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Photosynthetic organisms are complex dynamical systems, showing a remarkable abil-

ity to adapt to different environmental conditions for their survival. Mechanisms

underlying the coordination between different cellular processes in these organisms

are still poorly understood. In this dissertation we utilize various computational and

modeling techniques to analyze transcriptomics and proteomics data sets from sev-

eral photosynthetic organisms. We try to use changes in expression levels of genes to

study responses of these organisms to various environmental conditions such as avail-

ability of nutrients, concentrations of chemicals in growth media, and temperature.

Three specific problems studied here are transcriptomics modifications in photosyn-

thetic organisms under reduction-oxidation (redox) stress conditions, circadian and

diurnal rhythms of cyanobacteria and the effect of incident light patterns on these

rhythms, and the coordination between biological processes in cyanobacteria under

various growth conditions.
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Under redox stresses caused by high light treatments, a strong transcriptomic level

response, spread across many biological processes, is discovered in the cyanobacterium

Synechocystis sp. PCC 6803. Based on statistical tests, expression levels of about

20% of genes in Synechocystis 6803 are identified as significantly affected due to

influence of high light. Gene clustering methods reveal that these responses can

mainly be classified as transient and consistent responses, depending on the duration

of modified behaviors. Many genes related to energy production as well as energy

utilization are shown to be strongly affected. Analysis of microarray data under two

stress conditions, high light and DCMU treatment, combined with data mining and

motif finding algorithms led to a discovery of novel transcription factor, RRTF1 that

responds to redox stresses in Arabidopsis thaliana.

Time course transcriptomics data from Cyanothece sp. ATCC 51142 have shown

strong diurnal rhythms. By combining multiple experimental conditions and using

gene classification algorithms based on Fourier scores and angular distances, it is

shown that majority of the diurnal genes are in fact light responding. Only about 10%

of genes in the genome are categorized as being circadian controlled. A transcription

control model based on dynamical systems is employed to identify the interactions

between diurnal genes. A phase oscillator network is proposed to model the behavior

of different biological processes. Both these models are shown to carry biologically

meaningful features.

To study the coordination between different biological processes to various environ-

ment and genetic modifications, an interaction model is derived using Bayesian net-

work approach, combining all publicly available microarray data sets for Synechocystis

sp. PCC 6803. Several novel relationships between biological processes are discovered
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from the model. Model is used to simulate several experimental conditions, and the

response of the model is shown to agree with the experimentally observed behaviors.
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Chapter 1

Introduction

Living cells are complex dynamical systems, showing a remarkable ability to adapt to

different environmental conditions for their survival. Unraveling principles governing

regulation of different biological processes in cells has been a fundamental challenge to

humankind for a long time. Proper understanding of cellular regulation and utilizing

that knowledge to control cellular behaviors are vital in many aspects. In the field

of medicine, it helps people to find new cures for numerous diseases such as cancers

and diabetes, produce more effective drugs and treat patients with different disorders.

In the field of agriculture, it helps developing new varieties of crops, which generate

higher yields, possess tolerance to harsh environmental conditions such as drought

and cold, and produce foods containing additional nutrients. It also provides answers

to some of the important problems faced by humans currently; such as discovering

ways to reduce global warming and finding alternatives to replace depleting sources

of fossil fuels.
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1.1 Photosynthesis Organisms

Photosynthetic organisms represent the most important class of organisms on the

earth. They created basis for the life on earth. Through oxygenic photosynthesis

process, they convert carbon dioxide in environment into organic compounds, espe-

cially sugars, utilizing energy from the sunlight. As a by product, these organisms

evolve oxygen, thus creating a conducive environment for other species. Photosyn-

thetic organisms are widely accepted as an essential component in answering current

global problems including global warming, pollution and energy crisis.

Due to their critical role on life, lot of research efforts have been invested to under-

stand photosynthetic organisms. These organisms represent a wide variety of living

forms from simple prokaryotic unicellular organisms, such as cyanobacteria, to com-

plex eukaryotic systems, such as vascular plants. Researchers have focused on under-

standing general biological principles of these organisms as well as answering specific

questions. Examples for these specific topics include studying how these organisms

respond to stress conditions and how to improve their stress tolerance, how to im-

prove growth rates and bio-mass production, and how to modify these organisms to

introduce novel abilities to produce useful chemical compounds. Some of the organ-

isms studied in detail and discussed in subsequent sections include, Synechocystis sp.

PCC 6803 , a fresh water cyanobacterium, Cyanothece sp. ATCC 51142, a nitrogen

fixing cyanobacterium, and Arabidopsis thaliana, a vascular plant. More details on

these organisms and data sets available from them are given in Appendix A.
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1.2 Central Dogma of Molecular Biology

Central to regulation of different biological processes and pathways in living cells are

dynamic interactions between deoxyribonucleic acid (DNA), ribonucleic acid (RNA)

and protein molecules, described using the central dogma of molecular biology. In Fig-

ure 1.1, the main components of central dogma are illustrated. Genetic instructions

for cellular responses to various external environmental conditions, such as availability

of nutrients and variations in temperature, and internal conditions, such as presence

or absence of essential regulatory or structural proteins, are stored in the form of

DNA. The DNA composed of four nucleotide bases, namely adenine (A), cytosine

(C), guanine (G) and thymine (T), attached to two backbones made of sugars and

phosphate groups which are joined by ester bonds. These two strands form a helical

structure and consist of millions of bases of A, C, G and T, and commonly known as

chromosomes. A typical cell may consists of one or more chromosomes.

Genetic information stored in DNA are decoded through a process known as transcrip-

tion, where a protein complex called RNA polymerase produces the corresponding

RNA molecules. The DNA subsequences that have the capability to generate specific

RNA molecules are called genes. A typical cell consists of thousands of such genes.

One type of RNA, known as the messenger RNA (mRNA), gives rise to corresponding

proteins through translation. Proteins are key players of all the biological processes

performed by a living cell. Among these functions, is transcription control itself. Re-

cently various mechanisms, outside the central dogma, which control the functions

of living cells have been discovered. One such example is regulatory role played by

the non-protein coding RNAs commonly known as micro RNAs (miRNA). However,

still most of the cellular responses and behaviors can be attributed to the regulation
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Figure 1.1: Central dogma in molecular biology.
Interactions between different molecules in a living cell are defined by the central
dogma in molecular biology. Genetic information contained in DNA is transferred
from one generation to the next through replication. Depending on requirements of
the cells, different RNA molecules are produced in transcription and subsequently
translated into corresponding proteins. Some of the proteins act as regulators to

control the transcription process.

occurring through the central dogma. As a result, understanding principles governing

the interactions in central dogma is still considered the key to uncover the secrets of

life.

1.3 Motivation

During last few decades, a significant improvement in our understanding of the cellu-

lar systems has been achieved. The introduction of various advanced high throughput

technologies such as genome sequencing [49], microarrays [65], and proteomics [6]; and
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collaboration of diverse disciplines including biologists, computer scientists, engineers

and mathematicians; have contributed to the progress of this field to a great extent.

Several new fields of research including systems biology, synthetic biology, compar-

ative genomics, bioinformatics and computational biology have shown tremendous

development during last few years. Difficulties in integrating knowledge from diverse

disciplines is seen as one of the main challenges hindering a rapid progress in these

fields. Despite many notable achievements, dynamics of many cellular processes are

still poorly understood.

Questions related to molecular biology are numerous. Studies related to genome

sequencing and comparative genomics focus on comparing and contrasting genome

sequences of different organisms with the objective of relating their similarities and

differences with specific features of corresponding organisms. Systems biology tries to

understand overall behavior of cells using global transcriptomics, metabolomics and

proteomics measurements. Main focus of synthetic biology is to use genetic tools to

modify genome sequences by deleting existing genes and inducting new genes, with the

objective of achieving desired behaviors from those organisms. Bioinformatics involve

in deriving novel data analysis tools so that hidden details in biological data could be

extracted and interpreted. Computational biology mainly focus on modeling various

aspects of biological processes and generating new hypotheses, which can be tested

through subsequent experiments. Though various disciplines targets specific areas

using different approaches and tools, they all contribute to one global aim namely:

understanding regulation of biological processes in a living cell.
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1.4 Outline

We focus on applying several computational and systems engineering tools to an-

alyze different high throughput data sets. In Chapter 2, details on two such high

throughput techniques, transcriptomics and proteomics, are presented. After intro-

ducing biochemical principles, we focus on two specific technologies, namely two-color

microarrays based transcriptomics and bottom-up label free liquid chromatography

- mass spectrometry(LC-MS) based proteomics. Various aspects involved in experi-

mental design and preliminary data processing including quality assessment and data

normalization are discussed. Some challenges specific to proteomics data processing

are looked at, before concluding the chapter.

Chapter 3 focuses on one of the important biological questions, relevant to photosyn-

thetic organisms, namely understating mechanisms important to maintain homeosta-

sis inside a cell under various redox stress conditions. Data from several experimen-

tal conditions that produce redox stresses in photosynthesis organisms are analyzed.

Genes showing differential behaviors under these stresses are identified using statis-

tical tests and clustered together to gain an understanding on cellular responses. A

co-expression network is obtained for the differentially expressed genes in Arabidopsis

thaliana and regulatory region motifs are discovered in possible co-regulated gene

groups.

In Chapter 4, the overall response and coordinated behaviors of different biological

pathways in Synechocystis sp. PCC 6803 are studied using probabilistic approaches.

Biological pathway level behaviors are derived using individual gene expressions and

a Bayesian network is obtained for these processes. Biological significance of the

network is discussed and simulation results for several experiment conditions are
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presented. Chapter is concluded with a comparison between Bayesian network and

correlation based results.

Chapter 5 introduces the diurnal rhythms in cyanobacterium Cyanothece sp. ATCC

51142. Several methods are introduced to separate diurnal behaviors into circadian

controlled and light responding groups. In Chapter 6, a transcription control model

based on dynamical systems is proposed to infer relationships between different diur-

nal genes. Parameters are selected to model different gene groups and most probable

associations between genes are selected using biological insights.

In Chapter 7, a phase oscillator network is proposed to model the behaviors of main

biological processes with diurnal rhythms. Model parameters are tuned to reconstruct

the actual expressions. Network is used to simulate several experimental conditions

and results are shown to be consistent with actual observations.

Chapter 8 introduces the use of proteomics data to gain further understanding on

cellular behaviors. Proteomics data from several growth conditions are used to study

the cellular response of Synechocystis sp. PCC 6803 at translational level. Proteomics

data from Cyanothece sp. ATCC 51142 revealed that number of genes with oscillatory

behaviors at translational level is much less compared to the those at transcription

level.

Chapter 9 summarizes the findings of this dissertations and discusses directions for

future research.
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Chapter 2

Transcriptomics and Proteomics

Data

2.1 Introduction to Transcriptomics

Transcriptomics, also known as genome-wide expression profiling, is one of the tools

used to study changes in activities of genes in response to various modifications in

internal and external cell environments. DNA microarrays (referred to as microar-

rays hereafter) [65] is the most common high throughput technique used to generate

transcriptomic data sets. Instead of monitoring activities of few selected genes, mi-

croarrays facilitate measurement of activities of thousands and often tens of thousands

of genes representing the entire or the most part of the genome of an organism in a

single experiment. During the last two decades, numerous improvements have been

made to microarrays, which are now capable of generating high throughput data with

an increased level of accuracy.

Although different types of microarray technologies are currently available, the un-

derlying science is mostly similar. Usually microarray chips are made out of glass

plates. DNA sequences corresponding to different genes are printed on to different
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locations on the chip using covalent bonds. This can be performed by directly embed-

ding already synthesized DNA sequences on to the chip, as commonly done in custom

made microarrays, or by synthesizing relevant sequence nucleotide-by-nucleotide on

the chip, as done in oligonucleotide microarrays. During an experiment, mRNA is

extracted from a biological sample and tested for quality and quantity using capil-

lary electrophoresis and nanodrop spectrogram respectively. Complementary DNA

sequences are obtained from mRNA using reverse transcription, labeled with dyes

and hybridized on to the microarray chip. On the chip, DNA sequences bind to

corresponding complementary DNA sequences more tightly, so that it is possible to

remove the non-specific bindings. The intensity of dyes at each spot is proportional

to its relative abundance compared to the total mRNA extraction.

Much of the differences between microarray technologies are related to the length of

DNA sequences printed on to the chip, the number of different sequences embedded

on a single chip, the number of replicates for a given sequence and the types of dyes

used to label the mRNA. The cDNA microarrays use longer DNA sequences, usu-

ally in the range of 300–400 nucleotides, while the oligonucleotide microarrays use

shorter sequences, usually in the range of 15–75 bases. For example, Affymetrix is an

oligonucleotide type microarray and uses 15–18 bases long sequences in their chips.

However, in order to achieve gene specificity, several sequences from a given gene are

included. The samples are labeled using a single dye, so a global level data scaling is

required for the comparison between different microarrays. On the other hand, Agi-

lent microarrays, another oligonucleotide type chips, use relatively longer sequences

of around 60-bases, but contain just one or two different sequences for a given gene.

The mRNA from control and target experiments are labeled with two different dyes,

usually cyanine varieties of green (cy3) and red (cy5) colors. Labeled complementary
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DNA strands from two samples are hybridized onto the same chip so that differences

of gene activities under two conditions can directly be compared. Chips are excited

using two lasers of the same wavelengths as two dyes and fluorescence emission is

measured. Two scanned images may later be merged to get a single image for each

chip. In the combined images, red and green color spots correspond to those genes

having different mRNA concentrations under target and control experimental con-

ditions while yellow color spots corresponds to those genes having a similar level of

mRNA concentrations. Two channel microarray technology introduces a variability

to the data due to differences in dyes and this needs to be taken into account during

experiment design and data processing. Figure 2.1, illustrates different steps involved

in conducting a two-color microarray experiment.

Figure 2.2, shows a scanned image of a two channel microarray. Most of the spots

in the chip are yellow in color, indicating that corresponding genes are expressed to

similar levels under two conditions. Spots with shades of red and green correspond to

genes having different mRNA concentrations due to their differential behaviors under

two experimental conditions.

Microarray experiments are extensively used to identify interactions between genes.

These computational methods view the process of transcription and translation in

the central dogma as gene interactions, where the transcribed mRNA from one gene

controls the activity levels of the others. The implicit assumption is that the abun-

dance of a regulator protein is proportional to its mRNA level. This assumption is

reasonable under many experimental conditions.
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Figure 2.1: Steps involved in performing a two-color DNA microarray experiment.
In microarray construction, DNA sequences corresponds to different genes are
printed onto glass slides. During the experiment, mRNA extracts from two

experimental conditions are converted to corresponding complementary DNA
(cDNA) through reverse transcription. These cDNA from the two samples are
labeled separately with two dyes and hybridized on to microarray chips. After
washing away non-specific bindings, the chips are scanned with lasers of two

different colors, and the scanned images are combined to get a composite image.
Individual gene expressions are extracted from these images and used for further

analysis (Image courtesy: Ashoka Polpitiya).
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Figure 2.2: Scanned image of a two channel DNA microarray.
Different colors represent the relative abundance of gene expressions under two

experimental conditions. Spots with shades of red and green correspond to genes
having different mRNA concentrations where as spots in yellow corresponds to

genes whose expressions did not get significantly affected.

Analysis of data generated in microarray experiments involves several steps. These

steps include quality assessments, preliminary data processing, efficient representa-

tion of data to facilitate identification of salient features, and categorizing data into

different groups in order to reduce dimensionality. Various techniques including cor-

relation measurements, probabilistic methods such as Bayesian networks and linear

and nonlinear dynamical systems, can be utilized to infer mutual interactions between

genes. In subsequent sections, we apply some of these techniques to analyze several

microarray data sets.
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2.2 Introduction to Proteomics

Proteomics [87] is the logical continuation of the widely popular transcriptional profil-

ing methodology, that is the microarrays. Proteomics focus on studying multi-protein

systems in organisms, commonly known as the proteome, or the complete protein

complement of its genome, with the aim of understanding distinct proteins and their

roles as a part of a larger networked system. This is a vital component of the modern

systems biology approaches, where the key goal is to characterize the system level

behavior rather than behavior of single components. Measuring mRNA levels as in

DNA microarrays alone does not necessarily tell us much about the levels of corre-

sponding proteins in a cell and their regulatory behavior since they are subjected

to many post-translational modifications and other modifications by environmental

agents. The role of the proteins can not be overstated as they are responsible for the

structure, energy production, communications, movements and division of all cells.

While genome-wide microarrays are ubiquitous, proteome microarrays are missing due

to the fact that proteins do not share the same hybridization properties of nucleic

acids. Mass spectrometry methods have effectively been used for the characterization

of proteins and has now become the platform of choice for the analysis of complex

protein samples. Here we analyze several proteomics data sets generated by bottom-

up approach using mass spectrometry. The essential feature of bottom-up proteomics

is that it uses small amino acid sequences, known as peptides, obtained via digestion

of proteins, to detect original proteins. Usually an approximately six or more amino-

acids-long peptide sequence uniquely maps to a protein. This enables identification

to be performed by simply searching for the peptide sequence in a database of protein

sequences.
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Mass spectrometer is central to the current proteomics research [6]. Mass spectrom-

eter measures the mass-to-charge ratio (m/z) of molecules. Recent years have seen a

tremendous improvement in the mass spectrometer technology and there are about

20 different commercial versions available for proteomics. All mass spectrometers are

designed to carry out the distinct functions of ionization and mass analysis.

A standard bottom-up experiment has the following key steps: (a) extraction of

proteins from a sample, (b) fractionation to remove contaminants and proteins that

are not of interest, (c) digestion of proteins into peptides using an enzyme such as

trypsin, (d) post-digestion separations to obtain a more homogeneous mixture of

peptides, and (e) analysis by mass spectrometry. Although many informatics tools

can process the resulting data from the mass spectrometer, accurate identification

and quantization of the proteins in a sample remain as a fundamental challenge.

When analyzing protein samples from an organism, first a database of peptides in that

organism is created. The database is typically constructed using liquid chromatogra-

phy (LC) based tandem mass spectrometry (LC-MS/MS) approach, where samples,

sent through tiny liquid columns, are analyzed using two step mass spectrometry to

achieve a higher level of resolution (Please refer Figure 2.3 for more details). The iden-

tity of the peptide is obtained by constructing theoretical mass spectra for peptide

sequences in a genome and comparing them against the observed peaks to determine

the best match. The matching criteria can be either a cross-correlation value [47]

or a probability-based method [15]. Each observed peptide is then mapped onto a

unique spot in a two-dimensional space, with the mass-to-charge ratio and time of

observing the particular peptide (elution time) as corresponding coordinates. These

maps are known as accurate mass and time (AMT) tags. Once the AMT database

is in place, the subsequent experiments involve a single LC-MS step, where observed
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peptides are later matched with corresponding entries in the database. Since LC-MS

step is faster than LC-MS/MS step, higher throughput levels are achieved.

Quantitative proteomics techniques primarily evolve under two categories, namely

stable isotope labeling and label free methods [6]. The stable isotope labeling tech-

niques are analogous to the two-channel microarrays in transcriptome analysis. Sam-

ples from different experiments are analyzed using isotopes of N , O, or C. These

isotopes are introduced, metabolically, chemically, or enzymatically, to the sample

from one experimental condition. The two samples are then mixed and analyzed in a

single cycle. Since the chemical properties of isotopes are same, the isotope-labeled

and native peptides differ only by their mass and are separately detected. The rela-

tive intensities of a given peptide under two conditions are determined by measuring

the abundance of native and isotope-labeled forms.

The label-free quantification method is analogous to single channel microarrays. No

labeling of proteins is involved and the two samples are analyzed separately. While

these techniques are free of the complexities related to labeling, the measurements are

more prone to variations caused by the use of equipment in multiple runs. Peptide

abundances are given as intensities of the detected signals or as spectral counts. The

spectral count refers to the number of times a peptide is detected in various reads

of mass spectrometry. Individual peptide measurements are then mapped back to

their corresponding proteins. The mapping process can be complicated when it is

not one-to-one, which occurs in certain cases where multiple isoforms of a protein are

present. Various algorithms are used to infer protein abundance levels by combining

corresponding peptides [58].
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Figure 2.3: Main steps in performing a proteomics experiment using label-free,
bottom-up approach.

