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Figure 7.8: Phase differed between two processes, resulting due to a phase shift of
one, under different network topologies.

With the connections to the clock, system recovers from the perturbation very
quickly, with no significant effect on the other processes.

simulation results. This again suggests the vital role, the circadian clock has in maintaining

robust dynamics of the other biological processes.

These behaviors support the observation that the circadian clock is not essential for the

survival of the cells but increases the competence of the cells by improving the coordina-

tion between different biological processes [43]. This has well been established for other

organisms also, which include plants and humans.

7.5.2 Effects of Providing Constant Light Input

In circadian control literature, it is known that the free running period of the clock is

not exactly equal to 24h. Usually it can be slightly shorter or longer. Based on [32], S.

elongatus has a free running period of around 25h. In order to see whether the model is
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Figure 7.9: Circadian clock and one of the ring oscillator outputs under periodic
and constant light input conditions.

Effect of constant light is reflected in clock output immediately, but only observed
in the processes outputs with some delay.

capable of generating such a behavior, a simulation is run under constant light conditions.

This is achieved by keeping the phase of light oscillator constant. The natural period of

the circadian clock is kept at 24h. Figure 7.9 shows the output of the circadian clock and

one of the ring oscillators for periodic and constant light inputs. Figure 7.10 shows the

corresponding periods of oscillations. As a result of the coupling with the light oscillator,

the circadian clock and the ring oscillator show a oscillatory period of around 26h. The

free running period varied with the coupling strength. One other observation is that, while

the circadian clock oscillations are immediately affected by the changes in light input, the

processes under circadian-control are affected with some time delay. This is clear from

Figure 7.9.

122



0 2 4 6 8 10 12

24

25

26

C
irc

ad
ia

n 
C

lo
ck

 P
er

io
d 

(h
)

 

 

0 2 4 6 8 10 12
23

24

25

26

27

Cycle Index

P
ro

ce
ss

 P
er

io
d 

(h
)

24h L/D input
Constant Light after 48h

Figure 7.10: Periods of Oscillators under 24h periodic and constant light input
conditions.

Free running period of the oscillators shifted to 26h under constant input
conditions. This is in agreement with the experimental observations.

7.5.3 Adaptation to Light Patterns with Different Periods

The ability of the circadian clock to follow the different periods in the light input depends

on the strength of the coupling between the circadian clock and the light sensor. Figure 7.11

shows the period of oscillations of the circadian oscillator, under light cycles with different

periods, for two different coupling strengths. Clearly the circadian clock follows the light

period in a wider range with an increased coupling strength between two oscillators. This

observation can be used to determine the actual strength of coupling between the light

sensor and the circadian clock.
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Figure 7.11: Adaptation of circadian clock to different periods of light input.
Period of the circadian clock oscillations can be entrained by the external input.

The range of entrainment depends on the coupling strength between the light sensor
and circadian clock mechanism.

7.5.4 Effect of the Noise

Most of the biological systems are robust to the noise inherent to them. As a result,

any realistic model should be robust to fluctuations caused by noise. In order to test the

resilience of the current model to the external noise, we add a noise component to the

original model. We assume, that the effect of noise changes the Eigen frequency of the

oscillators. Therefore we replaced the ω terms with,

ωx = ωx0(1 + Nx), (7.7)

where Nx represents the White Gaussian noise. We limited the noise signal to be between

-0.1 and 0.1 representing 10% deviation of oscillator frequencies from their normal values.

This is sufficient to capture the range of frequencies usually observed in the cyanobacteria
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Figure 7.12: Output of a ring oscillator with and without external noise.
Effect of noise was negligible on the output of the oscillator. The robustness to the

noise is an essential feature of the most of the biological systems.

circadian clock. Noise was added to all oscillators except the light sensor. Equations were

solved using Eular method. We observed that the system is extremely robust and the effect

of noise on the ring oscillators is negligible. Figure 7.12 shows the simulation results for one

of the ring oscillators with and without noise.

