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This thesis research consists of two independent research projects that both studied 

interfacial chemical processes affecting trace elements at mineral surfaces.  

The objectives of Project 1 were to 1) quantify the impact of water chemistry on As(III) 

adsorption on lepidocrocite, 2) develop a surface complexation model to describe equilibrium 

As(III) and As(V) adsorption to lepidocrocite and 3) elucidate the mechanism of Fe(II)-mediated 

As(III) oxidation at the lepidocrocite-water interface. Arsenic is a regulated element that can be 

found at high concentrations in groundwater resources that are used as drinking water sources. 

Iron (oxyhydr)oxides are one of the most abundant groups of minerals in soils and aquifers, and 

their presence can significantly affect the behavior of arsenic. Iron (oxyhydr)oxides are also 

commonly used as adsorbents in engineered system to remove arsenic from drinking water. In 

addition to adsorbing arsenic, Fe(III) minerals can participate in As(III) oxidation to As(V), 

which can reduce arsenic’s mobility and enhance its adsorption. Advances in the understanding 
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of the environmental chemistry of arsenic are important to the development of water treatment 

technologies.  

The adsorption of arsenic to lepidocrocite strongly depends on water chemistry. 

Experiments that pursued objectives in Project 1 examined As(III) and As(V) adsorption to 

lepidocrocite as a function of pH, total As(III) concentration, iron loading, Fe(II) and competing 

adsorbate presence. For the arsenic concentrations and Fe loadings studied, As(V) adsorption 

decreases substantially with increasing pH, while As(III) adsorption is less sensitive to pH 

changes, characterized by a stable level of high adsorption between pH 6-9. For As(III), the 

presence of oxygen promoted the overall arsenic adsorption via partial As(III) oxidation. A 

surface complexation model, optimized for both adsorption isotherms and adsorption edges, was 

able to describe the adsorption of both As(III) and As(V) to lepidocrocite over a broad range of 

conditions. 

The concentration and oxidation states of dissolved arsenic measured over the course of a 

reaction provided information on As(III) oxidation. When dissolved oxygen and Fe(II) were not 

present, As(III) was not oxidized by the Fe(III) in lepidocrocite. At both oxic and anoxic 

conditions, As(III) was oxidized to As(V) in systems that contained lepidocrocite together with 

Fe(II); this oxidation led to overall enhanced arsenic adsorption at near neutral pH. With oxygen, 

the pH-dependent generation of oxidants from the Fenton reaction drove the As(III) oxidation. In 

the absence of oxygen, the As(III) was probably oxidized by Fe(III) in lepidocrocite that had 

become more reactive upon reaction with Fe(II). The two reaction pathways could occur 

individually or in combination. Findings in Project 1 provide a deeper understanding of arsenic 

behavior in engineered water systems and are instrumental to manipulating the conditions under 

which arsenic is removed via adsorption. 
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The objectives of the second project were to 1) investigate the impact of water chemistry 

on trace element mobilization from shales during shale–fluid contact and 2) to identify the 

dominant mobilization pathways. The rapid development and expansion of hydraulic fracturing 

operations for enhanced energy recovery can affect water quality. The flowback and produced 

waters after injection of a fracking fluid could contain high total dissolved solids and trace 

elements mobilized from contact with shales. The concentrations of specific elements depend on 

the geochemistry of the formation, fluid composition, and time of shale–fluid contact. An 

understanding of shale-bound element mobilization will facilitate wastewater management 

associated with hydraulic fracturing practices.  

Experiments in Project 2 were performed to evaluate trace element mobilization from 

shales over a range of fluid chemistries with core samples from the Eagle Ford and Bakken 

formations that are currently producing natural gas and oil via hydraulic fracturing. Samples 

were characterized with regard to their mineralogy, surface area and total carbon prior to 

experiments. The fluid chemistry was varied in pH, oxidant level, solid:water ratio, and 

temperature. Analytical results from experiments and chemical equilibrium modeling were 

integrated to identify dominant mobilization pathways.   

The Eagle Ford samples used in this research were rich in carbonates and quartz with 

minor amounts of kaolinite, albite, pyrite and 5 wt % total organic carbon. The release of most 

elements strongly depended on pH, which was primarily controlled by carbonate dissolution. The 

introduction of oxygen and other oxidants (H2O2) significantly increased the amount of sulfate 

over time; the sulfate generated had a direct impact on Ba concentrations due to the formation of 

BaSO4 as a secondary phase. For these Eagle Ford samples, trace elements (such as As and U) 

mobilized from rock-fluid contact had low concentrations in all the conditions studied.  
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Major mineral phases in the Bakken Formation samples included quartz, K-feldspar, 

illite, dolomite and pyrite. One sample with 18.7 wt % total organic carbon was naturally 

enriched in redox-sensitive trace elements (including regulated elements such as As and U). For 

all the water chemistry variables studied (pH, oxidant level, solid:water ratio, temperature, 

salinity and chemical additive presence), pH and the oxidant level were properties that 

dominated the behavior of most elements. The addition of chemical additives (HCl, citrate, and 

persulfate) affected element release mainly by altering system pH or redox conditions. The 

abundance of dolomite relative to pyrite determined the system pH when sufficient oxidants 

(such as oxygen and oxidizing chemical additives) were present. The lack of acid-neutralizing 

minerals, in case of sulfide mineral oxidation, may lead to a significant decrease in the pH. The 

knowledge gained in Project 2 provides insight on the key factors that dominant shale-bound 

element mobilization during rock-fluid interactions, and is helpful for understanding and 

managing produced and flowback water related issues associated with hydraulic fracturing.  

 

  



1 

 

Chapter 1: Introduction 

1.1 Background and Motivation 

This thesis consists of two independent research projects focusing on 1) interfacial 

chemistry between As(III) and lepidocrocite and 2) trace element mobilization during shale-fluid 

contact. Although distinct in their backgrounds, contexts, and funding sources, both projects are 

focused on similar interfacial chemical reactions and processes (such as adsorption and redox 

reactions).  

The adsorption and redox transformation of arsenic at iron mineral surfaces may govern 

the distribution, mobility and fate of arsenic in natural and engineered systems. The interactions 

between arsenic and iron (oxyhydr)oxides are instrumental for arsenic removal with iron-based 

solids, in both concentrated water treatment facilities and point-of-use purification devices. 

Adsorption and redox reactions also affect the behavior of trace elements at shale-fluid interfaces 

for hydraulically fractured gas and oil production wells. Organic-rich shales are naturally 

enriched in redox sensitive elements. The introduction of oxygen and other oxidizing additives 

during hydraulic fracturing may mobilize elements that are more soluble in oxidative forms. The 

change of pH and presence of complexing agents in a fracturing fluid may also affect mineral 

dissolution and even adsorption properties of elements.  

1.1.1 Project 1: Interfacial Chemistry Between As(III) and Lepidocrocite 

Arsenic in Water 

Arsenic is a toxic element that can be found at high concentrations in natural waters 

(Smedley and Kinniburgh, 2002). Sources of arsenic in aquatic systems are primarily natural soil 
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and rocks while human activities can influence hydrogeochemistry in ways that increase 

concentrations (Ferguson and Gavis, 1972;  Harvey et al., 2006). The maximum contaminant 

level in the United States (U.S. EPA, 2009) and WHO guideline value (WHO, 2011) for arsenic 

in drinking water are both 10 µg/L. However, in some parts of south Asia, arsenic concentrations 

in groundwater can reach as high as 3000 µg/L and pose a severe threat to drinking water safety 

and public health (Chowdhury et al., 2000;  Berg et al., 2001;  Kinniburgh and Smedley, 2001;  

Fendorf et al., 2010;  Kim et al., 2011;  Jain and Singh, 2012). 

Arsenic speciation in water is primarily governed by redox potential (pe) and pH (Figure 

1.1). The most common forms of arsenic in water are inorganic oxyanions of As(III) and As(V), 

which can respectively be referred to as arsenite and arsenate (Jain and Ali, 2000). At 

circumneutral conditions, As(V) exists primarily as ionic forms (H2AsO4
-
 and HAsO4

2-
), while 

As(III) exists predominantly as the neutral molecular form (H3AsO3), and thus is generally 

considered more mobile than As(V).  
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Figure 1.1 pe-pH diagram for predominant arsenic species in water at 25 °C and 1 bar total pressure with 

10
-6

 M (75 µg/L) total arsenic concentration [adapted from (Cherry et al., 1979)]. The blue shaded area 

indicates the range of most natural waters. 

 

Interaction between Arsenic and Iron (oxyhydr)oxides 

Iron (oxyhydr)oxides are one of the most abundant minerals in natural systems  and can 

strongly influence the fate and transport of arsenic (Cornell and Schwertmann, 2003). The 

adsorption and desorption of arsenic to iron (oxyhydr)oxides present in aquifers can often control 

the mobility of arsenic in natural waters (Ferguson and Gavis, 1972;  Fendorf et al., 2010). Iron 

(oxyhydr)oxides are also effective chemicals that are widely used in engineered systems to 

remove both As(III) and As(V) from drinking water (Jekel, 1994;  Hering et al., 1997;  Fields et 

al., 2000;  Mohan and Pittman, 2007;  Balasubramanian et al., 2009;  Neumann et al., 2013;  

Wenk et al., 2014). The association of arsenic with iron (oxyhydr)oxides is strongly affected by 
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water chemistry. The adsorption of As(V) substantially decreases with increasing pH (Jönsson 

and Sherman, 2008;  Wan et al., 2011) and is influenced by competitive adsorption with other 

groundwater solutes (Wilkie and Hering, 1996;  Zeng et al., 2008). While As(III) adsorption is 

less pH-dependent and generally weaker than As(V), it can still be affected by competing 

adsorbates (Wilkie and Hering, 1996;  Dixit and Hering, 2003).  

A surface complexation model is a research tool for interpreting and predicting 

adsorption at solid-water interfaces. The surface of the solid is assumed to consist of specific 

functional groups that react with dissolved solutes to form surface complexes. The equilibrium of 

surface complexation and ionization can be described via mass balance equations with 

correlation for variable electrostatic conditions (Davis and Kent, 1990). Surface complexation 

modeling (SCM) can often provide a good prediction of both As(III) and As(V) adsorption  

under varied conditions with regard to total arsenic concentration, type of iron oxide adsorbents, 

and the presence of competitive adsorbates (Wilkie and Hering, 1996;  Manning et al., 1998;  

Gao and Mucci, 2001;  Dixit and Hering, 2003;  Fukushi and Sverjensky, 2007;  Kanematsu et 

al., 2013).  

Iron (oxyhydr)oxides can also participate in the oxidation of As(III) to As(V), which can 

potentially affect arsenic mobility and toxicity. Ferrihydrite was found to catalyze As(III) 

oxidation by oxygen on a time scale of several days to a week (Zhao et al., 2011). Photoinduced 

oxidation of As(III) was observed in the presence of goethite and ferrihydrite, and the iron(III) 

oxides were found to be oxidants in both cases (Bhandari et al., 2011;  Bhandari et al., 2012). In 

addition, the oxidation of As(III) mediated by ferrous iron was observed in the co-presence of 

Fe(II) and Fe(III) (oxyhydr)oxides (Bisceglia et al., 2005;  Ona-Nguema et al., 2010). Dissolved 

oxygen and soluble intermediates involved in Fe(II) oxidation may act as rate-enhancing species 
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in As(III) oxidation (Sahai et al., 2007). Previous studies have proposed pH-dependent 

generation of oxidants in Fenton reaction, where reactive oxygen species are produced at low pH 

while a less reactive but more selective oxidant [most likely Fe(IV)] forms at circumneutral pH 

(Hug and Leupin, 2003;  Katsoyiannis et al., 2008). Further, an Fe(II)-activated Fe(III) 

intermediate species was also suggested to induce redox transformation of arsenic in strictly 

anoxic conditions (Amstaetter et al., 2010).  

Motivation 

This project was motivated by several knowledge gaps regarding arsenic behavior at 

lepidocrocite-water interfaces. Lepidocrocite is a common iron oxyhydroxide found in soils that 

actively participates in iron redox cycling (Cornell and Schwertmann, 2003). It is also the 

dominant product of iron electrocoagulation, which is an effective treatment technique to remove 

arsenic from water (Ratna Kumar et al., 2004;  Parga et al., 2005;  Gomes et al., 2007;  Thella et 

al., 2008;  Balasubramanian et al., 2009;  Lakshmanan et al., 2010;  Wan et al., 2011;  Li et al., 

2012;  van Genuchten et al., 2012). While previous research has found lepidocrocite to be a 

strong adsorbent for As(V) (Wan et al., 2011), little was known about its potential for As(III) 

adsorption. Further, no surface complexation model had been developed to understand the 

interaction between arsenic and lepidocrocite although surface complexation modeling is widely 

used to describe arsenic adsorption to other iron (oxyhydr)oxides. Despite the potential 

importance of Fe(II)-mediated As(III) oxidation to groundwater systems and water treatment, the 

reaction mechanisms remained poorly understood. This project, with the focus on the chemical 

processes at the lepidocrocite-water interface, sought to fill these knowledge gaps, providing a 

deeper understanding of the environmental chemistry of arsenic that is critical to contaminant 

management and water treatment. 
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1.1.2 Project 2: Trace Element Mobilization during Shale-fluid Contact  

Shale Oil and Shale Gas 

Shale oil and shale gas considered as unconventional hydrocarbon resources that are 

essentially trapped within shale formations due to low permeability. This is in contrast to 

conventional natural gas and oil sources that generally exist in discrete, well-defined, permeable 

subsurface reservoirs (Moniz et al., 2010). Recent advances in energy recovery technologies, 

especially from low-porosity shale formations have substantially increased global estimates for 

recoverable natural gas and crude oil reserves (U.S. EIA, 2013). The United States has led the 

development of such technologies and thus shale oil and gas resources to date. Shale gas is 

predicted to be the largest contributor in the projected 56% increase of U.S. natural gas 

production from 2012 to 2040, growing from 9.7 tcf (trillion cubic feet) in 2012 to 19.8 tcf in 

2040 (U.S. EIA, 2014). Inclusion of shale gas and shale oil accounts for a 38% and 35% increase 

in the U.S. natural gas and crude oil resources, respectively (U.S. EIA, 2013). Figure 1.2 is a 

map displaying major U.S. shale gas and shale oil plays as of May 2011.  
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Figure 1.2 Map of U.S. shale gas and shale oil plays (U.S. EIA, 2011) with Eagle Ford Formation and 

Bakken Formation highlighted 

Hydraulic Fracturing 

Hydraulic fracturing is a well stimulation technique for enhanced hydrocarbon recovery. 

During the hydrofracking process (Figure 1.3), an engineered fluid mixture of water, proppants 

and chemical additives is injected into a horizontal well under high pressure to initiate small 

cracks in the shale formation (Ely, 1985). The induced fractures can then act as conduits in the 

rock formation,allowing for natural gas to flow more freely from the shale pores to the 

production well and surface (Arthur et al., 2009).  

The fluid that returns to the surface after the pumping pressure is released is referred to as 

flowback or produced water and can contain both fracturing fluid and natural formation water.  
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There is no strict definitional boundary between flowback and produced waters, however, 

flowback waters are commonly considered to be fluids that flow out of a well within the first 2 

weeks after stimulation by fracturing, whereas produced waters are the remaining fluid that flows 

from the well after the initial 2-week period (Haluszczak et al., 2013).  

A number of water management issues are associated with hydraulic fracturing (Vidic et 

al., 2013;  Vengosh et al., 2014). The first is the withdrawal of water required for well 

completion. Drilling of the vertical and horizontal components of a well may require 400–4000 

m
3
 (0.1 – 1 million gallons), and then 7000–18,000 m

3
 (2 – 5 million gallons) of water are 

typically needed for hydraulic fracturing of each well (Nicot and Scanlon, 2012;  Scanlon et al., 

2014). The water utilized for hydraulic fracturing is represents a consumptive use because it 

leads to the loss of water from the source from which it was withdrawn. A second issue is the 

management of flowback and produced water, which can contain total dissolved solids as high as 

200,000 mg/L (Hayes, 2009;  Blondes et al., 2014). Wastewater containing such high dissolved 

solids can be challenging for fluid treatment and reuse. Much of the research to date on flowback 

water quality has focused on the Marcellus shale, where constituents of concern include bromide 

(risk of disinfection byproducts generation), barium, and naturally occurring radioactive 

materials such as Radium (Wilson and VanBriesen, 2012;  Haluszczak et al., 2013).  

The most common management options for flowback and produced waters from oil and 

gas production in the United States are reuse (requiring little treatment), recycle (with more 

involved treatment) and disposal via deep well injection (Nicot et al., 2014). Disposal approaches 

vary by play, depending on the quantity and quality of the wastewater, as well as the availability 

of treatment facilities and injection wells (Benko and Drewes, 2008). Transporting to centralized 

facilities for treatment and reuse is common in the Marcellus region (Wilson and VanBriesen, 
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2012) while deep injection wells are preferred management strategies in the Eagle Ford and 

Bakken formations (Stephen et al., 2010;  Nicot et al., 2014). 

 

Figure 1.3 Illustration of a horizontal well showing the water lifecycle and natural gas flow during 

hydraulic fracturing (Schmidt, 2008) 

Hydraulic Fracturing Fluids 

The fracturing fluids used for shale stimulation primarily consist of water but also include 

a variety of chemical additives, depending on the specific conditions of the well to be fractured 

(properties of shale formation and associated water characteristics) (King, 2012). A typical 

fracture fluid carries 3 – 12 additives, each serving a different engineered purpose (Montgomery, 

2013). A summary of some additives in a hydraulic fracturing fluid, their typical compounds and 

the reason the additive is used is provided in Table 1.1. Typically, hydrochloric acid (HCl) is the 
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single largest liquid component used in a fracturing fluid aside from water, and it is added to 

dissolve acid-soluble minerals in shales and to initiate cracks. EDTA and citrate used for iron 

control are both complexing agents that can bind strongly with metals [Mn(II), Cu(II), Fe(III), Pb 

(II) and Co(III)] (Huang et al., 1995).  

Table 1.1 Volumetric composition and purposes of typical constituents of hydraulic fracturing fluid 

(Gregory et al., 2011) 

Additive type Volume 

fraction (%) 

Example Purpose 

Water and sand 99.5 Sand suspension “Proppant” sand grains hold 

microfractures open 

Acid 0.123 Hydrochloric or muriatic 

acid 

Dissolves minerals and initiates 

cracks in the rock 

Fraction reducer 0.088 Polyacrylamide or mineral 

oil 

Minimizes friction 

between the fluid and the pipe 

Surfactant 0.085 Isopropanol Increases the viscosity of the 

fracture fluid 

Salt 0.06 Potassium chloride Creates a brine carrier fluid 

Scale inhibitor 0.043 Ethylene glycol Prevents scale deposits in pipes 

pH adjusting 

agent 

0.011 Sodium or  potassium 

carbonate 

Maintains effectiveness of 

chemical additives 

Iron control 0.004 Citric acid or EDTA Prevents precipitation of metal 

oxides 

Corrosion 

inhibitor 

0.002 n,n-dimethyl formamide Prevents pipe  corrosion 

Biocide 0.001 Glutaraldehyde Minimizes growth of bacteria 

that produce corrosive and toxic 

by-products 

Breaker - Ammonium persulfate Allows a delayed break down of 

the gel polymer chains 

Element Mobilization 

Shale–fluid interactions have the potential to mobilize shale-bound metals (including 

regulated elements) through a variety of chemical reaction pathways (Figure 1.4). Dissolution of 

acid-reactive minerals (e.g. carbonates) can release trace elements hosted within them when acid 

(e.g. HCl) is used to initiate fractures. Metals originally attached (sorbed) to primary minerals are 
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likely to desorb due to changes in pH or the introduction of complexing agents (e.g. citrate). 

While shale formations are typically anaerobic, the oxygen in fracturing fluid and other oxidative 

additives (e.g. ammonium persulfate in Table 1.1) may trigger oxidative dissolution of trace 

elements that are more soluble under oxic conditions (such as uranium and chromium).  

 

Figure 1.4 Illustration of possible chemical pathways of element mobilization from shales during shale-

fluid interaction. 

Eagle Ford Formation and Bakken Formation 

The Eagle Ford shale gas and oil play is located within the Texas Maverick Basin (Figure 

1.2). The play contains a high liquid component, leading to definition of three zones: an oil zone, 

a condensate zone and a dry gas zone, with an estimated 3.4 billion barrels of technically 

recoverable oil and 20.8 trillion cubic feet of technically recoverable natural gas (U.S. EIA, 

2011).  

The Bakken shale oil play is located within the Williston Basin in Montana and North 

Dakota (Figure 1.2) and extends into the Canadian provinces of Manitoba and Saskatchewan 

(U.S. EIA, 2011). Based on the most USGS assessment, this shale play together with the Three 

Fork Formation (right below Bakken Formation), contains a mean undiscovered, technically 
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recoverable volume of 7.4 billion barrels of oil, 6.7 trillion cubic feet of associated/dissolved 

natural gas, and 0.53 billion barrels of natural gas liquids. This estimate for shale oil reserve 

would be the largest finding in U.S history (USGS, 2013). 

Motivation 

Advances in understanding the composition of flowback and produced waters during 

hydraulic fracturing processes are critical for the associated wastewater treatment and 

management. Despite the potential effects of flowback constituents, little has been reported about 

the extent or pathway of shale-bound element release from shale-fracturing fluid contact. Such 

information is critical for managing potential waste streams that contain elements mobilized 

from the fractured rock. Knowledge obtained from bench-scale experiments is also important in 

evaluating possible chemical reaction kinetics and mechanisms in geological formations similar 

to the Eagle Ford and Bakken formations.  

1.2  Research Objectives 

1.2.1 Project 1 Objectives   

The three main objectives associated with Project 1 are to  

1) quantify the impact of water chemistry on As(III) adsorption to lepidocrocite 

2) develop a surface complexation model to describe equilibrium As(III) and As(V) 

adsorption to lepidocrocite 

3) elucidate the mechanism of Fe(II)-mediated As(III) oxidation at the lepidocrocite-

water interface. 

The degree of arsenic adsorption to lepidocrocite is subject to a variety of water 

chemistry properties, such as pH, As/Fe ratio, and dissolved oxygen level. Experiments pursued 
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objective 1 by evaluating arsenic adsorption over a wide range of conditions to enable the 

identification of the most important factor. A surface complexation model was then developed to 

facilitate the understanding of the adsorption mechanism and predict the behavior of arsenic in 

other conditions than those examined in this project. Finally, a system with co-occurrence of 

Fe(II) and Fe(III) solids was explored, further advancing the understanding of chemical 

interactions between arsenic and Fe(II)/lepidocrocite, which is common in both natural waters 

and engineered systems. 

1.2.2 Project 2 Objectives 

The two main research objectives for Project 2 were to: 

1) investigate the impact of water chemistry on trace element mobilization from shales 

2) identify the dominant mobilization pathways.  

Observations and measurements based on laboratory experiments were able to provide 

information necessary in accomplishing Objective 1. However, the interpretation of these results 

would depend on how to correlate mobilization data with actual sample geochemistry and fluid 

properties. Objective 2 sought to identify the most important reaction pathways that govern the 

potential element release, which is helpful to evaluate shale-bound release from formations with 

similar geochemical properties.   

1.3  Research Approach and Overview of Dissertation 

The overall research approach for this dissertation is divided into two main tasks with 

each task corresponding to one of the two research projects.  

The primary goal of Task 1 is to investigate chemical reactions at the lepidocrocite 

surface that influence the mobility, speciation, and solid-water distribution of arsenic. This task 
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is further divided into two research subtasks: Subtask 1A) the impact of water chemistry on 

As(III) and As(V) adsorption onto lepidocrocite and Subtask 1B) the mechanism of Fe(II)-

mediated As(III) oxidation. Batch experiments were designed to measure As(III) removal from 

water and to examine the interfacial chemistry between As(III) and lepidocrocite. 

Subtask 1A involved a set of batch experiments to examine As(III) to lepidocrocite as a 

function of pH, total arsenic concentration, iron loading, and competing adsorbate presence. The 

data on As(V) adsorption to lepidocrocite were obtained from previous experiments performed 

by a colleague. A surface complexation model was developed and optimized to describe the 

adsorption of both As(III) and As(V) to lepidocrocite over a broad range of conditions. Subtask 

1B included additional experiments performed to study the potential oxidation of As(III) with 

dissolved Fe(II) and to investigate the reaction mechanism when oxidation does occur. Fe(II)-

mediated As(III) oxidation at the lepidocrocite surface was studied at both oxic and anoxic 

conditions. Chapter 2 summarizes the results from Task 1 and specifically focuses on the effect 

of pH, As/Fe ratio, dissolved oxygen, and Fe(II) on the adsorption of arsenic to lepidocrocite. 

The impact of phosphate as a competing adsorbate is described in Appendix A. To account for 

the enhanced arsenic adsorption with 2-propanol (as a radical scavenger) observed in Chapter 2, 

the effect of 2-propanol on the colloidal stability of lepidocrocite is discussed in Appendix B.   

Task 2 was designed to examine the rates and extents of trace metal mobilization from 

shales during shale-fluid interactions as a function of fluid property. It involved a set of batch 

experiments to evaluate the impact of water chemistry on shale-bound trace element 

mobilization. The fluid was varied with regard to pH, redox condition, solid:water ratio, 

temperature, salt concentration, and chemical additive presence. The interpretation of aqueous 
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analyses was combined with chemical equilibrium and reaction pathway modeling to identify 

dominant mobilization pathways. 

Task 2 consisted of two subtasks that investigated core samples from the Eagle Ford 

formation (Subtask 2A) and the Bakken formation (Subtask 2B). These samples were 

characterized with regard to their mineralogy, elemental composition, specific surface area and 

total carbon. In batch experiments, the samples were exposed to a variety of fluid properties 

followed by a series of aqueous measurements for metals and metalloids, anions, dissolved 

organic carbon, and electrical conductivity. Chapters 3 and 4 describe the element mobilization 

results from Eagle Ford samples and Bakken shale samples, respectively.  

Chapter 5 summarizes the results of the present work. Key observations and important 

environmental implications are highlighted and areas for future work are identified.  
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Chapter 2: Effects of pH, Dissolved Oxygen, 

and Aqueous Fe(II) on the Adsorption of 

Arsenic to Lepidocrocite 
 

Results of this chapter have been submitted to the Journal of Colloid and Interface Science for 

review.  

Graphical Abstract 
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Abstract 

The adsorption of arsenic to iron oxyhydroxides strongly depends on water chemistry. Iron(III) 

oxyhydroxides can also participate in the oxidation of As(III) to As(V), which changes arsenic’s 

toxicity and adsorption behavior. As(III) and As(V) adsorption to lepidocrocite (γ-FeOOH) were 

examined in batch experiments that explored the effects of lepidocrocite dose, pH, availability of 

dissolved oxygen, and the presence of aqueous Fe(II) on adsorption. Lepidocrocite is an iron 

oxyhydroxide found in soils, and it is one of the major products of iron electrocoagulation for 

water treatment.  A surface complexation model was able to describe the adsorption of both 

As(III) and As(V) to lepidocrocite over a broad range of conditions. The concentration and 

oxidation states of arsenic in solution were measured over the course of the reactions. At both 

oxic and anoxic conditions, As(III) was oxidized to As(V) in systems that contained 

lepidocrocite together with Fe(II); this oxidation led to overall enhanced arsenic adsorption at 

near neutral pH. With oxygen the pH-dependent generation of oxidants from the Fenton reaction 

drove the As(III) oxidation.  In the absence of oxygen the As(III) was probably oxidized by 

Fe(III) in lepidocrocite that had become more reactive upon reaction with Fe(II). 

Keywords:  Arsenic Adsorption, Electrocoagulation, Surface Complexation Modeling, 

Fe(II)-mediated Arsenic Oxidation 
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2.1 Introduction 

Arsenic is a toxic element that can be found at high concentrations in natural waters 

(Smedley and Kinniburgh, 2002). Sources of arsenic in aquatic systems are primarily natural soil 

and rocks, while human activities can influence hydrogeochemistry in ways that increase 

concentrations (Harvey et al., 2006).  The most common forms are inorganic oxyanions of 

trivalent As(III) and pentavalent As(V) (Smedley and Kinniburgh, 2002). At circumneutral 

conditions, As(V) exists primarily as ionic forms (H2AsO4
-
 and HAsO4

2-
), while As(III) exists 

predominantly as the neutral molecular form H3AsO3 . The maximum contaminant level for 

arsenic in US drinking water is 10 µg/L (0.13 µM).  

