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ABSTRACT OF THE DISSERTATION 

Mechanisms of feedback within the visual system 

By  

Adam Thomas Eggebrecht 

Doctor of Philosophy in Physics 

Washington University in St. Louis, 2009 

Professor Ralf Wessel, Chairperson 

 

Feedback is an ubiquitous feature of neural systems though there is little 

consensus on the roles of mechanisms involved with feedback.  We set up an in 

vivo preparation to study and characterize an accessible and isolated feedback 

loop within the visual system of the leopard frog, Rana pipiens.  We recorded 

extracellularly within the nucleus isthmi, a nucleus providing direct topographic 

feedback to the optic tectum, a nucleus that receives the vast majority of retinal 

output.  The optic tectum and nucleus isthmi of the amphibian are homologous 

structures to the superior colliculus and parabigeminal nucleus in mammals, 

respectively.  We formulated a novel threshold for detecting neuronal spikes 

within a low signal-to-noise environment, as exists in the nucleus isthmi due to its 

high density of small neuronal cell bodies.  Combining this threshold with a 

recently developed spike sorting procedure enabled us to extract simultaneous 

recordings from up to 7 neurons at a time from a single extracellular electrode.  

We then stimulated the frog using computer driven dynamic spatiotemporal 
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visual stimuli to characterize the responses of the nucleus isthmi neurons.  We 

found that the responses display surprisingly long time courses to simple visual 

stimuli.  Furthermore, we found that when stimulated with complex contextual 

stimuli the response of the nucleus isthmi is quite counter-intuitive.  When a 

stimulus is presented outside of the classical receptive field along with a stimulus 

within the receptive field, the response is actually higher than the response to just 

a stimulus within the classical receptive field.  Finally, we compared the 

responses of all of the simultaneously recorded neurons and, together with data 

from in vitro experiments within the nucleus isthmi, conclude that the nucleus 

isthmi of the frog is composed of just one electrophysiological population of cells.   



vii 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS  ..................................................................................... ii 

PREFACE ............................................................................................................ iii 

ABSTRACT OF THE DISSERTATION  ................................................................ iv 

TABLE OF CONTENTS  ...................................................................................... vi 

LIST OF FIGURES AND TABLES  ....................................................................... ix 

 

Chapter 1:  INTRODUCTION  ........................................................................ 001 

 References  ................................................................................. 023 

 

Chapter 2: ON SPIKE SORTING WITH A NOVEL THRESHOLD AND 
SUPERPARAMAGNETIC CLUSTERING  .................................. 030 

 Abstract  ...................................................................................... 030 

 Introduction  ................................................................................ 030 

 Methods 

  General  ............................................................................ 035 

  Data Generation ............................................................... 036 

  Constructing Artificial Spike Trains  .................................. 039 

  Spike Detection ................................................................ 045 

  Noise Whitening ............................................................... 050 

  Wavelet Analysis  ............................................................. 051 

  Superparamagnetic Clustering  ........................................ 058 

 Results  ....................................................................................... 066 

 Discussion  .................................................................................. 071 

 References  ................................................................................. 075 

 



viii 

Chapter 3:  ON LONG TIME CONSTANTS IN THE REPONSES OF 
NEURONS WITHIN THE NUCLEUS ISTHMI OF THE FROG, 
RANA PIPIENS  .......................................................................... 078 

 Abstract  ...................................................................................... 078 

 Introduction  ................................................................................ 078 

 Methods 

  Surgery and Preparation  ................................................. 080 

  Extracellular Recordings .................................................. 081 

  Histology  .......................................................................... 083 

  Visual Stimulation  ............................................................ 084 

  Data Analysis  .................................................................. 087 

 Results 

  Diffuse Illumination  .......................................................... 088 

  Moving Spot  .................................................................... 092 

  Looming Spot  .................................................................. 097 

 Discussion  .................................................................................. 101 

 References  ................................................................................. 106 

 

Chapter 4:  ON RESPONSES DUE TO CONTEXTUAL INTERACTIONS     111 

 Abstract  ...................................................................................... 111 

 Introduction  ................................................................................ 112 

 Methods 

  Visual Stimulation  ............................................................ 113 

  Data Analysis ................................................................... 114 

  The Model ........................................................................ 115 

 Results  ....................................................................................... 119 

 Discussion  .................................................................................. 128 



ix 

 References  ................................................................................. 133 

 

Chapter 5: ON THE NUMBER OF ELECTROPHYSIOLOGICAL 
SUBCLASSES OF NEURONS WITHIN THE NUCLEUS ISTHMI 
OF THE FROG, RANA PIPIENS  ................................................ 137 

 Abstract  ...................................................................................... 137 

 Introduction  ................................................................................ 137 

 Methods: In-Vitro 

  Surgery and Preparation  ................................................. 141 

  Recordings  ...................................................................... 142 

  Data Analysis  .................................................................. 142 

  Principle Component Analysis  ......................................... 145 

 Methods: In-Vivo  ........................................................................ 146 

 Results: In-Vitro 

  Passive Membrane Properties  ........................................ 147 

  Threshold Membrane Properties ...................................... 148 

  Above Threshold Properties  ............................................ 150 

  Principle Component Analysis  ......................................... 151 

 Results: In-Vivo  .......................................................................... 153 

 Discussion  .................................................................................. 157 

 References  ................................................................................. 160 

 

Chapter 6: CONCLUSIONS AND OPEN QUESTIONS  ................................... 164 



x 

LIST OF TABLES AND FIGURES  

 

 

Chapter 1 

 

Figure 1.1   003 

Diagrammatic representation of the hierarchy of the organization of the nervous 
system, from single molecule interactions to behavior. (Modified after Shepherd, 
1988). 

 

Figure 1.2  005 

LEFT:  Ventral view of the primary visual pathway.  This pathway proceeds from 
the retina (1) via the optic nerve (2) to the optic chiasm (3).  A subset of the fibers 
branch off and continue on to the visual sub-section of the thalamus, the lateral 
geniculate nucleus (9), to the primary visual cortex (21).  RIGHT: A diagrammatic 
horizontal section of the human brain showing on the left hemisphere the cortico-
thalamic projections and on the right hemisphere the thalamo-cortical projections.  
Note the ubiquity of feedback throughout the circuitry.  (Modified and adapted 
from Nieuwenhuys et al., 1988.) 

 

Figure 1.3  007 

Simplified schematic of intrathalamic and cortico-thalamic connections.  The top 
block is the cortex and the bottom block is the visual part of the thalamus.  Note 
the high percentage of feedback in the thalamus compared to the amount of 
input from the retina.  (Modified after Sillito et al., 2003). 

 

Figure 1.4  009 

A simplified schematic of the lemnothalamic (left) and collothalamic (right) visual 
pathways from the retina.  The superior colliculus (optic tectum) is located within 
the mesencephalon.  The dorsal thalamus is located within the diencephalon. 
Separate areas of the dorsal pallium within the telencephalon receive inputs from 
the lemnothalamic and collothalamic regions of the dorsal thalamus. Interactions 
between the two areas of the dorsal pallium and possible feedback from the 
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dorsal pallium to the retino-recipient midbrain are not shown. (Modified after Ch. 
4 in McIlwain 1996.) 

 

Figure 1.5  011 

A slightly more detailed schematic of the collothalamic visual pathway and its 
cholinergic modulation in the superior colliculus (optic tectum) via the reciprocally 
connected parabigeminal nucleus (nucleus isthmi).  Listed for clarity are the brain 
areas for reptiles, birds, and mammals.  (Modified after Ch. 4 in McIlwain 1996.) 

 

Figure 1.6  013 

General frog (Rana pipiens) anatomy.  A. Whole frog brain.  The forebrain, or 
telencephalon, can be seen to the right.  The OT are the two large lobes in the 
middle.  Immediately behind the OT is the cerebellum, and behind that is the 
hindbrain.  B. A parasagittal schematic of the frog brain.  Note that the NI lies 
directly below the caudal OT.  C. A schematic detailing the general connectivity 
of the visual system.  B denotes the area of the OT which responds to stimuli 
within the bilateral region of the visual field.  M denotes the region in the OT 
which responds to stimuli presented into the monocular visual fields.  (B and C 
are adapted from Winkowski et al., 2005.) 

 

Figure 1.7  015 

General connectivity in the early visual system of Rana pipiens.  Four 
physiologically distinct RGC types project to three well separated layers within 
layer 9 of the superficial optic tectum.  RGC I and II terminate in layers 9A and 
9B, RGC III and V terminate in layer 9D, and RGC IV terminates in 9F and part of 
layer G which lies within layer 8.  Glutamate (Glu) is the primary neurotransmitter 
of the RGC axons.  Cell bodies within layer 6 of the OT send narrow dendrites up 
through layer 9 and synapse with collaterals from multiple RGC axon classes.  
These cells project to the ipsilateral NI using acetylcholine (ACh) as the 
neurotransmitter.  Separate populations within the NI project to the ipsilateral (II) 
and contralateral (I & III) OT.  The ispilateral projection terminates throughout the 
superficial OT (dark blue box) but does not appear to projecxt as superficially or 
as deeply as the contralateral projection (orange boxes). The NI uses ACh as its 
neurotransmitter and is the primary source for ACh within the OT.  The OT also 
contains wide field neurons with cell bodies in layer 8 and dendrites which 
broadly ramify throughout layer 9.  These project axons out of the OT via layer 7 
to other areas of the brain.  (Adapted and modified from Szekely et al., 1976; 
Khalil et al., 1977). 
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Figure 1.8  017 

Cresyl violet stains of the nucleus isthmi of the frog, Rana pipiens.  (A) 
Transverse section as shown schematically in Fig. 1.6. Note the layers of the 
tectum on the dorsal side and the clear outline of the isthmi cortex in the middle 
of the slice. (B) A lesion placed in the middle of the left NI (arrow). (C) LEFT: 
Zoomed image of stain of NI of frog. RIGHT: stain of cortical cells in the Rhesus 
monkey.  CENTER: an example electrode used for our extracellular recordings. 
Note plated tip.  The NI has densely packed small neurons, posing a challenge 
for obtaining good signal to noise and for spike sorting algorithms.  Scale bars: 
1000 µm in (A), 100 µm in (B) and 50 µm in (C). 
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Figure 2.1  033 

Extracellular recording within neural tissue. On the left is a schematic of neural 
tissue with distant units contributing to inseparable noise (grey) and closer units 
contributing to large SNR spikes (colored units).  The plated extracellular 
electrode can detect signals up to around 80 µm away from the tip (black circle).  
The signal is amplified and high-pass filtered to reveal a multi-unit signal.  With 
proper spike-sorting procedures the spike shapes can be sorted and multiple 
raster plots can be constructed from a single recording. 

 

Figure 2.2  037 

Outline of the three stages of spike sorting. Step one incorporates obtaining the 
voltage waveform and high-pass filtering of the signal if necessary.  Then a 
threshold is determined by the data itself and applied to the square of the first 
derivative (red line).  In step two, the spike shapes are extracted from the data 
and a wavelet transform is performed on the spike shapes to obtain an ideal set 
of characteristics for clustering.  Last, in step three, the sets of wavelet 
coefficients are clustered using a superparamagnetic clustering algorithm and the 
shapes are segregated into distinct sets corresponding to putative units within 
the neural tissue. 
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Figure 2.3  040 

Spike shapes used to form noise and large SNR spikes in artificial voltage traces. 

 

Figure 2.4  042 

Constructing artificial spike trains.  (A) Power spectral density (PSD) of an 
artificial voltage trace (top left) and of a voltage trace recorded from the nucleus 
isthmi of the frog (top right). The frequencies have been normalized to the 
Nyquist frequency ( Nf ) which is equal to half the sampling rate. Note the flatness 

of both spectra above 2000 Hz.  This is achieved through the inclusion of pure 
white noise (lower left).  Whereas the bump at lower frequencies is achieved via 
the inclusion of small amplitude spike shapes (power spectrum of noise 
generated by only spike shapes in lower right).  The particular size of the bump is 
driven by the average firing rate of large SNR spikes, and there is a 1/f falloff 
between about 500 Hz and 2000 Hz.  (B) A sample artificial trace at SNR of 3.  
The colored triangles mark the placement of different spike shapes. 

 

Figure 2.5  046 

Determining the threshold. (A) A raw artificial voltage trace. (B) The PDF for the 
first derivative values is shown in black.  The associated Gaussian distribution is 
shown in red (see text for details).  Inset: The envelope for the PDF is shown in 
black.  The value where the PDF for the data equals the Gaussian distribution is 
taken as the threshold. (C) The threshold is squared and used on the square of 
the first derivative to detect spikes of any polarity. (D) The PDF for the remaining 
noise trace after the spikes have been removed is in blue.  The associated 
Gaussian distribution is shown in red.  Note that the PDF of the noise matches 
closely the associated Gaussian. 

 

Figure 2.6  056 

Schematic representation of the multiresolution decomposition algorithm.  The 
raw signal, S , is simultaneously filtered through a high-pass,  1HP , and a low-

pass filter, 1LP . The detailed output from the high-pass filter is saved. The 
approximation coefficients from the low-pass filter are passed onto the next level 
of filtering. See text for details. 
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Figure 2.7  057 

Distributions of 32 of the wavelet coefficient magnitudes of the given spike 
shapes.   

 

Figure 2.8  062 

An example Voronoi tesselation. Points within a colored boundary are closer to 
the dark spot in the boundary than any other.  Dark spots which share a common 
boundary are by definition nearest neighbors. 

 

Figure 2.9  064 

(A) Data distributions which cannot be parametrized by a mean with a 
surrounding distribution. (B) Susceptibility density of data in (A).  Note the 
presence of the three phases.  See text for details.  Both adapted from Blatt et 
al., 1996. 

 

Figure 2.10  067 

Example artificial spike trains.  (A) SNR=5, MUAFR=50. (B) Zoom in of plot in (A) 
showing a superposition of spike shapes. (C) SNR=2, MUAFR=50. (D) Zoom in 
of plot in (C) displaying more spike shape overlap.  Times in all plots are in 
milliseconds and voltages are in arbitrary units.  Colored triangles denote 
different classes of spike shapes. 

 

Figure 2.11  069 

False positives and false negatives for various types of thresholds.  LEFT: My 
threshold from Fig. 6. CENTER: Quiroga’s threshold. RIGHT: the classic 
threshold.  Results are based on 100 trials averaged for each MUAFR and SNR 
pair.  SNR values: Black=1.5. Red =2. Blue =3. Green =4.  Percentages are 
relative to the number of actual spikes present in the recording (hence, false 
positives can be higher than 100%). 
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Chapter 3 

 

Figure 3.1  089 

Response within the NI to diffuse illumination flashes.  Blue section denotes dark 
environment.  White section denotes bright environment.  The steps are 5 sec in 
length.  The red step at the bottom shows the time course for the bright 
environment and dark environment.  There are 50 repetitions of the stimulus. Top 
trace is a sample raw voltage trace.  Below that is the multiunit average firing 
rate.  Below that are the sorted responses showing the 50 trials in raster plots 
and their respective average firing rates.  All scale bars for individual units 
correspond to 50 Hz.  See text for details. 

 

Figure 3.2  091 

Response within the OT to ON and OFF steps of light. (A) Raw extracellular 
recording in OT in response to on OFF step (blue) and an ON step (tan).  The OT 
had only one phase of responses to both ON and OFF stimuli, thus both are 
shown on a shorter time scale for clarity.  (B) FFT of data in (A).  Note strong 
peaks around and under 10 Hz and 30 Hz.  (C) Expansion of section of raw trace 
within box in (A).  Note the presence of periodic bursting.  (D) Data in (C) passed 
through a high-pass-filter of frequencies 800-4,000 Hz. (E) Data in (C) passed 
through a low-pass filter of frequencies 10-80 Hz.  Scale bare shown in (E) 
corresponds to all (C), (D), and (E). See text for details. 

 

Figure 3.3  094 

Sample response to the start of a moving spot.  Tan section denotes that the 
spot is stationary.  The stimulus used was a 15º spot moving nasal-temporally.  
White section corresponds to time during spot movement.  Top trace is a sample 
raw voltage trace.  Below that is the multiunit average firing rate.  Below that are 
the sorted responses showing the 4 trials in raster plots and their respective 
average firing rates.  All scale bars for individual units correspond to 50 Hz.  See 
text for details. 

 

Figure3.4  095 

Directional sensitivity to a moving spot.  Polar plots of the relative response 
strengths across all simultaneously recorded units in a given penetration.  Note 
that the sensitivity is slightly higher for the larger spot.  Also note that all units 
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have similar sensitivities.  90º corresponds to the superior visual field. 180º 
corresponds to the nasal visual field.  Colors represent different units.  All units 
were recorded simultaneously at one location. 

 

Figure 3.5  096 

Delayed response to cessation of movement.  White section denotes movement 
of spot.  Colored section denotes the lack of motion.  Width of the green section 
denotes the expected latency of response given the delay these units had when 
responding to both a screen flash and the commencement of motion.  The tan 
section denotes the continued lack of motion of the spot on the screen.  Top 
trace is a sample raw voltage trace.  Below that is the multiunit average firing 
rate.  Below that are the sorted responses showing the 4 trials in raster plots and 
their respective average firing rates.  All scale bars for individual units correspond 
to 50 Hz.  See text for details. 