7.6 Conclusions and Discussion

In this chapter, we propose a simple coupled oscillator network to model the gene behaviors

under different light input patterns. We show that the model proposed here is capable of

capturing important dynamics of the gene behaviors. The oscillator outputs are used to

classify genes into different groups based on the phases of their expressions. We show that

some of the biological processes could directly be mapped to the relevant oscillators. Based
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on the simulation results, we argue that the circadian clock is more important for maintain-

ing proper phase relationships between biological processes, compared to the interactions

between individual processes. We also discover that there is a noticeable time delay in-

volved in the propagation of changes in light patterns to the circadian-controlled processes.

Our model is able to reproduce some of the experimentally observed gene behaviors under

altered light conditions. These included the changes in the natural period of circadian clock

under constant light. In addition the model was shown to be resilient to noise, an essential

feature in most of the biological systems.

It is shown that some behaviors of the network are mainly determined by the coupling

strengths between oscillators. The current oscillator model can be improved by determining

these coupling strengths using biological experiments.
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Chapter 8

Differences and Similarities of Cell

Behaviors Observed from

Transcriptomics and Proteomics

Measurements

Transcriptomics studies only measure steady state expression levels of mRNA con-

centrations inside a cell. Though transcriptomics data provides vital information on

responses of cells to different experimental conditions, these measurements are in-

sufficient to achieve complete understanding on complex regulatory mechanisms in

a living cell. It is well known that mRNAs undergo several regulatory controls be-

fore corresponding proteins are synthesized [29]. Also steady state protein levels are

dependant on the corresponding degradation rates.

Proteomics measure steady state protein levels in a cell. Combination of transcrip-

tomics and proteomics studies reveals differences in mRNA and protein levels and

allows identification of possible control steps in determining their levels. In addi-

tions, such data sets are useful in improving accuracy of the gene regulatory networks

derived using transcription data only.
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8.0.1 Aims

We analyze two different proteomics data sets on Synechocystis sp. PCC 6803 and

Cyanothece sp. ATCC 51142. We compare these data with analogous transcrip-

tomics data sets to identify similarities and differences between transcriptional and

translational levels.

8.1 Identification of Differentially Regulated Genes

using Proteomics Data

Although the statistical methods discussed in Chapter 3 are applicable to proteomics

data also, due to limited number of replicates available, the assumptions made in those

methods do not hold for the available proteomics data. For example proteomics data

for Synechocystis sp. PCC 6803 consisted of only two biological replicates. As a result

different criteria is used to identify differentially expressed genes using proteomics

data sets. This criteria can be given as

1. mean1/mean2 ≥ 1.5

2. mean1 − mean2 > 1

3. (mean1 − 2 × stddev1) − (mean2 + 2 × stddev2) > 0

where mean1 and stddev1 are mean and standard deviation values of either treatment

or control, which ever has a larger mean. Mean2 and stddev2 correspond to the other

condition. Missing data points are replaced by zeros. If a protein satisfies all three
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conditions it is considered as being differentially expressed. Differentially expressed

proteins are again categorized as up-regulated or down-regulated, based on whether a

particular protein is high or low in the treatment compared to the control experiment

respectively.

In the case of Cyanothece sp. ATCC 51142 data set, where focus is on diurnally

regulated genes, we pick time points with maximum and minimum values as the

mean1 and mean2 respectively. In addition to above criteria, we imposed additional

condition that the mean values should be more than one in at least four time-points

during a period of two days.

8.2 Differentially Expressed Proteins in Synechocys-

tis sp. PCC 6803 in Different Growth Condi-

tions

These proteomics data sets are generated using Synechocystis cultures, grown under

different treatments; namely high CO2, Cold, heat, recovery from NH4, four nutrient

starvation conditions (Fe, N, S and P) and four revery conditions after starvation

of Fe,N,S and P. Wild type cells, grown under BG11 growth media, is used as the

control experiment. Proteomics data set consists of 17684 different peptides, which are

mapped onto possible 2060 different proteins. Protein level expressions are obtained

by summing up spectral counts for all peptides correspond to each protein. This

approach of getting protein intensities is valid, since all calculations are performed

for each protein separately, so that differences in the number of peptides in different

proteins do not cause a problem. Number of differentially expressed proteins under
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Table 8.1: Number of differentially expressed proteins in Synechocystis sp. PCC
6803 under different treatments.