Protein extracts from biological samples are digested using enzymes such as Trypsin
to get corresponding peptides. Peptides are analyzed using either liquid

chromatography based tandem mass spectrometry LC-MS/MS, (higher resolution) or
liquid chromatography - mass spectrometry LC-MS, (lower resolution) levels.

LC-MS/MS is useful in generating the accurate mass and time AMT, database for
different organisms. Once AMT database is ready, subsequent samples can be

analyzed using high throughput LC-MS. The observed peptides are identified by
mapping them to entries in AMT database (Image courtesy: Ashoka Polpitiya).
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2.3 Experimental Design

Experiment design is the most important preliminary step in high throughput ex-

periments, since it affects all subsequent steps in the analysis and the interpretation

of results. Goal of an experimental design is to reduce the undesirable effects from

variations, which are not in focus of the experiment. These variabilities could arise

from both biological diversity of the samples and technical factors. Differences in the

biological materials are mainly due to changes in growth conditions and cell densities

of the cultures. Typically 2–3 biological replicates are included in a single microar-

ray experiment to take these differences into account. The technical variabilities can

occur at any step during the experiment, from extraction of mRNA to scanning of

the microarrays. These changes occur mainly due to inconsistencies in sample prepa-

ration or technical limitations in the instruments, for example inherent variability in

microarray printing techniques. One of the main source of variabilities, unique to the

two-color microarrays, results from different characteristics of the dyes used, which is

commonly known as the dye bias. In order to address the problem of dye bias, mi-

croarray experiments include a dye swap where, the two dyes for labeling the samples

are switched on replicate arrays. As a result, each experiment typically includes 6–8

microarrays. The data from these replicates are analyzed using statistical methods

to isolate the variability.

Figure 2.4 shows different experiment design approaches. In [39], several samples

are mixed, in order to reduce the variance introduced by the differences in biological

samples, as shown in Figure 2.4(a). Figure 2.4(b) shows use of different biological

samples and dye swaps to generate multiple technical replicates. This design is used

in [70].
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(a) (b)

Figure 2.4: Different microarray experimental designs.
In 2.4(a) utilized in [39], samples from different biological samples are mixed at two

levels in order to reduce the variance between samples. 2.4(b), employed in [70],
shows the use of dye swaps and biological samples to generate multiple technical

replicates. (Images extracted from [39] and [70])

2.4 Quality Assessment

Microarray data analysis starts with quality assessment of raw data to ensure that

they are of sufficient quality. One approach is computing coefficient of variation

of individual spots on a microarray. When a microarray is scanned, the feature

extraction software assigns each pixel, either to the signal (area where mRNA is

bound) or the background. The final intensity value given to each spot and used for

further analysis is the average intensity value for the pixels determined as the signal

for a given spot. Coefficient of variation is used to quantify the intensity distribution

of individual pixels categorized as the signal. A lower coefficient of variation value

for the signal suggests a lower intensity variation among the pixels included as signal.

Typically for a good quality two-color microarray, value of coefficient of variation is

less then 10% for more than 90% of the spots. Another statistic that is taken into

consideration is the overall signal intensity distribution of the spots. Under a 16-bit

resolution scanner, intensities of a pixel can vary between 0 and 65535. A good array

should show a wide spread of intensities for different spots, within the allowable range.

A dense distribution towards the lower range is an indication of insufficient mRNA
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quantity and thus likely to give poor separation between background and signal. On

the other hand too many spots in the higher range is an indication of excessive use

of mRNA and can cause contaminations of the neighboring spots. In general when a

chip contains many spots with saturated pixels, a problem in experimental procedure

is likely, since these pixels do not represent the true intensities for that spot.

2.5 Data Normalization

In general there are two objectives in any time course microarray experiment. The

first objective is to compare gene expressions under different conditions. The second

objective is to study the behaviors of genes over time. In order to do these types

of comparisons, the observed data need to be normalized. Another reason for the

normalization is to remove the systematic biases present in the data. An important

observation, typical in two-color microarrays, is non-uniform behavior of dyes at dif-

ferent intensity levels. This behavior is well observed by plotting the intensity-ratio

graph (log values of the product and the ratio of intensities of the two channels for

each spot) for each microarray. Since majority of genes are not differentially regu-

lated under a given experimental condition, log ratio values are expected to be spread

around the value zero. However, data usually reveal a shift and an intensity based

trend due to differences in dye behaviors. Normalization can be used to remove such

bias in the raw data. In addition, normalization is used to correct for additional

factors such as irregularity of the slides and variations introduced by the printing

technology.

The local weighted linear regression (LOWESS) based data normalization procedure

is widely used for microarray data normalization, since it is capable of removing
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many trends present in the data. A robust version of LOWESS normalization, which

is more resistant to outliers compared to the standard LOWESS algorithm, is also

available. The robust version of normalization performs data smoothing through a

two-step procedure. First, the local weights corresponding to each point within a

selected window are calculated using a tri-cubic function given by,

wi1 =

(

1 − |
x − xi

d(x)
|3
)3

. (2.1)

Subsequently a linear regression computations are done incorporating those weights.

The smoothed curve thus obtained is used to find the residuals and a second set of

weights using,

wi2 =















(1 − (ri/6MAD)2)2 if |ri| < 6MAD

0 otherwise,

(2.2)

which reduces the effects of outliers. The final weights used to perform smoothing are

the product of the two beforehand computed sets of weights. Usually a window size of

25%–40% is selected to ensure that various assumptions made during normalization

remain valid.

Figure 2.5(a) and Figure 2.5(c) show product-ratio plot for two different microar-

rays before performing data normalization. The data contain an intensity dependant

trend. As shown in Figure 2.5(b) and Figure 2.5(d), these trends are removed by

applying the robust LOWESS normalization.
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Figure 2.5: Distribution of intensities of spots in microarrays, observed as
product-ratio plots.

Data normalization is carried out as the first step in microarray data analysis so
that the variations in different microarrays are reduced. Intensity based trend

commonly observed in two channel microarray data (a,c), is reduced through the
LOWESS normalization (b,d).

2.6 Proteomics Data Processing

The quality assessments and normalization steps discussed above can be applied to

the proteomics data as well. However, some additional steps are relevant to processing

of the proteomics data. Many of these steps are summarized in [58]. For example, in

label-free proteomics, global intensity adjustments, based on mean absolute deviation

(MAD) or central tendency adjustments, might be important to bring the overall

intensity values of different samples to comparable levels.

One important challenge unique to proteomics is handling of the missing data points.

In contrast to microarray data, where the number of missing data points is negligible,

proteomics data contain a lot of missing data points. Inferring from these data points
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can be performed using different approaches depending on the specific problem. In

[19], the authors discusses about one such method suitable for time course data.

Depending on whether the missing data points are at the ends or middle of the

time series, imputed values are selected using the closest observed data point or

an interpolated value. Additional imputation methods include simple substitutions

with mean/median values or pre-chosen values; K-nearest neighbor based approaches

where missing point is computed as a weighted average of the observed values of

the K-nearest neighbors; and singular value decomposition based approaches, where

missing points are determined using a linear combination of eigen vectors correspond

to the gene expression matrix [80].

The normalization of individual peptide expressions to get overall protein abundance

is another challenge unique to proteomics data. Even though peptides correspond to a

single protein should possess a same intensity value; due to differences in their chem-

ical properties; they produce different measurements. There are several algorithms

to compute the overall protein intensity values using individual peptide abundances.

Such methods are generally referred to as rollup techniques. Most of the rollup meth-

ods start by removing the outlier peptides from the group. Time course proteomics

data can be normalized using R–rollup, where peptides are first scaled using a refer-

ence peptide. Usually peptide with the highest abundance is selected as the reference.

Overall abundance of the corresponding protein at each time point is then computed

as the mean/median of the scaled peptide intensities of the corresponding time point.

Additional details on rollup techniques are found in [58].
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2.7 Conclusions

Transcriptomics and proteomics represent two of the widely used high throughput

biological data generation techniques. Transcriptomics data, mainly obtained using

DNA microarrays, are used to measure genome-wide gene expression levels under

different experimental conditions where as proteomics techniques measure the levels

of proteins present in a cell. In order to be able to compare the changes in cell

environment at transcriptional level as well as translational level, it is important to

handle the data generated from different experiments appropriately.

Some of the preliminary steps common to both transcriptomics as well as proteomics

include experiment design, quality assessments, and data normalization. Processing

of proteomics data requires additional steps to infer missing data points and derive

protein abundance levels from individual peptides. These preliminary steps need

careful consideration since all subsequent results as well as interpretations of the data

depend on these operations.

In this chapter, we introduced details of both transcriptomics and proteomics high

throughput techniques. We presented various steps involved in preliminary data

processing related to them. These steps are applied in the analysis of several data

sets presented in the subsequent chapters.
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Chapter 3

Redox Regulation in

Photosynthetic Organisms

3.1 Redox Stress on Photosynthetic Organisms

Redox or reduction-oxidation reactions are chemical reactions that result in changes

of oxidation state of the substrates involved. Oxidation refers to a reaction where

the oxidation number is increased (or electrons are lost) whereas reduction refers to

a reaction resulting in a reduction in the oxidation number (or gain of electrons) of a

molecule.

Many of the reactions in biological systems falls into the category of redox [57].

For example, aerobic cellular respiration involves oxidation of glucose to CO2 and

reduction of oxygen to water to generate energy in the form of Adenosine Triphosphate

(ATP). Similarly in photosynthetic organisms, in the presence of light energy, reverse

reaction of respiration takes place where CO2 is reduced to glucose and water is

oxidized to oxygen. In these reactions, a proton gradient is created by intermediate

steps where oxidation and reduction of nicotinamide adenine dinucleotide (NAD+)

and NADH takes place, driving the production of ATP.
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In order to these reaction to proceed, it is vital to maintain the proper balance

between NAD+/NADH and NADP+/NADPH, which is referred to as redox state of

the cell. Various external and internal changes in cell environment cause alterations

to redox status of cells. Due to criticality of maintaining homeostasis, organisms

have developed various mechanisms to handle redox stress conditions. However the

principles behind these mechanisms are poorly understood.

3.1.1 Aims

We analyze transcriptomics data from several experimental conditions, where photo-

synthetic organisms are subjected to various redox stress conditions, to study their

responses to such stresses. These experiments include Synechocystis sp. PCC 6803,

subjected to three different stress conditions, namely exposure to high light, treat-

ment with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and preferential excita-

tion of two photosystems, PS-I and PS-II, and Arabidopsis thaliana, subjected to two

stress conditions, namely high light and DCMU. For each experiment, microarrays

are produced using mRNA samples extracted over a time course. Specific aims of the

analysis include comparing and contrasting behavior of genes under different stresses

and identifying important genes that respond to redox stress to maintain homeostasis

in photosynthetic organisms. We apply various statistical tests to select differen-

tially expressed genes from the time course data, use clustering techniques to classify

genes to different behavioral groups and combine other biological knowledge, such as

pathway level details and DNA sequences, to refine our results.
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3.2 Analysis Tools and Techniques

3.2.1 Identification of Differentially Expressed Genes

Analysis of transcriptomics data starts by identifying genes which show different be-

haviors under two experimental conditions. Using the preliminary data processing

steps discussed in Chapter 2, fold changes of gene expression levels under different

experimental conditions are computed. Identification of differentially expressed genes

is performed either using an absolute fold-change cutoff or using statistical signifi-

cant tests. When an absolute fold change cutoff is used, it is important to pick an

appropriate value as the cutoff. If the selected value is too large, many differentially

expressed genes will not be included in the analysis where as a too small value will

result in an inclusion of many false positives. Typically determination of the cutoff is

performed with the help of additional confirmation experiments such as reverse tran-

scription polymerase chain reactions (RT-PCR) [9]. Few genes with different levels

of fold changes are selected and RT-PCR experiments are performed to see whether

differential behaviors can be validated independently. The lowest fold change which

is verified by RT-PCR is selected as cutoff for the fold change and genes with higher

fold changes are selected for further analysis.

An alternative approach is to use statistical significant tests to select differentially ex-

pressed genes. The student’s t-test [72] is a standard statistical test and widely used

to identify differentially expressed genes between two different experimental condi-

tions. It can be applied to most of the situations, where other techniques cannot be

used. The test is conducted as one sample test using log ratios of expression values,

or as a two sample test using absolute expression values for the two conditions. The
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one sample t-test is based on the null hypothesis that observed log-ratio values for a

given gene are from a Gaussian population with a zero mean while the two sample

t-test is based on the null hypothesis that expression values from two experimental

conditions have a same mean and a standard deviation. The acceptance of the alter-

native hypothesis can be done at different significance levels (p-values ) such as 0.1%,

1% or 5%. The t-test is used for both time series as well as non-time series data

sets but requires a reasonable number of microarrays for the underlying assumptions

(that is the samples come from a Gaussian Distribution) of the test to hold valid.

Extraction of differential gene expressions (EDGE) is mainly designed for time series

data [45], but can also be applied to non-time-series data sets. EDGE approximates

data using a set of basis functions and fits a model, using either the least squares [89]

or expectation maximization [18] algorithms. The null distribution of test statistics

is calculated through a bootstrap procedure [17]. Each gene is assessed, using false

positive probability or false discovery rate, to determine whether it is differentially

expressed or not.

Since EDGE is optimized for detecting genes with an altered behavior over a time

course, this method does not pick a gene that is up-regulated or down-regulated

throughout the time course. On the other hand, since data are combined and pro-

cessed as a series, EDGE can be applied to data sets with few replicates per time

point.

Statistical tests can also be followed by a threshold cutoff for the log-ratio values. This

reduces the number of false positives in the selected gene set and the number of genes

needed to be focused on. Furthermore the larger fold changes can easily be verified

using RT-PCR. However, filtering genes based on log-ratio values, carries the risk
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of missing some important genes, that only show small changes in their abundance

levels between different conditions, but play a significant role in the gene regulation.

3.2.2 Clustering of Gene Expressions

The main goals of gene clustering are identifying principal behavioral patterns in the

data and grouping genes based on those patterns. Gene clusters make data handling

easier and usually carry some biological significance. For example, co-regulated genes,

whose activities are controlled by a common promoter, tend to show similar gene ex-

pression patterns. Therefore co-regulated genes occur in a single cluster. In addition,

some of these clusters are rich in genes of specific biological functions. When a given

biological pathway responds to an external or internal cue by changing the expression

of its constituent genes, the expression profile of these genes is similar and thus these

genes are clustered together. In a scenario where the information about all of the

constituents of a cluster is not known, those unknown genes can be predicted to be

from the same biological pathway as the most of genes in that cluster. This approach

provides a useful means for assigning functions for novel genes whose function had

not been previously reported. However, further experiments need to be performed to

demonstrate the involvement of the given gene in the particular process.

Any clustering method centers on two key questions, namely, how to measure the

similarity between expressions of two genes and how to group similar genes together

and separate non-similar genes. Although it is possible to make observations about

various clustering techniques, no one method is the best, since no single criterion

exists to measure the goodness of the resulting clusters.

28



Similarity of gene expressions is computed using various distance measures, such

as Euclidean distance, Pearson correlation, un-centered correlation, and Hamming

distance. Usually when the data are in log-ratio values, as is common in two-channel

microarrays, Euclidean distance is used. When the data is expressed in absolute

values, as in the case of Affymetrix, correlation or cosine distances are preferred.

Finally, the use of Hamming distance is limited to discretized data sets.

The method of measuring the inter-cluster distances and intra-cluster distances, also

known as the linkage function, is selected next. Commonly used linkage functions

include single linkage which is the smallest distance between any two members of two

clusters, total linkage which is the largest distance between any two members of two

clusters, average linkage which is the distance between centroids of two clusters, and

the average distance between any two members of two clusters.

Clustering techniques generate clusters using many approaches. One common clus-

tering method, known as k-means, requires the user to define the number of clusters

to be generated. First the initial cluster centroids are selected randomly, uniformly, or

from a subset of genes. Then the remaining genes are distributed among the clusters

based on the chosen linkage function. Since the starting choice of the centroids are

different, the resulting clusters obtained from each run may not agree with the oth-

ers. As a result, the algorithm is run a large number of times, and the clusters that

give the minimum average distance are picked. The k-means clustering algorithm

has several limitations. The algorithm tries to distribute all the genes among the

selected number of clusters, thus genes with distinct expression patterns frequently

end up being grouped together. Also, when a dominant expression pattern is present,

which is a common scenario in gene expression data, a large number of seeds might be
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obtained from those genes and the resulting clusters from those seeds show a similar

pattern.

Another widely used clustering technique is hierarchical clustering algorithm. Here,

the algorithm starts by considering all the genes as separate clusters. Then, based

on the distance, the closest two genes are joined to build a single cluster. Next the

above step is repeated, but now the two genes clustered together are considered as a

single node. This procedure is followed until all the genes are put into one cluster.

The results are usually viewed as dendrograms. By cutting the tree at different levels,

different numbers of clusters are obtained.

The self-organizing map is another clustering technique that utilizes learning algo-

rithms seen in neural networks [69]. Based on a user-defined number, nodes are

initialized randomly. An iteration proceeds by picking a gene randomly and mov-

ing the nodes toward the selected gene by amounts that depend on the Euclidean

distances between expressions of the selected gene and the nodes. The closest node

is moved the most, while the furthest node is moved the least. This iteration is re-

peated for a large number of times (20000–50000), at the end of which the genes are

organized as clusters.

Determining the Number of Clusters

Usually, deciding the number of clusters in microarray data is a difficult task. How-

ever, as discussed under gene clustering algorithms, the number of clusters is required

as an input to many clustering algorithms. Cross validation techniques such as hold-

out cross-validation, k-fold cross-validation, or leave-one-out cross-validation [41] are

used to determine the number of clusters. All validation techniques use a subset of
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the data for cluster identification and use the remainder to evaluate the performance.

In the case of gene clustering, the average distance of the remaining genes to the

closest cluster is commonly used as a performance measure.

3.2.3 Generating Co-Expression Networks

In a co-expression network, genes are connected to form a network by joining pairs

of genes that are close in terms of their expressions. Closeness between genes is

measured using one of the distance measures discussed earlier in the Section 3.2.2.

Whether to make a link between two genes or not depends on the threshold selected

for the distance, and different networks result in accordingly. A visualization software

is typically used to view the gene network. One such software, Cytoscape [66], can

format the network according to different criteria, in addition to displaying it. As a

result, it is possible to identify groups of genes, sometimes referred to as hubs, that

are more tightly connected to each other within the group than those outside the

group. These hubs are analogous to the clusters obtained from clustering algorithms.

Determining a threshold for the distance measure is a relevant question in co-expression

networks. The threshold is sometimes decided in accordance with the power law dis-

tribution [14]. Power law distributions are observed in various types of networks

arising in fields such as physics, chemistry, biology, computer science, and social sci-

ences. The main idea behind power law distribution is that nodes of these networks

contain the relationship

log (f(x)) = k log (x) + log (a), (3.1)
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where x is the number of connected neighbors of a given node, and f(x) is the

number of times x is observed. The gradient k is shown to have a value in the range

of −1.8 to −2.2. The intercept log(a) is a constant for a given network. In other

words, these networks consist of relatively few nodes with a large number of connected

neighbors and many nodes with a small number of neighbors. The threshold for a

gene expression network is decided in a way that the power law distribution for the

resulting network has a gradient in the same range as the other networks. Although

it is still not experimentally proved that gene expression networks do really follow the

power law distribution, this criterion can be used as a systematic method for deciding

thresholds.

3.2.4 Extracting Probable Interactions among Co-expressed

Genes

The main objective of gene clustering and co-expression networks is to identify pos-

sible interactions between genes using transcriptomics data. Genes under the control

of a single regulator are likely to show similar behaviors and thus being co-expressed.

However all the genes that show co-expressions under few experimental conditions are

not necessarily be co-regulated. In order to identify actual regulatory relationships

between genes, it is required to use additional criteria to process co-expressed genes

identified earlier.

Use of existing biological knowledge of relationships between genes and metabolic

pathways is one way to identify co-regulatory genes among co-expressed genes. Data

mining techniques are increasingly being used to identify the relationships between
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genes reported in the literature [20]. Since these techniques typically include inter-

actions from different organisms, it is possible to identify novel relationships for the

organism being studied. Also it serves as a validation step for the known genes.