 

Figure 3.6  098 

Timing of the responses to different looming stimuli.  (A) The response over the 
three seconds before collision with the looming object.  (B) The response over 
the final second of approach.  The firing rate is shown in black in Hz.  Bin size for 
firing rate is 30 ms.  Red is the object’s angular size in degrees.  Blue is the 
angular velocity in degrees per second.  All units use the same scale to the left.  
Time is in seconds. 

 

Figure 3.7  099 

Timing of peak in response relative to collision time.  Different colors refer to 
different units.  Object diameter over velocity is twice the β value.  See text for 
details. 

 

Figure 3.8  100 

Sample response to the start of a looming spot.  Black vertical bar at bottom 
denotes the time of impact.  Tan section denotes time after impact.  Blue section 
denotes that the spot has stopped enlarging and its extent is greater than the 
extent of the multiunit classical receptive field.  The stimulus had a β-value equal 
to 25.  White section corresponds to time during looming of spot.  Top trace is a 
sample raw voltage trace.  Below that is the multiunit average firing rate.  Below 
that are the sorted responses showing 4of the 10 trials in raster plots and their 
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respective average firing rates.  All scale bars for individual units correspond to 
50 Hz.  See text for details. 
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Figure 4.1  114 

(A) Stimulus paradigms with (B) multiunit raw voltage responses.  LEFT: Single 
cricket within the mapped out MURF (blue circle).  CENTER: Single cricket 30º 
temporal to the middle of the MURF.  RIGHT: “Double cricket” stimulus with both 
crickets presented simultaneously. 

 

Figure 4.2  119 

Responses of clustered units to cricket stimuli.  (A) Responses to a single cricket 
within the center of the multiunit receptive field. (B) Responses to the same 
cricket with an additional cricket placed 30º temporal to the receptive field.  See 
text for details. 

 

Figure 4.3  120 

Bursting period of the responses to a cricket.  Green and tan sections denote the 
different frames of the visual stimuli.  Note that the frequency of the stimuli is 
distinctly different from the frequency of the response. D shows the response to 2 
crickets. S shows the response to 1 cricket in the receptive field. 

 

Figure 4.4  121 

Fourier transforms of the response to the contextual stimuli.  FFTs of responses 
of all units to either stimulus were all qualitatively similar.  Note the strong peaks 
at 0.6 Hz, 1.2 Hz, 9 Hz, and 18 Hz 
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Figure 4.5  122 

Log-log joint-ISI plots of unit 2 and unit 5 in response to either a single cricket 
within the multiunit receptive field or to the double cricket stimulus.  Notice the 
bands around 110 ms and 220 ms (yellow lines).  Times is in ms. 

 

Figure 4.6  123 

Cross correlation matrix for responses to the single cricket stimulus.  Note that 
the strongest peaks in the autocorrelations (diagonal) are at zero phase lag.  
Also, note that the cross-correlations, the off-diagonal elements, show roughly 
level peaks at multiples of 110 - 115 ms.  Time axis is in milliseconds. 

 

Figure 4.7  124 

Cross correlation matrix for responses to diffuse illumination steps.  Note that the 
only peaks in the autocorrelations (diagonal) are at zero phase lag.  Also, note 
that the cross-correlations, off-diagonal elements, show nearly zero cross-
correlation.  Time axis is in milliseconds. 

 

Figure 4.8  125 

Trial-to-trial cross correlations. (A) and (B): Cross correlations of three trials of 
the responses of a unit to double cricket stimuli.  (C) and (D): Cross correlations 
of three trials of the responses of a unit to diffuse illumination steps.  Lag time in 
all plots is in milliseconds.  Ordinate scale is normalized to the autocorrelation 
(diagonal) with the maximum equal to one.  Bin size in (A) and (C) is 1 ms.  Bin 
size in (B) and (D) is 10 ms. 

 

Figure 4.9  127 

Results of the tecto-isthmic model.  (A) The response of three of the 200 NI units 
to the OT input.  Note the 9 Hz periodic oscillatory bursting modulated by the 
slower 0.6 Hz frequency.  (B) A detail of (A) to observe that many units fire 
multiple times per burst.  (C) Joint-interspike interval distributions.  Scale is a log-
log plot in milliseconds.  Note the bands just above 100 ms corresponding to the 
Poisson nature of the intrinsic NI response.  (D) FFT of the NI response.  Note 
the presence of peaks at multiples of 9 Hz as is seen in Fig. 4.4.  (E) Cross 
correlations for thee NI units (off-diagonal elements) with autocorrelations 
(diagonal elements).  Lag times are in milliseconds. 
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Chapter 5 

 

Figure 5.1  139 

Nucleus isthmi and schematic of retino-isthmo-tectal system. (A) Lateral view of 
the brain. NI is ventral to the caudal pole of the tectum. Rostral is to the right. CB, 
cerebellum; DI, diencephalon; OC, optic chiasm; TEL, telencephalon. Transverse 
section a is shown in Fig. 1 B inset. (B) Acetylcholine transferase-stain of NI 
magnified from inset. (C) Diagram of connectivity between retina, tectum and NI. 
Each eye projects a retinotopic map directly to the contralateral OT. The OT in 
turn projects (blue arrow) to cells in the NI. The numbered areas in the NI 
correspond to clusters of cells projecting to numbered areas in the OT. 
Dorsolateral NI cells shown shaded project (red arrow) to the ipsilateral OT. 
Ventromedial NI cells (not shaded) project to the contralateral OT (Figure 
adapted from Dudkin et. al., 2007). (D) Diagram of ipsilateral retino-tecto-isthmal 
system. Four retinal ganglion axon types (black, green, purple and light blue 
arrows) project to discrete lamina of layer 9 of the OT synapsing onto dendrites 
of neurons whose cell bodies are located in layer 6 (blue) or layer 8 (black). NI 
cells (red) receive inputs from layer 6 axons and project back to the column 
(white box) in the OT from which they received inputs. 
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Cellular and electrophysiological properties of frog NI neurons. (A) Recording 
sites of 8 NI neurons. D, dorsal; L, lateral; V, ventral; M, medial. (B) Responses 
of NI neurons to small hyperpolarizing and depolarizing current injections. Note 
monophasic after-hyperpolarization. (C) (i-ii) All cells recorded from respond with 
tonic discharge patterns for currents above rheobase and maintain firing for the 
1-second duration current pulse. Shown here are the responses of two cells.  (D) 
At low current injections (<60 pA) the interspike intervals are constant. (E) Higher 
current injections show significant spike rate adaptation. Grey lines are 
exponential fits to the data. (F) Current to spike frequency relationship is linear 
(filled black circles) for currents up to 100 pA. The instantaneous frequency is 
(grey boxes) is nonlinear for currents exceeding 60 pA. 
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Electrophysiological properties of nucleus isthmi neurons. 
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Figure 5.3  152 

Principal component analysis of the cellular properties of NI neurons. (A) Ten 
different measurements taken from each cell are plotted in separate columns. 
Colored circles represent individual cells. Note for some measurements only 6 or 
7 cells are shown. This is due to deterioration of cellular responses for recordings 
exceeding 20 mins. (B) Eigenvalues determined by a principal component 
analysis of the 6 cells that appear in all 10 columns of A are shown in the inset. 
The larger figure shows that the first two eigenvalues account for >90% of the 
data’s variance. This motivates the choice to keep only two principal components 
(eigenvectors). (C) Projection of standardized measurements in A onto the 
principal components corresponding to the largest two eigenvalues in B is 
distributed about the mean values (standardized to be 0).  Thus no discrete 
clusters are apparent for these 6 cells in the 2-dimensional principal component 
space. 
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Sorted spike shapes and associated ISI distributions.  In this penetration, there 
were 72,563 detected spikes.  (A) Average spike shape of whole set of spikes 
(top) and of each cluster. (B) Associated ISI distributions for all of the spikes (top) 
and for each cluster in response to the diffuse illumination steps.  Note the lack of 
refractory period for the whole group of spikes shown by large values at low ISI 
value.  After clustering, none of the clusters displays ISIs under 1ms. 
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Probability distributions of the normalized responses of all recorded units to 
salient features of the responses to visual stimuli.  (A) Responses to the close 
approach of a looming spot. (B) Responses to the delayed response of the 
cessation of a moving spot moving superior-inferiorly.  (C) Responses to the ON 
step of diffuse illumination.  All abscissa are unit less due to being normalized by 
the total number of spikes fired in response to a given stimulus paradigm by a 
given unit. 
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Projection of principle component scores onto the plane of first two principle 
components. Note the lack of any clear distinction between possible multiple 
clusters. 
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Chapter 1: 

INTRODUCTION 

“What we observe is not nature itself, but nature exposed to our method of 

questioning.”   

--Werner Heisenberg, 1958. 

 

 The effects of feedback are profound and ubiquitous within neural tissue.  

Understanding the roles of feedback along all of the stages of neural processing 

is of central importance in designing brain interface devices (e.g., cochlear 

implants, retinal prosthetics), treating disastrous disorders and diseases of the 

nervous system (e.g. epilepsy, schizophrenia, Alzheimer’s), and gaining a full 

understanding of how brains process and integrate vastly enormous amounts of 

information in parallel in functionally small periods of time.  This project takes a 

small step in this direction. 

As you sit there reading these words, the information contained therein is 

being decoded by the higher centers of your brain.  However, before that 

happens there is an enormous amount of stuff going on.  Your eyes are 

alternately staring at points on the page and then suddenly shifting to a new spot 

to fixate; this shift is called a saccade.  During the periods of fixation (but not the 

saccades!), the higher areas of your brain are processing the information being 
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expelled by the retina.  There are photoreceptors within your retina that are 

capturing the photons, constantly arriving from the page you are reading, and 

transducing the energy of the photon via a conformational change in a photo-

sensitive protein within the photoreceptor.  The information which enters your eye 

is filtered and compressed within the layers of the retina and sent to your brain 

via the axons of the retinal ganglion cells (RGCs).  Absolutely all of the 

information about the visual world in your brain got there via the RGCs.   

Within the retina, there has already been a large amount of feedback 

contributing to the processing.  The horizontal cells, which synapse with the 

photoreceptors and the bipolar cells, control the sensitivity of your eye via 

contrast gain control.  They regulate your ability to perceive images in a dark or 

light environment so that you can always discern relative contrasts around a 

given mean illumination level.  

The processing which takes place with the brain occurs on many levels 

simultaneously (Fig. 1.1).  What you perceive as ‘reading this book’ depends 

profoundly on what is happening with the circuits within the brain, the centers 

which are connected by those circuits, the neurons within the neural centers, and 

the molecular and ion channels within those neurons.  At each of these levels 

there exist feedback loops which control the interactions.  We are herein 

concerned with the feedback loops at the levels of individual interacting neurons 

and populations of interacting neurons; that is, between neural centers. 
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As we trace the flow of information from the retina back further into the 

brain in primates, the primary visual pathway flows to the optic chiasm (Fig 1.2).  

In this region, fibers split off, the largest group heading to the lateral geniculate  

 

Figure 1.1: Diagrammatic representation of the hierarchy of the organization of 

the nervous system, from single molecule interactions to behavior. (Modified after 

Shepherd, 1988).  
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nucleus (LGN), the visual section of a large mid-brain structure called the 

thalamus.  All of the primary sensory pathways flow through the thalamus en 

route to the cortex and higher brain centers.  The primary visual pathway 

proceeds from the LGN to the primary visual cortex.  After the visual cortex, the 

information continues on to higher brain centers.  However, this explanation has 

only taken into account the feed forward part of the pathway.  Looking at the right 

side of Fig. 1.2, we see that the thalamus receives a projection back from the 

same section of cortex to which it projected.  Further, the number of processes 

from a projection which is feedback typically drastically outnumbers the amount 

of feed forward processes (Fig. 1.3).  Put another way, the number of axon 

terminals terminating in the thalamus which arise from the cortex drastically 

outnumber the number of axons which arise from the retina.  Similarly, the 

number of axon terminals which terminate in layer IV of the visual cortex, which 

are feed forward projections from the LGN, are drastically outnumbered by the 

number of axon terminals which are either fed back from higher brain centers, or 

are horizontal feedback projections from other areas of cortex.  As a general rule, 

the number of projections onto a given brain area which are feedback projections 

appear to always outnumber the feed forward projections (Bullier, 2006). 

 If we step back from the primary visual pathway in the human, and instead 

look at the set of projections from the retina to the rest of the brain, which are 

shared in all amniotes (egg-producing land animals), we see that there are two 

main radiations: the lemnothalamic and the collothalamic pathways (Fig. 1.4).  
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The primary visual pathway in humans is the lemnothalamic pathway.  The 

collothalamic pathway in humans, and all amniotes, projects to an intermediate 

nucleus along the path to a part of the thalamus.  The intermediate nucleus is in 

mammals called the superior colliculus (SC), while in birds and reptiles it is called 

Figure 1.2: LEFT:  Ventral view of the primary visual pathway.  This pathway 

proceeds from the retina (1) via the optic nerve (2) to the optic chiasm (3).  A 

subset of the fibers branch off and continue on to the visual sub-section of the 

thalamus, the lateral geniculate nucleus (9), to the primary visual cortex (21).  

RIGHT: A diagrammatic horizontal section of the human brain showing on the left 

hemisphere the cortico-thalamic projections and on the right hemisphere the 

thalamo-cortical projections.  Note the ubiquity of feedback throughout the 

circuitry.  (Modified and adapted from Nieuwenhuys et al., 1988.) 
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the optic tectum (OT).  The collothalamic pathway then continues on to a 

separate section of the dorsal pallium.  (Pallium is a very general term referring 

to an evolutionarily newer section of the amniotic brain which covers the older 

sections.  In mammals, for example, this evolved into the cerebrum and the 

cortex.)  Depending upon the species of amniote, one of these pathways may be 

much stronger (possess more RGC axons) than the other.  For example, in 

primates and carnivores, the LGN receives far more RGC synapses than the SC. 

However in reptiles, birds, and a few mammalian species (e.g. the mouse and 

rabbit) the OT receives far more RGC synapses than the thalamic area (Leamy 

et al., 2008). 

 Present in all land animals is an isthmic structure which is reciprocally and 

topographically connected with the SC/OT (Fig 1.5) which does not receive direct 

retinal input (Butler et al., 2005).  This additional structure is also present in 

amphibians (e.g., frogs) and ray-finned fishes.  Oddly, this structure is missing in 

cartilaginous fishes, indicating that the isthmic structure was not present in the 

common ancestor to all vertebrates, and thus is an interesting example of parallel 

evolution.   

 This isthmic structure (the parabigeminal nucleus (PBN) in mammals or 

nucleus isthmi (NI) in bird, reptiles, fishes and amphibians) and its relationship to 

the retino-recipient region with which it connects have been anatomically 

characterized in a variety of species and it is experimentally accessible in vivo, in 

vitro, or both.  In addition, in many cases the isthmic structure has been shown to 
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be isolated from the rest of the brain; that is, the only inputs to the isthmic 

structure are from the SC/OT.  This sets it well apart from the corticothalamic 

feedback loop, which is highly interconnected with the rest of the surrounding 

neural architecture and is therefore a non-trivial and complex experimental and 

 

Figure 1.3:  Simplified schematic of intrathalamic and cortico-thalamic 

connections.  The top block is the cortex and the bottom block is the visual part 

of the thalamus.  Note the high percentage of feedback in the thalamus 

compared to the amount of input from the retina.  (Modified after Sillito et al., 

2003). 
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theoretical preparation. The accessibility and isolation of the tecto-isthmic system 

together make it a very attractive feedback loop to study.   

The isthmotectal/parabigeminocollicular feedback loop has been studied 

in a variety of animals.  OT/SC neurons project to the ipsilateral NI/PBN which 

projects back ipsilaterally to the tectum in teleosts (Ito et al., 1982) and birds 

(Hunt et al., 1977, Wang et al., 2004), or bilaterally in anurans (Gruberg et al., 

1978), reptiles (Wang et al., 1983), rats (Linden et al.,1983), cats (Graybiel, 

1978), and monkeys (Baizer et al., 1991).  In all cases, the NI/PBN displays 

higher levels of spontaneous activity than the OT/SC.  Also, at least a subset of 

the NI/PBN projection contains a cholinergic feedback to the OT/SC.  In some 

systems there is also a GABAergic component.   

In primates and mammals, the PBN is a small nucleus located just caudal 

ventrally to the SC.  Experiments in cats (Sherk, 1979; Cui et al., 2003), rats (Lee 

et al., 2001) and primates (Sparks, 1986) find that the responses of the PBN are 

not highly sensitive to specifics of stimulus parameters such as object velocity, 

size, shape, color, direction of movement.  Rather the response appears to be 

related behaviorally to saccades, the quick eye movements referred to above.  