Treatment Up Regulated Down Regulated Total
CO2 192 120 312
Cold 102 165 267
Heat 214 168 382

Fe Starvation 235 166 401
N Starvation 77 476 553
P Starvation 268 88 356
S Starvation 247 148 395
Fe Recovery 244 131 375
N Recovery 231 150 381

NH4 Recovery 257 141 398
P Recovery 316 99 415
S Recovery 275 101 376

All important nutrient starvation and recovery conditions cause significant changes
in the protein concentrations of Synechocystis sp. PCC 6803. Highest number of

genes are affected under nitrogen starvation conditions where more than 85% of the
affected proteins are down regulated. Fe: iron, N: nitrogen, P: phosphorus, S: sulfur

different growth conditions varied between 267 and 553. Most number of proteins got

differentially expressed under nitrogen starvation condition. In Table 8.1 we list the

number of proteins affected under different conditions.

8.2.1 Comparison with mRNA

To study the relationship between protein level and mRNA level changes, proteomics

data is compared with similar microarray data sets. We identified five treatments,

namely Cold stress, Fe, P, S and N starvation, for which microarray data sets are

available under similar conditions. Similarities are measured across different genes as

well as across different conditions.
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Table 8.2: Correlation measurements between mRNA and proteomics expressions.

Using Log-ratio values for Protein and mRNAs
Correlation Measurements

Cold Stress Fe-Starve P-starve S-Starve N-starve
All Genes -0.057 0.074 0.134 0.061 0.212
Differentially Expressed in mRNA -0.198 0.162 0.334 0.38 0.37
Differentially Expressed in Proteomics -0.07 0.1 0.175 0.09 0.299

Using Discretized Expressions
Percentage of times values agree

Cold Stress Fe-Starve P-Starve S-Starve N-Starve
All Genes 0.58 0.56 0.66 0.61 0.43
Differentially Expressed in mRNA 0.1 0.12 0.32 0.15 0.34
Differentially Expressed in Proteomics 0.11 0.07 0.17 0.07 0.52

Correlation measurements between mRNA and proteins under comparable experimental conditions
are performed. Calculations are done using both log ratio and discretized expression values.

Overall correlation is poor under all the treatments. This may be due to experimental variations or
different levels of regulations at transcriptome and translational activities.

Comparisons across different treatments did not yield good correlation value. This

calculation is done using both actual fold change values between Treatment and Con-

trol as well as discretized expressions of these fold change values. In Table 8.2, the

relevant results are summarized. Overall correlation between mRNA and Protein

level behavior is very low. The correlation values are slightly improved if we perform

the calculations using only those genes, which are differentially expressed at mRNA

level. For discretized expressions high level of agreement between mRNA and pro-

teins is resulted in due to large number of genes which are not differentially expressed

under these conditions.

Correlation measurements for individual genes across different conditions also did not

show strong relationship except for few genes in ribosomal 50S complex. Table 8.3

lists some of the genes which are differentially expressed in most of the conditions

and have good correlation value.
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Table 8.3: Genes with good correlation between mRNA and protein expressions

Gene Annotation Correlation Expressed
in Protein

Expressed
in mRNA

sll0656 unknown protein 0.955278 5 3
sll1742 transcription antitermination protein NusG nusG 0.724994 5 3
sll1184 heme oxygenase ho1 0.666965 4 4
sll1552 unknown protein 0.989388 5 2
sll0381 hypothetical protein 0.912997 4 3
sll1800 50S ribosomal protein L4 rpl4 0.760709 4 3
sll1799 50S ribosomal protein L3 rpl3 0.757748 4 3
slr1129 ribonuclease E rne 0.937753 5 1
sll1810 50S ribosomal protein L6 rpl6 0.921258 4 2
sll1813 50S ribosomal protein L15 rpl15 0.82778 3 3

Only a handful of genes showed a strong correlation between the expression levels of their mRNA
and proteins. These include several ribosome proteins from 50S subunit.

