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ABSTRACT OF THE DISSERTATION

Discrete and Continuous Sparse Recovery Methods and Their Applications

by

Zhao Tan

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, 2015

Professor Arye Nehorai, Chair

Low dimensional signal processing has drawn an increasingly broad amount of attention in

the past decade, because prior information about a low-dimensional space can be exploited

to aid in the recovery of the signal of interest. Among all the different forms of low di-

mensionality, in this dissertation we focus on the synthesis and analysis models of sparse

recovery. This dissertation comprises two major topics. For the first topic, we discuss the

synthesis model of sparse recovery and consider the dictionary mismatches in the model. We

further introduce a continuous sparse recovery to eliminate the existing off-grid mismatches

for DOA estimation. In the second topic, we focus on the analysis model, with an emphasis

on efficient algorithms and performance analysis.

In considering the sparse recovery method with structured dictionary mismatches for the

synthesis model, we exploit the joint sparsity between the mismatch parameters and original

sparse signal. We demonstrate that by exploiting this information, we can obtain a robust

reconstruction under mild conditions on the sensing matrix. This model is very useful for

radar and passive array applications. We propose several efficient algorithms to solve the
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joint sparse recovery problem. Using numerical examples, we demonstrate that our proposed

algorithms outperform several methods in the literature. We further extend the mismatch

model to a continuous sparse model, using the mathematical theory of super resolution.

Statistical analysis shows the robustness of the proposed algorithm. A number-detection

algorithm is also proposed for the co-prime arrays. By using numerical examples, we show

that continuous sparse recovery further improves the DOA estimation accuracy, over both

the joint sparse method and also MUSIC with spatial smoothing.

In the second topic, we visit the corresponding analysis model of sparse recovery. Instead

of assuming a sparse decomposition of the original signal, the analysis model focuses on the

existence of a linear transformation which can make the original signal sparse. In this work

we use a monotone version of the fast iterative shrinkage- thresholding algorithm (MFISTA)

to yield efficient algorithms to solve the sparse recovery. We examine two widely used

relaxation techniques, namely smoothing and decomposition, to relax the optimization. We

show that although these two techniques are equivalent in their objective functions, the

smoothing technique converges faster than the decomposition technique. We also compute

the performance guarantee for the analysis model when a LASSO type of reconstruction is

performed. By using numerical examples, we are able to show that the proposed algorithm

is more efficient than other state of the art algorithms.
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Chapter 1

Introduction

Low-dimensional signal recovery exploits the fact that many natural signals are inherently

low dimensional, although they may have high ambient dimensions. Prior information about

the low-dimensional space can be exploited to aid in the recovery of the signal of interest.

Sparsity is one of the popular forms of prior information, and is the prior that underlies

the growing field of compressive sensing [1]-[4]. This field has become a center of research

interest in the areas of applied mathematics, computer science, and electrical engineering

during the past decade. Compressed sensing enables signal reconstruction by using a sample

rate less than the normal Nyquist rate, as long as the signal of interest is sparse in a basis

representation. Compressed sensing covers a wide range of applications, such as imaging [5],

radar signal processing [6]-[8], and remote sensing [9]. The research on sparse recovery and

compressed sensing has mainly pursued the following two directions.

Theoretical analysis and performance bound: The main goal of theoretical analysis

is to find the conditions under which the reconstruction is unique and exact under noiseless

conditions. For noisy conditions, performance bounds are derived based on the sparsity of the

original signal and the properties of the dictionary. There are two popular property measures

for the dictionary: one is called the restricted isometric property, and the other is based on

the coherence of the atoms in the dictionary. By performing theoretical analysis, researchers

are able to find the sufficient number of samples that guarantees a robust reconstruction.

Efficient algorithms: Several types of efficient algorithms are explored in the literature.

The first type is the greedy algorithms, such as iterative hard thresholding [10] and orthogonal

matching pursuit [11], and they solve the `0 norm by finding one nonzero term at each time.

A second type of algorithms uses convex relaxation and replace the nonconvex term by a
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convex approximation. In this category, we have basis pursuit [12] and LASSO [13]. Efficient

algorithms, such as FISTA [14] and NESTA [15], have been proposed to solve the convex

optimization. More recently, Bayesian compressive sensing theory has been proposed to

further enforce the sparsity of the reconstructed signal. The idea of Bayesian compressive

sensing is based on the Relevance Vector Machine (RVM) [16]. Independent Gaussian priors

are assigned to each element of the sparse vector to enforce sparsity. The authors of [17]

extended the RVM and showed its effectiveness in dealing with an overcomplete dictionary

in the synthesis model.

In this work, we will cover fundamental theoretical research on sparse recovery and com-

pressed sensing. In particular, we will first discuss the effect of structure dictionary mis-

matches in compressed sensing, and then propose discrete and continuous approaches to

estimate the dictionary mismatches. In the second topic we will discuss the analysis model

of sparse recovery.

1.1 Background

1.1.1 Discrete and continuous sparse recovery for compressed sens-

ing

A typical compressed sensing problem employs the following linear model:

y = Ds+w,

in which D ∈ RM×N(M ≤ N) is a given dictionary matrix, y ∈ RM is the measurement

vector, and w ∈ RM is the unknown noise term. We normally have M < N , which means the

linear system is underdetermined and has infinite solutions. The signal of interest is s ∈ RN ,

which is known to be sparse, i.e., the number of nonzero terms in s is far less than N .

With this sparse prior information, we are able to reconstruct s from the underdetermined

linear system when the dictionary D is known. In real applications, we normally do not

have perfect information about the dictionary matrix D. The dictionary can be written as

D = A + E with matrix A ∈ RM×N known, and matrix E ∈ RM×N unknown. In [18],
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[19], the authors showed that the reconstruction error increases with the mismatch level.

In [20, 21], the alternating minimization method is proposed to solve simultaneously for

the sparse signal s and mismatch E. However, this method suffers from slow convergence

and has no performance guarantee. One particular application for this mismatch model

is DOA estimation with off-grid targets. For passive arrays and collocated MIMO radar,

the sensing matrix A will be a discrete Fourier operator, and E can be approximated by

A’s first-order derivative. Instead of considering discrete Fourier transformation and using

its first order Taylor expansion, recent studies [22] on super resolution have addressed the

continuous sparse signal reconstruction with a continuous Fourier operator. By extending

this approach, we will be able to draw insights into a special form of linear arrays, namely,

co-prime arrays.

1.1.2 The analysis model of sparse recovery

Sparse recovery has two models in the current literature, the synthesis model and the analy-

sis model. In the synthesis model of sparse recovery, it is assumed that the signal of interest

can be expressed as a sparse combination of known dictionary elements. The main methods

for solving the synthesis model can be classified into two categories. One includes greedy

methods, such as iterative hard thresholding [10] and orthogonal matching pursuit [11]. The

other is based on relaxation-type methods, such as basis pursuit [23] and LASSO [13]. How-

ever, the performance of the synthesis model deteriorates dramatically when the coherence

in the dictionary increases. Recently, an alternative model has been proposed, which is

known as the analysis model or co-sparse model [24], [25]. In the analysis model, instead of

assuming that the signal can be decomposed as a sparse combination of a given dictionary,

we assume that there exists a deterministic linear transformation which will yield a sparse

signal after being applied on the original signal. Due to its importance, this counterpart has

received increasing attention in recent years, and preliminary results [26]-[29] show promising

performance compared with the synthesis model. Despite the recent attention, there still

remains a gap between the co-sparse model and the original synthesis model with respect

to efficient algorithms, performance analysis, and dictionary learning. What’s more, the

analysis model is generally harder than the synthesis model to solve numerically, and the

3



performance analysis of convex relaxation requires more effort than the previous synthesis

model.

1.2 Contributions of this work

This dissertation first considers sparse recovery with structured mismatches in the dictionary,

and also proposes a continuous sparse recovery method to deal with the off-grid effect in DOA

estimation. Then we extend sparse recovery to the analysis model, develop efficient algorithm

and conduct performance analysis. We summarize the main contributions as follows.

Sparse recovery methods with structured dictionary mismatches: In traditional

compressed sensing theory, the dictionary matrix is given a priori, whereas in real applica-

tions this matrix suffers from random noise and fluctuations. In this work we consider a

signal model where each column in the dictionary matrix is affected by a structured noise.

This formulation is common in direction-of-arrival (DOA) estimation of off-grid targets, en-

countered in both radar systems and array processing. We propose to use joint sparse signal

recovery to solve the compressed sensing problem with structured dictionary mismatches and

also give an analytical performance bound on this joint sparse recovery. We show that, under

mild conditions, the reconstruction error of the original sparse signal is bounded by both the

sparsity and the noise level in the measurement model. Moreover, we implement fast first-

order algorithms to speed up the computing process. Numerical examples demonstrate the

good performance of the proposed algorithm, and also show that the joint-sparse recovery

method yields a better reconstruction result than existing methods. By implementing the

joint sparse recovery method, the accuracy and efficiency of DOA estimation are improved

in both passive and active sensing cases.

Continuous sparse recovery for DOA estimation with co-prime arrays: In this

topic, we consider the problem of direction of arrival (DOA) estimation using a recently

proposed structure of non-uniform linear arrays, referred to as co-prime arrays. By exploit-

ing the second order statistical information of the received signals, co-prime arrays exhibit

O(MN) degrees of freedom with only M +N sensors. A sparsity-based recovery algorithm

is proposed to fully utilize these degrees of freedom. The suggested method is based on the

developing theory of super resolution, which considers a continuous range of possible sources
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instead of discretizing this range onto a grid. With this approach, off-grid effects inherent

in traditional sparse recovery can be neglected, thus improving the accuracy of DOA esti-

mation. We show that in the noiseless case it is theoretically possible to detect up to MN
2

sources with only 2M +N sensors. The noise statistics of co-prime arrays are also analyzed

to demonstrate the robustness of the proposed optimization scheme. A source number de-

tection method is presented based on the spectrum reconstructed from the sparse method.

By extensive numerical examples, we show the superiority of the suggested algorithm in

terms of DOA estimation accuracy, degrees of freedom, and resolution ability over previous

techniques, such as MUSIC with spatial smoothing and discrete sparse recovery.

Smoothing and decomposition for analysis model of sparse recovery: In this work,

we consider algorithms and recovery guarantees for the analysis sparse model in which the

signal is sparse with respect to a highly coherent frame. We consider the use of a monotone

version of the fast iterative shrinkage-thresholding algorithm (MFISTA) to solve the analysis

sparse recovery problem. Since the proximal operator in MFISTA does not have a closed-

form solution for the analysis model, it cannot be applied directly. Instead, we examine two

alternatives based on smoothing and decomposition transformations that relax the original

sparse recovery problem, and then implement MFISTA on the relaxed formulation. We refer

to these two methods as smoothing-based and decomposition-based MFISTA. We analyze

the convergence of both algorithms, and establish that smoothing-based MFISTA converges

more rapidly when applied to general nonsmooth optimization problems. We then derive a

performance bound on the reconstruction error using these techniques. The bound proves

that our methods can recover a signal sparse in a redundant tight frame when the measure-

ment matrix satisfies a properly adapted restricted isometry property. Numerical examples

demonstrate the performance of our methods and show that smoothing-based MFISTA con-

verges faster than the decomposition-based alternative in real applications, such as MRI

image reconstruction.
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1.3 Organization of the dissertation

The rest of the dissertation is organized as follows. Chapter 2 considers the dictionary

mismatches in the sparse recovery method, and we propose to use the joint sparsity be-

tween mismatch parameters and the original sparse signal to increase the reconstruction

accuracy. In Chapter 3 we extend discrete sparse recovery to a continuous domain and

propose a semidefinite programming scheme to solve the continuous optimization problem

to further increase the reconstruction accuracy. Chapter 4 presents the analysis model of

sparse recovery, where we consider the case that a sparse signal can be generated after linear

transformation of the original signal. Efficient algorithms are proposed in this chapter, with

rigorous analysis. We finally summarize the dissertation in Chapter 5, and also point out

potential future directions.

1.4 Notations

We use a capital italic bold letter to represent a matrix and a lowercase italic bold letter

to represent a vector. For a given matrix D, DT,D∗,DH denote the transpose, conjugate

transpose and conjugate without transpose of D respectively. We denote by D∗T the matrix

that maintains the rows in D∗ with indices in set T , while setting all other rows to zero.

For a given vector x, ‖x‖1, ‖x‖2 are the `1 and `2 norms, respectively, and ‖x‖∞ denotes

the element in x with the largest absolute value. Let ‖x‖0 represent the number of nonzero

components in a vector, which is referred as the `0 norm. Let |x| represent a vector consisting

of the absolute value of every element in x. xi and x[i] are both used to represent the ith

element of x. We use � to denote the point-wise multiplication of two vectors with the same

dimension. We use ⊗ to denote the Kronecker product of two matrices. In this work, we

refer a vector s as K-sparse if there are at most K nonzero terms in s. We say a vector

x ∈ R2N is K joint-sparse if x = [sT,pT]T, with s ∈ RN and p ∈ RN , both being K sparse

with the same support set. Then we use ‖x‖0,1 to denote the joint sparsity of vector x, and

we have ‖x‖0,1 = K at this case.

6



For a matrix or an operator A, ‖A‖2 is the induced spectral norm, and ‖A‖p,q = max ‖Ax‖p‖x‖q .

For a given operator F , F ∗ denotes the conjugate operator of F . Given a function f ,

‖f‖L1 , ‖f‖L2 , ‖f‖L∞ are its `1, `2, `∞ norms. Finally, Re〈a, b〉 = 〈a,b〉+〈b,a〉
2

.We use argmin{f(x) :

x = z,y} to denote z or y, whichever yields a smaller function value of f(x).
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Chapter 2

Sparse Recovery Methods with

Structured Dictionary Mismatches

We will discuss discrete and continuous sparse recovery methods in the following two chap-

ters. In this chapter, we consider the problem of compressed sensing with dictionary mis-

matches and we apply the theoretical result to the applications of MIMO radar and nested

arrays.1

2.1 Introduction

Let us recall the dictionary mismatch model for compressed sensing:

y = (A+E)s+w, (2.1)

in which A ∈ RM×N(M ≤ N) is a given dictionary matrix, y ∈ RM is the measurement

vector, and w ∈ RM is the unknown noise term. Matrix E ∈ RM×N is the unknown

mismatch of the dictionary. The signal of interest is s ∈ RN , which is known to be sparse,

i.e., the number of nonzero terms in s is far less than N . In this chapter, we consider a

particular structured dictionary mismatch model with di = ai + βibi, 1 ≤ i ≤ N , where di

and ai are the i-th column of matrices D and A respectively; ai and bi are given for all i,

1This chapter is based on Z. Tan, P. Yang, and A. Nehorai, “Joint sparse recovery method for compressed
sensing with structured dictionary mismatch,” IEEE Trans. Signal Processing, Vol. 62, pp. 4997-5008, Oct.
2014. c© IEEE 2014.
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and βi is unknown. Thus the signal model in this chapter is

y = (A+B∆)s+w, (2.2)

where ∆ = diag(β), β = [β1, β2, . . . , βN ]T, and B = [b1, b2, . . . , bN ] ∈ RM×N .

This structured mismatch was previously considered in [20, 30]. Although it is a limited

mismatch model, it has many applications in areas such as spectral estimation, radar signal

processing, and DOA estimation. In [31], a greedy method based on matching pursuit is

proposed to combine with the total least square method to deal with the structured mismatch

for compressed sensing. In [20, 30], a bounded mismatch parameter β is considered, which

is common in DOA estimations for off-grid targets. The proposed frameworks were based

on the first order Taylor expansion, and they enforced the sparsity of the original signal s.

They were solved using interior point methods [32], which require solving linear systems,

and the computing speed can be extremely slow when the problem’s dimension grows.

In this work, we first propose to use the idea of the joint-sparse recovery [33],[34] to fur-

ther exploit the underlying structure in compressed sensing with the structured dictionary

mismatch. Joint sparsity in this chapter indicates that the nonzero terms in the sparse

signal come in pairs. We also give a performance guarantee when the sensing matrix A

and the mismatch matrix B satisfy certain constraints. For large-dimensional problems, we

implement the idea of a first-order algorithm, named fast iterative shrinkage-thresholding al-

gorithm (FISTA) [14], to solve the joint-sparse recovery with both bounded and unbounded

mismatch parameter β. FISTA is a special case of a general algorithmic framework [35]

and is more efficient in dealing with large dimensional data than the interior point methods.

Some preliminary results of this work were shown in [36].

We extend the developed theory and algorithms to real DOA estimation applications with

both passive and active sensing. Since the number of targets in the region of interest is

limited, DOA estimation benefits from compressed sensing: both sampling energy and pro-

cessing time can be greatly reduced. In order to implement compressed sensing, the region

of interest needs to be discretized into a grid. The existence of off-grid targets deteriorates

the performance of compressed sensing dramatically. Recent research has used compressed

sensing in both active sensing application [6]-[8] and passive sensing [37, 38]. However, none

of these works consider the situation of off-grid targets. According to the numerical example
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shown in this chapter, by exploiting the first order derivative of sensing model associated with

off-grid targets and also the joint sparsity between original signal and mismatch parameter,

the accuracy of DOA estimation can be improved compared with previous methods.

The chapter is organized as follows. In section 2.2 we introduce the model for compressed

sensing with structured dictionary mismatches and propose to use joint sparsity to solve

the reconstruction problem. We analyze the performance bound on the reconstruction error

using the proposed joint sparse recovery method. In section 2.3 we extend the general

mismatch models to the research area of DOA estimation with off-grid targets and we also

describe the mathematical model for both passive sensing and active sensing applications

with off-grid targets.. In section 2.4, we give the FISTA implementation of the joint sparse

recovery methods. In section 2.5, we use several numerical examples to demonstrate that

the proposed method outperforms existing methods for compressed sensing with structured

dictionary mismatches.

2.2 General structured dictionary model

2.2.1 Compressed sensing with dictionary mismatches

Traditional compressed sensing can be solved using the LASSO formulation [13], stated as

(LASSO) min
s∈Rn

1

2
‖Ds− y‖22 + λ‖s‖1. (2.3)

In order to recover the sparse signal s in the mismatch model (2.2), having D = A +B∆

the optimization problem is given as

min
s∈RN ,β∈RN

1

2
‖(A+B∆)s− y‖22 + λ‖s‖1, s.t.∆ = diag(β). (2.4)

The above optimization is non-convex and generally hard to solve. Please note that when

si = 0 for certain i, then βi can be any value, without affecting the reconstruction. Therefore,

in the rest of this chapter, we focus only on instances of βi with nonzero si. In [20, 21], the

authors proposed to use the alternating minimization method to solve for both s and β when
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the mismatch variable β is bounded or Gaussian distributed. Based on the idea of [20], we

let p = β � s and Φ = [A,B], and then transform the original non-convex optimization

into a relaxed convex one. Due to the fact that pi is zero whenever si is zero, instead of

enforcing the sparsity of s in [20, 30] we enforce the joint sparsity between s and p. We let

x = [sT,pT]T ∈ R2N , and define the mixed `2/`1 norm of x as

‖x‖2,1 =
N∑
i=1

√
x2i + x2N+i. (2.5)

Also we define

‖x‖∞,1 = max
1≤i≤N

√
x2i + x2N+i. (2.6)

If s is K-sparse, then p will also be K-sparse, with the same support set as s. Hence the

relaxed optimization enforcing joint sparsity will be referred as (JS) throughout the chapter

and it can be stated as

(JS) min
x∈R2N

1

2
‖Φx− y‖22 + λ‖x‖2,1. (2.7)

2.2.2 Performance bound for joint sparse LASSO

In order to analyze the recovery performance of (JS), we introduce the joint restricted isom-

etry property (J-RIP), similar to the restricted isometry property (RIP) [1] in compressed

sensing. This definition is a special case of the Block RIP introduced in [33].

Definition 2.1. (J-RIP) We say that the measurement matrix Φ ∈ RM×2N obeys the joint

restricted isometry property with constant σK if

(1− σK)‖v‖22 ≤ ‖Φv‖22 ≤ (1 + σK)‖v‖22 (2.8)

holds for all K joint-sparse vectors v ∈ R2N .

With this definition a non-convex recovery scheme can be obtained.

Theorem 2.1. Let y = Φx, and Φ ∈ RM×2N , x = [sT,pT]T, in which p = s�β ∈ RN and

s ∈ RN . Let ‖x‖0,1 denote the joint sparsity of vector x. Assume the matrix Φ satisfies the
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J-RIP condition with constant σ2K < 1 and s has at most K nonzero terms. By solving the

following non-convex optimization problem

min
x∈R2N

‖x‖0,1, s.t. y = Φx, (2.9)

we obtain the optimal solution x̂. Then si = x̂i for all i, and βi = x̂N+i/x̂i when si is

nonzero.

Proof: When s has sparsity K, then we know that ‖x‖0,1 ≤ K. Then since x̂ solves the

optimization problem, we have ‖x̂‖0,1 ≤ ‖x‖0,1 ≤ K, and then ‖x̂−x‖0,1 ≤ 2K. Since both

x̂ and x meet the equality constraint, we have Φx = y and Φx̂ = y, thus Φ(x − x̂) = 0.