The PBN are driven by a subset of SC neurons and project back to the upper 

layers of the SC where their axon terminals intermingle with a dense collection of 

excitatory and inhibitory interneurons (Lee et al., 2001).  The acetylcholine (ACh) 

output of the PBN differentially regulates excitatory or inhibitory interneurons.  

Possibly due to its very small size and awkward location, there have been 
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comparatively many fewer studies of the PBN and its interactions with the SC 

than there have been in the NI and its interactions with the OT within the bird, 

reptile, fish, and amphibian. 

 

Figure 1.4: A simplified schematic of the lemnothalamic (left) and collothalamic 

(right) visual pathways from the retina.  The superior colliculus (optic tectum) is 

located within the mesencephalon.  The dorsal thalamus is located within the 

diencephalon. Separate areas of the dorsal pallium within the telencephalon 

receive inputs from the lemnothalamic and collothalamic regions of the dorsal 

thalamus. Interactions between the two areas of the dorsal pallium and possible 

feedback from the dorsal pallium to the retino-recipient midbrain are not shown. 

(Modified after Ch. 4 in McIlwain 1996.) 

 The extent of the NI structure depends on the species.  In fishes such as 

teleosts (Williams et al., 1983, Northmore et al., 2003; Gallagher et al., 2005), the 

NI is a single structure with undifferentiated neurons.  The responses of the NI to 

visual stimuli do not appear to be topographic, though the habituation to repeated 

stimuli is topographic.  Also, the time course of the NI response to visual and 
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electrical stimuli are longer than the response of the OT, though the cause of this 

has yet to be elucidated. 

 In reptiles, the NI is composed of two separate nuclei, a magnocellular 

nucleus (Imc) composed of large somata and a parvocellular nucleus (Ipc) 

composed of small cell bodies (Wang et al., 1983; Sereno et al., 1987, George at 

al., 1999).  The Ipc is cholinergic, providing positive feedback, while the Imc is 

GABAergic, providing a negative feedback loop to the OT.  These nuclei also 

differ in their receptive field sizes and connectivity:  The Imc receives a broader 

input and projects back a broad inhibitory axonal arborization.  The Ipc, on the 

other hand, has a smaller receptive field and projects back to the OT to the same 

column from which it received a projection.  The connectivity is topographic: 

there is a map of the retina in the OT which is continued in the Ipc and only 

slightly less so in the Imc.  There exits both ipsilateral as well as contralateral 

isthmo-tectal projections. 

 Birds have been shown to possess an even greater number of subnuclei 

within the NI, having not only the Ipc and Imc but also a structure called the Slu 

and an additional structure called the nBOR which sends feedback directly to the 

retina (Hellman et al., 2001; Wang et al., 2003).  The Slu may receive input from 

the nucleus pretectalis and so it does not form a closed loop feedback system as 

do the Ipc and Imc and so will not be discussed further here.  The NI has been 

shown to differentially regulate the receptive fields of OT neurons (Wang, 2003; 

Marin et al., 2005; Marin et al., 2007), and even coordinate the interplay of 
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different sensory modalities within the OT of the barn owl (Witten et al., 2006, 

Maczko et al., 2006).  A role of the NI feedback, as realized by the ipsilateral 

interaction of the positive and negative feedback loops, may be to act as a 

winner-take-all mechanism by regulating the sensitivities of the OT neurons 

(Wang 2003; Wang et al., 2005; Maczko et al., 2006; Brandt et al., 2007). 

 

Figure 1.5: A slightly more detailed schematic of the collothalamic visual 

pathway and its cholinergic modulation in the superior colliculus (optic tectum) 

via the reciprocally connected parabigeminal nucleus (nucleus isthmi).  Listed for 

clarity are the brain areas for reptiles, birds, and mammals.  (Modified after Ch. 4 

in McIlwain 1996.) 

 The case of amphibians is a bit different.  While there is only one sub-

nucleus to the isthmic structure, as there is in the fishes, the isthmotectal 

projections are bilateral as in cats, rats, and reptiles (Wiggers, 1998).  Also, there 

are highly conflicting results concerning whether the feedback is inhibitory or 

excitatory (Wang, 2003).  In the salamander, most of the isthmic neurons project 
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bilaterally (Wiggers, 2003).  This is in stark contrast to the frogs where it has 

been clearly demonstrated that separate collections of isthmic neurons project 

contralaterally than those which project ipsilaterally (Grobstein et al., 1978; 

Gruberg et al., 1978; Grobstein et al., 1983; Dudkin et al., 1999; Dudkin et al., 

2007).  Whether or not these projections arise from physiologically distinct 

groups of neurons has yet to be fully explained.  Due to the differential responses 

observed in the OT in response to electrical stimulation of the NI and due to the 

segregation of differently projecting isthmic neurons, it seems natural to 

hypothesize that there are multiple groups of isthmic neurons, as there are in 

birds, and that they are clumped close together in the anuran case.  The aim of 

this dissertation is to determine the number of classes of physiological NI 

neurons and to investigate the time course of the NI response to simple and 

complex spatiotemporal stimuli. 

 The general anatomy of the visual system of the frog is shown in Fig. 1.6.  

While there are approximately one million photoreceptors in the frog retina, there 

are only around half a million RGCs in either retina.  The set of RGCs, of which 

96% project to the contralateral OT (4% project to the thalamus) have been 

described as being composed of 4-5 physiologically distinct varieties (Lettvin et 

al., 1959; Witpaard et al., 1975) based on their responses to visual stimuli.  RGC 

types I and II respond differentially to moving spots (in fact, type II fibers are 

famous for being the first fibers described as having a highly specific driving 

stimuli, that is, they are ‘fly’ detectors!  They respond vigorously to small convex 
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black objects moving haphazardly in the receptive field.  If the stimulus is too 

large, too small, too fast, not moving, or not convex then the response will 

disappear!).  Types III and V have responses which are based on the overall 

Figure 1.6: General frog (Rana pipiens) anatomy.  A. Whole frog brain.  The 

forebrain, or telencephalon, can be seen to the right.  The OT are the two large 

lobes in the middle.  Immediately behind the OT is the cerebellum, and behind 

that is the hindbrain.  B. A parasagittal schematic of the frog brain.  Note that the 

NI lies directly below the caudal OT.  C. A schematic detailing the general 

connectivity of the visual system.  B denotes the area of the OT which responds 

to stimuli within the bilateral region of the visual field.  M denotes the region in the 

OT which responds to stimuli presented into the monocular visual fields.  (B and 

C are adapted from Winkowski et al., 2005.) 

light intensity level; and type IV responds vigorously to a dimming in the light 

intensity level within its receptive field.  This last class is appropriately named the 

dimming detector.  Categorization is further supported by axonal conduction 

velocities as well as the depth of termination of the axons within the OT (Fig. 
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1.7).  Types I and II terminate within the dorsal 50 µm of the OT.  Moving 

ventrally in the superficial OT, there is a lack of RGC axons for approximately 30-

50 µm.  Following this is a layer of terminating RGC type III and V axon fibers.  

Below this is another break of around 30-80 µm.  Below this is a thick layer of 

RGC type IV axonal projections.  In fact, an electrode can carefully move through 

the OT in a dorsal-ventral manner and traverse separate sections with clearly 

different responses.  All of the projections from the retina to the OT are 

topographic. That is, a specific point in visual space corresponds to a specific 

point on the retina, which in turn corresponds to a specific location on the surface 

of the OT; this topography is maintained throughout the depth of the OT. 

 As described above, the OT projects ipsilaterally to the NI.  The primary 

neurons which project to the ipsilateral NI have somata (cell bodies) located 

mainly in layer 6 of the OT (with a few somata in layers 2, 4, or 8).  They are 

characterized by a narrow dendritic field which ramifies within the superficial 

layers of the OT, limited to a 50 µm wide column within layer 9 (purple cell in Fig. 

1.7).  These neurons have axons which emanate from the dendritic trunk (as do 

the Shepherd’s crook neurons found within the OT of birds) (Wang et al., 2003; 

Marin et al, 2005) and leave the OT via the cell free layer 7 of the OT.  The 

axonal fibers travel ventral-caudally to terminate within the NI.  Acetylcholine is 

the neurotransmitter of the tectoisthmic projection.  The tectoisthmic projection is 

also topographic, conserving the point-to-point map which exists within the retina 

and the OT.   
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Figure 1.7: General connectivity in the early visual system of Rana pipiens.  Four 

physiologically distinct RGC types project to three well separated layers within 

layer 9 of the superficial optic tectum.  RGC I and II terminate in layers 9A and 

9B, RGC III and V terminate in layer 9D, and RGC IV terminates in 9F and part of 

layer G which lies within layer 8.  Glutamate (Glu) is the primary neurotransmitter 

of the RGC axons.  Cell bodies within layer 6 of the OT send narrow dendrites up 

through layer 9 and synapse with collaterals from multiple RGC axon classes.  

These cells project to the ipsilateral NI using acetylcholine (ACh) as the 

neurotransmitter.  Separate populations within the NI project to the ipsilateral (II) 

and contralateral (I & III) OT.  The ispilateral projection terminates throughout the 

superficial OT (dark blue box) but does not appear to projecxt as superficially or 

as deeply as the contralateral projection (orange boxes). The NI uses ACh as its 

neurotransmitter and is the primary source for ACh within the OT.  The OT also 

contains wide field neurons with cell bodies in layer 8 and dendrites which 

broadly ramify throughout layer 9.  These project axons out of the OT via layer 7 

to other areas of the brain.  (Adapted and modified from Szekely et al., 1976; 

Khalil et al., 1977). 

 As stated above, the projection from the NI back to the OT is bilateral, 

emanating from separate sets of neurons (Grobstein et al., 1978; Gruberg et al., 
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1978; Gruberg et al., 1980; Grobstein et al., 1983; Dudkin et al., 1999; Dudkin et 

al., 2007).  The dorso-rostral part of the NI projects directly back to the ipsilateral 

OT while the ventro-caudal part of the NI projects, via the optic chiasm, to the 

contralateral OT.  All isthmotectal projections terminate within the superficial OT, 

but the ipsilateral fibers terminate within layers B through F in layer 9 while the 

contralateral projection terminates in both the superficial most layers A and B in 

layer 9 as well as the deepest layer of layer 9, layer G, and slightly down to layer 

8.  The NI accounts for more than 65% of the non-retinal input into the superficial 

tectum (Gruberg et al., 1989).  The topology is maintained within the projection 

from the NI to both the ipsilateral and contralateral OT.  Within the rostral OT 

there is a greater amount of feedback from the contralateral NI while in the 

caudal OT the projection is far greater from the ipsilateral NI (Dudkin et al., 

1999).  The terminations of the NI axonal projections are not on the same 

neurons which project to the NI (Gruberg et al., 1994).  More about this 

momentarily.   

 The nucleus isthmi itself (Fig. 1.8) is composed of approximately 8,000 

neurons (Gruberg et al., 1978), which have been grouped into five classes based 

on morphological characteristics after a Golgi staining (Khalil et al., 1977).  The 

morphology of the whole nucleus has been described as having a ‘taco’ shape 

where the bottom of the taco is the rim cortex (cortex here is used to define an 

outer cell body dense surrounding area) which projects contralaterally, an 

anterior non-rim cortex which projects ipsilaterally, and a posterior non-rim cortex  
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Figure 1.8: Cresyl violet stains of the nucleus isthmi of the frog, Rana pipiens.  

(A) Transverse section as shown schematically in Fig. 1.6. Note the layers of the 

tectum on the dorsal side and the clear outline of the isthmi cortex in the middle 

of the slice. (B) A lesion placed in the middle of the left NI (arrow). (C) LEFT: 

Zoomed image of stain of NI of frog. RIGHT: stain of cortical cells in the Rhesus 

monkey.  CENTER: an example electrode used for our extracellular recordings. 

Note plated tip.  The NI has densely packed small neurons, posing a challenge 

for obtaining good signal to noise and for spike sorting algorithms.  Scale bars: 

1000 µm in (A), 100 µm in (B) and 50 µm in (C). 

which projects contralaterally (Grobstein et al., 1983).  The caudal region of the 

NI may also receive inputs from the mesencephalic tegmentum from a small 
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population (40-45 neurons) of cells (Udin, 1987).  There do not appear to be any 

isthmo-isthmic projections. 

Pharmacologically, multiple studies have shown that the NI is the primary, 

if not the only, source for ACh within the superficial OT (Stevens, 1973; Desan et 

al., 1987; Sargent et al., 1989; Wallace et al., 1990; Butt et al., 2000; Butt et al., 

2001; Yu et al., 2003; Yan et al., 2006).  The nicotinic receptors (nAChR) have 

been found predominantly on presynaptic locations (and, in fact, many are extra-

synaptic, up along an axon well before the synaptic site), mainly on RGC axons 

(Sargent et al., 1989; Titmus et al., 1999), while muscarinic receptors (mAChR) 

have been found primarily on post synaptic locations within the OT (Butt et al., 

2001; Yu et al., 2003).  In fact, different types of nAChRs have been shown to be 

associated with different inputs (Butt et al., 2000), where the nAChRs on the 

RGC axons have different time courses in their response than other nAChR 

varieties on other locations which have yet to be fully determined.  When the 

presynaptic nAChRs are activated by ACh there is a higher probability for 

transmission at the synaptic site (Titmus et al., 1999).  Serotonin and substance-

P have also been associated with the tecto-isthmic system (Liu, et al., 1995; 

Malayev et al., 1998; Tu et al., 2000; Debski, 2001) especially in forming and 

keeping the topographic map from the retina.  The maintenance of the 

topographic map is activity dependent and appears to depend on both the 

glutamatergic input from the retina as well as the cholinergic input from the NI.  

While the primary drive of excitatory responses in the OT emanates from the 



19 

glutamatergic input from the retina onto both NMDA and non-NMDA glutamate 

receptors, the modulation of the excitatory drive is controlled by a combination of 

GABA and ACh (Hickmott et al., 1993).   

 The presence of GABA in the tectoisthmic system is at present highly 

controversial.  Nearly one third of the whole of tectal neurons are GABA 

immunoreactive (Antal, 1991).  These include a large number of not only 

axodendritic synapses but also dendrodendritic synapses within the superficial 

layers of the OT as well as deeper layers.  One paper (Pollak et al., 1999) shows 

that in a close cousin to Rana pipiens, Rana esculenta, 0.5% of NI neurons stain 

positive for immunoreactivity.  These cell bodies all lay within the anterior non-rim 

cortex.  They also show that the majority of GABAergic axons within the NI arise 

from elsewhere, probably the tegmentum.  It should be noted, however, that in 

Rana esculenta, there have also been reported reciprocal connections between 

the NI and the superior olive (an auditory structure) (Kulik et al., 1997).  Never 

have I been in the NI of Rana pipiens and recorded auditory responses.  When 

leaving lesions in places I did record auditory responses, the lesions were always 

observed to be outside of the borders of the NI (data not shown).  Using double 

labeling procedures, it was found (Li et al., 2001) that part of the retinal-tectal 

projection (about 15%) is GABAergic, and that 65% of the ipsilaterally projecting 

and 62% of the contralaterally projecting NI cells bodies stain positive for GABA.  

Yet, they claim that only 50% of those neurons labeled in the NI as GABAergic 

actually project to the OT.  They pose the possibilities that the untraceable 
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neurons went to an inaccessible part of the OT or that the GABAergic NI neurons 

are actually interneurons within the NI and do not project out of the nucleus.  

Intra-NI projections are seen in other systems, like the bird (Marin et al., 2005), 

which are GABAergic.  But, as of yet, there is only circumstantial evidence 

supporting these findings.  Another paper (Rybicka et al., 2005) has shown that 

many isthmotectal fibers terminate on GABAergic interneurons within the OT.  

The only other direct connection they found was with a few retino-tectal axons.  

They did not find evidence for GABA within the axons of the isthmotectal axons.   

 It has been demonstrated that electrical stimulation of the NI can enhance 

calcium influx by the RGC axons when the NI stimulation precedes the RGC 

stimulation by 10 ms (Dudkin et al., 1998; Dudkin et al., 2003).  This increase in 

calcium directly increases the likelihood for transmission at the retino-tectal 

synapse.  As stated above, many nAChRs are extrasynaptic on RGC axons.  

Thus, the feedback from the NI may enhance the RGC signal into the OT via a 

paracrine mechanism (Titmus et al., 1999; Dudkin et al., 2003; Rybicka et al., 

2005). 

 Experiments using electrical stimuli and ionotophoretic application of 

neurotransmitter agonists or antagonists have determined that there are at least 

five types of synaptic connections between the isthmotectal fibers and the 

dendrites of tectal neurons (Antal et al., 1986; Xiao et al., 1999; Wang, 2003; 

Hoshino et al., 2006).  These results also show that many interactions between 

the isthmic neurons and the tectal responses are multisynaptic.  Complicating the 
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matter, ACh has been shown to have either an excitatory or an inhibitory affect 

on the postsynaptic neuron (Lawrence, 2008).  Thus, a paracrine puff of ACh 

from an axonal terminal of a NI afferent may lead to differential responses in 

different units within the superficial NI. 