Transcription factors are a group of proteins which play a main role in transcription

regulation. Transcription factors regulate the transcription of genes by targeting

specific sequences of DNA. These DNA sequences are commonly referred to as binding

site motifs. Transcription factors induce or suppress a gene expression by binding to

a DNA sequence adjacent to the gene they regulates. The presence of conserved

sequences in the upstream region of a group of genes suggests that they might be

regulated by a single transcription factor.

Identification of binding site motifs is not a trivial task since these motifs are not nec-

essarily identical between genes. Several methods are available ([55]–[64]) to identify

such motifs. Algorithms presented in [55] and [34] take upstream regions of a group of

co-expressed genes, discovered using clustering or transcription networks, and search

for conserved regions within them. Consensus [34], uses a greedy algorithm to search

and align conserved sequences in a set of upstream DNA sequences, so that the final

alignment matrix maximizes the information content. Since an exhaustive search over

all the combinations is usually computationally not practical, these algorithms em-

ploy heuristic search techniques. In contrast, [83], an algorithm based on dictionary

building models, searches entire genomes and predicts over-represented sequences.
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3.3 Results

3.3.1 Both Transient and Consistent Changes in Gene Ex-

pressions are Observed in Synechocystis sp. PCC 6803

Subjected to High Light Conditions.

Genes in Synechocystis 6803, showing differential behaviors under high light exposure,

are identified using the t-test and and applying a cutoff for the log-ratio values. 762

genes among 3459 total genes in the microarray had a statistical significance value less

than 1% and a fold change of more than 1.3 compared to the control condition, in at

least one time point. These genes are selected for further analysis. Fold change cutoff

of 1.3 is successfully verified using independent RT-PCR experiments. Expressions of

762 genes are discretized to three levels. A gene is assigned +1, if fold change is greater

than 1.3, −1, if fold change is less than 1/1.3, that is more than 1.3 time reduction

in the target expression compared to the control, or 0, otherwise. Main behaviors

among the genes are identified using discrete expressions and clustered together. In

Figure 3.1, we display the largest 11 clusters. Expressions of the remaining genes are

observed manually and some of them are associated with the relevant clusters based

on their functional categories. Expressions of the remaining genes are shown in the

last sub-figure.

We observe genes with both transient as well as consistent modifications of their

expression levels when cells are subjected to high light conditions. Genes in clusters

1–3 are down-regulated during the experiment. These genes have different delays till

they start responding to the high light, with those in cluster-1 responding immediately

and those in cluster-3 responding with about 2-hour delay. They continued to be
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Figure 3.1: Gene clusters for transcriptomics data from Synechocystis sp. PCC
6803, subjected to high light stress conditions.

Eleven main behaviors of genes are identified using discretized gene expressions.
Among them, gene groups with both transient and consistent changes in their
expressions are observed. Genes take different amounts of delays to respond,

allowing us to infer the sequence of events occur in the cell.

down-regulated during the remaining time of the experiment. Genes in clusters 8–10

show analogous behaviors except that their expressions levels are increased under

high light. Genes in clusters 4–7 and those in cluster-11 show transient behaviors,

where gene expressions reaching to normal levels towards the end of the experiment.

Analysis of the genes in each cluster reveals that the genes from different biological

functions behave similar manner under the influence of high light. Figure 3.2, ex-

tracted from [70], shows the distribution of genes from different gene functions among

various clusters. These clusters allow us to derive conclusions on overall response of

Synechocystis sp. PCC 6803 to high light. Especially we observe down-regulation of

photosynthesis and pigment biosynthesis related genes, soon after cells are subjected

to high light (sub-figure 1), followed by carbon fixation and nitrogen assimilation
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Figure 3.2: Composition of gene clusters for transcriptomics data from
Synechocystis sp. PCC 6803, subjected to high light. Genes belonging to same

biological functions show similar overall behavior.
(Extracted from [70])

related genes after sometime. This allows us to come to conclusions on integrated re-

sponses on energy production (photosynthesis and pigment biosynthesis) and energy

consumption (carbon and nitrogen fixation) related processes.

3.3.2 Preferential Excitation of Photosystem-I and Photosystem-

II Gives Rise to Different Cellular Responses.

In response to preferential excitation of Photosystem-I (PS-I) and Photosystem-II

(PS-II), a total of 1202 genes show differences in their expression levels with at least

1.3 fold change between two conditions, measured at 1% significance level. Of these

genes, 224 genes with greater transcripts abundance under PS-I excitation and 243

genes with greater transcripts abundance under PS-II excitation, show significant

changes in abundances only in one time point. Remaining genes are differentially

expressed in multiple time points. Similar to high light treatment we observe both

transient and consistent changes in the gene expressions. In Figure 3.3, resulting

clusters with distinct behaviors are shown.
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Figure 3.3: Gene clusters for transcriptomics data from Synechocystis sp. PCC
6803, subjected to preferential excitation of Photosystems I and II. Eleven distinct

behaviors are identified using discretized expressions.

As discussed in [71], distinct transcriptome response is observed in the two treat-

ments, where cyclic photosynthetic electron transport chain becoming active under

preferential excitation of photosystem-I and cytochrome-c-oxidase and photosystem-I

becoming active during preferential excitation of photosystem-II.

3.3.3 About 10% of the Genes in Synechocystis sp. PCC

6803 Respond to All Three Types of Redox Stresses;

High Light, DCMU and Preferential Excitation of PS-

I and PS-II

We discovered 342 genes, whose expressions are significantly affected by all three redox

stress conditions, namely high light, DCMU and preferential excitation of PS-I and

PS-II. Figure 3.4 shows the number of genes differentially expressed under different

conditions. Three stresses have significant effect on the transcriptome of Synechocystis
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Figure 3.4: Number of differentially expressed genes in three redox experiments
performed using Synechocystis sp. PCC 6803. Many energy generation related

processes get affected under these stress conditions.

sp. PCC 6803. The number differentially expressed genes in each experiment varied

between 25% to 50%. As observed from Table 3.1, we see clear differences in cellular

responses to these three stresses. However, as a general trend, we see cells reduce

their energy generation activities in adapting to all three stresses, as observed by

modifications in the processes ATP synthase and photosystems.

Self organizing maps are utilized to identify the main gene behavioral patterns among

342 genes that are affected in all three conditions. Based on k-fold cross validation, we

determined that we may identify 12 gene clusters in the data. In Figure 3.5, we show

the results from k-fold cross validation and the clusters obtained using self organizing

maps, plotted in the first two-principle component space. These 342 genes may be
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Table 3.1: Percentages of differentially expressed genes in various biological
pathways of Synechocystis sp. PCC 6803, under three different Redox stress

conditions

Cyanobase Pathway T
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ATP synthase 10 80% 90% 90% 90%
CO2 fixation 15 40% 53% 73% 53%
NADH dehydrogenase 23 30% 43% 70% 78%
Photosystem-I 16 63% 81% 75% 88%
Photosystem-II 27 48% 63% 78% 74%
Phycobilisom 18 67% 78% 72% 100%
Ribosomal proteins 63 60% 73% 81% 76%
RNA synthesis 23 22% 35% 78% 61%

Level of effects from the three stresses: high light, DCMU and preferential excitation of two
photosystems; is different for different biological pathways. However, many energy generation
related processes and growth related processes get significantly affected in all three conditions.

utilized to identify the key genes responsible to redox stress response in cyanobacteria

and target genes can be verified using additional experiments.

3.3.4 Transcriptomics Data Analysis Leads to Discovery of a

Novel Transcription Factor in Arabidopsis thaliana

Microarray data analysis of Arabidopsis thaliana revealed that 20% and 8% of expres-

sions of 20436 genes are differentially regulated under high light and DCMU treat-

ments, respectively. Approximately 6% of genes are identified in both perturbations

and are classified as potential redox responsive genes (RRGs). Two co-expression net-

works are generated in an attempt to identify genes whose expressions are correlated

during adjustment to homeostasis under high light and DCMU conditions. As shown
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Figure 3.5: k-fold cross validation provides a guideline to determine the optimal
number of clusters. Self organizing maps can be used to classify genes among these

clusters.
We selected twelve clusters as the optimum number of clusters for the gene

expressions. This is the minimum number of clusters, where no significant reduction
in average distance is achieved by increasing the cluster count. Resulting clusters

from self organizing maps based gene classification are shown in 3.5(b).

in Figure 3.6, ten subnetworks are identified from the high light network. These

clusters are further classified considering the expressions under DCMU experiment.
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Figure 3.6: Correlation network obtained for Arabidopsis microarray data under
highlight treatment. Ten gene clusters are identified from the network and used for

further analysis [39].

In order to examine the biological significance of these gene clusters, the upstream

regions of the relevant genes are analyzed using the Consensus algorithm [34]. Up

to 500 base pairs of DNA sequences from the upstream of the co-expressed genes are

searched for conserved sequences of eight bases. Discovered regulatory region motifs

together with their significance values are given in Figure 3.7. Several motifs that are

previously identified related to other stresses, such as light, dehydration, and abscisic

acid, are among them [39].

In order to further investigate the significance of these gene clusters, individual ex-

pressions of genes belonging to the largest sub-cluster are examined. Among these

genes, 30 genes are consistently down regulated by more than two fold in all time

points under both experimental condition. Figure 3.8 shows the relevant 30 genes

and the connections between them. Several well characterized stress responsive genes
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Figure 3.7: Regulatory region motif analysis for the gene subnetworks, identified
using transcriptomics data for Arabidopsis thaliana.

Consensus algorithm [34] is used to search for conserved regulatory region motifs in
the upstream regions in the co-expressed gene groups. Expressions of genes

belonging to each cluster under two experimental conditions; highlight and DCMU
treatments, conserved regulatory region motifs and their significance values

(p-values) discovered using Consensus are shown.

are identified among these genes. A novel regulatory gene, redox-responsive tran-

scription factor 1 (RRTF1), is connected to many of these stress response genes.

Literature search reveals that RRTF1 gene is differentially expressed in the majority

of previously reported transcriptomics experiments. With additional biological exper-

iments, this genes is later shown to have an important role in redox stress response

of Arabidopsis [39].
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Figure 3.8: Subnetwork of thirty genes consisting of many stress responsive genes.
We focused on a thirty-genes subnetwork comprises of many stress responsive genes,
selected from the correlation network in Figure 3.6. Searching through the related
publications, a novel transcription factor, RRTF1, related to several of these stress
responsive genes is identified in the network. Later biological experiments verified

that it plays an important role in redox stress response in Arabidopsis thaliana [39].

3.4 Discussion and Conclusions

In this work we presented several techniques used to identify differential behaviors in

gene expressions under various stress conditions, that gives rise to redox perturbations

in photosynthetic organisms. We used these techniques to analyze five transcriptomics

data sets from two photosynthetic organisms.

We discovered that cyanobacteria show significant transcriptional level response to

redox stress conditions, with about 10% genes getting affected by all stresses. We

observed both stress specific responses as well as general responses by the cells. These

genes can be targeted in additional experiments to identify those that are central to

redox stress response in cyanobacteria.

Transcriptomics data analysis in Arabidopsis thaliana led to the discovery of novel

transcription factor that was later shown to be a key player in maintaining redox
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homeostasis in plants. We utilized both regulatory region motif finding algorithms

and literature search to identify this gene among many possible targets.
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Chapter 4

Coordination between Biological

Pathways in Response to Different

Environmental and Genetic

Modifications

4.1 Motivation

Living organisms modify activity level of their biological processes depending environ-

mental conditions. Though response of individual genes might be different between

conditions, some general behavior patterns in biological processes can be observed.

For example in [70], it is shown that overall expression level of genes in energy gener-

ating photosynthesis process is lower when bacterial cells are subjected to high light

conditions. It is also shown that level of activity in energy consuming processors

such as carbon and nitrogen fixation becomes lower subsequently. Similar behaviors

were observed in DCMU and preferential excitation of PS-I and PS-II systems. As

discussed in Chapter 5, genes in many biological processes in Cyanothece sp. ATCC

51142 peak during specific time of the day. This suggests the exitances of highly
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coordinated regulatory relationship between genes in main biological processes in

cyanobacteria.

With increasing number of publicly available microarrays, ability to derive reliable

gene regulatory networks from transcriptomics data has been shown. In [8], 266

microarray data sets from Halobacterium salinarum NRC-1 under different environ-

mental and genetical perturbations are used to get a gene regulatory network with

prediction capabilities. In [25], existing gene regulatory network for Escherichia coli

was extended using expression data from 445 microarrays. Many of the predicted re-

lationships were validated using experimental procedures. However a comprehensive

regulatory network for cyanobacteria still does not exist.

In this chapter, we propose the use of Bayesian network approach to study cellular

response of cyanobacteria. We discuss how to combine individual gene expressions,

obtained using microarrays from different platforms, to get biological process level

behaviors. Biological process level information carry more information towards un-

derstanding the overall cellular behavior. We then discuss several approaches available

for identifying the structure of a Bayesian network and derive corresponding system

level regulatory network for cyanobacteria, Synechocystis sp. PCC 6803. We discuss

a method to quantify the strengths of the associations between different biological

processes. The resultant network is used to simulate some of the experiment con-

ditions and the responses of the network to those conditions are inferred. We show

that these inferences agree with the observations made in the original experiments.

Finally, we discuss how these type of networks could be helpful, in making decisions

on controlling the cellular activities, so that the desired behaviors are achieved.
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4.2 Probabilistic Approaches: Bayesian Networks

There are several approaches to derive regulatory networks using transcriptomics data

including dynamical system modeling based on continues time and discrete time mod-

els and correlation networks. These models try to identify regulatory relationships

between different genes. However, due to under-determined nature of the problem

where number of variables (genes) are significantly higher compared to number of

observations (experiments), these models are unreliable and typically need extensive

verifications using additional methods. The problem becomes more significant when

the data are obtained from different microarray platforms and experimental proce-

dures. In such situations, probabilistic networks are shown to perform better [68].

Bayesian networks have been very popular in number of fields, including artificial

intelligence, decision theory, data fusion and medicine [59]. This approach is shown

to be very powerful, when one has to work with imperfect data. This feature makes

Bayesian networks an important tool in the field of biology. The data generated

in biological experiments are, most of the times, noisy and contained lot of missing

values. Bayesian networks can analyze such data sets very effectively. Bayesian

approach for biological systems has several desirable properties including, the solid

probabilistic background behind the algorithms, the ability to combine data from

different conditions and platforms and the ability to make inferences on the network

responses under different perturbations. However, the use of Bayesian networks in

biology had been constrained, for a long time, due to limited availability of data.

Previous applications of Bayesian networks, for studying gene regulation, has been

limited to a selected set of genes. For example, [27] focused on the cell-cycle related

genes in Saccharomyces cerevisiae.
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A Bayesian network is a graphical model representing the probabilistic relationships

between random variables. The network is usually presented as a directed acyclic

graph (DAG), which encodes the conditional independence for the joint probability

distribution of the variables. Once the network is restricted to a DAG, given the

values of its parent nodes, parents(Xi), the probability of a child node Xi becomes

independent of all other non-parent nodes. For example, using Bayes’ rule, the joint

probability distribution for a four node Bayesian network can be written as

P (X1, X2, X3, X4) = P (X1)×P (X2/X1)×P (X3/X1, X2)×P (X4/X1, X2, X3), (4.1)

and based on the conditional independence represented by the structure of the net-

work shown in Figure 4.1, this expression is simplified to

P (X1, X2, X3, X4) = P (X1) × P (X2/X1) × P (X3/X1) × P (X4/X2). (4.2)

In general, the joint probability distribution of a graph can be given as

P (X1, X2, ..., Xn) =

n
∏

i=1

P (Xi/parents(Xi)). (4.3)

Conditional independence makes the computation of joint probability distribution of

a Bayesian network much simpler. We would like to refer to [36] for more details on

Bayesian networks.

In biology, Bayesian networks are useful for inferring relationships between genes or

gene functions from microarray data. One of the hurdles in this approach is, again,

the small number of observed values compared to the variables in the system. Also,
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Figure 4.1: A Bayesian network with four nodes, presented as a directed acyclic
graph.

Arrows are drawn from parent nodes to child nodes. Given values of the parent
nodes, the probability distribution for a child node becomes independent of all other

non-parent nodes in the network.

learning the structure of a network with more than 20 variables is a computationally

challenging problem.

4.3 Learning the Structure of the Network

Since searching entire domain of structures is super-exponential [63], in most of the

practical applications, structure learning is done using heuristic methods. Structure

learning is performed either as a constraint-based procedure, where links are removed

from the network using conditional independence criteria, or as a score-based pro-

cedure, where links are added or removed to minimize/maximize a particular score

function.

In [12] greed equivalence search (GES) algorithm using Markov equivalence classes

is introduced. The GES algorithm starts with an empty network and derives the
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optimal network following a two-step procedure. In the first step network is extended

by adding links to the network, one at each cycle. The second step involves removing

links from the resultant network. Algorithm stops when score cannot be improved

using any of these two steps. Structure learning algorithms based on Maximum

Weight Spanning Tree (MWST) [13] restrict the search space only to tree structures

and thereby improves the execution time. K2 algorithm requires the user to specify

the hierarchy of the nodes and algorithm searches for the best structure only among

the networks that satisfy the given hierarchy. When node hierarchy is unknown, K2

algorithm can be initiated with MWST [33] or using mutual information approach

(K2-MI) [11].

One of the commonly used score functions, Bayesian information criteria (BIC), in-

volves maximizing

BIC(S/D) = log2 P (D/θ̂s, S) −
size(S)

2
log2(N), (4.4)

where S is the structure of the network defining the nodes and the links between

the nodes, θ̂s is the set of estimated parameters. D is observed data given as an

M×N matrix, where N is the number of nodes and M is the number of observations.

Since the entire domain of structures is super-exponential, searching for the correct

structure in large networks with more than 20 nodes is done using heuristic methods.
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4.4 Quantifying Influence between Nodes: Links

Strengths in the Network

All the links in a network do not have the same level of influence from the parent

nodes to the child node. In order to quantify the link strengths, the true link strength

percentage [81], given by

LStrue(X → Y ) =
U(Y/Z) − U(Y/X,Z)

U(Y )
× 100%, (4.5)

where

U(Y/Z) = −
∑

z

p(z)
∑

y

p(y/z) log2 p(y/z),

U(Y/X,Z) = −
∑

x,z

p(x, z)
∑

y

p(y/x, z) log2 p(y/x, z),

is used. Here LStrue(X → Y ) is true link strength of the arrow from X to Y .

Z corresponds to the parents of Y , except for X. The corresponding probability

densities are represented by p(), and the summations are taken over all combinations.

True link strength quantifies the percentage reduction of uncertainty on the state of

a child node given the state of a parent node. It is computed as the ratio between

reduction of entropy of child node given the parent node and the original entropy of

the child node.
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4.5 Inferring Behavior of the Network under Dif-

ferent Conditions

One of the powerful features of Bayesian networks is making inferences on expected

changes in the networks under different perturbations. This allows one to make pre-

dictions on optimal changes to be made so that a desired behavior could be obtained

from the system. There are several existing algorithms to perform the inferences

on Bayesian networks. The junction tree algorithm; an exact algorithm is one of

the popular technique to get marginal probabilities of a bayesian network given an

evidence(s) [36].

4.6 Bayesian Network for Biological Processes in

Synechocystis sp. PCC 6803

4.6.1 Data Processing

Transcriptomics data from 164 published and unpublished microarray experiments

are combined to derive a regulatory network for Synechocystis sp. PCC 6803. Some

of these data sets are from time course data on a single perturbation, while the others

are single time point data with different perturbations. Published data sets were

collected from the both NCBI-GEO [21] and KEGG expression [37] databases.

Since data is obtained from different sources, the differences in the experimental

conditions and microarray platforms give rise variations in the data and make the

combined analysis difficult. Data need to be processed and combined carefully, so
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that the variations between the platforms had minimal effect on the final conclusions.

Raw data sets are processed using the robust version of LOWESS normalization [60],

to remove the bias in the data. For other data sets, the normalized data from the

corresponding databases are used.