Using the property of J-RIP, we have

(1− σ2K)‖x− x̂‖22 ≤ ‖Φ(x− x̂)‖22 = 0. (2.10)

Hence we have x̂ = x = [sT,pT]T. Since p = s� β, we than obtain s and β from x̂. �

Since the above optimization is non-convex, the `2,1 norm is used instead of the joint sparsity.

Considering the noise in the signal model, the optimization takes the form

min
x∈R2N

‖x‖2,1, s.t. ‖y −Φx‖ ≤ ε. (2.11)

The (JS) is equivalent to the above formulation, i.e., for a given ε, there is a λ that makes

these two optimizations yield the same optimal point. A theoretical guarantee for (2.11) is

given in [33], however this result cannot be directly applied to (JS). A performance bound

for (JS) can be obtained based on techniques introduced in [33, 39] and [40], and is given in

the following theorem. The details of the proof is included in the Appendix A.

Theorem 2.2. Let Φ ∈ RM×2N satisfy the joint RIP with σ2K < 0.1907. Let the mea-

surement y follow y = Φx + w, where w is the measurement noise in the linear system.

Assume that λ obeys ‖ΦTw‖∞,1 ≤ λ
2
, and then the solution x̂ to the optimization problem

(JS) satisfies

‖x̂− x‖2 ≤ C0

√
Kλ+ C1

‖x− (x)K‖2,1√
K

. (2.12)

Here (x)K is the best K joint-sparse approximation to x. C0 and C1 are constants that

depend on σ2K.
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Remarks:

1. In [33], it was shown that random matrices satisfy the J-RIP with an overwhelming prob-

ability, and this probability is much larger than the probability of satisfying the traditional

RIP under the same circumstance.

2. In our case, x = [sT,pT]T. So if s is K-sparse, since p = β � s, then x will be joint

K-sparse. Thus we have ‖x − (x)K‖2,1 = 0, and the reconstruction error depends only on

the noise level, which is characterized by λ.

3. In the performance bound (2.12), the bound is on the reconstruction error of x, while we

care more about the error bound of s. It is easy to get

‖ŝ− s‖2 ≤ ‖x̂− x‖2 ≤ C0

√
Kλ+ C1

‖x− (x)K‖2,1√
K

. (2.13)

4. In some applications, we care about βi only when the signal si is nonzero. For the i-th

element of the mismatch variable β, we have

|β̂iŝi − βisi| ≤ C, (2.14)

where C = C0

√
Kλ+ C1

‖x−(x)K‖2,1√
K

. Using triangle inequality, we have

|ŝi||βi − β̂i| ≤ C + |βi||si − ŝi|. (2.15)

When si is nonzero, the reconstructed ŝi is also highly likely to be nonzero, which is con-

firmed by numerical examples. In real applications, the mismatch term β is often bounded;

therefore, we can bound the reconstruction error of βi as

|βi − β̂i| ≤
C + |βi||si − ŝi|

|ŝi|
. (2.16)

5. There are two ways to recover the mismatch parameter β. The first way is to directly

use the optimal solution from solving (JS) and let β̂i = p̂i/ŝi. The other way is to use the

recovered ŝ from solving (JS) and plug it back in the original optimization problem (2.4) to

solve for β.
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2.3 DOA estimation with off-grid targets

2.3.1 Off-grid compressed sensing

We begin by introducing the general model encountered in DOA estimation, which is also

referred as the translation-invariant model in [30]. The mth measurement in the model is

described by

ym =
K∑
k=1

fkam(τk) + wm, (2.17)

where τk is the location of kth target, wm is the measurement noise and fk is the signal

transmitted from kth target. Suppose that the region of interest spans from θ1 to θN . Then

the traditional approach is via discretizing the continuous region uniformly into a grid such

as θ = [θ1, θ2, . . . , θN ] with step size 2r, i.e., θi+1 − θi = 2r, 1 ≤ i ≤ N − 1. Thus the signal

model can be written as

y = A(θ)s+w, (2.18)

where Amn(θ) = am(θn), and w = [w1, w2, . . . , wM ]T is the noise term. sn is equal to fk

when θn = τk for certain k, otherwise sn is zero.

The model (2.18) is accurate only when τk ∈ θ for all k. When the actual parameters do

not fall exactly on the discretized grid θ, the modeling error deteriorates the reconstruction

accuracy, and the performance of compressed sensing can be highly jeopardized [18]. Let

ϕ = [ϕ1, ϕ2, . . . , ϕN ] be the unknown grid, such that τk ∈ ϕ for all k, and |ϕn − θn| ≤ r

with 1 ≤ n ≤ N . In this chapter, we assume that two targets are at least 2r apart, i.e.,

|τi − τj| > 2r for all 1 ≤ i, j ≤ K. Using the first order Taylor expansion, a more accurate

signal model can be described by the unknown grid ϕ as

y = A(ϕ)s+w ≈ (A+B∆)s+w, (2.19)

where A = A(θ),B = [∂a(θ1)
∂θ1

, ∂a(θ2)
∂θ2

, . . . , ∂a(θN )
∂θN

],∆ = diag(β), and β = ϕ − θ. The recon-

struction of the original signal s and grid mismatch β can be estimated by solving the (JS)

optimization in (2.7).

14



Since we know that every element in β is in the range of [−r, r], one more bounded constraint

can be added. By letting p = β � s and penalizing the joint sparsity between s and p we

can state the non-convex bounded joint sparse method as

min
s,p,x

1
2
‖As+Bp− y‖22 + λ‖x‖2,1, (2.20)

s.t. −r|s| ≤ p ≤ r|s|,

x = [sT,pT]T.

The above optimization is hard to solve. However when s is a positive vector, the above

optimization is convex and given as

(BJS) min
s,p,x

1
2
‖As+Bp− y‖22 + λ‖x‖2,1, (2.21)

s.t. −rs ≤ p ≤ rs, s ≥ 0,

x = [sT,pT]T.

This formulation can be solved by standard convex optimization methods, such as interior

point methods. When the dimension of the problem increases, a fast algorithm is imple-

mented to reduce the computational burden, as we will illustrate later in this chapter.

2.3.2 Merging process for representation ambiguity

When a target is located at the midpoint of the interval [θi, θi+1] with length 2r, then the

DOA of that target can be regarded as either θi + r or θi+1 − r. This phenomenon leads to

ambiguity in the reconstruction. Even in cases when the target is near the midpoint of the

interval [θi, θi+1], due to the measurement noise we normally have two nonzero terms of the

reconstructed signal located in the interval [θi, θi+1].

To resolve this problem, we perform a linear interpolation on the two nonzero terms in

the same interval and merge them into one target, since we know a priori that the two

targets are at least 2r apart. Suppose that after solving (BJS) we have two recovered DOAs,

ϕa, ϕb ∈ [θi, θi+1]. The corresponding reconstructed signal magnitudes are sa and sb. After
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merging them, we have only one recovered DOA ϕ, with magnitude s given as

s = sa + sb, and ϕ = θc +
|sa|(ϕa − θc) + |sb|(ϕb − θc)

|sa|+ |sb|
, (2.22)

where θc is the midpoint of interval [θi, θi+1].

2.3.3 Passive sensing: nonuniform linear arrays

The nonuniform linear array considered in this chapter consists of L sensors which are linearly

located. We suppose the lth sensor is located at dl. By discretizing the range of interest as

[θ1, θ2, . . . θN ], the received signal at time t is given as

x(t) =
P∑
p=1

αp(t)φ(θp) + e, (2.23)

where αp(t) is the signal transmitted with power σ2
p from the target at grid point p, with σp

equal to zero when there is no target at grid point p. φ(θp) is the steering vector for grid

point θp, with the lth element equal to ej(2π/λ)dl sin(θp), and λ is the wavelength.

We assume that all the targets are uncorrelated and that the noise is white Gaussian with

noise power σ2
n. Recent research [41, 42] has proposed analyzing the covariance matrix of

x(t) to increase the degrees of freedom of the original system. The covariance matrix of x

is given as

Rxx = E(xx∗) =
P∑
p=1

σ2
pφ(θp)φ(θp)

∗ + σ2
nI, (2.24)

in which I is an identity matrix. By vectoring the above equation, we have

y = A(θ)s+ σ21n, (2.25)

where A(θ) = [φ(θ1)
H ⊗ φ(θ1), . . . ,φ(θP )H ⊗ φ(θP )], and s is a sparse signal equaling

[σ2
1, . . . , σ

2
P ]T. We have 1n = [eT1 , e

T
2 , . . . , e

T
L]T, where ei contains all zero elements except for

i-th element, which equals one. Since s is a positive vector, the (BJS) formulation in (2.21)

can be implemented with B = [∂(φ(θ1)
∗⊗φ(θ1))
∂θ1

, . . . , ∂(φ(θP )
∗⊗φ(θP ))
∂θP

].
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2.3.4 Active sensing: MIMO radar

The MIMO radar model is based on the model introduced in [7]. To make the chapter self-

contained we review the radar model in [7] and then expand it to a general model considering

off-grid targets.

We consider a MIMO radar system with MT transmitters, MR receivers. Suppose there are

K targets in the area of interest. In our case, we suppose the targets are stationary or moving

very slowly compared with the sampling rate of the radar system. So the Doppler effect is

neglected. The locations of transmitters and receivers are randomly generated within a disk.

We consider the problem in two dimensional space using polar coordinates. The location of

the i-th transmitter is given by [dti, φ
t
i], and the location of the j-th receiver by [drj, φ

r
j]. The

region of interest is discretized into a grid. Suppose that the location of the p-th grid point

is indicated by [lp, θp]. We assume that lp � dti and lp � drj for all i, j and p. With this far

field assumption, the distance between the i-th transmitter and the p-th grid point can be

approximated as

dtip = lp − γtip, (2.26)

where γtip = dticos(φt
i − θp). We can also approximate the distance between the j-th trans-

mitter and the p-th grid point as

drjp = lp − γrjp, (2.27)

where γrjp = drjcos(φr
j − θp).

Assume the transmitted signal from i-th transmitter is narrow band and is given as xi(t)e
j2πfct,

i = 1, ...,MT. Here fc indicates the transmitting frequency of the radar signal. Then the

signal received by the p-th grid point in the scene can be written as

yp(t) =

MT∑
i=1

xi(t− τ tip)ej2πfc(t−τ
t
ip), p = 1, ..., P, (2.28)
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where τ tip represents the delay between the i-th transmitter and the p-th grid point. Therefore

we can write the signal received by j-th receiver as

zj(t) =
P∑
p=1

MT∑
i=1

αpxi(t− τ tip − τ rjp)ej2πfc(t−τ
t
ip−τ rjp), j = 1, . . . ,MR,

where τ rjp represents the delay between the j-th receiver and the p-th grid point and αp

represents the refection factor if there is a target located at grid point p otherwise it is zero.

The term ej2πfct can also be known if the transmitters are synchronized and also share the

same clock with each receivers. With the narrow band and far-field assumptions, we have

zj(nT ) =
P∑
p=1

MT∑
i=1

αpxi(nT )e−j2πfc(τ
t
ip+τ

r
jp), j = 1, . . . ,MR,

in which T is the sampling interval. The delay term in the previous equations can be

calculated as τ tip = dtip/c, τ
r
jp = drjp/c,where c stands for the transmission velocity of the

signal.

Now we rewrite the signal model in a sampled format which is more conventionally used for

a signal processing system and write it as a matrix equation. In the following equations we

neglect the sample interval T for simplicity. The received signal at the p-th grid point equals

yp(n) =

MT∑
i=1

xi(n)e−j
2πfc
c
dtip = e−j

2πfc
c
lp

MT∑
i=1

xi(n)ej
2πfc
c
γtip , (2.29)

where n is the time index for the n-th sample. After expressing equation (2.29) in its vector

form, we have

yp(n) = e−j
2πfc
c
lpxT(n)up, (2.30)

where

x(n) = [x1(n), · · · , xMT
(n)]T, (2.31)

up = [ej
2πfc
c
γt1p , · · · , ej

2πfc
c
γtMTp ]T. (2.32)
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The signal received by the j-th receiver can be expressed as

zj(n) =
P∑
p=1

αpe
−j 2πfc

c
lpej

2πfc
c
γrjpyp(n), j = 1, . . . ,MR. (2.33)

Suppose we take L snapshots, and then stack all the measurements from the j-th receiver

in one vector. We will have

zj =


zj(0)

...

zj(L− 1)

 =
P∑
p=1

αpe
−j 4πfc

c
lpej

2πfc
c
γrjpXup, (2.34)

where X = [x(0), . . . ,x(L− 1)]T.

In this linear model the sparse signal s is given as

sp =

{
αpe

−j 4πfc
c
lp if there is a target at θp,

0 if there is no target.
(2.35)

Considering the measuring noise in the process, the received signal collected at j-th receiver

is described as

zj =
P∑
p=1

ej
2πfc
c
γrjpXupsp + ej, (2.36)

in which ej denotes the noise received by the j-th receiver during sampling. In our work we

assume the noise is i.i.d. Gaussian.

Then we can rewrite equation (2.36) as

zj =
P∑
p=1

ej
2πfc
c
γrjpXupsp + ej = Ψjs+ ej, (2.37)

in which s = [s1, . . . , sP ]T, which indicates the locational signal, and Ψj represents the

measuring matrix for the j-th receiver:

Ψj = [ej
2πfc
c
γrj1Xu1, . . . , e

j 2πfc
c
γrjPXuP ]. (2.38)
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After making all these measurements, a sensing matrix is used to reduce the dimension of the

problem. For the j-th receiver, we have a matrix Φj ∈ RM×L which is randomly generated

and also satisfies the condition that ΦjΦ
T
j = I and M ≤ L The compressed data of the j-th

receiver is given as

yj = ΦjΨjs+ Φjej. (2.39)

To make the model more concise, we stack compressed data generated by all the receivers

into one vector:

y =


y1
...

yMR

 = A(θ)s+w, (2.40)

where

A(θ) =


Φ1Ψ1

...

ΦMR
ΨMR

 ,w =


Φ1e1

...

ΦMR
eMR

 . (2.41)

However, in real applications the targets’ locations does not fall exactly on the grid point

chosen to perform compressed sensing. According to the idea introduced in section 2.3.1,

suppose the actual non-uniform grid we want to use is ϕ = [ϕ1, . . . , ϕP ]T, and we need to

take β = ϕ−θ into consideration. Taking the derivative of the p-th column of matrix ΦjΨj

with respect to θp, we get

bjp = j
2πfc
c
e
j 2πfc

c

∂γrjp
∂θp ΦjXup + ej

2πfc
c
γrjpΦjX

∂up
∂θp

, (2.42)

According to (2.19), the p-th column of matrixB consists of bjp for ∀j, i.e. bp = [bT1p, . . . , b
T
MRp

]T.

We also have
∂up
∂θp

= [j
2πfc
c
e
j 2πfc

c

∂γt1p
∂θp , · · · , j 2πfc

c
e
−j 2πfc

c

∂γtMTp

∂θp ]T. (2.43)

After getting the matrix B, (JS) optimization framework in (2.7) can be implemented to

detect the targets’ angular locations. More details will be explored in the numerical examples.
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2.4 Fast algorithms

Using interior point methods can be time consuming for large problems. In order to speed

up the computing process for (JS) and (BJS) in (2.7), (2.21), we can use a first order

method based on a proximal operator, namely the Fast Iterative Shrinkage-Thresholding

Algorithm (FISTA) [14]. In this section, we first review the key concept in FISTA. The

implementation of FISTA for (JS) is straightforward, while (BJS) requires more effort since it

has convex constraints in the optimization problem. A smoothing function [43] is introduced

to approximate ‖x‖2,1 in order to implement FISTA, and continuation techniques [44] based

on the smoothing parameter are introduced to further increase the convergence speed.

2.4.1 Review: FISTA and proximal operator

To introduce the algorithm, we first review a key concept used in FISTA, named Moreau’s

proximal operator, or proximal operator for short [45]. For a closed proper convex function

h : RN → R ∪ {∞}, the proximal operator of h is defined by

proxh(x) = arg min
u∈RN

{
h(u) +

1

2
‖u− x‖22

}
. (2.44)

The proximal operator is a key step in FISTA that solves the following composite nonsmooth

problem:

min
x∈RN

F (x) = f(x) + g(x), (2.45)

where f : RN → R is a smooth convex function, and it is continuously differentiable with a

Lipschitz continuous gradient L∇f :

‖∇f(x)−∇f(z)‖2 ≤ L∇f‖x− z‖2, for all x, z ∈ RN , (2.46)

and g : RN → R ∪ {∞} is continuous convex function which is possibly nonsmooth. The

FISTA algorithm is given as follows.
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Fast Iterative Shrinkage-Thresholding Algorithm

Input: An upper bound L ≥ L∇f .
Step 0. Take z1 = x0, t1 = 1.
Step k. (k ≥ 1) Compute

xk = prox 1
L
g

(
zk − 1

L
∇f(zk)

)
.

tk+1 =
1+
√

1+4t2k
2

.
zk+1 = xk + tk−1

tk+1
(xk − xk−1).

Table 2.1: Fast iterative shrinkage-thresholding algorithm

The convergence rate of the sequence generated by FISTA is determined by the following

theorem from [14].

Theorem 2.3. Let {xk}k≥0 be generated by FISTA, and let x̂ be an optimal solution of

(4.11). Then for any k ≥ 1,

F (xk)− F (x̂) ≤ 2L∇f‖x0 − x̂‖22
(k + 1)2

. (2.47)

2.4.2 FISTA for compressed sensing with structured dictionary

mismatches

For optimization framework (JS), we know that f(x) = 1
2
‖Φx − y‖22, then the Lipschitz

constant is equal to ‖Φ‖22. When g(x) = λ‖x‖2,1 and x ∈ R2N , the proximal operator of

x = [sT,pT]T is a group-thresholding operator defined as

proxαg({[xi, xi+N ]}) =
[xi, xi+N ]√
x2i + x2i+N

max(
√
x2i + x2i+N − αλ, 0), 1 ≤ i ≤ N. (2.48)

Please note that this proximal operator yield [0, 0] when xi = xi+N = 0. Hence, the algorithm

using FISTA for (JS) is straightforward and summarized as follows:
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FISTA for Joint Sparse Recovery

Input: An upper bound L ≥ ‖Φ‖22 and initial point x0.
Step 0. Take z1 = x0, t1 = 1.
Step k. (k ≥ 1) Compute
∇f(zk) = ΦT(Φzk − y),
xk = prox 1

L
g

(
zk − 1

L
∇f(zk)

)
, and g(u) = λ‖u‖2,1,

tk+1 =
1+
√

1+4t2k
2

,
zk+1 = xk + tk−1

tk+1
(xk − xk−1).

Table 2.2: FISTA for joint sparse recovery

The FISTA implementation of (BJS) needs more work due to the positive and bounded

constraints in the optimization. In order to use FISTA, we write these two convex constraints

as an indicator function in the objective function. Then (BJS) is transformed into

min
s,p,x

1
2
‖As+Bp− y‖22 + λ‖x‖2,1 + IF(s,p), (2.49)

s.t. x = [sT,pT]T,

where IF(s,p) is the indicator function for set F = {s ≥ 0,−rs ≤ p ≤ rs}. FISTA cannot

be implemented directly since there are two nonsmooth functions, i.e., ‖x‖2,1 and IF(s,p),

in the objective function.

One way to solve this issue is to approximate h(x) = λ‖x‖2,1 by its Moreau envelope [45],

given as

hµ(x) = min
u∈R2N

{
h(u) +

1

2µ
‖u− x‖22

}
. (2.50)

The Moreau envelope hµ is continuously differentiable, and its gradient is equal to

∇hµ(x) =
1

µ
(x− proxµh(x)), (2.51)
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which is Lipschitz continuous with constant 1/µ and can be computed using (2.48). The

smoothing approximation is more accurate with smaller µ. For more details, please check

[43].

By letting f(x) = 1
2
‖Φx − y‖22 and g(x) = IF(s,p), the smoothed (BJS) can be presented

as

(µBJS) min
x

f(x) + hµ(x) + g(x). (2.52)

The Lipschitz constant for the gradient of f(x) + hµ(x) is ‖Φ‖22 + 1
µ
. In order to implement

FISTA, the proximal operator of g(x) is needed and can be expressed as a projection onto

the set F :

proxg(x) = PF([sT,pT]T). (2.53)

Since the convex set F can be expressed as F =
⋂N
i=1Fi, where Fi = {si ≥ 0,−rsi ≤ pi ≤

rsi}, the proximal operator can be computed element-wise, i.e.,

proxg(si, pi) = PFi(si, pi). (2.54)

Here the projection from [si, pi] onto the two dimensional convex cone Fi is easy and given

as follows,

PFi(si, pi) =


(si, pi) −rsi ≤ pi ≤ rsi,

(0, 0) si
r
≤ pi ≤ − si

r
,

c(1, r) rsi ≤ pi,− si
r
≤ pi,

c(1,−r) −rsi ≥ pi,
si
r
≥ pi,

(2.55)

where c = si+|rpi|
1+r2

. Hence the FISTA implementation for (µBJS) is given in the table 2.3.