 In response to visual stimuli, extracellularly recorded NI neurons have 

been broken into two broad classes (Gruberg et al., 1980).  One group has a 

small 3-5º sized receptive field and response similarly to RGC type II neurons.  

The other group has larger receptive fields, around 7-10º in diameter, and these 

units respond not only to moving dots but also to diffuse illumination changes.  

The NI responds to motion in both the ipsilateral and contralateral receptive field 

(Gruberg et al., 1980; Beauquin et al., 1995; Winkowski et al; 2005).  The 

literature, however, does not comment on the time course of the response within 

the NI.   

 Behaviorally, if a NI is lesioned, frogs suffer from a scotoma, or functional 

blind spot, in the visual field contralateral to the lesion (Gruberg et al., 1991).  No 

matter how much of the NI is lesioned, the scotoma always extends back to the 

temporal most aspect of the contralateral visual field.  The more NI is lesioned, 

the more of the nasal area of the visual field that the scotoma affects.  If an entire 

NI is lesioned, then the scotoma extends through the entire contralateral 

hemifield of the visual field.  Interestingly, this scotoma only affects the 

responses to moving stimuli of either predator- (large) or prey- (small) type.  The 

frog is, in fact, capable of jumping through transparent barriers in its visual field if 
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the entire OT has been removed (and then the NI feedback is a non-issue 

anyway) (Saltzman et al., 2004).  Also, the behavioral responses of the frog are 

highly asymmetric.  If presented with two identical stimuli placed at different 

locations within the visual field, the frog will choose the most nasal and ground 

level stimuli (Gruberg, personal communication).  It is not yet known from where 

this asymmetry arises in the connectivity of the tectoisthmic system. 

 It seems that the vast majority of RGC axons which project to the 

contralateral OT are only used to drive responses which are important for moving 

stimuli.  That is, it is important for eating food (a frog will not attack a dead 

cricket, it must be moving) and evading predators.  The frog does not use its 

sight when finding a mate (Gruberg, personal communication). The remaining 

4% of RGC axons which terminate in the thalamus are responsible for non-

moving aspects of the visual world. 

 Relating the NI of the frog to its homologues in other systems, it is natural 

to wonder if the NI is in fact working as a winner-take-all mechanism in the visual 

system of the frog.  Are the connections back to the RGC axons creating a 

‘spotlight of attention’ onto the most salient input presented?  How are 

populations of NI neurons responding to the visual inputs?  Are there oscillations 

in the responses within the tecto-isthmic system as there are in the 

thalamocortical system (Bal et al., 2000)?  Due to the very strong collothalamic 

projection in the frog compared to the lemnothalamic projection, does the 

collothalamic projection do many of the same things which the lemnothalamic 
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projection is thought to do (attention (Reynolds, 2008), oscillatory control (Bal et 

al., 2000; Schnitzer et al., 2005), winner-take-all (Lee et al., 1999), stimulus 

response precision (Andolina et al., 2007), analogy (Choe, 2004))? 

 As a first step in answering these questions, this dissertation is focused on 

characterizing the temporal aspects of the NI response in the frog to visual 

stimuli and in determining how many physiological classes of neurons exist within 

the NI.  Chapter 2 discusses a novel threshold I developed to detect low signal-

to-noise spikes within an extracellular voltage recording and how I sort them into 

separate putative units.  This enables us to analyze the responses of multiple 

units recorded simultaneously to a given visual stimuli.  Chapter 3 discusses the 

responses of NI neurons to simple stimuli, e.g., diffuse illumination or moving 

spots.  Chapter 4 discusses the responses within the NI to contextual stimuli, or 

stimuli with multiple parts.  This chapter was highly motivated by Marin’s et al. 

2005 and 2007 papers on the NI of the bird.  Chapter 5 discusses the number of 

subclasses of NI neuron within the frog, Rana pipiens, based on my data of 

extracellularly recorded responses to visual stimuli and Matt Caudill’s data on 

intracellular responses measured in vitro.  Chapter 6 will provide a conclusion 

and a set of future directions and questions for this project. 

REFERENCES: 

Andolina IM, Jones HE, Wane W, Sillito AM. Coritcothalamic feedback enhances 
stimulus response precision in the visual system. PNAS. 2007. 104: 1685-1690. 



24 

Antal M, Matsumoto N, Szekely G. Tectal neurons of the frog: intracellular 
recordings and labeling with cobalt electrodes. J Comp. Neurology. 1986. 246: 
238-253.  

Antal M. Distribution of GABA immunoreactivity in the optic tectum of the frog: a 
light and electron microscopic study. Neuroscience. 1991. 42: 879-891. 

Baizer JS, Whitney JF, Bender DB. Bilateral projections from the parabigeminal 
nucleus to the superior colliculus in monkey. Exp Brain Res. 1991. 86: 467-470. 

Bal T, Debay D, Destexhe A. Cortical feedback controls the frequency and 
synchrony of oscillations in the visual thalamus. J. Neurosci. 2000. 20: 7478-
7488. 

Beauquin C, Poindessault JP, Gaillard F. Reponses of ipsilateral retino-tectal 
(type I1) units of the frog (Rana esculenta) to moving configurational bars.  
Comp. Biochem. Physiol. 1995. 111: 561-568. 

Brandt SF, Wessel R. Winner-take-all selection in a neural system with delayed 
feedback. Biol Cybern. 2007. 97: 221-228. 

Bullier J. What is fed back? In: 23 Problems in Systems Neuroscience. Ed: Van 
Hemmen JL, Sejnowski TJ. Oxford University Press. pp.103-132. 2006.  

Butler AB, Hodos W. Comparative Vertebrate Neuroanatomy: Evolution and 
Adaptation. Wiley. 2005. 

Butt CM, Pauly JR, Debski EA. Distribution and development of nicotinic 
acetylcholine receptor subtypes in the optic tectum of Rana pipiens. J. Compar. 
Neurol. 2000. 423: 603-618. 

Butt CM, Pauly JR, Wilkins LH, Dwoskin LP, Debski EA. Pharmachology, 
distribution and development of muscarinic acetylcholine receptor subtypes in the 
optic tectum of Rana pipiens.  Neuroscience. 2001. 104: 161-179. 

Choe Y. The role of temporal parameters in a thalamocortical model of analogy. 
IEEE Transactions on Neural Networks. 2004. 15:1071-1082. 

Cui H, Malpeli JG. Activity in the parabigeminal nucleus during eye movements 
directed at moving and stationary targets. J. Neurophysiol. 2003. 89: 3128-3142. 

Debski EA. Distribution and regulation of Substance-P related peptide in the frog 
visual system. Microscopy Res. and Tech. 2001. 54: 220-228. 



25 

Desan PH, Gruberg ER, Grewell KM, Eckenstein F. Cholinergic innervations of 
the optic tectum in the frog Rana pipiens. Brain Research. 1987. 413: 344-349. 

Dudkin EA, Myers PZ, Ramirez-Latorre JA, Gruberg ER. Calcium signals 
monitored from leopard frog optic tectum after the optic nerve has been 
selectively loaded with calcium sensitive dye. Neurosci. Lett. 1998. 258: 124-126. 

Dudkin ES, Gruberg ER. Relative number of cells projecting from contralateral 
and ipsilateral nucleus isthmi to loci in the optic tectum is dependent on 
visuotopic location: horseradish peroxidase study in the leopard frog. J. Comp. 
Neurol. 1999. 414: 212-216. 

Dudkin EA, Gruberg ER. Nucleus isthmi enhances calcium influx into optic nerve 
fiber terminals in Rana pipiens.  Brain Research. 2003. 969: 44-52. 

Dudkin EA, Sheffield JB, Gruberg ER. Combining visual information from the two 
eyes: the relationship between isthmotectal cells that project to ipsilateral and to 
contralateral optic tectum using fluorescent retrograde labels in the frog, Rana 
pipiens.  J. Comp. Neurol. 2007. 502: 38-54. 

Gallagher SP, Northmore DPM. Responses of the teleostean nucleus isthmi to 
looming objects and other moving stimuli. Vis. Neurosci. 2006. 23: 209-219. 

George SA, WU GY, Li WC, Wang SR. Dual actions of isthmic input to tectal 
neurons in a reptile, Gekko gekko. Vis. Neurosci. 1999. 16: 889-893. 

Graybiel AM. A satellite system of the superior colliculus: the parabigeminal 
nucleus and its projections to the superficial collicular layers. Brain Res. 1978. 
145: 365-374. 

Grobstein P, Comer C, Hollyday M, Archer SM. A crossed isthmo-tectal 
projection in Rana pipiens and its involvement in the ipsilateral visuotectal 
projection.  Brain Research. 1978. 156: 117-123. 

Grobstein P, Comer C. The nucleus isthmi as an intertectal relay for the 
ipsilateral oculotectal projection in the frog, Rana pipiens.  J. Compar. Neurol. 
1983. 217: 54-74. 

Gruberg ER, Udin SB. Topographic projections between the nucleus isthmi and 
the tectum of the frog, Rana pipiens.  J Compar. Neurol. 1978. 179: 487-500. 

Gruberg ER, Lettvin JY. Anatomy and physiology of a binocular system in the 
frog Rana Pipiens. Brain Research. 1980. 192: 313-325. 



26 

Gruberg ER, Wallace MT, Waldeck RF. Relationship between isthmotectal fibers 
and other tectopetal systems in the leopard frog. J Compar. Neurol. 1989. 288: 
39-50. 

Gruberg ER, Wallace MT, Caine HS, Mote MI. Behavioral and physiological 
consequences of unilateral ablation of the nucleus isthmi in the leopard frog. 
Brain Behav Evol. 1991. 37: 92-103. 

Gruberg ER, Hughes TE, Karten HJ. Synaptic interrelationships between the 
optic tectum and the ipsilateral nucleus isthmi in Rana pipiens.  J. Comp. Neurol. 
1994. 339: 353-364. 

Hellman B, Manns M, Gunturkun O. Nucleus isthmi, pars semilunaris as a key 
component of the tectofugal visual system in pigeons.  J Comp Neurol. 2001. 
436: 153-166. 

Hickmott PW, Constantine-Paton M. The contributions of NMDA, non-NMDA, 
and GABA receptors to post-synaptic responses in neurons of the optic tectum. 
J. Neurosci. 1993. 13: 4339-4353. 

Hoshino N, Tsurudome K, Nakagawa H, Matsumoto N. Current source density 
analysis of contra- and ipsilateral isthmotectal connections in the frog. Vis 
Neurosci. 2006. 23: 713-719. 

Hunt SP, Streit H, Kunzel H, Cuenod M. Characterization of the pigeon 
isthmotectal pathway by selective uptake and retrograde movement of 
radioactive compounds and by golgi-like horseradish peroxidase labeling. Brain 
Res. 1977. 129: 197-212. 

Ito H., Sakamoto N, Takatsuji K. Cytoarchitecture, fiber connections, and 
ultrastructure of nucleus isthmi in a teleost (Navadon modestus) with a special 
reference to degenerating isthmic afferents from optic tectum and nucleus 
pretectalis. J Comp Neurol. 1983. 218: 270-281. 

Khalil SH, Lazar G. Nucleus isthmi of the frog: structure and tecto-isthmic 
projection. Acta. Morphol. Acad. Sci. Hung. 1977. 25: 51-59.  

Khanbabaie R, Mahani AS, Wessel R. Contextual interaction of GABAergic 
circuitry with dynamic synapses.  J. Neurophysiol. 2007. 97: 2802-2811. 

Lawrence JJ. Cholinergic control of GABA release: emerging parallels between 
neocortex and hippocampus. Trends in Neurosci. 2008. 7: 317-327. 



27 

Leamy CA, Protti DA, Dreher B. Comparative survey of the mammalian visual 
system with reference to the mouse. In Eye, Retina, and Visual System of the 
Mouse. Ed. By Chalupa LM, Williams, RW.  MIT Press. Cambridge  MA. 2008.. 
pp. 35-60. 

Lee DK, Itti L, Kock C. Braun J. Attention activates winner-take-all competition 
among visual filters. Nature. 1999. 2: 375-381. 

Lee PH, Schmidt M, Hall WC. Excitatory and inhibitory circuitry in the superficial 
gray layer of the superior colliculus. J Neuro. 2001. 21: 8145-8153. 

Lettvin JY, Maturana HR, McCulloch WS, Pitts WH. What the frog’s eye tells the 
frog’s brain. Proceedings of the IRE. 1959. 47: 233-258. 

Li Z, Fite KV. GABAergic visual pathways in the frog, Rana pipiens.  Vis. 
Neurosci. 2001. 18:457-464. 

Linden R, Perry VH. Retrograde and anterograde transneuronal degeneration in 
the parabigeminal nucleus following tectal lesions in developing rats. J Comp 
Neurol. 1983. 218: 270-281. 

Liu Q, Debski EA. Origins of serotonin-like immunoreactivity in the optic tectum of 
Rana pipiens.  J. Compar. Neurol. 1995. 352: 280-296. 

Maczko KA, Knudsen PF, Knudsen EI. Auditory and visual space maps in the 
cholinergic nucleus isthmi pars parvocellularis of the barn owl. J. Neurosci. 2006. 
26: 12799-12806. 

Malayev AA, Debski EA. Serotonin modulates induced synaptic activity in the 
optic tectum of the frog. Brain Res. 1998. 781: 167-181. 

Marin G, Mpodozis J, Sentis E, Ossandon T, Letelier JC. Oscillatory bursts in the 
optic tectum of birds represent re-entrant signals from the nucleus isthmi pars 
parvocellularis. J Neurosci. 2005. 25: 7081-7089. 

Marin G, Salas C, Sentis E, Rojas X, Letelier JC, Mpodozis J. A cholinergic 
gating mechanism controlled by competitive interactions in the optic tectum of the 
pigeon. J Neurosci. 2007. 27: 8112-8121.  

Mcllwain JT. An introduction to the biology of vision. Cambridge University Press. 
1996. 



28 

Nieuwenhuys, R., Voogd, J., & van Huijzen, C. The Human Central Nervous 
System.  Berlin . 1988. Heidelberg: Springer-Verlag. 
 
Northmore DPM, Gallagher SP. Functional relationship between nucleus isthmi 
and tectum in teleosts: synchrony but no topography. Vis. Neurosci. 2003. 20: 
335-348. 

Pollak E, Lazar G, Gabriel R, Wang SR. Localization and source of GABA 
aminobutyric acid immunoreactivity in the isthmic nucleus of the frog Rana 
esculenta.  Brain Res. Bull. 1999. 48: 343-350. 

Reynolds JR. Mapping the microcircuitry of attention. Nature Neurosci. 2008. 11: 
861-862. 

Rybicka KK, Udin SB. Connections of contralaterally projecting isthmotectal 
axons and GABA-immunoreactive neurons in Xenopus tectum: an ultrastructural 
study. Vis. Neurosci. 2005. 22: 305-315. 

Saltzman H, Zacharatos M, Gruberg ER. Recognition of apertures in overhead 
transparent barriers by leopard frogs. Brain Behav. Evol. 2004. 64: 11-18. 

Sargent PB, Pike SH, Nadel DB, Lindstrom JM. Nicotinic acetylcholine receptor-
like molecules in the retina, retinotectal pathway, and optic tectum of the frog. J. 
Neurosci. 1989. 9: 565-573. 

Sereno MI, Ulinski PS. Caudal topographic nucleus isthmi and the rostral 
nontopographic nucleus isthmi in the turtle, Pseudemys scripta.  J. Comp. 
Neurol. 1987. 261: 319-346. 

Shephard GM. The synaptic organization of the brain. Oxford. Oxford University 
Press. 2004. 

Sherk H. A comparison of visual-response properties in cat’s parabigeminal 
nucleus and superior colliculus. J. Neurphysiol. 1979. 42: 1640-1655. 

Sillito AM, Cudiero J, Jones HE. Always returning: feedback and sensory 
processing in visual cortex and thalamus.  Trends in Neuroscience. 2006. 29: 
307-316. 

Sparks D. Translation of sensory signals into commands for control of saccadic 
eye movements: role of primate superior colliculus. Physiol. Revs. 1986. 66: 118-
171. 



29 

Stevens RJ. A cholinergic inhibitory system in the frog optic tectum: its role in 
visual electrical responses and feeding behavior. Brain Res. 1973. 49: 309-321. 

Szekely G, Lazar G. Cellular and synaptic architecture of the optic tectum. In 
Frog Neurobiology. Ed. Llinas R, Precht W. 1976. Springer. Verlag, Berlin. Pp. 
407-434. 

Titmus MJ, Tsai HJ, Lima R, Udin SB. Effects of choline and other nicotinic 
agonists on the tectum of juvenile and adult Xenopus frogs: a patch-clamp study. 
Neuroscience. 1999. 91: 753-769. 

Tu S, Butt CM, Pauly JR, Debski EA. Activity-dependent regulation of Substance-
P expression topographic map maintenance by a cholinergic pathway. J. 
Neurosci. 2000. 20: 5346-5357. 

