

http://www.youtube.com/watch?v=HJdqOve5IEs


d
1

d
2

Figure 4.4: Robustness to perturbations
of the simulated walking robot, under
the feedback control law. The axes d1

and d2 are the largest eigenvectors of the
covariance of the x̄k. The optimal limit
cycle is in thick red, superimposed with
simulated trajectories. The trajectories’
initial states are indicated by dots;
converging trajectories are drawn with
thin solid lines, and diverging ones are
drawn with thicker dashed lines.

4.5.4 Running

After finding a walking gait that is optimal for a speed of 2m/s, we changed the

desired speed in equation 4.13 to 4m/s, and ran the optimization again, initialized

with the walker. The result is a running gait which can be seen in a movie, available

at http://www.youtube.com/watch?v=1So3xBfVP_k.

4.6 Discussion

This chapter presents a method of solving optimal control problems with a periodic

solution. Using the control-estimation duality which holds for problems of the form

(4.2)-(4.3), we recast the problem as Bayesian inference, and maximize the likelihood

of a Gaussian approximation. Importantly, the computational complexity of the

methods scales polynomially with the state dimension.

The algorithm produces a local feedback control law around the trajectory, but the

volume of the basin-of-attraction is limited by the validity of the Gaussian approxima-

tion. In order to expand the basin of attraction afforded by the feedback controller, we

may combine this offline method with online methods like Model Predictive Control,

by using the infinite-horizon cost-to-go as a final-cost for a finite-horizon trajectory

optimizer. This idea is realized in the next chapter.

57

http://www.youtube.com/watch?v=1So3xBfVP_k


Chapter 5

Infinite-Horizon Model Predictive

Control

5.1 Introduction

The finite-horizon criterion of optimality (section 2.1) seeks to minimize the future

cumulative cost over some predefined planning horizon. The repeated online solution

of the finite-horizon problem for an ever-receding horizon is called Model Predictive

Control (MPC), as discussed in section 3.5.3. Online optimization is possible because

this class of problems is relatively easy to solve, but may result in undesirable my-

opic behavior due to the limited planning horizon (section 3.5). In particular, it is

ineffective in domains with contacts, as discussed in section 3.7.

In contrast, the infinite-horizon criterion (section 2.1) poses the optimization problem

in terms of the average cost over an infinitely-distant horizon. This formulation is

used in domains where there are well-defined absorbing states (where the system can

remain forever), as well as domains where the solution is periodic and forms a limit

cycle. This class of optimization problems is currently too computationally-intensive

to be solved online.

The strengths of these two formulations can be combined by using the cost-to-go of

an infinite-horizon solution as the terminal cost of the finite-horizon problem. This

scheme is called Infinite-Horizon MPC (IHMPC).
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Existing IHMPC algorithms can only tackle domains with fixed goal states (sec-

tion 5.2). In contrast, the algorithm presented in this chapter tackles the more gen-

eral problem where the optimal behavior results in a limit cycle. We use an offline

optimization scheme to construct a locally-quadratic approximation of the infinite-

horizon cost-to-go around the optimal limit-cycle. We then use this approximation

as a terminal cost for online IHMPC.

We show how this approach can generate robust control for a simulated hopping robot

(figure 5.3) in real time. The optimal limit cycle is found through offline optimization

(chapter 4), and the infinite-horizon average-cost value function (section 5.4) is fitted

around the closed trajectory; this approximation is used for IHMPC (section 5.5.2).

The computation of the MPC optimization is fast enough to allow real-time simula-

tion and control. The resulting controller yields robust behavior that can effectively

recover from any perturbation.

Finally, we address the question of modeling errors. The method presented here uses

model-based dynamic trajectory optimization both online and offline; however, such

dynamic models would always be somewhat inaccurate for real robots. Robustness

with respect to modeling errors is studied by altering the dynamics of the simulated

plant, so that the optimization uses an incongruent dynamic model (section 5.5.3).

Even in this case, our controller can generate the desired behavior (figure 5.5) and

recover from perturbations.

5.2 Related work

Chen and Allgower [1998] were the first to suggest the combination of MPC with an

infinite-horizon optimization problem, and this approach has been studied extensively

in the past decade [Pannocchia et al., 2003, Almeida, 2008, Hu and Linnemann, 2002].

However, current IHMPC algorithms make the strong assumption that the task is

specified in terms of reaching a goal state. In such a case, only a finite amount of time

is spent away from this target, and so the conditions around the goal state dominate

the infinite-horizon considerations. Even if the domain exhibits non-linear dynamics,

a linear approximation can be used effectively in some small region around the goal

state, which is bound to dominate the infinite horizon because once the system enters
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this region, it remains there forever. Together with a quadratic approximation of

the cost function, the infinite-horizon problem takes the familiar form of a Linear-

Quadratic Regulator (LQR), and can be solved using Ricatti equations. In contrast

to existing IHMPC algorithms, the method proposed in this paper allows us to tackle

domains with no single goal state.

The optimization criterion of infinite-horizon average-cost was first presented by

Schwartz [1993] [see also Gosavi, 2004, Mahadevan, 1996, Singh, 1994], and was used

for policy search [Baxter and Bartlett, 2001, Tedrake et al., 2004]. However, we are

not aware of its use in conjunction with MPC.

5.3 Infinite-horizon model predictive control

In IHMPC, we compute the infinite-horizon value Ṽ (x) of a given state x by breaking

the infinite sum in equation 2.8 into two parts:

lim
N→∞

[
N∑
k=1

`
(
xk, π

(
xk
))
−Nc

]
=

N−1∑
k=1

`
(
xk, π

(
xk
))
− (N − 1)c

+ lim
N→∞

[
N∑

k=N

`
(
xk, π

(
xk
))
−Nc

]
.