In order to avoid the effects of local changes in different microarray chips, differential

behaviors of genes are identified using statistical significance tests only. Further the

data is discretized into three levels; up, down and not expressed, so that the individual

experiments have the same contribution towards the final conclusions. This step was

performed for each experiment separately to ensure, that it is independent of the

microarray platform variations. Figure 4.2 shows the histogram for distribution of

genes and the differentially expressed experimental conditions. Majority of the genes

are differentially expressed in about 20%-35% of experiments while in about 10% of

genes, expressions are modified in more than 90% of conditions. Biological significant

of these highly expressed genes are explored in detail in [71].

4.6.2 Obtaining Process Level Behavior using Gene Expres-

sions

Since, Synechocystis sp. PCC 6803 consists of in excess of 3000 genes, deriving a global

regulatory network at gene level, using Bayesian network approach, is computationally

infeasible. Further gene level networks, for most of the times, are difficult to interpret

and do not provide complete picture of the cellular response. This problem becomes

further complicated, since the role of many of the genes are currently unknown.
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Figure 4.2: Histogram for number of genes vs. fractions of differentially expressed
conditions.

The most of the genes are differentially expressed in about 20%-35% of the
conditions.
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In contrast, a network at biological processes level provides more useful information

for biologists. Behaviors of biological processes provide direct interpretations on the

nature of the overall response of cells to different experiment conditions. Further,

the process level behaviors are determined using a group of genes. As a result the

missing values of individual genes have a minimal effect on the computations. In this

analysis, the KEGG metabolic pathway [38] classifications are used to group related

genes into biological processes.

The distributions of individual gene expressions from different pathways showed a

shift of their sample means to different levels depending on stress conditions. The

level of the shift in sample means of the distributions was quantified using one sample

‘Kolmogorov-Smirnov (KS)’ test [50]. KS-test is utilized to determine whether the

observed log-ratio values of genes in each pathway are significantly different from a

distribution with a zero mean. If the null hypothesis is rejected at a significance

level of 5%, the particular pathway is assigned +1 or −1, depending on whether the

mean value is > 0 or < 0, representing an up and down regulation respectively. If

null hypothesis could not be rejected, we assign that pathway a value 0, indicating

that the particular pathway is not differentially expressed under the given condition.

In Figure 4.3, the distribution of individual gene expressions of genes belonging to

the process ribosome is shown. Based on KS-test at 5% significance level, ribosome

pathway is assigned values −1, 0 and +1 in Figure 4.3 (a), (b) and (c) respectively.

The Synechocystis sp. PCC 6803 genes represent 100 different KEGG metabolic

pathways. After considering the percentage of experiments each pathway is differen-

tially regulated and the number of genes included under each pathway, we selected

51 pathways as informative and used for further analysis.
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Figure 4.3: Distribution of log2(Target/Control) values of individual genes in
ribosome pathway under three different conditions.

Using KS-test, this pathway was assigned three states namely DOWN (-1) , NOT
CHANGED (0) and UP (+1) in distributions shown in (a),(b) and (c), respectively.

4.6.3 Identification of Network Structure

Assuming observations are independent of each other, formulae for BIC in 4.4 can be

simplified to

BIC(S/D) =

M
∑

i=1

log2P (Di/θ̂s, S) − log2(M) ∗ size(S)/2. (4.6)

where Di is expression values of processes in ith experiment condition, given as an

N × 1 vector.

Since the process level expressions are discretized, computation is performed as a

frequency counting step given by

BIC(S/D) =

N
∑

i=1

qi
∑

j=1

ri
∑

k=1

Cijklog2

(

Cijk

Cij

)

−
log2(M)

2

N
∑

i=1

qi(ri − 1), (4.7)

where N corresponds to the number of nodes in the network, which is 51, correspond-

ing to the number of biological processes selected for the analysis. ri corresponds to

the number of states of process Xi, which is 3 for all the nodes in the network.
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qi =
∏

Xl∈parents(Xi)
rl denote the number of possible configurations for the parent

nodes of Xi which reduces to qi = 3pi where pi = #parents of Xi. Cijk corresponds

to the number observations for particular combination of i, j and k. Cij is computed

as Cij =
∑ri

k=1 Cijk.

With discretized data, conditional entropy, U(.), calculations to quantify the link

strengths also simplified to

U(Y/Z) = −
1

M

∑

z

(

∑

y

Nzy log2

Nzy

Nz

)

U(Y/X,Z) = −
1

M

∑

z,x

(

∑

y

Nzxy log2

Nzxy

Nzx

) (4.8)

where total observations, M = 164. Nzy, Nz, Nzxy and Nzx correspond to the relevant

counts for different configurations of z, y and x.

4.6.4 Software Implementation

Matlab (www.mathworks.com) versions of the related algorithms have been imple-

mented in different toolboxes by Kevin Murphy [54], Olivier Francois [26] and Imme

Ebert-Uphoff [81]. However some of these implementations scaled poorly with the

networks having large number of nodes. As a result, modifications were needed to

improve the speed. We re-implemented routings for cache management used to save

scores for already computed sub-graphs, algorithm for conversions from partially di-

rected acyclic graphs to directed acyclic graphs and algorithm for calculation of local

scores using BIC, in C++, which improved the total execution time by orders of

magnitudes. This enabled us to derive the relevant network using a regular personal

computer within short period of time.
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Table 4.1: Bayesian information criterion (BIC) scores for networks of biological
pathways, obtained using different structure learning algorithms.

Method BIC Score (×103)
GES -7.4709
MWST -7.4922
K2-MWST -7.4775
K2-MI -7.6647

Greed equivalence search (GES) algorithm resulted in a network having the highest
score. However it takes more computational time compared to other algorithms. All

algorithms other than GES limit their search domain to certain classes of DAGs.

4.7 Results and Discussion

4.7.1 Network Structure

Final network for biological processes in Synechocystis sp. PCC 6803 is derived using

GES algorithm with BIC as the score function. This algorithm resulted in a network

with the highest score compared to other algorithms available for structure learning,

including MWST, K2-MWST and K2-MI. Table 4.1 gives the highest BIC scores

obtained using different algorithms.

Figure 4.4, shows the resulting network for the selected 51 pathways. Colors of the

links represent the influence of corresponding parent node on the child. The link

strength percentages for the network varied between 15.8% - 45.8%. The strongest

links are observed between Carbon Fixation and Glycolysis / Gluconeogenesis metabo-

lites; Purine and Pyrimidine metabolism; and Citrate cycle (TCA cycle) and Reduc-

tive carboxylate cycle (CO2 fixation). Also strong connections are observed connect-

ing many central metabolic pathways in the cell, including energy generation related

pathways such as oxidative phosphorylation and pentose phosphate pathway; energy

storing pathways such as carbon fixation and; energy consumption and growth related
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Figure 4.4: Bayesian network for KEGG pathways derived using GES algorithm and
BIC scoring criteria.

The colors of the arrows represents the strength of the links, quantified using the
true link strength percent (4.5).
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pathways such as ribosome, glutamate and purine metabolism etc. This suggests a

well coordinated behaviors of the processes critical to the survival of the cells. Ta-

ble 4.2 lists strengths of the links in the final network.

Table 4.2: Association between different biological pathways in Synechocystis sp.
PCC 6803 computed using true link strength percentage.

Pathway-1 Pathway-2 Strength

Carbon fixation Glycolysis/Gluconeogenesis 45.8

Purine metabolism Pyrimidine metabolism 42.6

Aminoacyl-tRNA biosynthesis Alanine and aspartate metabolism 38.6

CO2 fixation Citrate cycle (TCA cycle) 38.3

Glutamate metabolism Arginine/proline metabolism 36.5

Glutamate metabolism Valine, leucine & isoleucine degradation 35.9

Purine metabolism Aminoacyl-tRNA biosynthesis 35.5

Glycine, serine & threonine metabolism Purine metabolism 34.2

Glycolysis / Gluconeogenesis One carbon pool by folate 33.0

Carbon fixation Oxidative phosphorylation 32.8

Fatty acid biosynthesis Glycine, serine & threonine metabolism 32.8

Carbon fixation Pentose phosphate pathway 31.8

Valine, leucine and isoleucine biosynthesis Glutamate metabolism 31.2

Tyrosine metabolism Ubiquinone biosynthesis 30.9

Urea cycle and metabolism of amino groups Pentose phosphate pathway 30.7

Pyrimidine metabolism Selenoamino acid metabolism 29.8

Selenoamino acid metabolism Methionine metabolism 29.6

Ribosome RNA polymerase 29.5

Glycolysis / Gluconeogenesis Fatty acid biosynthesis 29.4

Peptidoglycan biosynthesis Porphyrin and chlorophyll metabolism 29.4

Reductive carboxylate cycle (CO2 fixation) Phenylalanine metabolism 28.6

Purine metabolism Phenylalanine & tryptophan biosynthesis 27.1

Glutamate metabolism Urea cycle and metabolism of amino groups 27.1

Reductive carboxylate cycle (CO2 fixation) Nicotinate and nicotinamide metabolism 27.0

Purine metabolism Valine, leucine and isoleucine biosynthesis 26.9

Glyoxylate and dicarboxylate metabolism Reductive carboxylate cycle (CO2 fixation) 26.9

Histidine metabolism Tyrosine metabolism 26.9

Fatty acid biosynthesis Sulfur metabolism 26.8

Ribosome Oxidative phosphorylation 26.8

Peptidoglycan biosynthesis D-Glutamine and D-glutamate metabolism 26.6

Urea cycle and metabolism of amino groups Peptidoglycan biosynthesis 26.0

One carbon pool by folate Glyoxylate and dicarboxylate metabolism 26.0

One carbon pool by folate Porphyrin and chlorophyll metabolism 26.0

Peptidoglycan biosynthesis Ubiquinone biosynthesis 25.9

Urea cycle and metabolism of amino groups ABC transporters 25.5

D-Glutamine and D-glutamate metabolism Carotenoid biosynthesis 24.0

Tyrosine metabolism Cysteine metabolism 23.6

Pentose phosphate pathway Pyruvate metabolism 23.1

Valine, leucine and isoleucine biosynthesis Pantothenate and CoA biosynthesis 22.8

Valine, leucine and isoleucine degradation Fatty acid metabolism 22.6

Purine metabolism Lysine biosynthesis 21.7

Tyrosine metabolism C5-Branched dibasic acid metabolism 21.3

Valine, leucine and isoleucine degradation Tryptophan metabolism 21.1

Ribosome ABC transporters - Organism-specific 21.0

Continued on next page
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Table 4.2 – continued from previous page

Pathway-1 Pathway-2 Strength

Aminoacyl-tRNA biosynthesis Ribosome 20.8

Nicotinate and nicotinamide metabolism Thiamine metabolism 20.1

Nicotinate and nicotinamide metabolism Nucleotide sugars metabolism 20.1

Phenylalanine metabolism Histidine metabolism 20.1

Oxidative phosphorylation Photosynthesis 20.0

Photosynthesis Photosynthesis - antenna proteins 20.0

Histidine metabolism Riboflavin metabolism 19.8

Ubiquinone biosynthesis Glutathione metabolism 19.0

Glutamate metabolism Nitrogen metabolism 17.8

Fatty acid metabolism Lysine degradation 16.8

Citrate cycle (TCA cycle) Glycerolipid metabolism 15.8

Higher links strengths suggest stronger connection between corresponding pathways.

In general stronger connections are observed between central metabolic pathways,

suggesting a higher level of coordination between vital biological processes.

4.7.2 Network Inference: Using Network to Make Predic-

tions on Cell Behavior Under Different Treatments

In this section, we try to simulate some of experimental conditions, observe the re-

sponses of the network and compare them with results obtained in actual biological

experiments. In Table 4.3, we list some of the experimental conditions considered,

main process(s) affected by the treatment and the evidence entered into network to

simulate these conditions. We select the pathways that are expected to get affected

directly by the corresponding growth condition as inputs and observe changes in the

remaining pathways due to changes in the status of the inputs.

In Figure 4.5 we show the changes in probabilities of being up-regulated for some of

the processes under different CO2 conditions under elevated light inputs. Level of

light is entered by changing status of photosynthesis to +1 while the CO2 level is
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Table 4.3: Simulating response of the Bayesian network under different
experimental conditions.

Experiment Condition Process Evidence
Low light growth Photosynthesis -1
Low light growth with glucose Photosynthesis -1

Glycolysis +1
High light growth with ambient CO2 Photosynthesis +1

CO2 Fixation 0
High light growth with limited CO2 Photosynthesis +1

CO2 Fixation -1
High light growth with high CO2 Photosynthesis +1

CO2 Fixation +1
High light growth with limited N Photosynthesis +1

Glutamate -1

Evidences are entered into the network by setting appropriate status for the relevant
processes. Pathways which are expected to get affected directly by the
corresponding growth conditions are selected as inputs to the network.

represented by changing the status of CO2 fixation to appropriate levels. With these

evidences, inferences made from the network reveal a slight increase in probabilities

of being up-regulated for many processes. However these probabilities reduce if the

CO2 supply is limited and increase significantly under higher level of CO2 supply.

These results agree with the observations made in the original experiments, where it

is shown that under elevated light conditions, higher growth rates are achieved with

high level of CO2 inputs but limited CO2 levels hinder the growth ([35] and [70]).
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Figure 4.5: Inference from the network simulating some of the experimental
conditions.

Probabilities of some of the biological processes being up-regulated under different
growth conditions with the presence of high light are presented. Probabilities of

being up-regulated are significantly increased for many processes when a higher level
of CO2 is present. These simulation results agree with the observation made in the

original experiments, where higher growth rates were achieved under such
conditions. c1: original, c2: photosynthesis UP, c3: photosynthesis UP and carbon
fixation NOT CHANGED, c4: photosynthesis UP and carbon Fixation DOWN, c5:

photosynthesis UP and carbon fixation UP, p1: carbon fixation, p2:
glycolysis/gluconeogenesis, p3: fatty acid biosynthesis, p4: glycine, serine and

threonine metabolism, p5: purine metabolism, p6: valine, leucine and isoleucine
biosynthesis, p7: lysine biosynthesis and p8: pyrimidine metabolism
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4.7.3 Comparison between Bayesian Networks and Correla-

tion Measurements

Correlation measurement is an alternating approach for determining relationships

between variables. In order to see how Bayesian and correlation approaches compare

with each other we generated a correlation network as follows.

Since the expressions are discretized, we use Hamming distance to measure the sim-

ilarity between different pathways. The Hamming distance measures the fraction of

times two expressions differ from each other and is defined as,

D(X, Y ) =

∑

Mxy
I(Xj 6= Yj)

Mxy

(4.9)

where X and Y are two pathways, Mxy is number of experiment conditions considered

for the distance measurement between X and Y , and I() is the indicator function

which takes values I(true) = 1 and I(false) = 0.

Two pathways, which are not differentially expressed in a large number of conditions,

can give rise to a smaller Hamming distance and thus can be misleading. In order to

avoid this, we included only those conditions, where at least one of the two expressions

was differentially expressed.

In order to compare with the Bayesian network, a correlation network is generate by

connecting those nodes where Hammingdistance ≤ 0.3. If any node is unconnected

to the network based on this criterion, it is linked to its nearest neighbor in terms

of the distance. This resulted in a network having the same number of nodes and

connections to that of the Bayesian network. There are 26 links among the total of

55, which are common to both networks.
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Figure 4.6: Hamming distance and true link strength measurements for connections
in the Bayesian network.

Connections common to both Bayesian and Correlation networks consist of small
Hamming distances. However Bayesian network captured some non-linear
associations which are not identified by correlation based measurements.

In Figure 4.6, Hamming distance and true link Strength measurements for links in

the Bayesian network are shown. It should be noted that the links common to both

Bayesian and correlation networks consist of small Hamming distances (thus more

similar in their expressions). In additions Bayesian network consisted of several links

with larger Hamming distances, indicating that it captured some non-linear relation-

ships, which were not observed by linear measurements such as Hamming distance.

4.8 Conclusions

In this section we presented the possibility of using probabilistic approaches to in-

tegrate the transcriptomics data from numerous sources. We proposed a statistical

approach to derive the biological pathway level behaviors using expressions of in-

dividual genes. A probabilistic network based on Bayesian approach is derived for
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Synechocystis sp. PCC 6803 considering 164 transcriptomics data sets. We quanti-

fied the association between different pathways using true link strength percentage,

a measure of reduction in entropy of a given child node due to inclusion of different

parent nodes.

The resultant network is used to simulate various experimental conditions. We show

the inferences made from the network to agree with the observations made in the orig-

inal biological experiments. We also compare the networks obtained Bayesian-based

network with a correlation-based network and show that it captures some associations

not picked by correlation.
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Chapter 5

Elucidating Diurnal Rhythms in

Cyanobacteria

5.1 Diurnal Rhythms in Cyanobacteria

Diurnal rhythms or day-night cycles have been observed in wide range of organ-

isms from bacteria to mammals [56]. Filamentous fungus Neurospora crassa shows a

daily rhythm in production of asexual spores [48]. The common fruit-fly, Drosophila

melanogaster, shows different activity levels depending on the time of the day; higher

activity levels at the sunrise and sunset and lower activity level during other times

of the day [62]. Photosynthetic plant Arabidopsis thaliana shows diurnal movement

in its leaves [40]. In mammals wake-sleep cycle synchronizes with the day-night cycle

of the earth. Activities of many organs including liver is shown to be diurnally reg-

ulated in mice [2]. Relatively recent times, daily cycles have been observed in single

cell organisms including many cyanobacteria [30].

Diurnal rhythms can be driven by two main causes, namely the external environment

cues, particularly light and the temperature and internal time keeping mechanisms.
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Many organisms including species of cyanobacteria, fungus, incests, plants and mam-

mals have developed specialized genes and/or cells for keeping the time and these

mechanisms are commonly known as circadian clocks.

Cyanobacterium Cyanothece sp. ATCC 51142 shows strong diurnal behavior. It has

been observed many of the biological processes in Cyanothece are diurnally regulated

[74]. This behavior is critical for the survival of the organism, as it needs to well coor-

dinate two essential but incompatible processes, photosynthesis and nitrogen fixation

within a single cellular environment [67].

5.1.1 Aims

Two transcriptomics experiments have been conducted to identify the diurnal behav-

iors in Cyanothece. In [74], Cyanothece sp. ATCC 51142 is grown under alternating

12 hour light and dark cycles, while in [79], cells are grown under a 12 hour light and

12 hour dark period followed by a constant light period of 24 hours. In both exper-

iments Cyanothece sp. ATCC 51142 cells are in nitrogen-fixing conditions. Global

transcriptomics measurements are made for two consecutive diurnal periods with a

sampling rate of every four hours and a shift in sampling time of one hour between the

experiments. The studies were conducted using Agilent (www.agilent.com) custom

made two-channel microarrays.

Aims of this analysis include identification of genes showing oscillatory behavior at

transcription level, classification of oscillatory genes, and characterizing altered be-

haviors due to changes in light input patterns.
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5.2 Identifying Rhythmic Behaviors in Gene Ex-

pressions: Fourier Score and False Discovery

Rates

Fourier score and false discovery rates (FDR) based approach is originally proposed

for the detection of cell cycle related genes [10]. The Fourier score of any signal x(t)

given as a finite dimension vector is defined by

F =

√

√

√

√

(

∑

t

sin ωt · x(t)

)2

+

(

∑

t

cos ωt · x(t)

)2

, (5.1)

where ω = 2πf is the angular frequency of the expected oscillations. In order to iden-

tify the main frequency components of the gene expressions, fast Fourier transform

(FFT) can be performed on the mean deducted data.

When a given signal is oscillatory and of the same frequency as the reference signal,

it gives rise to a larger Fourier score. In order to quantify the significance of the

Fourier score, we compare the value for the original signal with the Fourier scores

for large collection of random signals. These random signals are obtained by using

different permutations of the original signal. The significance of the Fourier scores

can be quantified using p-value measurements or using the false discovery rate.

The p-value is a significance measurement which is computed for each gene separately.

P-value of a given Fourier score is defined as

pval =

∑M
j=1 I(FSj ≥ FS0)

M
, (5.2)
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where FSj is Fourier score for the jth random signal obtained using a permutation

of the original expression for a given gene, FS0 is Fourier score for the original gene

expression, and M is number of permutations which is selected to be a large number

such as 10000. I(x) is an indicator function taking values,

I(x) =















1 if x > 0

0 otherwise.