As we discussed earlier, smaller µ leads to better approximation accuracy. However, smaller µ

incurs a larger L in the algorithm, which forces the algorithm running longer to converge. The

continuation technique was utilized in [44, 15] to resolve this issue. The idea of continuation

is to solve (µBJS) with µ1 ≥ µ2 ≥ . . . ≥ µf sequentially, and use the previous solution to

warm start the next optimization.
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FISTA for µ-Smoothed (BJS) Recovery

Input:
An upper bound L ≥ ‖Φ‖22 + 1

µ
and initial point x0.

Step 0. Take z1 = x0, t1 = 1.
Step k. (k ≥ 1) Compute
∇f(zk) = ΦT(Φzk − y),
∇hµ(zk) = 1

µ
(zk − proxµh(zk)),

xk = PF
(
zk − 1

L
∇f(zk)− 1

L
∇hµ(zk)

)
,

tk+1 =
1+
√

1+4t2k
2

,
zk+1 = xk + tk−1

tk+1
(xk − xk−1).

Table 2.3: FISTA for µ-smoothed (BJS) recovery

2.5 Numerical examples

In this section, we present several numerical examples to show the advantages of using the

joint sparse recovery method when dictionary mismatches exist in compressed sensing. In the

first example, we randomly generate the data and mismatch parameters following Gaussian

distributions. The measurement are obtained using model (2.2). FISTA-based joint sparse

method and the alternating minimization method [21] are considered in this case. We show

that the joint sparse method provides a better reconstruction with less computational effort.

In the last two examples, we compare the joint sparse method with P-BPDN [20] under

both passive and active sensing scenarios. Please note that P-BPDN is also equivalent to

the reconstruction method proposed in [30].

2.5.1 Randomly generated data

In this numerical example we compare the FISTA-based joint-sparse method with the al-

ternating minimization method proposed in [21] when they are applied in the optimization

(2.2). Both matrices A ∈ RM×N and B ∈ RM×N are randomly generated with a normal
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distribution with mean 0 and standard deviation 1. We set N = 100. The noise term w is

randomly generated according to a normal distribution with mean zero and standard devi-

ation σn = 0.1. The mismatch term β is also generated according to a normal distribution

with standard deviation δ = 1. λ is chosen as 10σn
√

2 log(N).
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Figure 2.1: Signal reconstruction error with different number of measurements.

In the first comparison, we range the number of measurements M from 30 to 80. The sparsity

of the signal s is 3. We use ‖s− ŝ‖2/‖s‖2 to denote the signal reconstruction error. We run

50 Monte Carlo iterations at each testing point. We can see from Fig. 2.1 that (JS) with

FISTA performs uniformly better than the alternating minimization method. The average

CPU time for alternating minimization is 15.61s, while (JS) needs only 0.26s.
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Figure 2.2: Signal reconstruction error with different sparsity level.

Next, we range the sparsity level K from 2 to 12 to compare these two methods. The

number of measurements is 50. From Fig. 2.2, we can see that (JS) has a uniformly smaller
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reconstruction error. The average CPU time for (JS) is 0.42s, while the CPU time for

alternating minimization is 14.34s.

2.5.2 Nonuniform linear array using off-grid compressed sensing
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Figure 2.3: DOA estimation error with different SNR (T = 1000).

In this subsection, we consider a passive sensing simulation with a nonuniform linear array.

The array for this part consists of two subarrays. One has sensors located at id with 1 ≤
i ≤ 5 while the other has sensors located at 6jd with 1 ≤ j ≤ 6, and d is half of the

wavelength. This configuration is also called a nested array, as proposed in [41]. We compare

the optimization formulation (BJS) with P-BPDN in this experiment. The power of the noise

is assumed to be known; if not, an estimation of it can be easily incorporated into the (BJS)

formulation. The area we are interested ranges from sin(θ) = −1 to sin(θ) = 1, with a step

size of 0.01. We randomly generate 15 targets with the same signal power. The noise at

each sensor is randomly generated as white Gaussian noise with power σ2
n. λ in the LASSO

formulation is chosen to be σn
√

2 log(N) according to [12]. However, since we use only

first-order Taylor expansion to approximate the system matrix A(θ), the scale of the error

is far larger than the additive Gaussian noise. Therefore we chose λ = 20σn
√

2 log(N) in

our simulation. Here N is the dimension of the signal of interest.

First we range the signal to noise ratio (SNR) from −10 dB to 10 dB in Fig. 2.3. The

number of time samples used to estimate (2.24) is T = 1000. In Fig. 2.4, we range T , with
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the SNR fixed at 0 dB. The DOA error is computed with respect to sin(θ). Both figures

show that (BJS) yields better DOA estimation accuracy than P-BPDN.
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Figure 2.4: DOA estimation error with different T (SNR= 0 dB).

The interior method for (BJS) works well when the dimension of the problem is small. In

the next simulation, we increase the number of sensors in the linear array. The array consists

of two subarrays. One has sensors located at id with 1 ≤ i ≤ 10 while the other has sensors

located at 11jd, with 1 ≤ j ≤ 12. We randomly generate 26 targets with the same signal

power. We run the (µBJS) using FISTA with a continuation scheme. Let µf = 10−8λ−1. The

DOA estimation results are shown in Fig. 2.5. The running time for (µBJS) with FISTA

is 4.92s, while (BJS) with the interior point method takes 63.09s. They both have a DOA

estimation error of 5.5× 10−4.
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Figure 2.5: Normalized spectrum for (µBJS) with continuation, and (BJS) (T=500, SNR=
10 dB).
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2.5.3 MIMO radar using off-grid compressed sensing

In this numerical example, we compare FISTA based (JS) with P-BPDN [20] in a MIMO

radar scenario. To fully explore the diversity of the model, we consider a MIMO system

with 30 transmitters and 10 receivers whose locations are randomly generated within a disk

with a radius of 5 meters. The carrier frequency fc is 1 GHz. Each transmitter sends out

uncorrelated QPSK waveforms. The signal to noise ratio (SNR) is defined to be the ratio of

the power of the transmitted waveform to the power of the additive noise in the receivers. We

are interested in the area ranging from −40◦ to 40◦, with step size 1◦. We assume that two

targets are at least 1◦ apart. We take L = 50 samples for each receiver and then compress

the received signal to dimension M = 10. Therefore we chose λ = 50σn
√

2 log(N) in our

simulation.
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Figure 2.6: DOA estimation performance for two closely located targets with a MIMO radar
system.

In the first simulation, we compare these two algorithms with two closely-spaced targets with

SNR ranging from −10dB to 10dB and show how joint sparsity benefits the reconstruction.

The locations of the two targets are randomly generated from the intervals [16.5◦, 17.5◦] and

[18.5◦, 19.5◦], with equal signal power. We run 50 Monte Carlo iterations of every value

of SNR, with the results shown in Fig. 2.6. The DOA estimation error in the figure is

the average DOA estimation error in degrees. We can see that the method proposed in

this chapter has consistent better reconstruction performance than P-BPDN for location

estimation.
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Figure 2.7: DOA estimation error with changing σb (σa = 1).

In the next simulation, we compare (JS) using FISTA with P-BPDN when the dynamic

range changes between these two targets. Suppose the first target is randomly generated

with signal power σ2
a = 1, and the second target has a signal power σ2

b . SNR is chosen to

be 10 dB in this case. From Fig. 2.7 we can see that (JS) performs better with respect to

changing dynamic range.

2.6 Summary

In this chapter we considered structured dictionary mismatches in sparse recovery. We pro-

posed to use the joint sparse recovery model to exploit the relation between mismatch param-

eters and the original sparse signal. A performance bound on the joint sparse reconstruction

was derived. For off-grid DOA estimations, a bounded joint sparse recovery method was

implemented. However, solving this optimization using the interior point method is highly

inefficient, thus fast algorithms based on FISTA were implemented to yield efficient out-

comes. We demonstrated the usefulness of the proposed algorithms in the applications of

MIMO radar and nested arrays. Numerical examples were presented to compare the per-

formance of the joint sparse method with other methods, such as alternating minimization.

We demonstrated that by exploiting the joint sparse property, we can get more accurate

reconstruction results than the previous methods with less computational time.
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Chapter 3

Continuous Sparse Recovery For DOA

Estimation with Co-prime Arrays

In this chapter we will extend the off-grid model from the previous chapter into a continuous

domain. In particular, we consider a recently proposed form of passive arrays, co-prime

arrays, to increase the degrees of freedom.2

3.1 Introduction

In the last few decades, research on direction of arrival (DOA) estimation using array pro-

cessing has focused primarily on uniform linear arrays (ULA) [46]. It is well known that

using a ULA with N sensors, the number of sources that can be resolved by MUSIC-like

algorithms is N − 1 [47]. New geometries [41, 42] of non-uniform linear arrays have been

recently proposed to increase the degrees of freedom of the array by exploiting the covari-

ance matrix of the received signals. Vectorizing the covariance matrix, the system model

can be viewed as a virtual array with a wider aperture. In [41], a nested array structure

was proposed to increase the degrees of freedom from O(N) to O(N2), with only O(N)

sensors. However, some of the sensors in this structure are closely located, which leads to

mutual coupling among these sensors. To overcome this shortcoming, co-prime arrays were

proposed in [42]. Such arrays consist of two subarrays with M and N sensors respectively.

2This chapter is based on Z. Tan, Y. C. Eldar and A. Nehorai,“Direction of arrival estimation with co-
prime arrays: a super resolution viewpoint,” IEEE Trans. Signal Processing, Vol. 62, pp. 5565-5576, Nov.
2014. c© IEEE 2014.
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It was shown that by using O(M+N) number of sensors, this structure can achieve O(MN)

degrees of freedom. In this chapter we focus on co-prime arrays.

The increased degrees of freedom provided by the co-prime structure can be utilized to

improve DOA estimation. To this end, two main methodologies have been proposed to utilize

this increased degrees of freedom for co-prime arrays. The first are subspace methods, such

as the MUSIC algorithm. In [48], a spatial smoothing technique was implemented prior to

the application of MUSIC, and the authors showed that an increased number of sources can

be detected. However, the application of spatial smoothing reduces the obtained virtual

array aperture [49]. The second approach uses sparsity-based recovery to overcome these

disadvantages of subspace methods [49]-[50]. Traditional sparsity techniques discretize the

range of interest onto a grid. Off-grid targets can lead to mismatches in the model and

deteriorate the performance significantly [18]. In [51, 20] the grid mismatches are estimated

simultaneously with the original signal, leading to improved performance over traditional

sparse recovery methods. In [52], the joint sparsity between the original signal and the

mismatch is exploited during DOA estimation. Due to the first-order approximation used in

[52], the estimation performance is still limited by higher-order modeling mismatches.

To overcome grid mismatch of traditional sparsity-based methods, in this chapter we apply

the recently developed mathematical theory of continuous sparse recovery for super reso-

lution [22]-[54] to DOA estimation with co-prime arrays. The term “super resolution” in

this chapter is related to the off-grid problem and is different from the traditional definition

commonly used in DOA estimation. In [22][53] it was shown that assuming a signal consists

of spikes, the high frequency content of the signal’s spectrum can be perfectly recovered in

a robust fashion by sampling only the low end of its spectrum, when the minimum distance

between spikes satisfies certain requirements. In [54], the author provides performance guar-

antees on the recovered support set of the sparse signal. One merit of this theory is that it

considers all possible locations within the desired range, and thus does not suffer from model

mismatches.

Here we extend the mathematical theory of super resolution to DOA estimation with co-

prime arrays under Gaussian noise. The effective noise resulting from the usage of co-prime

arrays consists of a term with a known structure and another term containing quadratic

combinations of Gaussian noise. Therefore, we modify the reconstruction method to fit
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these particular noise properties and prove the robustness of our approach by analyzing the

noise statistics. We also prove that with 2M + N sensors in a co-prime array, it is possible

to detect up to O(MN) sources robustly. Previous identifiability research using traditional

compressed seining for co-prime arrays [50] was based on the idea of mutual coherence [55].

Using mutual coherence it can be shown that co-prime arrays increase the number of detected

sources from O(M + N) to O(MN), but this analysis is valid only for very small values of

the number of sources.

Source number detection is another main application of array processing. Various methods

have been proposed over the years based on the eigenvalues of the signal space, such as the

Akaike information criterion [56], second-order statistic of eigenvalues (SORTE) [57], and

the predicted eigen-threshold approach [58]. The authors of [59] showed that among these

methods, SORTE often leads to better detection performance. Here we combine the SORTE

approach with the spectrum reconstructed from the proposed DOA estimation algorithm to

determine the number of sources. Through this source number detection, we identify which

reconstructed spikes are true detections and which are false alarms.

The chapter is organized as follows. In Section 3.2, we introduce the DOA estimation model

and explain how co-prime arrays can increase the degrees of freedom. In Section 3.3, we

adapt the theory of super resolution to co-prime arrays, and analyze the robustness of this

extension by studying the statistics of the noise pattern in the model. We propose a numerical

method to perform DOA estimation for co-prime arrays in Section 3.4 and we then extend

this approach to detect the number of sources. Section 3.5 presents extensive numerical

simulations demonstrating the advantages of our method in terms of estimation accuracy,

degrees of freedom, and resolution ability.

3.2 DOA estimation and co-prime arrays

Consider a linear sensor array with L sensors which may be non-uniformly located. As-

sume that there are K narrow band sources located at θ1, θ2, . . . , θK with signal powers

σ2
1, σ

2
2, . . . , σ

2
K . The steering vector for the kth source located at θk is a(θk) ∈ CL×1 with lth

element ej(2π/λ)dl sin(θk), in which dl is the location of the lth sensor and λ is the wavelength.

The data collected by all sensors at time t can be expressed as
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x(t) =
K∑
k=1

a(θk)sk(t) + ε(t) = As(t) + ε(t), (3.1)

for t = 1, . . . , T , where ε(t) = [ε1(t), ε2(t), . . . , εL(t)]T ∈ CL×1 is an i.i.d. white Gaussian

noise CN (0, σ2), A = [a(θ1),a(θ2) . . . ,a(θK)] ∈ CL×K , and s(t) = [s1(t), s2(t), . . . , sK(t)]T

represents the source signal vector with sk(t) distributed as CN (0, σ2
k). We assume that the

sources are temporally uncorrelated.

The correlation matrix of the data can be expressed as

Rxx =E[x(t)x∗(t)]

=ARssA
∗ + σ2I

=
K∑
k=1

σ2
ka(θk)a

∗(θk) + σ2I, (3.2)

in which Rss is a K × K diagonal matrix with diagonal elements σ2
1, σ

2
2, . . . , σ

2
K . After

vectorizing the correlation matrix Rxx, we have

z = vec(Rxx) = Φ(θ1, θ2, . . . , θK)s+ σ21n, (3.3)

where

Φ(θ1, . . . , θK) = A∗ �A = [a(θ1)
H ⊗ a(θ1), . . . ,a(θK)H ⊗ a(θK)], (3.4)

s = [σ2
1, σ

2
2, . . . , σ

2
K ]T, and 1n = [eT1 , e

T
2 , . . . , e

T
L]T with ei denoting a vector with all zero

elements, except for the ith element, which equals one.

Comparing (3.1) with (3.3), we see that s behaves like a coherent source and σ21n becomes

a deterministic noise term. The distinct rows in Φ act as a larger virtual array with sensors

located at di − dj, with 1 ≤ i, j ≤ L. Traditional DOA estimation algorithms can be

implemented to detect more sources when the structure of the sensor array is properly

designed. Following this idea, nested arrays [41] and co-prime arrays [42] were introduced,

and then shown to increase the degrees of freedom from O(N) to O(N2), and from O(M+N)

34



to O(MN) respectively. In the following, we focus only on co-prime arrays; the results follow

naturally for nested arrays.

Figure 3.1: Geometry of co-prime arrays.

Consider a co-prime array structure consisting of two arrays with N and 2M sensors respec-

tively. The locations of the N sensors are in the set {Mnd, 0 ≤ n ≤ N−1}, and the locations

of the 2M sensors are in the set {Nmd, 0 ≤ m ≤ 2M−1} as illustrated in Fig. 3.1. The first

sensors of these two arrays are collocated. The geometry of such a co-prime array is shown in

Fig. 3.1. The locations of the virtual sensors in Φ from (3.3) are given by the cross difference

set {±(Mn−Nm)d, 0 ≤ n ≤ N−1, 0 ≤ m ≤ 2M−1} and the two self difference sets. In order

to implement spatial smoothing of MUSIC, or to use other popular DOA estimation tech-

niques, we are interested in generating a consecutive range of virtual sensors. It was shown

in [48] that when M and N are co-prime numbers, a consecutive range can be created from

−MNd to MNd, with {−MNd,−(MN − 1)d, . . . ,−2d,−d, d, 2d, . . . , (MN − 1)d,MNd}
taken from the cross difference set and {0d} taken from any one of the self difference sets.

By removing repeated rows of (3.3) and sorting the remaining rows from −MNd to MNd,

we have the linear model rearranged as

z̃ = Φ̃s+ σ2w̃. (3.5)
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It is easy to verify that w̃ ∈ R(2MN+1)×1 is a vector whose elements all equal zero, except

the (MN + 1)th element, which equals one. The matrix Φ̃ ∈ R(2MN+1)×K is given by

Φ̃ =


e−jMNd 2π

λ
sin(θ1) . . . e−jMNd 2π

λ
sin(θK)

e−j(MN−1)d 2π
λ

sin(θ1) . . . e−j(MN−1)d 2π
λ

sin(θK)

...
. . .

...

ejMNd 2π
λ

sin(θ1) . . . ejMNd 2π
λ

sin(θK)

 ,

which is the steering matrix of a ULA with 2MN + 1 sensors. Therefore, (3.5) can be

regarded as a ULA detecting a coherent source s with deterministic noise term σ2w̃. By

applying MUSIC with spatial smoothing, the authors in [48] showed that O(MN) sources

can be detected, using this approach.

3.3 Co-prime arrays with super resolution

In this section we first assume that the signal model (3.3) is accurate, which means that

the number of samples T is infinite, and also that the noise power σ2 is known a priori.

The super resolution theory developed in [22] can then be applied to co-prime arrays to

demonstrate that we can detect up to O(MN) sources robustly as long as the distance

between any two sources is on the order of 1
MN

. We then consider the case in which the

number of time samples T is limited and demonstrate the robustness of super resolution

recovery via statistical analysis of the noise structure.

3.3.1 Mathematical theory of super resolution

Super resolution seeks to recover high frequency details from the measurement of low fre-

quency components. Mathematically, given a measure s(τ) with τ ∈ [0, 1], the Fourier series

coefficients are recorded as

r(n) =

∫ 1

0

e−j2πnτs(τ)dτ, n = −fc,−fc + 1, . . . , fc. (3.6)
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Using the operator F to denote the low frequency measuring operator which transforms a

signal from its continuous time domain into its discrete frequency domain, we can represent

(3.6) as r = F s, in which r = [r(−fc), . . . , r(fc)]T and s = s(τ), 0 ≤ τ ≤ 1.

Suppose that the measure s(τ) is sparse, i.e., s(τ) is a weighted sum of several spikes:

s(τ) =
K∑
k=1

skδτk , (3.7)

in which sk can be complex valued and τk ∈ [0, 1] for all k. Then

r(n) =
K∑
k=1

ske
−j2πnτk , n = −fc,−fc + 1, . . . , fc. (3.8)

In order to recover s(τ) from the measurements r(n), total variation minimization is intro-

duced. This criterion encourages the sparsity in the measure s(τ), just as `1 norm minimiza-

tion produces sparse signals in the discrete space. In the rest of the chapter, we will use s

to denote the measure s(τ) for simplicity. The total variation for the complex measure s is

defined as

‖s‖TV = sup
∞∑
j=1

|s(Bj)|, (3.9)

the supremum being taken over all partitions of the set [0, 1] into countable collections of

disjoint measurable sets Bj. When s has the form (3.7), ‖s‖TV =
∑K

k=1 sk, which resembles

the discrete `1 norm.

The following convex optimization formula was proposed in [22] to solve the super resolution

problem which recovers a sparse measure from r:

min
s̃
‖s̃‖TV s.t. F s̃ = r. (3.10)
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When the distance between any two τi and τj is larger than 2/fc, then the original sparse

signal s is the unique solution to the above convex optimization [22]. The continuous opti-

mization (3.10) can be solved via the dual problem [22]:

max
u,Q

Re[u∗r]

s.t.

[
Q u

u∗ 1

]
� 0, (3.11)

2MN+1−j∑
i=1

Qi,i+j =

{
1 j = 0,

0 j = 1, 2, . . . , 2MN,

where Q ∈ C(2MN+1)×(2MN+1) is a Hermitian matrix and u ∈ C2MN+1 is the Lagrangian

multiplier for the constraint F s̃ = r. The primal solution s is obtained through a combined

process of rooting finding and least-squares [22].