Udin SB. A projection from the mesencephalic tegmentum to the nucleus isthmi 
in the frogs Rana pipiens and Acris crepitans. Neuroscience. 1987. 21: 631-637. 

Wallace MT, Ricciuti AJ, Gruberg ER. Nucleus isthmi: its contribution to Tectal 
acetylcholinesterase and choline acetyltransferase in the frog Rana pipiens.  
Neuroscience. 1990. 35: 627-636. 

Wang SR, Yan K, Wang YT, Jiang SY, Wang XS. Neuroanatomy and 
electrophysiology of the lacertilian nucleus isthmi. Brain Research. 1983. 275: 
355-360. 

Wang SR. The nucleus isthmi and dual modulation of the receptive field of tectal 
neurons in non-mammals. Brain Res. Rev. 2003. 41: 13-25. 

Wang Y, Major DE, Karten HJ. Morphology and connections of nucleus isthmi 
pars magnocellularis in chicks (Gallus gallus). J Comp. Neurol. 2004. 469: 275-
297. 

Wang Y, Luksch H, Brecha NC, Karten HJ. Columnar projections from the 
cholinergic nucleus isthmi to the optic tectum in chicks (Gallus gallus): a possible 
substrate for synchronizing tectal channels. J Comp. Neurol. 2005. 494: 7-35. 

Wiggers W. Isthmotectal connections in plethodontid salamanders. J. Comp. 
Neurol. 1998. 395: 261-272. 

Williams B, Hernandez N, Vanegas H. Electrophysiological analysis of the 
teleostean nucleus isthmi and its relationships with the optic tectum. J. Comp. 
Physiol. 1983. 152: 545-554. 



30 

Winkowski DE, Gruberg ER. Superimposed maps of the monocular visual fields 
in the caudolateral optic tectum in the frog, Rana pipiens.  Vis. NeuroSci. 2005. 
22: 101-109. 

Witpaard H, ter Keurs HEDJ. A reclassification of retinal ganglion cells in the frog 
based on tectal endings and response properties. Vis. Res. 1975. 15: 1333-1338. 

Witten IB, Bergan JF, Knudsen EI. Dynamic shifts in the owl’s auditory space 
map predict moving sound location. Nature Neuroscience. 2006. 9: 1339-1445. 

Xiao J, Wang Y, Wang SR. Effects of glutamatergic, cholinergic and GABAergic 
antagonists on Tectal cells in toads. Neuroscience. 1999. 90: 1061-1067. 

Yan X, Zhao B, Butt CM, Debski EA. Nicotine exposure refines visual map 
topography through an NDMA receptor-mediated pathway. Euro. J. Neurosci. 
2006. 24: 3026-3042. 

Yu CJ, Debski EA. The effects of nicotinic and muscarinic receptor activation on 
patch-clamped cells in the optic tectum of Rana pipiens.  Neuroscience. 2003. 
18: 135-144. 



31 

Chapter 2:  

ON SPIKE SORTING WITH A NOVEL THRESHOLD AND 

SUPERPARAMAGNETIC CLUSTERING 

 

ABSTRACT: 

I will describe a complete unsupervised method for detecting and sorting spikes 

within a neural recording.  The method utilizes a novel empirically derived 

threshold for detecting the spikes and uses the noise characteristics of the 

recording site to optimize the clustering procedure.  The method uses the 

coefficients from a multi-resolution wavelet decomposition, which localizes the 

relevant characteristics of the spike, to characterize each unitary potential.  Then 

a superparamagnetic clustering algorithm outputs not only the cluster 

memberships but also the total number of clusters present within the data.  Due 

to the combination of the empirically derived threshold, optimization procedure, 

and the wavelet decomposition this method is highly robust even within a low 

signal-to-noise environment.  Its speed allows for early implementation while 

searching for an ideal location to record.  The threshold described will be 

compared to other common thresholds.   

INTRODUCTION: 
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Understanding how brains process information requires a multi-leveled 

analysis of brain activity: from the workings of proteins up through the activity of 

systems of neurons and nuclei and how this symphony of activity correlates with 

behavior.  Extracellular recording from neural tissue is a powerful and important 

tool in elucidating neural activity at the single neuron and neural systems levels.  

Often the recording electrode is placed at a location within neural tissue 

containing multiple units which are responding to a given stimulus.  The true 

power of extracellular recordings can thus only be fully realized if the set of action 

potentials detected by the recording electrode(s) can be sorted into a set of 

putative neurons, or units, with individual physiological response characteristics.   

An extracellular electrode with an impedance between 50 - 500 kΩ at 1 

kHz can pick up signals from as far away as 80 µm (circle in Fig. 2.1) (Quiroga et 

al., 2009).  Within that volume there may be multiple units responding to the 

stimuli, spontaneously firing, or contributing to some other internal or 

uncontrolled neural process.  Some units are close enough to the electrode that 

their spike shape is well above the noise level (colored units in Fig. 2.1).  Without 

sorting the recorded spikes into clusters and correlating those spike trains with 

the stimuli, the information gained from the recording is incomplete and can be 

misleading. 

 The necessary steps in any spike sorting procedure are as follows: (1) 

detection of spikes, (2) obtaining the relevant distinctive features of the individual 

spike shapes, and (3) clustering these features into a set of putative neurons.  
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Each phase of this procedure contains subtleties which can be highly affected by 

the signal-to-noise ratio (SNR) of the recording.   

 

Figure 2.1: Extracellular recording within neural tissue. On the left is a schematic 

of neural tissue with distant units contributing to inseparable noise (grey) and 

closer units contributing to large SNR spikes (colored units).  The plated 

extracellular electrode can detect signals up to around 80 µm away from the tip 

(black circle).  The signal is amplified and high-pass filtered to reveal a multi-unit 

signal.  With proper spike-sorting procedures the spike shapes can be sorted and 

multiple raster plots can be constructed from a single recording. 

 Typically, the detection phase is accomplished by a threshold in the 

voltage or derivative of the voltage (Meister et al., 1994; Lewicki, 1998; Kim et al., 

2000; Pouzat et al., 2002; Quiroga et al., 2004; Marin et al., 2005; Mtetwa et al., 

2006).  If one is merely interested in recording from only units with the maximal 

SNR value and this value is very high (say, greater than 5) then this poses no 

great problem.  However, in a typical extracellular recording there may be more 

units which are closer to the noise level which may be of use to the experimenter, 
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especially if one is interested in correlations of activity throughout the local 

neuronal population.   

The set of distinctive features of the spike shapes which are necessary for 

spike sorting is also highly dependent upon the noise level.  With a high SNR one 

may use a reduced set of characteristics such as the amplitude and width of the 

spike (Meister, Pine, Baylor, 1994; for example), but with a larger relative 

contribution to the spike shape by noise, these features may prove to be 

insufficient to properly describe the spike shape.  The clustering method itself 

poses a very difficult problem as this is a fully unsupervised situation where one 

never truly knows how many putative units are contributing to the recording (Fig. 

2.1) nor does one know each unit’s extracellular spike profile (Brown et al., 

2004).  A low SNR environment invariably adds lots of noise to the clusters within 

the parameter space making most clustering methods nearly untenable. 

 In this chapter, I describe a completely automated method for spike 

sorting which is robust down through a low SNR level.  This algorithm uses the 

data itself to obtain an ideal threshold for spike detection by taking into account 

the distribution of voltage values within the recording.  It then uses the noise itself 

to optimize the feature extraction as well as the clustering procedure.  The 

algorithm utilizes wavelets as the distinctive characteristics.  Wavelet coefficients 

localize the most relevant features of the spike shapes, such as high frequency 

peaks and valleys, as well as low frequency after-hyperpolarizations, and are 

less sensitive to noise than other characteristic measures such as reduced 
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feature spaces or the recorded spike shape itself.  The algorithm uses a 

superparamagnetic clustering method which is fast and quite robust down to a 

low SNR level.  I will describe in detail each step in the algorithm with 

accompanying mathematical background where necessary.  I will then test the 

novel threshold with artificial data sets with varying SNR and compare its 

performance with other commonly used methods.  This procedure works well 

with single electrodes, but is easily extended for work with multiple electrodes 

(Gray et al., 1995; Du et al., 2009).  In fact, the more information is available, the 

better the sorting can become (Pouzat et al., 2002). 

METHODS: 

 Proper spike sorting must take into account three separate issues: (I) 

detection, (II) acquiring distinctive features of the spikes, and (III) sorting the 

spike shapes using some clustering method which takes into account these 

features (Fig. 2.2).   

Following the works of others (Meister et al., 1994; Lewicki, 1998; Sahani et 

al., 1997; and Pouzat et al., 2002) I incorporate four working assumptions: 

1. The spike shapes of a given neuron, or unit, are constant, 

2. The spikes and the surrounding noise are statistically independent, 

3. The spikes and the noise sum linearly, 
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4. The noise statistics tend to a Gaussian distribution as recording time 

approaches infinity. 

The first assumption we know to be not absolutely true, as many neuron’s spike 

shapes change during a burst, for example, but it is an important assumption for 

any spike sorting routine.  The assumption is useful as long as the variance in 

spike shape from one unit is smaller than the variance in average spike shape 

between different units.  The second and third assumptions are also very 

common in all spike sorting routines.  The fourth assumption is supported by the 

central-limit theorem, and though no recording goes on for an infinitely long time, 

I will show that this is a reasonable assumption. 

Data Generation: 

Once a spike is detected (see below) a 64-point vector is constructed of 

the voltages that make up the spike shape with an offset so the peak in the slope 

of the spike occurs in sample number 20.  The spikes are aligned in this way, 

rather than lining them up to the peak in the voltage itself because the initial 

voltage deflection in a spike shape typically has the steepest slope and is the 

most salient feature in a spike shape. The magnitude of the voltage is more 

prone to being offset by the noise.  Also, if the spike shape is tri-phasic then 

sometimes the first peak will be larger and other times the second peak will be 

larger.  This can lead to severe problems in clustering the spike shapes due to 
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poor alignments.  The vector points to a location in a 64-dimensional event 

space.   

 

Figure 2.2:  Outline of the three stages of spike sorting. Step one incorporates 

obtaining the voltage waveform and high-pass filtering of the signal if necessary.  

Then a threshold is determined by the data itself and applied to the square of the 

first derivative (red line).  In step two, the spike shapes are extracted from the 

data and a wavelet transform is performed on the spike shapes to obtain an ideal 

set of characteristics for clustering.  Last, in step three, the sets of wavelet 

coefficients are clustered using a superparamagnetic clustering algorithm and the 

shapes are segregated into distinct sets corresponding to putative units within 

the neural tissue. 
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If assumption (1) above is correct, and there is no noise in the recording, 

then all spikes from a given putative neuron point to the same exact point in the 

event space.  In fact, assumption (1) above does not hold when a unit fires many 

spikes in a short burst.  When this happens, the spike shapes produced trace out 

a line or a manifold in the 64-dimensional parameter space.  The main point here 

is that the variance among the spike shapes arising from a given unit is assumed 

to be much smaller than the difference between the spike shape from this given 

unit and a spike shape from another unit within range of the recording electrode. 

However, due to noise, the spike vectors from a given unit will point to a cloud 

whose covariance mirrors that of the underlying noise plus the covariance given 

by the manifold traced out by the collection of noiseless spikes.   

The signal to noise ratio (snr) is of a single detected spike is herein 

defined as:  
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where, P  is the power of the noise or spike, x  is a segment of voltage, i  

corresponds to an index of the spike shape, j corresponds to an index in the 

noise trace, SPIKEN  is the number of points in the spike shape, defined to be 64 as 

described above, NOISEN  is the length of the concatenated noise traces (see 

below), s  is the mean amplitude of the spike shape, N  is the mean amplitude 
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of the noise, and 2  is the variance.  Due to the highly variable shapes of spikes 

it is inappropriate to use the square of the peak-to-peak of a given spike shape 

as the power of the spike.  Two spike shapes may have highly differing widths 

but may still have the same peak-to-peak value.  Due to their highly differing 

widths one shape may be much easier to detect, thus they should not each have 

the same snr value.  Using the full 64-sample window is an arbitrary choice but it 

allows for consistency across a widely varying set of spike shapes and returns 

reasonable values for snr.  To obtain the SNR for a given voltage trace we 

average the snr values of all detected spikes. 

Constructing artificial spike trains: 

 Following standard methods (Quiroga et al., 2004; Letelier et al., 2000), I 

constructed artificial data sets to test the thresholding and spike sorting 

procedure.  While more complex and detailed methods have been proposed 

(Smith et al., 2007), the method herein contained matches with the statistics and 

spectra of real data voltage traces (Fig. 2.4).  The data generation has two main 

steps: making the underlying noise, composed of a combination of background 

spikes and white noise, and making and placing the primary spikes. 

 All spikes are modeled directly from real spikes recorded within the frog 

(see Chapter 3) or turtle (Saha, personal communication) and are similar in 

width and overall shape to spikes seen in other systems.  We generated 36 

different model spikes (Fig. 2.3).   
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Figure 2.3: Spike shapes used to form noise and large SNR spikes in artificial 

voltage traces. 

As mentioned above, to match the statistics of background noise from 

actual neurological recordings, the noise must be composed of two different 

components: small amplitude background spikes, and Gaussian white noise.  

Physically, a small amplitude background spike arises from the activity of 

neurons a moderate distance from the recording electrode (in Fig. 2.1, the black 

neurons which still reside within the circle surrounding the electrode).  The white 

noise arises from activity of neurons a greater distance away from the recording 

electrode (outside of the circle in Fig. 2.1) as well as other sources of 

background noise: electronic noise in the circuit, and small extracellular 

transients within the neural tissue.  As mentioned in assumption (4) above, the 
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statistics of these transients tend towards a Gaussian distribution as recording 

time approaches infinity. 

The underlying noise was generated in a two-step process.  First, at every 

time step there exists a probability that a background spike will be inserted as 

part of the underlying noise.  This probability is defined as the fullness, F.  When 

a background spike is inserted, a spike shape is chosen from the model set with 

equal probability and the power of the inserted spike (as defined above) is 

chosen from a Gaussian distribution with zero mean and a standard deviation of 

one.  The spike shapes are 30 times steps in length.  Second, white noise is 

added to the voltage at each time step.  The amplitude of the added noise for a 

given time step is taken from a Gaussian distribution with zero mean and a 

tunable standard deviation parameter called the whiteness, W.   

Tuning the two parameters, F and W, allowed me to match the power 

spectrum of our synthetic noise to that of actual recorded biological noise.  If F is 

too low, the power spectrum is too flat (too white) to be relevant for biological 

noise.  If W is set too low there are not enough contributions in the high 

frequency region of the power spectrum (Fig. 2.4).  F and W have been 

empirically determined to be: F = 0.4, W = 2.2.   

The noise was normalized to have unit standard deviation.  Primary spikes 

were then inserted independently based on a Poisson spike train with an 

instantaneous average firing rate unique to each spike shape.  A 2-ms refractory  
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Figure 2.4: Constructing artificial spike trains.  (A) Power spectral density (PSD) 

of an artificial voltage trace (top left) and of a voltage trace recorded from the 

nucleus isthmi of the frog (top right). The frequencies have been normalized to 

the Nyquist frequency ( Nf ) which is equal to half the sampling rate. Note the 

flatness of both spectra above 2000 Hz.  This is achieved through the inclusion of 

pure white noise (lower left).  Whereas the bump at lower frequencies is 

achieved via the inclusion of small amplitude spike shapes (power spectrum of 

noise generated by only spike shapes in lower right).  The particular size of the 

bump is driven by the average firing rate of large SNR spikes, and there is a 1/f 

falloff between about 500 Hz and 2000 Hz.  (B) A sample artificial trace at SNR 

of 3.  The colored triangles mark the placement of different spike shapes. 
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period was enforced for each unit (spike shape type).  The power of an inserted 

spike was not necessarily the same between different units. The signal-to-noise 

ratio of the whole voltage trace (SNR) was determined according to the power 

(as defined above) of the lowest-power spike included (after including additive 

noise) divided by the power of the underlying noise: 

noise

spikesmallest

P

P
SNR  . 

Artificial voltage traces were constructed which had seven different SNR’s 

(1.5, 2.0, 3.0, 4.0, 5.0, 10.0, 20.0) and 20 average multi-unit firing rates (5, 10, 

15, 20, …, 95, 100 Hz), and varying degrees of overlap of spike shapes and 

spike shape similarity.  Because the artificial trains are stochastic in nature, 100 

trains were constructed for each set of parameters when testing the thresholding 

or clustering (see below).  

Two additional parameters were taken into account when creating the 

artificial spike trains: the number of different primary spike shapes to be included 

within the trace, and the level of similarity between the primary spike shapes.  As 

stated above, when placing spike shapes into the noise, there is a flat probability 

distribution from which to choose a spike shape.   Any number of any of the 

spikes in the bank of spike shapes could be used.  When constructing the 

artificial voltage traces I used three different spike shapes for the primary spike 

shapes.  Using a larger number of spike shapes does not affect the quality of 
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detection by any of the tested thresholds (data not shown).  The level of similarity 

between the primary spike shapes was quantified by the following process. 