Iron (oxyhydr)oxides are used in engineered systems to remove both As(III) and As(V) 

from drinking water by adsorption (Jekel, 1994;  Hering et al., 1997;  Fields et al., 2000;  Mohan 

and Pittman, 2007;  Balasubramanian et al., 2009). Water treatment can involve loading iron 

(oxyhydr)oxides into packed columns (Zeng et al., 2008), optimizing pH for adsorption to iron 

(oxyhydr)oxides formed during chemical coagulation (Hering et al., 1997;  Han et al., 2002;  

Wickramasinghe et al., 2004), and producing iron (oxyhydr)oxides during electrocoagulation 

(Ratna Kumar et al., 2004;  Parga et al., 2005;  Thella et al., 2008;  Wan et al., 2011;  Li et al., 

2012). The association of arsenic with iron (oxyhydr)oxides is strongly affected by water 

chemistry. The adsorption of As(V) substantially decreases with increasing pH (Wilkie and 

Hering, 1996;  Jönsson and Sherman, 2008;  Wan et al., 2011) and is influenced by competitive 

adsorption with other groundwater solutes such as silica and phosphate (Zeng et al., 2007;  

Kanematsu et al., 2013). While As(III) adsorption is less pH-dependent and generally weaker 

than that of As(V), it can still be affected by competing adsorbates (Kanematsu et al., 2013).  
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Surface complexation modeling (SCM) has been used to predict both As(III) and As(V) 

adsorption over a broad range of total arsenic, iron oxide type, and competitive adsorbate 

conditions (Dixit and Hering, 2003;  Fukushi and Sverjensky, 2007;  Zeng et al., 2007;  

Kanematsu et al., 2013). In a surface complexation model, the surface of the solid is treated as 

specific functional groups that react with dissolved solutes to form surface complexes. The 

equilibrium of surface complexation and ionization can be described via mass action equations 

with adjustments for variable electrostatic conditions (Davis and Kent, 1990).  While previous 

studies have demonstrated the use of surface complexation models to simulate As(III) and As(V) 

adsorption onto different iron (oxyhydr)oxides (Wilkie and Hering, 1996;  Dixit and Hering, 

2003;  Fukushi and Sverjensky, 2007;  Zeng et al., 2007;  Kanematsu et al., 2013), they have not 

developed models for arsenic adsorption onto lepidocrocite or examined the effect of direct 

addition of ferrous ion in the system. 

Iron (oxyhydr)oxides can participate in the oxidation of As(III) to As(V), which can 

potentially affect arsenic mobility and toxicity. Ferrihydrite was found to have a catalytic effect 

on As(III) oxidation by oxygen on a time scale of several days to a week (Zhao et al., 2011). 

Photoinduced oxidation of As(III) was observed in the presence of goethite and ferrihydrite, and 

the iron(III) oxides were found to be the oxidants (Bhandari et al., 2011;  Bhandari et al., 2012). 

Fe(II)-mediated As(III) oxidation in oxic conditions was observed in a sand column with 

aqueous Fe(II) (Bisceglia et al., 2005).  As(III) oxidation was also observed on the surfaces of 

magnetite and ferrihydrite; while As(III) was rapidly oxidized upon adsorption to magnetite, 

As(III) oxidation on ferrihydrite was observed only after addition of aqueous Fe(II) within the 

examined time scale of 24 hours (Ona-Nguema et al., 2010). Dissolved oxygen and soluble 

intermediates involved in Fe(II) oxidation may act as rate-enhancing species in As(III) oxidation 
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(Sahai et al., 2007). Previous studies have proposed pH-dependent generation of oxidants in the 

Fenton reaction, where reactive oxygen species are produced at low pH while a less reactive but 

more selective oxidant [most likely Fe(IV)] forms at circumneutral pH (Hug and Leupin, 2003;  

Katsoyiannis et al., 2008). Further, an Fe(II)-activated Fe(III) intermediate species was suggested 

to induce redox transformation of arsenic at strictly anoxic conditions (Amstaetter et al., 2010). 

Lepidocrocite is a common iron oxyhydroxide found in soils that actively participates in iron 

redox cycling (Cornell and Schwertmann, 2003). It is also the dominant product of iron 

electrocoagulation, which is an effective treatment technique to remove arsenic from water 

(Ratna Kumar et al., 2004;  Parga et al., 2005;  Gomes et al., 2007;  Thella et al., 2008;  

Balasubramanian et al., 2009;  Lakshmanan et al., 2010;  Wan et al., 2011;  Li et al., 2012). The 

oxidation of As(III) on lepidocrocite has not previously been examined.   

The objectives of this study were to quantify the impact of pH, dissolved oxygen, and 

Fe(II) presence on As(III) and As(V) adsorption on lepidocrocite by both experimental and 

modeling approaches. Batch experiments were performed to investigate arsenic adsorption to 

lepidocrocite as a function of lepidocrocite dose, pH, availability of oxygen, and the presence of 

aqueous Fe(II). In this study, surface complexation modeling was used to describe chemical 

interactions at the lepidocrocite interface. 

 

2.2 Material and Methods 

2.2.1 Materials  

All chemicals were used as received from vendors. Solutions were prepared with 

ultrapure water (resistivity > 18.2 MΩ•cm). Glass volumetric flasks and beakers were acid-
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cleaned and rinsed several times with deionized water and ultrapure water prior to use. As(III) 

and As(V) stock solutions were prepared from reagent grade NaAsO2 and Na2HAsO4•7H2O 

(Sigma Aldrich). A fresh batch of 90 mM Fe(II) solution was prepared before each experiment 

from FeSO4•7H2O (Sigma Aldrich). The HNO3 was of trace-metal grade from Fisher Scientific.  

The NaOH for pH adjustment, and NaNO3 and NaHCO3 for ionic strength adjustment were of 

ACS grade.   

2.2.2 Lepidocrocite Generation  

Lepidocrocite was synthesized in a bench-scale electrocoagulation reactor that we 

previously used to examine arsenic removal (Wan et al., 2011).  In the electrocoagulation 

process iron is released from an iron metal anode into solution as Fe(II) and it is then oxidized to 

Fe(III) by oxygen (Lakshmanan et al., 2009). The reactor consisted of a 1-L glass beaker with 

two iron rods immersed in 1 mM NaHCO3 aqueous solution. Each rod had a diameter of 1.75 

cm, length of 20 cm, and total wetted area of 57 cm
2
. Before each synthesis run, the electrodes 

were abraded with sandpaper to remove scales and then cleaned with ultrapure water. A voltage 

of 12 V was applied to the electrodes from a direct current power supply. The solution was 

magnetically-stirred (200 rpm) and sparged with air at a flow rate above 60 mL/min to provide 

oxygen for the formation of Fe(III) precipitates. After a four-hour electrocoagulation run, the 

suspension pH was adjusted to approximately 7.7, which is a published pHpzc of lepidocrocite 

determined from potentiometric titration data (Peacock and Sherman, 2004), to promote the 

settling of the solids. The supernatant was decanted and the suspension was further purified with 

dialysis. Dry solids were then obtained by freeze-drying.  The precipitate was confirmed to be 

lepidocrocite from the X-ray diffraction (XRD) pattern, which was collected using a 

diffratometer with Cu Kα radiation (D-MAX/A, Rigaku, Japan) (Figure S2.1). About 100 mg of 



22 

 

lepidocrocite was generated in one run and the suspensions from multiple syntheses following 

the same protocol were combined to form a lepidocrocite stock suspension (6 g/L γ-FeOOH-Fe) 

that was then used for all adsorption and As(III) oxidation expermients.  

2.2.3 Equilibrium Adsorption Experiments  

Equilibrium adsorption of As(V) and As(III) to the lepidocrocite generated from 

electrocoagulation was investigated in batch experiments as a function of pH and arsenic or 

lepidocrocite loading. All experiments were performed in 50-mL digestion tubes (copolymer 

polypropylene), with suspensions continuously mixed by magnetically stirring at 300 rpm. 

Adsorption was initiated by the addition of 10 mg/L As(III) or As(V) stock solution (133.3 µM) 

to pH-adjusted lepidocrocite suspensions. Desired pH values from 4 to 10 were obtained by 

addition of either 0.1 M NaOH or 0.1 M HNO3. The pH of the resulting suspensions was 

monitored throughout the course of adsorption experiments; the final pH measured at the end of 

the experiments is the value reported for equilibrium adsorption. 

For As(III) adsorption, a total As concentration of 1.33 µM (100 µg/L) or 6.67 µM (500 

µg/L) was used with a background electrolyte of 0.01 M NaNO3. The concentrated lepidocrocite 

suspension was added to reach a loading of 120 mg Fe/L (190 mg γ-FeOOH/L). Based on 

preliminary experiments a reaction time of 48 h was found to ensure that As(III) adsorption 

reached equilibrium (Figure S2.2). For As(V) adsorption, a lepidocrocite concentration of 79 

mg/L and a total As concentration of 1.33 µM (100 µg/L) or 13.3 µM (1000 µg/L) were used. 

The batch reactors were equilibrated for 24 h with a background electrolyte of 1 mM NaHCO3. 

In experiments to generate data for an As(III) adsorption isotherm at pH 7.5, 6.67 µM 

total As(III) was used with 8 different lepidocrocite loadings from 30 to 480 mg Fe/L. 

Experiments for both the As(III) adsorption edge and adsorption isotherm were performed in a 
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glovebox with an N2/H2 mixture circulated over a heated Pd catalyst to minimize As(III) 

oxidation by oxygen. For an As(V) adsorption isotherm at pH 4, the lepidocrocite concentration 

was fixed at 79 mg/L with total As(V) concentrations ranging from 2.2 to 94.1 µM. The pH 

values for the adsorption isotherms were selected such that they provided the maximum extent of 

adsorption for the particular arsenic oxidation state.   

2.2.4 Effect of Fe(II) 

Experiments with Fe(II) were performed to investigate Fe(II)-mediated As(III) oxidation. 

A volume of 500 µL 9 mM Fe(II) solution freshly made from FeSO4•7H2O solid was spiked 

together with the addition of As(III) stock solution to give a final Fe(II) concentration of 90 µM. 

To elucidate the role of Fe(II) on As(III) oxidation, some experiments were performed with the 

addition of 2-propanol as a radical scavenger, with 60 µL 2-propanol spiked into the batch 

reactor to give a 15 mM concentration. Previous research reported that this amount of 2-propanol 

would be able to quench hydroxyl radicals generated from the Fenton reaction (Buxton et al., 

1988).  

2.2.5 Dissolved Arsenic Speciation  

An anion-exchange method (Ficklin, 1983) was adopted for dissolved arsenic speciation 

following the procedure outlined in a previous study (Wilkie and Hering, 1998). Samples of 5 

mL volume were collected from the suspension during and at the end of experiments, diluted to 

10 mL, and filtered through 0.22 µm polyethersulfone filter membranes. Half of the filtrate was 

adjusted to pH 5 and passed through a column of anion exchange resin (AG 1-X8 from Bio-

Rad); the resin was received in chloride form and converted to an acetate form prior to use in 

arsenic separations. At pH 5, neutral As(III) species pass through the column while anionic 
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As(V) species are retained (Wilkie and Hering, 1998).The other half of the filtrate and the 

effluent from the column were then acidified to 2% HNO3 by the addition of concentrated HNO3 

for analysis of total dissolved arsenic and As(III), respectively. The As(V) concentration was 

determined as the difference between total dissolved arsenic and As(III). 

2.2.6 Analytical Methods  

The filtered and acidified samples were analyzed for dissolved concentrations of As by 

inductively coupled plasma mass spectrometry (ICP-MS) (7500ce, Agilent Technologies, Santa 

Clara, CA). The detection limit for As was 0.1 µg/L. The Fe(II) concentration was determined 

using the ferrozine method (Stookey, 1970).  

2.2.7 Surface Complexation Modeling  

A surface complexation model was developed to fit both As(III) and As(V) adsorption 

data. The diffuse double layer model was employed to account for the electrostatic effects at the 

lepidocrocite surface. The surface area of lepidocrocite generated from this reactor has been 

observed in the range of 180 – 210 m
2
/g, and a surface area of 201 m

2
/g was chosen for the 

modeling; this value was measured for lepidocrocite synthesized from the same procedure in a 

previous study in our group (Wan et al., 2011). A surface site density of 1.6 sites/nm
2
 and 

equilibrium constants of surface acid-base reactions reported for lepidocrocite by (Peacock and 

Sherman, 2004) were used; they had determined these values from FITEQL optimization of 

surface complexation parameters to fit potentiometric titration data. The equilibrium constants of 

lepidocrocite surface acid-base reactions were then adjusted to account for the difference in 

lepidocrocite specific area based on the approach described by (Sverjensky, 2003) (Table S2.1).   
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Two surface complex stoichiometries (monodentate and bidentate models) were 

evaluated for both As(III) and As(V) adsorption. One set of models used only monodentate 

surface complexation reactions with the consideration of reaction stoichiometries from a 

previous study that fit As(III) and As(V) adsorption onto goethite, amorphous iron oxide, and 

magnetite (Dixit and Hering, 2003). Other sets of models included bidentate reactions based on 

spectroscopic evidence for bidentate surface complexation of As(III) and As(V) on lepidocrocite 

(Farquhar et al., 2002;  Manning et al., 2002;  Sherman and Randall, 2003;  Ona-Nguema et al., 

2005). Multiple runs of equilibrium calculations in MINEQL+ v 4.6 (Schecher and McAvoy, 

2007) were performed to determine both the best set of reactions for modeling As(III) and As(V) 

adsorption to lepidocrocite and the optimal values of the equilibrium constants of surface 

complexation reactions included in those models.  The surface complex reactions included in the 

final model together with their equilibrium constants are summarized in Table 2.1. The aqueous 

reactions in the models are compiled in Table S2.4. The overall procedure for model 

development and optimization as well as the aqueous reactions are described in the Supporting 

Information. 

 

2.3 Results and Discussion 

2.3.1 Equilibrium As(III) Adsorption  

As(III) adsorption onto lepidocrocite was mildly affected by pH (Figure 2.1a). 

Adsorption increased with increasing pH, reached a stable level of high adsorption between pH 6 

and 9, and then decreased with further increase in pH. The maximum percentage of adsorption 

decreased with increasing total As(III) concentration, which reached 94% and 78% at around pH 
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8 for total As(III) concentrations of 1.33 µM (100 µg/L) and 6.67 µM (500 µg/L), respectively. 

Similar adsorption patterns with broad ranges of maximum adsorption have been observed for 

the pH dependence of As(III) adsorption onto an amorphous iron oxide and goethite (Wilkie and 

Hering, 1996;  Dixit and Hering, 2003).  

 

Figure 2.1 (a) As(III) adsorption edges on lepidocrocite at 1.33 and 6.67 µM total As(III) concentrations 

together with predicted surface speciation for  (b) 1.33 µM As(III) and  (c) 6.67 µM As(III). Experimental 
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data at 50 h adsorption are shown as markers; SCM predictions are shown as lines. All experiments were 

performed in a glovebox with N2/H2 passed over a heated Pd catalyst. 

The capacity for As(III) adsorption was further explored at pH 7.5 (Figure 2.2a), which is 

the pH of the maximum adsorption density. With the specific surface area of 201 m
2
/g and 

adsorbed As(III) species assumed to all be bidentate surface complexes (Table 2.1), the observed 

maximum adsorption density of 0.06 µM As/mg Fe corresponds to As(III) occupancy of 0.34 

sites/nm
2
.  This value is lower than the total site density (1.6 sites/nm

2
) used in the surface 

complexation modeling, which suggests that the majority of surface sites remained unoccupied 

by arsenic even at the highest total arsenic concentration studied.  The adsorption density would 

still increase with increasing arsenic loading. 

 Greater arsenic adsorption with oxygen than at anoxic conditions was observed for 

experiments that started with As(III) (Figure 2.2a).  This higher As adsorption was probably 

caused by As(III) oxidation to As(V) because As(V) adsorbs more strongly than As(III) at pH 

7.5. Previous research indicated that lepidocrocite alone without oxygen could not oxidize 

As(III) (Ona-Nguema et al., 2005), which agrees with the dissolved arsenic speciation in the 

anoxic experiments in this study. It is likely that the lepidocrocite surface catalyzed the oxidation 

of As(III) by dissolved oxygen. Similar mechanisms have been suggested for As(III) oxidation in 

the presence of ferrihydrite (Zhao et al., 2011) and intercalated Fe(III)-montmorillonite 

nanoparticles (Izumi et al., 2005).  
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Figure 2.2 Adsorption isotherm-style data for (a) As(III) at pH 7.5 and (b) As(V) at pH 4. The line 

represents of the prediction from the same surface complexation model used to simulate adsorption edges 

in Figures 2.1 and 2.3.  Experiments for As(III) adsorption in the anoxic series were performed in a 

glovebox with N2/H2 with the atmosphere circulated over a heated Pd catalyst. 

2.3.2 Equilibrium As(V) Adsorption  

The effect of pH on adsorption was much more pronounced for As(V) than it was for 

As(III) (Figure 2.3a). For a total As(V) concentration of 1.33 µM (100 µg/L), the amount of 

As(V) adsorbed remained close to 100% up to pH 8 and decreased sharply above this pH. For a 

total As(V) concentration of 13.3 µM (1000 µg/L), the adsorbed As(V) concentration steadily 

decreased with increasing pH from 4 to 10. Comparison of the adsorption edges for As(III) and 

As(V) shows that the As(V) adsorption is more favorable at lower pH, but at higher pH the 

degree of As(III) adsorption can be comparable to or even more favorable than As(V) 

adsorption. Similar trends have been observed for As(V) adsorption on other iron 

(oxyhydr)oxides (Wilkie and Hering, 1996;  Dixit and Hering, 2003;  Antelo et al., 2005;  Zeng 

et al., 2007;  Wan et al., 2011;  Kanematsu et al., 2013). For the As(V) isotherm, the maximum 

surface coverage observed in our study corresponds to an adsorption density of 0.8 sites/nm
2
 for 

monodentate surface complexation, indicating that there are still vacant sites for further 

adsorption at a higher As/Fe ratio if adsorption occurs as monodentate surface complexes.  
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Figure 2.3 (a) As(V) adsorption edges on lepidocrocite at 1.33 and 13.3 µM total As(V) concentrations 

together with predicted surface speciation at (b)  1.33 µM As(V) and (c) 13.3 µM As(V). Experimental 

data at 50 h adsorption are shown as markers; SCM predictions are shown as lines.  
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2.3.3 Surface Complexation Modeling  

Efforts were made to evaluate models that included only monodentate surface complexes 

and models that included bidentate surface complexes. For each of the four models evaluated, the 

Log K values of reactions were simultaneously optimized for both the adsorption edges and the 

adsorption isotherm (Tables S2.2 and S2.3). For As(III) adsorption, the model with only 

bidentate surface complexation reactions (Table 2.1) was finally adopted because of its ability to 

simulate the experimental data and its consistency with spectroscopic observations of adsorbed 

As(III) coordination environments from other studies. For As(V) adsorption, the model with only 

monodentate surface complexation reactions (Table 2.1) was selected because it fit both the 

adsorption edges and the isotherm very well. While a model that included two As(V) bidentate 

surface complexation reactions in addition to a monodentate surface complexation reaction 

(Table S2.3) could provide a good prediction for the adsorption edges, it was unable to provide a 

good fit of the adsorption isotherm. The  protonated bidentate surface complex [(≡FeO)2HAsO2] 

that was  the dominant species at pH 4 led to underprediction of arsenic adsorption, and the 

model could not accommodate an arsenic sorption density as high as 0.28 µM As(V)/mg γ-

FeOOH (Figure 2.2b) that was observed experimentally. 

The bidentate surface complexation model for As(III) and monodentate surface 

complexation model for As(V) (Table 2.1) could provide a good fit for the adsorption behavior 

of both species over a broad range of pH and total arsenic concentrations (Figures 2.1a and 2.3a). 

For the As(III) adsorption edge, the model fits well with the experimental data in terms of the 

overall curvature. However, the difference in the model predictions for the two total arsenic 

concentrations is always smaller than the differences in the experimental results for the two 

concentrations. The inability of the model to more perfectly fit data for both total arsenic 
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concentrations may be due to the model’s consideration of only a single type of site on the 

lepidocrocite surface. In reality, different crystal faces and edges of the lepidocrocite particles 

may have different affinities for As(III) adsorption. When multiple types of sites (e.g., strong and 

weak sites) are present, sorption affinity varies as higher-affinity sites are preferentially filled 

and more abundant lower-affinity sites becomes dominant (Dzombak, 1990).  Recent work has 

also considered the variation in surface site density on goethite as a function of particle size and 

morphology (Villalobos et al., 2009). A division of the lepidocrocite surface sites into different 

types could have yielded an improved fit of the model to the experimental data at both total 

arsenic concentrations.  

Table 2.1 Reactions and parameters used for surface complexation modeling of As(V) and As(III) 

adsorption on lepidocrocite. 

Reactions Log K
θ
 
a
 Log K

0
 
b
 

Surface acid-base reactions   

≡FeOH + H
+ 

= ≡FeOH2
+
 7.57 

c
  6.27 

≡FeOH = ≡FeO
-
 + H

+
 -7.81 

c
 -9.11 

As(V) adsorption (0.079 g/L γ-FeOOH, [≡FeOH]total = 4.22 × 10
-5

 M, A = 201 m
2
/g, N = 1.6 sites/nm

2
) 

≡FeOH + AsO4
3-

 + 3H
+
 = ≡FeOH2AsO3 + H2O 29.5 28.2 

≡FeOH + AsO4
3-

 + H
+
 = ≡FeOAsO3

2-
 + H2O 19.8 18.5 

As(III) adsorption (0.191 g/L γ-FeOOH, [≡FeOH]total = 1.02 × 10
-4

 M, A = 201 m
2
/g, N = 1.6 sites/nm

2
) 

2≡FeOH + AsO3
3-

 + 3H
+
 = (≡FeO)2HAsO + 2H2O 37.8 35.5 

2≡FeOH + AsO3
3-

 + 2H
+
 = (≡FeO)2AsO

-
 + 2H2O 45.6 43.3 

a
 Intrinsic equilibrium constants calculated based on the correction established by Sverjensky (2003).  

b
 Molar concentration based equilibrium constants, as input in MINEQL. Note that for bidentate species, the 

equilibrium constants as entered into MINEQL depend on the solid concentrations; more information is provided in 

the Supporting Information. 
c
 Numbers are obtained from Peacock and Sherman (2004) and adjusted according to Sverjensky (2003). 

 

The surface complexation model for As(III) that includes two bidentate surface 

complexes (Figures 2.1b and 2.1c) is consistent with the molecular structure of adsorbed As(III) 
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reported in other studies (Farquhar et al., 2002;  Manning et al., 2002). Those studies used 

extended X-ray absorption fine structure spectroscopy (EXAFS) to determine that As(III) forms 

predominantly inner-sphere bidentate mononuclear edge-sharing (
2
E) and binuclear corner-

sharing (
2
C) complexes with lepidocrocite at low surface coverages (0.016 – 0.018 moles of 

As/mole surface sites) comparable to the surface coverages in this work (0.010 – 0.051 moles of 

As/mole surface sites). The predicted surface speciation of As(III) is presented in Figures 2.1b 

and 2.1c. The protonated complex [(≡FeO)2HAsO] and the deprotonated complex [(≡FeO)2AsO
-

] are dominant at low and high pH, respectively. The crossover pH for the two surface species 

increased with increasing As/Fe ratio, consistent with the predictions from an extended triple 

layer model developed for As(III) adsorption onto a goethite-based adsorbent (Kanematsu et al., 

2013). While previous work (Ona-Nguema et al., 2005) also ascribed a portion of As(III) 

adsorption to monodentate mononuclear corner-sharing (
1
V) complex, this species was only 

important at much higher arsenic surface coverages (0.36 moles of As/mole surface sites) than 

those of the present study, and even then the bidentate binuclear corner sharing (
2
C) surface 

complex was the major surface species in the modeling done in that previous work.  

The As(V) surface complexation model predicts that the deprotonated complex 

[≡FeOAsO3
2-

] dominates over the entire pH range from 4 to 10 for both total As(V) 

concentrations (Figures 2.3b and 2.3c). The protonated complex [≡FeOH2AsO3] will ultimately 

dominate at low pH with increasing arsenic loading.  While inclusion of this complex was not 

necessary to provide good fits to the adsorption edges, its presence was necessary for the surface 

complexation model to provide a satisfactory fit of the adsorption-isotherm style data (Figure 

2.2b).  
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In an attempt to establish a model consistent with spectroscopic and molecular 

observations (Sherman and Randall, 2003;  Fukushi and Sverjensky, 2007), efforts were made to 

develop a surface complexation model that included two bidentate surface complexes and one 

monodentate surface complex (Table S2.3) for As(V). While this model could have its 

parameters optimized to fit either the adsorption edge or the adsorption isotherm, no optimization 

of the model could provide a good fit for both the adsorption edge and isotherm at conditions 

relevant to this study (more detailed discussion is included in the Supporting Information). 

Although deviating from the spectroscopic evidence, the monodentate model as adopted is 

consistent with previous studies (Wilkie and Hering, 1996;  Dixit and Hering, 2003) on As(V) 

interactions with iron oxides and provides a simple yet successful simulation of the experimental 

data.  

2.3.4 Impact of Fe(II) on As(III) Adsorption on Lepidocrocite  

The occurrence of iron cycling between dissolved Fe(II) and solid Fe(III) 

(oxyhydr)oxides in both natural and engineered systems motivated the design of experiments 

with both Fe(II) and lepidocrocite. These conditions are relevant to those of an 

electrocoagulation reactor or to a groundwater system in which Fe(II) is oxidized to produce 

Fe(III) (oxyhydr)oxides. The experiments performed in this study found that 1) lepidocrocite 

alone cannot oxidize As(III), 2) As(III) oxidation is favorable but slow in the copresence of 

lepidocrocite and oxygen, and 3) the addition of Fe(II) induces fast oxidation of As(III) to As(V) 

and greatly enhances total arsenic adsorption both with and without oxygen.  

The addition of 90 µM Fe(II) significantly enhanced the extent of arsenic adsorption both 

with and without dissolved oxygen at pH 5.6 when starting with As(III) (Figure 2.4).  This 

increase was slightly more evident with oxygen, as almost all arsenic was removed from the 
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aqueous phase within 24 h. This promotional effect was evident even after 1 h of adsorption. 

Fe(II) probably enhanced arsenic adsorption in experiments starting with As(III) by contributing 

to the oxidation of As(III) to As(V), which is more readily adsorbed to lepidocrocite at this pH. 

 

Figure 2.4 Dissolved arsenic concentration profile with (squares) and without (circles) 90 µM Fe(II) in 

anoxic (closed symbols) and oxic (open symbols) conditions at pH 5.6. All experiments started with 6.67 

µM (500 µg/L) As(III). Data are shown as the average of the duplicates, and the relative standard 

deviations between replicates were always below 5%.  

 

Measurements of aqueous arsenic speciation (Figure 2.5) provide evidence for As(III) 

oxidation in the presence of Fe(II). When neither oxygen nor Fe(II) was present (Figure 2.5a), 

As(III) oxidation was negligible, which agrees with previous studies that found that lepidocrocite 

alone could not oxidize As(III) (Ona-Nguema et al., 2005). The 10% decrease in Fe(II) 

concentration at anoxic conditions (Figure 2.5a) can be best explained by the adsorption to 

lepidocrocite, as Fe(II) adsorption has been observed on the surface of hematite (Larese-

Casanova and Scherer, 2007), goethite, lepidocrocite and ferrihydrite (Hiemstra and van 
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Riemsdijk, 2007). This adsorption of Fe(II) to lepidocrocite was further confirmed by an anoxic 

control experiment where only Fe(II) and lepidocrocite were present without adding arsenic (data 

not shown), indicating that Fe(II) was not oxidized when there was no oxygen. 