False discovery rate (FDR) is a global measurement computed using all the gene

expressions. An empirical FDR for a chosen threshold t for the Fourier score is define

as

FDR(t) =

∑M
j=1

∑N
k=1 I(Fj,k ≥ t)/M

∑N
k=1 I(F o

k ≥ t)
, (5.3)

where M is number of permutations used for the null hypothesis, N is total number

of genes, Fj,k Fourier score for the jth random signal obtained using the kth gene and

F o
j is Fourier score for the original expression of kth gene. The original signals are

scaled to have a unit standard deviation, so that Fourier scores for different genes are

comparable.

Under alternating light input conditions, all the diurnal genes, irrespective of whether

they are under the regulation of the circadian clock or the external light input, show

oscillatory expression levels. Therefore Fourier score based approach can be utilized

to identify the diurnal genes using the expressions levels measured in [74].
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5.3 Angular Distance based Classification for Iden-

tification of Transient Behaviors

The Fourier score and false discovery rate based method is primarily derived to sep-

arate cyclic behaviors from non-cyclic ones. However it cannot be reliably used to

detect the altered gene behaviors with the changing light conditions. For example, in

[79], genes were under alternating light conditions for first 36 hours and then switched

to a different input condition in the last 12 hours. Since there is an oscillatory behav-

ior for the first three thirds of the measurements, even for a gene which altered its

behavior during the last 12 hours, Fourier score method is likely to give a significant

value and fail to detect the change in expression. Here we propose a classification

method based on angular distance to correctly classify the transient behaviors under

altered light conditions.

The data is separated into four 12 hour data sets, which correspond to the different

light and dark periods in each experiment. Accordingly we obtain four 3-dimensional

vectors for each gene for each experiment. The pair wise angular distances between

different vectors for a given gene is calculated as,

d1,2 =
(

1 − x1x2
T /(x1x1

T )1/2(x2x2
T )1/2

)

, (5.4)

where x1 and x2 are the vectors correspond to two different 12 hour periods. The

distances d1,2 can have any value between 0 and 2, with 0 representing the vectors in

the same direction and 2 representing vectors with the opposite direction.

With this approach, for oscillating genes, smaller distance measures are obtained for

expression vectors coming from similar light regimes and larger distance measures
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Figure 5.1: Distribution of vectors corresponding to different light regimes for two
Hydrogenase genes.

A gene which does not change its behavior significantly under subjective dark is
shown in Figure 5.1(a) while Figure 5.1(b) shows a gene which changes its behavior
significantly. Red: under light, Blue: under dark and Green: under last 12h in [79]

are obtained for expression vectors coming from different light regimes. If a gene did

not change its behavior during last 12 hours in [79], that gene is expected to give a

small distance measurement for two vectors corresponds to the second and the fourth

12 hour regimes. Accordingly angular distance based approach can be utilized to

characterize the altered behaviors due to changes in light input pattern.

The idea of using angular distance for characterizing gene behavior under different

light regimes is graphically shown in Figure 5.1. It shows the distribution of vectors

corresponding to different light regimes for two selected genes. First gene shows os-

cillations under both conditions while second gene ceases to oscillate under constant

light conditions. Clearly for the gene which show change in its behavior under con-

stant light conditions, the vector corresponds to last 12 hour in LDLL is located away

from vectors corresponds to regular light and dark regimes.
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5.4 Combining Fourier Score and Angular Distance

based Approaches

Two methods discussed above can be combined to get an accurate classification of gene

behaviors. Diurnal genes identified using Fourier score based method can be classified

into two groups, namely circadian controlled genes (CCGs) and light responding genes

(LRGs). CCGs are primarily under control of the circadian clock and do not get their

behavior altered by changes in light input while LRGs readily respond to incident light

patterns.

When combining Fourier score and angular distance based methods, it is required to

determine a threshold for angular distance measurements in order to decide whether

two expression vectors from different light regimes are similar or not. One logical

approach is to pick a threshold value that results in the highest agreement between

two methods for diurnal genes under alternating light conditions. Genes that are

identified as cyclic, using gene expressions under [74], by Fourier scores are analyzed

using angular distance. With different thresholds for distance measure, number of

genes classified as cyclic by angular distance criterion is computed. The value which

produce the maximum agreement between two methods is picked as the threshold for

gene classification. By looking at the expressions of these genes under [79], they are

classified as CCGs or LRGs.
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Figure 5.2: Main frequencies present in the gene expressions are found using fast
Fourier transform.

Distribution of frequencies in two experiments shows clear differences, suggesting
significant influence by the incident light pattern.

5.5 Diurnal Genes in Cyanothece sp. ATCC 51142

5.5.1 Fast Fourier Transform to Identify Main Oscillatory

Frequencies in Gene Expressions

Fast Fourier transform analysis of gene expressions in [74] reveals the existence of two

main frequencies correspond to 24 hour and 12 hour under alternating light conditions.

This is clear from the distribution of main frequencies shown in Figure 5.2(a). These

frequencies remain even after switching to continues light conditions [79], as observed

in Figure 5.2(b). However number of genes showing same oscillatory frequencies are

much lesser compared to the alternating input condition indicating that many genes

altered their behavior with the changes in the light input.

One of the novel finding of this analysis is identification of ultradian genes; genes

that oscillate with shorter periods (in this case 12 hour) compared to regular 24 hour

period. This is a novel discovery for any cyanobacteria. In Figure 5.3, two genes with

12 hour oscillations are shown.
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Figure 5.3: Two genes showing 12h oscillations. Identification of ultradian genes is a
novel finding for any cyanobacteria.

5.5.2 Fourier Score and False Discovery Rate based Method

Identified more Diurnal Genes than Previously Re-

ported

Since two main oscillatory frequencies are identified in the gene expressions, Fourier

score for each gene is calculated using two reference signals, one having 12 hour

period and the other having 24 hour period. Threshold for Fourier score is selected

at 2% FDR level. Compared to 1445 genes reported in the original analysis [74], 2138

genes representing 43% of the genome of Cyanothece sp. ATCC 51142 are determined

as diurnally regulated by the Fourier score based approach. This suggest that the

diurnal behavior of genes at transcriptomics level is much wide-spread than previously

reported.
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Figure 5.4: Threshold for angular distance is selected so that the agreement with
the Fourier score based method is maximum.

For different thresholds, we compute the number of genes classified as diurnal by the
angular distance based method. The blue color curve represents the number of

genes in agreement if we consider data from only [74]. Similar results for considering
first 36 hours in [79] also is given by the green curve. We picked 0.8 as suitable
cutoff, since it corresponded to the maximum agreement between two methods.

5.5.3 Majority of the Diurnal Genes Respond to External

Input Patterns

The 2138 diurnal genes identified from the analysis of [74] are used to determine the

threshold for angular distance measurements. For different thresholds, number of

genes classified as oscillatory by having similar expression vectors for similar light

regimes that is in two light regimes or in two dark regimes and different expression

vectors for opposite light regimes, namely light vs dark, is computed. The results are

shown in Figure 5.4.
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Based on these calculations, a cutoff of 0.8 for the angular distance is selected. This

cutoff resulted in 97% agreement between two methods for the classification of genes

using expressions in [74]. After including data from first 36 hours in [79], 78% agree-

ment between the two methods is obtained. Accordingly the expressions of a gene in

two different 12h periods are considered to be similar if the corresponding vectors are

within a distance of 0.8 to each other, and disparate if the distance is higher. The

vectors of genes transcribed with an ultradian period of 12 hour is assumed to be

similar to each other.

After combining two criteria, six main groups of gene behaviors are identified within

expression data. Gene counts corresponds to these groups are given in Table 5.1.

Table 5.1: Classification of diurnal genes in Cyanothece sp. ATCC 51142, based on
their behavior in two experimental conditions.

Stöckel et. al [74]
Toepel et. al[79] 24h 12h

24h 448 3
12h 49 5
N.C. 722 45

Periods 24h and 12h correspond to the periods of the primary oscillations. N.C: Not
Cyclic

Accordingly 448 genes that show 24 hour oscillations under both conditions are iden-

tified as being under circadian clock (CCGs). 722 genes that oscillated with 24 hour

period only under alternating light conditions are classified as light responding genes

(LRGs). Additionally 50 genes with ultradian oscillations were detected. Among

these genes, 5 genes shows consistent oscillations irrespective of changes in incident

light patterns.
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Table 5.2: Pairwise angular distance measurements for different light regimes.

Stöckel et. al [74] Toepel et. al[79]
Group D1L1 D1D2 D1L2 L1D2 L1L2 D2L2 L1D1 L1L2 L1S2 D1L2 D1S2 L2S2
1 1.78 0.11 1.79 1.85 0.08 1.79 1.79 0.12 1.68 1.70 0.33 1.69
2 1.78 0.17 1.72 1.88 0.14 1.76 1.73 0.18 1.57 0.68 1.42 0.78
3 0.23 0.44 0.29 0.37 0.05 0.44 0.58 0.17 0.27 0.46 0.68 0.27
4 0.33 0.17 0.29 0.43 0.20 0.30 1.44 0.40 0.63 1.26 1.04 0.92

Smaller distances represent vectors in same direction (and thus have similar expression pattern)
while large distances represent vectors in opposite directions. L:Light, D:Dark and S:Subjective
Dark

We observe clear difference for the angular distances for these gene categories. In

Table 5.2, the average distance for gene groups under various light regimes are given.

5.6 Analysis of Diurnal Genes

Behaviors of diurnal genes provide vital information on coordination of different bi-

ological processes within Cyanothece cells. In order to gain more details on gene

behaviors, we focused on additional features within diurnal gene expressions.

5.6.1 Clustering Based on Phase of Oscillatory Genes

In order to identify the co-expressed genes, diurnal genes are clustered based on the

phase of their expression profiles. Phase of the oscillation is determined using the

first term of the Fourier approximation of each gene expression. Peak time is derived

from the phase of the oscillation. In Figure 5.5 we present the various gene groups

using a graphical representation. Two main gene groups; circadian controlled and

light responding genes with 24h oscillations are shown as two rings. Genes belonging
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Figure 5.5: Main Gene categories identified using gene classification methods.
The CCGs and LRGs are further clustered based on their phases of oscillations and

are colored based on their activity levels; red representing high and blue
representing low, at a given point of time. Several genes with ultradian oscillations;

those with less than 24h periods, are also observed.

to each group are separated into 12 different sub-clusters each, based on the peak

times of their activities so that genes which peak during a 2-hour period are grouped

together. Number of genes having ultradian oscillations, that is oscillations with

less than 24h periods, are also shown separately. Genes are colored based on their

activity levels; red representing high activity level while blue indicating lower activity

level. Genes belonging to some of the gene functions are over represented in these

clusters, thus allowing to identify the sequence of activation of different functions

over a course of 24h cycle. Certain biological processes such as ribosomal genes,

photosynthesis and nitrogen fixation are highly coordinated with majority of genes

belonging to each process peaking at specific time of the day. These gene clusters are

used in Chapter 7 to derive process level model for diurnal genes.
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(a) circadian controlled genes (b) light responding genes

Figure 5.6: Distribution of peak times for circadian controlled and light responding
genes.

Majority of the circadian controlled genes peak at the onset of dark period where as
light responding genes peak mainly during the mid of light period.

5.6.2 Peak Time Distribution for CCGs and LRGs

Analysis of gene clusters revealed that genes belonging to different biological func-

tions peak at different times of the day, thus clustered together. In order to examine

whether there is any difference between behavior patterns of CCGs and LRGs, we

compute the distribution of peak times for these two categories of genes. Clear differ-

ences in the distribution of peak times are observed from this calculation. Majority

of the circadian controlled genes peak at the onset of dark period where as light

responding genes peak mainly during the mid of light period, as shown in Figure 5.6.

5.6.3 Localization of Genes in the Genome

Genes physically located close to each other sometimes share a common promoter

region and are transcribed as a group. These genes are referred to as ‘operons’.

Genes belonging to a single operon show similar expression patterns, though there
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Figure 5.7: Locations of diurnal genes in the circular chromosome of the Cyanothece
sp. ATCC 51142.

The circadian controlled genes are shown in red and light responding genes are in
green. We observe many consecutive genes classified as either CCGs or LRGs.

These genes might represent different operons.

can be some variations due to binding efficiency of the RNA polymerase. We examine

the positions of CCGs and LRGs in the genome to see whether any localization of

these genes is observed. Figure 5.7 shows the locations of the diurnal genes in the

genome. Many genes occur in the groups of three or more genes and many such

groups consist of CCGs or LRGs only.
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5.7 Discussion and Conclusions

After the application of two criteria, Fourier score and angular distance, current anal-

ysis of the [74] data set identified 43% of genes (2138 genes) in the Cyanothece sp.

ATCC 51142 genome with oscillating expression patterns under alternating light and

dark conditions. Compared to previously reported 1445 genes, this represents a sig-

nificant increase in the number of diurnal genes detected in Cyanothece sp. ATCC

51142. This observation suggests that diurnal regulation of gene expressions in Cyan-

othece sp. ATCC 51142 might be greater than previously thought. However, after

combining and analyzing both data sets using the two different methods, only 722

(14.8%) of genes in the genome were found to be diurnally regulated or light inducible,

and 448 genes (9.2%) could be classified as circadian controlled. This relatively small

number of diurnally regulated genes common in both data sets results from the strin-

gent criteria used for the gene classification. Use of strict criteria ensures that we pick

genes that are insensitive to differences in growth and culture conditions and therefore

comprises of robust cyclic behaviors. Interestingly, five circadian controlled genes and

45 genes with transient expression patterns oscillate with an ultradian frequency of

12h.

Taken together, the combination of the angular distance and Fourier Score based

methods results in higher level of confidence on identification of cyclic expressed

genes in Cyanothece sp. ATCC 51142. These analysis uncovered that most of the

previously identified diurnal genes are indeed light responsive.
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Chapter 6

Modeling Interactions between

Diurnal Genes

6.1 Modeling and Identification of Interactions be-

tween Genes

Understanding dependence between different genes in transcription and transla-

tion activities is very important aspect in studying behavior of cells. However, identi-

fying transcription regulatory links between genes has always been a challenging task.

This is primarily due to limited availability of gene expression data, compared to large

number of variables (genes) involved in the system. Despite these limitations, numer-

ous methods have been developed to identify possible relationships between genes.

Different approaches have been proposed to model interactions between genes. Whether

gene interaction should be modeled as a deterministic or a stochastic process has been

debated for a long time. Arguments in favor of the stochastic modeling, is based on

the randomness observed during the molecular interactions. However stochastic mod-

eling requires considerably large number of data points and is therefore difficult to

use. Though there is inherent randomness in interactions at a molecular level, in
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order to understand overall response of genes, it is usually sufficient to study the

average behavior of gene products. Furthermore some of the environmental changes,

such as day/night cycle, take place at a much slower time scale compared to molecular

interactions. As discussed by [78], gene behaviors under such input conditions can be

considered as purely deterministic.

Several probabilistic methods to model gene interactions are available. Some methods

determine gene interactions based on entropy and mutual information [5]. One of the

limitations of these methods is their inability to detect causal relationships between

genes; namely separating regulators from the targets. In [25], the authors overcome

this hurdle by limiting the regulators to the already known transcription factors.

In [46], conditional mutual information was used to establish causal relationships.

Various methods based on Boolean networks [3], Probabilistic Boolean networks [68],

and Bayesian networks [27] have been applied successfully, to model relatively small

number of genes.

Deterministic systems can successfully be modeled using differential equations. Many

such models have been proposed based on the interaction patterns observed in the

actual system. In [82], feed-forward loop (FFL) has been identified as a dominant

motif in gene interaction networks. Coherent FFL based models are used in [10]

to study the dynamic interactions between genes and three FFLs are successfully

identified in yeast.

6.1.1 Aims

In this section we try to identify possible interactions between diurnal genes in Cyan-

othece sp. ATCC 51142 based on a biological realistic model. The model needs to be
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able to explain diverse behavioral patterns observed among diurnal genes including

the existence of diverse frequencies and modifications of behaviors under changing

input conditions. We also try to bring existing biological insight on gene interactions

to refine the resultant interaction model. Finally the resulting network is analyzed to

identify its biological relevance.

6.2 Dynamical System Model to Explain Interac-

tions between Diurnal Genes

In order to explain the existence of different behavioral patterns and to study possible

interactions between genes we propose a dynamical systems model, given by

Ẏ (t) = −αyY (t) + βyf(X(t), Kxy), (6.1)

Ż(t) = −αzZ(t) + βzg(X(t), Y (t), Kxz, Kyz), (6.2)

where X(t), Y (t) and Z(t) represent expression levels of genes X, Y and Z respec-

tively. The activation function f(X(t), K) = (X(t)/K)H/(1 + (X(t)/K)H) has two

parameters H and K. The parameter H controls the steepness of f(u, K). Its value

is shown to be in the range of 1–4 in many biological applications [82]. As discussed

later, we select both H = 1 and H = 2 depending on the gene groups we model.

The parameter K defines the expression of Gene X required to significantly activate

the expression of the other genes. We assume that the regulators operate away from

the saturated regions and pick K >> X(t). The regulator genes X and Y of (6.2),

are assumed to be acting independently or additively so that g(t) is selected to have
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the form g(t) = fx(X(t), Kxz)fy(Y (t), Kyz) or g(t) = fx(X(t), Kxz) + fy(Y (t), Kyz)

respectively.

The models 6.1 and 6.2 are linear time invariant dynamical systems with f(t) and

g(t) being inputs. These models can be solved analytically and the solutions are given

by

Y (t) = e−αytY (0) + βy

∫ t

0

e−αy(t−σ)u(σ)dσ, (6.3)

with u(t) as input to the system.

Since the system is asymptotically stable, for large values of time t, the first term in

the solution can be ignored. Moreover when u(t) is a periodic function, the expression

of the target gene Y (t) would also be oscillating with the same frequency but possibly

with some phase shift.

6.3 Explaining Different Gene Groups using the

Model

Based on the model, oscillations of the target genes are determined by the oscillations

of their regulators. Different types of regulatory relationships give rise to different

patterns of behaviors. We assume that some of the higher level regulators get input

from two global factors, namely circadian oscillator and/or external light input and

subsequently propagate those signals to their target genes.
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Figure 6.1: Possible regulatory relationships for genes with 24h oscillations.
In (a) the target gene X is controlled by a single regulator Y where as in (b), the
target gene Z is controlled by two regulators X and Y , acting additively on the

target.

Genes with a Main Period of 24h

We select H = 1 and assume that most of the genes are regulated by a single regulator,

which also has a main period of 24h. These regulatory relationships are first modeled

using 6.1. For those genes which could not be explained using a single regulator, we

assume the regulation relation to be of 6.2, where two regulators act additively. In

this case we try to fit the data using g(t) = fx(X(t), Kxz) + fy(Y (t), Kyz). Figure 6.1

shows possible regulatory mechanisms for genes having 24h oscillations.

Based on the model 6.3, target gene would also be oscillating with a period of 24h. If

a gene is under circadian control directly or indirectly then it continues to show the

same behavior when the light pattern changes to constant conditions as well. However

if it has a significant direct influence from the incident light pattern, then it ceases to

oscillate under such conditions. This explains the possible mechanism to observe two

different groups of genes, first having 24h oscillations under both experiments and

second having 24h oscillations only under alternating inputs.
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Figure 6.2: Possible regulatory relationships for genes with 12h oscillations.
In (a) the target gene X is controlled by a single regulator Y with 12h oscillations
where as in (b), the target gene Y is controlled by a single regulators X with 24h
oscillations. In the second case we use H = 2 in Hill function. In (c), the target

gene Z is regulated by two regulators X and Y with 24h oscillations, acting
independently on the target.

Genes with a Main Period of 12h

Similar to the explanation given for the 24h genes, if the regulator itself has a 12h

oscillation, then the target would also have the same period. This is just one of the

possible scenarios. However it is still not clear how 12h oscillations are originated at

the first place, since the natural oscillations are of 24h period irrespective of whether

they are coming from the circadian clock or the oscillatory diurnal cycle of light input.