First, the each spike shape was normalized to have a power (as defined 

above) equal to unity.  The mean was then subtracted off of each spike shape.  A 

symmetric 36X36 matrix was constructed to quantify the dissimilarity between all 

pairs of spike shapes.  This measure of dissimilarity was defined by: 
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where N is the length of the spike shape, here equal to 30 as shown above, and 

jkx , is the thk component of the thj spike.  Basically, the dissimilarity matrix 

collects the norms of the differences of all spike shape pairs.  The maximum 

element in this matrix gives the two most dissimilar spike shapes, corresponding 

to spikes n  and m .  I then multiplied the thn  and thm  rows together, element by 

element.  The maximum element in the resulting vector is the spike shape which 

is most dissimilar to the first two spike shapes.  Starting with an arbitrary spike 

shape and following in this fashion, it is possible to order all remaining spike 

shapes by level of mutual dissimilarity to the set of spikes which have already 

been chosen. 

 Creating artificial spike trains with sets of spike shapes which vary in their 

degrees of dissimilarity to each other did not in any way affect the results of the 

tests on different thresholds.  While they did alter the relative percentages of 
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false classifications among either the K-means or the superparamagnetic 

clustering algorithms, the latter algorithm always out performed K-means 

clustering (data not shown). 

I: SPIKE DETECTION 

Determining the threshold:   

A very common method for detecting spikes is to set a single threshold in 

the voltage trace.  This method can be compromised by low-frequency high-

amplitude noise and it may miss negative-polarity spikes entirely.  While this can 

work very well with a well-isolated unit in a large SNR environment, it can miss 

spikes which are closer to the noise level when recording from neural tissue with 

a large density of active units.  In order to detect spikes of any polarity, and to 

detect spikes as close as possible to the noise level, I developed a threshold 

determined by the data itself to apply to the square of the first derivative of the 

voltage trace.  A sample artificial voltage trace is shown in Fig. 2.5A. 

First, the entire voltage trace is smoothed by convolving it with a Gaussian 

that is of a similar width as a typical spike for our system; in our case that is a 

Gaussian of half-width 0.6 ms.  Second, the two-sided first derivative (see below) 

is calculated and the probability distribution function (PDF) of the first derivative 

values is constructed.   

Numerically, a two-sided derivative is equivalent to convolving the voltage 

trace with a three point function, [1 0 -1], and removing the edge artifacts.  This 
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two-sided derivative is more accurate than a one-sided regular derivative.  The 

PDF is obtained by creating a set of bins corresponding to the range of the 

values in the first derivative of the smoothed data.  Each bin width is typically set 

to one thousandth of the range from the minimum first derivative value to the 

maximum first derivative value.  Each time the first derivative has a value which  

 

Figure 2.5: Determining the threshold. (A) A raw artificial voltage trace. (B) The 

PDF for the first derivative values is shown in black.  The associated Gaussian 

distribution is shown in red (see text for details).  Inset: The envelope for the 

PDF is shown in black.  The value where the PDF for the data equals the 

Gaussian distribution is taken as the threshold. (C) The threshold is squared and 

used on the square of the first derivative to detect spikes of any polarity. (D) The 

PDF for the remaining noise trace after the spikes have been removed is in blue.  

The associated Gaussian distribution is shown in red.  Note that the PDF of the 

noise matches closely the associated Gaussian. 

falls into a bin the number within the bin is increased by one.  The PDF is 

normalized by dividing by the total number of points so that the integral of the 
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PDF over all possible values is 1.  The distribution has a given mean,  , and 

standard deviation,  , which is used to construct a Gaussian distribution, 

 ,N , that has the same mean and standard deviation as the data: 
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(Fig. 2.5B).  The threshold is taken to be the point where the Gaussian 

distribution equals that of the data’s distribution and at higher first derivative 

values dips below the PDF of the data.  Above this point, there is a higher 

probability that the value belongs to the data than to a Gaussian distribution.  

Thus, due to assumption (4) above, it is more likely that the high value 

corresponds to a spike rather than to the underlying noise. 

The PDF of the first derivative is nearly Gaussian but has a great degree 

of kurtosis (Fig. 2.5B).  Kurtosis, 2 , is the fourth standardized moment of a 

distribution is given by: 
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where  is the standard deviation of the distribution,   is the mean of the 

distribution and 4  is the fourth moment of the distribution.  Kurtosis describes 



48 

the peakedness of the distribution.  A Gaussian distribution has zero kurtosis.  If 

a distribution has a high kurtosis then the center is very peaked and the tails are 

longer owing to infrequent extreme values.  In the example shown, the kurtosis of 

the data is 10.385 while that of the noise after removing the spikes is 0.394 (see 

Fig. 2.5D).  Above the threshold there are significantly more extreme values in 

the data, which correspond to the presence of spikes.   

The threshold is squared and applied to the square of the first derivative 

so that both spike polarities are included (Fig. 2.5C).  Spike times are taken to be 

when the square of the derivative peaks immediately following the threshold 

crossing.  A vector, S , is created for each spike which incorporates 64 voltage 

samples aligning the spike time to sample number 20 of the vector.  The 20th 

sample is chosen as the alignment point because there is more information in the 

spike shape after the peak than before it.  These 64-dimensional vectors will be 

the basis for our spike sorting.  Alternatively, one can use a separate threshold 

determined from the positive crossing of the PDFs and a negative threshold from 

the left side of Fig 2.5B.  I chose to use the one threshold for simplicity.  In 

practice they lead to nearly identical results.   

Thresholding the square of the first derivative also increases the SNR 

between spikes and noise.  The ratio of the power of the spikes to that of the 

noise in the voltage trace are far below those of the ratio of the square of the first 

derivative to the baseline noise around the peaks in that function (Fig. 2.5C).  

Thus, using this function widens the SNR gap allowing more spikes to be 
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detected.  The times between spikes in the voltage trace are taken to be noise.  

The noise of a voltage trace can be analyzed by concatenating these noise 

segments together. A probability distribution of the voltage values in the noise 

(Fig. 2.5D) has a kurtosis near zero.  The concatenated noise has a distribution 

very similar to a Gaussian distribution.  In fact, it is significantly more Gaussian 

than the distribution of values which included the spikes.  Thus, our fourth 

assumption, that the underlying noise is roughly Gaussian, is valid. 

Overlapping spikes pose a unique problem (see, e.g. Fig. 2.9).  It is 

common to program a ‘dead time’ into the detection code so that not all local 

minima of a spike shape are considered as separate spikes.  This dead time is 

typically taken to be around 1 ms.  For example, I use a 64-point window for a 

spike shape corresponding to 6.4 ms.  I use a dead time window of 0.7 ms after a 

spike peak is detected to ensure that the algorithm moves beyond all of the local 

extrema in the spike shape before detection resumes.     

Note that following assumption (1) above, a given unit’s spike vectors will 

all point to the exact same point, or manifold, in the event space.  It is the noise 

which spreads out the point, or manifold, to a cloud in event space, thus 

complicating any clustering algorithm.  If the noise is purely Gaussian this cloud 

will be a hyper-sphere, because the noise in each direction will be uncorrelated.  

By transforming the covariance of the underlying noise to that of Gaussian white 

noise one can optimize the data for the clustering routine.  This process is called 

noise whitening.  
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Noise Whitening:   

 The noise sections of the voltage trace are close to being Gaussian but 

they are not Gaussian.  Following standard methods (Pouzat et al., 2002; Duda 

et al., 2006) the noise can be whitened, providing a transformation matrix, W , 

used to whiten the spike vectors.  Whitening the vectors is equivalent to 

uncorrelating the variance due to noise within the spike shapes and can aid in 

optimizing the sorting procedure (Bankman et al., 1993). 

 First, the autocorrelation ( AC ) of the concatenated noise traces is 

calculated after subtracting off the mean.  The longer the section of noise, the 

smoother the autocorrelation will be.  Next, a Toeplitz matrix (Grenander et al., 

1958) of the first 64 samples of the autocorrelation of the noise is created, which 

has the form, ACi, j  ACi1, j1.  For example, if the autocorrelation vector, AC, has 

three elements, the Toeplitz matrix takes this form: 

TAC 
ACi AC j ACk

AC j ACi AC j

ACk AC j ACi
















. 

The whitening transformation matrix, W , is chosen so that the variance due to 

noise is uncorrelated across dimensions, i.e. the autocorrelation of the whitened 

noise will be the identity matrix.  In other words,  

WWT T
AC 1 , 
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where W can be found via a Choleski decomposition (Pouzat et al., 2002; Brandt, 

1999).  W  is then used to whiten the spike shapes.   

II:  FEATURE EXTRACTION 

Wavelet analysis: 

 There are many useful sources for a good explanation of the wavelet 

transform (see, e.g. Mallat, 1989; Strang, 1993; Burrus et al., 1997; Letelier et al., 

2000; Hulata et al., 2002).  I will only give a brief description here.  The discrete 

wavelet transform (DWT) is a mapping of a 1-dimensional, finite energy (square 

integrable:   2Ltf  ) function,  tf , onto a 2-dimensional time-frequency space.  

Correlating the signal with wavelets of different size extracts details of the signal 

at multiple scales.  Arranging these correlations in a hierarchical scheme is called 

multiresolution decomposition (Mallat, 1989; Cui, 1992; Letelier et al., 2000; 

Quiroga, 2004).  The multiresolution decomposition localizes high (spike) or low 

(after-hyperpolarization) frequency contributions in time rather than using a sum 

of infinitely long frequency components as does a Fourier transform (Strang, 

1993; Letelier et al., 2000).  The transform utilizes wavelets which form an 

orthonormal basis of square-integrable functions which are each derived from a 

“mother wavelet,”  t , chosen for the particular task at hand.  Due to their basic 

form, I use the Daubechies-1, or Haar, mother wavelet (Chui, 1997; Burrus et al, 

1998; Quiroga, 2004; Press et al., 2007), though a number of mother wavelets 

can give reasonable results.  I could instead use a wavelet which looks like a 
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typical spike, such as a Daubechies-8 (Letelier, 2000), but this assumes a given 

form for the spikes. The Haar wavelet is the most general. 

 The Haar mother wavelet is defined by: 
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For the DWT, the mother wavelet does not have to be given in a closed form, but 

it must generate, via the following equation, an orthogonal, dyadic, non-

redundant mapping onto time-frequency space (Meyer, 1993).  The wavelets 

spanning the space are shifted and dilated versions of the mother wavelet: 

   ktt j
jkj  2

2

1

2

, ,     ,10  Nk    Nj 2log:1 . 

The scaling index, j , changes the behavior of the wavelet in frequency space.  

The translation index, k , shifts the wavelet along the time axis.  The data vector, 

S , is 64 samples long, thus k  runs from 0 to 63 and j  can run from 1 to 6, and 

N =64.  Since the wavelets form a complete basis, a linear combination can be 

used to describe any waveform: 

   
kj

kjkj tctf
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As in Fourier analysis, the coefficients can be found by taking the dot product of 

the original signal with the associated wavelet: 

     tftc kjkj |,,  . 

Where, for real valued functions, 

         
N

i

iBiAtBtA | . 

 In multiresolution decomposition, high- and low-pass quadrature mirror 

filters (QMF) are generated from the chosen wavelet basis and used to 

deconstruct the original signal in a pyramidal hierarchical scheme (Press et al., 

1993; Cui, 1997; Burrus et al., 1998; Letelier et al., 2000).  This scheme uses an 

iterative matrix multiplication of the signal vector with a series of filter matrices to 

obtain the sc kj ', .  The QMF matrices are constructed so that they treat the signal 

as if it were periodic with wrap-around boundary conditions.  This results in 

circulant rectangular matrices with half the number of rows as columns.  

Multiplication with these matrices performs a convolution with the input as well as 

down-samples the input vector by a factor of two.  Using the Haar basis, the 

high- ( HP ) and low-pass ( LP ) QMFs are of the form (respectively): 
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where there are n -rows and 
2

n
-columns where 

j

N
n

2
 , where, recall, that j  is 

the scaling index, and N  is the length of the original data vector, S  (Press et al., 

1993; Cui, 1997).  Each row contains two filter coefficients from the Haar basis, 

shifted to the left two positions from the row above it.  The rest of the values in 

the matrices are equal to zero. 

 The hierarchical algorithm proceeds as follows: The original data vector, 

S , is multiplied by each of the filters: 

11 *  dSHP , 11 *  aSLP , 

where the, ‘ ,’ denotes matrix multiplication, and jd is the output vector from the 

high-pass filter which holds detailed information of the input vector over the 

frequency range 





12
,

2 j
N

j
N ff

,  where Nf is the Nyquist frequency.  The output of 

the low-pass filter ja  holds approximate information about the original signal 

over the frequency range 





j
Nf

2
,0 .  The subscript of the output vectors reflects the 

level of the hierarchical algorithm.  The output vector from the high-pass filter 

also contains exactly the coefficients kjc ,  described above for level j .  The 

values of k are given by the indices of the vector jd . 

 The next stages of the algorithm multiply the approximation vector ja  by 

the thj  -level matrices for the high-pass and low-pass filters: 
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jjj daHP  )1(* , jjj aaLP  )1(* , 

to obtain the next level in the decomposition.  This recursive procedure continues 

until  Njj MAX 2log .  This DWT procedure calculates the ‘wavelet spectrum’ 

of N kjc , coefficients for each temporal vector, S  (Letelier et al., 2000).  The 

whole procedure is represented graphically in Fig. 2.6. 

 The full range of coefficients kjc ,  which fully describe the original signal 

can be collected together from the lowest set of the decomposition: 

 1)1(, ,...,,,  dddac
MAXMAXMAX jjjkj


. 

The algorithm can be halted at any level of the decomposition to create this 

vector of kjc , ’s which fully describes the original signal’s information.  It is these 

sc kj ',  that are used as the distinctive features of the spikes.   

While one could use the spike shape as a whole, the wavelets allow the 

spike shape itself to be non-stationary; the transform picks out the most salient 

features of the spike shape.  Also, because the coefficients are specific in time 

and frequency, the noise, which is typically high in frequency, will play much less 

of a role in determining the magnitude of the coefficients.  For example, if a 

neuron fires repeatedly within a few milliseconds in a burst, it is well known that 

the latter spikes are of a smaller amplitude but very similar in overall shape.  The 
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set of wavelet coefficients for these slightly differing spikes arising from the burst 

will be very similar and show less variability than the spike themselves. 

Figure 2.6: Schematic representation of the multiresolution decomposition 

algorithm.  The raw signal, S , is simultaneously filtered through a high-pass,  

1HP , and a low-pass filter, 1LP . The detailed output from the high-pass filter is 

saved. The approximation coefficients from the low-pass filter are passed onto 

the next level of filtering. See text for details. 

The coefficients may not all have the same variability between spikes (Fig. 

2.7).  To lower computation time, it is determined which coefficients are likely to 

provide the most aid in separating clusters.  Rather than simply choose those 

which have the highest variance, the Kolmogorov-Smirnov (K-S) test can be 

used to lower the dimensionality (Press et al., 1992; Quiroga et al., 2004).  For  
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Figure 2.7: Distributions of 32 of the wavelet coefficient magnitudes of the given 

spike shapes.   

each given coefficient, a cumulative distribution function (CDF) is constructed.  

Then a CDF from an associated Gaussian with the same mean and standard 

deviation (Ncdf) is constructed: 
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Taking the maximum of the absolute value of the difference between these two 

cumulative distributions gives a quantitative measure of how non-uni-Normal the 

distribution of values is:   

     xNcdfxCDFabsKS  max . 

In other words, this test gives a measure of how poorly the distribution can be 

described by a single Gaussian.  The 15 coefficients with the highest K-S values 

are chosen for the clustering, thus lowering the dimensionality and computational 

expense of the following algorithm. 

III:  CLUSTERING 

 For the clustering algorithm, I am modifying a procedure proposed by 

Marcelo Blatt and others (Blatt et al., 1996; Blatt et al., 1997) for general 

classification issues, and specialized for spike sorting by Rodrigo Quiroga 

(Quiroga et al., 2004).  This procedure is superparamagnetic clustering.  

Superparamagnetic clustering partitions data based on the local structure of the 

data utilizing neighboring interactions based on an implementation of the Potts 

model (Wu, 1982; Wang et al., 1990).  Because of the novelty and physical basis 

of this algorithm, I will present in full detail how it works and why this method is 
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more ideally suited for spike sorting than more traditional methods such as K-

means clustering (Duda et al., 2006).  

The goal of any clustering procedure is to find a partition in a D-

dimensional parameter space that separates data, ix


, into clusters such that the 

patterns contained within the clusters are more similar to themselves than to the 

patterns in the other clusters.  It is assumed that the parameter space is a metric 

space where the dissimilarity between points can be measured, as opposed to a 

non-metric space, e.g. a space defining a set of apple colors being red, yellow, or 

green.  Once this metric space has been set there is defined a measure of 

dissimilarity ijd  between points: 

jiij xxd


 . 