3.3.2 DOA estimation with TV-norm minimization

DOA estimation with co-prime arrays can be related to (3.8) by a straightforward change of

variables. Letting τk = d
λ
(1− sin(θk)) for all k, the linear model of (3.5) can be transformed

into

r(n) =e−j2πn
d
λ (z̃n − σ2w̃n) = e−j2πn

d
λ

K∑
k=1

ske
j2πn d

λ
sin(θk)

=
K∑
k=1

ske
−j2πnτk =

∫ 1

0

e−j2πnτs(τ)dτ, (3.12)

where n = −MN,−MN+1, . . . ,MN−1,MN , and s is a sparse measure given in (3.7) with

sk = σ2
k. Note that the measure s is different from the vector representation s = [s1, . . . , sK ]T,

and they are related by (3.7). The change of variables is performed to guarantee that

0 ≤ τk ≤ 1. We use T = {τk, 1 ≤ k ≤ K} to denote the support set.

A theorem about the resolution and degrees of freedom for co-prime arrays can be directly

derived using Theorem 1.2 in [22]. Before introducing the theorem, we first define the
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minimum distance between any two sources as

∆(θ) = min
θi,θj ,θi 6=θj

| sin(θi)− sin(θj)|. (3.13)

Theorem 3.1. Consider a co-prime array consisting of two linear arrays with N and 2M

sensors respectively. The distances between two consecutive sensors are Md for the first array

and Nd for the second array, where M and N are co-prime numbers, and d ≤ λ
2
. Suppose

we have K sources located at θ1, . . . , θK. If the minimum distance follows the constraint that

∆(θ) ≥ 2λ

MNd
,

then by solving the convex optimization (3.10) with the signal model r = F s, one can recover

the locations θk for k = 1, . . . , K exactly. The number of sources that can be detected is

Kmax =
MNd

λ
.

With a co-prime array using 2M + N sensors, the continuous sparse recovery method can

detect up to MNd
λ

sources when ∆(θ) ≥ 2λ
MNd

. The minimum distance constraint is a sufficient

condition. In real applications we can expect a more relaxed distance condition for the

sources. We will confirm this point in the numerical results. With the utilization of co-prime

arrays, the same number of sensors can detect O(MN) sources as indicated by traditional

MUSIC theory [48]. We will show in the numerical examples that implementing the super

resolution framework provides more degrees of freedom and finer resolution ability than those

of MUSIC. This is because the spatial smoothing in MUSIC reduces the obtained virtual

array aperture. For the noiseless case, other methods, such as Prony’s method [60] and

matrix pencil [61] can be used for exact recovery of O(MN) sources. However, they require

prior information about the system order, which we do not require here. Furthermore, these

methods are generally sensitive to noise in the model and therefore do not offer robustness

guarantees.
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3.3.3 Noisy model for continuous sparse recovery

In practice, the covariance matrixRxx in (3.2) is typically unknown, and cannot be estimated

exactly unless the number of samples T goes to infinity. Typically the covariance matrix is

approximated by the sample covariance:

R̂xx =
1

T

T∑
t=1

x(t)x∗(t). (3.14)

Subtracting the noise covariance matrix from both sides, we obtain

R̂xx − σ2I = ARssA
∗ +E. (3.15)

Here Rss is a diagonal matrix with k-th diagonal element

σ̂2
k =

1

T

T∑
t=1

sk(t)s
∗
k(t), (3.16)

and the (m,n)th element of E is given by (see (3.1))

Emn =
1

T

T∑
t=1

K∑
i,j=1,i 6=j

AmiA
∗
njsi(t)s

∗
j(t)

+
1

T

T∑
t=1

K∑
i=1

Amisi(t)ε
∗
n(t) +

1

T

T∑
t=1

K∑
i=1

εm(t)s∗i (t)A
∗
ni

+
1

T

T∑
t=1

εm(t)ε∗n(t)− σ2Imn, 1 ≤ m,n ≤ L. (3.17)

For simplicity of analysis, we assume that εj ∼ CN (0, σ2) and si(t) ∼ CN (0, σ2
s).

Similar to the operation in (3.3), vectorizing (3.15) leads to

z = vec(R̂xx) = Φ(θ1, θ2, . . . , θK)s+ σ21n + η, (3.18)
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where η = vec(E) and s = [σ̂2
1, . . . , σ̂

2
K ]T. For co-prime arrays, by removing repeated rows

in (3.18), and sorting them as consecutive lags from −MNd to MNd, we get

z̃ = Φ̃s+ σ2w̃ + ẽ, (3.19)

in which Φ̃, and w̃ are defined in (3.5). The vector ẽ is obtained after rearranging η,

and only one element from ẽ corresponds to the diagonal element from E. Applying the

transformation technique in (3.12), we have

r = F s+ e, (3.20)

where e(n) = ẽ(n)e−j2πn
d
λ , and s is the measure defined in (3.7) with sk = σ̂2

k. Thus we can

formulate the following continuous sparse recovery problem, which considers the noise:

min
s
‖s‖TV s.t. ‖F s− r‖2 ≤ ε. (3.21)

This optimization can be solved by first solving the dual problem [53]:

max
u,Q

Re[u∗r]− ε‖u‖2

s.t.

[
Q u

u∗ 1

]
� 0, (3.22)

2MN+1−j∑
i=1

Qi,i+j =

{
1 j = 0,

0 j = 1, 2, . . . , 2MN.

As before, the primal solution is obtained through a combined process of root finding and

least-squares [53].

In order to analyze the robustness of the proposed approach for co-prime arrays, we introduce

a lemma that shows that the probability of every element in e being larger than a constant

is upper bounded. The proof can be found in the Appendix B.

Lemma 3.1. Let Emn be given in (3.17) and assume that εj ∼ CN (0, σ2) and si(t) ∼
CN (0, σ2

s) . Then for m 6= n, we have

Pr(|Emn| ≥ ε) ≤8 exp(−C1(ε)T ) + 16 exp(−C2(ε)T ) + 8 exp(−C3(ε)T ).
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When m = n, and 0 ≤ ε ≤ 16σ2, we obtain

Pr(|Emn| ≥ ε) ≤8 exp(−C1(ε)T ) + 16 exp(−C2(ε)T ) + 4 exp(−C4(ε)T ).

Here C1(ε), C2(ε), C3(ε) and C4(ε) are increasing functions of ε.

The work of [54] provides an error bound on the support set estimation using (3.21) with

noisy measurements. Combining the result from [54] with Lemma 3.1, we have the following

theorem.

Theorem 3.2. Consider a co-prime array consisting of two linear arrays with N and 2M

sensors respectively. The distances between two consecutive sensors are Md for the first array

and Nd for the second array, where M and N are co-prime numbers, and d ≤ λ
2
. Assume T

sample points are collected for each receiver. Suppose we have K sources located at θ1, . . . , θK.

The minimum distance ∆(θ) ≥ 2λ
MNd

. Let s(τ) =
∑K

k=1 skδτk with τk = d
λ
(1 − sin(θk)) and

sk = σ̂2
k. Consider applying the transformation in (3.12) and solving the optimization (3.21)

with ε ≤ 16
√

2MN + 1σ2, and denote sopt as the optimal solution, so that

sopt =
∑

τest[i]∈Test

sest[i]δτest[i]. (3.23)

Then, for every τk ∈ T ∣∣∣∣∣∣sk −
∑

|τest[i]−τk|≤ c
MN

sest[i]

∣∣∣∣∣∣ ≤ C1ε, (3.24)

∑
|τest[i]−τk|≤ c

MN

|sest[i]|(τest[i]− τk)2 ≤ C2
ε

M2N2
, (3.25)

and ∑
τk∈T

∑
|τest[i]−τk|> c

MN

|sest[i]| ≤ C3ε, (3.26)

with probability at least 1− αe−γ(ε)T , where γ(ε) is an increasing function of ε. Here C1, C2

and C3 are positive constants, c = 0.1649, and T = {τk : 1 ≤ k ≤ K} is the support set of

the original measure s.
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Proof: Since d ≤ λ
2
, we have that τk ∈ [0, 1] for all k after transformation (3.12). It was

shown in [54] that in order to obtain (3.24)-(3.26) we only need to show that ‖e‖2 ≤ ε with

a certain probability in (3.21). Thus the statistical behavior of e in (3.20) is analyzed first.

Note that

Pr(‖e‖2 ≤ ε) ≥ Pr

(
∩MN
n=−MN |e(n)| ≤ ε√

2MN + 1

)
= 1− Pr

(
∪MN
n=−MN |e(n)| ≥ ε√

2MN + 1

)
≥ 1−

MN∑
n=−MN

Pr

(
|e(n)| ≥ ε√

2MN + 1

)
, (3.27)

which leads to the inequality

Pr(‖e‖2 ≥ ε) ≤
MN∑

n=−MN

Pr

(
|e(n)| ≥ ε√

2MN + 1

)

=
MN∑

n=−MN

Pr

(
|ẽ(n)| ≥ ε√

2MN + 1

)
. (3.28)

The equality follows from the fact that |e(n)| = |ẽ(n)| according to (3.19) and (3.20). Recall

that 2MN elements of ẽ are taken from Emn when m 6= n, and one element of ẽ is taken

from Emn when m = n. Therefore, by applying the results of Lemma 3.1, we can show that

‖Fs−r‖2 = ‖e‖2 ≤ ε with probability at least 1−αe−γ(ε)T , and γ(ε) is a increasing function

of ε. �

Equations (3.24) and (3.25) show that the estimated support set clusters tightly around

the true support, while (3.26) indicates that the false peaks in the estimated set Test have

small amplitudes. A numerical method is proposed in the next section to further refine the

estimation, using a discrete sparse recovery method after obtaining Test.

When both DOAs and signal powers are of interest, we combine the statistical analysis of

the noise structure in co-prime arrays with the super resolution results in [53] to give a

performance guarantee on the reconstruction of the sparse measure s. Since s is a sparse

measure, there is no point in bounding s − sopt directly. Instead Kh, which is a low pass

filter with cut-off frequency fh > MN , is introduced. This kernel is referred to as the Fejér
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kernel, and is given by

Kh(t) =
1

fh

fh∑
k=−fh

(fh + 1− |k|)ej2πkt =
1

fh + 1

(
sin(π(fh + 1)t)

sin(πt)

)
. (3.29)

The cut-off frequency fh can be much higher than MN . Thus using Kh(t), we can show

that by solving the convex optimization problem in (3.21) the high resolution details of the

original measure s(τ) =
∑K

k=1 skδτk can be recovered with high probability, even though the

sample size T is finite.

Theorem 3.3. Let the co-prime arrays and the locations of the sources have the same setup

as in Theorem 3.2. The solution of the convex optimization (3.21) satisfies

‖Kh ∗ (sopt − s)‖L1 ≤ C0
f 2
h

M2N2
ε, (3.30)

with probability at least 1 − αe−γ(ε)T when ε ≤ 16
√

2MN + 1σ2, where γ(ε) is a increasing

function of ε. Here C0 is a positive constant number.

The proof can be obtained by combining Lemma 3.1 with the techniques in [53]. Theorem

3.3 allows to choose the cut-off frequency fh as large as one wants in order to bound the

reconstruction error up to a certain resolution. However, this will entail an increase in the

reconstruction error which is proportional to f 2
h . This theorem also shows that the recon-

struction of s is stable in the presence of noise. The probability of successful reconstruction

goes to one exponentially fast as the number of samples T goes to ∞. When fixing the

probability of a stable reconstruction, by increasing the number of samples T we can allow

for a decreased ε since γ(ε) is an increasing function. Therefore we can have a larger fh

without increasing the error bound in (3.30). By collecting more samples, one can stably

reconstruct the measure s as if we had an even wider aperture fh.
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3.4 Numerical algorithms

We now derive an optimization framework to reconstruct s for co-prime arrays. Since the

optimization is performed on a continuous domain, we will refer to the proposed algorithm

as the continuous sparse recovery in the rest of this chapter.

3.4.1 DOA estimation with semidefinite programming and root

finding

For DOA estimation the noise power σ2 is often unknown. Therefore, the optimization must

be modified to include this effect. A more realistic optimization is reformulated as

min
s,σ2≥0

‖s‖TV s.t. ‖r − F s− σ2w‖2 ≤ ε, (3.31)

in which wn = w̃ne
−j2πn d

λ , and w̃ is defined in (3.5). The dual problem takes on the form

max
u∈C2MN+1

Re[u∗r]− ε‖u‖2

s.t. ‖F ∗u‖L∞ ≤ 1,Re[u∗w] ≤ 0. (3.32)

The derivation of (3.32) is given in the Appendix C. Since u = 0 is a feasible solution,

strong duality holds according to the general Slater condition [32].

Due to the first constraint in (3.32), the problem itself is still an infinite dimensional op-

timization. It was shown in [22] that the first constraint can be recast as a semidefinite

matrix constraint. Thus the infinite dimensional dual problem is equivalent to the following
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semidefinite program (SDP):

max
u,Q

Re[u∗r]− ε‖u‖2

s.t.

[
Q u

u∗ 1

]
� 0, Re[u∗w] ≤ 0, (3.33)

2MN+1−j∑
i=1

Qi,i+j =

{
1 j = 0,

0 j = 1, 2, . . . , 2MN.

Here Q ∈ C(2MN+1)×(2MN+1) is a Hermitian matrix. This optimization problem can be easily

solved, for example by using the CVX package [32], to yield the optimal dual solution.

The following lemma is introduced to link the solutions of the primal and dual problems.

Lemma 3.2. Let sopt and uopt ∈ C2MN+1 be the optimal solutions of the primal problem

(3.31) and dual problem (3.33) respectively. Then

(F ∗uopt)(τ) = sgn(sopt(τ)) (3.34)

for all τ such that sopt(τ) 6= 0. Here F ∗ is the adjoint operator of F , and it transforms a

vector into a continuous signal by taking the inverse Fourier transform.

Proof: Let σ2
opt be the noise power estimated in the primal problem. Since strong duality

holds, we have

‖sopt‖TV = Re〈r,uopt〉 − ε‖uopt‖2
= Re〈r − F sopt − σ2

optw,uopt〉 − ε‖uopt‖2 + Re〈F sopt + σ2
optw,uopt〉

≤ Re〈F sopt + σ2
optw,uopt〉 ≤ Re〈F sopt,uopt〉. (3.35)

The first inequality follows from the Cauchy-Schwarz inequality and the fact that ‖r −
F sopt − σ2

optw‖2 ≤ ε. The second inequality results from Re[u∗optw] ≤ 0. In addition, we

also have

Re〈F sopt,uopt〉 ≤ ‖F ∗uopt‖L∞‖sopt‖TV ≤ ‖sopt‖TV, (3.36)

where we used the fact that ‖F ∗uopt‖L∞ ≤ 1. Combining (3.35) and (3.36) leads to

‖sopt‖TV = Re〈sopt,F ∗uopt〉, which implies (3.34). �
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According to Lemma 3.2, the supports of sopt(τ) satisfy (3.34), and thus can be retrieved by

root-finding based on the trigonometric polynomial 1−|F ∗uopt(τ)|2 = 0. Let Test denote the

recovered set of roots of this polynomial with cardinality Kest, and let τest[i] denote elements

in Test with 1 ≤ i ≤ Kest. A matrix Fest ∈ C(2MN+1)×Kset can then be formulated, with

measurement r expressed as

r = Fests0 + σ2w + e, (3.37)

in which s0 ∈ RKest and

Fest =


e−jMNd2πτest[1] . . . e−jMNd2πτest[Kest]

e−j(MN−1)d2πτest[1] . . . e−j(MN−1)d2πτest[Kest]

...
. . .

...

ejMNd2πτest[1] . . . ejMNd2πτest[Kest]

 .

Due to numerical issues in the root finding process, the cardinality of Test is normally larger

than the cardinality of T , i.e., Kest ≥ K. It is possible in some cases that Kest ≥ 2MN + 1,

which would lead to an ill-conditioned linear system (3.37). Sparsity can then be exploited

on s0. A convex optimization in the discrete domain can be formulated as

min
s0,σ2≥0

‖s0‖1 s.t. ‖r − Fests0 − σ2w‖2 ≤ εd. (3.38)

We choose εd in (3.38) to be larger than ε in (3.31) since the noise level is expected to be

higher in (3.37) due to inevitable error introduced in the root finding process. Assuming that

the solution of (3.38) is sest ∈ RKest , the estimation of the measure s(τ) in the continuous

domain can be represented as

sopt(τ) =
Kest∑
i=1

sest[i]δτest[i]. (3.39)

3.4.2 Extension: source number detection

Conventional source number detection for array processing is typically performed by ex-

ploiting eigenvalues from the sample covariance matrix. For co-prime arrays, this covariance

matrix can be obtained by performing spatial smoothing on z̃ in (3.5). The same idea can
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also be implemented on the sparse signal sest recovered from the previous section. Ideally,

after sorting its elements in a descending order, the signal sest reconstructed from (3.38)

should follow

s2est[1] ≥ s2est[2] ≥ . . . s2est[K] ≥ s2est[K + 1] = . . . = s2est[Kest] = 0. (3.40)

The SORTE algorithm can be applied to this series. The difference of the elements from sest

is

∇sest[i] = s2est[i]− s2est[i+ 1], i = 1, . . . , Kest − 1. (3.41)

The gap measure in SORTE is given as

SORTE(i) =

{
var[i+1]
var[i]

var[i] 6= 0,

+∞ var[i] = 0,
i = 1, . . . , Kest − 2, (3.42)

where

var[i] =
1

Kest − i

Kest−1∑
m=i

(
∇sest[m]− 1

Kest − i

Kest−1∑
n=i

∇sest[n]

)2

. (3.43)

The number of sources can be estimated as

K̂ = argmini SORTE(i). (3.44)

This approach requires Kest > 2 due to the definition of SORTE(i) in (3.42). When Kest ≤ 2,

since Test is obtained from the rooting finding process based on the continuous sparse recovery,

we simply let K̂ = Kest. We will refer to this continuous sparse recovery based SORTE as

CSORTE.

3.5 Numerical examples

In this section, we present several numerical examples to show the merits of implementing

our continuous sparse recovery techniques to co-prime arrays.
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Figure 3.2: Normalized spectra for CSR, MUSIC, and DSR, with T = 500 and SNR=−10dB.

We consider a co-prime array with 10 sensors. One set of sensors is located at positions

[0, 3, 6, 9, 12]d, and the second set is located at [0, 5, 10, 15, 20, 25]d, where d is taken as half

of the wavelength. The first sensors from both sets are collocated. It is easy to show that

the correlation matrix generates a virtual array with lags from −17d to 17d. We compare

continuous sparse recovery (CSR) techniques with MUSIC and also with discrete sparse re-

covery method (DSR) considering grid mismatches [52]. In [52], a LASSO formulation is

used to perform the DOA estimation. Here we implement an equivalent form of LASSO, i.e.,

Basis Pursuit, to perform the comparison. The MUSIC method in this simulation follows

the spatial smoothing technique in [48]. For the discrete sparse recovery method, we take

the grid from −1 to 1, with step size 0.005 for sin(θ). The noise levels ε in the optimization

formulas are chosen by cross validation. We consider 15 narrow band signals located at

sin(θ) = [−0.8876,−0.7624,−0.6326,−0.5096,−0.3818,−0.2552,−0.1324,−0.0046, 0.1206,

0.2414, 0.3692, 0.4972, 0.6208, 0.7454, 0.8704]. We show that continuous sparse recovery yields

better results in terms of detection ability, resolution, and estimation accuracy.
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3.5.1 Degrees of freedom

In this first numerical example, we verify that the proposed continuous sparse recovery

increases the degrees of freedom to O(MN) by implementing the co-prime arrays’ structure.

The number of time samples is 500 and the SNR is chosen to be −10dB. The ε for CSR

is taken as 5, and εd is taken as 10 while DSR uses ε = 10. In Fig. 3.2, we use a dashed

line to represent the true directions of arrival. The CPU time for running CSR was 7.30

seconds. DSR took 7.82 seconds, whereas MUSIC algorithm took only 0.81 seconds. In

MUSIC, we implement a root MUSIC algorithm to estimate the location of each source,

where the number of sources is assumed to be given. The average estimation errors for CSR,

DSR, and root MUSIC are 0.23%, 0.26%, and 0.42% respectively. We can see that all three

methods achieve O(MN). In the following subsection, we test the estimation accuracy of

these three methods via Monte Carlo simulations.

3.5.2 Estimation accuracy

In this section, we compare CSR, DSR and MUSIC via Monte Carlo simulations. Since

traditional MUSIC does not yield the DOA of each source directly, we consider the Root

MUSIC algorithm instead. For simplicity, we will still refer to it as MUSIC in this section.

The number of sources is assumed to be known for the MUSIC algorithm in this simulation,

whereas sparse methods do not assume this a priori. The values of ε and εd are chosen to be

5 and 10, while discrete SR uses ε = 10.

Figure 3.3 shows the DOA estimation error as a function of SNR after 50 Monte Carlo

simulations. The estimation error is calculated based on the sine function of the DOAs.

The average CPU times for running CSR, DSR and MUSIC are 6.93s, 9.30s, and 1.46s

respectively. We can see that CSR performs better than DSR uniformly with less computing

time. Both sparse recovery methods achieve better DOA estimation accuracy than MUSIC.

The accuracy of DSR can be further improved by taking a finer grid with a smaller step-size.