Note that the first rhs sum is the finite-horizon value of the first state (2.2), the

second term is constant, and the last sum is the infinite-horizon average-cost value

function of the the N th state (2.8). Therefore:

Ṽ
(
x1
)

= V
(
x1
)

+ Ṽ
(
xN
)

+ constant.

This identity implies a compositionality of controllers: if we use the infinite horizon

value function Ṽ (xN) as the terminal cost function `N in (2.2), the optimal finite-

horizon behavior would also be the one minimizing the infinite-horizon average cost!

If we knew Ṽ (x) for every state, there would be no need for MPC, because we could

derive a globally optimal controller directly from the value function. Naturally, this

is impractical, bacause Ṽ (x) cannot be computed online, and in high-dimensional
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domains it is impossible to pre-compute Ṽ (x) for the entire state space. However, if

we could identify regions of state-space towards which the optimally-controlled system

is likely to converge, we could focus our computational resources, and estimate Ṽ only

for that area of state space. This is likely to generate a good approximation, since

most MPC trajectories would end in that region. Fortunately, the Bayesian inference

algorithm of the previous chapter is geared exactly for the task of identifying regions of

high posterior distribution under optimally-controlled dynamics. Therefore, we may

estimate Ṽ around the limit cycle found by the Bayesian algorithm, and use MPC

with that approximation as terminal cost. This combination yields good performance

as long as the MPC trajectory terminates close enough to the limit cycle.

How to approximate Ṽ around the limit cycle? Previous studies of IHMPC focused on

tracking tasks, where a well-defined goal state is available. In that case, LQG theory

can be used to find Ṽ analytically (as it is guaranteed to be a quadratic function

around the goal state). However, we try to generate autonomous behavior without

explicitly specifying a target state at every time step. In section 5.4 we present an

algorithm for approximating Ṽ that is based on minimizing least squares.

In summary, the IHMPC has three stages: first, we identify the optimal limit cycle

using the Bayesian method of chapter 4 for offline trajectory optimization; then, we

construct local quadratic approximations of Ṽ around every state. Finally, we use

that quadratic approximation onlime, as terminal cost in MPC optimization. As long

as MPC can find a solution where xN is close to that limit cycle, this constitutes a

good approximation of the infinite-horizon average cost optimal behavior.

5.4 Approximating the infinite horizon

value function

Given an optimized closed trajectory X and the corresponding open-loop sequence

U, we approximate the value function of the infinite-horizon problem locally as a

quadratic function. This means that for each of the points xk ∈ X we seek the

61



0

1

2

3
cost

A
0

50

100
cost−to−go

B
−10

−5

0

5

10
IH value

C

Figure 5.1: Illustrating the calculation of the 0th-order term of the infinite-horizon
value function along a limit cycle (described in section 5.4.1). A. the cost ` at every
point along a limit cycle (solid), and the average cost (dashed). B. the finite horizon
cost-to-go (solid) and the average cost-to-go (dashed), integrated along one cycle of
the closed trajectory. C. the resulting infinite-horizon average-cost value function,
shifted so that its mean over the entire limit cycle is zero.

coefficients Ṽ k
0 , Ṽ

k
x , Ṽ

k
xx so that for small δx,

Ṽ (xk + δx) ≈ Ṽ k
0 + δxTṼ k

x +
1

2
δxTṼ k

xxδx.

The constant terms Ṽ0 can be computed directly, while the coefficients Ṽx, Ṽxx can be

estimated using least-squares.

5.4.1 Computing the 0th-order terms

Since we can measure the cost ` along every point of the limit cycle, we can calculate

the average cost per step

c =
1

N

N∑
k=1

`
(
xk,uk

)
.

We define the cost-to-go along the limit cycle:

V k =
N∑
k=i

`
(
xk,uk

)
,

and the average cost-to-go:

V̀ k = (N − k)c.
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The infinite-horizon value function is the deviation of the cost-to-go from the average

cost-to-go

Ṽ k = V k − V̀ k + b

(see figure 5.1), shifted by the scalar b to enforce

N∑
k=1

Ṽ k = 0.

This computation is illustrated in figure 5.1.

5.4.2 Estimating the quadratic model

Equation 2.4 describes the relationship between the time-dependent, finite-horizon

value functions around two consecutive states, and this relationship is applied in

equations (3.3, 3.9, 3.10) of the backward pass (section 3.2.1). Equation 2.9 describes

the same relationship between the time-independent, infinite-horizon value function

around two consecutive states. However, a straightforward application of the back-

ward pass equations to integrate Ṽ backwards along the limit cycle does not result in

a good approximation of the value function. This is because the computation used in

the finite-horizon backward pass (section 3.2.1) relies on the dynamic-programming

principle of optimal substructure (section 2.2): that the future cannot affect the past.

This principle does not hold in limit cycles, where every state is visited both before

and after every other state. We found that in practice, simple application of the

backward pass along several rounds of the limit cycle requires a significant amount of

regularization (section 3.4.1) since this trajectory is not optimal in the finite-horizon

sense, and the resulting value function fails to produce robust behavior.

As an alternative, we can pose equation 2.9 in terms of least-squares minimization.

The key idea is to define a scalar measure of discrepancy between every pair of

consecutive quadratic model, and search for a combination of quadratic models that

minimize this discrepancy over the entire limit cycle.