However it is noted that genes belonging to some of the processes including photosystem-

II, moved in the same direction, up or down in their expressions, in both mRNA and

protein levels under similar experimental conditions. This is not revealed by the cor-

relation measurements. Techniques such as Fisher’s exact test, used to identify the

association between two variables also could not highlight these observations due to

imbalance nature of the contingency tables. In order to capture such behaviors we

computed the fraction of genes moving in same or opposite direction for each path-

way. Some of the pathways, where majority of the genes move in one direction were

highlighted in Table 8.4.

8.3 Diurnal Rhythms in Steady State Protein Lev-

els in Cyanothece sp. ATCC 51142

As discussed in Chapter 5, more than 40% of genes in Cyanothece sp. ATCC 51142

are shown to be diurnally regulated at the transcription level. To investigate whether
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Table 8.4: Fractions of genes that move in the same direction in both mRNA and
protein levels

Cold Stress Fe-Starvation P-Starvation S-Starvation N-Starvation
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AB:AAAF 21 13 n .77 14 n .57 15 n .67 15 n .53 14 p .64
AB:AF 11 10 p .70 11 n .55 11 n .64 10 n .60 10 p .60
CP:C 14 9 n .78 10 p .50 10 p .90 8 p .50 9 p .56
EM:PPP 8 7 n .57 7 n .57 8 p .88 8 n .63 6 p .67
EM:PAM 7 6 p .50 5 p .80 6 p .83 4 p .50 5 p .80
EM:TC 8 8 n .75 8 p .50 7 p .71 6 p .83 7 n .57
FAM 25 16 p .50 19 p .58 19 n .63 19 n .53 19 p .74
PR:AS 9 7 n .86 8 n 1.0 7 n .57 9 n .89 8 p .63
PR:CF 15 14 n .64 15 n .73 15 n .67 14 p .57 14 p .79
PR:PS-I 13 10 p .50 11 p .82 10 p .70 11 p .73 11 p .64
PR:PS-II 20 16 p .63 16 p .63 17 p .59 16 p .88 16 p 1.0
PR:PB 15 14 n .64 13 n .69 12 p .75 14 p .79 14 p 1.0
PP:PR 19 9 p .67 10 n .70 12 p .50 12 p .83 10 p .60
TR:RP 55 43 n .60 47 n .64 49 p .90 47 n .85 49 p .96

Even though linear correlation measurements yield poor agreement, we observe genes in many
pathways show similar type of response (reduction or increase in expressions) at both mRNA and
protein levels. This is clear from the high fractions of genes that move in same direction under a
given treatment. Interestingly we observe changes in expressions of mRNA and proteins in some

pathways have a negative relationship.
AB:AAAF-Amino acid biosynthesis:Aromatic amino acid family, AB:AF-Amino acid
biosynthesis:Aspartate family, CP:C-Cellular processes:Chemotaxis, EM:PPP-Energy

metabolism:Pentose phosphate pathway, EM:PAM-Energy metabolism:Pyruvate and acetyl-CoA
metabolism, EM-TC-Energy metabolism:TCA cycle, FAM-Fatty acid, phospholipid, and sterol
metabolism, PR:AS-Photosynthesis and respiration:ATP synthase, PR:CF-Photosynthesis and

respiration:CO2 fixation, PR:PSI-Photosynthesis and respiration:Photosystem I,
PR:PSII-Photosynthesis and respiration:Photosystem II, PR:PB-Photosynthesis and
respiration:Phycobilisome, PP:PR-Purines and pyrimidines:Purine ribonucleotides,

TR:RP-Translation:Ribosomal proteins
Relationship : p-positive, n-negative
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these rhythms are present at translational level also we analyzed proteomics measure-

ments from the same experiment. This allowed us to perform direct comparison and

identify the similarities and differences between steady state behaviors of mRNA and

protein levels.

Proteomics data is generated using Cyanothece sp. ATCC 51142 cultures grown

under 12h/12h Light/Dark conditions. Samples are extracted every 2h for 48h period.