 There are two main approaches to partitional clustering: parametric and 

non-parametric (Blatt et al., 1997; Duda et al., 2006).  Parametric approaches 

assume some type of a priori knowledge of the underlying structure of the data, 

e.g. the clusters can all be described by a mean with a Gaussian distribution of 

points in the multivariate space. These assumptions are typically incorporated 

into a global criterion.  An ‘ideal’ partition of the data is obtained by maximizing 

(or minimizing) this criterion.  Typical examples of this approach are variance 

minimization, maximal likelihood, Gaussian mixtures, or K-means (Duda et al., 

2006).  These methods can be computationally expensive and there is no 

guarantee that the method does not get stuck in a local minimum of the criterion. 
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A major drawback of these methods is that the number of clusters in the 

data must be assumed beforehand.  Then the criterion for the given number of 

cluster centers is extremized.  In spike sorting neural data, there is no a priori 

way to determine how many units are contributing to the spikes present in the 

voltage trace.  Bayesian methods have been proposed for determining the most 

likely number of clusters (see, for example, Pouzat et al., 2000).  However, these 

methods can be computationally very expensive when clustering a large number 

of spikes and may not deal very well with non-Gaussian distributions within the 

data, as comes about with spikes occurring during a burst. 

If no a priori information can be assumed about the structure of the data, it 

may be more useful to use a local criterion and adopt a non-parametric approach 

to build clusters around high density regions of the data (Blatt et al., 1996).  A 

non-parametric approach which has been shown to work quite well for the case 

of spike sorting is superparamagnetic clustering.  This approach is realized as a 

Monte Carlo implementation of the Potts model, a generalization of the Ising 

model of magnetism.   

In the Ising model, magnetic spins are placed on a regular lattice.  The 

spins can take a value of +/-1.  The spins can interact with their nearest 

neighbors via some interaction energy J .  The Hamiltonian for this system 

(without an external magnetic field) is: 
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   
ji

jiISING SSJsH
,

 

where lS are the spin values and ‘  ’ denotes only summing over nearest 

neighbors. 

The Potts model generalizes the parameters allowing for any of q 

configurations for an individual spin.  Again, the spins may interact via an 

interaction energy but now only spins with the same configuration interact with 

one another: 

   
ji

ssijPotts ji
Js

,

 . 

where, again, ‘  ’ denotes only summing over neighbors, nm,  is the Kronecker 

delta function where 1, nm  only if nm  , where, qnm ,,1,  .  The interaction 

energy, ijJ ,is defined such that more weight is given to data points which are 

closer in the parameter space.  Because local interactions are assumed to 

dominate, the interaction energy does not need to be calculated for all points, 

only points which are neighbors to each other.  Neighbors are defined by points 

which share a common Voronoi tessellation boundary with each other (Bowyer, 

1981; Watson, 1981) (Fig. 2.8).  A fast algorithm for determining the tessellation 

in a high dimensional space was developed by Barry Joe (Joe, 1989).  

 A length scale is defined for the model by the average nearest neighbor 

distance a  which is governed by the high density regions and is less than the  
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Figure 2.8: An example Voronoi tesselation. Points within a colored boundary 

are closer to the dark spot in the boundary than any other.  Dark spots which 

share a common boundary are by definition nearest neighbors. 

typical distance between points in the low density regions.  Defining the average 

number of nearest neighbors as K , the interaction energy ijJ  is given by: 

 Once this is computed for all neighbors, an initial random state qs ,1  is 

assigned to each data point ix


.  Then M  Monte Carlo iterations are performed 

where a spin is chosen at random to be changed to a new state.  The number of 

iterations is typically set to 1000.  If a nearest neighbor’s state is in the same 
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initial state, then there exists a probability that it will also change state.  If it 

changes, then its nearest neighbors are also subject to the same probability of 

flipping.  Thus, rather than flipping individual spins one at a time as is done in a 

Metropolis algorithm (Hastings, 1970), entire islands of spins are flipped with 

each step.  This significantly increases the speed of the algorithm.  This method 

of flipping is known as the Wolf algorithm (Wolf, 1989, Quiroga et al., 2004).  The 

probability for flipping a neighboring spin is given by: 











ji SS
ij

ij T

J
p exp1 ,  

where T  is the temperature.  The M  iterations are run for a series of 

temperatures, typically from 0.01 to 0.40 increments of 0.01.  For each 

temperature the magnetization m  and the susceptibility   are determined by: 

1

1max


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



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
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q

q
N

N

m , 

 22 mm
T

N
 . 

where MAXN  is the size of the largest cluster.  Cluster membership is determined 

by the spin-spin correlation function 
ji SS  which must be above a given 

threshold  . 
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 A sample distribution of data which cannot be properly described by a 

Gaussian mixture is given in Fig. 2.9A.  The susceptibility   shown in Fig 2.9B 

determines the state of this system.  At low temperatures, fluctuations of the 

magnetization are small, therefore the susceptibility is small and the system is in 

a ferromagnetic phase where the entire system behaves as one class due to the 

flipping probability described above.  At very high temperatures, the spins are all 

flipping independently regardless of their interactions thus the susceptibility is  

A            B  

Figure 2.9: (A) Data distributions which cannot be parametrized by a mean with 

a surrounding distribution. (B) Susceptibility density of data in (A).  Note the 

presence of the three phases.  See text for details.  Both adapted from Blatt et 

al., 1996. 

very low as well.  This is the paramagnetic region.  At intermediate temperatures, 

only those spins which are grouped together will change their spins together; 

each cluster behaves as its own magnet.  This phase is the superparamagnetic 

phase and is observed by a spike in the susceptibility when raising the 

temperature.  After the spike, the susceptibility stays at a high level until it 

suddenly undergoes a transition to the paramagnetic phase (Fig. 2.9B). Once 

the superparamagnetic phase has been localized, the clusters are assigned.   
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This algorithm is quite robust to varying thresholds, q  values, and the 

number of nearest neighbors K  used.  I use: .5.0,15,20  Kq   Typically,  

q  needs to be higher than a reasonable maximum number of clusters within the 

data, but low enough so as to not slow down the algorithm.  The threshold   

could be between 0.1 and 0.9 and will still yield very similar results. 

 A very attractive part of his algorithm is that it finds and outputs the 

number of clusters.  It also works quite well with varying cluster sizes.  Typically, 

if there are clusters present of drastically different sizes, or if some clusters arise 

as sub-clusters of a larger cluster, there will be multiple spikes in the 

susceptibility.  The temperature used for the actual classification is typically the 

temperature immediately following the last spike in the susceptibility before the 

final plateau.  The temperature at which the classifications are made can be 

tuned when necessary, though I have found that it works very well being 

minimally supervised. 

 It is very important to perform additional checks on the output of the 

sorting algorithm.  For example, all spiking units have a refractory period after 

each spike. This is always of order a couple of milliseconds, though in certain 

circumstances it can fall to around a millisecond.  Thus, it is always advisable to 

construct inter-spike interval (ISI) distributions for the clustered spikes.  These ISI 

distributions are a good quick check to ensure that the algorithm is not grouping 

separate clusters into a single cluster.  If the ISI distribution is not zero below a 

couple of milliseconds, then there is a high probability that multiple clusters have 
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been combined together.  An ISI distribution for a well separated cluster should 

exhibit no intervals below one or two milliseconds.  A look at the autocorrelation 

of the resulting spike train will also provide a good check.  The autocorrelation 

computes the time-like correlations within the spike train.  It should also have 

values equal to zero for time lags between zero and one or two milliseconds.  

Finally, it is good to check the results of the clustering with a plot of the mean 

spike shape +/- its standard deviation.  If the standard deviation is not flat across 

the whole of the spike shape then there is a high probability that multiple clusters 

were combined and the algorithm should be re-run (as it is stochastic) or its 

parameters tweaked a little bit. 

RESULTS: 

Spike Detection: 

The detection method was tested with artificial spike trains over a range of 

seven different signal-to-noise levels, SNR’s, (1.5, 2, 3, 4, 5, 10, and 20) and 20 

different multi-unit average firing rates (MUAFR) ranging from 5 Hz up to 100 Hz.   

For each SNR/MUAFR pair, 100 unique spike trains were stochastically 

generated to obtain good statistics.  Fig. 2.10 shows two examples of such spike 

trains.  Each was generated with three distinct spike shapes which are marked 

with the colored triangles in the plots.  Notice how upon inspection it is not trivial 

that there are only three spike shapes present.  Also note that even at this 
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moderate MUAFR there is a significant probability for an occasional overlap of 

spike shapes (see Fig. 2.10B at time point 2000) (Lewicki, 1998).   

 

Figure 2.10: Example artificial spike trains.  (A) SNR=5, MUAFR=50. (B) Zoom 

in of plot in (A) showing a superposition of spike shapes. (C) SNR=2, 

MUAFR=50. (D) Zoom in of plot in (C) displaying more spike shape overlap.  

Times in all plots are in milliseconds and voltages are in arbitrary units.  Colored 

triangles denote different classes of spike shapes. 

 Figure 2.11 summarizes the percentages of detected false positives and 

false negatives resulting from using various types of thresholds tested with each 

MUAFR tested and it shows 4 of the tested SNR’s.  For all plots, the percentage 

values were determined relative to the actual number of spikes present in the 
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recording.  Thus, if there were 20% false positives, that means that the number 

of false positives equaled one fifth of the number of actual spikes present in the 

recording.  SNRs of 5, 10, and 20 are left out of the figure for clarity; the results 

for these high SNR values mirrored those obtained for an SNR of 4.   Each color 

corresponds to a different SNR.  Our method was tested along with other 

common methods: a threshold proposed recently (Quiroga et al., 2004), labeled 

‘Quiroga,’ and a more typical threshold taken from the literature (for example, 

Pouzat et al., 2002), labeled, ‘Classic.’  These thresholds are given by: 

 

 ,3

6745.0
4

xSDTHRESHOLD

xabs
medianTHRESHOLD

Classic

Quiroga










 

where ‘ x ’ is taken to be the whole voltage trace, and ‘ SD ’ is the standard 

deviation.  Typically, these two thresholds are set in the raw voltage trace, but 

they were also tested with the first derivative of the voltage trace to directly 

compare with our method.  There was no improvement in the results (data not 

shown).   

For all threshold varieties, very few of the detected spikes were false 

positives for SNR greater than or equal to four (Fig. 2.11).  The classic threshold, 

set as a multiple of the standard deviation of the whole voltage trace, suffers from 

a small percentage of false positives at low MUAFR over most of the SNR 

values.  Quiroga’s threshold, based on a multiple of the median value of the 

whole voltage trace, exhibits hardly any false positives in its detected spikes for 
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the whole range of SNRs and MUARFs tested.  My threshold is based on the 

relationship between the distribution of first derivative values of the voltage trace 

to a Gaussian distribution of the same mean and standard deviation.  This 

threshold does have a significant number of false positives in the set of detected 

spikes at very low SNRs when the MUAFR is low.  Note that the number of false 

positive detections falls off steeply as the MUAFR increases.  Even though the 

 

Figure 2.11: False positives and false negatives for various types of thresholds.  

LEFT: My threshold from Fig. 6. CENTER: Quiroga’s threshold. RIGHT: the 

classic threshold.  Results are based on 100 trials averaged for each MUAFR 

and SNR pair.  SNR values: Black=1.5. Red =2. Blue =3. Green =4.  

Percentages are relative to the number of actual spikes present in the recording 

(hence, false positives can be higher than 100%). 
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number of false positives can be high for low SNR and low MUAFR, these ‘noise-

spikes’ will not pose a great problem for the analysis of the spike trains.  The 

reason why is that the ‘noise-spikes’ will become clustered together away from 

the clusters of the actual spikes during the superparamagnetic clustering 

procedure.  When in doubt, it always wise to perform the above-mentioned tasks 

to check the quality of the clustering.  The goal of this threshold is to detect all 

spikes present and then filter out the noise rather than miss some spikes at the 

early detection phase.  

The false negatives are the spikes which were present in the voltage 

traces but were not detected by the set threshold.  The classical threshold works 

very well for high SNR values (blue and green traces) over a wide range of 

MUAFRs.  However, at SNR at or below 2 (red and black, respectively) the 

percentage of missed spikes is high.  For example, at a MUAFR of 80 Hz and an 

SNR of 2, the classic threshold misses nearly one-third of all spikes present.  The 

results are even worse for a lower SNR.  Quiroga’s threshold also suffers from 

very few false negatives (center of Fig. 2.11). In fact, his proposed threshold 

does even better than the classic threshold at moderate to high SNR values.  

The rise in false negatives as the MUAFR is increased is less steep for Quiroga’s 

threshold than for the classic.  However, at and below a SNR of 2 the numbers of 

false negatives actually rises much worse than the classic threshold; Quiroga’s 

threshold overestimates the best threshold for spike detection thus leading to 

very few false positives but also leading to many false negatives.  
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My threshold does not miss many spikes at low SNR levels, and in fact 

detects a far better percentage than the other two thresholds tested here.  As the 

MUAFR is raised, the percentage of missed spikes steadily rises with a low 

slope, as there are when using the other thresholds.  The percentage of missed 

spikes is no worse for my method than with the others.  In fact, as the SNR level 

deteriorates, my method still detects those spikes which have a SNR very close 

to the noise level.  Even at a SNR as poor as 1.5, my threshold does not break 

down as the others do.  For a recording with a MUAFR of 80 and a SNR of 2, my 

threshold misses around 10% of the spikes present in the recording.  The classic 

threshold misses nearly one-third and Quiroga’s threshold fails to detect 40% of 

the spikes present in the voltage trace. 

DISCUSSION: 

 I described in this chapter a complete and unsupervised method for spike 

sorting.  The threshold is determined by the statistics of the recording site.  The 

clustering method is fast and robust to varying cluster shapes and sizes.  This 

algorithm is ideally suited for helping determine where to place an extracellular 

electrode while recording in neural tissue.  Ideally one likes to be in a location 

where there is easily separable multiunit activity which is responding to the 

stimulus of interest.  With this method, one can place the electrode in the neural 

tissue and record for a few minutes the responses to a stimulus.  The responses 

can then be sorted so that the experimenter can see how many units he or she is 

recording and how different their spike shapes are.  Ideally, one likes to be in a 
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location where the spikes arising from different units are as differently shaped as 

possible.  The shape of a spike is dependent upon where the recording electrode 

is placed relative to the unit and where the spike is generated (Chung et al., 

1970; Quiroga, 2009).  Thus, with some careful maneuvering, one can be 

recording from the same set of units and still maximize the differences between 

the spike shapes. 

Spike sorting is of utmost importance in any extracellular recording.  Even 

if one is sure that there is only one large SNR unit responding to the stimuli, 

putting the collection of spike shapes through a classification algorithm will 

ensure that there are not more units present which are close to the electrode and 

responding in a similar fashion.  It has been shown that in many systems 

neighboring neurons respond in similar ways due to shared inputs and 

overlapping receptive fields (REFS). 

It is informative to look at the thresholding results at a moderate MUAFR, 

for example 70 Hz. This is the MUAFR that is used in Quiroga’s paper on his use 

of the superparamagnetic clustering where he describes the results of both his 

clustering and his threshold detection (Quiroga et al., 2004).  At this MUAFR, my 

method suffers from around seven extra spikes per second at the lowest SNR.  

In a SNR=1.5 trace it is very challenging to notice the spikes by eye.  Quiroga’s 

threshold detects very few false positives.  Turning now to the false negatives, or 

spikes which are present in the recording but are not detected by the threshold, 

my threshold will miss, on average, around seven spikes per second again at 
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most SNR’s.  Both Quiroga’s and the classic threshold suffer greatly at poor 

SNR.  In fact they miss between 20-40% of all spikes, which is quite 

unacceptable.  At moderate to high SNR, all three detection thresholds do quite 

well. 

In assumption (1) above it was stated that we assume that each spike 

from a given neuron looks identical (without noise), or, put another way, points to 

the same location in the 64-dimensional parameter space.  The noise spreads 

out the set of points corresponding to a set of spikes from a given unit into a 

cloud whose distribution can be described by the covariance of the noise.  