For every state k around the limit cycle, we represent the values of the quadratic model

Ṽ k
x , Ṽ

k
xx as a single vector Vk, concatenating the gradient vector Ṽx and the upper
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triangular part of the symmetrical matrix Ṽxx into a single search space. In order

to compute d(Vk,Vk+1), the discrepancy between two consecutive models, we follow

the following procedure: we expand Vk+1 into the full quadratic model Ṽ k+1
x , Ṽ k+1

xx ,

and apply the backward pass equations (3.3, 3.7) without regularization to obtain a

candidate quadratic model Ṽ k+1→k
x , Ṽ k+1→k

xx around state xk, which can be represented

as a single vector Vk+1→k. We now define the discrepancy using regular Euclidean

norm in coefficient space:

d(Vk,Vk+1) =
∣∣∣∣Vk −Vk+1→k∣∣∣∣2.

The total discrepancy of a set of quadratic models around the limit cycle is simply the

sum of discrepancies for every consecutive pair. This is a nonlinear sum-of-squares

optimization problem, whose variables are the coefficients of the quadratic models

around the ring. Although the number of variables in this problem is quadratic

in the dimensionality of the domain, note that only variables of consecutive pairs

interact, leading to a sparse Hessian.

5.5 Results

We present results from two domains. First, we tackle the same toy 2D domain

studied in section 4.5.1. This problem is small enough to afford a global solution

through state-space discretization, which serves as ground truth. This allows us to

evaluate the quality of our approximations. Then, we apply our method to a simulated

domain of a one-legged hopping robot.

5.5.1 2D problem

Here we study the same 2D problem that is presented in section 4.5.1. We re-use the

ground truth found by the MDP solution, and the local solution around the optimal

limit cycle, which are reproduced at the top two panels of figure 5.2.

We identify quadratic approximations of the value function around every element of

the limit cycle according to the algorithm presented in section 5.4. We then use these
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quadratic models as terminal cost in an MPC with various planning lengths, and

compute the IHMPC policy over every state in the same 201x201 grid used for MDP.

The two lower panels of figure 5.2 shows the resulting policies for different lengths

of the MDP horizon. With a planning horizon of two steps, numerical artefacts are

apparent (bottom left), but the policy is already somewhat similar to the ground

truth policy. With a planning horizon of 12 steps (bottom right), the IHMPC policy

becomes effectively equal to the true policy almost everywhere.

A

optimal policy

B

local feedback

C

IHMPC−2

D

IHMPC−12

Figure 5.2: A. the ground-truth policy solved through MDP discretization. Compare
to 4.1d. B. the locally-linear feedback policy computed around the limit cycle.
Compare to 4.1e. C. IHMPC with a lookahead horizon of 2 steps. D. IHMPC with
a horizon of 12 steps. The complete limit cycle is 150 steps long. In all figures, red is
positive actuation, blue is negative actuation.
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body length (cm) radius (cm) mass (kg)

foot 50 7 8.77
lower leg 50 6 6.33
upper leg 50 5 4.32

Table 5.1: Morphological specification of the hopping robot

5.5.2 Planar hopping robot

The mechanical system of the hopping robot is composed of three body segments and

two joints, and so this domain has a 9-dimensional state space and two-dimensional

control space. The model is simulated using MuJoCo (section 2.4.1); the masses and

segment lengths are specified in table I. The ground interaction forces are computed

using SLCP (section 2.4.2) with σ = 1. The task requires the hopper’s center of

mass to maintain a fixed horizontal velocity ẏCOM of 1 m/s, while keeping its vertical

position xCOM around 1 m:

`(x,u) = 10(ẏCOM − 1)2 + 0.1(xCOM − 1)2 + 0.01||u||2.

We start by finding an optimal limit cycle with N = 40 steps of 20msec. The

optimization of the hopping gait is implemented in Matlab, and takes about an

hour of computation on a dual-core (Intel T9300, 2.5GHz) processor. In order to

initialize the optimization, all points along the limit cycle are set to a physically-

unrealistic standing pose with the foot hovering over the ground. We follow the same

shaping routine described in section 4.5.2, starting from γ = 0.01 and multiplicatively

Figure 5.3: The hopping robot’s limit cycle.

66



Figure 5.4: IHMPC recovering from a starting state that is radically far from the
limit cycle. Note how in the first frame on the right, the hopping robot is flying
upside-down, and yet manages to eventually get a foothold and push itself back up.

increasing until γ = 1e4. Fitting the quadratic approximation of the value function

around the limit cycle takes about 5 minutes of computation. Both steps are run

offline only once.

We then apply IHMPC with a planning horizon of 10 steps. Every MPC optimization

loop was allowed at most 5 iterations. When the simulation is unperturbed, the MPC

optimization converged in a single iteration in every timestep. This allows us to apply

IHMPC in real-time. IHMPC was able to generate robust behavior over the entire

state-space. The basin of attraction of the IHMPC effectively covers the entire volume

of state space, and the hopping robot can recover from any perturbation and resume

its gait. Even when the hopper is thrown to the ground (frames 1 and 2 in figure 5.4),

it can find an appropriate motor sequence to get up (frames 3 and 4) and resume its

hopping (frames 5-8).

5.5.3 Robustness to modeling errors

We use model-based optimization for both the offline and the online phases of our

IHMPC algorithm. However, it is impossible to build a perfectly-accurate dynamical

model of a physical robot. Therefore, in order to be useful for real-world robotic

applications, any model-based control method must be robust to modeling errors.