We propose two possible scenarios where a regulator with 24h oscillations can give

rise to 12h oscillations in the target. First, it can be according to the model 6.1 with

H = 2. In this case there is a single regulator gene. Second, it might be based on

6.2 with two independent regulators targeting a single target. In this case g(t) takes

the form g(t) = fx(X(t), Kxz)fy(Y (t), Kyz). Both these models can generate 12h

oscillations with an input having 24h period. Figure 6.2 shows possible regulatory

mechanisms for genes having 12h oscillations.
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Genes Oscillate with Different Periods in the Two Experiments

These type of behaviors can easily be modeled using 6.2 with two regulators working

additively, thus g(t) taking the form g(t) = fx(X(t), Kxz)+fy(Y (t), Kyz). Two regula-

tors oscillate with two different frequencies and depending on the external conditions,

their influence on the target would be different, giving rise to different frequencies in

the target under two conditions.

6.3.1 Approximation of Gene Expressions

In [10], ways to simplify the process of finding numerical solutions to ordinary differ-

ential equations are discussed in detail. They propose to expand the original expres-

sion data using differentiable basis functions so that the derivatives can be computed

directly. The approximation problem can be efficiently solved using least square tech-

niques.

Since the main behavioral patterns of the data analyzed here are oscillations, we

use sinusoidal functions as basis functions for this problem. Original expressions

are approximated as a linear combination of sinusoidal functions along with a linear

trend, as given by

X(t) = a + bt +

N
∑

j=1

αj sin (jωt + φj), (6.4)

where ω = 2π/24 is the angular frequency corresponding to 24h and φi is the phase

angles of the approximated signals. Parameters a, b, αj and φj are estimated using

least square optimization method. Since the original data is sampled at 4h, N is

limited to 2.
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Figure 6.3: Good approximation of a gene expression under two experimental
conditions.

Model in 6.4 was sufficient to get good approximations for expressions of more than
75% of diurnal genes in Cyanothece sp. ATCC 51142 under both alternating and

constant light input conditions.

In order to better capture the transient behavior of light responding genes under

constant light conditions, this approximation is done separately for oscillatory region

and the transient region. With the selected parameters, model captures at least 75%

of total energy in the original signal for more than 99% and 80% of genes in [74] and

[79] respectively. In Figure 6.3, we show approximation of an expression of a light

responding gene using 6.4 under two experiments. Genes that are not approximated

accurately with this model are excluded from further analysis.

Once the original gene expression is approximated, its derivative can be calculated

easily as

Ẋ(t) = b +
N
∑

j=1

jαjωt cos (jωt + φj). (6.5)

6.3.2 Model Fitting

Model fitting is done in several steps. For all possible gene pairs, approximated

expressions and their derivatives are fitted using model 6.1. Optimal parameter
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values α and β are obtained using nonlinear least square method, minimizing

F (αy, βy) =‖ Ẏ (t) + αyY (t) − βyf(X(t)) ‖ . (6.6)

For the optimal parameter values, the error is calculated using

Error = F(kx, ku)
2
opt/‖ ẋ(t) ‖2. (6.7)

Gene pairs giving rise to a normalized error ≤ 10% are considered as possible regulator-

target pairs.

If a gene cannot be approximated using a single regulator, we try to fit the data

using 6.2. If a particular target is approximated well using a single regulator in

the other experimental condition, that regulator is picked as one of the candidates.

This is based on the assumption that most regulatory relationships are preserved

under changing conditions but additional regulators can be recruited, specific to the

different conditions. If the selected gene does not produce a good model fitting

in conjunction with any another gene, acting as the second regulator, we try the

possibility of additional gene pairs as regulators, starting with those that gives rise

to smaller errors.
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6.4 Finalizing the Network Connections

6.4.1 Robustness of the Regulatory Links

Robustness is an essential feature in gene regulations. Biological systems are required

to be able to maintain the proper target-regulator relationship in the presence of

various disturbances arising from external and internal causes. In order to evaluate

the robustness of regulatory links identified using the model, we changed values of

the parameters α and β by ±5% from their optimal values and error in model fitting

is calculated using 6.7 for the modified parameters. Only those links which give rise

to a normalized error ≤ 10% for modified parameters are considered in the final gene

regulatory network.

6.4.2 Selecting Most Probable Regulators Among Few Can-

didates

One of the challenges in deriving a gene regulatory network (GRN) is identifying valid

links between genes from many possible candidates. Since the number of time points

in the data is significantly less than the variables in the system, these problems are

mostly under-determined. As a result identification of most likely relationships needs

to be performed using known biological insight about the system. Following are some

of the assumptions generally made about gene interactions in bacteria.

1. Genes having same phase are likely to regulated by a single regulator.
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2. Biological networks tend to follow power law; few hubs with many genes and

many hubs with few genes.

3. Regulatory links between genes are likely to be preserved under changing con-

ditions. Level of influence of regulators might change under different treat-

ment/condition and may become visible only under a specific condition.

4. Genes located in close proximity in the genome may belong to a single operon

and are regulated by a single regulator.

5. Regulatory relationships between genes are resilient to external noise.

The assumptions described above can be used to filter out some of the possible links

between genes. On the other hand a realistic model should be capable of preserving

some of these basic assumptions. So we can use them as a criteria to measure the

acceptability of the model for the purpose of explaining observed data.

6.5 Results and Discussion

6.5.1 Gene Interaction Network for Cyanothece sp. ATCC

51142 Diurnal Genes

A total of 1251 genes identified as light responding or circadian controlled are used in

the analysis. Using 6.4, a total of 1012 genes are well approximated with the approx-

imated signal capturing ≥ 75% of energy of the original signal in both experiments.

The network design is limited to these well approximated genes. We found that, for

[74], expressions of 968 genes, representing 95% of those included in the network,
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could be explained using the single regulator-target model given by 6.1. Remaining

genes required at least two regulators and are fitted with the model 6.2. In the case of

[79], only 476 (47%) genes are approximated using 6.1. They consist of 334 circadian

controlled genes and 137 light responding genes. Furthermore 24 circadian controlled

genes, 307 light responding genes and 44 other genes are approximated using 6.2. Be-

havior of 166 genes are not captured using either of the models. This clearly shows the

existence of a more complex level of gene interactions under transient light patterns.

It is observed that the majority of possible regulator-target links are resilient to

parameter variations. With 5% deviation from the optimal values, more than 75% of

those links remain valid, with the model fitting producing an error < 10%. Final GRN

is derived while preserving the properties described in Section 6.4.2. Only those links

which were resilient to parameter fluctuations are considered in the final network.

The network for [74] consists of 167 unique regulator genes while the network for [79]

consists of 250 unique regulators. This represent about 3.5-5% of the total genome. It

should be noted that in other well studied bacterial systems such as E.coli, percentage

of transcription factors is around 3.7%.

Number of targets for a given regulator varied from 1–65, following a power-law

distribution with an exponent of −1.9. Using a robust least squares fit we note

that the correlation coefficient is 97% for the log-log plot between the distribution of

the number of targets and their frequencies, indicating a good approximation for a

power-law distribution.

In Figure 6.4, the resulting gene regulatory network is presented under [74] is shown.

It was noted that additional links occurs in the network under [79], which are needed
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Figure 6.4: Gene regulatory network showing the possible links between diurnal
genes.

Genes are colored based on their expression level at a given point of time. Various
regulatory relationships structures, already characterized in other biological

systems, are identified in the network.

to capture the transient behaviors in gene expressions resulted from changes in light

input patterns.
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6.5.2 Direct Regulation Vs Indirect Regulation

Cyanothece genome consists of 194 annotated regulatory-function genes representing

about 4% of total genes. Out of them 28 genes were included in the network, repre-

senting 2.7% of genes included in the network. We find that 304 genes in the network

can be associated with these 28 genes using either 6.1 or 6.2. We identify these links

as likely direct regulation between genes. Other links might represent either indirect

regulations or unclassified regulatory functions.

6.5.3 Core Network and Extended Network

Minimum network for [74] consists of 607 regulatory links while minimum network

for [79] consists of 822 links. We see that some of the interactions have more influence

in one condition compared to the other. As observed in [52], it suggests the existence

of superimposed circadian signaling and diurnal signaling, where one type becomes

significant under specific conditions.

There are 130 essential links in regulatory networks under two conditions. This

number represents close to 10% of the combined network. We identify that these

genes belong to a core gene network. The remaining links are possibly condition

specific, indicating that they have a significant influence only during one experimental

condition. These genes give rise to an extended network. In the core network, genes

with known regulator-functions is present as regulators only in 5% of the times. In

contrast, among extended network, this percentage rises to 26%. We believe that this

is an indication of the dynamic role played by the regulatory genes helping cells to

adapt to changing environmental conditions.
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Figure 6.5: Consistent links between diurnal genes under different input conditions.
Genes belonging to the core network are connected in minimum networks for both

[74] and [79]. These genes are located in the center of network and are rich in
circadian controlled genes. Blue: circadian controlled, Red: light responding

Furthermore in the core-network, 70% of the target genes belong to the circadian

controlled group. Here 80% of the regulators came from the same group. However in

the extended network, circadian controlled genes represent only 35% of the targets

and regulators. The remaining genes are from light responding group. Figure 6.5

show the distribution of genes in the core network and the extended network.

We observe clear correspondence between number of links in the network and gene

categories identified in the previous work [28]. In the combined network, 33% and

61% of the circadian controlled genes had just 1 and 2 regulators respectively. In

contrast only 4% of light responding genes had a single regulator. Further 28% and
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67% of light responding genes contained 2 and 3 regulators respectively. Among

genes identified as having two dominant frequencies in the two conditions, 92% had

3 regulators in the final network.

6.5.4 Regulation of Possible Operons

Genes belonging to a single operon consist of a single regulatory region and are

transcribed as a group. However depending on the respective positions in the operon

their transcription levels show differences. A transcription control model should be

flexible enough to assign genes belonging to possible operons to a single regulator,

despite the changes in the transcription levels. As explained in Section 6.5.8, we

treated those genes, located in the same DNA strand and have a separation of less

than 100 base pairs between their Open Reading Frames (ORFs), as members of an

operon. Among the genes in the network there were 275 such genes giving rise to

110 operons. We observe that genes in 43 operons can be associated with the same

regulator. Expressions of genes from different groups are significantly different so that

they are not associated with the same regulators.

6.5.5 Regulators of Different Biological Processes

Some of the regulators in the network are associated with specific biological processes.

The significance of the dependence between the regulator and the biological process is

measured using Fisher‘s exact test,[1]. In Figure 6.6, distributions of target genes for

top regulators are shown. It is clear that many regulators are associated with only a

few pathways. Except for the first 10 regulators, others are associated only with less
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than five different pathways. Similarly most of the important biological processes are

associated only with few regulators.

6.5.6 Phase Difference between Regulator-Target Pairs

One of the important features of the transcription control model proposed in this

analysis is its ability to associate genes with possible phase differences. Moreover,

using phase difference between a regulator and a target, it is possible to identify if

the particular interaction is positive (inductive) or negative (repressive). Based on the

final gene regulatory network, majority of the phase differences between regulator-

target pairs are observed to be between 4–5h. Based on the value of the parameter

β in 6.1 and 6.2, regulation relationships are identified as positive or negative. We

observed that close to 45% of genes show negative regulation. This suggests that in

a bacterial system, both inductive as well as repressive regulation takes place with

similar proportions. This has previously being observed in E.coli also, where activator

and repressor percentages are 48% and 52% respectively.

A close examination of expressions of genes classified as light responding shows that

majority of them alter their regular oscillatory behavior only after some delay when

they are switched to constant light conditions. This fact supports the time delay

observed between the regulator and target genes in the model.

6.5.7 Network Motifs

Various regulatory relationships structures, already characterized in other biological

systems are identified in the network. These structures include connections that
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Figure 6.6: Top regulators and the fractions of genes from different processes
associated with them. Except for the first 10 regulators, others are associated only
with less than five different pathways. Similarly most of the important biological

processes are associated with only a few regulators.

100



represent auto-regulation, coherent and incoherent feed forward loops, and single and

multi input regulations. These connections can be verified by conducting follow-up

experiments.

Table 6.1: Some of the regulatory modules identified within the gene regulatory
network.

Type of Motif Structure Number of Occurrences

Auto Regulation 4

Coherent FFL 10

Incoherent FFL 9

Cyclic 1

Single Input 70

Multiple Input > 300

Chain 70

Many regulatory structures already characterized in other biological networks could
be found within the interaction network obtained for diurnal genes in Cyanothece

sp. ATCC 51142.

6.5.8 Regulatory Region Motifs

If target genes associated with a given regulator are truly interacting, we expect them

to share a common regulatory region motif. This idea can be used as a method of

measuring the accuracy of the GRN. If we can find over-represented motif among

the possible targets of a given regulator, it increases the chances of those regulatory

relationships to be actual and direct.

101



In order to identify conserved regions in the upstream regions of the genes we use mul-

tiple sequence alignment program Consensus [34]. In bacterial systems, the upstream

regions of genes are not well characterized. As a result we use following criteria to

extract the relevant regions.

1. If two genes in the same strand are separated by less than 100 nucleotides, we

consider them to be a part of an operon. Then we move forward in the strand

until we have a wider separation between genes and consider the upstream

regions corresponding to relevant gene, so obtained. We make sure that the

upstream region of an operon is included only once in the calculation.

2. Criteria for minimum separation is applied only for genes in the same strand. If

consecutive genes are on opposite strand we do not treat them as co-regulated.

3. Upstream region is limited to 500 base pairs forward or sequence up to end of

the gene located ahead, which ever the shorter.

We search for the consensus sequence of the length 8 in the upstream regions of the

relevant genes. Significance of the selected motifs are evaluated by comparing the

proportion of genes containing the given motif among the possible targets and among

the rest of the genes in the network.

Analysis of the upstream regions using Consensus results in several conserved regions.

The significance of the obtained motifs to be non-random is calculated as p-values.

Additionally, we calculate the ratio of observing the motifs among the target genes

and compare that to all the remaining genes. There are many motifs for which this

ratio exceeded 20. Using these two criteria we are able to identify several highly

specific probable binding site motifs.
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Table 6.2 lists some of the highest ranked motifs. Figures of conserved motifs are

generated using WebLogo3 [16].

Table 6.2: Selected regulator genes and over-represented upstream region motifs
identified within their targets.

Gene Function Motifs P-Value Ratio

cce 1349 Other categories 6.10E-09 96.8

cce 3378 Regulatory weblogo.berkeley.edu
AC

GAC
G
A

C
AC

TCC 5.70E-15 54.3

cce 2124 Branched chain 4.09E-16 51.1

cce 2540 Regulatory weblogo.berkeley.edu
A
TGC

AGA
T
G

T
C

G
TG 1.23E-15 51.1

cce 0206 Other categories weblogo.berkeley.edu
G
C

G
AACCT

ATA
C 3.54E-13 41.4

cce 0398 not available weblogo.berkeley.edu
A
G

T
GCG

CAGAG 5.50E-23 40.3

cce 3206 not available weblogo.berkeley.edu

GAG
AGC

T
G
TAC

G 4.40E-17 35.9

cce 0970 Regulatory weblogo.berkeley.edu

GGGT
G

G
CAAG

C
2.57E-19 29.1

cce 1083 not available weblogo.berkeley.edu
T
GTTGGAG

C
T
A

5.31E-18 27.8

cce 4602 not available weblogo.berkeley.edu
TGGGT

AGTG
T 1.86E-23 26.4

cce 1555 not available weblogo.berkeley.edu

GGGTT
A

G
ATT 8.04E-23 23.0

cce 1978 not available weblogo.berkeley.edu

CA
TTTG

C
T

G
C
TCC 8.57E-13 20.7

Consensus algorithm detected several highly conserved regulatory sequences in the
upstream of the target genes, associated with different regulators. Significant values

for the ratio= % of times motif was present in target genes
% of times motif was present in rest of the genes

as well as p-values
computed by Consensus suggest that probability of having these sequences by

chance is highly unlikely.

As observed in many experimentally verified transcription factor binding sites, we see

some conserved nucleotides in the vicinity of the predicted motifs. Figure 6.7 shows

alignments of upstream regions of few selected target genes. Presence of conserved

bases in the vicinity of the main motif increases the chances of these motifs being

true binding sites for transcription factors.
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Figure 6.7: Upstream regions of the co-regulated genes aligned using Consensus.
Several conserved nucleotides in the vicinity of the main regulatory motif are

observed for these genes. These types of conserved nucleotides in the vicinity have
been observed in many experimentally verified binding sites also.
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6.6 Conclusions

In this work we propose using a biologically realistic dynamical systems based on

differential equations to model interactions between diurnal genes; both circadian

controlled and light responding. We describe the specific simplification made to a

general model to suit the data set being analyzed. We discuss how to select the ap-

propriate parameters and function formats based on the types of genes being modeled

and show that this model is sufficient to explain interactions between diurnal genes

under regular light/dark cycles and transient light conditions. We discuss how one

can obtain a global gene interaction network based on the proposed model and how it

can be improved by utilizing the already existing biological insight. Various features

in the resultant network are discussed in details. We study the changes in the net-

work under different light conditions. The resultant network is shown to be rich, with

various interaction patterns already identified in other biological systems. Within the

target gene groups picked by the model, we identify many regulatory region motifs

that are highly significant, which suggest that many interactions predicted by the

model are likely to be actually present.

The model proposed here is clearly stable, which is an essential feature of any bio-

logical system. Interactions identified using the model are directional and the targets

and the regulators are clearly defined. Since model allows phase shifts between in-

puts and outputs, it can accommodate the delay between transcription of a regulator

and action of the corresponding protein on its target, occur after translation and

post translational modifications. These types of relationships are not modeled by

traditional correlation based methods.
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Majority of the transcriptional relationships inferred by the model are shown to be

consistent under parameter modifications. It implies that the relationships we detect

are resilient to small variations in the signals and parameters. This is an important

feature, any realistic biological model should posses.

The model is able to infer interactions for more than 80% of the genes considered

to be diurnal and used for the analysis. We have shown that the network for [74],

where cells were under regular dark/light cycles, has considerably less number of

interactions compared to that for the [79]. This is due to various alterations of gene

expressions occurred under constant light conditions. We make hypothesis that this

added complexity of the network indicate additional regulatory relationships that

become visible under altered environmental conditions. We have identified consistent

links between two conditions and found that majority of the genes involved in those

links are previously categorized as circadian controlled.

Using the model we are able to associate about 30% of the genes that are already

known to be involved in regulatory roles. We have also identified about 100 possible

operons based on gene locations in the genome and we show that genes in 43 of them

could be associated with single regulators. Model also suggested that many of the

important biological processes are primarily controlled by a relatively small number

of regulators. We see that there is about 4–5h time lag between regulator and target

genes. This is in good agreement with the delay observed in gene expression data,

once the incident light is switched from oscillatory to constant condition.
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The final network is rich of many known network motifs. In addition to feed forward

loops, a variety of other network structures such as auto-regulations, cyclic regula-

tions, single and multi input genes and chain type of regulations are observed. We

have identified many hierarchical regulatory relationships as well.

From the upstream regions of target gene groups, we are able to detect many conserved

binding site motifs. We have shown that many of these motifs are very specific to

selected groups of genes. Also we are able to detect several conserved nucleotides

in the vicinity of the identified motifs. These observations increase the possibility of

these regions being actual transcription factor binding sites.

Finally we would like to acknowledge that the proposed network is not complete. In

this work our focus has been limited only to the diurnally regulated genes. We show

that the network under regular day/night conditions identified as the core network

requires extensions to capture the gene expressions under modified light conditions.

It is quite possible that more interactions would become visible if system is perturbed

by other conditions. With the availability of such data, the model might need to be

refined. Also there was no explicit input corresponds to the external light. To capture

the effect of light, it might required to incorporate these input channels to the model.
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Chapter 7

Modeling Diurnal Behaviors using

Phase Oscillators

7.1 Phase modeling : Modeling Biological Pro-

cesses as an Oscillatory Network

Phase oscillators were originally used for modeling oscillatory systems having large

number of weakly interacting oscillators ([88],[77]). Phase oscillator models are ap-

propriate for modeling circadian rhythms, as they directly model the phase dynamics

of the system. Phase dynamics is the most important feature in understanding cir-

cadian rhythms. A phase model is used in [4] to represent the circadian clock of

cyanobacteria and to establish that the interaction between cyanobacteria cells are

negligible. In [84], a coupled phase oscillator network was proposed for modeling

circadian-controlled genes in cyanobacteria.
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7.1.1 Aims

As discussed in Chapter 5 as well as in Chapter 6, many of the diurnally regulated

genes from a single biological processes tend to peak their activities at a specific time

of the day. This suggests that we can focus on group behaviors of genes instead of

looking at individual genes. In Chapter 4, we discussed several advantages of moving

from individual genes to groups of genes that are co-expressed and belong to a same

biological process.