 

Figure 2.5 Dissolved arsenic speciation and Fe(II) concentration in (a) anoxic and (b) oxic conditions at 

pH 5.6. All experiments started with 6.67 µM (500 µg/L) As(III). Experiments with Fe(II) had an initial 

Fe(II) concentration of 90 µM. Data are shown as the average of the duplicates, and the relative standard 

deviations between replicates were always below 5%. 
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The extent of As(III) adsorption at 50 hours is consistent with the results predicted by the 

surface complexation model discussed in the last section, indicating that equilibrium had been 

reached. The addition of Fe(II) led to the generation of measurable As(V) in solution throughout 

the course of the experiment. Both dissolved As(III) and As(V) concentrations decreased over 

time. At the end of the experiment, 0.46 µM (34.6 µg/L) As(III) and 0.44 µM (33.1 µg/L) As(V) 

remained in the aqueous phase. For these dissolved concentrations, the equilibrium adsorption 

densities of As(III) and As(V) can be predicted by the surface complexation model. The surface 

complexation model predicts that while the dissolved concentrations of As(III) and As(V) are 

similar, the ratio of As(III) to As(V) complexes at the lepidocrocite surface would be 1:3.  

In the presence of oxygen and absence of Fe(II), As(V) was not detectible in the solution 

until 8 h into the reaction (Figure 2.5b). After that time the dissolved As(V) concentration 

increased due to oxidation and then decreased as a result of adsorption on lepidocrocite. This 

slow oxidation can explain the slightly enhanced arsenic adsorption in the presence of oxygen 

(Figure 2.3a) as As(V) adsorbs more strongly than As(III) at circumneutral pH. However, at the 

end of the experiment, considerable amounts of both As(III) and As(V) remained in the solution. 

In contrast, the addition of Fe(II) in the presence of oxygen greatly enhanced As(III) oxidation; 

As(V) was the dominant dissolved arsenic species in all samples with both Fe(II) and oxygen. 

After 28 h almost all arsenic had transferred from the aqueous phase to the solid phase. The 

Fe(II) concentration decreased substantially with time, indicating the oxidation of Fe(II) in the 

presence of oxygen followed by precipitation (Figure S2.3).  

Fe(II)-promoted oxidation of As(III) has been observed in previous studies and was 

attributed to the pH dependent formation of oxidants from the Fenton reaction in the presence of 

oxygen (Hug and Leupin, 2003;  Katsoyiannis et al., 2008;  Ona-Nguema et al., 2010;  Li et al., 
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2012;  van Genuchten et al., 2012). The Fenton reaction produces hydroxyl radical at acidic pH 

and another oxidant, usually presumed to be Fe(IV), above pH 5 (Remucal and Sedlak, 2011). 

The latter is less reactive but more selective towards As(III) oxidation (Hug and Leupin, 2003). 

To see whether the Fenton reaction played a role in our system, 2-propanol was used as a radical 

scavenger to probe the formation of hydroxyl radical. If 2-propanol could effectively inhibit 

As(III) oxidation at acidic conditions and have negligible effects at pH above 5, then the Fenton 

reaction is most likely to play a role in the fast adsorption of arsenic onto lepidocrocite in the 

presence of Fe(II). 

The adsorption experiment results with Fe(II) and 15 mM 2-propanol as a radical 

scavenger agreed with the Fenton reaction hypothesis (Figure 2.6). At pH 5.6 (Figure 2.6a), the 

addition of 2-propanol had a negligible effect on the As(III) oxidation in that almost all As, 

regardless of its speciation, transferred from the aqueous phase to solid phase within 24 h. This 

observation is consistent with a previous study on As(III) oxidation and removal during iron 

electrocoagulation at circumneutral pH (Li et al., 2012). At pH 4 (Figure 2.6b), the addition of 2-

propanol effectively inhibited As(III) oxidation. Dissolved As(V) concentrations were much 

lower when both Fe(II) and 2-propanol were present, less than one fifth of those without 2-

propanol. While the Fenton reaction was likely to contribute to As(III) oxidation and the overall 

enhanced arsenic adsorption, it is worthwhile to note that at pH 4 the dissolved As(III) 

concentrations were also considerably lower with 2-propanol than without. The 2-propanol might 

alter the surface properties of the lepidocrocite (e.g. surface charge distribution) so that the solids 

have a stronger affinity for arsenic adsorption.  
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Figure 2.6 Dissolved arsenic speciation in the presence of Fe(II) and O2 with/without 2-propanol at (a) 

pH 5.6; (b) pH 4. All experiments started with 6.67 µM (500 µg/L) As(III) and 90 µM Fe(II). The 

concentration of 2-propanol was 15 mM. Data are shown as the average of the duplicates, and the relative 

standard deviations between replicates were always below 5%. 

 

Fe(II) also induced As(III) oxidation in the absence of oxygen (Figure 2.5a). Rapid 

As(III) oxidation was observed in strictly anoxic conditions for Fe(II)-goethite systems, which 
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was attributed to the formation of a reactive intermediate Fe(III) phase upon Fe(II) addition and 

electron transfer into bulk goethite (Amstaetter et al., 2010). While the atom exchange between 

Fe(II) and goethite did not induce any phase transformation (Handler et al., 2009), the reaction of 

Fe(II) with ferrihydrite promoted its transformation into more stable phases such as lepidocrocite 

and goethite (Pedersen et al., 2005). In the presence of Fe(II), lepidocrocite has been observed to 

rapidly release Fe into the solution (Pedersen et al., 2005); the solid phase either remained 

untransformed or transformed to magnetite only with a Fe(II) concentration above 0.6 mM 

(Pedersen et al., 2006), a concentration much higher than that of this study. Therefore the most 

plausible explanation for As(III) oxidation and the subsequent overall enhancement of arsenic 

adsorption  is the formation of a reactive intermediate phase during the recrystallization of 

lepidocrocite induced by the addition of Fe(II). 

2.4 Conclusions 

In engineered systems iron (oxyhydr)oxides are often used to remove arsenic from 

drinking water. The co-occurrence of aqueous Fe(II) and Fe(III) solids is beneficial for arsenic 

removal because Fe(II) can induce As(III) oxidation to As(V) and thus alter arsenic adsorption 

behavior. The pH should be controlled carefully as both As(III) and As(V) adsorption to iron 

(oxyhydr)oxides are affected by pH. Above pH 8 As(V) can be more mobile than As(III); at low 

pH where Fenton chemistry generates hydroxyl radical, the presence of radical scavengers such 

as carbonate and NOM can compete for the oxidants with As(III). In groundwater systems where 

dissolved Fe(II) and Fe(III) (oxyhydr)oxides are both commonly found, the rise and drop of the 

water table may lead to alternate oxidative and reductive environments that influence the fate and 

transport of arsenic.  
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Chapter 2. Supporting Information 

 

Supporting information for Chapter 2 includes three figures (XRD pattern of 

lepidocrocite, time series of selected batch experiments, and the calculation of Fe(II) oxidation 

rate) and four tables with reactions for surface complexation modeling. The detailed procedure 

for developing and optimizing the surface complexation model is also included.   
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Figure S2.1 X-ray diffraction pattern for freeze-dried electrocoagulation product with the reference 

pattern for lepidocrocite.  The match of the two patterns indicates that the product of electrocoagulation is 

lepidocrocite. 

 

 

Figure S2.2 Dissolved As concentration profile over time with and without oxygen starting with 6.67 

mM As(III) at pH 7.5. The data show that 48 hours are sufficient for As(III) adsorption to lepidocrocite to 

reach equilibrium. 
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Figure S2.3 Calculation of Fe(II) oxidation rate for experiment that started with 6.67 µM As(III) in the 

presence of 90 µM Fe(II) and oxygen at pH 5.6.  
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Procedure for Developing and Optimizing Surface Complexation Models 

The surface complexation modeling approach was started by building the basic inputs to 

the models based on the published literature.  The identification of possible surface complexation 

reactions was then considered based on published models and spectroscopic data from previous 

studies that determined the molecular-scale structures of adsorbed species.  Various models, with 

each model consisting of different sets of reactions, were optimized with the model input 

compared to the data.  Ultimately, one model for As(III) and one model for As(V) were selected.  

The steps below describe the sequence for the overall surface complexation model development.   

1) A surface site density of 1.6 sites/nm
2
 reported by Peacock and Sherman (2004) was 

used; they had determined this value from FITEQL simulation of potentiometric titration data of 

lepidocrocite. 

2) Equilibrium constants of lepidocrocite surface acid-base reactions were taken from 

Peacock and Sherman (2004) and adjusted based on the approach described by Sverjensky 

(2003) for accounting for differences in specific surface area (Table S2.1). The Peacock and 

Sherman study used lepidocrocite with a specific surface area of 75.24 m
2
/g, while our study 

used lepidocrocite with a specific surface area of 201 m
2
/g. 

Table S2.1 Adjustment of equilibrium constants of lepidocrocite surface acid-base reactions 

Reactions Log K 
a
 Log K

θ
 
b
 Log K

0
 
c
 

≡FeOH + H
+ 

= ≡FeOH2
+
 6.69 7.57 6.27 

≡FeOH = ≡FeO
-
 + H

+
 -8.69 -7.81 -9.11 

a
 Molar concentration based equilibrium constants from Peacock and Sherman (2004).  

b
 Intrinsic equilibrium constants calculated based on the correction established by Sverjensky (2003).  

c
 Molar concentration based equilibrium constants, as input in MINEQL. Note that for surface acid-base reactions, 

the equilibrium constants are independent of solid concentrations. 
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Implementing the surface complexation model with bidentate surface complexes in 

MINEQL required some adjustments to provide a model that was internally consistent.  In 

MINEQL, an exponent of two is used for the activity of ≡FeOH in the mass action expression for 

bidentate surface complexation. The equilibrium constants in MINEQL are with a standard state 

of 1 mol/L and are not instrisically independent of the specific surface areas or the site density of 

the adsorbents. Because the models in the present study involved the comparison of As(III) and 

As(V) adsorption at different solid concentrations and denticity, the traditional molar-based 

constants (K
0
) were converted into intrinsic equilibrium constants (K

θ
) using the corrections 

established by Sverjensky (2006): 

For monodentate surface complexation, 

𝐾𝜃 = 𝐾0 (
𝑁𝐴

𝑁∗𝐴∗
) 

For bidentate surface complexation, 

𝐾𝜃 = 𝐾0 (
(𝑁𝐴)2

𝑁∗𝐴∗
) 𝐶𝑆 

where N (sites/nm
2
) and A(m

2
/g) are the site density and specific surface area of the 

lepidocrocite. N
*
 = 10 sites/nm

2
 and A

*
 = 10 m

2
/g are selected as the reference site density and 

specific surface area. CS (g/L) is the concentration of lepidocrocite solid. Ultimately the selection 

of the particular reference site density and specific surface area do not affect the molar 

concentration based equilibrium constants in MINEQL because these equations are then used to 

determine the constants for the exact surface area and site density used in our study. 

3) Constrain the denticity of the surface complexation reactions of As(III) and As(V) 

adsorption onto lepidocrocite based on previous studies. 
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a. Ona-Nguema et al. (2005) found from EXAFS analysis that As(III) forms dominantly 

bidentate binuclear corner sharing (
2
C) sorption complexes with a minor amount of monodentate 

mononuclear corner sharing (
1
V) sorption complexes. Manning et al. (2002) and Farquhar et al. 

(2002) had similar findings with their EXAFS measurements that As(III) forms both bidentate 

mononuclear edge-sharing (
2
E) and binuclear corner-sharing (

2
C) complexes with lepidocrocite. 

This discrepancy in the occurrence of the mononuclear edge-sharing complex was hypothesized 

to be related to the difference in surface coverages such that at low surface coverage, 
2
E 

complexes would be favored over 
2
C and 

1
V complexes on the lepidocrocite surface. The 

conditions in our study are closer to the low surface coverage values reported in these studies, so 

for the As(III) bidentate model, only bidentate surface complexes were included. 

b. Sherman and Randall (2003) used density functional theory calculations as well as 

EXAFS measurements to conclude that for As(V) adsorbed to lepidcrocite, the bidentate corner-

sharing (
2
C) complexes would be substantially more favorable than 

2
E and 

1
V complexes. 

Farquhar et al. (2002) also observed the dominance of bidentate arsenic complexes on 

lepidocrocite in their EXAFS analysis.  

c. For both As(III) and As(V), efforts were made to develop models that contained only 

monodentate surface complexes (as used in many other studies) and models that included 

bidentate surface complex reactions (for consistency with spectroscopic and molecular 

evidence). In total, four models (Tables S2.2 and S2.3) were evaluated.  Here we refer to these 

model as As(III) monodentate, As(III) bidentate, As(V) monodentate and As(V) bidentate; the 

As(V) bidentate model also included one monodentate surface complexation reaction. 

Ultimately, the As(III) bidentate model and As(V) monodentate model were used because of 

their ability to simulate both the adsorption edges and isotherms.  
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4) Development of As(V) monodentate surface complexation model  

a. Optimization of the Log K values of reactions that form ≡FeOH2AsO3, ≡FeOHAsO3
-
, 

and ≡FeOAsO3
2-

 (Table S2.2) 

The data of the two adsorption edges in Figure 2.3a were used to obtain the optimized 

Log K values for the three monodentate surface complexes. The three surface complexes were 

expected to all contribute to As(V) adsorption over a wide pH range and each would dominate in 

different pH regions. Multiple forward calculations of the model in MINEQL were performed 

with a matrix of different combinations of the three Log K values to find the set of constants that 

yielded the minimum sum of squares of the residuals between experimental and predicted results 

of adsorption percentages from the two adsorption edges.  

b. Minor adjustment for fitting As(V) adsorption isotherm 

The Log K values that generated the best fit for the adsorption edges had only one surface 

complex, ≡FeOAsO3
2-

, that dominated over the entire pH range from 4 to 10. However, the best 

fit model for the adsorption edges provided a poor fit of the As(V) adsorption isotherm at pH 4 

because it systematically underestimated As(V) adsorption at high As/Fe ratios at pH 4. An 

adjustment to increase the Log K for ≡FeOH2AsO3 while decreasing the Log K for ≡FeOAsO3
2-

 

significantly improved the fitting for the adsorption isotherm while maintaining a very good fit to 

the adsorption edges.  

c. Sensitivity tests and finalizing the model for As(V) monodentate model 

Steps a and b were repeated to update the three Log K values in the As(V) monodentate 

complex model to reach the best overall simulation for both adsorption edges and isotherm. 

Model sensitivity to the individual Log K values was tested at different pH regions. For the final 

model shown in Table 2.1, the reaction for formation of ≡FeOHAsO3
-
 was removed (Table S2.2) 
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because that specific Log K had no impact on the fitting, and ≡FeOHAsO3
-
 remained negligible 

throughout the pH range and As(V) concentrations considered. 

Table S2.2 Surface species and reactions in monodentate surface complexation modeling 

Reactions Log K
θ
 
a
 Log K

0
 
b
 

Model 1: As(V) monodentate  

(0.079 g/L γ-FeOOH, [≡FeOH]total = 4.22 × 10
-5

 M, A = 201 m
2
/g, N = 1.6 sites/nm

2
) 

≡FeOH + AsO4
3-

 + 3H
+
 = ≡FeOH2AsO3 + H2O 

d
 29.5 28.2 

≡FeOH + AsO4
3-

 + 2H
+
 = ≡FeOHAsO3

-
 + H2O 

c
   

≡FeOH + AsO4
3-

 + H
+
 = ≡FeOAsO3

2-
 + H2O 

d
 19.8 18.5 

Model 2: As(III) monodentate  

(0.19 g/L γ-FeOOH, [≡FeOH]total = 1.02 × 10
-4

 M, A = 201 m
2
/g, N = 1.6 sites/nm

2
) 

≡FeOH + AsO3
3-

 + 3H
+
 = ≡FeOH2AsO2 + H2O 32.21 31.70 

≡FeOH + AsO3
3-

 + 2H
+
 = ≡FeOHAsO2

-
 + H2O 39.84 39.33 

a
 Intrinsic equilibrium constants calculated based on the correction established by Sverjensky (2003).  

b
 Molar concentration based equilibrium constants, as input in MINEQL. Note that for monodentate species, the 

equilibrium constants are independent of solid concentrations. 
c
 This reaction was removed because the ≡FeOHAsO3

-
 species was never predicted to be present at even 1% of the 

total surface As thoughout pH 4-10 for both As(V) concentrations.  Consequenlty, its inclusion did not improve the 

quality of the fit to the model.   
d
 Reactions in bold red are the ones that are included in the final model. 

5) Development of As(III) monodentate model (Table S2.2), As(V) bidentate model and 

As(III) bidentate model (Table S2.3) using similar strategies outlined in Step 4. 

Table S2.3 Surface species and reactions in bidentate surface complexation modeling 

Reactions Log K
θ
 
a
 Log K

0
 
b
 

Model 3: As(V) bidentate  

(0.079 g/L γ-FeOOH, [≡FeOH]total = 4.22 × 10
-5

 M, A = 201 m
2
/g, N = 1.6 sites/nm

2
) 

2≡FeOH + AsO4
3-

 + 3H
+
 = (≡FeO)2HAsO2 + 2H2O   

2≡FeOH + AsO4
3-

 + 2H
+
 = (≡FeO)2AsO2

-
 + 2H2O   

≡FeOH + AsO4
3-

 + H
+
 = ≡FeOAsO3

2-
 + H2O   

Model 4: As(III) bidentate  

(0.19 g/L γ-FeOOH, [≡FeOH]total = 1.02 × 10
-4

 M, A = 201 m
2
/g, N = 1.6 sites/nm

2
) 

2≡FeOH + AsO3
3-

 + 3H
+
 = (≡FeO)2HAsO + 2H2O 

c
 37.8 35.5 

2≡FeOH + AsO3
3-

 + 2H
+
 = (≡FeO)2AsO

-
 + 2H2O 

c
 45.6 43.3 

a
 Intrinsic equilibrium constants calculated based on the correction established by Sverjensky (2003).  
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b
 Molar concentration based equilibrium constants, as input in MINEQL. Note that for bidentate species, the 

equilibrium constants are dependent of solid concentrations. 
c
 Reactions in bold red are the ones that are included in the final model. 

 

6) Determination of final models used in the study 

For As(III) adsorption, the monodentate surface complex model (Model 2 in Table S2.2) 

and bidentate surface complex model (Model 4 in Table S2.3) could both provide good fitting for 

adsorption edges and the adsorption isotherm. However, the bidentate complex model was 

finally adopted for its consistency with the spectroscopic observations in other studies that 

As(III) bidentate complexes at the lepidocrocite surface were the dominant species (Step 3a).  

For As(V) adsorption, the monodentate complex model (Model 1 in Table S2.2) could 

simulate both the adsorption edges and isotherm very well. While the bidentate model (Model 3 

in Table S2.3) could provide a good prediction for the adsorption edges, it could not fit the 

isotherm because with bidentate surface complexes being the dominant species at pH 4, the 

model would run out of surface sites and could not accommodate the sorption density as high as 

0.28 µM As(V)/mg γ-FeOOH (Figure 2.2b) that was observed in our study.  

Table S2.4 Other aqueous reactions used in the surface complexation modeling 

Reactions Log K 

As(V) acid-base reactions  

AsO4
3-

 + H
+
 = HAsO4

2-
 11.50 

AsO4
3-

 + 2H
+
 = H2AsO4

-
 18.46 

AsO4
3-

 + 3H
+
 = H3AsO4 20.70 

As(III) acid-base reactions 
 

AsO3
3-

 + H
+
 = HAsO3

2-
 13.414 

AsO3
3-

 + 2H
+
 = H2AsO3

-
 25.454 

AsO3
3-

 + 3H
+
 = H3AsO3 34.744 
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Chapter 3: Impact of Water Chemistry on 

Element Mobilization from Eagle Ford Shale 
 

 

Results of this chapter have been published in Environmental Engineering Science (early online 

access). 

 

Graphical Abstract 
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Abstract 

The rapid expansion of hydraulic fracturing operations for natural gas and oil production 

can impact water quality. The water that flows back to the surface as part of the hydraulic 

fracturing process and during well production can contain trace elements, including regulated 

metals and metalloids, mobilized by interactions of the fracturing fluid with the formation. The 

rate and extent of mobilization depends on the geochemistry of the formation, the composition of 

the fracturing fluid, and the contact time. Laboratory experiments detailed here examined the 

influence of water chemistry on element mobilization from core samples taken from the Eagle 

Ford formation, which is currently producing natural gas from hydraulically fractured zones. 

Fluid properties were varied with regard to pH, oxidant level, and solid:water ratio. The release 

of elements (Ca, Mg, Fe, Ba, As) from the Eagle Ford samples strongly depended on pH, which 

in turn was primarily controlled by calcite dissolution. The presence of oxygen and addition of 

H2O2 led to pyrite oxidation and resulted in an elevated amount of sulfate. Barium 

concentrations were largely controlled by the amount of sulfate present via solubility equilibrium 

of barite that formed as a secondary phase. The effect of increasing solid:water ratio on the 

extents of mobilization varied widely for different elements. Taken together, these findings 

demonstrate the need to understand both the aqueous- and geo-chemistries of a hydraulically 

fractured formation with regard to elemental mobilization in produced and flow back waters. 

Keywords 

Hydraulic Fracturing, Eagle Ford Shale, Flowback Water, Element Mobilization  
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3.1 Introduction 

Recent advances in energy recovery technologies from low-porosity formations have 

increased viable oil and gas reserves for a number of regions, including the United States 

(Kuuskraa et al., 2011).  Shale gas and oil, in particular, has been a production focus in recent 

years due to advances in horizontal drilling and hydraulic fracturing techniques (GWPC et al., 

2009;  U.S. EIA, 2013).  The United States has led in the development of shale-based, petroleum 

resources and the total U.S. proven reserves of wet natural gas have correspondingly increased 

from 192 tcf (trillion cubic feet) in 2001  to 323 tcf in 2012 (U.S. EIA, 2014).  Natural gas 

currently supplies 27% of primary energy in the United States, with growth in total natural gas 

consumption expected at 0.7% per year from 2012 to 2040 (U.S. EIA, 2014).  

Hydraulic fracturing (also referred to as “fracking”) is typically done by pumping a 

mixture of water, proppant, and chemical additives into the well bore, under pressure, to create 

and propagate fractures in the surrounding formation (Ely, 1985).  The proppant (fine sand or 

ceramic grains) is added to hold resulting pores and channels open in the formation thus allowing 

for subsequent oil and gas extraction.  A typical fracturing job can require 2-5 million gallons 

(7,000-18,000 m
3
) of water (Hagemeier and Hutt, 2009;  Gregory et al., 2011).  After the 

fracturing process some of the fracturing fluid returns to the surface and is referred to as 

flowback.  As an example, for hydraulically fractured wells in Pennsylvania, 9-53% of the 

injected fracturing fluid is recovered as flowback (Vidic et al., 2013).  Flowback contains the 

original or degraded additives as well as constituents mobilized from the formation.  These can 

include a number of metals, metalloids, dissolved organics and hydrocarbons (Benko and 

Drewes, 2008;  Gregory et al., 2011).  Flowback and produced waters can have total dissolved 

solids (TDS) several times higher than those of seawater (Haluszczak et al., 2013), and recent 
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management practices of waters from the Marcellus formation have had a discernible imprint on 

surface water compositions such as elevated levels of As, Sr, Se, and Br concentrations 

compared to background observations (Wilson and VanBriesen, 2012;  Ferrar et al., 2013;  

Fontenot et al., 2013;  Olmstead et al., 2013;  Warner et al., 2013;  Wilson and Van Briesen, 

2013).  TDS values of flowback and produced waters from the Eagle Ford, which was the focus 

of this study, have been reported in the range of 40,346-144,952 mg/L (Blondes et al., 2014).  

While there is some published data of regulated trace elements in flowback and produced waters 

(Hayes, 2009;  Chapman et al., 2012;  Haluszczak et al., 2013), overall information about metal 

and metalloid concentrations mobilized from formations and the factors affecting the 

mobilization is limited.  

Approximately 750 chemicals were listed as additives for hydraulic fracturing in a 2011 

report to Congress (Waxman et al., 2011).  However, most fluids contain less than 20 total 

additives (U.S. EPA, 2004).  Additives can comprise 0.5-3% (wt/wt) of the fluid and include 

surfactants, scale inhibitors, co-solvents and acids (King, 2012).  The compositions of hydraulic 

fracturing fluids are often tailored to specific formations and can be varied over different stages 

of well development. Despite this, there are common fluid properties and additive classes that 

can be considered across a spectrum of well and formation types (U.S. EPA, 2011).   

Solid-water interactions have the potential to mobilize elements through a variety of 

pathways that depend on the formation composition and fracturing fluid chemistry.  Dissolution 

of acid-soluble minerals may be a release pathway as strong acids (e.g., HCl) are often used to 

initiate fractures and are usually the single largest liquid additive in a fracturing fluid (Arthur et 

al., 2008;  Gregory et al., 2011).  Desorption of metals from host minerals can occur due to 

changes in pH and through the introduction of complexing agents.  EDTA and citrate, both used 
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for iron control, form strong complexes with several metals and metalloids, such as Pb(II), 

Cu(II), Co(II),  which can increase their mobility (Huang et al., 1995). Further, dissolved oxygen 

and other oxidative fluid additives (e.g. ammonium persulfate, magnesium peroxide) that are 

used to promote the breakdown of gel polymers (Vidic et al., 2013), may drive significant redox 

sensitive geochemical reactions. For example, oxidation of reduced forms of uranium and 

chromium typically increases their solubility (Rai et al., 1989;  Wu et al., 2007).  

The objectives of this study were to examine the impact of aqueous chemistry on the 

mobilization of metals and to investigate the dominant mobilization pathways during solid-water 

interactions involving samples from hydraulically fractured formations.  The study used samples 

from the Eagle Ford formation, a highly productive oil and natural gas play in south Texas. 

Experiments on the release of elements as a function of pH, oxidant level and solid:water ratio  

sought to advance the understanding of factors controlling the behavior of metals and metalloids 

during water-rock interactions.  Such information is critical for managing potential aqueous 

waste streams that contain elements mobilized from the fractured rock.  

3.2 Experiment Protocols  

3.2.1 Materials  

All chemicals were used as received from the vendors without further treatment.  

Solutions were prepared with ultrapure water (resistivity > 18.2 MΩ•cm).  Glass volumetric 

flasks, beakers and bottles were acid-cleaned and rinsed several times with deionized water and 

ultrapure water prior to use.  When pH adjustments were performed, hydrochloric acid (HCl) and 

sodium hydroxide (NaOH) of trace-metal grade were used (Fisher Scientific).  For experiments 
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at high oxidant loadings, hydrogen peroxide (H2O2, 30 wt % solution, Sigma Aldrich) was used 

as a model oxidant.   

A cylindrical sample with 1 cm in diameter and 2.5 cm in length (Figure S3.1) was 

collected from a core taken from a well at a depth of 5668 ft (1728 m) in the Eagle Ford 

formation that are the target of current fracking operations.  Upon arrival in the laboratory, 

samples were stored and ground to powders with an agate mortar and pestle in the anoxic 

atmosphere of a glovebox filled with a N2/H2 mixture circulated over a heated Pd catalyst. Two 

powder samples (Sample 1 and Sample 2) from the same core and depth were used in the 

experiments. After grinding, Sample 2 was sieved to a size fraction of 53 – 106 µm and all of the 

Sample 1 powder was kept without sieving.   

3.2.2 Solid Characterization  

X-ray diffraction (XRD) with Cu Kα radiation (Bruker d8 Advance X-ray diffractometer) 

provided information on the mineralogy of the samples. Approximately 250 mg of powder 

sample was placed in aluminum sample holders with preferred orientation minimized by 

excessive sample agitation. The Bruker Topas Program was used to conduct quantitative analysis 

of multiphase mixtures by means of Rietveld analysis of the entire diffraction pattern (2θ ranged 

from 5° to70°). The lower detection limit of the Rietveld analysis is approximately 1 wt% 

(Madsen et al., 2001), which was sufficient to capture the pyrite available in the samples. Strong 

acid digestion (procedure in supplementary material) followed by inductively coupled plasma 

mass spectrometry (ICP-MS, Agilent 7500ce) was performed for elemental composition 

analysis. Extraction results of two USGS reference shale materials, by the same procedure, are 

listed in Table S3.1. The extractable portions for the elements of interest (Ca, Mg, Fe, As) were 

higher than 80%. The specific surface area of the powdered samples was measured by BET-N2 
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adsorption
 
(Brunauer et al., 1938) (Autosorb-1, Quantachrome Instruments).  Total carbon (TC) 

and total inorganic carbon (TIC) were measured with a total organic carbon analyzer (TOC-

LCPH with SSM-5000A, Shimadzu Corp.). 