We examine this question by modifying the model used for plant simulation, making

it incongruent with the model used for optimization. We increase the length of the

top segment by 60%, from 50cm to 80cm. In this case, the original limit cycle is

no longer the optimal gait for the modified morphology, and the MPC optimizations

are using the wrong model of the dynamics. However, IHMPC is able to maintain

effective hopping in this case as well (figure 5.5).
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Figure 5.5: The limit cycle of a hopping robot with altered morphology (the top
body’s length is extended by 60% to 80 cm). IHMPC can recover stable hopping
even as the planner still uses the original model.

5.6 Discussion

The main contribution of this chapter is the presentation of an algorithm for Infinite

Horizon Model Predictive Control (IHMPC) for tasks with no specified goal state. We

show that IHMPC can generate robust behavior in domains with discontinuities and

unilateral constraints, even at the face of extreme external perturbations. We also

show how our controller can maintain the desired behavior in the face of significant

modeling errors.

Our results show a hopping robot that can get up when tossed to the ground. The

controller’s capacity to figure out how to get up is not part of the behavioral reper-

toire that was pre-computed offline. Instead, it is a result of MPC online trajectory

optimization. This highlights how IHMPC allows for “motor creativity”, as the online

optimization can tackle any perturbation, as long as it can find a finite trajectory that

terminates close enough to the optimal limit cycle. The capacity for such open-ended

behavior is essential for robots who share the space with unpredictable humans and

their ever-shifting environment.
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Chapter 6

Inverse-Dynamics Trajectory

Optimization

6.1 Introduction

In all the simulations presented in this dissertation thus far, the dynamics are modeled

via a forward formulation, where the next state is computed from the current state and

action. This computation uses numerical integration, which suffers from numerical

stability issues — when the dynamics are stiff or non-smooth, small time-steps are

necessary to prevent divergence. This presents a significant challenge to algorithms

of trajectory optimization, which scale linearly with the number of time-steps.

As an alternative, this chapter uses inverse dynamics, where the current action is

computed from the current and next state (section 6.3.2). Inverse dynamics does not

rely on numerical integration, and is therefore immune to such problems of numeri-

cal instability, allowing for the representation of the same trajectory using a signifi-

cantly smaller number of time-steps. Inverse dynamics can be employed in algorithms

of simultaneous trajectory optimization, which use an explicit representation of the

state-space trajectory.

In domains with contacts, inverse dynamics are particularly challenging, since the

inverse-dynamics computation must be able to differentiate between the forces that

are applied by the agent and the reaction forces. To see why, consider the effort

required for voluntarily bringing your foot to a halt at a zero distance above the
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ground, compared with the kinematically-equivalent situation where the foot stops

at zero height due to collision with the ground.

In order to resolve this issue, we employ an invertible contact model which is based

on convex optimization (section 6.3.5). Like SLCP (section 2.4.2), this model pro-

vides contact smoothing, and allows us to formulate the contact-driven optimization

problem in general terms, using only the continuous trajectory representation, and

avoiding hybrid modeling or other contact-specific machinery. However, it offers an

additional, unique feature — the capacity to compute inverse dynamics through the

contact reaction forces.

Chapter 4 presents a method for optimizing limit cycles using forward dynamics using

the linearly-solvable MDP framework (section 4.3.1), which only applies to domains

that are control-affine. In order to use it with SLCP (which generates dynamics that

are not control-affine), we had to use a third-order system with excitation-activation

dynamics (section 4.5.2), which inflates the number of state dimensions. The method

presented here applies directly to systems that do not conform to the LMDP formu-

lation, and requires no additional dimensions.

We demonstrate the efficacy of this algorithm by solving a domain of bipedal run-

ning. This is an interesting domain because it includes a severely-underactuated flight

phase, where the agent has no way to influence the trajectory of its center of mass.

This makes it difficult to apply traditional gait design approaches (such as ZMP) to

bipedal running. We optimize the motion pattern of a simulated 3D humanoid with

31 degrees of freedom, which is prohibitively-large for most standard optimization

schemes. The resulting gait is best illustrated by a movie9. Most notably, a coordi-

nated movement of arms and legs emerges, as the upper body motion balances the

angular momentum created by leg swing.

6.2 Related work

Dynamics with contacts are a profound challenge to optimal control, and the standard

way to overcome this obstacle is by using a hybrid representation. In a hybrid model,

9available at http://www.youtube.com/watch?v=CL11JTnH6P8
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teh continuous state space is augmented with a discrete set of states representing the

boolean contact state of every possible contact pair. Given the discrete contact state,

the continuous dynamics can be computed by treating the contact as a constraint.

Additional computation is used to ensure that the contact forces remain inside the

friction cone, adjusting the discrete contact state as necessary.

Hybrid modeling requires explicit representation of the contact state and significantly

increases the burden of modeling the dynamics. For example, Bessonnet et al. [2010]

use inverse dynamics to optimize a gait pattern of a 3D robotic model. However,

the dynamic model they use is not in general form, and their method requires an

analytic formulation of a ZMP condition; therefore, their method cannot be easily

extended to other morphologies, or a richer set of contacts. In another example, Ren

et al. [2007] study a planar model of human walking, yet their model cannot compute

ground reaction forces during double support, and these must be approximated via

data-driven heuristics.

Inverse dynamics has been successfully applied to gait design using hybrid model-

ing.Wampler and Popovic [2009] optimize the trajectory using SQP, and optimize the

contact times separately using Covariance Matrix Adaptation. Kim et al. [2008] apply

inverse dynamics to a 3D biomechanical hybrid model by explicitly representing and

optimizing the timing of each gait phase (single-support vs. double-support). Mom-

baur et al. [2010] also present an optimization method which solves simultaneously

for body poses and contact times.