In this chapter we develop a simple phase oscillatory network to capture the salient

features in the diurnally regulated genes. The proposed oscillator network requires

to reproduce the actual gene behaviors observed under different light input patterns.

It also needs to be resilient to noise, which is an essential feature in biological sys-

tems. We use the proposed model to understand synchronization between different

processes, modulation of internal clock by external light inputs, and changes expected

in circadian clock and other peripheral processes under different light patterns. We

relate some of the simulation results with already available biological knowledge.

7.2 Oscillator Network

The coupled oscillator model proposed here consists of a structure shown in Figure 7.1.

In Chapter 5, diurnally regulated genes are classified as circadian controlled genes

(CCGs) and light responding genes (LRGs). Accordingly network is modeled to have

two subnetworks representing these two categories. Each subnetwork consists of a

center oscillator and six peripheral oscillators. Two center oscillators correspond to

the circadian oscillator and the light sensor. Coupling between the light sensor and
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the circadian oscillator represents entrainment of circadian clock by external light

input.

Main gene-behaviors in each sub category, CCGs and LRGs, are represented using six

peripheral oscillators. The six-oscillator networks are selected due to two observations

made in previous analysis in [28], namely:

1. Distribution of phases of genes belonging to well clustered biological processes

are mostly localized within a 4h period;

2. The gene regulatory network, generated using a linear dynamical model, indi-

cated that, for the majority of the genes in the network, the phase difference

between the target and regulator was 4h. We can capture this relationship using

6 oscillators with approximately π/3 phase difference.

Six ring oscillators corresponding to LRGs are connected to the light sensor while

those corresponding to CCGs are connected to the circadian oscillator. These con-

nections represent the reference phase provided by respective central oscillators to

their peripheral oscillators. Between peripheral oscillators, unidirectional interac-

tions are assumed, representing a regulator-target relationship between genes from

different processes.
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Figure 7.1: Coupled oscillator model representing 24h LRGs and CCGs.
Central oscillators, correspond to light sensor and the circadian oscillator, provide

reference phases for their ring oscillators representing 24h LRGs and CCGs
respectively. Individual gene expressions are obtained as a linear map of the

oscillator outputs.
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7.3 Phase Oscillator Model

Each oscillator in the network is modeled as a phase oscillator. Due to the lack of

knowledge on the light sensor and the output channel of circadian clock in cyanobac-

teria, central oscillators are assumed to be harmonic oscillators and modeled as,

φ̇lc = ωlc0, (7.1)

˙φcc = ωcc0 + ε1 sin (φlc − φcc), (7.2)

where φlc and φcc are phases of light sensor and the circadian clock respectively. The ωlc0

and ωcc0 are their Eigen frequencies and set to 2π/24, corresponding to a 24h oscillatory

period.

Oscillators in the rings are non-harmonic oscillators and are modeled to reproduce actual

gene expressions they represent. Their behaviors are modeled as,

φ̇li = ωli +

N
∑

k=1

εlik sin (kφli + δlik)

+ε2 sin (φlc − φli − ξli) + ε3 sin (φri − φli − υli), (7.3)

˙φcj
= ωcj

+

N
∑

k=1

εcjk sin
(

kφcj
+ δcjk

)

+ε4 sin
(

φcc − φcj
− ξcj

)

+ ε5 sin (φrj − φck
− υck

), (7.4)

where φli and φri are phases of the ith oscillator for LRGs and the oscillator preceding ith

oscillator respectively. Analogously φcj, φcc and φrj correspond to phases of the jth oscillator

for CCGs, the circadian clock and the ring oscillator preceding jth oscillator respectively.
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7.3.1 Determining Coupling Strengths

The network consists of four types of coupling between oscillators, namely the light sensor–

and–circadian clock (ε1), the light sensor–and–ring oscillator (ε2), the circadian clock–and–

ring oscillator (ε4), and the ring oscillator–and–ring oscillator (ε3, ε5). Values of these

coupling coefficients were determined considering several features that the model needs to

produce, including:

1. Faster Entrainment: The cyanobacterium circadian clock is capable of being rapidly

entrained/phase reset by the external light ([31]). In order to obtain a faster entrain-

ment, we would like to have a strong coupling strength between the light sensor and

the circadian clock. However, since the circadian clock should be able to maintain

its oscillations under changing light inputs, we need to ensure ˙φcc > 0 for any phase

differences between the light sensor and the circadian clock. Considering these two

factors we picked ε1= 0.1

2. Cessation of process oscillations: Diurnal biological processes, responding to light

pattern, stop their oscillations under constant light conditions. These changes in

behavior are noticeable soon after the change in light input pattern, within the first

few hours, as observed in [28]. In addition, the circadian clock mutants show changes

in oscillation periods and arrhythmic behaviors their biological processes ([42]). In

order to achieve these behaviors we pick ε2 = 0.3 and ε4 = 0.3.

3. Phase relationship between biological processes: Though clock plays an important

role in coordinating other biological processes, regulator-target interactions between

genes are also a key determinant on transcriptome levels of a cell. These interactions

are taken into account by the coupling between ring oscillators. We picked a relatively

weak coupling strengths for these connections and set ε3 = 0.05 and ε5 = 0.05.

113



7.3.2 Parameter Identification

Each of the oscillators in the rings is modeled to capture the average expression of genes it

represents. For this purpose we group together genes having a close phase relationship and

their mean expressions are calculated. In order to have the same contribution from each

gene towards the mean, the original expressions are scaled and shifted. Figure 7.2 shows

the normalized expressions for one groups of genes and their mean expression.

Once the mean curve is obtained, it is concatenated several times to get an expression

for multiple cycles. The resulting curve is smoothed using cubic interpolation to remove

discontinuities. The phase is defined as the angle of a rotating vector, whose projection

on the real axis would give the actual mean expression. The phase curve is also smoothed

using zeroth order Savitzky-Golay FIR filter [73] with a frame size of 41, since any sudden

changes in the slope would produce jumps in the phase derivative. The phase derivative is

calculated using two point approximation. For all oscillations, these calculations are done

using the gene expressions obtained from the first experiment.

Optimal values for parameters ωli , ωcj
, εlik, εcjk, δlik and δcjk in (7.3) and (7.4) are found by

the least square optimization method minimizing the errors, given by

Eli=‖ φ̇li − ε2 sin (φlc − φli − ξli) − ε3 sin (φri − φli − υli)

−ωli −

N
∑

k=1

εlik sin (kφli + δlik) ‖ (7.5)

and

Ecj=‖ ˙φcj
− ε4 sin

(

φcc − φcj
− ξcj

)

− ε5 sin
(

φrj − φcj
− υcj

)

−ωcj
−

N
∑

k=1

εcjk sin
(

kφcj
+ δcjk

)

‖ . (7.6)
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Figure 7.2: Normalized expressions of genes with close phase relationship and their
mean expression. Individual oscillators were designed to reproduce these mean

expressions.

We picked N = 5 to get a good reconstruction. Figure 7.3 shows the approximation of

the phase derivative for one of the oscillators. It is clear that with N = 5, phase model

can approximate the phase derivatives with a good accuracy. With this choice, the error of

reconstructing the phase derivative is ≤ 8% for all the oscillations in the system.

Parameters ξxi and υxi correspond to average phase differences between the ith oscillator

compared to the center oscillator and the i − 1th oscillator respectively.

In order to get oscillator outputs under constant light conditions, we set the Eigen frequency

of light sensor to zero during the subjective dark regime (last 12h period in the second

experiment). This makes phase of the light sensor a constant during this period and the

other oscillators show a transient behavior due to this change. Figure 7.4 shows the outputs

of oscillators corresponding to light responding genes, under transient light input pattern

in the second experiment.
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Figure 7.3: Approximation of a phase derivative using the phase model. The
proposed oscillator model is sufficient to get a good reconstruction of the actual

phase dynamics.
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Figure 7.4: Output of six ring oscillators corresponding to LRGs, simulated under
transient light conditions. During last 12h, the light sensor is kept at constant

phase. Under this condition, phases of ring oscillators reached steady states within
few hours.

7.4 Use of Oscillator Model to Study Gene Behav-

iors

The oscillator model presented here can be used for various purposes. It can be used as a

method of filtering and categorizing genes into groups. Oscillator outputs can be treated
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as a set of basis functions for this data set, which are better representatives of the actual

gene expressions than sine/cosine functions. In addition, the model can be used to simulate

gene behavior under various light conditions. It is also possible to study the effect of the

oscillator output with changes in parameter values. Predictions from these simulations can

be verified using experiments.

7.4.1 Categorization of Genes using Oscillator Model

The actual gene expressions are projected onto oscillator outputs in order to filter those

genes, which can be explained using the model. Each gene expression is explained using

two closest oscillator outputs in terms of their phases. Goodness of fit was measured using

correlation between the approximation and the original expression.

A gene is picked only if it is well approximated using two oscillator outputs. We selected

a correlation threshold of 0.8. In addition to a good approximation, we also require that the

gene is explained by the same oscillators in both experiments. This ensures the extraction

of genes with consistent behavior in two experiments. Figure 7.5 shows the approximation

of an actual gene expression using outputs of two closest oscillators.

Based on the reconstruction, 501 and 651 genes are approximated well using oscillator

outputs corresponding to circadian controlled and light responding processes respectively.

Among these, there were 345 genes which could be classified as both CCG and LRG. We

assign them to the group, which results in lower error in the approximation.

Among 501 genes which were associated with circadian controlled oscillators, there are 387

genes which were categorized as CCGs in the previous chapter. However among 651 genes

associated with light responding oscillators, only 218 are categorized as LRGs previously.
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Figure 7.5: Reconstruction of an gene expression using two oscillator outputs. Many
diurnal gene expressions could be reconstructed as a linear map of two neighboring

oscillators.

7.4.2 Clustering Genes based on the Projections

Those well-approximated genes are clustered based on the oscillators used to represent

them. Figure 7.6 contains the distribution of genes for some of the well clustered biological

processes. One of the important observations made here is tight co-regulation of genes that

belong to processes, which become active at the onset of light or dark phases. Also, com-

pared to the middle of the night or day, more number of genes become active during these

periods. This clearly shows the preparation of cells to adapt to changing light conditions.

7.5 Simulation Results

The oscillator network can be simulated under different conditions to make predictions

on behaviors of genes. These predictions can be verified by further experiments. Here we

discuss some of the simulation results. We specifically focus on the effects on circadian clock

118



Light Responding Oscillations

    Photosystem I
    Photosystem II

  Surface polysaccharides

   Nitrogen assimilation
   Branched chain family

   Nitrogen fixation
   DNA replication, ..     Nitrogen fixation

  Surface polysaccharides
  Photosystem II

  Nitrogen assimilation
  Glycolysis
  Pentose phosphate pathway

  Hydrogenase
  Respiratory terminal oxidases
  Soluble electron carriers

Light Responding Oscillations Circadian Controlled OscillationsCircadian Controlled Oscillations

Figure 7.6: Some of the processes which can be directly associated with the
individual oscillators in the network.

These processes include many vital processes such as nitrogen fixation,
photosynthesis, glycolysis and DNA replication needed for the survival of the cells.

and its associated processes by changes in light inputs. We relate some of the simulation

results with actual observations in the literature.

7.5.1 Different Network Topologies

The oscillator network is simulated after removing the clock–and–process coupling, the

process–and–process coupling and both these couplings, to study the effect of these changes

on phases of oscillators. For this part of simulation, we kept the strengths of both types of

coupling at 0.05, so that the role of each type of coupling can directly be compared. The

phase differences between two of the oscillator-outputs under different coupling configura-

tions are shown in Figure 7.7.

Based on the simulations, removal of the coupling between the center oscillator and periph-

eral oscillators gives rise to a larger shift in the phase relations, compared to removal of

the coupling between peripheral oscillators. This agrees with the common notion that the
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Figure 7.7: Effects on phases of circadian controlled processes under different
coupling topologies, measured as phase difference between two process.

The effect of removing the coupling between the processes is negligible, compared to
the effect of removing couplings between the clock and the processes. This

simulation result agree with the experimental observations that show the vital role
of circadian clock in maintaining accurate phase relationships between different

biological processes.

circadian clock might have more significant role in maintaining the exact phase relationships

between biological processes.

We also studied the transient behavior of different network topologies, once they were

perturbed by shifting the phase of one of the processes (oscillator) by π compared to its

original phase. The perturbed oscillator returned to its original phase very quickly, when the

coupling with the circadian clock was present and the other processes had little effect from

the disturbance. However when the clock links were not present, the perturbed oscillator

settled to a different phase, compared to its original. All the other processes were shifted

in their phases as a result of the perturbation. Also under this configuration, a much

longer period was required to regain the stationary phase behavior. Figure 7.8 shows the
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Figure 7.8: Phase differed between two processes, resulting due to a phase shift of
one, under different network topologies.

With the connections to the clock, system recovers from the perturbation very
quickly, with no significant effect on the other processes.

simulation results. This again suggests the vital role, the circadian clock has in maintaining

robust dynamics of the other biological processes.

These behaviors support the observation that the circadian clock is not essential for the

survival of the cells but increases the competence of the cells by improving the coordina-

tion between different biological processes [43]. This has well been established for other

organisms also, which include plants and humans.

7.5.2 Effects of Providing Constant Light Input

In circadian control literature, it is known that the free running period of the clock is

not exactly equal to 24h. Usually it can be slightly shorter or longer. Based on [32], S.

elongatus has a free running period of around 25h. In order to see whether the model is
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Figure 7.9: Circadian clock and one of the ring oscillator outputs under periodic
and constant light input conditions.

Effect of constant light is reflected in clock output immediately, but only observed
in the processes outputs with some delay.

capable of generating such a behavior, a simulation is run under constant light conditions.

This is achieved by keeping the phase of light oscillator constant. The natural period of

the circadian clock is kept at 24h. Figure 7.9 shows the output of the circadian clock and

one of the ring oscillators for periodic and constant light inputs. Figure 7.10 shows the

corresponding periods of oscillations. As a result of the coupling with the light oscillator,

the circadian clock and the ring oscillator show a oscillatory period of around 26h. The

free running period varied with the coupling strength. One other observation is that, while

the circadian clock oscillations are immediately affected by the changes in light input, the

processes under circadian-control are affected with some time delay. This is clear from

Figure 7.9.
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Figure 7.10: Periods of Oscillators under 24h periodic and constant light input
conditions.

Free running period of the oscillators shifted to 26h under constant input
conditions. This is in agreement with the experimental observations.

7.5.3 Adaptation to Light Patterns with Different Periods

The ability of the circadian clock to follow the different periods in the light input depends

on the strength of the coupling between the circadian clock and the light sensor. Figure 7.11

shows the period of oscillations of the circadian oscillator, under light cycles with different

periods, for two different coupling strengths. Clearly the circadian clock follows the light

period in a wider range with an increased coupling strength between two oscillators. This

observation can be used to determine the actual strength of coupling between the light

sensor and the circadian clock.
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Figure 7.11: Adaptation of circadian clock to different periods of light input.
Period of the circadian clock oscillations can be entrained by the external input.

The range of entrainment depends on the coupling strength between the light sensor
and circadian clock mechanism.

7.5.4 Effect of the Noise

Most of the biological systems are robust to the noise inherent to them. As a result,

any realistic model should be robust to fluctuations caused by noise. In order to test the

resilience of the current model to the external noise, we add a noise component to the

original model. We assume, that the effect of noise changes the Eigen frequency of the

oscillators. Therefore we replaced the ω terms with,

ωx = ωx0(1 + Nx), (7.7)

where Nx represents the White Gaussian noise. We limited the noise signal to be between

-0.1 and 0.1 representing 10% deviation of oscillator frequencies from their normal values.

This is sufficient to capture the range of frequencies usually observed in the cyanobacteria
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Figure 7.12: Output of a ring oscillator with and without external noise.
Effect of noise was negligible on the output of the oscillator. The robustness to the

noise is an essential feature of the most of the biological systems.

circadian clock. Noise was added to all oscillators except the light sensor. Equations were

solved using Eular method. We observed that the system is extremely robust and the effect

of noise on the ring oscillators is negligible. Figure 7.12 shows the simulation results for one

of the ring oscillators with and without noise.

7.6 Conclusions and Discussion

In this chapter, we propose a simple coupled oscillator network to model the gene behaviors

under different light input patterns. We show that the model proposed here is capable of

capturing important dynamics of the gene behaviors. The oscillator outputs are used to

classify genes into different groups based on the phases of their expressions. We show that

some of the biological processes could directly be mapped to the relevant oscillators. Based
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on the simulation results, we argue that the circadian clock is more important for maintain-

ing proper phase relationships between biological processes, compared to the interactions

between individual processes. We also discover that there is a noticeable time delay in-

volved in the propagation of changes in light patterns to the circadian-controlled processes.

Our model is able to reproduce some of the experimentally observed gene behaviors under

altered light conditions. These included the changes in the natural period of circadian clock

under constant light. In addition the model was shown to be resilient to noise, an essential

feature in most of the biological systems.

It is shown that some behaviors of the network are mainly determined by the coupling

strengths between oscillators. The current oscillator model can be improved by determining

these coupling strengths using biological experiments.
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Chapter 8

Differences and Similarities of Cell

Behaviors Observed from

Transcriptomics and Proteomics

Measurements

Transcriptomics studies only measure steady state expression levels of mRNA con-

centrations inside a cell. Though transcriptomics data provides vital information on

responses of cells to different experimental conditions, these measurements are in-

sufficient to achieve complete understanding on complex regulatory mechanisms in

a living cell. It is well known that mRNAs undergo several regulatory controls be-

fore corresponding proteins are synthesized [29]. Also steady state protein levels are

dependant on the corresponding degradation rates.

Proteomics measure steady state protein levels in a cell. Combination of transcrip-

tomics and proteomics studies reveals differences in mRNA and protein levels and

allows identification of possible control steps in determining their levels. In addi-

tions, such data sets are useful in improving accuracy of the gene regulatory networks

derived using transcription data only.
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8.0.1 Aims

We analyze two different proteomics data sets on Synechocystis sp. PCC 6803 and

Cyanothece sp. ATCC 51142. We compare these data with analogous transcrip-

tomics data sets to identify similarities and differences between transcriptional and

translational levels.

8.1 Identification of Differentially Regulated Genes

using Proteomics Data

Although the statistical methods discussed in Chapter 3 are applicable to proteomics

data also, due to limited number of replicates available, the assumptions made in those

methods do not hold for the available proteomics data. For example proteomics data

for Synechocystis sp. PCC 6803 consisted of only two biological replicates. As a result

different criteria is used to identify differentially expressed genes using proteomics

data sets. This criteria can be given as

1. mean1/mean2 ≥ 1.5

2. mean1 − mean2 > 1

3. (mean1 − 2 × stddev1) − (mean2 + 2 × stddev2) > 0

where mean1 and stddev1 are mean and standard deviation values of either treatment

or control, which ever has a larger mean. Mean2 and stddev2 correspond to the other

condition. Missing data points are replaced by zeros. If a protein satisfies all three
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conditions it is considered as being differentially expressed. Differentially expressed

proteins are again categorized as up-regulated or down-regulated, based on whether a

particular protein is high or low in the treatment compared to the control experiment

respectively.

In the case of Cyanothece sp. ATCC 51142 data set, where focus is on diurnally

regulated genes, we pick time points with maximum and minimum values as the

mean1 and mean2 respectively. In addition to above criteria, we imposed additional

condition that the mean values should be more than one in at least four time-points

during a period of two days.