3.2.3 Batch Experiments  

The mobilization of metals from the samples was studied in a series of batch experiments 

that explored a range of pH, oxidant conditions, and solid:water ratios (Table 3.1).  All 

experiments were performed in duplicate at room temperature. Blank controls, without sample 

powders, were conducted, sampled and analyzed in parallel for all conditions evaluated. 

Reactions were initiated by the addition of sample into 100 mL ultrapure water to achieve a 

target solid:water ratio, which was 1 g/L in most experiments. The solid:water ratio was selected 

to eliminate potential transport limitations and to drive element mobilization. Suspensions were 

continuously mixed by magnetically stirring at 600 rpm.  All batch reactors except for those 

probing anoxic conditions were loosely capped so that the suspension was open to the 

atmosphere.  Reaction times of either 96 or 120 hours (Table 3.1) were used; in preliminary 

experiments, this time was found to be sufficient for most elements (Ca, Mg, Fe, Ba, U) to be 

released to stable concentrations that were no longer changing (Figure S3.2).  Aliquots (10 mL) 

of suspension were sampled at 1, 4, 24, 48 and 96 (120) hours and filtered through 0.22 µm 

polyethersulfone (PES) membranes for aqueous phase analyses.  The suspension pH was 

monitored throughout the course of experiments with a benchtop pH meter (Fisher Scientific 

Accumet XL15). 
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Table 3.1 Conditions and variables explored in the experiments performed 

Exp. 

No. 

Sample 

Number 

Reaction 

time (h) 
pH Final pH 

a 
Redox condition 

Solid:water ratio 

(g/L) 

1 

1 96 

target pH 4 7.05 

Atmospheric 
b
 1 

2 target pH 5 7.50 

3 target pH 6 7.61 

4 target pH 7 7.87 

5 target pH 8 7.95 

6 target pH 9 8.08 

7 target pH 10 8.37 

8 

2 120 Unadjusted 

8.20 Anoxic 

1 
9 8.26 1.5% H2O2 

10 8.19 3% H2O2 

11 8.18 1.5%+1.5% H2O2 

12 

2 120 Unadjusted 

8.62 

Atmospheric 
b
 

1 

13 8.69 2 

14 8.55 10 

15 8.30 Anoxic 10 
a
 For Experiments 1-7, these are the suspension pH when the last samples were taken. They were different than 

target pH due to the buffering capacity of the carbonate mineral in the samples. 
b
 “Atmospheric” means that the reactors were loosely capped to allow exchange with the air. Oxygen was the 

primary oxidant in this condition.  

 

For investigation of pH (Experiments 1-7), either 0.1 M HCl or 0.1 M NaOH was 

intermittently added to the suspensions to adjust the pH to target values of 4 to 10. This approach 

of pH adjustment was selected as the samples had a strong buffering capacity (see discussion 

below). The final pH observed drifted considerably from the target value due to the buffering 

capacity of the sample (Figure S3.3).  In investigating the effect of oxidizing conditions 

(Experiments 9-10), H2O2 was selected as a model oxidant to eliminate the generation of metals, 

metalloids or anions of concern from the additives that could interfere with the interpretation of 

the experimental results. The concentrations of H2O2 were selected to be in great excess of the 

oxidant demand exerted by organic carbon and pyrite in the samples thus driving the maximum 

extent of oxidation for those species that can be oxidized by H2O2. A portion of 10 mL or 5 mL 
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30% H2O2 solution was diluted to a total volume of 100 mL with ultrapure water to obtain 3% or 

1.5% H2O2 concentration prior to the addition of sample powders.  In Experiment 11 the reaction 

started with 1.5% H2O2 and a second 5-mL aliquot of 30% H2O2 solution was added 24 hours 

later to give a total added H2O2 concentration of 3%.  In Experiments 13 and 14, two elevated 

solid loadings (2 and 10 g/L) were used to investigate the effect of solid:water ratio on element 

release to solution.  

Experiment 8 at anoxic conditions was conducted with 100 mL serum bottles (Figure 

S3.4).  The ultrapure water loaded into the bottles was first bubbled with ultrapure N2 that 

contained 400 ppm CO2 (N2/CO2 gas) for at least 30 minutes.  For the experiment a 50 mL 

suspension prepared with that water was used, and the serum bottle headspace was replenished 

with a continuous flow of the N2/CO2 mixture.  The presence of CO2 in the headspace that was 

equivalent to that of the atmosphere resulted in dissolved inorganic carbon (DIC) and pH of the 

suspensions that were comparable to those in the other experiments. The dissolved oxygen level 

as determined with a dissolved oxygen microprobe (Ocean Optic Neofox system) was measured 

to be below 0.5 mg/L.  Due to the limited suspension volume, no samples were taken during the 

120-hour experiment and a single 10 mL sample was collected and filtered at the end of the 

experiment.  

3.2.4 Analytical Methods  

A portion of the filtrate was acidified and analyzed for concentrations of dissolved metals 

(Ca, Mg, Fe, Ba, U, Pb, Cr) and metalloids (As, Sb) by ICP-MS (Agilent 7500ce with a 

quadruple mass analyzer).  The detection limits for major elements (Ca, Mg, Fe) were 0.01 

mg/L, and for trace elements (Ba, As, U) were 0.1 µg/L. The ranges of calibration standards 

were 0.1- 10 mg/L for major elements and 0.1 – 100 µg/L for trace elements. Another portion of 
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the filtrate was analyzed for sulfate by ion chromatography (881 Compact IC pro, Metrohm USA 

Inc.).  The electrical conductivity (EC) of the suspensions in Experiments 8-15 was measured 

with a conductivity meter (ECTestr11, Eutech Instruments). 

3.2.5 Chemical Equilibrium Modeling  

Chemical equilibrium modeling was used to evaluate whether the solutions had 

compositions that were controlled by equilibration with specific solid phases. The general 

approach was to solve for equilibrium based on mole balance equations, charge balance, and a 

set of equilibrium reactions (Nordstrom et al., 1990)
 
(Table S3.2).  Equilibrium compositions 

were solved using both spreadsheet-based calculations and the software program MINEQL+ v 

4.6 (Schecher and McAvoy, 2007). In MINEQL and for spreadsheet (Microsoft Excel) 

approaches, activity coefficients were determined using the Davies equation (Table S3.2).   It 

should be noted that the approach for activity correction used are valid for the ionic strength 

values (below 0.05 M) observed in this study (Table S3.2), but other approaches (such as Pitzer 

equations) may be appropriate for solutions with higher ionic strengths (He et al., 2014).  

 

3.3 Results and Discussion 

3.3.1 Core Sample Composition. 

Mineral and elemental compositions of the two core samples were very similar. Based on 

XRD measurements (Figure S3.5), carbonates (calcite, dolomite, and ankerite) are the dominant 

phases (74.6 - 77.9 wt %) in both samples. Other minerals included quartz, clay minerals 

(kaolinite), feldspar (albite) and a small amount of pyrite (1.3 – 1.9 wt %). Quantitative XRD 
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analysis (Table 3.2) agrees well with the major element compositions (Ca, Mg and Fe) of the 

sample. The relative richness of TOC, carbonates, quartz and clay minerals are consistent with 

other studies of the Eagle Ford formation (Mullen, 2010;  Harbor, 2011;  Sondhi, 2011;  Kearns, 

2012). 

The solid digestion results (Table 3.3) indicated that both samples were rich in calcium 

(25.4% for Sample 1 and 29.2% for Sample 2), corresponding to 63.5% and 73.0% calcite by 

mass.  Other major elements included magnesium (2.3%) and iron (1.0 - 1.1%).  The contents of 

some regulated trace elements (e.g., Cr was 15.9 mg/kg in Sample 1 and 36.1 mg/kg in Sample 

2) were lower than their average crustal abundance (83 mg/kg for Cr), while other elements of 

concern were higher than their crustal average (e.g., As has a crustal average of 1.7 mg/kg while 

the samples had concentrations of 24.6 and 25.7 mg/kg) (Taylor, 1964). The abundances of 

major and trace elements in Sample 1 and Sample 2 are also compared with other reported 

literature values for Eagle Ford samples (Table 3.3). 

Samples 1 and 2 had comparable physical and chemical properties (Table 3.3).  Despite 

the difference in particle size distribution, the specific surface areas (3.5 m
2
/g for Sample 1 and 

3.6 m
2
/g for Sample 2) were almost identical.  TIC content (70.7 mg/g for Sample 1 and 85.0 

mg/g for Sample 2) was consistent with the numbers estimated from the mass fractions of 

carbonate mineral as determined by quantitative XRD analysis (Table 3.2). In another study of 

Eagle Ford formation properties, TIC was also observed to have a positive linear relationship 

with Ca content (Kearns, 2012). The total organic carbon (TOC) content, determined as the 

difference between TC and TIC, was 48.6 mg/g (4.86%) for Sample 1 and 44.8 mg/g (4.48%) for 

Sample 2. These numbers are consistent with the elevated organic matter content in the Eagle 

Ford Formation as a proven hydrocarbon source rock (Harbor, 2011). 
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Table 3.2 Quantitative XRD analysis of core samples compared with reported ranges of Eagle Ford sample properties 

Mineral Chemical formula 
Molecular 

Weight 

Mass Fraction 

Sample 1
a
 

Mass Fraction 

Sample 2
a
 

Mass Fraction 

(Harbor 2011)
e 

Calcite CaCO3 100.1  0.5695 0.5830 0.03-0.92 

Quartz SiO2 60.1 0.1142 0.0997 0.02-0.40 

Dolomite CaMg(CO3)2 184.4 0.0813 0.1257 0.01-0.04 

Ankerite CaFe0.2Mg0.8(CO3)2 190.4 0.0952 0.0703 0.01-0.06 

Kaolinite Al2Si2O5(OH)4 258.2 0.0633 0.0609 0.03-0.80 

Albite NaAlSi3O8 263.0 0.0571 0.0470  

Pyrite FeS2 120.0 0.0194 0.0134 0.01-0.05 

SUM      1.0000 1.0000  

Criteria 

 of fit 
b
 

Rwp (%)  14.30 15.65  

Rp (%)  11.05 12.27  

GOF  2.56 2.75  

 

Mass Fraction Predicted 
c
 Mass Fraction Experimental 

d
  

  Sample 1 Sample 2 Sample 1 Sample 2  

Calcium 0.2655 0.2753 0.2538 0.2917  

Magnesium 0.0202 0.0235 0.0227 0.0230  

Iron 0.0147 0.0104 0.0114 0.0103  

TIC  0.0909 0.0952 0.0707 0.0850  

a
 These values were from quantitative XRD analysis by the Bruker Topas program. TOC amounts of up to 5% were not considered in the mass fractions 

presented here, which only correspond to the inorganic mineral component of the samples. After grinding Sample 1 was kept without sieving and Sample 2 was 

sieved to a size fraction of 53-106 µm.  

b
 Criteria of fitting used here include: “R-weighted pattern”, Rwp; “R-pattern”, Rp; “Goodness of fit”, GOF. 

c
 Predicted values are those that would result if the minerals determined by XRD were the only phases contributing Ca, Mg, Fe, and inorganic carbon. 

d 
Experimental values are from acid digestion and inorganic carbon analysis (Table 3.3).  

e
 Reported ranges of values for comparison. 
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Table 3.3 Physical and chemical properties of core samples compared with reported ranges of Eagle Ford sample properties 

 Sample 1
a
 Sample 2

a
 

(Kearns, 

2012)
c (Harbor, 2011)

c 
(Sondhi, 2011)

c 

Major Element (in percentage)    

Calcium 25.38±0.56 29.17±0.55 1.66-34.83 0.31-38.48  

Magnesium 2.27±0.03 2.30±0.07 0.09-5.04 0.00-1.04  

Iron 1.14±0.03 1.03±0.01 0.29-4.79 0.18-4.53  

Trace element (in mg/kg)    

Aluminum 4090.0±260.7 3864.3±285.3 400-7514 4200-181600  

Potassium 1050.1±16.9 1035.7±58.7 100-2575 1300-28100  

Sodium 555.7±2.5 402.3±40.7  145-6160  

Manganese 178.8±1.0 191.5±3.2 110-790 0-387  

Vanadium 145.5±2.0 162.5±6.8 10.7-963.8 54-494  

Zinc 123.0±20.4 350.2±40.2 1.0-419.5 82-246  

Nickel 64.1±1.2 60.4±0.7 0.0-355.2 9-196  

Barium
b
 47.5±4.6 57.9±1.5  92-513  

Molybdenum 44.3±0.7 41.4±0.7 0.1-288.1 <1-118  

Copper 37.5±0.3 32.3±1.5 0.4-92.7 <10-114  

Arsenic 24.6±0.6 25.7±1.5    

Chromium 15.9±0.7 36.1±3.4 3.9-134.4 21-181  

Lead 11.5±0.3 17.8±3.6  6-16  

Uranium 5.7±0.0 6.9±0.1 0.0-26.5 <1-73  

Physichemical properties    

Total organic carbon (%)  4.86±1.95 4.48±0.80 0.763-6.356 0.53-11.80 0.06-6.32 

Total inorganic carbon (%) 7.07±0.49 8.50±0.48 3.357-11.971   

Specific surface area (m
2
/g) 3.5 3.6    

a
 Expressed as average ± standard deviation of triplicate analyses 

b
 Barium recovery from the solid during solid digestion was incomplete, so these values do not represent the total Ba content of the samples. 

c
 Reported ranges of values from literature for comparison.  
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3.3.2 Summary of Mobilization Results  

The following discussion focuses on the aqueous concentrations of Ca, Mg, Fe, Ba, As, U 

either because they are major elements (Ca, Mg, Fe) that affect the fate of other elements or 

because they are regulated trace elements (Ba, As, U) with known toxicity and public health 

implications (U.S. HHS, 2003;  U.S. EPA, 2010). Other regulated trace elements (Cu, Pb, Cr) 

that were below detection limits throughout the experiments, are not discussed. The leaching of 

Ca and Ba were controlled by equilibrium with solid phases (calcite, barite), while kinetic 

limitations in reaction rates play a more important role in other constituents such as As, Mg, 

sulfate.  

3.3.3 Effects of Solution pH 

The solid suspensions used in batch reactors exhibited a strong buffering capacity due to 

the high calcite content of the samples.  After each manual adjustment targeting a specific pH 

value, the solution pH drifted back towards the value for calcite equilibrium (Figure S3.6).  The 

final pH range (7.0-8.4) was much narrower than the target pH range (4-10); however, there was 

good correlation between the final pH and the target pH values (Figure S3.3), which corresponds 

to the amount of acid or base added. The total acid-neutralizing capacity of the samples was 

found to be 8.2 mmol acid per gram solid in a strong acid titration of a 1 g/L suspension (Sample 

1) to pH below 4.0 (Figure S3.7).  High buffering capacity from the high carbonate mass fraction 

indicates that, for the Eagle Ford formation, initially acidic hydraulic fracturing fluids could flow 

back with neutral or even higher pH values depending on fluid residence times. 

Acid or base pH adjustments, aimed at targeted pH values, of the core sample 

suspensions significantly affected the mobilization of many metals.  In general, higher releases 

of elements (Ca, Mg, Fe, Ba, As) were observed with more acid addition (Figure 3.1).  This 
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effect was most evident for major elements.  At the lowest final pH of 7.0, the dissolved Ca 

concentration was as high as 165 mg/L, which accounts for approximately 65% of the total Ca in 

the original solids; while at the highest final pH of 8.4, the Ca concentration was only 3 mg/L.  

Similarly, about 60% of total Mg was mobilized at the lowest target pH and less than 1% at the 

highest pH.  Trace element release was somewhat affected by pH.  Arsenic concentrations were 

higher at lower pH, and slightly higher U concentrations occurred between final pH values of 

7.6-7.9.  However, the concentrations of both As and U remained low (0 – 5.0 µg/L for As and 0 

– 1.1 µg/L for U) throughout the experiments. 

 

Figure 3.1 Final aqueous concentrations of (a) Ca, Mg, Ba and (b) Fe, As, U after 96 hours of reaction 

with pH adjustment (Experiments 1-7). Experiments were performed at room temperature with 1 g/L 

shale loading. Data are shown as the average of the duplicates with the error bars being the standard 

deviations. 
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Ca release is correlated with the mobilization of many other elements (Figure 3.2) as 

calcium carbonate readily hosts (and thus can release) other divalent cations (Mg, Ba, Fe). The 

relationship between the concentration of an individual element and that of calcium can be the 

result of more than one factor.  Final Fe concentrations were positively correlated with Ca 

concentrations in Experiments 1-7, which could be partially attributed to the common 

phenomenon of Fe(II) substitution for Ca in calcite (Reeder, 1983) and the presence of ankerite 

[CaFe0.2Mg0.8(CO3)2].
 
However, soluble Fe concentrations are also subject to the rate and extent 

of Fe(II)/Fe(III) redox reactions.  As the rate of Fe(II) oxidation to Fe(III) by oxygen increases 

with increasing pH, oxidation of Fe(II) followed by precipitation of Fe(III) may occur at higher 

pH values (Crittenden et al., 2012). The higher iron concentrations in anoxic conditions relative 

to open and oxidative systems (Figure 3.3) were a clear indication that iron oxidation and 

precipitation occurred in the presence of oxygen and/or H2O2. Note that the processes above 

could affect the soluble Fe concentrations simultaneously and yield the almost linear relationship 

between Fe and Ca concentrations in Figure 3.4. In contrast, Mg concentrations were observed to 

follow a different linear trend with Ca concentrations at different pH regions, with a larger slope 

observed at lower pH values.  This is consistent with previous studies that dolomite dissolution 

rates decrease with increasing pH (Pokrovsky et al., 1999;  Pokrovsky and Schott, 2001). In 

addition, the presence of dissolved Ca could also strongly inhibit dolomite dissolution above pH 

7 (Pokrovsky and Schott, 2001).  
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Figure 3.2 Relationship between the final aqueous concentrations of Mg, Ba, Fe, As and U and the final 

Ca concentrations in experiments with pH adjustment (Experiments 1-7). Experiments were performed at 

room temperature with 1 g/L shale loading. Data are shown as the average of the duplicates. 

 

Figure 3.3 Metal and sulfate mobilization after 120 hours of reaction under anoxic (Experiment 8), 

atmospheric (Experiment 12) and oxidative conditions (Experiment 9-11). Experiments were performed 

at room temperature with 1 g/L shale loadings. A 1.5% (3%) H2O2 solution was prepared fresh for groups 

marked with 1.5% (3%) H2O2. The 1.5%+1.5% H2O2 group started with 1.5% H2O2, and was reacted for 

24 hours before the addition of another 1.5% H2O2 (3% total H2O2 concentration thereafter). Data are 

shown as the average of the duplicates with error bars being the standard deviations. The Fe and U 

concentrations with H2O2 were below detection limits. The atmospheric and oxidative condition 

experiments were open to the laboratory atmosphere, and the anoxic experiments had headspaces with 

400 ppm CO2. 
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A comparison between predicted calcite equilibrium and experimental data supported 

calcite dissolution as the dominant pathway for Ca
2+

 mobilization.  Results from Experiments 1-

7 were compared with equilibrium calcite solubility in open and closed systems (Figure 3.4).  

Experimental measurements generally agreed with predicted equilibrium for a system closed 

with respect to atmospheric exchange. Although the batch reactors were loosely capped, the rate 

of CO2 exchange between the suspension and atmosphere could have been slower than that of 

the acid-base reaction from the pH adjustment, especially in lower pH region (pH<4) where CO2 

effectively acts as an inert gas (Hoover and Berkshire, 1969), thus leading to system behavior 

which is closer to a closed system.  Without pH adjustment, calcite dissolution was predicted to 

equilibrate at pH 8.23 with 18.7 mg/L Ca in the open system and at pH 9.9 with 4.4 mg/L Ca in a 

closed system according to equilibrium calculations (Figure 3.4).  Data from Experiments 8-15 

(i.e., those with no pH adjustment) were all close to the model predictions for an open system.  

 

Figure 3.4 Comparison of measured and predicted solution compositions based on calcite equilibrium.  

Predictions are shown as lines for a system with calcite open to an atmosphere with a CO2 partial pressure 

of 10
-3.46

 atm (dashed line) and for a system closed with respect to exchange with the atmosphere (solid 

line) for systems to which acid or base had been added to yield the pH range shown.  The predicted pH 

and calcium concentrations without acid or base addition are shown as the + and x for the open and closed 

system, respectively.  The other markers (open triangle, diamonds, squares and circles) are data from 

different experiments.  
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3.3.4 Oxidant Level Effect  

Compared with experiments open to the atmosphere, the lack of oxygen in anoxic 

environments prevents a number of oxidative pathways (Figure 3.3).  Monitoring of the pH 

indicated that the use of the N2/CO2 gas sparging and headspace allowed for DIC and pH levels 

in anoxic experiments that were comparable to those under atmospheric conditions.  Ca 

concentrations were similar with or without oxygen since calcite dissolution is independent of 

redox conditions. Experiments with H2O2 had pH values that were 0.4 – 0.6 units lower than 

those without H2O2 (Figure S3.8), which could explain the slightly higher final Ca 

concentrations in experiments with a 3% final H2O2 concentration. The decrease in pH was 

likely a result from pyrite oxidation and/or precipitation of Fe(OH)3.   

The sensitivity of sulfate concentration to the presence of oxidants suggests that pyrite 

was being oxidized. After 120 hours, sulfate concentrations were 0.8 mg/L under anoxic 

conditions and 1.6 mg/L under atmospheric conditions. Further, the addition of 1.5% H2O2 

generated 11.3 mg/L (118 µM) more sulfate than observed for anoxic conditions. H2O2 

concentrations (1.5% and 3%) used in the experiments were selected so that they would be in 

great excess (more than 30-fold) of the oxidant demand exerted by the observed levels of organic 

carbon and pyrite in the samples. The sulfate released in the anoxic experiment could represent 

the original amount of sulfate present (0.8 mg SO4
2-

/g sample), while the additional 11.3 mg/L 

sulfate produced in the presence of H2O2 represents the amount of oxidizable sulfur (3.8 mg S/g 

sample) in the solids that could be mobilized within 120 hours. This amount of oxidizable sulfur 

is 53% of the amount of sulfur in the sample from the pyrite abundance determined from 

quantitative XRD (7.1 mg FeS2–S/g sample). Because the measured mass fraction of pyrite 

(1.3% in Sample 2) was close to the detection limits of the Rietveld refinement, this 



69 

 

inconsistency might be caused by the uncertainty in the pyrite amount that influenced the 

estimated sulfate amount that could be produced. 

Reactions (3.1) and (3.2) show the complete oxidation of both iron and sulfur in pyrite 

upon exposure to oxygen or H2O2. The expected decrease in pH from proton generation as 

shown in Reactions (3.1) and (3.2) would be significant if there were no other minerals with 

buffering capacity such as carbonate. The mole ratio of calcite to pyrite that represents complete 

neutralization is 4:1 (Chermak and Schreiber, 2013) according to Reactions (3.3) and (3.4). The 

Eagle Ford samples used in this study contained calcite in great excess compared to pyrite (mole 

ratio = 52.2 :1), effectively stabilizing the pH of the systems.   

FeS2 + 15/4 O2 + 7/2 H2O → Fe(OH)3(s) + 2SO4
2-

 + 4 H
+
     (3.1) 

FeS2 + 15/2 H2O2 → Fe(OH)3(s) + 2SO4
2-

 + 4 H
+
 + 4 H2O    (3.2) 

FeS2 + 4CaCO3 + 15/4 O2 + 7/2 H2O → Fe(OH)3(s) + 2SO4
2-

 + 4 Ca
2+

 + 4 HCO3
-
    (3.3) 

FeS2 + 4CaCO3+ 15/2 H2O2 → Fe(OH)3(s) + 2SO4
2-

 + 4 H2O + 4 Ca
2+

 + 4 HCO3
-
    (3.4) 

Barium concentrations were negatively correlated with sulfate concentrations, which in 

turn were affected by the oxidant level of the system (Figure 3.3), suggesting that Ba 

mobilization was controlled by barium sulfate (BaSO4) solubility. BaSO4was not initially present 

in the samples but rather precipitated as a secondary phase while barium and sulfate likely 

leached from different sources. This has been further proved by the modeling results that BaSO4 

solubility is not influenced by pH, and all experimental data (i.e., the ion activity product for 

barium sulfate) stayed within one order of magnitude of the predicted equilibrium solubility 

(Figure S3.9). In anoxic experiments, which had similar pH profiles to those open to the 

atmosphere, the Ba concentration reached a maximum of 111 µg/L.  This value would be 

equivalent to at least 111 mg/kg barium in the solid, which was higher than the value determined 
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by solid digestion (57.9 mg/kg in Sample 2).  The solid digestion did not recover the entire Ba 

content of the core sample as Ba released from initial host phases (e.g., substituted in calcite) 

precipitates as BaSO4 with the sulfate produced during the digestion.     

Soluble As and U concentrations remained low at all oxidant levels (only up to 3% for As 

and 7% for U release observed), and below EPA maximum contaminant levels (MCL) of 10 

µg/L and 30 µg/L in drinking water (U.S. EPA, 2009). This is possibly due to their relatively low 

amounts in the original solid sample and potential for (re)sorption processes with solid particles 

in suspension.  

3.3.5 Solid:Water Ratio Effect  

The solid:water ratio affected the mobilization of different elements to varying degrees 

(Figure 3.5).  Ca concentrations were relatively independent of solid loadings because, as 

mentioned, they were primarily controlled by calcite dissolution equilibrium.  Mg and Ba 

concentrations were higher at elevated solid:water ratios, but the increase was not linear.  The 

non-linearity may be due to different rates of dissolution of specific phases (e.g., dolomite versus 

calcite) that host these elements as well as potential inhibition of Mg release from dolomite with 

increasing Ca concentrations (Pokrovsky and Schott, 2001).  Soluble Ba concentrations were 

directly related to the abundance of available sulfate.  Sulfate concentrations were much higher 

at the highest solid:water ratio of 10 g/L. Amounts of sulfate that were directly dissolved from 

the solid (8.9 mg/L) and produced from oxidation of reduced sulfur sources (4.8 mg/L) were 

both greater at a 10 g/L solid:water ratio than those (0.8 mg/L and 0.8 mg/L) at 1 g/L loading 

(Figure S3.10).  Compared to the quantitative XRD results, all pyrite was not oxidized in open 

systems (having available oxygen). This incomplete sulfur oxidation could be the result of slow 

oxidation rate of pyrite by oxygen alone. Ca concentrations, independent of solid:water ratios, 
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and higher sulfate, at elevated solid:water ratios, were also observed under anoxic conditions 

(Figure S3.10). 

 

Figure 3.5 Metal and sulfate mobilization with different solid:water ratios (1, 2, 10 g/L) after 120 hours 

of reaction. Experiments were performed at room temperature and open to the atmosphere. Data are 

shown as the average of the duplicates with error bars being the standard deviations. 

Electrical conductivity (EC) of suspensions remained relatively stable regardless of the 

solid:water ratio (Figure S3.11) as the aqueous phase composition was largely controlled by 

calcite dissolution.  Measured EC could also be used to estimate the TDS (108-126 mg/L) based 

on the relative concentrations of the major cations and anions present (Table S3.3).  The reported 

produced water TDS level in Eagle Ford Formation is 40,346-144,952 mg/L (Blondes et al., 

2014), which is higher than typically observed in this study. This difference can be attributed to 

an elevated rock:water ratio and longer contact times. Previous work has shown that TDS of 
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flowback waters increases with time in the 30 days after hydraulic fracturing ceased (Kimball, 

2012;  Barbot et al., 2013). 