In contrast, the method we present here employs inverse dynamics in a fully-continuous

state-space, eliminating the need for hybrid representation.

6.3 Inverse dynamics

6.3.1 Minimal representation

In order to represent the mechanical state of a multibody system, we need to specify

both the positions and velocities along some generalized coordinates. However, in

simultaneous trajectory optimization, the velocities are represented implicitly, by
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virtue of representing consecutive positions. Therefore, it is redundant to represent

the trajectory in all dimensions of state space (including both position and velocity).

This redundancy leads to potential incongruence, which is manifested as an implicit

set of constraints between the various variables of our search space. This gives rise

to a Hessian which is dominated by those over-specified directions, which results in a

slower optimization procedure (since self-inconsistency is penalized independently at

every step).

In order to eliminate the mutual dependencies, we wish to perform the same simul-

taneous optimization using a minimal representation. Since every consecutive pair

of positions implicitly defines a velocity, we can rewrite the same optimization prob-

lem while explicitly representing only the positions around the limit cycle; this not

only reduces the number of dimensions, but more importantly — eliminates mutual

dependencies between the dimensions of the search space.

6.3.2 Computing the inverse dynamics

We assume that the state x ∈ Rn is composed (at least) of a set of generalized coor-

dinates q ∈ Rq and their respective velocities q̇. In order to keep the syntax simple,

we focus on the case where x = [qT q̇T]T (so n = 2q); extending the optimization to

additional state dimensions (such as muscle activation level or fiber length) can be

done by defining the inverse dynamics of these quantities. The system is driven by a

control signal u ∈ Rm; we are interested in the underactuated case (m < n), where

some state dimensions can only be affected indirectly.

Given a general-form cost function `(x,u), we seek to compute the locally-optimal

N -step trajectory which minimizes the total cumulative cost
∑

k `(x
k,uk). This op-

timization takes place over the minimally-represented search space Q = stack{qk} ∈
RqN .

In a semi-implicit integration (section 2.4.1), the dynamics express a relation be-

tween the current state (qk, q̇k) and the velocity at the next time-step q̇′ (compare

to equation 2.11a):

q̇′ = q̇ + hM−1(r + û), (6.1)
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where h is the time-step, q is the configuration, M = M(q) is the mass-matrix,

r = r(q, q̇) is the vector of total Coriolis, centripetal and other intrinsic forces, and

û is the full control (i.e., the control signal in the fully-actuated system). During

forward simulation (2.11a), û = Bu, where B is the n×m matrix determining which

degrees of freedom are actuated.

The use of the full control û is unavoidable during inverse dynamics — since we

explicitly represent the entire trajectory, we must cope with trajectories that are

infeasible in the underactuated system; however, the system controlled by û is fully-

actuated, and therefore every trajectory is dynamically-consistent by definition.

The full state-space trajectory can be easily recovered from a minimal representation.

However, identifying the corresponding control sequence is not as simple. Forward

dynamics answers the question “given the current position, velocity, and control, what

is the next position and velocity?”, mapping from (q, q̇,u) to q̇′ (where prime (′)

stands for “next time-step” as in equation 6.1); inverse dynamics asks the question

“given the current position and velocity, as well as the next velocity, what is the

control that is applied?”, mapping from (q, q̇, q̇′) to û.

It is convenient to define the expanded representation ϕ as a concatenation of these

vectors: ϕ , [qT q̇T q̇′T]T. Note that the expanded representation ϕ is a linear

function of three consecutive positions along a minimally-represented trajectory:

ϕ′ = Υ[qT q′T q′′T]T,

where:

Υ =

 0 I 0

−I/h I/h 0

0 −I/h I/h

 (6.2)

6.3.3 Penalizing helper forces

The inverse dynamics computes the full control û(ϕ). In order to identify the control

of the original underactuated system, we decompose û into the sum of two terms, one

representing the standard actuation and one representing the helper forces that apply
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to the originally-unactuated dimensions. Given the m-rank control matrix B of the

original underactuated system, we can construct a second matrix B̆ whose columns

span the kernel of B. This allows us to uniquely decompose û:

û(ϕ) = Bu(ϕ) + B̆ŭ(ϕ). (6.3)

We may now use the original (underactuated) control signal u in the computation

of `(x,u) as before. In order to prevent reliance on helper forces, we use a penalty

method and compute a cost term on ŭ which constrains it to 0; in the experiments

below we use a quadratic cost 1
2
γ||ŭ||2, resulting in the performance criterion:

β(ϕ) = `
(
x(ϕ),u(ϕ)

)
+

1

2
γ||ŭ(ϕ)||2. (6.4)

where x(ϕ) is shorthand for truncating the next velocity from ϕ, leaving only the

current state x = [qT q̇T]T (section 6.3.2).

6.3.4 Invariant coordinates

In order to optimize a limit cycle, Q must represent a closed trajectory. However,

the case of locomotion presents a challenge — when all generalized coordinates are

considered, locomotion is not a limit cycle but rather a coil-shaped trajectory, because

the global positions increase with every period.

In the previous chapters of this dissertation, this complication is avoided by simply

excluding those coordinates from the state space, keeping only the corresponding

velocity. This poses no problems, because the dynamics of the system is invariant in

these dimensions, and so we may arbitrarily set the values of these coordinates to 0

during forward dynamics.

However, here we cannot do that, because the velocities are implicitly represented by

the positions q. We solve this by modifying Q to represent the velocities of these

coordinates. The size of Q remains the same, but the transformation matrix Υ is

modified to copy the velocity explicitly from Q to ϕ, and insert 0 at the entries of ϕ

which correspond to the coordinates of global position. In a planar simulation, the
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only invariant coordinate is the horizontal position; in 3D, both planar positions are

invariant.