Original data set consisted of 6740 peptides which are mapped onto 1232 different

proteins. Oscillatory proteins are identified using combined methods of Fourier scores

[23], auto-correlation and trigonometric curve fitting [86]. Total of 166 genes are

identified as having strong diurnal rhythms with a main period of 24h. Additional 33

genes are shown to be oscillation with a period of 12h. Compared with the results from

transcriptomics analysis, we discovered that 141 genes among these 166 have strong

diurnal behavior at mRNA levels. Additional 7 genes also shown to be cyclic but

were not detected in transcriptomics analysis. One of the genes with 24h oscillations

in protein level is shown to be having 12h oscillations in mRNA.

8.3.1 Time Difference between Transcript and Protein Peak

Times

In order to compare the time difference between the peak times of mRNA expressions

and the protein expressions, each expression is approximated using the first oscillatory

term of the Fourier series expansion. Figure 8.1 gives the number of genes peaked

during different times of the day. Time difference between two oscillations is computed

as the phase difference of the approximated signals. One notable observation from this

comparison of mRNA and protein peak times is significant time differences between
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these two times for many genes. Figure 8.2 shows expressions at mRNA and protein

levels for two oscillatory genes. There is no time delay between mRNA and protein

peak times for the gene in Figure 8.2(a). In contrast, a significant time delay for

these two times is observed for the gene in Figure 8.2(b). Figure 8.3 summarizes the

distribution of time delays between mRNA peaks and the Protein peaks for various

genes. Positive time delays represent genes where mRNA expression leads the Protein

expression while negative delays represent genes with leading Protein expressions. In

contrast to the observations made in transcriptomics analysis, where genes in many

biological processes peak as groups during the same time of the day, wide range of peak

times are observed at protein levels for genes within a single biological processes. Only

exception is nitrogen fixation where we observe many genes peak at the same time in

protein expressions also. With the current transcriptomics and proteomics techniques

we are unable to determine the reasons behind these delays. These delays can be due

to lag between transcriptional and translational activities or due to variations in

synthesis and degradation levels of mRNA and proteins.

8.4 Conclusions and Discussion

Integration of transcriptomics and proteomics data sets revealed many differences

between mRNA and protein expressions. Comparison of different growth conditions

of Synechocystis sp. PCC 6803 showed only a weak correlation between mRNA and

proteins. This weak correlation could be due changes in experimental conditions itself.

However, by looking at the direction of change in mRNA and protein expressions,

we showed that genes from different pathways change as a group with high level of

agreement. One important observation made here is that for some pathways behavior
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Figure 8.1: Distribution of peak times of protein expression across a single day.
Majority of the oscillatory protein expressions reach their peak concentrations after

the middle of the dark period. This can be due to higher translation or lower
degradation rates during these periods.

of genes at mRNA levels and protein levels show a negative relationship. This might

be due to time delays between different events related to transcription and translation

as well as rates of degradation of mRNA and proteins.

Since same samples are used to generate both transcriptomics and proteomics data,

Cyanothece sp. ATCC 51142 data sets provided more direct comparison between two.

Out of 1232 detected proteins only 166 are shown to be cyclic. This is in contrast to

more than 40% cyclic mRNA detected at transcriptomics level [23]. This suggests that

the cells might maintain the protein level changes in lower dynamic range compared

to that of mRNA.
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Figure 8.2: Two genes that show oscillatory behaviors at both mRNA and protein
abundance levels. The peak times of mRNA and protein concentrations can vary in

a wide range of periods for different genes.

Significant time delays between peak mRNA and protein levels are detected. These

time delays might be due to various post transcriptional regulation mechanisms or

balance between synthesis and degradation rates of corresponding molecules.
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Figure 8.3: Time delays observed between peak times of protein and mRNA
expressions.

Positive time delays represent genes where mRNA expression leads the Protein
expression while negative delays represent genes with leading Protein expressions.
Current techniques are insufficient to explain the exact reasons behind observed

delays.
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Chapter 9

Conclusions

In this dissertation, we analyzed several high throughput data sets from different

photosynthetic organisms to understand their response to changes in their environ-

ments. We developed various computational and modeling techniques to analyze these

data so that salient features in cellular responses can be extracted. Three specific

problems studied here are transcriptomics modifications in photosynthetic organisms

to reduction-oxidation (redox) stress conditions, circadian and diurnal rhythms of

cyanobacteria and effects of incident light patterns on these rhythms, and coordina-

tion between biological processes in cyanobacteria under various growth conditions.