 

3.4 Conclusions 

Understanding element release from shale materials exposed to various water chemistries 

will aid in managing wastewaters from hydraulic fracturing operations. For the Eagle Ford 

samples used in this study, the release of elements strongly depended on pH, which was 

primarily controlled by carbonate dissolution. High Ca concentrations and potential precipitation 

of BaSO4 will likely impact system-wide scaling.  The introduction of oxygen and other oxidants 

could significantly increase the amount of sulfate over time when pyrite is available.  When 

coupled with bioavailable dissolved organic carbon, the growth of sulfate-reducing bacteria 

could potentially result in biofouling/biofilm formation and the production of unwanted reduced 

sulfur species (Kirk et al., 2012;  Murali Mohan et al., 2013;  Cluff et al., 2014).  For these Eagle 

Ford formation core samples, the trace elements (As, U and Ba) mobilized from rock-fluid 

contact will probably not affect the choice of strategies for management of produced waters. 

The degree to which the findings from this study can be related to flowback from the 

Eagle Ford Formation will be a function of the parameters used in actual operations and subject 

to the complicated subsurface conditions. For example, while calcite solubility decreases with 

elevated temperature in subsurface, Na
+
, Mg

2+
 ions present in formation brine could significantly 

increase calcite solubility due to their incorporation into calcite lattice (Plummer and Busenberg, 

1982;  He and Morse, 1993).  The solid:water ratio in the field will depend on the fracture 

network (10,000’s to 100,000’s g/L for overall porosities in the range of 1-10%), however, the 
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rock-fluid interactions will occur at both fractured surfaces and the mobilized particles-fluid 

interfaces, thus the total reactive surface area will be a more relevant property to scale up the 

extent of mobilization. As flowback resident times can reach up to several weeks (Vidic et al., 

2013), the flowback volumes can decrease with increasing TDS due to mixing with formation 

water (Kimball, 2012).  Moreover, similar responses of element mobilization towards the 

addition of acid or base are more likely to apply to carbonate-rich formations while the presence 

of barium in a pyrite-rich formation might predict the precipitation of barite as a secondary phase 

and the subsequent scaling as a potential problem for well performance. For these Eagle Ford 

samples, the dominance of carbonate minerals suggests that the buffering of strong acids could 

last for very long times, however, the acidic fracturing fluids will not interact with the entire 

formation and their action to initiate fractures can be limited to the zone immediately adjacent to 

the well.  
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Chapter 3. Supporting Information 

 

This supporting information includes 11 figures, 3 tables and text that facilitate the interpretation 

of the results in Chapter 3.
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Strong acid digestion procedure 

Experiments were performed in triplicate.  Three portions of 200 mg sample powders 

were weighed and introduced into digestion tubes, and 8 mL concentrated HNO3 and 2 mL 

concentrated HCl were added.  The resulting suspensions were heated in a digestion block for 4 

hours at 100±0.5 C and cooled overnight.  Ultrapure water was added to the digestate to give a 

total volume of 50 mL.  Aliquots of 10 mL supernatant were then taken by syringes and filtered 

through 0.22 µm PES membranes.  Serial dilution was performed for the filtrate before analysis 

by ICP-MS (Agilent 7500ce). By design this acid digestion method will dissolve almost all 

elements except for those bound in silicate structures.  Complete dissolution of silicates would 

have required the use of hydrofluoric acid.  However, based on comparison with extractions of 

reference shale materials, the acid digestion method mobilizes essentially all of the elements of 

interest in this study. If a total digestion is necessary, then EPA Method 3052 that uses 

concentrated nitric acid and hydrofluoric acid should be used. 

The extraction results with this method of two standard reference shale materials from 

USGS are listed in Table S3.1. The certificates of analysis of these two reference materials can 

be found at http://crustal.usgs.gov/geochemical_reference_standards/ 

  

http://crustal.usgs.gov/geochemical_reference_standards/
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Table S3.1 Recovery of standard reference materials from strong acid digestion  

 
SGR-1b SBC-1 

 
Experiment 

a
 Standard 

b
 

Extractable 

(%) 
c
 

Experiment 
a
 Standard 

b
 

Extractable 

(%) 
c
 

Major elements (%) 

Ca 7.63±0.06 8.38±0.17 91.0 2.76±0.03 2.95±0.01 93.6 

Mg 4.36±0.03 4.44±0.2 98.1 1.89±0.03 2.6±0.01 72.6 

Fe 2.87±0.03 3.03±0.14 94.6 7.81±0.10 9.71±0.02 80.4 

Na 0.512±0.004 2.99±0.13 17.1 0.052±0.001 0.15 34.8 

K 0.223±0.003 1.66±0.1 13.4 0.48±0.01 3.45±0.01 14.0 

Al 0.004±0.000 6.52±0.21 0.1 0.050±.001 21±0.04 0.2 

Trace elements (mg/kg) 

As 57.74±0.51 67±5 86.2 26.23±0.19 25.7±0.7 102.1 

Ba 223.16±2.01 290±40 77.0 381.22±6.16 788±7.7 48.4 

Cd 0.56±0.01 0.9 62.8 0.18±0.01 0.4±0.02 45.4 

Co 10.08±0.06 12±1.5 84.0 18.97±.30 22.7±0.3 83.6 

Cr 27.54±0.40 30±3 91.8 45.25±0.78 109±1 41.5 

Cu 62.15±0.69 66±9 94.2 28.10±1.40 31±0.6 90.7 

Mn 228.50±1.53 267±34 85.6 1072.30±5.16 1162±7.7 92.3 

Mo 31.60±0.29 35±0.9 90.3 2.48±0.45 2.4±0.07 103.5 

Ni 30.46±0.20 29 105.0 75.67±1.20 82.8±0.8 91.4 

Pb 41.28±1.37 38±4 108.6 27.24±0.66 35±0.3 77.8 

Sb 2.27±0.05 3.4±.5 66.6 0.499±0.005 1.01±0.03 49.4 

Se 3.52±0.19 3.5 100.5 1.71±0.34 NA NA 

U 3.88±0.09 5.4±0.4 71.9 2.22±0.03 5.76±0.11 38.6 

V 104.58±0.59 130±6 80.4 81.17±1.24 220±1.4 36.9 

Zn 125.42±1.94 74±9 169.5 234.03±6.22 186±1.7 125.8 
a
 Values from the strong acid digestion described in this study. 

b
 Values from USGS Certificates of Analysis determined by cooperating laboratories using a variety of analytical 

methods. 
c
 Extractable (%) = Experiment / Standard 
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Table S3.2 Reactions and parameters used in chemical equilibrium modeling 

Reaction Log K Reference 

Mineral dissolution 

Calcite: CaCO3(s) ⇄ Ca
2+

 + CO3
2- -8.48 

(Nordstrom et al., 1990) 
Barite: BaSO4(s) ⇄ Ba

2+
 + SO4

2- -9.97 

Carbonate protonation 

CO2(aq) + H2O ⇄ H
+
 + HCO3

- -6.35 
(Plummer and Busenberg, 1982) 

HCO3
-
 ⇄ H

+
 + CO3

2-
 -10.33 

CO2 exchange 

CO2(g) ⇄ CO2(aq) -1.47 (Plummer and Busenberg, 1982) 

 

Equations Used 

Davies equation for activity coefficient corrections (for water at 25°C): 

log 𝛾𝐷𝑎𝑣𝑖𝑠 =  −0.51𝑧2(
𝐼1/2

1 + 𝐼1/2
− 0.2𝐼) 

For species I, {i} = γDavis, i [i]  

Equilibrium reactions: 

H2CO3
*
 ⇄ H2O + CO2(g)      KH,CO2 = pCO2/[H2CO3

*
]    (for open system only)           (S3.1) 

H2CO3
*
 ⇄ H

+
 + HCO3

-
        

}{

}}{{
*

32

3

,1 2 COH

HCOH
K COa



  → 
}{

}{
}{

*

32,1

3

2



 
H

COHK
HCO

COa               (S3.2) 

HCO3
-
 ⇄ H

+
 + CO3

2-
           

}{

}}{{

3

2

3

,2 2 




HCO

COH
K COa

 →   
2

*

32,2,12

3
}{

}{
}{ 22



 
H

COHKK
CO

COaCOa       (S3.3) 

CaCO3(s) ⇄ Ca
2+

 + CO3
2-

    𝐾𝑠𝑝,𝐶𝑎𝐶𝑂3
= {𝐶𝑎2+}{𝐶𝑂3

2−} (in presence of calcite only)(S3.4) 

Charge balance equation: 

[H
+
] + 2[Ca

2+
] = [OH

-
] + [HCO3

-
] + 2[CO3

2-
] + [Cl

-
] 

Mole balance equation: 

for an open system, [TOTCa]dissolved = [Ca
2+

] 

for a closed system, [TOTCa]dissolved = [Ca
2+

] = TOTCO3 = [HCO3
-
] + [CO3

2-
] + [H2CO3

*
] 
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Figure S3.1 Image of samples from the Eagle Ford Formation 

 

 

 

Figure S3.2 Element mobilization with time for Experiment 1 (target pH 4 and final pH 7.05). The 

concentrations of most elements (Ca, Mg, Ba, Fe, U) stabilized within 96 hours. Data points are presented 

as the average of the duplicates. The trend with time for other experiment conditions was similar to this 

one. 
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Figure S3.3 Relationship between the final pH and the target pH after 96 hours in Experiments 1-7. 

Manual adjustment of pH was achieved by monitoring pH and periodically adding 0.1 M HCl or NaOH. 

Shale loadings were 1 g/L for all batch reactors. Data are shown for duplicates. 

 

 

 

Figure S3.4 Illustration of setup for performing experiments at anoxic conditions 
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Figure S3.5 Powder X-ray diffraction (XRD) patterns of samples.  The reference patterns of seven 

minerals from the International Centre for Diffraction Data database are shown for comparison. 

5 10 15 20 25 30 35 40 45 50 55 60 65 70

R
e
la

ti
v
e

 I
n

te
n

s
it

y
 

2θ 

Sample 1 

Sample 2 

Calcite 00-005-0586 

Dolomite 00-011-0078 

Ankerite 00-033-0282 

Quartz 00-033-1161 

Kaolinite 04-013-3074 

Albite 00-009-0466 

Pyrite 00-042-1340 



81 

 

 

Figure S3.6 pH drift during manual adjustment.  The red dotted line is the calculated calcite dissolution 

equilibrium in an open system (pCO2 = 10
-3.46

 atm) without addition of acid or base. The pH of the 

suspension tended to return to pH 8.3 (marked by dashed line) that corresponds to the equilibrium pH of 

calcite dissolution in a closed system. This indicates that calcite dissolution dominates Ca mobilization 

and the solution pH.  

 

 

Figure S3.7 Titration of 50 mL of 1 g/L sample suspension (from Core 1) using 1M HNO3. Ultimately, 

the solid consumed 8.2 mmol HNO3 per gram of solid. 
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Figure S3.8 Ca dissolution trajectory with pH evolution. “S” indicates the starting point and “E” indicates 

the end point of reaction. 

 

 

Figure S3.9 BaSO4 ion activity products (IAP) in experiments compared with the solubility product. 

Markers are IAP in different experiments, calculated as the product of Ba
2+

 activity and SO4
2-

 activity. 

The ionic strengths of the aqueous phase were low enough that the activities could be approximated by 

concentrations. The dashed line is the logarithm of solubility product of BaSO4 (from Table S3.2). 

Considering the uncertainty of the reported Ksp,BaSO4 value, the proximity between the data points and the 

predicted BaSO4 solubility equilibrium (within one order of magnitude) indicate that BaSO4 solubility 

could control the Ba mobilization.  
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Figure S3.10 Element (sulfate) mobilization at 1 and 10 g/L solid:water ratio in atmospheric and anoxic 

conditions. Samples taken after 120 hours of reaction.  
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Figure S3.11 Electrical conductivity of suspensions at 120 hours in Experiments 8-15. Data are shown as 

the averages between the duplicates with error bars being the standard deviations. Some duplicates had 

the same measurements that resulted in zero standard deviations.  

 

Table S3.3 Measured electrical conductivity compared with calculated conductivity based on aqueous 

phase composition 

solid:water 

ratio (g/L) 

[Ca
2+

] [Mg
2+

] [SO4
2-

] [Cl
-
] [HCO3

-
] TDS

a
 IS

b
 

calculated 

EC
c
 

measured 

EC 

(mg/L) (mM) (µS/cm) 

1 28.34 0.90 3.35 7.49 73.88 114.0 2.27 151 155 

2 26.64 0.97 4.50 6.17 69.86 108.1 2.17 143 160 

10 30.47 1.84 12.94 6.68 74.36 126.3 2.65 174 190 
a
 TDS was calculated assuming the cations and anions listed were the only species. [HCO3

-
] was the dominant 

carbonate species in the relevant pH range and was calculated by charge balance; concentrations of all the other ions 

were known from analyses.  

b
 IS (ionic strength) = 0.5Σcizi

2
 where ci is the concentration of species i in mole per liter, and zi is the charge on 

species i.  

c
 Conductivity factors for ions(Tchobanoglous and Schroeder, 1985) were implemented in the calculation. 
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Chapter 4: Element Mobilization from 

Bakken Shales as a Function of Water 

Chemistry 
 

Results of this chapter have been submitted to Environmental Science and Technology for 

review. 

 

Graphic Abstract 
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Abstract 

The use of hydraulic fracturing for shale gas and oil extraction may significantly impact 

water quality. The wastewater that returns to the surface after injection of a hydraulic fracturing 

fluid contains elements, including regulated metals and metalloids, mobilized by interactions 

between the fracturing fluid and the formation. The rate and extent of mobilization depends on 

the geochemistry of the formation and the chemical characteristics of the fracturing fluid. 

Laboratory experiments investigated the influence of water chemistry on element mobilization 

from core samples taken from the Bakken Formation, one of the most productive shale oil plays 

in the US. Fluid properties were varied with regard to pH, oxidant level, solid:water ratio, 

temperature, and chemical additives. The release of elements from the Bakken samples strongly 

depended on solution pH and redox condition and to a lesser extent on the temperature and 

solid:water ratio. The presence of oxygen and addition of H2O2 or (NH4)2S2O8 led to pyrite 

oxidation and resulted in an elevated amount of sulfate. The low abundance of carbonate 

minerals relative to pyrite would lead to lowering of the system pH in the presence of oxidants 

and to enhanced mobility of many elements.    
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4.1 Introduction 

The use of horizontal drilling in conjunction with the development and expansion of 

hydraulic fracturing technologies has significantly increased the extraction of natural gas and oil 

from low-permeability geological formations, and in particular, shale formations (Kuuskraa et 

al., 2011). Based on these advances, the US Enegry Information Administration (EIA) estimates 

for total technically recoverable wet natural gas and crude oil resources in the US were increased 

by 38% and 35% respectively in 2013 (U.S. EIA, 2013). As one of the most productive play in 

the US, the Bakken formation and Three Forks formation, which underlies the Bakken 

formation, in the Williston Basin of Montana, North Dakota and South Dakota are estimated to 

have mean undiscovered volumes of 7.4 billion barrels of oil, 6.7 trillion cubic feet of 

associated/dissolved natural gas, and 0.53 billion barrels of natural gas (USGS, 2013). The depth 

of the Bakken formation ranges from 4500-12000 ft (1.4-3.6 km) (Tverberg, 2008;  U.S. EIA, 

2011), consisting of organic-rich upper and lower shale layers (maximum thicknesses of 56 and 

58 ft respectively) as the hydrocarbon source rock with a middle layer (maximum thickness of 90 

ft) as a hydrocarbon reservoir (Kuhn et al., 2010;  USGS, 2013). The Bakken formation is 

characterized by high heat flow with a thermal gradient of 1.8-2.0 °F/100 ft (31.5-35.0 °C/km) 

(Olesen, 2010), leading to a temperature between 90 and 100 °C at the depth of samples used in 

this study.  

Hydraulic fracturing is a subsurface hydrocarbon recovery technology whereby a mixture 

of water, proppant, and chemical additives is pumped into the well bore under pressure to create 

and propagate fractures in the surrounding formation (Ely, 1985). The proppant (for example, 

fine sand) is added to hold resulting pores and channels effectively open in the formation thus 

allowing for subsequent gas extraction.  A fracturing job can require 0.5-5 million gallons (7570-
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18930 m
3
) of water and for the Bakken formation, 0.5 to 3 million gallons (1890-11360 m

3
) are 

typically used per well (Hagemeier and Hutt, 2009;  Stephen et al., 2010;  Gregory et al., 2011;  

Scanlon et al., 2014). After the fracturing process, some of the injected fracturing fluid returns to 

the surface (referred to as flowback) in addition to formation waters (referred to as produced 

water). For wells in the Bakken Formation, 17-47% of the water used in hydraulic fracturing is 

typically recovered as flowback (Stephen et al., 2010). Flowback contains not only the original 

additives and natural fluids within the formation (Vengosh et al., 2014) but also elements 

mobilized from the formation. These can include a number of heavy metals, metalloids, organic 

matter and hydrocarbons (Gregory et al., 2011). While approximately 750 chemicals are listed as 

additives for hydraulic fracturing in a reported submitted to the congress (Waxman et al., 2011), 

most fluids contain less than 20 total additives (U.S. EPA, 2004). Additives usually comprise 

0.5-3 wt % of the fluid and include surfactants, scale inhibitors, co-solvents and acids (King, 

2012), with each additive serving an engineering purpose. The composition of hydraulic 

fracturing fluids is typically designed for specific formations and is often varied depending on 

the stage of well development.  

Flowback and produced waters can contain total dissolved solids (TDS) several times 

higher than those of seawater (Haluszczak et al., 2013). For example, produced waters from the 

Bakken Formation, the subject of this study, have been reported with TDS ranging from 72,999 

to 377,261 mg/L (Blondes et al., 2014). The most common management options for flowback 

and produced waters are reuse (requiring little treatment), recycle (with more involved treatment) 

and disposal via deep well injection (Nicot et al., 2014). Disposal approaches vary by play, 

depending on the quantity and quality of the wastewater, as well as the availability of treatment 

and disposal facilities (Benko and Drewes, 2008). The Bakken formation waste streams are 
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typically managed via deep-well injection (Stephen et al., 2010;  Nicot et al., 2014). Despite 

some recent report of regulated trace elements detected in flowback and produced waters (Hayes, 

2009;  Chapman et al., 2012;  Haluszczak et al., 2013;  Kondash et al., 2013), information 

quantifying elements mobilized from shale formations during hydraulic fracturing and the 

specific factors controlling such mobilization is limited. 

Mobilization of elements, via fluid interaction(s), can occur through a variety of 

pathways that depend on the formation composition and (fracturing) fluid chemistry. Strong 

acids (e.g., HCl) are usually the single largest liquid additive in a typical fracturing fluid, and are 

used to dissolve acid-soluble minerals (e.g., carbonates) thus helping to initiate fractures 

(Gregory et al., 2011). Metals originally attached to host minerals can desorb due to changes in 

pH and through the introduction of complexing agents. For example, citric acid, which is used to 

prevent precipitation of metal oxides (Arthur et al., 2008;  Gregory et al., 2011), can form strong 

complexes with several regulated metals (e.g. Cr, Pb, U, Cu) (Hamm et al., 1958;  Field et al., 

1974;  Kourgiantakis et al., 2000;  Pasilis and Pemberton, 2003) thus increasing their effective 

mobility. In addition, oxygen and other oxidative additives (e.g. ammonium persulfate which is 

used as a gel breaker (Montgomery, 2013)) in fracturing fluids may drive significant redox 

sensitive geochemical reactions resulting in mobilization of trace elements such as U and Cr that 

are more soluble in their oxidized forms (Rai et al., 1989;  Wu et al., 2007).  

The objective of this study was to examine element mobilization during rock-water 

interactions as a function of aqueous chemistry with core samples from a productive formation 

that is currently being (primarily) hydraulically fractured. This study used samples from the 

Bakken formation, a productive natural shale oil play, and investigated the effect of solution pH, 

oxidant level, solid:water ratio, temperature and selected chemical additives as water chemistry 
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variables. Experiments sought to advance the understanding of key factors controlling the release 

of elements from organic-rich shales. Such information is critical for understanding and even 

controlling flowback and produced water composition(s) for Bakken and similar formations, and 

for effectively managing resulting wastewater streams.  

 

4.2 Materials and Methods  

4.2.1 Materials  

All chemicals were used as received without further treatment.  Solutions were prepared 

with ultrapure water (resistivity > 18.2 MΩ•cm).  Glass volumetric flasks, beakers and bottles 

were acid-cleaned and rinsed several times with deionized water and ultrapure water prior to use.  

For pH adjustments, 0.1 M nitric acid (HNO3) and 0.1 M sodium hydroxide (NaOH) were 

prepared from trace-metal grade concentrated HNO3 and ACS-grade NaOH from Fisher 

Scientific. For experiments at high oxidant loadings, hydrogen peroxide (H2O2, 30 wt % 

solution, Sigma Aldrich) was used. For experiments with chemical additives, hydrochloric acid 

(HCl, trace-metal grade), citric acid monohydrate (ACS grade) and ammonium persulfate 

[(NH4)2S2O8, ACS grade] were from Fisher Scientific.  

Bakken shale samples were taken from a rock core that was from a well in Burke County, 

ND and is preserved in the USGS Core Research Center (Denver, CO). Two samples (Figure 

S4.1) from the same rock core but different depths [Sample 1 from 7454 ft (2272 m) and Sample 

2 from 7407 ft (2258 m)] were used in the experiments. Upon arrival in the laboratory, samples 

were ground to powders with an agate mortar and pestle, sieved to a size fraction of 53 – 106 µm 

and stored in a vacuum desiccator. 
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4.2.2 Solid Characterization  

X-ray diffraction (XRD) with Cu Kα radiation (Bruker d8 Advance X-ray diffractometer) 

provided information on the mineralogy of the samples. Approximately 250 mg of sample were 

placed in an aluminum sample holder, with preferred orientation minimized by excessive sample 

agitation. The quantitative analysis of multiphase mixtures was conducted using the Bruker 

Topas program by means of Rietveld analysis of the entire diffraction pattern (2θ ranged from 5° 

to 70°). The lower detection limit of the Rietveld analysis is approximately 1 wt% (Madsen et 

al., 2001), which was sufficient to capture the pyrite phase in the samples. Strong acid digestion 

(procedure in Supporting Information) followed by inductively coupled plasma mass 

spectrometry (ICP-MS, Agilent 7500ce) was performed for elemental composition analysis. 

Extraction results of two USGS reference shale materials, by the same procedure, are listed in 

Table S4.1. For most elements discussed in this work (Ca, Mg, Fe, As), the extractable portions 

were above 80%. The specific surface area of the powdered samples was measured by BET-N2 

adsorption (Brunauer et al., 1938) (NOVA 2000e, Quantachrome Instruments). Total carbon 

(TC) and total inorganic carbon (TIC) of the solids were measured with a total organic carbon 

analyzer (TOC-LCPH with SSM-5000A, Shimadzu Corp.). 

4.2.3 Batch Experiments  

The mobilization of metals from both samples was studied in a series of batch 

experiments that explored the effect of pH, redox condition, solid:water ratio, temperature and 

chemical additives (Table 4.1).  All experiments were performed in duplicate. Reactions were 

initiated by the addition of sample into 150 mL ultrapure water to achieve a target solid:water 

ratio, which was 1 g/L in all experiments except for Experiment 8 with an elevated solid:water 

ratio. Suspensions were continuously mixed by magnetically stirring at 600 rpm.  All batch 
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reactors except for those probing anoxic conditions and at elevated temperatures were open to 

the atmosphere. A reaction time of 120 hours was used, which was found sufficient for most 

elements to reach stable concentrations in preliminary experiments. Aliquots (15 mL) of 

suspension were sampled at 1, 4, 24, 48 and 120 hours and filtered through 0.22 µm 

polyethersulfone (PES) membranes for aqueous phase analyses. The suspension pH was 

monitored throughout the course of experiments using a benchtop pH meter (Fisher Scientific 

Accumet XL15). 

For investigation of pH, oxidants [H2O2 and (NH4)2S2O8], and chelating agent (citrate) 

(Experiments 1, 2, 4, 11, 12), the pH was controlled by an autotitrator (902 Titrando, Metrohm 

USA Inc.). Either 0.1 M HNO3 or 0.1 M NaOH was intermittently added to the suspensions to 

control the pH at target values of 4 (±0.02) or 8 (±0.05). In investigating the effect of oxidizing 

conditions (Experiment 4), H2O2 was selected as a model oxidant. The concentration of H2O2 (3 

wt %) was selected to be in great excess of the oxidant demand exerted by organic carbon and 

pyrite in the samples, thus driving the maximum extent of oxidation for those species that can be 

oxidized by H2O2. A portion of 15 mL 30% H2O2 solution was diluted to a total volume of 150 

mL with ultrapure water to obtain 3% H2O2 concentration prior to the addition of sample 

powders. In Experiment 8, an elevated solid loading of 10 g/L was used to investigate the effect 

of solid:water ratio on element release to solution. For experiments that examined chemical 

additives (Experiments 10-12), the concentrations of HCl, citrate, and (NH4)2S2O8 were selected 

based on the actual concentrations of these chemicals used in wells that are hydraulically 

fractured in Burke County, ND. The chemical usage information, declared voluntarily be well 

operators, was accessed from the FracFocus website.  These three additives were selected 



93 

 

because their presence would alter the solution properties (e.g. pH and redox condition) and 

possibly drive chemical changes.  

Experiment 3 at anoxic conditions followed the procedure outlined in the authors’ 

previous work with Eagle Ford formation samples (Wang et al., 2014), and the illustration for the 

experimental setup is in Figure S4.2. Experiments 6 and 7 at elevated temperatures were 

performed with a circulating heated bath (Isotemp 3016H, Fisher Scientific). The circulating 

fluid was either water for temperature control at 50 °C (Experiment 6) or antifreeze for 

temperature control at 80 °C (Experiment 7). Pyrex bottles with Teflon tape and autoclavable 

polypropylene seal caps had a headspace of about 150 mL.  

4.2.4 Analytical Methods  

A portion of the filtrate was acidified to contain 2% HNO3 and analyzed for 

concentrations of dissolved metals (Ca, Mg, Fe, Ba, U, Pb, Cr, etc.) and metalloids (As) by ICP-

MS. Another portion of the filtrate was refrigerated at 4 °C for sulfate analysis by ion 

chromatography (Dionex ICS-1600, Thermo Scientific) and non-purgeable organic carbon 

(NPOC) measurements (TOC-LCPH, Shimadzu Corp.). Inductively couple plasma optical 

emission spectrometry (ICP-OES, PerkinElmer Optima 7300DV) was used for As and Cr 

analysis in Experiment 13 to eliminate polyatomic interferences observed on ICP-MS. Detection 

limits for these analytical methods are compiled in Table S4.2.  



94 

 

Table 4.1 Conditions and variables explored in the experiments performed 

Exp. 