6.3.5 Inverse dynamics with contacts

The SLCP contact model presented in section 2.4.2 cannot be used for inverse dy-

namics, because the contact forces are computed through a non-convex optimization

procedure, which is not easily invertible. In order to overcome this difficulty, we use

a different algorithm for computing reaction forces, which is based on convex opti-

mization [Todorov, 2011b], and can be transformed to compute the inverse equation.

The SLCP reaction force is found by minimizing a residual which is a smooth function

of the state. The model presented here follows a similar structure, but replaces the

complementarity condition of SLCP with a more relaxed formulation.

Given the current position q, the geometric computations in MuJoCogenerate J , the

Jacobian between state coordinates and contact coordinates. We use this Jacobian

to introduce the reaction force p (specified in contact coordinates) to equation 6.1:

q̇′ = q̇ + hM−1(r + û) +M−1JTp.

Note that the last term is impulsive, in that it is not multiplied by the time step h.

Using J again to project this equation to contact space, we get:

J q̇′ = c + Ap,

where c = J
(
q̇ + hM−1(r + Bu)

)
is the velocity in contact space when p = 0, and

A = JM−1JT is the inverted mass matrix in contact coordinates. A forward contact

model maps from (c, A) to p (and therefore q̇′); an inverse contact model maps from

(q̇′, A) to p (and therefore û).

The contact model of Todorov [2011b] solves for p by seeking the reaction force that

minimizes kinetic energy in contact space. Following the derivation presented there,

this condition is equivalent to minimizing a residual of the form r(p) = 1
2
pT(A+R)p+

pTc, where R = R(Jq) is a regularization matrix which serves for ensuring (relaxed)
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complementarity: R is a diagonal matrix whose elements are a function of the current

distance in contact coordinates. When the distance along one contact dimension is

big, the corresponding terms in R are very big, and therefore the corresponding

terms in p reduce to 0; when the contact distance is small (or negative, indicating

penetration), the corresponding terms in R go to zero, and the contact model is free

to eliminate all kinetic energy in that dimension. The friction cone constraints are

translated to log-barrier functions d(p), and the problem is solved with a modified

interior-point method.

As Todorov [2011b] shows, this formulation can be inverted: since p minimizes r+ d,

it must satisfy rp + dp = 0. Through some further analytic manipulation, we can

construct a residual expression for p that depends only on A and J q̇′. Unsurprisingly,

this residual [Todorov, 2011b, equation 23] includes the term 1
2
pTRp, allowing R to

manifest a relaxed complementarity condition as before. The parametric form of R

is not dictated by the theory; in our experiments, we got the most realistic-looking

results with R being exponentially-dependent on the contact distance.

6.4 Inverse dynamics optimization

We seek to minimize the total cost β =
∑

k β
k(ϕk) by computing βQ and βQQ, its

derivatives with respect to our minimal representation of the trajectory.

Using the expanded representation ϕ (section 6.3.2), we define the stack of expanded

representation vectors Φ , stack{ϕk} ∈ R3qN , which is a linear function of the

minimal representation Q:

Φ = ΛQ, (6.5)

where the matrix Λ ∈ RqN×3qN is made of adjacent copies of Υ (6.2).

We can compute the gradient and Hessian of β with respect to ϕ by finite-differencing

the inverse-dynamics function u(ϕ) and applying the chain rule. This provides a

quadratic model for β for every time step k along the trajectory:

β(ϕk + δϕ) ≈ βk0 + δϕTβkϕ +
1

2
δϕTβkϕϕδϕ.
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We stack the gradients βΦ = stack{βkϕ} and arrange the quadratic terms in the

block-diagonal matrix βΦΦ = diag{βkϕϕ} to obtain a quadratic model for β over the

expanded representation:

β(Φ + δΦ) ≈ β0 + δΦTβΦ +
1

2
δΦTβΦΦδΦ

We can now compress the derivatives of β with respect to the expanded representation

to their equivalents in the minimal representation using the matrix Λ (6.5):

βQ = ΛTβϕ (6.6a)

βQQ = ΛTβϕϕΛ. (6.6b)

6.4.1 Compressed representation

Equations 6.6 use the sparse matrix Λ to linearly transform a quadratic model in the

expanded representation Φ to the corresponding quadratic model in the minimal rep-

resentation Q. This reduction in dimensionality is information-preserving, because

the expanded representation is only a notational convenience. However, this manip-

ulation suggests that a similar manipulation can be used to allow optimization with

compressed representation that is smaller than Q, as long as it is linearly-expandable

to Q. This criterion is met by many low-dimensional representations of closed trajec-

tories, such as Fourier transform and splines, and this type of dimensionality reduction

is common in simultaneous optimization [e.g., Bessonnet et al., 2010, Anderson and

Pandy, 2001].

In the experiments described below we use a Fourier series representation for com-

pression. In one dimension, we can linearly expand a vector t ∈ Rs (representing the

first s coefficients in a Fourier series) to the N -vector F t representing the full peri-

odic trajectory (where the Fourier-transform matrix F ∈ RN×s can be obtained, for

example, by taking the first s rows of an FFT of the identity matrix). Given S ∈ Rsq,

the Fourier series of all state dimensions, we write: Q = FS, where F ∈ Rsq×Nq is

the full-trajectory Fourier-transform matrix, built from stacked copies of the matrix
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F . This martix allows us to write the derivatives of β with respect to the Fourier

representation:

βS = FTβQ (6.7a)

βSS = FTβQQF . (6.7b)

Although this is a lower-dimensional representation, the computational cost of every

iteration remains almost the same, because the derivatives of the inverse dynam-

ics still require finite-differencing of the expanded representation Φ. Note that this

method can only find the locally-optimal trajectory within the limited subspace of all

trajectories; the optimal unconstrained trajectory Q∗ still has a lower cost than S∗.