We discussed two commonly used high throughput techniques in transcriptomics and

proteomics, namely two-color microarrays and label free bottom-up proteomics. We

utilized several computational and statistical algorithms including LOWESS normal-

ization and statistical significance tests to perform preliminary data processing and

quality assessments of the data sets. Depending on the objective of the biologi-

cal experiment, we selected suitable criteria to identify informative genes. These

approaches include several statistical tests such as Student’s t-test, KS-test, Fourier

scores, angular distances and their combinations. Various standard and non-standard

classification methods are utilized to group genes to main behavioral categories. We

139



proposed several deterministic and probabilistic models to explain expressions of these

gene groups. We also showed how existing insight on gene interactions and relevant

computational algorithms can improve the initial results.

With our analysis we were able to discover system wide transcriptional modifications

in the cyanobacterium Synechocystis sp. PCC 6803, under various redox stresses

caused by high light treatment, DCMU and preferential excitation of photosystem I

and II. Gene clustering methods revealed that these responses can mainly be classified

as transient responses and consistent responses, depending on durations of modified

behaviors. We showed many central pathways related to energy production as well

as energy utilization are strongly affected by these stresses. Combined analysis of

two stress conditions, high light and DCMU treatment, combined with data mining

and motif finding algorithms led to the discovery of a novel transcription factor in

Arabidopsis thaliana, RRTF1, which responds to redox stresses.

Using multiple experimental conditions we were able to show that majority of the

diurnal genes in Cyanothece sp. ATCC 51142 are in fact light responding. Only about

10% of genes in the genome are categorized as being circadian controlled. We derived

two transcription control model based on feed-forward loops and phase oscillators to

model and identify interactions between diurnal genes. Both these models are shown

to carry biologically meaningful features.

We were able to integrate all transcriptomics data sets available for Synechocystis sp.

PCC 6803 and utilize probabilistic modeling to obtain a Bayesian network for main

biological processes in the cell. Several novel relationships between biological pro-

cesses are discovered from the model. Model is used to simulate several experimental
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conditions, and the response of the model is shown to agree with the experimentally

observed behaviors.

Finally we combined the analysis of related proteomics and transcriptomics data sets

to study the similarities and differences in cellular responses at these two levels.

Current analysis helps us extending our knowledge on cellular responses to different

environment conditions at global level. How ever in order to gain better understanding

on these complex dynamical systems, many additional experimental and computa-

tional effort is needed. We are hoping move towards this goal by combining newer

technologies including metabolomics and genome sequencing.
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Appendix A

Experimental Organisms and data

sets

A.1 Synechocystis sp. PCC 6803

Synechocystis sp. PCC 6803 is the first photosynthesis organism to have a com-

pletely sequenced genome. It is capable of growing in numerous environment con-

ditions, ranging from fully autotrophical (growth by fixing environment CO2 using

light energy) to heterotrophic (growth under dark, utilizing sugar through glycolysis

and oxidative phosphorylation to generate required energy). Since its spontaneously

transformable, Synechocystis is widely used as a model organism in photosynthesis

research.

Following data sets from Synechocystis sp. PCC 6803 are analyzed:

• High Light Treatment : Microarray data set

This time course microarrays consist of six time points namely 15min, 1h, 2h,

3h, 4h and 6h. Synechocystis cells are grown under high light with an intensity of

300µEm−2s−1 and compared with the cells grown under regular light of intensity

30µEm−2s−1. Each time point consists of 6 microarrays, which include a dye

swap and two biological replicates.

• DCMU Treatment : Microarray data set
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Figure A.1: Synechocystis sp. PCC 6803.
Synechocystis sp. PCC 6803 is the mostly studied photosynthetic cyanobacterium.
It is the first cyanobacterium and third prokaryote to have a completely sequenced

genome. (Image courtesy: Michelle Liberton)

This data set consists of five time points namely 15min, 45min, 1.5h, 3h, and

6h. Synechocystis cells are treated with DCMU (3-(3,4-dichlorophenyl)-1,1-

dimethylurea), a very specific and sensitive inhibitor of photosynthesis II sys-

tem, to reduce the electron flow between photosystem II and plastoquinone, by

20%. Each time point consists of 6 microarrays, which include a dye swap and

two biological replicates.