However, this will slow down DSR further.

In Fig. 3.4 we show that with a varying number of snapshots the proposed CSR also exhibits

better estimation accuracy than either DSR or MUSIC. The average CPU times for running
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Figure 3.3: DOA estimation errors for CSR, MUSIC, and DSR, with T = 500.

CSR, DSR and MUSIC are 6.50s, 7.91s, and 1.43s respectively. The performance of MUSIC

and DSR approaches the performance of CSR when the number of snapshots is close to 5000.

We can see that implementing CSR can save sampling time by taking a small number of

snapshots to achieve the same estimation accuracy as the MUSIC algorithm. The parameters

ε and εd are equal to 5 and 10 in this simulation.
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Figure 3.4: DOA estimation error for CSR, MUSIC, and DSR, with SNR=−10 dB.

51



3.5.3 Source number detection performance comparsion

We now compare the source number detection performance of the proposed CSORTE with

that of traditional SORTE applied to the covariance matrix after spatial smoothing. The

SNR is set to 0dB while the number of snapshots is 3000. We vary the number of sources

from 11 to 17. Since this co-prime array structure yields consecutive lags from −17d to

17d, 17 is the maximum number of sources that can be detected theoretically via techniques

based on the covariance matrix.
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Figure 3.5: Source number detection using CSORTE and SORTE, with SNR=0 dB, T =
3000.

Figure 3.7 shows the probability of detection with respect to the number of sources after 50

Monte Carlo simulations. In CSR, ε is chosen to be 5σ, and εd is set to be 2ε. When the

number of sources is less than 15, CSORTE and SORTE yield comparable result. However,

SORTE fails after the number of sources is larger than 15, while CSORTE provides stable

performance and also exhibits perfect detection even when the number of sources reaches the

theoretical limit of 17. DSR can also be combined with SORTE to perform source number

detection. However, the detection accuracy is jeopardized by the spurious signal from the

reconstructed signals using DSR. Therefore SORTE based on DSR is not included here.
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Figure 3.6: Source number detection using CSR and the MUSIC algorithm, with SNR=0
dB, T = 500.
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Figure 3.7: Source number detection using CSR and MUSIC algorithm, with SNR=−5 dB,
T = 500.

3.5.4 Resolution ability

Finally we compare the resolution abilities of CSR and MUSIC, and show that CSR is

capable of resolving very closely located signals. In the first simulation, two sources are
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closely located at −32◦ and −30◦.The value of ε is chosen to be 0.7σ and εd is set to be 2ε

in CSR, where σ is the noise power.

Figure 3.6 shows a numerical example in which the SNR is 0 dB and the number of snapshots

is 500. Normalized spectra are plotted for three methods. MUSIC method A is the MUSIC

algorithm with the assumption that the number of sources is known while the MUSIC method

B is MUSIC relying on traditional SORTE to provide the estimated number of sources. We

can see that MUSIC method B fails to resolve these two targets because traditional SORTE

fails to estimate the number of sources correctly. CSR resolves the two sources successfully

even though a priori information about the number of sources is not assumed to be given. In

Fig. 3.7, we lower the SNR to −5 dB, and we notice that even given the number of sources,

MUSIC fails to resolve the two closely located sources while CSR resolves them successfully.

Note, that while a separation of 2λ
MNd

is sufficient for Theorem III.1 to hold, in real applica-

tions, we expect to observe a better result. Thus we intentionally chose two sources which

are more closely located, to show that the proposed method still works even with a stronger

constraint.
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Figure 3.8: Comparison of resolution performance of CSORTE and SORTE, with T = 2000.

Finally we conduct a simulation based on Monte Carlo runs to compare the resolution

ability of CSORTE and the traditional SORTE algorithm. Figure 3.8 shows the resolution

performance in detecting two sources located at −32◦ and −30◦, using CSORTE and SORTE
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after 50 Monte Carlo runs. The parameter ε is chosen to be 0.7σ, and εd is set to be 2ε in

CSR. We can see that CSORTE outperforms traditional SORTE when detecting the two

closely located sources.

3.6 Summary

In this chapter we extended sparse recovery to a continuous domain. By doing this, we

were able to neglect the effect of dictionary mismatches introduced by off-grid targets. In

particular, we extended the recently developed mathematical theory of super resolution to

DOA estimation using co-prime arrays. We successfully showed that by using TV-norm

minimization and co-prime arrays, we could increase the degrees of freedom from O(M +N)

to O(MN). Using a primal-dual approach we transformed the original infinite dimensional

TV-norm minimization to a solvable semidefinite program. After estimating the candidate

support sets by root finding, we solved a small scale sparse recovery problem. The robustness

of the proposed super resolution approach was verified by performing statistical analysis of

the noise inherent in co-prime array processing. A source number detection algorithm was

then proposed by combining the existing SORTE algorithm with the reconstructed spectrum

from continuous sparse recovery. With numerical examples, we showed that the proposed

method achieves a better DOA estimation accuracy than the method proposed in Chapter 2,

and also exhibits improved resolution ability over traditional MUSIC with spatial smoothing.

The same algorithm and analysis can also be performed for nested arrays and collocated

MIMO radar.
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Chapter 4

Smoothing and Decomposition for the

Analysis Model of Sparse Recovery

In this chapter we will focus on the analysis model of sparse recovery. Instead of assuming

that the original signal can be decomposed into a sparse combination of atoms in a given

dictionary, the analysis model assumes that there exists a transformation which will make

the original signal sparse. Efficient algorithms and a theoretical performance bound will be

derived in this chapter. 3

4.1 Introduction

We consider a typical under-determined recovery problem having the following linear form:

b = Ax+w, (4.1)

in which A ∈ Rm×n is a measurement matrix, b ∈ Rm is the measurement vector, and

w ∈ Rm represents the noise term. Our goal is to recover the signal x ∈ Rn, and we

have m < n, which indicates that the inverse problem is ill-posed and has infinitely many

solutions. To find a unique solution, prior information on x must be incorporated.

3This chapter is based on Z. Tan,Y. C. Eldar, A. Beck and A. Nehorai,“Smoothing and decomposition
for analysis sparse recovery,” IEEE Trans. Signal Processing, vol. 62, pp. 1762-1774, April 2014. c© IEEE
2014.
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In the synthesis approach to sparse recovery from previous chapter, it is assumed that x can

be expressed as a sparse combination of known dictionary elements, represented as columns

of a matrix D ∈ Rn×p with p ≥ n. That is x = Dα with α sparse, i.e., the number

of non-zero elements in α is far less than the length of α. The main methods for solving

this problem can be classified into two categories. One includes greedy methods, such as

iterative hard thresholding [10] and orthogonal matching pursuit [11]. The other is based

on relaxation-type methods, such as basis pursuit [23] and LASSO [13]. These methods

can stably recover a sparse signal α when the matrix AD satisfies the restricted isometry

property (RIP) [40]-[63].

Recently, an alternative approach has became popular, which is known as the analysis

method [24], [25]. In this framework, we are given an analysis dictionary D∗(D ∈ Rn×p)

under which D∗x is sparse. Assuming, for example, that the `2 norm of the noise w is

bounded by ε, the recovery problem can be formulated as

min
x∈Rn

‖D∗x‖0 subject to ‖b−Ax‖2 ≤ ε. (4.2)

Since this problem is NP hard, several greedy algorithms have been proposed to approximate

it, such as thresholding [27] and subspace pursuit [64].

Alternatively, the nonconvex `0 norm can be approximated by the convex `1 norm leading

to the following relaxed problem, referred to as analysis basis pursuit (ABP):

min
x∈Rn

‖D∗x‖1 subject to ‖b−Ax‖2 ≤ ε. (4.3)

ABP is equivalent to the unconstrained optimization

min
x∈Rn

1

2
‖b−Ax‖22 + λ‖D∗x‖1, (4.4)

which we call analysis LASSO (ALASSO). The equivalence is in the sense that for any ε > 0

there exists a λ for which the optimal solutions of ABP and ALASSO are identical.

Both optimization problems ABP and ALASSO can be solved using interior point methods

[32]. However, when the problem dimension grows, these techniques become very slow since

they require solutions of linear systems. Another suggested approach is based on alternating
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direction method of multipliers (ADMM) [65, 66]. The efficiency of this method highly

depends on nice structure of the matrices A. Fast versions of first-order algorithms, such

as the fast iterative shrinkage-thresholding algorithm (FISTA) [14], are more favorable in

dealing with large dimensional data since they do not require A to have any structure.

The difficulty in directly applying first-order techniques to ABP (4.3) and ALASSO (4.4)

is the fact that the nonsmooth term ‖D∗x‖1 is inseparable. A generalized iterative soft-

thresholding algorithm was proposed in [67] to tackle this difficulty. However, this approach

converges relatively slow as we will show in one of our numerical examples. A common

alternative is to transform the nondifferentiable problem into a smooth counterpart. In [15],

the authors used Nesterov’s smoothing-based method [68] in conjunction with continuation

(NESTA) to solve ABP (4.3), under the assumption that the matrix A∗A is an orthogonal

projector. In [69], a smoothed version of ALASSO (4.4) is solved using a nonlinear conjugate

gradient descent algorithm. To avoid imposing conditions on A, we focus in this chapter on

the ALASSO formulation (4.4).

It was shown in [43] that one can apply any fast first-order method that achieves an ε-optimal

solution within O( 1√
ε
) iterations, to an ε smooth-approximation of the general nonsmooth

problem and obtain an algorithm with O(1
ε
) iterations. In this chapter, we choose a monotone

version of FISTA (MFISTA) [70] as our fast first-order method, whose objective function

values are guaranteed to be non-increasing. We apply the smoothing approach together with

MFISTA leading to the smoothing-based MFISTA (SFISTA) algorithm. We also propose

a decomposition-based MFISTA method (DFISTA) to solve the analysis sparse recovery

problem. The decomposition idea is to introduce an auxiliary variable z in (4.4) so that

MFISTA can be applied in a simple and explicit manner. This decomposition approach can

be traced back to [71], and has been widely used for solving total variation problems in the

context of image reconstruction [72].

Both smoothing and decomposition based algorithms for nonsmooth optimization problems

are very popular in the literature. One of the main goals of this chapter is to examine their

respective performance. We show that SFISTA requires lower computational complexity to

reach a predetermined accuracy. Our results can be applied to a general model, and are not

restricted to the analysis sparse recovery problem.
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In the context of analysis sparse recovery, we show in Section 4.2.3 that both smoothing and

decomposition techniques solve the following optimization problem:

min
x∈Rn,z∈Rp

1

2
‖Ax− b‖22 + λ‖z‖1 +

1

2
ρ‖z −D∗x‖22, (4.5)

which we refer to as relaxed ALASSO (RALASSO). Another contribution of this chapter is

in proving recovery guarantees for RALASSO (4.5). With the introduction of the restricted

isometry property adapted to D (D-RIP) [24], previous work [24] [73] studied recovery

guarantees based on ABP (4.3) and ALASSO (4.4). Here we combine the techniques in

[40] and [73], and obtain a performance bound on RALASSO (4.5). We show that when

σ2s < 0.1907 and ‖D∗A∗w‖∞ ≤ λ
2
, the solution x̂ρ of RALASSO (4.5) satisfies

‖x̂ρ − x‖2 ≤ C0

√
sλ+ C1

‖D∗x− (D∗x)s‖1√
s

+ C2
λp√
sρ
, (4.6)

where p is the number of rows in D∗, C0, C1, C2 are constants, and we use (x)s to denote

the vector consisting of the largest s entries of |x|. As a special case, choosing ρ → ∞
extends the bound in (4.6) and obtains the reconstruction bound for ALASSO (4.4) as long

as σ2s < 0.1907, which improves upon the results of [73].

The chapter is organized as follows. In Section 4.2, we introduce some mathematical pre-

liminaries, and present SFISTA and DFISTA for solving RALASSO (4.5). We analyze the

convergence behavior of these two algorithms in Section 4.3, and show that SFISTA con-

verges faster than DFISTA for a general model. Performance guarantees on RALASSO

(4.5) are developed in Section 4.4. Finally, in Section 4.5 we test our techniques on numer-

ical experiments to demonstrate the effectiveness of our algorithms in solving the analysis

recovery problem. We show that SFISTA performs favorably in comparison with DFISTA.

A continuation method is also introduced to further accelerate the convergence speed.
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4.2 Smoothing and decomposition relaxation for anal-

ysis model

In this section we present the smoothing-based and decomposition-based methods for solving

ALASSO (4.4). To do so, we first recall in Subsection 4.2.1 some results related to proximal

gradient methods that will be essential to our presentation and analysis.

4.2.1 The proximal gradient method

We begin this section with the recall of Moreau’s proximal (or “prox”) operator and its

properties [45], which is the key step in defining the proximal gradient method.

Given a closed proper convex function h : Rn → R ∪ {∞}, the proximal operator of h is

defined by

proxh(x) = arg min
u∈Rn

{
h(u) +

1

2
‖u− x‖22

}
. (4.7)

The proximal operator can be computed efficiently in many important instances. For exam-

ple, it can be easily obtained when h is an lp norm (p ∈ [1,∞)), or an indicator of “simple”

closed convex sets such as the box, unit-simplex and the ball. More examples of proximal

operators as well as a wealth of properties can be found, for example, in [74] [75].

The proximal operator can be used in order to compute smooth approximations of convex

functions. Specifically, let h be a closed, proper, convex function, and let µ > 0 be a given

parameter. Define

hµ(x) = min
u∈Rn

{
h(u) +

1

2µ
‖u− x‖22

}
. (4.8)

It is easy to see that

hµ(x) = h(proxµh(x)) +
1

2µ
‖x− proxµh(x)‖22. (4.9)

The function hµ is called the Moreau envelope of h and has the following important properties

(see [45] for further details):
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• hµ(x) ≤ h(x).

• hµ is continuously differentiable and its gradient is Lipschitz continuous with constant

1/µ.

• The gradient of hµ is given by

∇hµ(x) =
1

µ
(x− proxµh(x)). (4.10)

One important usage of the proximal operator is in the proximal gradient method that is

aimed at solving the following composite problem:

min
x∈Rn
{F (x) +G(x)}. (4.11)

Here F : Rn → R is a continuously differentiable convex function with a continuous gradient

that has Lipschitz constant L∇F :

‖∇F (x)−∇F (y)‖2 ≤ L∇F‖x− y‖2, for all x,y ∈ Rn,

and G : Rn → R ∪ {∞} is an extended-valued, proper, closed and convex function. The

proximal gradient method for solving (4.11) takes the following form (see [14, 76]):

Proximal Gradient Method For Solving (4.11)

Input: An upper bound L ≥ L∇F .
Step 0. Take x0 ∈ Rn.
Step k. (k ≥ 1)

Compute xk = prox 1
L
G

(
xk−1 − 1

L
∇F (xk−1)

)
.

Table 4.1: Proximal gradient method

The main disadvantage of the proximal gradient method is that it suffers from a relatively

slow O(1/k) rate of convergence of the function values. An accelerated version is the fast
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proximal gradient method, also known in the literature as fast iterative shrinkage thresholding

algorithm (FISTA) [14, 76]. When G ≡ 0, the problem is smooth, and FISTA coincides with

Nesterov’s optimal gradient method [77]. In this chapter we implement a monotone version of

FISTA (MFISTA) [70], which guarantees that the objective function value is non-increasing

along the iterations.

Monotone FISTA Method (MFISTA) For Solving (4.11)

Input: An upper bound L ≥ L∇F .
Step 0. Take y1 = x0, t1 = 1.
Step k. (k ≥ 1) Compute

zk = prox 1
L
G

(
yk − 1

L
∇F (yk)

)
.

tk+1 =
1+
√

1+4t2k
2

.
xk = argmin{F (x) +G(x) : x = zk,xk−1}.
yk+1 = xk + tk

tk+1
(zk − xk) + tk−1

tk+1
(xk − xk−1).

Table 4.2: Monotone FISTA method (MFISTA)

The rate of convergence of the sequence generated by MFISTA is O(1/k2).

Theorem 4.1. [70] Let {xk}k≥0 be the sequence generated by MFISTA, and let x̂ be an

optimal solution of (4.11). Then

F (xk) +G(xk)− F (x̂)−G(x̂) ≤ 2L∇F‖x0 − x̂‖22
(k + 1)2

. (4.12)

4.2.2 The general nonsmooth model

The general optimization model we consider in this chapter is

min
x∈Rn
{H(x) = f(x) + g(D∗x)}, (4.13)
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where f : Rn → R is a continuously differentiable convex function with a Lipschitz continuous

gradient L∇f . The function g : Rp → R ∪ {∞} is a closed, proper convex function which is

not necessarily smooth, and D∗ ∈ Rp×n is a given matrix. In addition, we assume that g is

Lipschitz continuous with parameter Lg:

|g(z)− g(v)| ≤ Lg‖z − v‖2 for all z,v ∈ Rp.

This is equivalent to saying that the subgradients of g over Rp are bounded by Lg:

‖g′(z)‖2 ≤ Lg for any x ∈ Rn and g′(z) ∈ ∂g(z).

An additional assumption we make throughout is that the proximal operator of αg(z) for

any α > 0 can be easily computed.

Directly applying MFISTA to (4.13) requires computing the proximal operator of g(D∗x).

Despite the fact that we assume that it is easy to compute the proximal operator of g(z),

it is in general difficult to compute that of αg(D∗x). Therefore we need to transform the

problem before utilizing MFISTA, in order to avoid this computation.

When considering ALASSO, f(x) = 1
2
‖Ax − b‖22 and g(D∗x) = λ‖D∗x‖1. The Lipschitz

constants are given by L∇f = ‖A‖22 and Lg = λ
√
p. The proximal operator of αg(z) =

αλ‖z‖1 can be computed as

proxαg(z) = Γλα(z) = [|z| − λα]+sgn(z), (4.14)

where for brevity, we denote the soft shrinkage operator by Γλα(z). Here [z]+ denotes the

vector whose components are given by the maximum between zi and 0. Note, however, that

there is no explicit expression for the proximal operator of g(D∗x) = λ‖D∗x‖1, i.e., there

is no closed form solution to

arg min
u∈Rn

{
αλ‖D∗u‖1 +

1

2
‖u− x‖22

}
. (4.15)

In the next subsection, we introduce two popular approaches for transforming the problem

(4.13): smoothing and decomposition. We will show in Sections 4.2.4 and 4.2.5 that both
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transformations lead to algorithms which only require computation of the proximal operator

of g(z), and not that of g(D∗x).

4.2.3 The smoothing and decomposition transformations

The first approach to transform (4.13) is the smoothing method in which the nonsmooth

function g(z) is replaced by its Moreau envelope gµ(z), which can be seen as a smooth

approximation. By letting z = D∗x , the smoothed problem becomes

min
x∈Rn
{Hµ(x) = f(x) + gµ(D∗x)}, (4.16)

to which MFISTA can be applied since it only requires evaluating the proximal operator of

g(z). From the general properties of the Moreau envelope, and from the fact that the norms

of the subgradients of g are bounded above by Lg, we can deduce that there exists some β1,

β2 > 0 such that β1 + β2 = Lg and g(z) − β1µ ≤ gµ(z) ≤ g(z) + β2µ for all z ∈ Rp (see

[43, 68]). This shows that a smaller µ leads to a finer approximation.

The second approach for transforming the problem is the decomposition method in which

we consider:

min
x∈Rn,z∈Rp

{
Gρ(x, z) = f(x) + g(z) +

ρ

2
‖z −D∗x‖22

}
. (4.17)

With ρ → ∞, this problem is equivalent to the following constrained formulation of the

original problem (4.13):

min{f(x) + g(z)}

s.t. z = D∗x, x ∈ Rn, z ∈ Rp. (4.18)

Evidently, there is a close relationship between the approximate models (4.16) and (4.17).

Indeed, fixing x and minimizing the objective function of (4.17) with respect to z we obtain

min
x∈Rn,z∈Rp

{
f(x) + g(z) +

ρ

2
‖z −D∗x‖22

}
= min
x∈Rn

{
f(x) + g 1

ρ
(D∗x)

}
. (4.19)
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Therefore, the two models are equivalent in the sense that their optimal solution set (lim-

ited to x) is the same when µ = 1
ρ
. For analysis sparse recovery, both transformations

lead to RALASSO (4.5). However, as we shall see, the resulting smoothing-based and

decomposition-based algorithms and their analysis are very different.

4.2.4 The smoothing-based method

Since (4.16) is a smooth problem we can apply an optimal first-order method such as MFISTA

with F = Hµ = f(x) + gµ(D∗x) and G ≡ 0 in equation (4.11). The Lipschitz constant of

Hµ is given by L∇f +
‖D‖22
µ

, and according to (4.10) the gradient of ∇gµ(D∗x) is equal to
1
µ
D(D∗x − proxµg(D

∗x)). The expression proxµg(D
∗x) is calculated by first computing

proxµg(z), and then letting z = D∗x.

Returning to the analysis sparse recovery problem, after smoothing we obtain

min
x∈Rn

{
Hµ(x) =

1

2
‖Ax− b‖22 + gµ(D∗x)

}
, (4.20)

where

gµ(D∗x) = min
u

{
λ‖u‖1 +

1

2µ
‖u−D∗x‖22

}
=

p∑
i=1

λHλµ((D∗x)[i]).