6.4.2 Symmetry

In domains of bipedal locomotion, we expect the optimal limit cycle to be symmetric

— the starting position of the swing leg should match the ending position of the

stance leg, and vice versa. This constraint allows us to optimize for only one step,

instead of a full stride. We enforce this constraint by applying a linear transformation

(swapping the sides of the body) to the last state xN whenever it is considered in

conjunction with the first state x1.

6.5 Results

We demonstrate the power of inverse optimization by optimizing a running gait for

a simulated 3D bipedal robot, illustrated in figure 6.1. The model has 31 degrees

of freedom: the ball joint between the torso and the pelvis has 3 DOF (the head is

welded to the torso), each leg has 3 DOF at the hip, 1 at the knee and 3 at the ankle,

and each arm has 3 DOF at the shoulder and 1 at the elbow. The physical properties

of the body parts are specified in table 6.1.

Every foot has three contact points with the ground: one at the back, and two at

the front. In this experiment we use N = 21 timesteps of 15msec, which correspond

78



Figure 6.1: A sequence of frames depicting the optimal running gait; this gait can be
seen in a movie available at http://www.youtube.com/watch?v=CL11JTnH6P8. Note
the extension of the arm in frame 2, coinciding with the flight phase. This arm motion
emerged in the optimal solution as a way to eliminate excessive angular momentum.

to ∼ 190 steps per minute, in accordance with standard human running pace. The

Fourier representation uses s = 11, in accordance with Ren et al. [2007].

The cost function of the running task compares the horizontal velocity of the runner’s

center of mass q̇y to some desired velocity, while maintaining all body parts at a

forward orientation:

`(x,u) = 100(q̇y − vd)2 + ||qxz||+ 0.01||u||2

where qxz is a vector of all joint angles in the x− and z−axes, and the last term

is a quadratic cost on applied joint torques. The penalty term on qxz is required

because we are using direct torque control, and in the absence of such penalty, the

runner tries to distribute the actuation across all spatial angles equally, resulting in a

hideously-unrealistic gait. In our simulation we use a set velocity of vd = 6m/s, and

the resulting optimal running gait reaches an average velocity of 5.1m/s.

The limit cycle is initialized by setting the first state to a physically-unrealistic open-

leg pose elevated above the ground. Due to the symmetrical formulation and the

Fourier representation, the initial limit cycle is an interpolation between this pose

and its mirror image, which looks like a prototypical leg swing motion. The op-

timization process converges after about 2500 Newton-step iterations, which take

about 10 minutes on a desktop computer with two 6-core processors. The most

computationally-intensive step is finite-differencing the inverse dynamics. However,

this computation can be executed in parallel, saving a lot of computation time.

79

http://www.youtube.com/watch?v=CL11JTnH6P8


2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time−step

c
o

n
ta

c
t 

d
is

ta
n

c
e

 (
m

)

Figure 6.2: Distance in contact space between feet and ground.

The resulting gait can be seen in a movie10. Figure 6.2 shows the distances, in contact

space, of the feet’s contact points during one step. The heel strikes at time-step 6,

and the toes soon follow at step 8, which makes this a heel-first running gait. With

the heel leaving the ground at step 12, and toe-off at time 21, the flight phase extends

between time-steps 1 and 5, making it a veritable running gait.

The most striking feature of the resulting running gait is the emergent coordination

between the legs and the opposite arms. The left arm thrusts forward in synchrony

with the right leg during the flight phase (best seen in frame 2 of figure 6.1), elimi-

nating the angular momentum of the pelvis and torso that would otherwise result in

an increased cost. This feature came about without any form of explicit modeling,

and attests to the power of the optimization process. The arm also exhibits a minor

jerk in the anti-phase of the forward thrust; we are not sure what causes that motion.

6.6 Discussion

This chapter uses an invertible smooth contact model to find an optimal trajectory

in a high-dimensional domain. The formulation we use is completely general, and

requires no hybrid representation. While we demonstrate this algorithm in a domain

of humanoid bipedal running, the algorithm we present has general applicability, and

10Available at http://www.youtube.com/watch?v=CL11JTnH6P8
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body length (cm) radius (cm) mass (kg)

trunk 10 18 28.5
head 10 8.5 4.2
pelvis 13 n/a 9.2
thigh 35 7.4 7.3
shin 31 5 2.8
foot 27.4 3 2.3
upper arm 30 5 2.7
lower arm 26 4 1.5

Table 6.1: Morphological specification of the 3D runner. All bodies but pelvis are
capsules. Total height: 1.9m (∼6’3”); total weight: 75.25kg (∼166 lbs.).

the very same optimization can be applied to a diverse set of tasks, from multi-legged

locomotion to dexterous hand manipulation.

The resulting optimal motion shares some features of human bipedal running. How-

ever, biomechanical realism is not the primary goal of this project. We are certain

that further tweaking of the cost function and the body anthropometry can lead to

running gaits that more faithfully imitate human running. Yet, such biomimicry

is contingent on the development of algorithms capable of optimizing behavior in

biomechanically-realistic domains (which are often high-dimensional) in the presence

of contacts. The algorithm presented in this paper meets these requirements.