No. 
Target pH 

Final pH 
a 

Redox 

condition 
b 

Solid:water 

ratio (g/L) 

Temperature 

(°C) 

Salt 

(g/L) 

Chemical 

additives 
Sample 

1 

Sample 

2 

1 4 4.0 4.0 
Atmospheric 

1 
22 

- - 

2 8 8.0 8.0 1 - - 

3 Unadjusted 7.8 7.9 Anoxic 1 

22 

- - 

4 8 8.0 8.0 Oxidative  1 - 3% H2O2 

5 Unadjusted 7.8 8.2 Atmospheric 1 - - 

6 
Unadjusted 

7.7 8.9 
Atmospheric 

1 50 - - 

7 5.8 8.4 1 80 - - 

8 Unadjusted 7.7 8.4 Atmospheric 10 22 - - 

9 Unadjusted 7.9 8.1 Atmospheric 1 22 10 - 

10 Unadjusted 1.5 1.5 Atmospheric 1 

22 

- 66 mM HCl 

11 4 4.0 4.0 Atmospheric 1 - 1.0 mM citrate 

12 8 8.0 8.0 Oxidizing  1 - 
2.9 mM 

(NH4)2S2O8 

13 Unadjusted 1.5 1.5 Oxidative 1 80 - 

66 mM HCl, 1.0 

mM citrate and 

2.9 mM 

(NH4)2S2O8 

a
 Expressed as the average between the duplicates; the differences between the duplicates for all experiments were below 0.2 pH unit. In Experiments 1, 2, 4, 11, 

12, pH was controlled by an autotitrator.  

b 
“Atmospheric” means that the solutions were exposed to the reactor headspace in Experiments 6,7 and 11 or the reactor was open to the atmosphere in the other 

experiments. Oxygen was the primary oxidant in this condition. “Oxidative” indicates the addition of an oxidant (3% H2O2 in Experiment 4 and 2.9 mM 

(NH4)2S2O8 in Experiments 12 and 13)  
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Table 4.2 Physical and chemical properties of core samples compared with reported values of Bakken sample properties 

 Sample 1 Sample 2 Lower Bakken 
d
 

Middle 

Bakken 
d
 

Upper Bakken 
d
 

Major Element 
a
 (in percentage)    

Calcium 1.70±0.03 4.01±0.12 2.21±3.79 8.39±4.45 3.94±4.49 

Magnesium 1.00±0.01 2.34±0.04 1.25±0.52 2.92±1.46 1.62±1.03 

Iron 3.40±0.04 0.91±0.02 2.22±1.33        1.19±0.65 2.08±0.81 

Silicon NA NA 25.12±4.78 26.24±6.28 21.68±4.93 

Aluminum  0.01±0.00 0.01±0.00 6.87±1.96 3.34±1.43 5.79±1.68 

Potassium  0.46±0.00 0.47±0.02 4.17±1.19 2.37±1.00 3.94±1.11 

Sodium  0.09±0.00 0.20±0.00 0.44±0.22 0.39±0.26 0.36±0.16 

Manganese  0.01±0.00 0.02±0.00 0.03±0.09 0.05±0.02 0.02±0.02 

Trace element 
a
 (in mg/kg)    

Vanadium 334.1±4.4 19.7±0.7 5299.91±7619.12 433.47±1629.01 4402.41±7286.56 

Zinc 90.6±2.2 93.0±1.3 859.54±3735.05 59.04±154.58 1223.29±3143.97 

Nickel 781.0±5.4 35.0±0.4 286.57±216.50 33.04±28.23 343.53±209.56 

Barium 
b
 16.3±0.0 14.1±0.4 308.37±529.77 252.72±519.39 495.65±1431.62 

Molybdenum 528.0±10.6 6.2±5.5 NA NA NA 

Copper 113.0±1.0 43.2±0.9 71.71±93.00 11.39±8.49 98.69±125.74 

Arsenic 109.4±1.0 11.5±0.2 NA NA NA 

Chromium 25.5±0.8 16.9±0.6 460.02±477.94 206.10±277.02 355.31±448.77 

Lead 66.7±1.2 13.1±0.7 29.15±25.25 14.29±17.17 42.53±46.41 

Uranium 67.8±1.1 0.3±0.0 62.91±117.69 5.20±5.28 42.71±41.19 

Physichemical properties    

Specific surface area (m
2
/g) 2.17 11.55    

Total carbon 
a
 (mg/g) 195.9±2.1 27.9±0.5    

Inorganic carbon 
a
 (mg/g) 8.2±0.2 20.9±0.6    

Total organic carbon 
c
 (mg/g) 187.7±2.1 7.0±0.8    

a
 Expressed as average ± standard deviation of triplicate analyses 

b
 Barium recovery from the solid during solid digestion was incomplete, so these values do not represent the total Ba content of the samples. 

c
 Determined as the difference between the total carbon and inorganic carbon.

 

d
 Data from Karma and Parslow, 1989 and expressed as average ± standard deviation of hundreds of samples for geochemical analysis.  
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4.3 Results and Discussion 

4.3.1 Sample Composition 

Based on XRD measurements (Figure 4.1 and Table S4.3), both samples were rich in 

quartz, dolomite, clay minerals (illite) and K-feldspar (microcline) with a minor amount of 

pyrite, which is consistent with the reported mineralogy of the Bakken Formation (Mba and 

Prasad, 2010;  Sarg, 2012). The ratio of dolomite to pyrite is much higher in Sample 2 (25.2) 

than Sample 1 (1.5) resulting in the significantly different acid neutralizing capacities of the two 

samples (for the case of pyrite oxidation). Solid digestion results (Table 4.2) are consistent with 

XRD observations. The Mg/Ca mass ratio is 0.588 in Sample 1 and 0.584 in Sample 2, which are 

very close to the theoretical value of 0.606 in dolomite. For these samples, the amount of Fe 

corresponds to the presence of pyrite. The organic-rich Sample 1 contains higher amounts of 

regulated trace elements (As, Cu, Cr, Pb, U) than organic-poor Sample 2.  

Sample 1 and Sample 2 had distinct physical and chemical properties (Table 4.2). 

Although ground and sieved to the same particle size fraction (53 – 106 µm), the specific surface 

areas of the two samples differed (2.17 m
2
/g for Sample 1 and 11.55 m

2
/g for Sample 2). TIC 

(8.2 mg/g for Sample 1 and 20.9 mg/g for Sample 2) as carbonate was correlated with the 

amount of dolomite. The total organic carbon (TOC), determined as the difference between TC 

and TIC, was 187.7 mg/g (18.77%) for Sample 1 and 7.0 mg/g (0.70%) for Sample 2. Overall, 

the abundance of some redox-sensitive trace elements (Cu, Mo, Ni, U, V) and TOC in Sample 1 

is consistent with the enrichment of these elements in the organic-rich lower Bakken shales, 

whereas lower contents of these in Sample 2 corresponds to the composition of the middle 

Bakken layer (Nandy et al., 2014).  
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The following discussion on mobilization results focuses on the aqueous concentrations 

of selected metals and metalloids either because they are major elements (Ca, Mg, Fe, Mn) that 

affect the fate of other elements and influence the total dissolved solids of the water or because 

they are regulated trace elements (Ba, As, Cr, U) (U.S. HHS, 2003;  U.S. EPA, 2010). The 

mobilization results for all analyzed elements (concentrations and percentages) that were above 

detection limits are compiled in Tables S4.4 and S4.5. 

 

Figure 4.1 Powder X-ray diffraction (XRD) patterns of samples. The reference patterns of five minerals 

from the International Centre for Diffraction Data database are shown for comparison. 
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4.3.2 Effects of Solution pH and Citrate 

 The pH of the sample suspension significantly affected the mobilization of many metals. 

In general, higher concentrations of elements (Ca, Mg, Fe, Mn, As) were observed at lower pH 

(Figure 4.2). In Experiment 10, which investigated the effect of acid (HCl) as a chemical 

additive, pH was decreased to 1.5 and all Ca and most Mg (84.2% in Sample 1 and 91.3% in 

Sample 2) were observed to dissolve. At pH 4, while all Ca and Mg available in Sample 2 was 

dissolved, only 82.1% Ca and 73.5% Mg from Sample 1 were mobilized. Mg and Ca 

concentrations were strongly correlated due to their common dolomite source, and in general, 

their mobilization agreed with previous observations of dolomite dissolution increasing with 

decreased pH (Pokrovsky et al., 1999). The Mg/Ca ratio in the aqueous phase were almost 

always below that of stoichiometric dolomite dissolution (Figure S4.3) which is likely due to the 

preferential release of Ca from dolomite due to the lower hydration energy of Ca relative to Mg 

as observed in other studies (Busenberg and Plummer, 1982;  Pokrovsky and Schott, 2001). For 

both samples, Fe and Mn concentrations were much higher at lower pH values, consistent with 

the solubility of iron oxides and manganese oxides in atmospheric conditions. Arsenic (As) 

concentrations tracked Fe concentrations for Sample 1, reaching 44 µg/L at pH 1.5. The 

concentrations of both Cr and U remained below 10 µg/L throughout these experiments.  

The addition of 1 mM citrate increased the extent of Fe and As mobilization from Sample 

1 (Figure 4.2a). According to solubility calculations, citrate is expected to significantly increase 

total dissolved Fe if Fe(III) is the primary oxidation state (Figure S4.4). While Fe concentrations 

with citrate were twice as much as those without, the degree of this increase was well below the 

equilibrium solubility prediction (Figure S4.4), which is likely due to the kinetic limitations of 

oxidative pyrite dissolution, as indicated by the similar sulfate concentrations (Table S4.4) at pH 
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4 with and without citrate. Consistent with Fe mobilization, As release from Sample 1 was also 

higher in the presence of citrate. Throughout all the experiments, As concentrations were 

observed to correlate with Fe concentrations (Figure S4.5), most likely due to their common 

source being sulfide minerals. Citrate also promoted dolomite dissolution, which could be 

explained by dolomite surface coordination theory (Pokrovsky and Schott, 2001). The adsorption 

of citrate results in a net negative charge to the surface coordination sphere, polarizing the Ca-O 

and Mg-O bonds and facilitating the detachment of Ca and Mg from the mineral surface 

(Pokrovsky and Schott, 2001).  
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Figure 4.2 Final metal concentrations after 120 hours of reaction with (a) Sample 1 and (b) Sample 2 at pH 1.5 (Experiment 10), pH 4 and 8 

(Experiments 1 and 2) and pH 4 with citrate (Experiment 11). Experiments were performed at room temperature (22℃) with 1 g/L shale loading. 

Data are shown as the average of the duplicates with the error bars being the standard deviations. In Experiment 10, pH stabilized at 1.5 upon HCl 

addition at the beginning of the reaction to achieve a total HCl concentration of 66 mM. In the other experiments, an autotitrator was used to 

control the suspension pH at 4.00±0.02 or 8.00±0.05. 

a b 
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Figure 4.3 Metal, sulfate and NPOC mobilization after 120 hours of reaction with (a) Sample 1 and (b) Sample 2 under anoxic (Experiment 3), 

atmospheric (Experiment 5) and oxidative conditions (Experiments 4 and 12). Experiments were performed at room temperature (22℃) with 1 g/L 

shale loadings. Data are shown as the average of the duplicates with error bars being the standard deviations. The atmospheric and oxidative 

condition experiments were open to the laboratory atmosphere, and the anoxic experiments had headspaces with 400 ppm CO2. For anoxic and 

atmospheric conditions, pH stabilized at 8.0±0.2 without adjustment. For oxidative conditions (with H2O2 or persulfate), an autotitrator was used 

to control the suspension pH at 8.00±0.05.  

  

a b 



102 

 

4.3.3 Oxidant Level Effect 

For anoxic experiments, thorough pH monitoring indicated that the use of N2/CO2 gas 

sparging through the headspace (Figure S4.2) allowed for TIC and pH levels comparable to those 

under atmospheric conditions. With a stable pH (8.0±0.2) for all redox conditions evaluated, Ca 

and Mg concentrations were similar with or without oxygen/H2O2 as dolomite dissolution is 

relatively independent of redox conditions (Figure 4.3). Fe concentrations remained low (below 

0.5 mg/L) in these experiments either because of slow pyrite dissolution in anoxic conditions or 

because of rapid Fe(II) oxidation by oxygen, H2O2, or (NH4)2S2O8 followed by Fe(OH)3 

precipitation at pH 8 (Crittenden et al., 2012).  

Compared with anoxic experiments, the elevated sulfate concentrations for open systems 

(atmospheric) and with H2O2 or (NH4)2S2O8 suggest that pyrite was oxidized when there were 

strong oxidants present (Figure 4.3). Anoxic conditions strongly inhibited sulfate release with 2.5 

mg/L sulfate released from Sample 1 and 0.5 mg/L from Sample 2. Under atmospheric 

conditions (open), sulfate mobilization increased to 6.0 mg/L (Sample 1) and 1.4 mg/L (Sample 

2). With the addition of 3% H2O2, sulfate generation further increased to 88.8 mg/L (Sample 1) 

and 11.9 mg/L (Sample 2). As the H2O2 concentration was in significant excess of the calculated 

theoretical oxidant demand from the observed TOC and pyrite concentrations, these sulfate 

concentrations represent a maximum that could be produced for these conditions at pH 8 within 

120 hours.   

The acidity generated from complete pyrite oxidation by oxygen and H2O2 as shown in 

Reactions (4.1) and (4.2) would be significant if there were no other minerals (e.g., carbonates) 

providing buffering capacity (Chermak and Schreiber, 2013). The mole ratio of dolomite to 

pyrite that represents complete neutralization is 2:1 according to Reactions (4.3) and (4.4). The 
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Bakken samples used in this study had dolomite to pyrite mole ratios of 0.7 (Sample 1) and 6.2 

(Sample 2). Consequently, while Sample 2 suspension(s) could effectively stabilize pH of the 

system, Sample 1 could not upon pyrite oxidation by abundant (strong) oxidants. A control 

experiment with 3% H2O2 and no pH adjustment confirmed the above predictions: for Sample 2 

the system pH stayed steadily around 7.9 whereas for Sample 1 suspension it rapidly dropped 

below 4 within the first few hours of reaction and stabilized at 3.3. The mobilization results for 

Sample 1 with and without the autotitrator were consistent with pH effect observations. Ca and 

Mg completely dissolved at pH 3.3 without (auto)titration, with Fe and Mn concentrations 

observed to be significantly higher at pH 3.3 than at pH 8.0 (Figure S4.6). 

FeS2 + 15/4 O2 + 7/2 H2O → Fe(OH)3(s) + 2SO4
2-

 + 4 H
+
     (4.1) 

FeS2 + 15/2 H2O2 → Fe(OH)3(s) + 2SO4
2-

 + 4 H
+
 + 4 H2O    (4.2) 

FeS2 + 2 CaMg(CO3)2 + 15/4 O2 + 7/2 H2O → Fe(OH)3(s) + 2SO4
2-

 + 2 Ca
2+

 + 2 Mg
2+

 + 4 HCO3
-
    (4.3) 

FeS2 + 2 CaMg(CO3)2 + 15/2 H2O2 → Fe(OH)3(s) + 2SO4
2-

 + 4 H2O + 2 Ca
2+

 + 2 Mg
2+

 + 4 HCO3
-
    (4.4) 

FeS2 + 15/2 S2O8
2-

 + 8 H2O → Fe
3+

 + 17 SO4
2-

 + 16 H
+
         (4.5) 

The addition of (NH4)2S2O8 also promoted sulfate generation from pyrite oxidation, albeit 

to a lesser extent than did H2O2 (Figure 4.3). Sulfate in the presence of persulfate as shown in 

Figure 4.3 represents the amount of sulfate that originated from the sample rather than that 

contributed by persulfate. These calcluations consisted of 1) sulfate concentrations with only 

oxygen being the oxidant and 2) the difference between the measured sulfate with persulfate and 

that without scaled by a factor of 2/17 according to Reaction (4.5). While the standard redox 

potential is 2.1 V for S2O8
2-

 and 1.8 V for H2O2 (Block et al., 2004), corresponding to numbers 

between 2.20 V and 2.32 V for S2O8
2-

 and 2.15 V for H2O2 under the actual experimental 

conditions (SI), the kinetics of pyrite oxidation with (NH4)2S2O8 may be limited due to the 

considerably lower concentration of S2O8
2-

 (5.8 meq/L) than that of H2O2 (1765 meq/L) used. 
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Additionally, sulfate produced from sulfide mineral oxidation will precipitate as barite when Ba 

is readily available. For example, for Sample 1 with H2O2 with 88.8 mg/L sulfate, a Ba 

concentration as low as 20 µg/L would be enough for the ion activity product {Ba
2+

}{SO4
2-

} to 

reach the barite solubility product (10
-9.97

) (Nordstrom et al., 1990), leading to barite 

precipitation.  

Dissolved As, Cr and U concentrations remained low at all oxidant levels (As up to 4.0 

µg/L, Cr up to 6.0 µg/L and U up to 1.5 µg/L release observed).  This may be due to their 

relatively low (mass) amounts in the original solid sample and potential for (re)sorption 

processes with solid particles in the suspension. Dissolved NPOC mobilized from Sample 1 

increased slightly with H2O2, which is most likely due to decomposition in the presence of 

concentrated strong oxidant. The 12 mg/L NPOC represented only 6% of the TOC available in 

Sample 1, suggesting that the majority of TOC is effectively insoluble.  

4.3.4 Solid:water Ratio Effect 

The solid:water ratio affected the mobilization of different elements to varying degrees 

(Figure 4.4). The elevated sample loading promoted sulfate generation, increasing from 6.0 to 

43.3 mg/L (Sample 1) and 1.4 to 6.7 mg/L (Sample 2) as the solid:water ratio increased from 1 to 

10 g/L. The amount of dolomite in these samples (10 fold increase) was sufficient to neutralize 

the acidity produced from pyrite oxidation, stabilizing the suspension pH at 7.7 and 8.4, 

respectively. Ca and Mg concentrations increased with but not in proportion to the increased 

solid:water ratio, as they are controlled by dolomite dissolution equilibrium. Despite the large 

increase in sulfate generation, dissolved Fe concentrations did not scale with the solid:water 

ratio. At pH 8 Fe(II) will be rapidly oxidized to Fe(III) by oxygen and precipitate as indicated in 

Reaction (1). Ba and As concentrations from both samples, as well as U concentrations from 
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Sample 1 were slightly higher for the higher solid:water ratio, but overall, remained relatively 

low. Mn and Cr concentrations actually decreased for the elevated solid:water ratio as their 

concentrations are limited by Mn and Cr solubility and subject to subsequent adsorption 

reactions. Chloride, originating from sedimentary evaporation processes common for shale 

formation processes, scaled up proportionally to the solid:water ratio (Pettijohn, 1975). While 

Sodium (Na) concentrations were lower than (Sample 1) or comparable to (Sample 2) Ca and 

Mg concentrations at 1 g/L solid loading, they increased significantly at 10 g/L solid loading 

(Table S4.4), indicating that Na contribution to TDS may increase with increasing solid:water 

ratios. 

4.3.5 Temperature Effect 

The elevated temperature had a strong impact on pyrite oxidation rate with sulfate 

concentrations increasing from 6.0 to 59.3 mg/L (Sample 1) and from 1.4 to 6.6 mg/L (Sample 2) 

when temperature was raised from 22 to 80 °C (Figure 4.5). Except for sulfate, the temperature 

had little influence on most other elements. Interestingly, chemical additives at 80 °C 

(Experiment 13) did affect mobilization results to much greater extent that did just increasing the 

temperature. (Figure 4.5). Concentrations of Fe, Mn, As, U and Cr increased due to the low pH 

resulting from HCl. In particular, As and Cr mobilized from Sample 1 were as high as 97% 

(108.0 µg/L) and 70% (18.2 µg/L) of the theoretical maximum. Sulfate concentrations for all 

three chemical additives at 80 °C (Figure 4.5) are the difference between measured sulfate (714.4 

mg/L in Sample 1 and 618.4 mg/L in Sample 2) and sulfate contributed by persulfate (560.1 

mg/L); the persulfate at the concentration selected (2.9 mM) would decompose completely 

within 120 hours at 80 °C (Kolthoff and Miller, 1951). 
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4.3.6 Salt Effect 

The addition of 10 g/L NaCl (0.17 M) increased the concentrations of Ca, Mg and Mn 

(Figure 4.6), but to a much less extent than lowering the pH. This is consistent with conclusions 

from a previous study that the dolomite dissolution rate is relatively independent of the ionic 

strengths between 0.1 and1.0 M (Pokrovsky et al., 2005). Within the experimental uncertainty, 

dissolution of most trace elements was not affected by the elevated salinity (Figure 4.6).  
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Figure 4.4 Metal, NPOC and anion concentrations with different solid:water ratios (Experiments 5 and 8) after 120 hours of reaction with (a) 

Sample 1 and (b) Sample 2. Experiments were performed at room temperature (22℃), without pH adjustment and open to the atmosphere. Data 

are shown as the average of the duplicates with error bars being the standard deviations. 

a b 
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Figure 4.5 Metal, NPOC and sulfate concentrations at different temperatures (Experiments 5-7 and 13) after 120 hours of reaction with (a) Sample 

1 and (b) Sample 2. Experiments were performed without pH adjustment and open to the atmosphere. Data are shown as the average of the 

duplicates with error bars being the standard deviations.  

  

a b 
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Figure 4.6 Metal and NPOC concentrations with and without salt (Experiments 5 and 9) after 120 hours of reaction with (a) Sample 1 and (b) 

Sample 2. Experiments were performed at room temperature (22℃), without pH adjustment and open to the atmosphere. Data are shown as the 

average of the duplicates with error bars being the standard deviations. A concentration of 10 g/L NaCl was used as the salt matrix. 

a b 
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4.4 Environmental Implications 

Quantifying element release under varied hydraulic fracturing conditions, including 

varied water chemistries, will help in evaluating the potential environmental impacts of 

extraction operations and associated wastewater management issues.  For these samples, pH is 

the most influential parameter affecting the mobility of most elements. Consequently, the use of 

strong acids to initiate and propagate fractures may lead to substantial element release. For shale 

formations rich in sulfide minerals, the introduction of oxygen and other oxidants can 

significantly increase the amount of produced sulfate over time. Further, if the formation has 

limited buffering capacity, sulfide mineral oxidation will lower the fluid pH, potentially leading 

to elevated concentrations of some regulated trace elements (such as As and Cr). For formations 

that contain Ba, potential precipitation of BaSO4 upon sulfate generation could result in 

unwanted scale formation.  

The release of elements from shale-fluid interactions will depend on the geochemistry of 

the shale, the constituents of formation water, and the overall composition of the fracking fluids. 

The degree to which the findings from this study can be related to actual flowback at the Bakken 

formation will be a function of the parameters used in actual operations. For example, the shale-

fluid contact times at real hydrofracking sites will be longer than those selected in this study as 

the flowback water return usually occurs for several weeks (Vidic et al., 2013). The observation 

in this study that chloride concentrations scaled up linearly with sample loadings suggests a 

likely high TDS in the actual flowback waters with much higher solid:water ratios.  

 



111 

 

Acknowledgement 

This study was supported by research funding from the McDonnell Academy Global 

Energy and Environmental Partnership.  The authors thank the USGS Core Research Center for 

providing the samples from the Bakken Formation.   

  



112 

 

 

 

Chapter 4. Supporting Information 

 

This supporting information includes 6 figures, 5 tables and text that facilitate the interpretation 

of the results in Chapter 4. 
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Figure S4.1 Images of core samples from Bakken Formation: (left) Sample 1 from 7454 ft (2272 m) and 

(right) Sample 2 from 7407 ft (2258 m) 

 

Strong acid digestion procedure 

Experiments were performed in triplicate.  Three portions of 200 mg sample powders were 

weighed and introduced into digestion tubes, and 8 mL concentrated HNO3 and 2 mL 

concentrated HCl were added.  The resulting suspensions were heated in a digestion block for 4 

hours at 100±0.5 C and cooled overnight.  Ultrapure water was added to the digestate to give a 

total volume of 50 mL. Aliquots of 10 mL supernatant were then taken by syringes and filtered 

through 0.22 µm PES membranes.  Serial dilution was performed for the filtrate before analysis 

by ICP-MS (Agilent 7500ce). By design this acid digestion method will dissolve almost all 

elements except for those bound in silicate structures.  Complete dissolution of silicates would 

have required the use of hydrofluoric acid.  However, based on comparison with extractions of 

reference shale materials, the acid digestion method mobilizes essentially all of the elements of 

interest in this study. If a total digestion is necessary, then EPA Method 3052 that uses 

concentrated nitric acid and hydrofluoric acid should be used. 

The extraction results with this method of two standard reference shale materials from USGS are 

listed in Table S4.1. The certificates of analysis of these two reference materials can be found at 

http://crustal.usgs.gov/geochemical_reference_standards/ 

  

http://crustal.usgs.gov/geochemical_reference_standards/
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Table S4.1 Recovery of standard reference materials from strong acid digestion 

 
SGR-1b SBC-1 

 
Experiment 

a
 Standard 

b
 

Extractable 

(%) 
c
 

Experiment 
a
 Standard 

b
 

Extractable 

(%) 
c
 

Major elements (%) 

Ca 7.63±0.06 8.38±0.17 91.0 2.76±0.03 2.95±0.01 93.6 

Mg 4.36±0.03 4.44±0.2 98.1 1.89±0.03 2.6±0.01 72.6 

Fe 2.87±0.03 3.03±0.14 94.6 7.81±0.10 9.71±0.02 80.4 

Na 0.512±0.004 2.99±0.13 17.1 0.052±0.001 0.15 34.8 

K 0.223±0.003 1.66±0.1 13.4 0.48±0.01 3.45±0.01 14.0 

Al 4.34±0.05 6.52±0.21 66.5 50.12±1.06 21±0.04 238 

Trace elements (mg/kg) 

As 57.74±0.51 67±5 86.2 26.23±0.19 25.7±0.7 102.1 

Ba 223.16±2.01 290±40 77.0 381.22±6.16 788±7.7 48.4 

Cd 0.56±0.01 0.9 62.8 0.18±0.01 0.4±0.02 45.4 

Co 10.08±0.06 12±1.5 84.0 18.97±.30 22.7±0.3 83.6 

Cr 27.54±0.40 30±3 91.8 45.25±0.78 109±1 41.5 

Cu 62.15±0.69 66±9 94.2 28.10±1.40 31±0.6 90.7 

Mn 228.50±1.53 267±34 85.6 1072.30±5.16 1162±7.7 92.3 

Mo 31.60±0.29 35±0.9 90.3 2.48±0.45 2.4±0.07 103.5 

Ni 30.46±0.20 29 105.0 75.67±1.20 82.8±0.8 91.4 

Pb 41.28±1.37 38±4 108.6 27.24±0.66 35±0.3 77.8 

Sb 2.27±0.05 3.4±.5 66.6 0.499±0.005 1.01±0.03 49.4 

Se 3.52±0.19 3.5 100.5 1.71±0.34 NA NA 

U 3.88±0.09 5.4±0.4 71.9 2.22±0.03 5.76±0.11 38.6 

V 104.58±0.59 130±6 80.4 81.17±1.24 220±1.4 36.9 

Zn 125.42±1.94 74±9 169.5 234.03±6.22 186±1.7 125.8 
a
 Values from the strong acid digestion described in this study. 

b
 Values from USGS Certificates of Analysis determined by cooperating laboratories using a variety of analytical 

methods. 
c
 Extractable (%) = Experiment / Standard 
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Figure S4.2 Illustration of experiment setup in anoxic conditions 
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Table S4.2 Detection limits of aqueous analysis 

  detection limit 
a
 unit 

ICP-MS 

  Ca 0.05 mg/L 

Mg 0.01 mg/L 

Fe 0.05 mg/L 

K  0.01 mg/L 

Na 0.04 mg/L 

Al 0.004 mg/L 

Mn 0.15 µg/L 

As 
b
 0.50 µg/L 

Ba 0.05 µg/L 

Cd 0.05 µg/L 

Co 0.07 µg/L 

Cr 
b
 0.20 µg/L 

Cu 1.90 µg/L 

Mo 1.20 µg/L 

Ni 2.50 µg/L 

Pb 0.03 µg/L 

Sb 0.04 µg/L 

Se 0.40 µg/L 

U 0.03 µg/L 

V 0.08 µg/L 

Zn 0.30 µg/L 

ICP-OES   

As 3.0 µg/L 

Cr 1.0 µg/L 

IC 

  chloride 0.1 mg/L 

sulfate 0.2 mg/L 

TOC 

  NPOC 0.1 mg/L 

a
 All detection limits are based on a 98% confidence level (3 standard deviations). 

b
 These are detection limits for samples without high chloride concentrations. ICP-OES was used for Cr and As 

analysis for samples that were interfered by high chloride (2300 mg/L) on ICP-MS.  
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Table S4.3 Quantitative XRD analysis of core samples compared with reported ranges of Bakken sample properties 

Mineral Chemical formula 

Mass fraction 
a
   Reported 

c
 

Sample 1 Sample 2 
  

Upper 

Bakken 

Lower 

Bakken 

quartz SiO2 0.2588 0.3393 

 

0.34 0.51 

dolomite CaMg(CO3)2 0.0955 0.2115 

 

0.09 0.05 

illite (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] 0.1390 0.1136 

 

0.44 
d
 0.34 

d
 

microcline KAlSi3O8 0.4410 0.3217 

 

0.03 
e
 0.04 

e
 

pyrite FeS2 0.0657 0.0184 

 