The function Hα(x) with parameter α > 0 is the so-called Huber function [78], and is given

by

Hα(x) =

{
1
2α
x2 if |x| < α

|x| − α
2

otherwise.
(4.21)

From (4.14), the gradient of gµ(D∗x) is equal to

∇gµ(D∗x) =
1

µ
D(D∗x− Γλµ(D∗x)). (4.22)

Applying MFISTA to (4.20), results in the SFISTA algorithm, summarized in Algorithm 1.
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Algorithm1: Smoothing-based MFISTA (SFISTA)

Input: An upper bound L ≥ ‖A‖22 +
‖D‖22
µ

.

Step 0. Take y1 = x0, t1 = 1.
Step k. (k ≥ 1) Compute
∇f(yk) = A∗(Ayk − b).
∇gµ(D∗xk−1) = 1

µ
D(D∗xk−1 − Γλµ(D∗xk−1)).

zk = yk − 1
L

(∇f(yk) +∇gµ(D∗xk−1)).

tk+1 =
1+
√

1+4t2k
2

.
xk = argmin{Hµ(x) : x = zk,xk−1}.
yk+1 = xk + tk

tk+1
(zk − xk) + tk−1

tk+1
(xk − xk−1).

Table 4.3: Smoothing-based MFISTA

4.2.5 The decomposition-based method

We can also employ MFISTA on the decomposition model

min
x∈Rn,z∈Rp

{Gρ(x, z) = Fρ(x, z) +G(x, z)}, (4.23)

where we take the smooth part as Fρ(x, z) = f(x) + ρ
2
‖z−D∗x‖22 and the nonsmooth part

as G(x, z) = g(z). In order to apply MFISTA to (4.17), we need to compute the proximal

operator of αG for a given constant α > 0, which is given by

proxαG(x, z) =

(
x

proxαg(z)

)
. (4.24)

In RALASSO (4.5), G(x, z) = λ‖z‖1 and Fρ(x, z) = 1
2
‖Ax−b‖22+ 1

2
ρ‖z−D∗x‖22. Therefore,

proxαG(x, z) =

(
x

Γλα(z)

)
. (4.25)
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The Lipschitz constant of ∇F is equal to (‖A‖22 + ρ(1 + ‖D‖22)). By applying MFISTA

directly, we have the DFISTA algorithm, stated in Algorithm 2.

Algorithm 2: Decomposition-based MFISTA (DFISTA)

Input: An upper bound L ≥ (‖A‖22 + ρ(1 + ‖D‖22)).
Step 0. Take u1 = x0,v1 = z0, t1 = 1.
Step k. (k ≥ 1) Compute
∇xFρ(uk,vk) = A∗(Auk − b) + ρD(D∗uk − vk).
∇zFρ(uk,vk)) = ρ(vk −D∗uk).
pk = uk − 1

L
∇xFρ(uk,vk).

qk = Γ λ
L

(vk − 1
L
∇zFρ(uk,vk)).

tk+1 =
1+
√

1+4t2k
2

.
(xk, zk)
= argmin{Gρ(x, z) : (x, z) = (pk, qk), (xk−1, zk−1)}.
uk+1 = xk + tk

tk+1
(pk − xk) + tk−1

tk+1
(xk − xk−1).

vk+1 = zk + tk
tk+1

(qk − zk) + tk−1
tk+1

(zk − zk−1).

Table 4.4: Decomposition-based MFISTA

4.3 Convergence analysis

In this section we analyze the convergence behavior of both the smoothing based and decom-

position based methods. Convergence of smoothing algorithms has been treated in [68, 43].

In order to make the chapter self contained, we quote the main results here. We then ana-

lyze the convergence of the decomposition approach. Both methods require the same type

of operations at each iteration: the computation of the gradient of the smooth function f ,

and of the proximal operator corresponding to αg, which means that they have the same

computational cost per iteration. However, we show that smoothing converges faster than

decomposition based methods. Specifically, the smoothing-based algorithm is guaranteed to

generate an ε-optimal solution within O(1/ε) iterations, whereas the decomposition-based
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approach requires O(1/ε1.5) iterations. We prove the results by analyzing SFISTA and

DFISTA for the general problem (4.13), however, the same analysis can be easily extended

to other optimal first-order methods, such as the one described in [68].

4.3.1 Convergence of the smoothing-based method

For SFISTA the sequence {xk} satisfies the following relationship [70]:

Hµ(xk)−Hµ(x̂µ) ≤
2
(
L∇f +

‖D‖22
µ

)
Λ1

(k + 1)2
, (4.26)

where Λ1 is an upper bound on the expression ‖x̂µ−x0‖2 with x̂µ being an arbitrary optimal

solution of the smoothed problem (4.16), and x0 is the initial point of the algorithm. Of

course, this rate of convergence is problematic since we are more interested in bounding the

expression H(xk)− Ĥ rather than the expression Hµ(xk)−Hµ(x̂µ), which is in terms of the

smoothed problem. Here, Ĥ stands for the optimal value for original nonsmooth problem

(4.13). For that, we can use the following result from [43].

Theorem 4.2. [43] Let {xk} be the sequence generated by applying MFISTA to the problem

(4.16). Let x0 be the initial point and let x̂ denote the optimal solution of (4.13). An ε-

optimal solution of (4.13), i.e. |H(xk) − H(x̂)| ≤ ε, is obtained in the smoothing-based

method using MFISTA after at most

K = 2‖D‖2
√
LgΛ1

1

ε
+
√
L∇fΛ1

1√
ε

(4.27)

iterations with µ chosen as

µ =

√
‖D‖22
Lg

ε√
‖D‖22Lg +

√
‖D‖22Lg + L∇fε

, (4.28)

in which Lg and L∇f are the Lipschitz constants of g and the gradient function of f in (4.13),

and Λ1 = ‖x0 − x̂µ‖2. We use x̂µ to denote the optimal solution of problem (4.16).

Remarks: For analysis sparse recovery using SFISTA, Lg = λp
1
2 and L∇f = ‖A‖22, which

can be plugged into the expressions in the theorem.
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4.3.2 Convergence of the decomposition-based method

A key property of the decomposition model (4.17) is that its minimal value is bounded above

by the optimal value Ĥ in the original problem (4.13).

Lemma 4.1. Let Ĝρ be the optimal value of problem (4.17) and Ĥ be the optimal value of

problem (4.13). Then Ĝρ ≤ Ĥ.

Proof: The proof follows from adding the constraint z = D∗x to the optimization:

Ĝρ = min
x∈Rn,z∈Rp

{
f(x) + g(z) +

ρ

2
‖z −D∗x‖22

}
≤ min
x∈Rn,z∈Rp,z=D∗x

{
f(x) + g(z) +

ρ

2
‖z −D∗x‖22

}
= min
x∈Rn

{f(x) + g(D∗x)} , (4.29)

which is equal to Ĥ.

The next theorem is our main convergence result establishing that an ε-optimal solution

can be reached after O(1/ε1.5) iterations. By assuming that the functions f and g are

nonnegative, which is not an unusual assumption, we have the following theorem.

Theorem 4.3. Let {xk, zk} be the sequences generated by applying MFISTA to (4.17) with

both f and g both being nonnegative functions. The initial point is taken as (x0, z0) with

z0 = D∗x0. Let x̂ denote the optimal solution of the original problem (4.13). An ε-optimal

solution of problem (4.13), i.e. |H(xk) − H(x̂)| ≤ ε, is obtained using the decomposition-

based method after at most

K = max

{
16
√

(1 + ‖D‖2Λ2H(x0))Lg
ε1.5

,
2
√
L∇fΛ2√
ε

}
(4.30)

iterations of MFISTA with ρ chosen as

ρ =

(
Lg
√

2H(x0)K
2

2(1 + ‖D‖2)Λ2

)2/3

. (4.31)
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Here Lg and L∇f are the Lipschitz constants for g and the gradient function of f in (4.13),

and Λ2 = ‖x0 − x̂ρ‖22 + ‖z0 − ẑρ‖22. We use x̂ρ, ẑρ to denote the optimal solutions to (4.17).

Proof: Since the monotone version of FISTA is applied we have

f(xk) + g(zk) +
ρ

2
‖zk −D∗xk‖22

=Gρ(xk, zk) ≤ Gρ(x0, z0) = f(x0) + g(D∗x0) = H(x0). (4.32)

With the assumption that f and g are nonnegative, it follows that

ρ

2
‖zk −D∗xk‖22 ≤ H(x0),

and therefore

‖zk −D∗xk‖2 ≤

√
2H(x0)

ρ
. (4.33)

The gradient of f(x) + ρ
2
‖z −D∗x‖22, is Lipschitz continuous with parameter (L∇f + ρ(1 +

‖D‖22)). According to [70], by applying MFISTA, we obtain a sequence {(xk, zk)} satisfying

Gρ(xk, zk)− Ĝρ ≤
2(L∇f + ρ(1 + ‖D‖22))Λ2

k2
.

Using lemma 4.1 and the notation

A = 2L∇fΛ2, B = 2(1 + ‖D‖22)Λ2,

we have

Gρ(xk, zk)− Ĥ ≤
A+ ρB

k2
. (4.34)
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We therefore conclude that

H(xk) =f(xk) + g(D∗xk)

=f(xk) + g(zk) + g(D∗xk)− g(zk)

≤Gρ(xk, zk) + Lg‖zk −D∗xk‖2

≤Ĥ +
A+ ρB

k2
+ Lg‖zk −D∗xk‖2

≤Ĥ +
A+ ρB

k2
+ Lg

√
2H(x0)

ρ
.

The first inequality follows from the Lipschitz condition for the function g, the second in-

equality is obtained from (4.34), and the last inequality is a result of (4.33).

We now seek the “best” ρ that minimizes the upper bound, or equivalently, minimizes the

term

A+ ρB

k2
+ Lg

√
2H(x0)

ρ
=
A

k2
+ Cρ+

D
√
ρ
, (4.35)

where C = B
k2

and D = Lg
√

2H(x0). Setting the derivative to zero, the optimal value of ρ

is ρ =
(
D
2C

)2/3
, and

H(xk) ≤ Ĥ +
A

k2
+ 2C1/3D2/3. (4.36)

Therefore, to obtain an ε-optimal solution, it is enough that

A

k2
≤ ε

2
,

2B1/3D2/3

k2/3
≤ ε

2
, (4.37)

or

k ≥max

{
43/2B1/2D

ε1.5
,

√
2A√
ε

}

=max

{
16
√

(1 + ‖D‖2Λ2H(x0))Lg
ε1.5

,
2
√
L∇fΛ2√
ε

}
, (4.38)

completing the proof.
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Remarks:

1. As in SFISTA, when treating the analysis sparse recovery problem, Lg = λp
1
2 and L∇f =

‖A‖22, which again can be plugged into the expressions in the theorem.

2. MFISTA is applied in SFISTA and DFISTA to guarantee a mathematical rigorous proof,

i.e. the existence of equation (4.32). In real application, FISTA without monotone operations

can also be applied to yield corresponding smoothing and decomposition based algorithms.

Comparing the results of smoothing-based and decomposition-based methods, we immedi-

ately conclude that the smoothing-based method is preferable. First, it requires only O(1/ε)

iterations to obtain an ε-optimal solution whereas the decomposition approach necessitates

O(1/ε3/2) iterations. Note that both bounds are better than the bound O(1/ε2) correspond-

ing to general sub-gradient schemes for nonsmooth optimization. Second, the bound in the

smoothing approach depends on
√
Lg, and not on Lg, as when using decomposition meth-

ods. This is important since, for example, when g(z) = ‖z‖1, we have Lg = p
1
2 . In the

smoothing approach the dependency on p is of the form p
1
4 and not p

1
2 , as when using the

decomposition algorithm.

4.4 Performance bound

We now turn to analyze the recovery performance of analysis LASSO when smoothing and de-

composition are applied. As we have seen, both transformations lead to the same RALASSO

problem in (4.5). Our main result in this section shows that the reconstruction obtained

by solving RALASSO is stable when D∗x has rapidly decreasing coefficients and the noise

in the model (4.1) is small enough. Our performance bound also depends on the choice of

parameter ρ in the objective function. Before stating the main theorems, we first introduce

a definition and some useful lemmas, whose proofs are detailed in the Appendix D.

To ensure stable recovery, we require that the matrix A satisfies the D-RIP:

Definition 4.1. (D-RIP) [24]. The measurement matrix A obeys the restricted isometry

property adapted to D with constant σs if

(1− σs)‖v‖22 ≤ ‖Av‖22 ≤ (1 + σs)‖v‖22 (4.39)
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holds for all v ∈ Σs = {y : y = Dx and ‖x‖0 ≤ s}. In other words, Σs is the union of

subspaces spanned by all subsets of s columns of D.

The following lemma provides a useful inequality for matrices satisfying D-RIP.

Lemma 4.2. Let A satisfy the D-RIP with parameter σ2s, and assume that u,v ∈ Σs.

Then,

Re〈Au,Av〉 ≥ −σ2s‖u‖2‖v‖2 + Re〈u,v〉. (4.40)

In the following, x̂ρ denotes the optimal solution of RALASSO (4.5) and x is the original

signal in the linear model (4.1); we also use h to represent the reconstruction error h = x̂ρ−x.

Let T be the indices of coefficients with s largest magnitudes in the vector D∗x, and denote

the complement of T by T c. Setting T0 = T , we decompose T c0 into sets of size s where

T1 denotes the locations of the s largest coefficients in D∗T cx, T2 denote the next s largest

coefficients and so on. Finally, we let T01 = T0 ∪ T1.

Using the result of Lemma 4.2 and the inequality ‖D∗T0h‖2 + ‖D∗T1h‖2 ≤
√

2‖D∗T01h‖2 since

T0 and T1 are disjoint, we have the following lemma.

Lemma 4.3. (D-RIP property) Let h = x̂ρ−x be the reconstruction error in RALASSO

(4.5). We assume that A satisfies the D-RIP with parameter σ2s and D is a tight frame.

Then,

Re〈Ah,ADD∗T01h〉 ≥ (1− σ2s)‖D∗T01h‖
2
2 −
√

2s−
1
2σ2s‖D∗T01h‖2‖D

∗
T ch‖1. (4.41)

Finally, the lemmas below show that the reconstruction error h and ‖D∗T ch‖1 can not be

very large.

Lemma 4.4. (Optimality condition) The optimal solution x̂ρ for RALASSO (4.5) sat-

isfies

‖D∗A∗Ah‖∞ ≤
(

1

2
+ ‖D∗D‖1,1

)
λ. (4.42)
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Lemma 4.5. (Cone constraint) The optimal solution x̂ρ for RALASSO (4.5) satisfies

the following cone constraint,

‖D∗T ch‖1 ≤
λ

ρ
p+ 3‖D∗T h‖1 + 4‖D∗T cx‖1. (4.43)

We are now ready to state our main result.

Theorem 4.4. Let A be an m× n measurement matrix, D an arbitrary n× p tight frame,

and let A satisfy the D-RIP with σ2s < 0.1907. Consider the measurement b = Ax + w,

where w is noise that satisfies ‖D∗A∗w‖∞ ≤ λ
2
. Then the solution x̂ρ to RALASSO (4.5)

satisfies

‖x̂ρ − x‖2 ≤ C0

√
sλ+ C1

‖D∗x− (D∗x)s‖1√
s

+ C2
λp√
sρ
, (4.44)

for the decomposition transformation and

‖x̂ρ − x‖2 ≤ C0

√
sλ+ C1

‖D∗x− (D∗x)s‖1√
s

+ C2
λµp√
s
, (4.45)

for the smoothing transformation. Here (D∗x)s is the vector consisting of the largest s

entries of D∗x in magnitude, C1 and C2 are constants depending on σ2s, and C0 depends on

σ2s and ‖D∗D‖1,1.

Proof: The proof follows mainly from the ideas in [40], [73], and proceeds in two steps.

First, we try to show that D∗h inside T01 is bounded by the terms of D∗h outside the set

T . Then we show that D∗T ch is essentially small.

From Lemma 4.3,

Re〈Ah,ADD∗T01h〉 ≥ (1− σ2s)‖D∗T01h‖
2
2 −
√

2s−
1
2σ2s‖D∗T01h‖2‖D

∗
T ch‖1. (4.46)

Using the fact that Re〈x,y〉 ≤ |〈x,y〉| ≤ ‖x‖1‖y‖∞, we obtain that

Re〈Ah,ADD∗T01h〉 =Re〈D∗A∗Ah,D∗T01h〉

≤‖D∗A∗Ah‖∞‖D∗T01h‖1
≤
√

2sc0λ‖D∗T01h‖2, (4.47)
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with c0 = 1
2

+ ‖D∗D‖1,1. The second inequality is a result of Lemma 4.4 and the fact that

‖D∗T01h‖1 ≤
√

2s‖D∗T01h‖2, in which 2s is the number of nonzero terms inD∗T01h. Combining

(4.46) and (4.47), we get

‖D∗T01h‖2 ≤
√

2sλc0 +
√

2s−
1
2σ2s‖D∗T ch‖1

1− σ2s
. (4.48)

Then the second step bounds ‖D∗T ch‖1. From (4.48),

‖D∗T h‖1 ≤
√
s‖D∗T h‖2 ≤

√
s‖D∗T01h‖2

≤
√

2λsc0 +
√

2σs‖D∗T ch‖1
1− σ2s

. (4.49)

Finally, using Lemma 4.5 and (4.49),

‖D∗T ch‖1 ≤
λ

ρ
p+

3
√

2λsc0 + 3
√

2σ2s‖D∗T ch‖1
1− σ2s

+ 4‖D∗T cx‖1. (4.50)

Since σ2s < 0.1907, we have 1− (1 + 3
√

2)σ2s > 0. Rearranging terms, the above inequality

becomes

‖D∗T ch‖1 ≤
1− σ2s

1− (1 + 3
√

2)σ2s

λ

ρ
p+

3
√

2λsc0 + 4(1− σ2s)‖D∗T cx‖1
1− (1 + 3

√
2)σ2s

. (4.51)

We now derive the bound on the reconstruction error. Using the results of (4.48) and (4.51),

we get

‖h‖2 =‖D∗h‖2 ≤ ‖D∗T01h‖2 +
∑
j≥2

‖D∗Tjh‖2

≤
√

2sλc0 +
√

2s−
1
2σ2s‖D∗T ch‖1

1− σ2s
+ s−

1
2‖D∗T ch‖1

=
c0λ
√

2s

1− σ2s
+

((
√

2− 1)σ2s + 1)s−
1
2‖D∗T ch‖1

1− σ2s

≤C0

√
sλ+ C1

‖D∗x− (D∗x)s‖1√
s

+ C2
λp√
sρ
. (4.52)
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The first equality follows from the assumption that D is a tight frame so that DD∗ = I.

The first inequality is the result of the triangle inequality. The second inequality follows

from (4.48) and the fact that
∑

j≥2 ‖D∗Tjh‖2 ≤ s−
1
2‖D∗T ch‖1, which is proved in equation

(D.1) in the Appendix D. The constants in the final result are given by

C0 =
4
√

2c0

1− (1 + 3
√

2)σ2s
,

C1 =
4((
√

2− 1)σ2s + 1)

1− (1 + 3
√

2)σ2s
,

C2 =
(
√

2− 1)σ2s + 1

1− (1 + 3
√

2)σ2s
.

To obtain the error bound for the smoothing transformation we replace ρ with 1/µ in the

result. �

Choosing ρ → ∞ in RALASSO (4.5) leads to the ALASSO problem for which z = D∗x.

We then have the following result.

Theorem 4.5. Let A be an m× n measurement matrix, D an arbitrary n× p tight frame,

and let A satisfy the D-RIP with σ2s < 0.1907. Consider the measurement b = Ax + w,

where w is noise that satisfies ‖D∗A∗w‖∞ ≤ λ
2
. Then the solution x̂ to ALASSO (4.4)

satisfies

‖x̂− x‖2 ≤ C0

√
sλ+ C1

‖D∗x− (D∗x)s‖1√
s

, (4.53)

where (D∗x)s is the vector consisting of the largest s entries of D∗x in magnitude, C1 is a

constant depending on σ2s, and C0 depends on σ2s and ‖D∗D‖1,1.

Remarks:

1. When the noise in the system is zero, we can set λ as a positive value which is arbitrarily

close to zero. The solution x̂ then satisfies ‖x̂ − x‖ ≤ C1
‖D∗x−(D∗x)s‖1√

s
, which parallels the

result for the noiseless synthesis model in [40].
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2. When D∗ is a tight frame, we have DD∗ = I. Therefore by letting v = D∗x, we can

reformulate the original analysis model as

min
v

1

2
‖ADv − b‖22 + λ‖v‖1. (4.54)

Assuming that the noise term satisfies the l2 norm constraint ‖w‖2 ≤ ε, we have

‖D∗A∗w‖∞ ≤ ‖D∗A∗w‖2 ≤ ‖D∗A∗‖2‖w‖2 ≤ ε‖D∗A∗‖2. (4.55)

When A satisfies D-RIP with σ2s < 0.1907, by letting λ = 2ε‖D∗A∗‖2 we have

‖v̂ − v‖2 ≤ ‖D∗‖2‖x̂− x‖2 ≤ C̃0ε+ C̃1
‖v − (v)s‖1√

s
. (4.56)

This result has a form similar to the reconstruction error bound shown in [40]. However, the

specific constants are different since in [40] the matrix AD is required to satisfy the RIP,

whereas in our work we require only that the D-RIP is satisfied.