We are not explicitly representing the stochasticity of the domain. However, follow-

ing the theory of Stochastic LCP (section 2.4.2) the smooth contact dynamics can

be construed as an approximation for the expected reaction forces under stochastic

dynamics.

In order to control a real-world system (or a stochastic simulation), the Hessian around

the optimal trajectory can be used to derive a locally-linear feedback controller [Tassa,

Erez, and Todorov, 2011a]. By invoking the separation principle [Stengel, 1994], the

feedback controller optimized for the deterministic domain can serve to control its

stochastic counterpart, as long as the noise profile is not dependent on the state.

We take a model-based approach to optimizing behavior, which allows for efficient

optimization. In contrast, model-free methods construct an approximation of the
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dynamics (either in forward or inverse formulation) from interaction with the envi-

ronment. This model-free approach cannot be directly applied to tasks which require

powerful articulated motion, and result in inherently unstable behavior. On the

other hand, it is impossible to build a perfectly accurate model of a multi-joint robot.

Therefore, in order to apply such model-based methods to control real robots, some

mechanism for model adaptation and learning must be incorporated. One example

for such a method is presented by Abbeel et al. [2007]. In addition, some tolerance

for modeling errors must be incorporated into the feedback controller; this can be

achieved, for example, using model-predictive control, as in the previous chapter.

Finally, the algorithm presented here requires that we fix the period of the limit-cycle

in advance; this could be relaxed by allowing the time step length h to be optimized

as well, adding one dense row to the Hessian.
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Chapter 7

Conclusion and Future Work

This dissertation presents a set of algorithms for the computation of locally-optimal

trajectories in nonlinear, underactuated dynamical systems. The dynamics is treated

as a black box, without applying analytic manipulation to the time-stepping function

f , nor to its inverse dynamics counterpart. The use of general-form cost functions

and black-box dynamics guarantees the generality and extensibility of these methods.

The use of smooth contact models allows us to apply standard optimization tools to

domains with multiple contacts without having to explicitly represent or prescribe the

contact times. This means that complex motion patterns with unpredictable number

of simultaneous contacts can be solved just as easily.

The significance of this work lies at its outlining of a new kind of tradeoff in nonlin-

ear motor control design. Traditionally, research in control theory focuses on finding

provably stable policies, which are indispensable for mission-critical tasks such as

missile control. Meanwhile, the study of optimal control, adaptive dynamic program-

ming, and reinforcement learning, all focus on methods which can produce globally

optimal behavior, but require the computational consideration of the entire volume

of state space.

In contrast, if biological realism is an accepted design goal, then the expectations we

have from our controllers can be more relaxed than those of the control engineer. The

unavoidable eventual failure of any specific natural behavior (we all fall sometime)

makes the design of truly robust controllers a futile endeavor. By forfeiting global

guarantees, we can apply optimization to otherwise prohibitively-hard domains, and

generate creative and robust motor behavior using standard computational tools.
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This rich set of behaviors comes about without the need to explicitly pre-define the

details of every motion pattern; instead, these emerge from first principles through

numerical optimization.

Beyond the immediate implications for robotic research, I see autonomous dynamic

simulation as a tool that may be applied to the investigation of a wide variety of

natural phenomena. Motor behavior comes about as the result of an interplay between

the actuated body, the physical environment, and the underlying control mechanism.

By developing algorithms that optimize autonomous motor behavior, we may address

a variety of what-if questions that cannot be studied in real life, since in our simulated

domain we can independently alter the physics, morphology and control. Going

forward, my goal is to develop general tools that can support investigation across a

range of biomechanical phenomena.

In computational biomechanics, such optimization tools can allow better prediction of

post-treatment outcome in patient-specific models, providing surgeons and therapists

with a virtual platform for the investigation of various scenarios. In neuroscience,

studies of motor control often attempt to answer the question “why we move the

way we do” by building a normative model, explaining an observed behavior in terms

of some first principles (e.g., minimum torque). Dynamic simulations offer a con-

crete method to test hypotheses regarding potential first principles, allowing for the

analysis and explanation of experimental data in a concrete fashion. This tool may

also be applied to investigations in evolutionary biology, tracing the role of various

adaptations by investigating counter-factual models of alternative morphologies.

Efficient optimization algorithms can also be used for meta-optimization in the space

of morphological configurations. This is an open-ended field of research, with count-

less possible applications, from prosthesis design and sport medicine to theoretical

biology.

One computational feature of biological neural processing that is not addressed in this

dissertation is dimensionality reduction. While the algorithms presented here treat

equally every dimension of state space, there is good reason to expect a more hier-

archical organization in neural systems that control an overactuated system of many

overlapping muscles, and perhaps distinguish between dimensions with immediate

relevance to the task, and dimensions who only play a supportive role.
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In my mind, the biggest open question left out of this dissertation is the problem of

inverse optimal control. A long-standing assumption of biology is that the current

state of nature is in part the result of an optimization process, and this dissertation

provides tools for recreating this optimization given some cost function. However,

there is no scientific consensus about what are the relevant first principles underlying

the various categories of motor behavior. The application of broad principles to

detailed biomechanical models must be mediated by some concrete hypotheses; for

example, the principle of minimizing metabolic effort can be modeled by minimizating

of muscle mechanical work, or joint torques, or some operational definition of fatigue.

These questions are often the locus of much scientific debate, and the variety of

proposed optimality criteria is a challenge that must be dealt with when applying

optimal control in these domains.

Understanding the optimization criteria that may underlie observed natural phenom-

ena can provide important insights into our objects of study, as well as the biophysics

which both constrains and affords their behavior. As such, I believe that these tools

hold great promise to the study of natural motion.
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