8.2 Differentially Expressed Proteins in Synechocys-

tis sp. PCC 6803 in Different Growth Condi-

tions

These proteomics data sets are generated using Synechocystis cultures, grown under

different treatments; namely high CO2, Cold, heat, recovery from NH4, four nutrient

starvation conditions (Fe, N, S and P) and four revery conditions after starvation

of Fe,N,S and P. Wild type cells, grown under BG11 growth media, is used as the

control experiment. Proteomics data set consists of 17684 different peptides, which are

mapped onto possible 2060 different proteins. Protein level expressions are obtained

by summing up spectral counts for all peptides correspond to each protein. This

approach of getting protein intensities is valid, since all calculations are performed

for each protein separately, so that differences in the number of peptides in different

proteins do not cause a problem. Number of differentially expressed proteins under
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Table 8.1: Number of differentially expressed proteins in Synechocystis sp. PCC
6803 under different treatments.

Treatment Up Regulated Down Regulated Total
CO2 192 120 312
Cold 102 165 267
Heat 214 168 382

Fe Starvation 235 166 401
N Starvation 77 476 553
P Starvation 268 88 356
S Starvation 247 148 395
Fe Recovery 244 131 375
N Recovery 231 150 381

NH4 Recovery 257 141 398
P Recovery 316 99 415
S Recovery 275 101 376

All important nutrient starvation and recovery conditions cause significant changes
in the protein concentrations of Synechocystis sp. PCC 6803. Highest number of

genes are affected under nitrogen starvation conditions where more than 85% of the
affected proteins are down regulated. Fe: iron, N: nitrogen, P: phosphorus, S: sulfur

different growth conditions varied between 267 and 553. Most number of proteins got

differentially expressed under nitrogen starvation condition. In Table 8.1 we list the

number of proteins affected under different conditions.

8.2.1 Comparison with mRNA

To study the relationship between protein level and mRNA level changes, proteomics

data is compared with similar microarray data sets. We identified five treatments,

namely Cold stress, Fe, P, S and N starvation, for which microarray data sets are

available under similar conditions. Similarities are measured across different genes as

well as across different conditions.
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Table 8.2: Correlation measurements between mRNA and proteomics expressions.

Using Log-ratio values for Protein and mRNAs
Correlation Measurements

Cold Stress Fe-Starve P-starve S-Starve N-starve
All Genes -0.057 0.074 0.134 0.061 0.212
Differentially Expressed in mRNA -0.198 0.162 0.334 0.38 0.37
Differentially Expressed in Proteomics -0.07 0.1 0.175 0.09 0.299

Using Discretized Expressions
Percentage of times values agree

Cold Stress Fe-Starve P-Starve S-Starve N-Starve
All Genes 0.58 0.56 0.66 0.61 0.43
Differentially Expressed in mRNA 0.1 0.12 0.32 0.15 0.34
Differentially Expressed in Proteomics 0.11 0.07 0.17 0.07 0.52

Correlation measurements between mRNA and proteins under comparable experimental conditions
are performed. Calculations are done using both log ratio and discretized expression values.

Overall correlation is poor under all the treatments. This may be due to experimental variations or
different levels of regulations at transcriptome and translational activities.

Comparisons across different treatments did not yield good correlation value. This

calculation is done using both actual fold change values between Treatment and Con-

trol as well as discretized expressions of these fold change values. In Table 8.2, the

relevant results are summarized. Overall correlation between mRNA and Protein

level behavior is very low. The correlation values are slightly improved if we perform

the calculations using only those genes, which are differentially expressed at mRNA

level. For discretized expressions high level of agreement between mRNA and pro-

teins is resulted in due to large number of genes which are not differentially expressed

under these conditions.

Correlation measurements for individual genes across different conditions also did not

show strong relationship except for few genes in ribosomal 50S complex. Table 8.3

lists some of the genes which are differentially expressed in most of the conditions

and have good correlation value.
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Table 8.3: Genes with good correlation between mRNA and protein expressions

Gene Annotation Correlation Expressed
in Protein

Expressed
in mRNA

sll0656 unknown protein 0.955278 5 3
sll1742 transcription antitermination protein NusG nusG 0.724994 5 3
sll1184 heme oxygenase ho1 0.666965 4 4
sll1552 unknown protein 0.989388 5 2
sll0381 hypothetical protein 0.912997 4 3
sll1800 50S ribosomal protein L4 rpl4 0.760709 4 3
sll1799 50S ribosomal protein L3 rpl3 0.757748 4 3
slr1129 ribonuclease E rne 0.937753 5 1
sll1810 50S ribosomal protein L6 rpl6 0.921258 4 2
sll1813 50S ribosomal protein L15 rpl15 0.82778 3 3

Only a handful of genes showed a strong correlation between the expression levels of their mRNA
and proteins. These include several ribosome proteins from 50S subunit.

However it is noted that genes belonging to some of the processes including photosystem-

II, moved in the same direction, up or down in their expressions, in both mRNA and

protein levels under similar experimental conditions. This is not revealed by the cor-

relation measurements. Techniques such as Fisher’s exact test, used to identify the

association between two variables also could not highlight these observations due to

imbalance nature of the contingency tables. In order to capture such behaviors we

computed the fraction of genes moving in same or opposite direction for each path-

way. Some of the pathways, where majority of the genes move in one direction were

highlighted in Table 8.4.

8.3 Diurnal Rhythms in Steady State Protein Lev-

els in Cyanothece sp. ATCC 51142

As discussed in Chapter 5, more than 40% of genes in Cyanothece sp. ATCC 51142

are shown to be diurnally regulated at the transcription level. To investigate whether
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Table 8.4: Fractions of genes that move in the same direction in both mRNA and
protein levels

Cold Stress Fe-Starvation P-Starvation S-Starvation N-Starvation
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AB:AAAF 21 13 n .77 14 n .57 15 n .67 15 n .53 14 p .64
AB:AF 11 10 p .70 11 n .55 11 n .64 10 n .60 10 p .60
CP:C 14 9 n .78 10 p .50 10 p .90 8 p .50 9 p .56
EM:PPP 8 7 n .57 7 n .57 8 p .88 8 n .63 6 p .67
EM:PAM 7 6 p .50 5 p .80 6 p .83 4 p .50 5 p .80
EM:TC 8 8 n .75 8 p .50 7 p .71 6 p .83 7 n .57
FAM 25 16 p .50 19 p .58 19 n .63 19 n .53 19 p .74
PR:AS 9 7 n .86 8 n 1.0 7 n .57 9 n .89 8 p .63
PR:CF 15 14 n .64 15 n .73 15 n .67 14 p .57 14 p .79
PR:PS-I 13 10 p .50 11 p .82 10 p .70 11 p .73 11 p .64
PR:PS-II 20 16 p .63 16 p .63 17 p .59 16 p .88 16 p 1.0
PR:PB 15 14 n .64 13 n .69 12 p .75 14 p .79 14 p 1.0
PP:PR 19 9 p .67 10 n .70 12 p .50 12 p .83 10 p .60
TR:RP 55 43 n .60 47 n .64 49 p .90 47 n .85 49 p .96

Even though linear correlation measurements yield poor agreement, we observe genes in many
pathways show similar type of response (reduction or increase in expressions) at both mRNA and
protein levels. This is clear from the high fractions of genes that move in same direction under a
given treatment. Interestingly we observe changes in expressions of mRNA and proteins in some

pathways have a negative relationship.
AB:AAAF-Amino acid biosynthesis:Aromatic amino acid family, AB:AF-Amino acid
biosynthesis:Aspartate family, CP:C-Cellular processes:Chemotaxis, EM:PPP-Energy

metabolism:Pentose phosphate pathway, EM:PAM-Energy metabolism:Pyruvate and acetyl-CoA
metabolism, EM-TC-Energy metabolism:TCA cycle, FAM-Fatty acid, phospholipid, and sterol
metabolism, PR:AS-Photosynthesis and respiration:ATP synthase, PR:CF-Photosynthesis and

respiration:CO2 fixation, PR:PSI-Photosynthesis and respiration:Photosystem I,
PR:PSII-Photosynthesis and respiration:Photosystem II, PR:PB-Photosynthesis and
respiration:Phycobilisome, PP:PR-Purines and pyrimidines:Purine ribonucleotides,

TR:RP-Translation:Ribosomal proteins
Relationship : p-positive, n-negative
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these rhythms are present at translational level also we analyzed proteomics measure-

ments from the same experiment. This allowed us to perform direct comparison and

identify the similarities and differences between steady state behaviors of mRNA and

protein levels.

Proteomics data is generated using Cyanothece sp. ATCC 51142 cultures grown

under 12h/12h Light/Dark conditions. Samples are extracted every 2h for 48h period.

Original data set consisted of 6740 peptides which are mapped onto 1232 different

proteins. Oscillatory proteins are identified using combined methods of Fourier scores

[23], auto-correlation and trigonometric curve fitting [86]. Total of 166 genes are

identified as having strong diurnal rhythms with a main period of 24h. Additional 33

genes are shown to be oscillation with a period of 12h. Compared with the results from

transcriptomics analysis, we discovered that 141 genes among these 166 have strong

diurnal behavior at mRNA levels. Additional 7 genes also shown to be cyclic but

were not detected in transcriptomics analysis. One of the genes with 24h oscillations

in protein level is shown to be having 12h oscillations in mRNA.

8.3.1 Time Difference between Transcript and Protein Peak

Times

In order to compare the time difference between the peak times of mRNA expressions

and the protein expressions, each expression is approximated using the first oscillatory

term of the Fourier series expansion. Figure 8.1 gives the number of genes peaked

during different times of the day. Time difference between two oscillations is computed

as the phase difference of the approximated signals. One notable observation from this

comparison of mRNA and protein peak times is significant time differences between
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these two times for many genes. Figure 8.2 shows expressions at mRNA and protein

levels for two oscillatory genes. There is no time delay between mRNA and protein

peak times for the gene in Figure 8.2(a). In contrast, a significant time delay for

these two times is observed for the gene in Figure 8.2(b). Figure 8.3 summarizes the

distribution of time delays between mRNA peaks and the Protein peaks for various

genes. Positive time delays represent genes where mRNA expression leads the Protein

expression while negative delays represent genes with leading Protein expressions. In

contrast to the observations made in transcriptomics analysis, where genes in many

biological processes peak as groups during the same time of the day, wide range of peak

times are observed at protein levels for genes within a single biological processes. Only

exception is nitrogen fixation where we observe many genes peak at the same time in

protein expressions also. With the current transcriptomics and proteomics techniques

we are unable to determine the reasons behind these delays. These delays can be due

to lag between transcriptional and translational activities or due to variations in

synthesis and degradation levels of mRNA and proteins.

8.4 Conclusions and Discussion

Integration of transcriptomics and proteomics data sets revealed many differences

between mRNA and protein expressions. Comparison of different growth conditions

of Synechocystis sp. PCC 6803 showed only a weak correlation between mRNA and

proteins. This weak correlation could be due changes in experimental conditions itself.

However, by looking at the direction of change in mRNA and protein expressions,

we showed that genes from different pathways change as a group with high level of

agreement. One important observation made here is that for some pathways behavior
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Figure 8.1: Distribution of peak times of protein expression across a single day.
Majority of the oscillatory protein expressions reach their peak concentrations after

the middle of the dark period. This can be due to higher translation or lower
degradation rates during these periods.

of genes at mRNA levels and protein levels show a negative relationship. This might

be due to time delays between different events related to transcription and translation

as well as rates of degradation of mRNA and proteins.

Since same samples are used to generate both transcriptomics and proteomics data,

Cyanothece sp. ATCC 51142 data sets provided more direct comparison between two.

Out of 1232 detected proteins only 166 are shown to be cyclic. This is in contrast to

more than 40% cyclic mRNA detected at transcriptomics level [23]. This suggests that

the cells might maintain the protein level changes in lower dynamic range compared

to that of mRNA.
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Figure 8.2: Two genes that show oscillatory behaviors at both mRNA and protein
abundance levels. The peak times of mRNA and protein concentrations can vary in

a wide range of periods for different genes.

Significant time delays between peak mRNA and protein levels are detected. These

time delays might be due to various post transcriptional regulation mechanisms or

balance between synthesis and degradation rates of corresponding molecules.
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Figure 8.3: Time delays observed between peak times of protein and mRNA
expressions.

Positive time delays represent genes where mRNA expression leads the Protein
expression while negative delays represent genes with leading Protein expressions.
Current techniques are insufficient to explain the exact reasons behind observed

delays.
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Chapter 9

Conclusions

In this dissertation, we analyzed several high throughput data sets from different

photosynthetic organisms to understand their response to changes in their environ-

ments. We developed various computational and modeling techniques to analyze these

data so that salient features in cellular responses can be extracted. Three specific

problems studied here are transcriptomics modifications in photosynthetic organisms

to reduction-oxidation (redox) stress conditions, circadian and diurnal rhythms of

cyanobacteria and effects of incident light patterns on these rhythms, and coordina-

tion between biological processes in cyanobacteria under various growth conditions.

We discussed two commonly used high throughput techniques in transcriptomics and

proteomics, namely two-color microarrays and label free bottom-up proteomics. We

utilized several computational and statistical algorithms including LOWESS normal-

ization and statistical significance tests to perform preliminary data processing and

quality assessments of the data sets. Depending on the objective of the biologi-

cal experiment, we selected suitable criteria to identify informative genes. These

approaches include several statistical tests such as Student’s t-test, KS-test, Fourier

scores, angular distances and their combinations. Various standard and non-standard

classification methods are utilized to group genes to main behavioral categories. We
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proposed several deterministic and probabilistic models to explain expressions of these

gene groups. We also showed how existing insight on gene interactions and relevant

computational algorithms can improve the initial results.

With our analysis we were able to discover system wide transcriptional modifications

in the cyanobacterium Synechocystis sp. PCC 6803, under various redox stresses

caused by high light treatment, DCMU and preferential excitation of photosystem I

and II. Gene clustering methods revealed that these responses can mainly be classified

as transient responses and consistent responses, depending on durations of modified

behaviors. We showed many central pathways related to energy production as well

as energy utilization are strongly affected by these stresses. Combined analysis of

two stress conditions, high light and DCMU treatment, combined with data mining

and motif finding algorithms led to the discovery of a novel transcription factor in

Arabidopsis thaliana, RRTF1, which responds to redox stresses.

Using multiple experimental conditions we were able to show that majority of the

diurnal genes in Cyanothece sp. ATCC 51142 are in fact light responding. Only about

10% of genes in the genome are categorized as being circadian controlled. We derived

two transcription control model based on feed-forward loops and phase oscillators to

model and identify interactions between diurnal genes. Both these models are shown

to carry biologically meaningful features.

We were able to integrate all transcriptomics data sets available for Synechocystis sp.

PCC 6803 and utilize probabilistic modeling to obtain a Bayesian network for main

biological processes in the cell. Several novel relationships between biological pro-

cesses are discovered from the model. Model is used to simulate several experimental
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conditions, and the response of the model is shown to agree with the experimentally

observed behaviors.

Finally we combined the analysis of related proteomics and transcriptomics data sets

to study the similarities and differences in cellular responses at these two levels.

Current analysis helps us extending our knowledge on cellular responses to different

environment conditions at global level. How ever in order to gain better understanding

on these complex dynamical systems, many additional experimental and computa-

tional effort is needed. We are hoping move towards this goal by combining newer

technologies including metabolomics and genome sequencing.
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Appendix A

Experimental Organisms and data

sets

A.1 Synechocystis sp. PCC 6803

Synechocystis sp. PCC 6803 is the first photosynthesis organism to have a com-

pletely sequenced genome. It is capable of growing in numerous environment con-

ditions, ranging from fully autotrophical (growth by fixing environment CO2 using

light energy) to heterotrophic (growth under dark, utilizing sugar through glycolysis

and oxidative phosphorylation to generate required energy). Since its spontaneously

transformable, Synechocystis is widely used as a model organism in photosynthesis

research.

Following data sets from Synechocystis sp. PCC 6803 are analyzed:

• High Light Treatment : Microarray data set

This time course microarrays consist of six time points namely 15min, 1h, 2h,

3h, 4h and 6h. Synechocystis cells are grown under high light with an intensity of

300µEm−2s−1 and compared with the cells grown under regular light of intensity

30µEm−2s−1. Each time point consists of 6 microarrays, which include a dye

swap and two biological replicates.

• DCMU Treatment : Microarray data set
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Figure A.1: Synechocystis sp. PCC 6803.
Synechocystis sp. PCC 6803 is the mostly studied photosynthetic cyanobacterium.
It is the first cyanobacterium and third prokaryote to have a completely sequenced

genome. (Image courtesy: Michelle Liberton)

This data set consists of five time points namely 15min, 45min, 1.5h, 3h, and

6h. Synechocystis cells are treated with DCMU (3-(3,4-dichlorophenyl)-1,1-

dimethylurea), a very specific and sensitive inhibitor of photosynthesis II sys-

tem, to reduce the electron flow between photosystem II and plastoquinone, by

20%. Each time point consists of 6 microarrays, which include a dye swap and

two biological replicates.

• Preferential Excitation of Photosystem I and Photosystem II : Microarray data

set

Photosystem I and Photosystem II in Synechocystis cells are preferentially ex-

cited using blue and red light of intensity 10µEm−2s−1, respectively. Samples

are obtained at six time points namely 15min, 45min, 1.5h, 2h, 3h and 6h, and

6 microarrays are generated at each time point.

• Comparison of different growth conditions: Proteomics data set

Proteomics data from twelve different growth conditions where presence of im-

portant nutrients are controlled are compared with normal growth conditions

under BG11 growth media. Total of 17920 peptides were detected in different

conditions which were later mapped into 2061 unique proteins.
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Figure A.2: Cyanothece sp. ATCC 51142.
Its ability to fix environmental N2 (Diazotrophic) as well as performing

photosynthesis within a single cell has drawn large research interest during last few
years. (Image courtesy: Michelle Liberton)

A.2 Cyanothece sp. ATCC 51142

Cyanothece sp. ATCC 51142 is a marine cyanobacteria. Its ability to fix environmen-

tal N2 (Diazotrophic) as well as performing photosynthesis within a single cell, has

drawn large research interest during last few years. Because the enzyme which fixes

atmospheric N2 (nitrogenase) is highly sensitive to oxygen, Cyanothece sp. ATCC

51142 uses a temporal separation between two processes; namely performing N2 fix-

ation during dark and photosynthesis during day time. These two processes as well

as other metabolic processes are shown to be under strong diurnal regulation [22].

Cyanothece sp. ATCC 51142 also consists of a robust circadian rhythms; an internal

24h oscillatory mechanism which persists under changing light inputs.

In order to study the cellular behavior under diurnal regulation with regular light

and dark inputs and the effects of changing light patterns on different processes, two

microarray experiments are conducted ([74] and [79]). In addition proteomics analysis

done using the samples from [74]. Following data sets from Cyanothece sp. ATCC

51142 are analyzed here.

• Cellular behavior under regular diurnal light inputs : Microarray data set
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Cells are grown with regular 12h/12h light-dark input under nitrogen fixing

conditions. The time course microarray data set consists of transcriptomics

measurements from 4888 genes over a period of 48 hours. Samples are extracted

every four hours with the first sample taken after one hour into the dark period.

• Cellular behavior due to changing light input from diurnal to constant light:

Microarray data set

Similar to above experiment except that the cells are kept under constant light

input during the second half of the experiment. First sample is extracted after

2 hours into the light period.

• Cellular behavior under regular diurnal light inputs : Proteomics data set

During the cultures from the first experiment described above, proteomics anal-

ysis was done using bottom-up label free approach. In this case samples are

taken every 2 hours in contrast to every 4 hours in the case of transcriptomics.

A.3 Arabidopsis thaliana

Arabidopsis thaliana is the model organism for plant biology. This vascular plant

has been shown to be consisted of more than 29000 genes, which is more than the

number of genes in humans. Arabidopsis is extensively used in research related to

photosynthesis, flowering mechanisms, circadian rhythms, environment stresses etc.

Two time course transcriptomics data sets from Arabidopsis thaliana are analyzed:

• High Light Treatment This time course microarray data set consist of four time

points namely 45min, 1.5h, 3h, and 6h. For target and control experiments,

light intensities of 750µEm−2s−1 and 75µEm−2s−1 respectively, are used.

• DCMU Treatment This data set consists of three time points namely 1.5h, 3h,

and 6h.
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Figure A.3: Arabidopsis thaliana.
Arabidopsis thaliana is the model organism for vascular plants. It is extensively

used in research related to photosynthesis, flowering mechanisms, circadian rhythms
and environment stresses. (Image courtesy: Abha Khandelwal)
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