0.03 0.02 

SUM 1.00 1.00       

Criteria of fit 
b
 

Rwp 19.00 21.36 

   Rp 13.99 16.03 

   GOF 4.18 4.59       
a
 These values were from quantitative XRD analysis by the Bruker Topas program. The sum represents only the crystalline phases of the samples. 

b
 Criteria of fitting used here include: “R-weighted pattern”, Rwp; “R-pattern”, Rp; “Goodness of fit”, GOF. 

c
 Data from Mba and Prasad, 2010. Six samples from Upper Bakken Formation and five samples from Lower Bakken Formation were used. 

d
 Minerals categorized as clays in Mba and Prasad, 2010. 

e
 Minerals categorized as K-feldspar in Mba and Prasad, 2010. 
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Table S4.4 Mobilization results for all detectable elements 

Part A. Sample 1 (7454 ft, organic-rich) 

time 

(h) 
Ca Mg Fe Na K Al As Ba Cd Co Cr Cu Mn Mo Ni Pb Sb Se U V Zn 

 (mg/L) (µg/L) 

Experiment 1: solid:water ratio=1 g/L, pH 4, 22°C, atmospheric 

1 6.48 2.68 0.39 - - 0.06 1.26 0.39 0.21 1.97 BDL 2.51 33.04 28.91 26.83 1.05 1.31 0.93 0.91 5.48 2.18 

4 10.39 4.60 0.67 - - 0.10 2.16 1.03 0.27 3.41 0.35 4.41 53.87 36.52 41.60 2.39 2.01 1.64 1.63 6.48 2.94 

24 13.13 5.77 0.99 - - 0.17 5.64 2.85 0.41 7.45 1.63 9.69 58.68 51.78 90.06 5.32 3.43 3.59 3.08 7.99 3.99 

48 12.89 5.82 1.21 - - 0.20 8.17 4.27 0.54 9.53 2.78 12.87 60.03 56.82 121.88 6.75 3.89 5.09 3.36 8.39 4.09 

120 11.65 5.36 1.39 - - 0.31 9.54 8.68 0.59 10.68 5.58 20.48 57.00 51.49 146.74 8.31 4.09 5.95 2.75 8.28 8.72 

Experiment 2: solid:water ratio=1 g/L, pH 8, 22°C, atmospheric 

1 1.00 0.25 BDL - - 0.03 0.71 0.15 0.32 0.27 BDL BDL 1.83 40.12 6.57 0.03 0.86 0.89 0.08 2.39 1.57 

4 2.14 0.62 0.11 - - 0.07 1.35 0.85 0.49 0.95 0.46 BDL 5.39 60.29 19.53 0.27 1.58 1.85 0.17 3.72 5.11 

24 4.14 1.46 0.13 - - 0.07 2.51 1.85 0.78 2.56 1.41 BDL 11.75 92.58 46.20 0.17 2.50 2.34 0.28 4.36 0.88 

48 5.25 1.99 0.15 - - 0.07 2.96 2.63 0.96 2.90 2.60 BDL 15.74 111.30 54.94 0.11 2.95 3.25 0.39 4.42 1.67 

120 7.35 3.10 0.22 - - 0.08 4.06 4.58 1.29 2.65 5.24 BDL 23.00 144.99 53.69 0.09 3.55 5.09 0.60 5.83 0.71 

Experiment 3: solid:water ratio=1 g/L, unadjusted pH, 22°C, anoxic 

120 7.92 3.15 0.20 1.09 0.79 1.29 4.03 20.05 0.78 2.33 0.21 2.70 24.22 165.41 40.48 0.28 5.89 7.97 0.52 4.21 3.76 

Experiment 4: solid:water ratio=1 g/L, pH 8, 22°C, 3% H2O2 

1 1.35 0.32 0.09 - - BDL 1.43 0.11 1.45 2.85 1.50 BDL 4.85 212.27 63.23 0.16 1.06 9.33 0.07 6.50 0.88 

4 2.20 0.75 0.06 - - 0.02 2.33 0.22 1.90 3.08 1.82 BDL 7.84 279.91 57.59 BDL 1.99 15.42 0.05 9.54 0.68 

24 3.26 1.36 0.19 - - 0.14 3.56 0.64 2.34 6.27 2.86 2.00 2.62 346.65 34.07 0.13 4.90 21.19 0.14 22.45 1.03 

48 3.97 1.81 0.27 - - 0.24 3.34 1.01 2.42 7.80 3.43 BDL 2.39 348.97 40.23 0.18 5.71 21.73 0.17 28.58 1.09 

120 5.92 3.00 0.45 - - 0.37 3.88 2.48 2.47 10.51 4.50 2.22 3.06 359.08 57.67 0.28 6.37 22.39 0.35 41.03 1.20 

Experiment 5: solid:water ratio=1 g/L, unadjusted pH, 22°C, atmospheric 

1 0.89 0.22 BDL 0.64 0.30 0.20 0.59 0.07 0.20 0.15 BDL BDL 0.32 39.16 4.92 BDL 0.65 0.65 0.15 1.66 1.54 

4 2.02 0.61 0.06 0.69 0.39 0.39 1.05 0.13 0.26 0.73 BDL BDL 3.64 54.14 16.34 0.06 1.23 1.17 0.23 2.51 0.70 

24 4.97 1.89 0.12 0.92 0.55 0.89 1.85 0.24 0.47 2.74 BDL BDL 14.35 93.89 52.04 0.20 2.59 3.02 0.38 3.62 1.20 
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time 

(h) 
Ca Mg Fe Na K Al As Ba Cd Co Cr Cu Mn Mo Ni Pb Sb Se U V Zn 

 (mg/L) (µg/L) 

48 6.56 2.61 0.18 1.07 0.66 1.32 2.02 0.32 0.60 2.99 BDL BDL 18.60 120.26 60.35 0.28 3.31 4.36 0.65 4.26 1.23 

120 8.58 3.54 0.23 1.34 0.95 1.43 2.47 0.47 0.84 1.94 0.20 BDL 21.03 170.80 41.38 0.17 4.32 6.39 1.49 4.80 1.23 

Experiment 6: solid:water ratio=1 g/L, unadjusted pH, 50°C, atmospheric 

120 16.5 6.04 0.33 1.49 1.75 0.99 2.16 0.57 1.28 0.99 BDL BDL 16.48 256.30 9.82 BDL 4.95 6.79 0.27 4.97 1.81 

Experiment 7: solid:water ratio=1 g/L, unadjusted pH, 80°C, atmospheric 

120 13.8 7.51 0.62 0.90 3.33 0.02 3.05 6.99 1.44 1.46 0.91 BDL 25.70 175.69 16.64 BDL 2.70 11.41 0.08 7.52 1.77 

Experiment 8: solid:water ratio=10 g/L, unadjusted pH, 22°C, atmospheric 

1 4.23 0.64 0.11 6.80 1.88 7.60 4.92 0.27 1.95 BDL BDL * BDL 468.22 * 0.17 7.98 11.27 0.14 18.07 1.38 

4 7.18 1.08 0.20 7.13 2.33 8.13 5.98 0.34 2.68 0.35 BDL * 1.35 639.76 * 0.07 13.24 17.20 0.27 13.44 3.39 

24 15.5 3.23 0.45 7.78 3.19 3.13 2.29 0.64 3.88 4.20 BDL * 15.65 955.56 * BDL 22.75 25.23 0.71 3.53 4.39 

48 18.9 4.29 0.56 8.33 3.55 2.53 2.32 0.78 4.67 3.35 BDL * 18.08 1168.4 * BDL 26.33 29.16 1.07 3.39 2.65 

120 23.3 5.82 0.71 9.84 4.77 2.58 4.33 1.30 6.90 1.77 BDL * 16.72 1726.1 * 1.06 34.30 38.05 2.75 9.26 1.96 

Experiment 9: solid:water ratio=1 g/L, unadjusted pH, 22°C, atmospheric, 10 g/L NaCl 

1 1.44 0.45 0.07 - 0.63 BDL 2.73 14.37 0.33 0.97 0.33 47.67 3.01 49.94 16.64 BDL 0.80 1.39 BDL 2.16 BDL 

4 3.17 1.11 0.13 - 0.73 0.12 3.97 31.73 0.51 1.10 1.02 51.41 8.83 79.38 31.14 BDL 1.51 2.82 0.07 3.10 BDL 

24 7.15 3.00 0.27 - 0.83 0.83 4.59 71.53 0.78 3.54 BDL 56.25 22.88 123.68 74.47 0.08 2.90 5.19 0.25 3.44 BDL 

48 9.34 4.04 0.37 - 0.94 0.49 4.72 93.45 1.00 4.18 BDL 55.12 29.22 159.46 92.62 BDL 3.91 6.41 0.39 4.10 0.69 

120 12.0 5.43 0.46 - 1.10 1.35 4.91 120.35 1.39 3.57 BDL 57.32 34.68 216.12 87.77 BDL 5.03 8.40 0.69 5.23 BDL 

Experiment 10: solid:water ratio=1 g/L, pH 1.5, 22°C, atmospheric, 66 mM HCl 

1 16.0 6.89 1.34 0.60 6.89 0.21 9.49 1.82 0.55 4.28 4.72 11.50 72.15 66.01 47.99 16.42 5.95 4.13 4.41 13.79 17.45 

4 17.6 7.65 1.70 0.65 7.65 0.30 13.28 2.27 0.83 7.50 3.88 19.55 79.91 90.89 76.42 21.62 8.59 6.29 5.57 16.59 19.53 

24 18.3 8.08 3.07 0.78 8.08 0.60 24.67 3.68 1.21 16.51 3.44 37.58 84.50 140.60 200.62 35.06 11.83 11.22 6.97 24.75 21.68 

48 18.5 8.19 4.36 0.88 8.19 0.80 31.82 4.46 1.40 19.29 3.20 45.22 86.70 156.77 253.43 40.37 12.40 14.26 7.33 29.34 24.32 

120 18.6 8.42 7.07 0.99 8.42 1.26 44.02 5.73 1.60 21.52 3.24 56.66 91.88 172.53 299.24 46.89 12.16 17.32 7.67 37.23 27.66 

Experiment 11: solid:water ratio=1 g/L, pH 4, 22°C, atmospheric, 1 mM citrate 

1 7.9 3.29 0.68 - - 0.13 2.89 1.04 0.38 2.21 0.35 BDL 36.73 41.28 29.58 6.81 2.39 1.74 2.63 7.74 3.98 

4 11.5 4.94 0.96 - - 0.17 4.69 1.59 0.51 3.87 0.64 1.91 52.39 58.13 45.12 13.05 3.88 2.60 4.17 9.72 4.35 
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time 

(h) 
Ca Mg Fe Na K Al As Ba Cd Co Cr Cu Mn Mo Ni Pb Sb Se U V Zn 

 (mg/L) (µg/L) 

24 14.0 5.96 1.58 - - 0.25 11.85 2.82 0.85 8.99 1.90 8.10 63.10 95.30 102.83 24.23 7.83 5.63 6.16 13.64 5.28 

48 14.2 6.04 2.01 - - 0.30 17.06 3.37 1.01 11.73 2.97 11.10 64.58 112.01 144.68 28.30 9.65 8.18 6.48 15.61 5.74 

120 14.0 5.97 2.97 - - 0.34 25.67 4.56 1.26 14.45 5.30 16.23 64.61 132.81 196.51 34.54 11.81 11.27 6.59 17.77 6.13 

Experiment 12: solid:water ratio=1 g/L, pH 8, 22°C, atmospheric, 2.9 mM persulfate 

1 6.13 2.20 0.21 - - 0.03 1.26 1.52 0.29 0.49 BDL BDL 20.44 45.61 12.47 0.07 0.79 4.90 0.32 3.03 5.16 

4 7.54 2.83 0.25 - - 0.03 1.81 1.42 0.44 1.04 BDL BDL 5.85 70.17 21.64 BDL 1.27 5.37 0.21 4.02 4.93 

24 10.7 4.44 0.36 - - 0.04 2.73 1.48 0.77 2.23 BDL BDL 14.94 127.45 46.89 BDL 2.22 7.59 0.27 4.31 4.88 

48 12.8 5.56 0.43 - - 0.05 2.70 1.56 0.98 2.35 0.24 BDL 21.78 158.36 54.81 BDL 2.65 8.64 0.25 4.26 5.14 

120 15.9 7.28 0.52 - - 0.03 2.15 2.00 1.21 1.85 BDL BDL 29.48 201.41 49.93 BDL 3.25 10.26 0.13 4.62 5.13 

Experiment 13: solid:water ratio=1 g/L, pH 1.5, 80°C, atmospheric, 66 mM HCl, 1 mM citrate, 2.9 mM persulfate 

120 15.5 9.8 31.3 1.1 10.1 7.5 108.0 11.0 2.5 32.4 18.2 119.0 137.8 335.0 438.0 61.6 19.0 24.7 14.5 208.6 81.3 

 

Part B. Sample 2 (7407 ft, organic-poor) 

time 

(h)  
Ca Mg Fe Na K Al As Ba Cd Co Cr Cu Mn Mo Ni Pb Sb Se U V Zn 

 (mg/L) (µg/L) 

Experiment 1: solid:water ratio=1 g/L, pH 4, 22°C, atmospheric 

1 16.20 8.65 1.24 - - 0.15 BDL 1.38 BDL 2.40 0.39 3.39 102.19 BDL 5.08 0.36 BDL BDL 0.06 1.16 8.43 

4 34.94 20.74 2.06 - - 0.23 BDL 2.55 BDL 3.38 0.84 3.79 183.25 BDL 7.46 0.91 0.04 BDL 0.08 1.25 9.40 

24 39.69 24.02 2.19 - - 0.31 0.61 5.63 0.06 4.52 1.94 4.78 202.02 BDL 10.01 1.60 0.06 BDL 0.09 1.29 11.01 

48 38.20 22.91 2.03 - - 0.50 0.79 12.06 0.08 4.84 2.96 4.68 193.68 BDL 10.65 1.79 0.08 BDL 0.09 1.51 10.90 

120 41.97 25.04 2.44 - - 0.80 2.23 35.53 0.21 6.41 7.10 5.41 211.04 BDL 15.86 2.18 0.11 5.50 0.11 2.71 11.87 

Experiment 2: solid:water ratio=1 g/L, pH 8, 22°C, atmospheric 

1 1.53 0.56 BDL - - 0.03 0.53 0.12 BDL 0.45 0.28 2.31 6.32 BDL 2.84 0.52 0.07 4.67 BDL 0.51 5.84 

4 2.68 1.08 0.08 - - 0.04 0.61 0.73 BDL 0.75 0.40 2.42 12.62 BDL 3.25 0.71 0.09 4.88 BDL 0.55 7.47 

24 5.55 2.44 0.18 - - 0.04 0.77 5.84 0.08 1.38 1.38 2.54 29.07 BDL 4.27 0.98 0.14 4.69 BDL 0.92 7.03 

48 6.39 2.98 0.21 - - 0.05 0.85 11.08 0.13 1.48 2.30 2.58 33.27 BDL 4.66 1.04 0.14 4.68 BDL 1.27 6.92 
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time 

(h)  
Ca Mg Fe Na K Al As Ba Cd Co Cr Cu Mn Mo Ni Pb Sb Se U V Zn 

 (mg/L) (µg/L) 

120 9.51 4.87 0.33 - - 0.04 1.39 28.61 0.22 1.61 5.39 2.70 48.72 BDL 5.23 1.12 0.20 5.01 BDL 2.21 7.18 

Experiment 3: solid:water ratio=1 g/L, unadjusted pH, 22°C, anoxic 

120 7.61 3.91 0.24 3.95 2.06 0.38 0.74 222.41 BDL 3.86 BDL 45.65 27.48 BDL 2.83 1.46 0.22 BDL 0.06 18.07 7.27 

Experiment 4: solid:water ratio=1 g/L, pH 8, 22°C, 3% H2O2 

1 2.76 1.19 0.11 - - BDL BDL BDL BDL 6.01 0.90 43.29 9.84 BDL 4.53 2.74 BDL BDL 0.06 11.08 2.90 

4 5.35 2.56 0.18 - - 0.00 BDL 0.09 BDL 12.53 1.48 43.54 20.34 BDL 6.42 2.11 0.12 BDL 0.07 14.08 2.25 

24 9.41 4.85 0.30 - - 0.10 0.75 0.21 BDL 23.16 2.10 45.15 26.77 1.59 8.29 0.99 0.36 BDL 0.06 18.66 2.63 

48 11.29 5.89 0.36 - - 0.02 0.90 0.27 BDL 24.66 2.39 43.55 24.06 1.92 8.22 0.75 0.55 BDL 0.05 20.79 2.38 

120 13.78 7.21 0.43 - - 0.07 1.09 0.57 BDL 21.50 2.92 43.19 15.42 2.36 7.46 0.96 0.76 BDL 0.04 24.24 2.57 

Experiment 5: solid:water ratio=1 g/L, unadjusted pH, 22°C, atmospheric 

1 1.00 0.32 BDL 3.18 1.47 0.02 BDL BDL BDL 0.12 BDL BDL 0.71 BDL BDL BDL BDL BDL 0.04 0.53 BDL 

4 2.24 0.88 0.06 3.27 1.60 0.04 BDL 0.06 BDL 0.18 BDL BDL 4.18 BDL BDL BDL BDL BDL 0.09 0.57 BDL 

24 6.13 2.87 0.21 3.97 1.88 0.09 BDL 0.29 BDL 0.57 0.32 BDL 21.47 BDL BDL BDL 0.05 BDL 0.26 0.72 BDL 

48 7.64 3.62 0.26 4.85 2.04 0.13 0.51 0.46 BDL 0.61 0.43 BDL 26.33 BDL BDL BDL 0.07 BDL 0.38 0.85 BDL 

120 9.58 4.50 0.32 6.68 2.30 0.10 0.76 0.81 BDL 0.54 0.55 BDL 29.27 BDL BDL BDL 0.11 BDL 0.57 1.12 BDL 

Experiment 6: solid:water ratio=1 g/L, unadjusted pH, 50°C, atmospheric 

120 7.28 2.16 0.28 10.29 10.05 0.49 2.86 1.38 BDL 0.15 0.69 BDL 1.06 BDL BDL BDL 0.26 0.29 0.12 3.20 BDL 

Experiment 7: solid:water ratio=1 g/L, unadjusted pH, 80°C, atmospheric 

120 7.78 2.16 0.28 2.94 3.06 0.33 1.23 1.17 0.33 BDL 1.16 BDL 0.36 4.69 BDL BDL 0.19 BDL BDL 2.77 BDL 

Experiment 8: solid:water ratio=10 g/L, unadjusted pH, 22°C, atmospheric 

1 3.51 0.77 0.13 21.72 5.73 0.15 1.35 0.06 0.06 0.08 1.17 2.62 BDL 4.25 BDL 0.32 0.11 6.90 BDL 4.21 0.94 

4 5.40 1.23 0.21 22.29 6.45 0.23 2.53 0.23 0.06 0.19 1.30 2.69 0.52 4.99 BDL 0.33 0.19 6.52 BDL 6.25 1.05 

24 12.98 3.51 0.48 23.97 7.88 0.17 2.71 0.81 0.07 0.55 1.42 2.72 7.88 6.02 3.08 0.31 0.35 6.84 0.03 4.67 1.18 

48 16.44 4.82 0.59 26.55 8.77 0.13 3.63 1.18 0.08 0.56 1.37 2.67 10.56 6.55 3.06 0.29 0.42 6.68 0.07 5.54 1.42 

120 21.69 6.48 0.78 35.35 9.85 0.13 8.95 2.16 0.08 0.45 1.37 2.55 7.40 7.40 2.65 0.31 0.59 6.61 0.18 9.61 1.04 

Experiment 9: solid:water ratio=1 g/L, unadjusted pH, 22°C, atmospheric, 10 g/L NaCl 

1 2.44 0.88 0.08 - 1.70 0.03 1.71 1.85 BDL BDL 8.24 6.92 2.67 BDL 3.48 BDL BDL BDL BDL 2.57 BDL 
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time 

(h)  
Ca Mg Fe Na K Al As Ba Cd Co Cr Cu Mn Mo Ni Pb Sb Se U V Zn 

 (mg/L) (µg/L) 

4 4.74 1.81 0.28 - 3.65 0.04 8.97 2.57 0.06 0.25 22.90 8.29 10.15 BDL 2.61 BDL BDL BDL BDL 7.19 BDL 

24 9.54 4.68 0.42 - 2.42 0.03 2.30 2.93 BDL 0.89 9.08 8.42 45.69 BDL 3.85 BDL BDL BDL BDL 2.68 BDL 

48 12.04 6.00 0.54 - 3.29 0.04 1.37 4.44 BDL 1.02 6.00 9.50 57.14 BDL 3.84 BDL BDL BDL BDL 2.08 BDL 

120 15.27 7.38 0.68 - 3.95 0.14 1.14 7.62 BDL 0.81 4.25 10.70 62.17 BDL 3.71 BDL BDL BDL BDL 2.28 BDL 

Experiment 10: solid:water ratio=1 g/L, pH 1.5, 22°C, atmospheric, 66 mM HCl 

1 35.91 20.07 2.12 1.81 21.10 0.47 BDL 2.73 BDL 5.15 BDL 19.80 152.20 BDL 11.04 3.92 0.14 0.63 BDL 5.22 21.79 

4 36.50 20.50 2.21 1.90 21.56 0.57 BDL 2.99 BDL 6.03 BDL 24.69 155.18 BDL 13.12 4.69 0.14 0.85 BDL 6.70 23.56 

24 36.85 20.74 2.31 2.09 21.82 0.76 0.53 3.61 BDL 7.02 BDL 29.35 157.56 BDL 15.44 5.06 0.15 0.68 BDL 8.12 24.71 

48 37.38 20.98 2.46 2.34 22.08 0.94 1.29 4.22 BDL 7.55 BDL 30.22 159.88 BDL 16.71 5.37 0.19 0.77 BDL 9.06 25.77 

120 38.29 21.36 2.80 3.36 22.47 1.47 2.11 6.44 BDL 8.31 1.55 31.16 162.82 BDL 18.69 5.96 0.19 0.75 BDL 10.32 26.61 

Experiment 11: solid:water ratio=1 g/L, pH 4, 22°C, atmospheric, 1 mM citrate 

1 19.44 10.36 1.57 - - 0.36 0.86 2.05 0.05 3.05 0.75 3.75 115.99 BDL 8.60 1.73 0.14 5.15 0.09 2.37 36.32 

4 34.22 20.12 2.27 - - 0.38 1.18 4.04 0.07 4.09 1.26 4.07 179.04 BDL 12.34 2.64 0.15 5.78 0.11 2.93 13.20 

24 38.91 23.26 2.55 - - 0.45 1.85 8.95 0.10 5.57 2.83 4.75 195.17 BDL 16.17 3.39 0.20 5.91 0.12 3.64 14.08 

48 37.41 22.45 2.48 - - 0.46 2.13 11.97 0.13 5.84 4.07 4.54 188.29 BDL 16.82 3.49 0.20 5.89 0.12 3.95 13.64 

120 42.96 25.43 2.96 - - 0.62 3.43 24.51 0.28 7.76 8.30 5.26 214.80 1.57 24.26 4.23 0.26 8.29 0.14 5.72 16.63 

Experiment 12: solid:water ratio=1 g/L, pH 8, 22°C, atmospheric, 2.9 mM persulfate 

1 3.16 1.13 0.12 - - 0.09 BDL 1.71 0.05 0.77 0.32 2.19 7.40 BDL BDL 0.06 0.06 5.30 BDL 1.30 9.26 

4 3.91 1.54 0.14 - - 0.07 BDL 2.09 BDL 0.77 0.34 2.05 8.34 BDL BDL BDL 0.06 4.60 BDL 1.35 7.78 

24 6.17 2.77 0.22 - - 0.08 BDL 4.97 0.07 0.94 0.91 1.96 1.74 BDL BDL BDL 0.08 4.73 BDL 1.58 9.01 

48 7.63 3.56 0.27 - - 0.09 BDL 9.74 0.09 0.57 1.63 1.98 0.62 BDL 2.51 BDL 0.10 5.15 BDL 1.80 8.61 

120 11.91 6.40 0.51 - - 0.63 1.24 35.73 0.20 0.68 3.84 1.98 2.94 BDL 3.17 BDL 0.14 5.80 0.05 3.15 8.23 

Experiment 13: solid:water ratio=1 g/L, pH 1.5, 80°C, atmospheric, 66 mM HCl, 1 mM citrate, 2.9 mM persulfate 

120 33.60 23.78 8.25 2.91 28.57 8.09 13.44 20.05 0.07 11.81 35.13 51.06 227.41 4.54 40.55 12.65 0.30 0.69 0.21 26.62 61.60 

Data are shown as average of the duplicates. 

“BDL” means “below detection limit”. 

“-” for Na indicates the use of NaOH on the autotitrator or the addition of NaCl, for K indicates excessive K due to pH monitoring over time on the autotitrator. 