3. A similar performance bound is introduced in [73] and shown to be valid when σ3s < 0.25.

Using Corollary 3.4 in [79], this is equivalent to σ2s < 0.0833. Thus the results in Theorem

4.5 allow for a looser constraint on ALASSO recovery.

4. The performance bound of Theorem 4.4 implies that a larger choice of ρ, or a smaller

parameter µ, leads to a smaller reconstruction error bound. This trend is intuitive since large

ρ or small µ results in smaller model inaccuracy. However, a larger ρ or a smaller µ leads to

a larger Lipschitz constant and thus results in slower convergence according to Theorem 4.1.

The idea of parameter continuation [44] can be introduced to both ρ and µ to accelerate the

convergence while obtaining a desired reconstruction accuracy. More details will be given in

the next section.

4.5 Numerical examples

In the numerical examples, we use both randomly generated data and MRI image reconstruc-

tion to demonstrate that SFISTA performs better than DFISTA. In the last example we also
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introduce a continuation technique to further speed up convergence of the smoothing-based

method. We further compare SFISTA with the existing methods in [66, 67, 69] using MRI

image reconstruction, and show its advantages.

4.5.1 Randomly generated data in a noiseless case
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Figure 4.1: Reconstruction error of SFISTA

In this simulation, the entries in the m×n measurement matrix A were randomly generated

according to a normal distribution. The n × p matrix D is a random tight frame. First

we generated a p × n matrix whose elements follow an i.i.d Gaussian distribution. Then

QR factorization was performed on this random matrix to yield the tight frame D with

DD∗ = I (D∗ comprises the first n columns from Q, which was generated from the QR

factorization).

In the simulation we let n = 120 and p = 144, and we also set the values of m and the

number of zero terms named l in D∗x according to the following formula:

m = αn, l = n− βm. (4.57)

We varied α and β from 0.1 to 1, with a step size 0.05. We set λ = 0.004, µ = 10−3λ−1

for the smoothing-based method, and ρ = 103λ for the decomposition-based method. L is
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Figure 4.2: Reconstruction error of DFISTA

set to be ‖A‖22 +
‖D‖22
µ

for smoothing and ‖A‖22 + ρ(1 + ‖D‖22) for decomposition. For every

combination of α and β, we ran a Monte Carlo simulation 50 times. Each algorithm ran for

3000 iterations, and we computed the average reconstruction error. The reconstruction error

is defined by ‖x̂−x‖‖x‖ , in which x̂ is the reconstructed signal using smoothing or decomposition

and x is the original signal in (4.1).

The average reconstruction error for smoothing and decomposition are plotted in Figs. 4.1

and 4.2, respectively. White pixels present low reconstruction error whereas black pixels

mean high error. Evidently, see that with same number of iterations, SFISTA results in a

better reconstruction than DFISTA.

4.5.2 MRI image reconstruction in a noisy case

The next numerical experiment was performed on a noisy 256× 256 Shepp Logan phantom.

The image scale was normalized to [0, 1]. The additive noise followed a zero-mean Gaussian

distribution with standard deviation σ = 0.001. Due to the high cost of sampling in MRI,

we only observed a limited number of radial lines of the phantom’s 2D discrete Fourier

transform. The matrix D∗ consists of all vertical and horizontal gradients, which leads to

79



500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1.5

2

2.5

3

Iteration Number

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 F

(x
)

 

 

DFISTA ρ=10
2
λ

SFISTA µ=10
−2

λ
−1

DFISTA ρ=10
3
λ

SFISTA µ=10
−3

λ
−1

DFISTA ρ=10
4
λ

SFISTA µ=10
−4

λ
−1

Figure 4.3: The objective function for MRI reconstruction on Shepp Logan.
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Figure 4.4: Reconstruction error for SFISTA and DFISTA with different parameters.

a sparse D∗x. We let λ = 0.001 in the optimization. We tested this MRI scenario with µ

values of 10−2λ−1, 10−3λ−1, 10−4λ−1 for SFISTA and ρ = 102λ, ρ = 103λ, 104λ for DFISTA.

L is set to be ‖A‖22 +
‖D‖22
µ

for SFISTA and ‖A‖22 + ρ(1 + ‖D‖22) for DFISTA. We took the

samples along 15 radial lines to test these two methods.
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In Fig. 4.3 we plot the objective 1
2
‖Ax − b‖22 + λ‖D∗x‖1 as a function of the iteration

number. It can be seen that the objective function of SFISTA decreases more rapidly than

DFISTA. Furthermore, with smaller ρ and larger µ, DFISTA and SFISTA converge faster.

Then we computed the reconstruction error. Here we see that smaller µ and larger ρ lead

to a more accurate reconstruction. We can see that SFISTA converges faster than DFISTA,

which follows the convergence results in Section 4.3.

Next, we compared SFISTA with the nonlinear conjugate gradient descend (CGD) algorithm

proposed in [69]. The CGD also needs to introduce a smoothing transformation to approx-

imate the term ‖D∗x‖1, and in this simulation the Moreau envelop with µ = 10−4λ−1 was

used to smooth this term. We can see from Fig. 4.5 that SFISTA converges faster than

the CGD in terms of CPU time. CGD is slower because in each iteration, backtracking

line-search is required, which reduces the algorithm efficiency.
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Figure 4.5: Reconstruction error for SFISTA and CGD with respect to CPU time.

4.5.3 Acceleration by continuation

To accelerate convergence and increase the accuracy of reconstruction, we consider contin-

uation on the parameter µ for SFISTA, or on ρ for DFISTA. From Theorem 4.4, we see
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Algorithm 3: Continuation with SFISTA

Input: x, the starting parameter µ = µ0,
the ending parameter µf and γ > 1.

Step 1. run SFISTA with µ and initial point x.
Step 2. Get the solution x∗ and let x = x∗, µ = µ/γ.
Until. µ ≤ µf .

Table 4.5: Continuation with SFISTA

that smaller µ results in a smaller reconstruction error. At the same time, smaller µ leads

to a larger Lipschitz constant L∇F in Theorem 4.1, and thus results in slower convergence.

The idea of continuation is to solve a sequence of similar problems while using the previous

solution as a warm start. Taking the smoothing-based method as an example, we can run

SFISTA with µ1 ≥ µ2 ≥ µ3, . . . ≥ µf . The continuation method is given in Algorithm 3.

The algorithm for applying continuation on DFISTA is the same.

We tested the algorithm on the Shepp Logan image from the previous subsection with the

same setting, using SFISTA with µf = 10−4λ−1 and standard SFISTA with µ = 10−4λ−1. We

implemented the generalized iterative soft-thresholding algorithm (GIST) from [67]. We also

included an ADMM-based method, i.e. the split augmented Lagrangian shrinkage algorithm

(SALSA) [66]. SALSA requires solving the proximal operator of ‖D∗x‖1, which is nontrivial.

In this simulation, we implemented 40 iterations of the Fast GP algorithm [70] to approximate

this proximal operator. Without solving the proximal operator exactly, the ADMM-based

method can converge very fast while the accuracy of reconstruction is compromised as we

show in Figure 4.6. In this figure we plot the reconstruction error for these four algorithms. It

also shows that continuation helps speed up the convergence and exhibits better performance

then GIST. The reconstructed Shepp Logan phantom using continuation is presented in Fig.

4.7, with reconstruction error 3.17%.
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Figure 4.7: Reconstructed Shepp Logan with SFISTA using continuation.

4.6 Summary

In this chapter we considered the analysis model of sparse recovery. Efficient algorithms

based on MFISTA were derived to solve the LASSO optimization for the analysis model.
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Since the proximal operator in MFISTA does not have a closed-form solution for the analy-

sis model, we introduced two relaxation methods, namely smoothing and decomposition, to

transform the original sparse recovery problem into a smooth counterpart in which a proximal

operator exists. Although smoothing and decomposition relaxations have the same objective

function, by performing convergence analysis we showed that the smoothing method con-

verges faster than the decomposition method. We also derived a bound on the performance

for both approaches, assuming a tight frame and D-RIP. We demonstrated the effective-

ness of the proposed algorithms for an MRI application. With the application of parameter

continuation, the proposed algorithms are suitable for solving other large scale problems.
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Chapter 5

Conclusions and Future Work

5.1 Summary and conclusions

In this dissertation we studied several topics related to sparse recovery and their applica-

tions to radar signal processing, passive arrays, and image processing. We first proposed a

method to overcome structured dictionary mismatches in compressed sensing. In particu-

lar, we utilized the joint sparse recovery model and also derived a performance bound on

the joint sparse reconstruction. For off-grid compressed sensing, we used a bounded joint

sparse recovery method. Fast algorithms based on FISTA were derived to solve these joint

sparse recovery formulations. One important application of this framework is called off-grid

compressed sensing for DOA estimation. We presented both passive and active sensing ap-

plications to demonstrate the effectiveness of the proposed algorithms. Numerical examples

were conducted to compare the performance of the joint sparse method and other existing

methods. By exploiting the joint sparse property, we achieved considerably more satisfactory

results when structured dictionary mismatches exist.

We next extended the sparse recovery to a continuous domain where dictionary mismatches

do not exist. In particular, we extended the mathematical theory of super resolution to

DOA estimation using co-prime arrays. A primal-dual approach was utilized to transform

the original infinite dimensional optimization problem to a solvable semidefinite program.

After estimating the candidate support sets by root finding, we solved a small-scale sparse

recovery problem. The robustness of the proposed super resolution approach was verified by

performing statistical analysis of the noise inherent in co-prime array processing. A source-

number detection algorithm was then proposed by combining the existing SORTE algorithm
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with the reconstructed spectrum from convex optimization. Via numerical examples, we

showed that the proposed method achieves a more accurate DOA estimation while providing

more degrees of freedom, and also exhibits improved resolution over traditional MUSIC with

spatial smoothing.

Finally, we considered the problem of analysis model for sparse recovery. We proposed meth-

ods based on MFISTA to solve the LASSO optimization problem for the analysis model.

Since the proximal operator in MFISTA for ‖D∗x‖1 does not have a closed-form solution,

we presented two methods, SFISTA and DFISTA, using smoothing and decomposition re-

spectively, to transform the original sparse recovery problem into a smooth counterpart. We

analyzed the convergence of SFISTA and DFISTA and showed that SFISTA converges faster

for general nonsmooth optimization problems. We also derived a bound on the performance

for both approaches, assuming a tight frame and D-RIP. Our methods were demonstrated via

several simulations. With the application of parameter continuation, these two algorithms

are suitable for solving large scale problems.

5.2 Future directions

In this section, we point out several potential future research directions.

Performance analysis of the DOA estimation accuracy: In the dissertation we focused

on the estimation accuracy of the original sparse signal when off-grid targets exist. However,

the DOA estimation accuracy is a more interesting topic to explore. This performance can

be analyzed with respect to the restricted isometric property of the sensing matrix. A more

theoretical way to choose λ for off-grid compressed sensing can also developed.

Efficient algorithms to solve continuous sparse recovery: Although continuous sparse

recovery method requires less sampling time than MUSIC to achieve a certain estimation

accuracy, one shortcoming of this approach is that solving the semidefinite program is more

time consuming than MUSIC. Fast algorithm development could be an interesting topic for

future work. It would also be of interest to develop a systematic way to choose ε and εd in

the optimization formulas.

86



Random arrays for passive DOA estimation: In this dissertation we consider only

nested arrays and co-prime arrays to increase the degrees of freedom from O(M + N) to

O(MN). In future work, we will consider the case of random arrays, where locations of

sensors are randomly generated. The challenge is the distribution of the random generation.

Under proper distribution, it can be shown that random arrays can yield more degrees of

freedom than nested and co-prime arrays using the same number of sensors.

Dictionary learning of the analysis sparsity model: The dissertation considers only

recovery of the co-sparse signal with a given dictionary. However, in most applications,

we need not only to estimate the signal but also to learn the overcomplete dictionary with

the training set, which makes the problem itself nonconvex and hard to solve. The issue

of reconstructing the dictionary can be addressed by performing a clustering analysis on

the samples. Furthermore, co-sparse dictionary learning can be incorporated with machine

learning techniques, such as the Support Vector Machines, to utilize the low dimensional

structure of the data, thus increasing the discriminative power of original machine learning

techniques.
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Appendix A

Proof of Performance Bound of Joint

Sparse Recovery

Before beginning the proof of the main theorem, we give several useful lemmas which will

be used in the main proof. The first lemma is based on the J-RIP property of the matrix Φ.

Lemma A.1. If the matrix Φ satisfies J-RIP with parameter σ2K, then for all u,v ∈ R2N ,

which are both K joint-sparse with non-overlapping support sets, we have

〈Φu,Φv〉 ≥ −σ2K‖u‖2‖v‖2.

Proof: We first consider the case when ‖u‖2 = 1 and ‖v‖2 = 1. According to the definition

of J-RIP, we have the following inequality:

〈Φu,Φv〉 =
1

4
{‖Φu+ Φv‖22 − ‖Φu−Φv‖22}

≥1

4
{(1− σ2K)‖u+ v‖22 − (1 + σ2K)‖u− v‖22}

≥ − σ2K + uTv

=− σ2K .

The last equality utilizes the fact that u and v has non-overlapping support sets. Now it is

easy to extend this equation to get the result in lemma A.1.

We use x̂ to represent the optimal solution of (JS) and denote x as the original signal with

y = Φx +w; we also use h to represent the reconstruction error x̂− x. Now let T denote
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the index of coefficients with k largest joint-magnitudes of vector x, i.e., the indices i and

N + i for (1 ≤ i ≤ N) with k largest
√
x2i + x2N+i. T c denotes the complement of T . Let

xT be a vector that maintains the same coefficients as x with support set T , while setting

other indices as zeros. Let T0 = T , and we decompose T c0 into sets of size K. Let T1 denote

the locations of the K largest joint-magnitudes in hT c , T2 denote the next K largest joint-

magnitudes in hcT and so on. We also have T01 = T0 ∪ T1. The next lemma relates the `2

norm of the tail to the `2/`1 norm of the tail.

Lemma A.2. (Bounding the tail) For the reconstruction error h from solving (JS) and

disjointed sets T0, T1, . . . defined earlier, we have∑
j≥2

‖hTj‖2 ≤ K−
1
2‖hT c‖2,1.

Proof : First we can write the following inequality as

‖hTj‖2 ≤ K
1
2‖hTj‖∞,1 ≤ K−

1
2‖hTj−1

‖2,1.

The above equation utilizes the definition of ‖x‖∞,1 and also the fact that every joint mag-

nitude in set Tj is no larger than every joint magnitude in set Tj−1. By summing up over j,

we obtain ∑
j≥2

‖hTj‖2 ≤ K−
1
2

∑
j≥1

‖hTj‖2,1 = K−
1
2‖hT c‖2,1. (A.1)

The lemmas below are derived from the optimality of x̂, and they show that the reconstruc-

tion error h and ‖hT c‖2,1 is bounded when x̂ solves the (JS).

Lemma A.3. (Optimality condition 1) Assuming that λ obeys ‖ΦTw‖∞,1 ≤ λ
2
, the

reconstruction error h of (JS) satisfies the following inequality

‖ΦTΦh‖∞,1 ≤
3

2
λ,

Proof : The optimality condition for (JS) requires that the gradients vanish to zero, and it

can be stated as

ΦT(Φx̂− y) + λv = 0, (A.2)
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where v is the gradient of function ‖v‖2,1. It is easy to verify that ‖v‖∞,1 ≤ 1, so we get

‖ΦT(Φx̂− y)‖∞,1 = λ‖v‖∞,1 ≤ λ. (A.3)

From the assumption ‖ΦTw‖∞,1 ≤ λ
2
,

‖ΦTΦh‖∞,1 ≤ ‖ΦT(Φx− y)‖∞,1 + ‖ΦT(Φx̂− y)‖∞,1 ≤
3

2
λ.

Lemma A.4. (Optimality condition 2) For the reconstruction of (JS), we have following

inequality:

‖hT c‖2,1 ≤ 3‖hT ‖2,1 + 4‖xT c‖2,1.

Proof : Now, since x̂ solves the optimization problem (JS), we have

1

2
‖Φx̂− y‖22 + λ‖x̂‖2,1 ≤

1

2
‖Φx− y‖22 + λ‖x‖2,1.

Since y = Φx+w, and by letting h denote x̂− x, we have

1

2
‖Φh−w‖22 + λ‖x̂‖2,1 ≤

1

2
‖w‖22 + λ‖x‖2,1.

Expanding the first term on the left side and rearranging the terms in the above equation,

we get

1

2
‖Φh‖22 + λ‖x̂‖2,1 ≤〈Φh,w〉+ λ‖x‖2,1

≤‖ΦTw‖∞,1‖h‖2,1 + λ‖x‖2,1.

The second inequality follows from the fact that

〈x,y〉 =
N∑
i=1

(xiyi + xN+iyN+i)

≤
N∑
i=1

√
x2i + x2N+i

√
y2i + y2N+i

≤‖x‖2,1‖y‖∞,1.
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With the assumption that ‖ΦTw‖∞,1 ≤ λ
2
, we get

1

2
‖Φh‖22 + λ‖x̂‖2,1 ≤

λ

2
‖h‖2,1 + λ‖x‖2,1.

Therefore we have

λ‖x̂‖2,1 ≤
1

2
‖Φh‖22 + λ‖x̂‖2,1 ≤

λ

2
‖h‖2,1 + λ‖x‖2,1.

Since we have h = x̂− x, we also have

‖h+ x‖2,1 ≤
1

2
‖h‖2,1 + ‖x‖2,1.

Using the above equation, we can show that

‖hT + xT ‖2,1 + ‖hT c + xT c‖2,1 ≤
1

2
‖hT ‖2,1 +

1

2
‖hT c‖2,1 + ‖xT ‖2,1 + ‖xT c‖2,1.

Applying triangle inequality on the left hand side of above inequality, we have

− ‖hT ‖2,1 + ‖xT ‖2,1 + ‖hT c‖2,1 − ‖xT c‖2,1 ≤
1

2
‖hT ‖2,1 +

1

2
‖hT c‖2,1 + ‖xT ‖2,1 + ‖xT c‖2,1.

After rearranging the terms, we have the following cone constraint:

‖hT c‖2,1 ≤ 3‖hT ‖2,1 + 4‖xT c‖2,1. (A.4)

With the above lemmas, we can prove theorem 2.2 as follows.

Main Proof: The proof follows some techniques in [33], [51] and [40]. The challenge lies

in two aspects. First, instead of dealing with sparsity, we have to use the property of joint-

sparsity for the derivation. Second, unlike the constrained optimization considered in [33], in

this work we are trying to derive the performance bound for an unconstrained optimization.

The proof is derived in two steps. First, we show that h inside the set T01 is bounded by the
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terms of h outside the set T . Then we show that hT c is essentially small. First we have

〈Φh,ΦhT01〉 =〈ΦhT01 ,ΦhT01〉+
∑
j≥2

〈ΦhTj ,ΦhT01〉

≥(1− σ2K)‖hT01‖22 +
∑
j≥2

〈ΦhTj ,ΦhT0〉+
∑
j≥2

〈ΦhTj ,ΦhT1〉

≥(1− σ2K)‖hT01‖22 − σ2K‖hT0‖2
∑
j≥2

‖hTj‖2 − σ2K‖hT1‖2
∑
j≥2

‖hTj‖2

=(1− σ2K)‖hT01‖22 − σ2K(‖hT0‖2 + ‖hT1‖2)
∑
j≥2

‖hTj‖2

≥(1− σ2K)‖hT01‖22 −
√

2σ2K‖hT01‖2
∑
j≥2

‖hTj‖2.

The first inequality follows the J-RIP of matrix Φ. The second inequality uses the result

from Lemma A.1. The third one is deduced from the fact that ‖hT0‖2 +‖hT1‖2 ≤
√

2‖hT01‖2
when the set T0 and the set T1 are disjoint. With the result from Lemma A.2, we have our

final inequality as

〈Φh,ΦhT01〉 ≥ (1− σ2K)‖hT01‖22 −
√

2K−
1
2σ2K‖hT01‖2‖hT c‖2,1. (A.5)

From the inequality 〈x,y〉 =
∑N

i=1(xiyi + xN+iyN+i) ≤
∑N

i=1

√
x2i + x2N+i

√
y2i + y2N+i ≤

‖x‖2,1‖y‖∞,1, we get

〈Φh,ΦhT01〉 =〈ΦTΦh,hT01〉 ≤ ‖ΦTΦh‖∞,1‖hT01‖2,1
≤
√

2K‖ΦTΦh‖∞,1‖hT01‖2 ≤
√
Kc0λ‖hT01‖2, (A.6)

where c0 = 3
√
2

2
. The second inequality uses the fact that ‖hT01‖2,1 ≤

√
2K‖hT01‖2, which is

derived by using Cauchy-Schwarz inequality. The last inequality follows the result of Lemma

A.3. Combining equations (A.5) and (A.6), we get

‖hT01‖2 ≤
√
Kλc0 +

√
2K−

1
2σ2K‖hT c‖2,1

1− σ2K
. (A.7)
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Hence, combining the Cauchy-Schwarz inequality with the result from last inequality leads

to

‖hT ‖2,1 ≤
√
K‖hT ‖2 ≤

√
K‖hT01‖2 ≤

λKc0 +
√

2σ2K‖hT c‖2,1
1− σ2K

. (A.8)

Next, we prove that hT c is relatively small. Combining the inequalities from Lemma A.4

and (A.8), we have

‖hT c‖2,1 ≤
3λKc0 + 3

√
2σ2K‖hT c‖2,1

1− σ2K
+ 4‖xT c‖2,1.