• Preferential Excitation of Photosystem I and Photosystem II : Microarray data

set

Photosystem I and Photosystem II in Synechocystis cells are preferentially ex-

cited using blue and red light of intensity 10µEm−2s−1, respectively. Samples

are obtained at six time points namely 15min, 45min, 1.5h, 2h, 3h and 6h, and

6 microarrays are generated at each time point.

• Comparison of different growth conditions: Proteomics data set

Proteomics data from twelve different growth conditions where presence of im-

portant nutrients are controlled are compared with normal growth conditions

under BG11 growth media. Total of 17920 peptides were detected in different

conditions which were later mapped into 2061 unique proteins.
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Figure A.2: Cyanothece sp. ATCC 51142.
Its ability to fix environmental N2 (Diazotrophic) as well as performing

photosynthesis within a single cell has drawn large research interest during last few
years. (Image courtesy: Michelle Liberton)

A.2 Cyanothece sp. ATCC 51142

Cyanothece sp. ATCC 51142 is a marine cyanobacteria. Its ability to fix environmen-

tal N2 (Diazotrophic) as well as performing photosynthesis within a single cell, has

drawn large research interest during last few years. Because the enzyme which fixes

atmospheric N2 (nitrogenase) is highly sensitive to oxygen, Cyanothece sp. ATCC

51142 uses a temporal separation between two processes; namely performing N2 fix-

ation during dark and photosynthesis during day time. These two processes as well

as other metabolic processes are shown to be under strong diurnal regulation [22].

Cyanothece sp. ATCC 51142 also consists of a robust circadian rhythms; an internal

24h oscillatory mechanism which persists under changing light inputs.

In order to study the cellular behavior under diurnal regulation with regular light

and dark inputs and the effects of changing light patterns on different processes, two

microarray experiments are conducted ([74] and [79]). In addition proteomics analysis

done using the samples from [74]. Following data sets from Cyanothece sp. ATCC

51142 are analyzed here.

• Cellular behavior under regular diurnal light inputs : Microarray data set

144



Cells are grown with regular 12h/12h light-dark input under nitrogen fixing

conditions. The time course microarray data set consists of transcriptomics

measurements from 4888 genes over a period of 48 hours. Samples are extracted

every four hours with the first sample taken after one hour into the dark period.

• Cellular behavior due to changing light input from diurnal to constant light:

Microarray data set

Similar to above experiment except that the cells are kept under constant light

input during the second half of the experiment. First sample is extracted after

2 hours into the light period.

• Cellular behavior under regular diurnal light inputs : Proteomics data set

During the cultures from the first experiment described above, proteomics anal-

ysis was done using bottom-up label free approach. In this case samples are

taken every 2 hours in contrast to every 4 hours in the case of transcriptomics.

A.3 Arabidopsis thaliana

Arabidopsis thaliana is the model organism for plant biology. This vascular plant

has been shown to be consisted of more than 29000 genes, which is more than the

number of genes in humans. Arabidopsis is extensively used in research related to

photosynthesis, flowering mechanisms, circadian rhythms, environment stresses etc.

Two time course transcriptomics data sets from Arabidopsis thaliana are analyzed:

• High Light Treatment This time course microarray data set consist of four time

points namely 45min, 1.5h, 3h, and 6h. For target and control experiments,

light intensities of 750µEm−2s−1 and 75µEm−2s−1 respectively, are used.

• DCMU Treatment This data set consists of three time points namely 1.5h, 3h,

and 6h.
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Figure A.3: Arabidopsis thaliana.
Arabidopsis thaliana is the model organism for vascular plants. It is extensively

used in research related to photosynthesis, flowering mechanisms, circadian rhythms
and environment stresses. (Image courtesy: Abha Khandelwal)
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