“*” indicates unreliable results due to the status of the analytical instrument. 
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Table S5. Percentages of element mobilization after 120 hour reaction 

Part A. Sample 1 (7454 ft, organic-rich) 

 
Ca Mg Fe Na K Al As Ba Cd Co Cr Cu Mn Mo Ni Pb Sb Se U V Zn 

Experiment 1: solid:water ratio=1 g/L, pH 4, 22°C, atmospheric 

 
68.6 53.8 4.1 - - 0.5 8.7 53.2 19.6 31.4 21.9 18.1 40.1 9.8 18.8 12.5 23.6 17.9 4.0 2.5 9.6 

Experiment 2: solid:water ratio=1 g/L, pH 8, 22°C, atmospheric 

 
43.3 31.1 0.6 - - 0.1 3.7 28.0 42.5 7.8 20.6 BDL 16.2 27.5 6.9 0.1 20.5 15.3 0.9 1.7 0.8 

Experiment 3: solid:water ratio=1 g/L, unadjusted pH, 22°C, anoxic 

 
46.6 31.6 0.6 12.5 1.7 1.9 3.7 122.7 25.7 6.8 0.8 2.4 17.1 31.3 5.2 0.4 34.0 24.0 0.8 1.3 4.1 

Experiment 4: solid:water ratio=1 g/L, pH 8, 22°C, 3% H2O2 

 
34.8 30.1 1.3 - - 0.5 3.5 15.2 81.7 30.9 17.7 2.0 2.2 68.0 7.4 0.4 36.7 67.4 0.5 12.3 1.3 

Experiment 5: solid:water ratio=1 g/L, unadjusted pH, 22°C, atmospheric 

 
50.5 35.5 0.7 15.4 2.1 2.1 2.3 2.9 27.7 5.7 0.8 BDL 14.8 32.3 5.3 0.3 24.9 19.2 2.2 1.4 1.4 

Experiment 6: solid:water ratio=1 g/L, unadjusted pH, 50°C, atmospheric 

 
97.0 60.5 1.0 17.1 3.8 1.5 2.0 3.5 42.1 2.9 BDL BDL 11.6 48.5 1.3 BDL 28.5 20.4 0.4 1.5 2.0 

Experiment 7: solid:water ratio=1 g/L, unadjusted pH, 80°C, atmospheric 

 
81.4 75.2 1.8 10.3 7.2 0.0 2.8 42.8 47.6 4.3 3.5 BDL 18.1 33.3 2.1 BDL 15.6 34.4 0.1 2.3 2.0 

Experiment 8: solid:water ratio=10 g/L, unadjusted pH, 22°C, atmospheric 

 
137.3 58.4 2.1 112.9 10.3 3.8 4.0 7.9 227.8 5.2 BDL * 11.8 326.9 * 1.6 197.6 114.6 4.1 2.8 2.2 

Experiment 9: solid:water ratio=1 g/L, unadjusted pH, 22°C, atmospheric, 10 g/L NaCl 

 
70.9 54.5 1.3 - 2.4 2.0 4.5 736.8 45.8 10.5 BDL 50.7 24.4 40.9 11.2 BDL 29.0 25.3 1.0 1.6 BDL 

Experiment 10: solid:water ratio=1 g/L, pH 1.5, 22°C, atmospheric, 66 mM HCl 

 
109.7 84.4 20.8 11.4 18.1 1.9 40.3 35.1 52.9 63.2 12.7 50.2 64.7 32.7 38.3 70.3 70.1 52.2 11.3 11.1 30.5 

Experiment 11: solid:water ratio=1 g/L, pH 4, 22°C, atmospheric, 1 mM citrate 

 
82.1 59.9 8.7 - - 0.5 23.5 27.9 41.6 42.4 20.8 14.4 45.5 25.2 25.2 51.8 68.1 33.9 9.7 5.3 6.8 

Experiment 12: solid:water ratio=1 g/L, pH 8, 22°C, atmospheric, 2.9 mM persulfate 

 
93.5 72.9 1.5 - - 0.1 2.0 12.2 40.0 5.4 BDL BDL 20.8 38.1 6.4 BDL 18.7 30.9 0.2 1.4 5.7 

Experiment 13: solid:water ratio=1 g/L, pH 1.5, 80°C, atmospheric, 66 mM HCl, 1 mM citrate, 2.9 mM persulfate 

 
91.3 98.0 91.9 12.8 21.7 11.0 98.7 67.5 83.2 95.1 71.4 105.4 97.0 63.4 56.1 92.4 109.6 74.4 21.3 62.4 89.7 



124 

 

 

Part B. Sample 2 (7407 ft, organic-poor) 

 
Ca Mg Fe Na K Al As Ba Cd Co Cr Cu Mn Mo Ni Pb Sb U V Zn 

Experiment 1: solid:water ratio=1 g/L, pH 4, 22°C, atmospheric 

 
104.5 107.2 27.0 - - 1.4 19.4 251.4 544.9 61.9 41.9 12.5 89.3 BDL 45.4 16.7 33.2 34.7 13.7 12.8 

Experiment 2: solid:water ratio=1 g/L, pH 8, 22°C, atmospheric 

 
23.7 20.8 3.7 - - 0.1 12.1 202.5 583.9 15.6 31.8 6.2 20.6 BDL 15.0 8.6 61.4 BDL 11.2 7.7 

Experiment 3: solid:water ratio=1 g/L, unadjusted pH, 22°C, anoxic 

 
18.9 16.8 2.7 19.7 4.3 0.7 6.5 1573.6 BDL 37.3 BDL 105.6 11.6 BDL 8.1 11.1 66.6 20.5 91.6 7.8 

Experiment 4: solid:water ratio=1 g/L, pH 8, 22°C, 3% H2O2 

 
34.3 30.9 4.8 - - 0.1 9.5 4.0 BDL 207.5 17.2 99.9 6.5 37.8 21.4 7.3 231.5 12.0 122.8 2.8 

Experiment 5: solid:water ratio=1 g/L, unadjusted pH, 22°C, atmospheric 

 
23.9 19.3 3.5 33.3 4.9 0.2 6.6 5.8 BDL 5.2 3.3 BDL 12.4 BDL BDL BDL 33.1 183.9 5.7 BDL 

Experiment 6: solid:water ratio=1 g/L, unadjusted pH, 50°C, atmospheric 

 
18.1 9.3 3.1 51.2 21.2 0.9 24.9 9.8 BDL 1.4 4.0 BDL 0.4 BDL BDL BDL 78.7 37.4 16.2 BDL 

Experiment 7: solid:water ratio=1 g/L, unadjusted pH, 80°C, atmospheric 

 
19.4 9.2 3.0 14.6 6.5 0.6 10.7 8.3 866.9 BDL 6.8 BDL 0.2 75.1 BDL BDL 57.5 BDL 14.0 BDL 

Experiment 8: solid:water ratio=10 g/L, unadjusted pH, 22°C, atmospheric 

 
54.0 27.7 8.6 175.9 20.8 0.2 77.7 15.3 221.2 4.3 8.1 5.9 3.1 118.6 7.6 2.4 177.1 59.0 48.7 1.1 

Experiment 9: solid:water ratio=1 g/L, unadjusted pH, 22°C, atmospheric, 10 g/L NaCl 

 
38.0 31.6 7.5 - 8.3 0.2 9.9 53.9 BDL 7.9 25.1 24.8 26.3 BDL 10.6 BDL BDL BDL 11.6 BDL 

Experiment 10: solid:water ratio=1 g/L, pH 1.5, 22°C, atmospheric, 66 mM HCl 

 
95.4 91.5 30.9 16.7 47.4 2.6 18.3 45.6 BDL 80.2 9.1 72.1 68.9 BDL 53.5 45.5 57.9 BDL 52.3 28.6 

Experiment 11: solid:water ratio=1 g/L, pH 4, 22°C, atmospheric, 1 mM citrate 

 
107.0 108.9 32.7 - - 1.1 29.8 173.4 723.7 75.0 49.0 12.2 90.8 25.1 69.4 32.3 77.9 43.8 29.0 17.9 

Experiment 12: solid:water ratio=1 g/L, pH 8, 22°C, atmospheric, 2.9 mM persulfate 

 
29.7 27.4 5.6 - - 1.1 10.8 252.8 526.9 6.6 22.7 4.6 1.2 BDL 9.1 BDL 42.2 15.7 16.0 8.9 

Experiment 13: solid:water ratio=1 g/L, pH 1.5, 80°C, atmospheric, 66 mM HCl, 1 mM citrate, 2.9 mM persulfate 

 
83.7 101.8 91.0 14.5 60.3 14.4 116.8 141.9 183.9 114.0 207.3 118.1 96.2 72.7 116.0 96.5 90.8 66.2 134.9 66.3 

Data are shown as average of the duplicates. Some elements were not completely extracted from the acid digestion leading to percentages well above 100%. 
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“BDL” means the concentration at 120 hours were “below detection limit”. 

“-” for Na indicates the use of NaOH on the autotitrator or the addition of NaCl, for K indicates excessive K due to pH monitoring over time on the autotitrator. 

“*” indicates unreliable results due to the status of the analytical instrument.  
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Figure S4.3 Relationship between the final Mg concentrations and the final Ca concentrations in all 

experiments with the two samples. The line represents the stoichiometric dissolution of Mg and Ca from 

dolomite. 

 

 

 Figure S4.4 Fe(III) solubility prediction with and without citrate compared with experimental results. 

Lines are calculated Fe(III) solubility in equilibrium with Fe(OH)3 in MINEQL+4.6 and the data points 

are measured Fe concentrations mobilized from Sample 1 in Experiments 1 and 11. 
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Figure S4.5 Relationship between the final As concentrations and the final Fe concentrations in all 

experiments with the two samples.  

 

 

Figure S4.6 Metal, sulfate and NPOC mobilization from Sample 1 with 3% H2O2 after 120 hours of 

reaction. Experiments were performed at room temperature (22℃) with 1 g/L shale loadings. Data are 

shown as the average of the duplicates with error bars being the standard deviations. For the experiment 

without autotitrator, pH dropped to around 3.3 after 4 hours of reaction. 
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Calculations of redox potentials  

Assume activity coefficients for all species are 1.  

For H2O2 

1

2
𝐻2𝑂2 + 𝑒− → 𝑂𝐻− EH° = 1.8 V 

At pH 8, [OH
-
]=10

-6
 M, [H2O2]=3 wt%=30 g/L=0.882 M  

𝐸𝐻 = 𝐸𝐻
° − 0.059𝑙𝑜𝑔

{𝑂𝐻−}

{𝐻2𝑂2}1 2⁄
= 2.15 𝑉 

For S2O8
2-

 

1

2
𝑆2𝑂8

2− + 𝑒− → 𝑆𝑂4
2− EH° = 2.1 V  

[S2O8
2-

]=2.9 mM=2.9×10
-3

 M 

For [SO4
2-

] between 1 and 100 mg/L (10
-5

-10
-3

 M), common values in our experiments 

𝐸𝐻 = 𝐸𝐻
° − 0.059𝑙𝑜𝑔

{𝑆𝑂4
2−}

{𝑆2𝑂8
2−}1 2⁄

= 2.20 − 2.22 𝑉 
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Chapter 5: Conclusions and 

Recommendations for Future Work 

5.1 Conclusions 

5.1.1 Project 1 Conclusions 

Project 1 in this thesis investigated the interfacial processes between arsenic and 

lepidocrocite, with a focus on adsorption and Fe(II)-mediated As(III) oxidation at the 

lepidocrocite surface. With both laboratory experiments and chemical reaction modeling tools, 

this project provided fundamental information about factors governing arsenic speciation, 

mobility and distribution in a system varied with regard to lepidocrocite, oxygen and Fe(II) 

presence. The key observations and conclusions from each subtask are described below. 

Subtask 1A: Impact of water chemistry on arsenic adsorption to lepidocrocite 

The adsorption of As(III) and As(V) to lepidocrocite strongly depends on water 

chemistry. For the arsenic concentrations and Fe loadings studied, As(V) adsorption decreases 

substantially with increasing pH, while As(III) adsorption is less sensitive to pH changes, 

characterized by a stable level of high adsorption between pH 6-9. As(III) and As(V) adsorption 

extents decreased in the presence of phosphate due to competitive adsorption (Appendix). For 

As(III), the presence of oxygen was able to promote the overall arsenic adsorption via partial 

As(III) oxidation, which is otherwise impossible under anoxic condition. A surface complexation 

model, optimized for both adsorption isotherms and adsorption edges, was able to describe the 

adsorption of both As(III) and As(V) to lepidocrocite over a broad range of conditions. 

Subtask 1B: Fe(II)-mediated As(III) oxidation at lepidocrocite surface 
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 The concentration and oxidation states of dissolved arsenic measured over the course of 

a reaction provided information on the rate and extent of As(III) oxidation. As(III) was not 

oxidized by the Fe(III) in lepidocrocite when dissolved oxygen and Fe(II) were not present. At 

both oxic and anoxic conditions, As(III) was oxidized to As(V) in systems that contained 

lepidocrocite together with Fe(II); this oxidation led to overall enhanced arsenic adsorption at 

near neutral pH. With oxygen the pH-dependent generation of oxidants from the Fenton reaction 

drove the As(III) oxidation. In the absence of oxygen the As(III) was probably oxidized by 

Fe(III) in lepidocrocite that had become more reactive upon reaction with Fe(II). These two 

reaction pathways could occur individually or in combination.  

 

The findings from Project 1 are instrumental for understanding arsenic distribution and 

mobility in engineered water systems and are useful in manipulating the conditions under which 

arsenic is removed via adsorption. For example, in drinking water treatment plants where iron 

(oxyhydr)oxides are often used, the co-occurrence of aqueous Fe(II) and Fe(III) solids is 

beneficial for arsenic removal due to Fe(II)-induced As(III) oxidation to As(V) and thus altered  

adsorption behavior. The pH should be controlled carefully as both As(III) and As(V) adsorption 

to iron (oxyhydr)oxides are affected by pH. Above pH 8 As(V) may be more mobile than 

As(III); below pH 5 where Fenton chemistry generates hydroxyl radical, the presence of radical 

scavengers (such as carbonate, natural organic matters and other reducing agents) can compete 

with As(III) for the oxidants.  

5.1.2 Project 2 Conclusions 

Project 2 in this thesis investigated element release from shale materials exposed to 

various water chemistries and sought to identify the key chemical reaction pathways governing 
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release. The knowledge gained from this project will aid in understanding the factors controlling 

shale-bound element mobilization in geological formations similar to those examined in this 

thesis research.  

Subtask 2A: Element mobilization from Eagle Ford samples 

The Eagle Ford samples used in this study were rich in carbonates (calcite, dolomite and 

ankerite) and quartz with minor amounts of kaolinite, albite and pyrite. The organic carbon 

accounts for approximately 5 wt % of the samples, indicating their potential as a hydrocarbon  

source rock. The release of most elements strongly depended on pH, which was primarily 

controlled by carbonate dissolution. The introduction of oxygen and other oxidants (e.g. H2O2) 

significantly increased the amount of sulfate over time; the sulfate generated had a direct impact 

on Ba concentrations due to the formation of BaSO4 as a secondary phase. For these Eagle Ford 

samples, the trace elements (As, U and Ba) mobilized from rock-fluid contact were low in 

concentration and will not likely affect the overall management strategies of the produced 

waters.  

Subtasks 2B: Element mobilization from Bakken Formation samples 

The main mineral phases in the Bakken Formation samples included quartz, K-feldspar, 

illite, dolomite and pyrite. In particular, one sample with total organic carbon as high as 18.7% 

was naturally enriched in trace elements (including some regulated ones such as As and U). 

Among all the water chemistry variables studied (pH, oxidant level, solid:water ratio, 

temperature and salinity), pH and the oxidant level were properties that most significantly 

affected element mobilization. The abundance of dolomite relative to pyrite, or acid-neutralizing 

mineral relative to sulfide minerals in general, largely determined the system pH when sufficient 

oxidant was present. The addition of chemical additives (HCl, citrate, and persulfate) affected 
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element release mainly by altering system pH or redox conditions. In the worst case scenario 

(with all three additives at 80 °C), essentially all As and Cr available in the solids were 

mobilized into solution.  

 

The degree to which the findings from Project 2 can be related to flowback from the 

Eagle Ford Formation and Bakken Formation will be affected by the parameters used in actual 

operations and subject to the complicated subsurface conditions. The solid:water ratio in the field 

will depend on the fracture network (10,000’s to 100,000’s g/L for overall porosities in the range 

of 1-10%), however, the rock-fluid interactions will occur at both fractured surfaces and the 

fluid-solid interfaces of particles mobilized from the formation, thus the total reactive surface 

area will be a more relevant property to scale up the extent of mobilization. In general, the 

system pH and redox conditions are the most important factors affecting shale-bound element 

release. The carbonate-rich formations (similar to the Eagle Ford samples) are more likely to 

have near neutral or even alkaline flowback even if the fluids injected are acidic. The carbonate-

poor formations (similar to the Bakken Formation samples) may lead to flowback with low pH 

due to the lack of acid reactive (i.e. buffering) minerals to neutralize the acidity generated in 

oxidation reactions. The sulfide-rich formations (both Eagle Ford and Bakken Formation 

samples) might predict the precipitation of barite as a secondary phase and the subsequent 

scaling as a potential problem for well performance.  
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5.2 Recommendations for Future Work 

5.2.1 Recommendations for Project 1 

The information obtained from this research project provided insights on the chemical 

interactions between arsenic and lepidocrocite that could be used to control and manipulate the 

conditions in engineered water systems for better removal of arsenic. Recommended future work 

includes but is not limited to 1) analysis of arsenic speciation at the lepidocrocite mineral surface 

by techniques such as X-ray absorption spectroscopy, 2) in situ arsenic removal in an 

electrocoagulation reactor, and 3) arsenic adsorption to lepidocrocite in natural or synthetic 

groundwater.  

In this thesis, the relative abundance of As(V) over As(III) on the solid phase was 

inferred based on dissolved arsenic speciation coupled with prediction from the surface 

complexation model. However, direct measurements of arsenic speciation on the lepidocrocite 

surface will provide precise information on the overall extent of As(III) oxidation throughout the 

course of reaction and allow for an more accurate evaluation on the role of Fe(II). 

Experimentally, efforts were made to evaluate a method that involved increasing suspension pH 

to desorb arsenic from the solid and removing As(V) in the filtrate via ionic exchange. However, 

the drastic change in pH in this process would lead to the dissolution of lepidocrocite and 

interfere with the effectiveness of the separation. Analytical methods that directly measure the 

oxidation states of arsenic on the solid surface, such as X-ray absorption near edge structure 

(XANES) or X-ray photoelectron spectroscopy (XPS) will be very helpful to extract results of 

the solid arsenic speciation as a function of time, and thus provide information about the kinetics 

of As(III) oxidation in the presence of Fe(II).  
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Previous studies have contradictory findings regarding arsenic speciation in anoxic mixed 

valent iron systems. While this thesis research among others (Amstaetter et al., 2010;  Yan et al., 

2012;  Wang et al., 2014) has shown evidence of adsorbed As(III) oxidation in anoxic 

Fe(II)/Fe(III) (oxyhydr)oxide system, others have different observations. For example, Fe(II) has 

been found to significantly enhance As(V) adsorption but have no effect on As(III) adsorption 

onto anoxic aquifer sediment that contained goethite (Thi Hoa Mai et al., 2014), and another 

study has shown evidence that goethite alone (without Fe(II) or oxygen) can oxidize As(III) 

(Brown, 2010). Mössbauer spectra have qualitatively indicated that the newly formed goethite 

from electron transfer upon addition of Fe(II) is altered from the bulk goethite (Latta et al., 

2012), but its role in As(III) oxidation is not yet clear. In the future, research that investigates the 

reaction between Fe(II) and Fe(III) (oxyhydr)oxides will be of great value to further explore the 

impact of iron cycling on the fate of redox sensitive trace elements.  

Electrocoagulation is a convenient method for in situ water treatment, in particular for 

areas with better access to electricity than chemicals. Results from this thesis indicate the 

conditions for most efficient arsenic adsorption to lepidocrocite, which could be achieved in an 

electrocoagulation reactor by controlling the operation parameters (such as current, pH, water 

flow rate). The experiments of in situ removal of arsenic in an electrocoagulation reactor will 

provide information on how the batch experiment results can be related to the real treatment 

practices. The conclusions regarding arsenic adsorption to and redox interactions with 

lepidocrocite from this thesis will also aid the understanding about the chemical reactions 

involved in an electrocoagulation process. 

Finally, it will be worthwhile to evaluate the effectiveness of arsenic adsorption to 

lepidocrocite (or other iron oxyhydroxides in general) with some natural or synthetic 
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groundwater samples, either using a batch reactor or an electrocoagulation reactor. Compared to 

the well-controlled system prepared in a lab, the constituents other than arsenic in natural 

groundwater will complicate the overall process via competitive adsorption, redox reaction or 

altering the interfacial properties of the lepidocrocite. It will be very helpful to investigate the 

strategy to manipulate the water chemistry and minimize the interference from the constituents 

readily available in natural waters (such as NOMs). 

5.2.2 Recommendations for Project 2 

This research project advanced our understanding about element mobilization from shales 

during rock-fluid interactions and the fluid properties dominating these reactions. The knowledge 

gained could be helpful in designing hydraulic fracturing fluids for sustainable energy extraction 

and optimizing water management options for waste streams that might contain regulated 

elements leached from shale formations. Recommended future work includes but is not limited 

to 1) evaluating element mobilization from fractured rock samples, 2) simulating rock-fluid 

interaction in porous and fractured media with reactive transport modeling and 3) analyzing 

related field samples for trace element concentrations in actual flowback waters.  

First, this thesis research focused on the rate and extent of element mobilization rather 

than transport effects by designing experiments with a low solid:water ratio and a high surface 

area exposed to fluids. However, the actual shale-fluid interactions in hydraulically fractured 

zones are most likely to occur at the surfaces on both the fractured formation and mobilized rock 

particles. Experiments with fractured rock will advance our understanding in the role that 

transport effects might play in element release from the shales, and further relate the laboratory 

observations to the actual field sites.  
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While bench-scale experiments could provide key and rich information on reaction 

pathways, it is virtually impossible to test all relevant solid samples and fluid compositions 

experimentally. In this case, reactive transport modeling could serve as a powerful tool for the 

analysis of coupled physical and chemical processes. It can describe the interactions of 

competing processes at a range of spatial and time scales. The models couple the equations for 

chemical equilibrium and kinetics with advective and diffusive transport processes to predict the 

evolution of chemical concentrations and speciation in both time and space. It has been 

employed to simulate multi-component reactions in fractured media and flow and reaction in 

heterogeneous porous media (Steefel et al., 2005). Reactive transport modeling can be applied to 

the hydraulically fractured areas that are characterized by a fracture surface and porous zones.  

Finally, the analysis of flowback and produced water from hydraulically fractured zones 

with regard to their trace element concentrations will give the most direct measure about how 

important the trace elements might be in affecting the wastewater management options. While 

current research has focused on issues including high TDS, bromide, and iodide associated with 

produced waters, this thesis research shows that some regulated elements could be completely 

leached out in conditions relevant to hydraulic fracturing fluids. It will thus be very helpful to 

obtain first-hand information on the trace element concentrations at actual field sites and assess 

the potential risks associated with regulated elements.   
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Appendix A: Competitive Adsorption of 

Arsenic and Phosphate  

The batch experiment setup and procedures that were used to investigate the competitive 

adsorption of arsenic and phosphate were the same as described in Chapter 2 for arsenic-only 

adsorption experiments. Arsenic and phosphate were added to the reactors simultaneously to 

initiate the experiments. For As(V), a total As concentration of 1.33 µM (100 µg/L) and a total 

concentration of 0.03 mM (1 mg/L) or 0.13 mM (4 mg/L) phosphate-P were used with 79 mg/L 

lepidocrocite. Reactors were equilibrated for 24 h with a background electrolyte of 1 mM 

NaHCO3. Experiments with As(III) were performed in a glove box filled with N2/H2 circulated 

over heated Pd catalyst. A total As concentration of 6.67 µM (500 µg/L) and a total 

concentration of 0.13 mM (4 mg/L) or 0.32 mM (10 mg/L) phosphate-P were used with 190 

mg/L lepidocrocite. A reaction time of 48 h and a background electrolyte of 0.01 M NaNO3were 

adopted. The pH was monitored throughout the course of reaction with adjustment by 0.1 M 

NaOH and 0.1 M HNO3. The reactors for both As(V) and As(III) adsorption with phosphate 

were closed to keep constant dissolved inorganic carbon. Dissolved arsenic was analyzed by 

ICP-MS and phosphate was measured by the ascorbic acid method (Johnson, 1971;  American 

Public Health Association, 1998).  

The presence of 0.03-0.13 mM (1-4 mg/L) PO4
3-

-P inhibited As(V) adsorption (Figure 

A.1).  The extent of decrease was most significant at pH 7-9. At pH 8, all 1.33 µM (100 µg/L) 

As(V) was bound to lepidocrocite; the addition of 0.03 mM (1 mg/L) PO4
3-

-P decreased As(V) 

adsorption by more than 60%, and 0.13 mM (4 mg/L) PO4
3-

-P decreased As(V) adsorption by 

nearly 90%.   
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Figure A.1 As(V) adsorption on lepidocrocite as a function of pH with total As(V) concentration of 1.33 

µM, with and without phosphate.  

The fraction of As(III) adsorbed to lepidocrocite was also reduced substantially in the 

presence of phosphate (Figure A.2). This competitive effect of phosphate was more evident at 

pH below 8 than above. With 0.13 mM (4 mg/L) PO4
3—

P, As(III) adsorption was decreased by 

30-40% at pH 4-8 and less than 20% at pH 8-10. The increase of phosphate concentration to 0.32 

mM (10 mg/L) PO4
3—

P further reduced As(III) adsorption, but to a much lesser extent.  
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Figure A.2 As(III) adsorption on lepidocrocite as a function of pH with total As(III) concentration of 6.77 

µM, with and without phosphate. 

Phosphate adsorbs strongly onto iron oxide minerals and can therefore compete with 

arsenic for surface sites (Jain and Loeppert, 2000;  Gao and Mucci, 2001;  Dixit and Hering, 

2003;  Kanematsu et al., 2013). The overall inhibitory effect of phosphate on arsenic adsorption 

is weaker for lepidocrocite than other iron (oxyhydr)oxides, such as 2-line ferrihydrite and 

goethite at comparable arsenic to phosphate ratios (Jain and Loeppert, 2000;  Dixit and Hering, 

2003).  

Adsorption of phosphate onto lepidocrocite also decreased with increasing pH (Figure 

A.3). Previous studies have suggested that phosphate primarily forms bidentate binuclear surface 

complexes on ferrihydrite, goethite, lepidocrocite, and hematite surfaces (Atkinson et al., 1974;  

Parfitt et al., 1975;  Parfitt et al., 1976;  Nanzyo and Watanabe, 1982;  Arai and Sparks, 2001). 

Phosphate is usually postulated to form the same surface complexes with As(V) due to their 

similar chemical structure and analogous adsorption properties (Manning and Goldberg, 1996;  

Jain and Loeppert, 2000;  Sverjensky, 2003;  Kanematsu et al., 2013). Consequently the presence 
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of As(V) had little influence on phosphate adsorption (Figure A.3a) at the high phosphate-to-

arsenic molar ratios (30 and 100) used in this study. However, As(III) had a strong inhibitory 

effect on phosphate adsorption at phosphate-to-arsenic ratios of 50 and 100 (Figure A.3b). This 

suggests that even a small amount of As(III) could alter the lepidocrocite surface properties with 

regard to phosphate association. This effect has not been observed for the other iron 

(oxyhydr)oxides. 
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Figure A.3 Phosphate adsorption on lepidocrocite as a function of pH (a) with and without As(V) and (b) 

with and without As(III). The lepidocrocite concentrations were 79 mg/L in (a) and 190 mg/L in (b).  
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Appendix B: Effect of 2-Propanol on 

Lepidocrocite Colloidal Stability 
In Chapter 2, 2-propanol was added to the adsorption experiments as a radical scavenger. 

The overall arsenic adsorption to lepidocrocite was higher with 15 mM 2-propanol than that 

without, in the presence or absence of the direct addition of 90 µM ferrous ion. An additional 

experiment was performed to probe the effect of 2-propanol on the lepidocrocite colloidal 

stability.  

B.1 Experiment 

The experiment was initiated by preparation of four portions of 50 mL120 mg Fe/L (190 

mg γ-FeOOH/L) suspension with a background electrolyte of 0.01 M NaNO3. The suspensions 

were contained in 50 mL plastic digestion tubes and stirred continuously at 300 rpm. Two of the 

reactors (Samples c and d) were spiked with 60 µL of 2-propanol to reach a concentration of 15 

mM while the other two (Samples a and b) were not. After 48 hours, the suspension was sampled 

and diluted 20 times for size distribution analysis with a dynamic light scattering (DLS) system 

(Zetasizer Nano ZS (ZEN3600), Malvern Instruments). For DLS analysis, each of the four 

samples was measured ten times in a single run. The concentrations of lepidocrocite (120 mg 

Fe/L) and 2-propanol (15 mM), ionic strength (0.01 M), stirring speed (300 rpm) and reaction 

time (48 h) were identical to those used in the equilibrium As(III) adsorption experiments 

described in Chapter 2. After sampling for DLS measurement, the suspensions were left stirring 

for another ten days for qualitative observations.  
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B.2 Results  

B.2.1 DLS Analysis 

The addition of 2-propanol had somewhat an inhibitive effect on the aggregation of 

lepidocrocite colloids (Figures B.1-B.3). This effect was more evident in particle size 

distribution by intensity (Figure B.1) and volume (Figure B.3) than that by number (Figure B.2). 

The average particle size for all four samples was in the range of 500 – 700 nm. Based on the 

size distribution by intensity and volume, two or three (Samples a and b) out of ten 

measurements on particles without 2-propanol exhibited a peak at particles size above 1000 nm, 

indicating the formation of large aggregates. With 2-propanol, there was no large aggregation 

formation throughout the ten measurements for Sample c, and two out of the ten  measurements 

for Sample d showed an additional peak at particle size below 150 nm. The lower frequency of 

aggregation formation observed for lepidocrocite particles with 2-propanol may suggest a larger 

surface area and thus enhanced arsenic adsorption. 
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Figure B.1 Lepidocrocite particle size distribution by intensity: (a) and (b) without 2-propanol; (c) and 

(d) with 15 mM 2-propanol. 
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Figure B.2 Lepidocrocite particle size distribution by number: (a) and (b) without 2-propanol; (c) and (d) 

with 15 mM 2-propanol. 
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Figure B.3 Lepidocrocite particle size distribution by volume: (a) and (b) without 2-propanol; (c) and (d) 

with 15 mM 2-propanol. 

B.2.2 Qualitative Comparison 

After 10 days reaction, particle aggregation was observed to form at the air-water 

interface for lepidocrocite suspension without 2-propanol (Reactors a and b in Figure B.4). The 

type of aggregation was absent for experiments with 2-propanol addition (Reactors c and d in 

Figure B.4). The formation of lepidocrocite aggregation at the air-water interface without 2-
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propanol is only visible to the naked eye after one week, however, this is clear indication that 2-

propanol increased the stability of lepidocrocite colloids, which could probably account for the 

enhanced arsenic adsorption onto the solids.  

 

Figure B.4 Images of the four reactors after 10 days of experiments: (a) and (b) without 2-propanol; (c) 

and (d) with 15 mM 2-propanol. The ovals show where the large aggregates are forming in Reactor (a) 

and (b).  

a b c d 
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