From the assumption σ2K < 0.1907, we have 1 − (1 + 3
√

2)σ2K > 0. Then by rearranging

the terms, the above inequality becomes

‖hT c‖2,1 ≤
3λKc0 + 4(1− σ2K)‖xT c‖2,1

1− (1 + 3
√

2)σ2K
. (A.9)

Now we can bound the reconstruction error h. Using the results from Lemma A.2 and

equations (A.7) and (A.9), we derive

‖h‖2 ≤‖hT01‖2 +
∑
j≥2

‖hTj‖2

≤
√
Kλc0 +

√
2K−

1
2σ2K‖hT c‖2,1

1− σ2K
+K−

1
2‖hT c‖2,1

=
c0λ
√
K

1− σ2K
+

((
√

2− 1)σ2K + 1)K−
1
2‖hT c‖2,1

1− σ2K

≤C0

√
Kλ+ C1

‖x− (x)K‖2,1√
K

. (A.10)

The first inequality uses the triangle inequality. For the second inequality we use Lemma

A.2. The constants are given as

C0 =
6
√

2

1− (1 + 3
√

2)σ2K
, C1 =

4((
√

2− 1)σ2K + 1)

1− (1 + 3
√

2)σ2K
.
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Appendix B

Statistical Analysis of the Co-prime

Arrays

To derive the statistical behavior of each element in E in Lemma 3.1 we rely on two lemmas

regarding the concentration behavior of complex Gaussian random variables. Their proofs

are based on results from [84].

Lemma B.1. Let x(t) and y(t), t = 1, . . . , T be sequences of i.i.d., circularly-symmetric

complex normal variables with zero mean and variances equal to σ2
x and σ2

y respectively.

That is x(t) ∼ CN (0, σ2
x) and y(t) ∼ CN (0, σ2

y). Then

Pr

(∣∣∣∣∣
T∑
t=1

x(t)y∗(t)

∣∣∣∣∣ ≥ ε

)
≤ 8 exp

(
− ε2

16σxσy(Tσxσy + ε
4
)

)
.

Proof: First we have

T∑
t=1

x(t)y∗(t) =
T∑
t=1

Re[x(t)]Re[y(t)] +
T∑
t=1

Im[x(t)]Im[y(t)]

− j
T∑
t=1

Re[x(t)]Im[y(t)] + j
T∑
t=1

Im[x(t)]Re[y(t)].
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Following the same procedure used in the proof of Lemma 3.1, we have

Pr

(∣∣∣∣∣
T∑
t=1

x(t)y∗(t)

∣∣∣∣∣ ≥ ε

)
≤Pr

(∣∣∣∣∣
T∑
t=1

Re[x(t)]Re[y(t)]

∣∣∣∣∣ ≥ ε

4

)
+ Pr

(∣∣∣∣∣
T∑
t=1

Im[x(t)]Im[y(t)]

∣∣∣∣∣ ≥ ε

4

)

+Pr

(∣∣∣∣∣
T∑
t=1

Re[x(t)]Im[y(t)]

∣∣∣∣∣ ≥ ε

4

)
+ Pr

(∣∣∣∣∣
T∑
t=1

Im[x(t)]Re[y(t)]

∣∣∣∣∣ ≥ ε

4

)
.

Applying Lemma 6 from [84] concludes the proof. �

Before introducing the next lemma, we need to show that the square sums of i.i.d Gaussian

random variables concentrate around the sum of their variances. The results below rely on

Lemma 7 from [84].

Lemma B.2. Let x(t), t = 1, . . . , T be a sequence of i.i.d. Gaussian random variables with

zero mean and variance equal to σ2, i.e., x(t) ∼ N (0, σ2). Then

Pr

(∣∣∣∣∣
T∑
t=1

x2(t)− Tσ2

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− ε2

16σ4T

)

for 0 ≤ ε ≤ 4σ2T .

Proof: From the results in [84], for any positive c, we have the asymmetric bounds

Pr

(
T∑
t=1

x2(t)− Tσ2 ≥ 2σ2
√
Tc+ 2σ2c

)
≤ exp(−c),

Pr

(
T∑
t=1

x2(t)− Tσ2 ≤ −2σ2
√
Tc

)
≤ exp(−c).

When 0 ≤ c ≤ T , we obtain

Pr

(
T∑
t=1

x2(t)− Tσ2 ≥ 4σ2
√
Tc

)
≤ exp(−c),

Pr

(
T∑
t=1

x2(t)− Tσ2 ≤ −4σ2
√
Tc

)
≤ exp(−c).

103



Combing the above two inequalities leads to

Pr

(∣∣∣∣∣
T∑
t=1

x2(t)− Tσ2

∣∣∣∣∣ ≥ 4σ2
√
Tc

)
≤ 2 exp(−c),

which yields the result by replacing 4σ2
√
Tc with ε while maintaining 0 ≤ c ≤ T . �

Lemma B.3. Let x(t) ∼ CN (0, σ2
x), t = 1, . . . , T be a sequence of i.i.d., circularly-symmetric

complex normal random variable. When 0 ≤ ε ≤ 4σ2
xT , we have

Pr

(∣∣∣∣∣
T∑
t=1

|x(t)|2 − Tσ2
x

∣∣∣∣∣ ≥ ε

)
≤ 4 exp

(
− ε2

16Tσ4
x

)
.

Proof: We begin by noting that

T∑
t=1

|x(t)|2 − Tσ2
x =

T∑
t=1

[Rex(t)]2 +
T∑
t=1

[Imx(t)]2 − Tσ2
x.

Therefore

Pr

(∣∣∣∣∣
T∑
t=1

|x(t)|2 − Tσ2
x

∣∣∣∣∣ ≥ ε

)
≤ Pr

(∣∣∣∣∣
T∑
t=1

[Rex(t)]2 − Tσ2
x

2

∣∣∣∣∣ ≥ ε

2

)
+ Pr

(∣∣∣∣∣
T∑
t=1

[Imx(t)]2 − Tσ2
x

2

∣∣∣∣∣ ≥ ε

2

)
.

Applying Lemma B.2, we establish the result. �

Proof of Lemma 3.1:

We use T1, T2, and T3 to denote the first three terms in (3.17). The last two terms are

denoted by T4. Then

Pr(|Emn| ≤ ε) ≥ Pr
(
∩4
i=1|Ti| ≤

ε

4

)
= 1− Pr

(
∪4i=1|Ti| ≥

ε

4

)
≥ 1−

4∑
i=1

Pr
(
|Ti| ≥

ε

4

)
,
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which leads to the inequality

Pr(|Emn| ≥ ε) ≤
4∑
i=1

Pr
(
|Ti| ≥

ε

4

)
. (B.1)

We also have

|T1| =
1

T

T∑
t=1

K∑
i,j=1,i 6=j

AmiA
∗
njsi(t)s

∗
j(t)

≤ 1

T

K∑
i,j=1,i 6=j

|AmiA∗ni|

∣∣∣∣∣
T∑
t=1

si(t)s
∗
j(t)

∣∣∣∣∣
≤ 1

T

K∑
i,j=1,i 6=j

∣∣∣∣∣
T∑
t=1

si(t)s
∗
j(t)

∣∣∣∣∣ . (B.2)

The last inequality follows from the fact that |Amn| ≤ 1 for all m,n. Thus

Pr
(
|T1| ≥

ε

4

)
≤ Pr

(
K∑

i,j=1,i 6=j

∣∣∣∣∣
T∑
t=1

si(t)s
∗
j(t)

∣∣∣∣∣ ≥ εT

4

)
.

Clearly

Pr
(
|T1| ≥

ε

4

)
≤ Pr

(∣∣∣∣∣
T∑
t=1

si0(t)s
∗
j0

(t)

∣∣∣∣∣ ≥ εT

4K(K − 1)

)
,

for some i0, j0 with i0 6= j0. Using Lemma B.1

Pr
(
|T1| ≥

ε

4

)
≤ 8 exp(−C1(ε)T ), (B.3)

with C1(ε) = ε2

16σ2
sK(K−1)(16σ2

sK(K−1)+ε) .

For the second term T2, we have

|T2| =
1

T

T∑
t=1

K∑
i=1

Amisi(t)ε
∗
n(t) ≤ 1

T

K∑
i=1

|Ami|

∣∣∣∣∣
T∑
t=1

si(t)εn(t)∗

∣∣∣∣∣ ≤ 1

T

K∑
i=1

∣∣∣∣∣
T∑
t=1

si(t)εn(t)∗

∣∣∣∣∣ .
(B.4)
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Following similar arguments as for T1, we obtain that

Pr
(
|T2| ≥

ε

4

)
≤ Pr

(∣∣∣∣∣
T∑
t=1

si0(t)ε
∗
n(t)

∣∣∣∣∣ ≥ εT

4K

)
.

Applying Lemma B.1, we have

Pr
(
|T2| ≥

ε

4

)
≤ 8 exp(−C2(ε)T ), (B.5)

with C2(ε) = ε2

16σsσK(16σsσK+ε)
.

For the third term, we have the same results as the second one, given as

Pr
(
|T3| ≥

ε

4

)
≤ 8 exp(−C2(ε)T ). (B.6)

When m 6= n, the last term T4 = 1
T

∑T
t=1 εm(t)ε∗n(t), and by Lemma B.1,

Pr
(
|T4| ≥

ε

4

)
≤ 8 exp(−C3(ε)T ), (B.7)

with C3(ε) = ε2

16σ2(16σ2+ε)
. When m = n, the last term is given as T4 = 1

T

∑T
t=1 |εm(t)|2 − σ2,

thus the probability is bounded by

Pr
(
|T4| ≥

ε

4

)
≤ 4 exp(−C4(ε)T ), (B.8)

where C4(ε) = ε2

256σ2
ε

and ε ≤ 16σ2 according to Lemma B.3. Applying the results from (B.3),

(B.5), (B.6), (B.7) and (B.8) to inequality (B.1), we obtain the desired result. �
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Appendix C

Derivation of the Dual Problem

By introducing the variable z ∈ C2MN+1, the original primal problem is equivalent to the

following optimization:

min
s,σ2≥0,z

‖s‖TV

s.t. ‖z‖2 ≤ε, z = r − Fs− σ2w.

With the Lagrangian multiplier v ≥ 0 and u ∈ C2MN+1, the Lagrangian function is given as

L(s, z, σ2,u, v) =‖s‖TV + v(‖z‖2 − ε) + Re[u∗(r − Fs− σ2w − z)].

The dual function is given as

g(u, v) = Re[u∗r]− vε+ inf
s,z,σ2≥0

{‖s‖TV − Re[u∗Fs]− σ2Re[u∗w] + v‖z‖2 − u∗z}.

The Lagrangian multipliers u and v in the domain of the dual function have to satisfy the

following three constraints:

‖F ∗u‖L∞ ≤ 1,Re[u∗w] ≤ 0, v
z

‖z‖2
= u.

From the third constraint, we have v = ‖u‖2, resulting in the dual problem stated in (3.33).
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Appendix D

Proof of Lemmas for the Analysis

Model

Proof of Lemma 4.2: Without loss of generality we assume that ‖u‖2 = 1 and ‖v‖2 = 1.

By the definition of D-RIP, we have

Re〈Au,Av〉 =
1

4
{‖Au+Av‖22 − ‖Au−Av‖22}

≥1

4
{(1− σ2s)‖u+ v‖22 − (1 + σ2s)‖u− v‖22}

=− σ2s + Re〈u,v〉.

Now it is easy to extend this equation to get the desired result.

Proof of Lemma 4.3: From the definition of Tj we have

‖D∗Tjh‖2 ≤ s−
1
2‖D∗Tj−1

h‖1

for all j ≥ 2. Summing j = 2, 3, . . . leads to∑
j≥2

‖D∗Tjh‖2 ≤ s−
1
2

∑
j≥1

‖D∗Tjh‖1 = s−
1
2‖D∗T ch‖1. (D.1)
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Now, considering the fact that D is a tight frame, i.e., DD∗ = I, and that the D-RIP holds,

Re〈Ah,ADD∗T01h〉

=Re〈ADD∗T01h,ADD
∗
T01h〉+

∑
j≥2

Re〈ADD∗Tjh,ADD
∗
T01h〉

≥(1− σ2s)‖DD∗T01h‖
2
2 +

∑
j≥2

Re〈ADD∗Tjh,ADD
∗
T0h〉+

∑
j≥2

Re〈ADD∗Tjh,ADD
∗
T1h〉

Using the result from Lemma 4.2, we can bound the last two terms in the above inequality;

hence, we derive

Re〈Ah,ADD∗T01h〉

≥(1− σ2s)‖DD∗T01h‖
2
2 +

∑
j≥2

Re〈DD∗Tjh,DD
∗
T0h〉+

∑
j≥2

Re〈DD∗Tjh,DD
∗
T1h〉

− σ2s‖DD∗T0h‖2
∑
j≥2

‖DD∗Tjh‖2 − σ2s‖DD
∗
T1h‖2

∑
j≥2

‖DD∗Tjh‖2

=(1− σ2s)‖DD∗T01h‖
2
2 + Re

〈∑
j≥2

DD∗Tjh,DD
∗
T01h

〉
− σ2s(‖DD∗T0h‖2 + ‖DD∗T1h‖2)

∑
j≥2

‖DD∗Tjh‖2 (D.2)

By definition of Tj, we have

Re

〈∑
j≥2

DD∗Tjh,DD
∗
T01h

〉
= Re〈h−DD∗T01h,DD

∗
T01h〉

= ‖D∗T01h‖
2
2 − ‖DD∗T01h‖

2
2.

Combining this equation with (D.2) results in

Re〈Ah,ADD∗T01h〉

≥‖DD∗T01h‖
2
2 − σ2s‖DD∗T01h‖

2
2 + ‖D∗T01h‖

2
2 − ‖DD∗T01h‖

2
2

− σ2s(‖DD∗T0h‖2 + ‖DD∗T1h‖2)
∑
j≥2

‖DD∗Tjh‖2.
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Using the fact that when D is a tight frame, ‖DD∗T01h‖2 ≤ ‖D
∗
T01h‖2, we have

Re〈Ah,ADD∗T01h〉

≥(1− σ2s)‖D∗T01h‖
2
2 − σ2s(‖D∗T0h‖2 + ‖D∗T1h‖2)

∑
j≥2

‖D∗Tjh‖2.

Since ‖D∗T0h‖2 +‖D∗T1h‖2 ≤
√

2‖D∗T01h‖2 (becuase T0 and T1 are disjoint), we conclude that

Re〈Ah,ADD∗T01h〉

≥(1− σ2s)‖D∗T01h‖
2
2 −
√

2σ2s‖D∗T01h‖2
∑
j≥2

‖D∗Tjh‖2,

which along with inequality (D.1) yields the desired result given by

Re〈Ah,ADD∗T01h〉

≥(1− σ2s)‖D∗T01h‖
2
2 −
√

2s−
1
2σ2s‖D∗T01h‖2‖D

∗
T ch‖1.

Proof of Lemma 4.4: The subgradient optimality condition for RALASSO (4.5) can be

stated as

A∗(Ax̂ρ − b) + ρD(D∗x̂ρ − ẑρ) = 0, (D.3)

λv + ρ(ẑρ −D∗x̂ρ) = 0, (D.4)

where v is a subgradient of the function ‖z‖1 and consequently ‖v‖∞ ≤ 1. Combining (D.3)

and (D.4), we have

A∗(Ax̂ρ − b) = λDv.

Multiplying both sides by D∗, we get

‖D∗A∗(Ax̂ρ − b)‖∞ = λ‖D∗Dv‖∞ ≤ λ‖D∗D‖∞,∞ = λ‖D∗D‖1,1. (D.5)
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The first inequality follows from the fact that ‖v‖∞ ≤ 1. With the assumption that

‖D∗A∗w‖∞ ≤ λ
2
, and the triangle inequality, we have

‖D∗A∗Ah‖∞
≤ ‖D∗A∗(Ax− b)‖∞ + ‖D∗A∗(Ax̂ρ − b)‖∞

≤
(

1

2
+ ‖D∗D‖1,1

)
λ. (D.6)

Proof of Lemma 4.5: Since x̂ρ and ẑρ solve the optimization problem RALASSO (4.5),

we have,

1

2
‖Ax̂ρ − b‖22 + λ‖ẑρ‖1 +

1

2
ρ‖D∗x̂ρ − ẑρ‖22 ≤

1

2
‖Ax− b‖22 + λ‖D∗x‖1.

Since b = Ax+w and h = x̂ρ − x, it follows that

1

2
‖Ah−w‖22 + λ‖ẑρ‖1 +

1

2
ρ‖D∗x̂ρ − ẑρ‖22 ≤

1

2
‖w‖22 + λ‖D∗x‖1.

Expanding and rearranging the terms in the above equation, we get

1

2
‖Ah‖22 + λ‖ẑρ‖1 +

1

2
ρ‖D∗x̂ρ − ẑρ‖22 ≤ Re〈Ah,w〉+ λ‖D∗x‖1,

Using (D.4) to replace the terms with ẑρ, we have

1

2
‖Ah‖22 + λ

∥∥∥∥D∗x̂ρ − λ

ρ
v

∥∥∥∥
1

+
1

2
ρ

∥∥∥∥λρv
∥∥∥∥2
2

≤ Re〈Ah,w〉+ λ‖D∗x‖1.

Since ‖D∗x̂ρ − λ
ρ
v‖1 ≥ ‖D∗x̂ρ‖1 − λ

ρ
‖v‖1, we have

1

2
‖Ah‖22 + λ‖D∗x̂ρ‖1

≤ λ2

ρ
‖v‖1 −

λ2

2ρ
‖v‖22 + Re〈Ah,w〉+ λ‖D∗x‖1

≤ λ2p

2ρ
+ Re〈Ah,w〉+ λ‖D∗x‖1. (D.7)
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The second inequality follows from the fact that λ2

ρ
‖v‖1 − λ2

2ρ
‖v‖22 is maximized when every

element of v ∈ Rp is 1. Now, with the assumption that D is a tight frame, we have the

following relation:

Re〈Ah,w〉+ λ‖D∗x‖1 =Re〈D∗h,D∗A∗w〉+ λ‖D∗x‖1
≤‖D∗h‖1‖D∗A∗w‖∞ + λ‖D∗x‖1.

This inequality follows from the fact that Re〈x,y〉 ≤ |〈x,y〉| ≤ ‖x‖1‖y‖∞. Using the

assumption that ‖D∗A∗w‖∞ ≤ λ
2
, we get

Re〈Ah,w〉+ λ‖D∗x‖1 ≤
λ

2
‖D∗h‖1 + λ‖D∗x‖1. (D.8)

Applying inequalities (D.7) and (D.8), we have

λ‖D∗x̂ρ‖1 ≤
1

2
‖Ah‖22 + λ‖D∗x̂ρ‖1

≤λ
2

2ρ
p+ Re〈Ah,w〉+ λ‖D∗x‖1

≤λ
2

2ρ
p+

λ

2
‖D∗h‖1 + λ‖D∗x‖1,

which is the same as,

‖D∗x̂ρ‖1 ≤
λ

2ρ
p+

1

2
‖D∗h‖1 + ‖D∗x‖1.

Since we have h = x̂ρ − x, it follows that

‖D∗h+D∗x‖1 ≤
λ

2ρ
p+

1

2
‖D∗h‖1 + ‖D∗x‖1,

and hence

‖D∗T h+D∗T x‖1 + ‖D∗T ch+D∗T cx‖1

≤ λ

2ρ
p+

1

2
‖D∗T h‖1 +

1

2
‖D∗T ch‖1 + ‖D∗T x‖1 + ‖D∗T cx‖1.
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Applying the triangle inequality to the left handside of above inequality, we results in

− ‖D∗T h‖1 + ‖D∗T x‖1 + ‖D∗T ch‖1 − ‖D∗T cx‖1

≤ λ

2ρ
p+

1

2
‖D∗T h‖1 +

1

2
‖D∗T ch‖1 + ‖D∗T x‖1 + ‖D∗T cx‖1.

After rearranging the terms, we have the following cone constraint,

‖D∗T ch‖1 ≤
λ

ρ
p+ 3‖D∗T h‖1 + 4‖D∗T cx‖1. (D.9)
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