Additionally, due to bursting, the shape of a given unit’s spikes will have an 

inherent variability which will trace out some manifold in parameter space.  These 

factors compound each other and force us to abandon our strict interpretation of 

our first assumption.  Rather, it is better to state that each unit will produce spikes 

which, when taking into account the noise and variance due to bursting, are more 

similar to each other than to spikes from other neurons but whose distribution 

cannot be assumed to be multivariate Gaussian in nature.  Thus, it makes more 

sense to look for locally high density regions in the data as the non-point-like 

centers of the clusters.   This method of superparamagnetic clustering is based 

on the nearest neighbor interactions, which we limit by defining K above, and so 

it does not assume that clusters have a low variance, a Gaussian distribution, or 

are non-overlapping (Quiroga et al., 2004). 
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In summary, I presented here a new threshold, based on the statistics of 

the data, which detects a larger percentage of spikes present in neural traces 

than other thresholds which are currently in common use.  I demonstrated that 

the false positives which are detected by this threshold can be discarded after 

clustering.  The clustering method is a modification of a recently proposed 

algorithm which uses the local structure of the data to non-parametrically cluster 

the spike events into groups corresponding to individual units in the neural tissue 

as well as a cluster of noise and non-separable spike event superpositions. 
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Chapter 3:  

ON LONG TIME CONSTANTS IN THE RESPONSES OF 

NEURONS WITHIN THE NUCLEUS ISTHMI OF THE 

FROG, RANA PIPIENS  

 

ABSTRACT:   

The nucleus isthmi (NI) is a compact midbrain structure within non-mammalian 

vertebrates that provides direct topographic feedback to the optic tectum, the 

primary destination of sensory efferents.  I herein describe the temporal 

responses of units within the NI of the northern leopard frog, Rana pipiens, to 

dynamic visual stimuli.  The frogs were visually stimulated with computer driven 

simple stimuli.  Recordings were taken extracellularly within the NI and spike-

sorted to obtain simultaneous recordings of individual units.  The responses 

displayed long delays not readily explainable by the latency of response to the 

stimulus, nor predictable based on the temporal characteristics of the stimuli.  

Implications on attention in the frog visual system and on the effects of the 

feedback on the stream of visual information will be discussed. 

INTRODUCTION: 
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The nucleus isthmi (NI) of the frog, Rana pipiens, is a visual center which 

receives input solely from the ipsilateral optic tectum (OT) (Gruberg et al., 1980; 

Wang 2003).  Some units within the NI project feedback to the same topographic 

location within the ipsilateral OT from which it received input and a separate set 

of isthmic neurons project to the contralateral OT, also to the same visuotopic 

location (Dudkin et al., 2007).  There are thus two topographic visual maps within 

the NI.  The NI provides the sole cholinergic projection to the superficial layers of 

the optic tectum (Desan et al., 1987; Wallace et al., 1990).  It has been shown 

that the feedback projections to the ipsilateral OT are not to the same neurons 

from which the NI received a projection (Gruberg et al., 1994).   

Behaviorally, the nucleus isthmi has been shown to be necessary for the 

frog to respond to moving stimuli (Gruberg et al., 1991), though the frog can 

recognize non-moving objects without the OT or NI (Ingle, 1973; Saltzman et al., 

2004).  Much work has been done describing the responses of the NI units to 

visual stimuli (Gruberg et al., 1980; Winkowski et al., 2002; Wang, 2003), though 

the temporal aspects of the responses have yet to be elucidated.  The temporal 

aspects of the responses of the NI may have a profound impact on the nature of 

feedback. It may act as a winner-take-all mechanism (Lee et al., 1999; Marin et 

al., 2007; Brandt et al., 2007), direct attention (Reynolds, 2008), control 

oscillations (Bal et al., 2000), precision to stimuli (Andolina et al., 2007), or other 

aspects in which temporal parameters in feedback may play a key role (Funke et 

al., 1997; Bair et al., 2001; Choe, 2004).   
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In this chapter, I will report the temporal responses of the NI to simple 

visual stimuli.  The stimuli consist of diffuse illumination steps, and moving and 

looming spots.  All responses are recorded extracellularly.  The voltage traces 

are spike sorted allowing me to simultaneously record the responses of multiple 

units.  The responses displayed nontrivially long time constants which are not 

easily explained by the time course of the stimulation.   

METHODS: 

Surgery and Preparation: 

Adult leopard frogs (2-6 cm from snout to vent, 20-40 gram body weight; Hazen’s 

animal farm, Alburg, VT) were anesthetized by immersion in an aqueous solution 

of 0.2% 3-amniobenzoic acid, commonly referred to as MS-222, (Sigma 

Chemical Co., St. Louis) in dechlorinated tap water.  Once the frog was fully 

anesthetized, realized by observing that the buccal breathing motions had 

ceased, a flap of skin measuring about 1 cm side-to-side and 2 cm along the axis 

of the frog was removed from just behind the eyes to expose the skull which lies 

directly above the optic tectum, cerebellum, and the rostral part of the hindbrain.  

A rectangular patch of the exposed frontal parietal bone of the skull was removed 

with a Dremmel equipt with a 1 mm spherical bit.  A small incision was made into 

the dura mater, a thin membrane covering the optic tectum, and subadjacent 

arachnoid allowing the electrode direct access to a 1 cm2 section of the OT or NI 

underneath.  Cotton was placed within the mouth of the frog to push the eyes up 
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into the same configuration as an awake and responsive frog.  The frog was 

wrapped in cheese cloth and the cheese cloth was pinned to a sturdy section of 

foam core insulation.  The head was supported 1 cm above the rest of the body 

and a rod was placed in the mouth and secured to the support to ensure a rigid 

holding of the frog.  The frog was kept moist with a solution of 0.02% MS-222 in 

aquarium water dripped onto the cheese cloth.  In addition, to ensure 

immobilization during recording, the frog was periodically given an injection of 

0.03 ml (per 20 grams body weight) solution of d-tubocurarine chloride (3 mg/ml; 

Sigma Co., St Louis) into the dorsal lymph sac.   

 The frog was secured to a rotatable stage for optimal alignment with the 

recording electrodes and the stimulating monitor.  The entire rig was situated 

within a Faraday cage with a hole cut in the side for the frog to be able to see the 

visual stimulation monitor.  The faraday cage was covered in an opaque black 

conductive cloth to seal out all ambient light which was not emanating from the 

stimulation monitor.  All surgical procedures were approved by the Washington 

University Animal Care Facility and were in accordance with the National 

Institutes of Health and Society for Neuroscience guidelines. 

Extracellular recordings: 

Borosilicate glass electrodes (A-M Systems, Everett, WA) were filled with 

Cerrolow-136 (as described in Dowben & Rose, 1953) and electroplated with 

gold and platinum to obtain an impedance between 50 k - 0.5 M.  The signal 
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was amplified by a gain factor of 1,000 and filtered between 10 - 5,000 Hz with 

an A-M Systems 1800 amplifier.  The signal was connected to a Tektronix TDS 

210 oscilloscope and a speaker (AM Systems 3300) and monitored in real time.  

The signal was sent to the computer via a BNC 2090 A/D board (National 

Instruments, Austin, TX), and acquired via LabVIEW (National Instruments, 

Austin, TX) with a sampling rate of 10 kHz and stored for off-line analysis.  All 

data is analyzed off-line in MATLAB (Mathworks) with custom or built-in routines 

that are available upon request.   

The raw voltage signal was smoothed by passing it through a band-pass 

filter between 300 and 5000 kHz formed with a 4-pole Butterworth filter.  Spike 

events were detected using the threshold previously described (Eggebrecht, 

2009).  Briefly, the probability distribution of points in the first derivative of the 

voltage trace is subtracted from the associated Gaussian distribution having the 

same mean and standard deviation.  The positive and negatives values of the 

zeros of this difference are set as the positive and negative thresholds in the first 

derivative, respectively.  The entire set of recordings from a given electrode 

placement is used to properly determine this threshold.  The detected spike 

events are then sorted using a superparamagnetic clustering algorithm (Quiroga 

et al., 2004).  The sorting method removes false positives from the set of spikes 

and checks clustering with the interspike interval distributions. 

The electrodes were placed into the frog’s left OT with an electric 

micromanipulator (MP 285, Sutter Instruments).  Activity was briefly recorded in 
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the superficial OT to ensure that the frog was healthy and responsive.  The 

coordinates of the midline of the OT and the caudal pole of the OT were used to 

determine where to place the electrode for the penetration to the NI.  The NI was 

reliably located between 100 - 1000 µm lateral of the midline, 25 - 200 µm rostral 

to the caudal pole, and 1050 - 1600 µm ventral to the dorsal surface of the OT 

(depending on the size of the frog).  An incorrect positioning of the electrode was 

clear if there were auditory responses at a depth where NI responses were 

expected.  If this was the case, the electrode was brought back to the surface 

and repositioned relative to the caudal pole and midline.  Proper placement 

within the NI was checked by the varying of the receptive field to placement of 

the electrode: the receptive fields recorded within the NI will move temporal-

nasally when the electrode progresses dorsal-ventrally (Gruberg et al., 1978; 

Gruberg et al., 1980; Winkowski et al., 2002).  Microelectrode locations were 

verified by an electrolytic lesion (-5 µA DC for 5 sec) at the recording site and 

visualized after fixing the tissue. 

Histology: 

After the recording session, the frog was anesthetized with the 0.3% MS-222 

solution and perfused through the conus arteriosus with a 0.7% NaCl solution 

followed by a fixative (75 ml 95% ethyl alcohol, 5 ml glacial acetic acid, 5 ml 37% 

formalin, 15 ml distilled water).  The brain was removed and dehydrated through 

a graded set of alcohol solutions and cleared in cedarwood oil overnight.  The 

brain was embedded in paraffin wax and sectioned transversely (thickness, 15 
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µm).  Serial sections were floated onto distilled water covered albumen/ glycerol 

coated slides and dried thoroughly overnight on a slide warmer (at 40ºC).  The 

paraffin was dissolved in xylene (Sigma Co., St. Louis).  The sections were 

hydrated, stained with cresyl violet (Sigma Co., St. Louis), then dehydrated and 

coverslipped. 

Visual stimulation: 

Once the electrode was properly placed within the NI, the stage was rotated to 

place the axis of the frog parallel to the stimulation monitor (Samsung 244T LCD 

monitor: contrast ratio of 1000:1, 24”, 1920 X 1200 resolution, 500 cd/m2 

maximum brightness).  The frog’s right eye was placed facing the monitor at a 

distance of 6”.  The receptive fields were mapped out with a laser pointer, or via 

the computer monitor with a white box on a black background or a black box on a 

white background each controlled by a mouse.  The center of the monitor was 

aligned with the center of the frog’s multi-unit receptive field.  All stimuli were 

presented monocularly to the right eye. 

The visual stimulation was presented via the Presentation software 

package (Neurobiological Systems, Seattle, WA) with custom built routines.  The 

exact timing of the visual stimulus was reported in Presentation and checked with 

a photodarlington (aimed at the center of the electrically recorded multi-unit 

receptive field) which sent a signal to the acquisition program.  The flicker rate of 

the monitor was on the order of tens of microseconds.  This was two orders of 
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magnitude faster than stimuli which the frog can respond to and did not interfere 

with the responses of the neural units from which we were recording. 

 We presented three main visual stimulations: one-dimensional diffuse 

illumination flashes, moving spots, and looming spots.  The diffuse illumination 

stimuli consisted of five seconds of a fully bright white screen followed by five 

seconds of a fully dark screen.  This protocol was repeated five times per trial.  

The moving spot stimuli consisted of a spot appearing static on the screen in one 

of eight symmetric positions around the visual field.  The spot was either 2º or 

15º in diameter.  After three seconds, the spot moved straight across the visual 

field center to the opposite location at an average speed of 10 deg/s.  The spot 

then sat motionless on the opposite side of the screen for an additional 4 

seconds before the trial ended. 

The looming spot is a bit more subtle.  We followed the general protocol of 

Gabbiani et al., 1999 and Sun et al., 1998.  The spots were enlarging dark discs 

on a white background designed to simulate an object approaching the frog on a 

collision course with constant velocity.  The responses to light discs on a dark 

background were qualitatively very similar and will not be discussed.  The time 

course of the angular size of the spot subtended on the frog’s retina is the 

variable of interest that characterizes the approaching stimuli.  Let x  denote the 

position of the spot with respect to the eye of the frog, where 0x  at the time of 

collision and 0x  on approach.    If we define 0t  as the moment of collision 
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and let 0t  before the collision, then an object on approach with a constant 

velocity is defined by the equation: 

  tvtx  , 

where v  is defined to be negative since it is approaching the origin.  The angular 

size of the object at the retina is given by: 
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where R  denotes the object’s half-size.  The half-size on the screen,  tl , is: 
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where d  is the actual distance from the screen to the frog’s eye.  Recall that for 

our set-up, d =6 cm.  The motion of the spot on the retina of the frog can most 

compactly be expressed by the ratio,  , of the spot’s half-size to its apparent 

approach velocity: 

v

R
 . 

Note that two different objects, one with twice the size and twice the approach 

velocity as the other, will have the same value of  , which is in units of time.   

We tested the response of the NI with   values of 25 ms and 115 ms. 

These correspond to a prey-like object of full-size 50 mm (like a cricket, a favored 
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delicacy for a frog) or a predator-like object of full-size 230 mm (such as a bull 

frog) moving towards the frog at 1 m/s, or a large hawk measuring 1,610 mm and 

approaching at 14 m/s.    

Data Analysis: 

The extracellular recordings were all filtered off-line to separate any local field 

potential (LFP) components from the high frequency action potentials.  The LFP, 

or low-pass, band was formed by filtering the raw signal between 10 and 300 Hz.  

The high frequency part used to detect spikes was formed by filtering the raw 

signal between 300 and 5000 Hz.  Spikes were detected and sorted as described 

above in Chapter 2.  Average firing rates were formed by binning the spike times 

into bins of 1 ms, averaging over trials, and convolving with an alpha function 

equal to: 
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chosen so that the integral from zero to infinity is equal to one, and so that 

reasonable firing rates result.  This function has a width at half-maximum 

approximately equal to 11 ms.  An alpha function was chosen rather than a 

Gaussian for the smoothing function to conserve causality; smoothing with a 

Gaussian spreads the response into both the forward and backwards directions 

in time; thus it appears that the response actually precedes the stimulus!  
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Smoothing with an alpha function avoids this problem and retains the actual 

delay time from visual stimuli to isthmic response. 

RESULTS: 

Diffuse Illumination 

The steady state behavior of units within the NI contains a level of spontaneous 

activity around 2.23   1.28 Hz ( SD ).  In a light environment the level of 

spontaneous activity (4.78   2.32 Hz) is slightly higher than when in a dark 

environment (1.68   1.06 Hz).  When the frog is presented with strong changes 

in diffuse illumination, the response is quite different for ON or OFF stimuli (Fig.3. 

1).  The top of the figure shows a sample extracellular voltage trace recorded 

within the NI to first a step up in diffuse illumination (blue to white) followed five 

seconds later by a strong drop in diffuse illumination (white to blue; time course 

of illumination change is shown in red bar at bottom of figure).  After 50 trials it is 

clear that the non-trivial time course of the response is highly reproducible.  

 In response to the ON step (white section in Fig. 3.1), all units display a 

very strong burst of firing lasting less than 100 ms.  Following this is more than a 

second of a response which is lower than the spontaneous average firing rate.  

On many individual trials this period of no response lasts nearly 1,500 ms.  

Following this tacit period all units exhibit a strong second wave of activity.  For 

some units this activity reaches less than half of the peak in firing rate 

immediately following the ON step (units 4 and 5), while for others the second  
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Figure 3.1: Response within the NI to diffuse illumination flashes.  Blue section 

denotes dark environment.  White section denotes bright environment.  The steps 
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are 5 sec in length.  The red step at the bottom shows the time course for the 

bright environment and dark environment.  There are 50 repetitions of the 

stimulus. Top trace is a sample raw voltage trace.  Below that is the multiunit 

average firing rate.  Below that are the sorted responses showing the 50 trials in 

raster plots and their respective average firing rates.  All scale bars for individual 

units correspond to 50 Hz.  See text for details. 

wave of activity reaches a firing rate nearly equal to the initial response (units 1 

and 2).  This second wave of activity lasts over a second for most units.  Note 

than in some units the second wave of activity actually contains an oscillation in 

the level of the response (units 3 and 5) with a width of approximately 0.3 

seconds.  Following this, the activity falls again to spontaneous levels but then 

resurges yet again in a third, though less strong, wave of activity.  This third wave 

of activity settles back down to the level of spontaneous activity in around 2 

seconds (data not shown).  Thus, in the NI the response to an ON step contains 

three waves of activity.  The first is very strong and very short, followed by a long 

period of very low response.  The second is also strong but lasts over a full 

second, with no period of silent activity following.  The third wave is a moderate 

response which returns to the original background level after a few seconds. 

 In response to the OFF step (blue section in Fig. 3.1), units within the NI 

exhibit a strong initial response which is not as strong as the initial response to 

the ON stimulus.  Following this is a period of low activity.  There is no secondary 

wave of activity in the response to an OFF step.  Around one to two seconds 

following the strong response, the activity returns to the background level.  Note 
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that the latencies for the response to an ON and an OFF step in background 

illumination are approximately equal and are around 80-120 ms. 

 

Figure 3.2: Response within the OT to ON and OFF steps of light. (A) Raw 

extracellular recording in OT in response to on OFF step (blue) and an ON step 

(tan).  The OT had only one phase of responses to both ON and OFF stimuli, 

thus both are shown on a shorter time scale for clarity.  (B) FFT of data in (A).  

Note strong peaks around and under 10 Hz and 30 Hz.  (C) Expansion of section 

of raw trace within box in (A).  Note the presence of periodic bursting.  (D) Data 

in (C) passed through a high-pass-filter of frequencies 800-4,000 Hz. (E) Data in 

(C) passed through a low-pass filter of frequencies 10-80 Hz.  Scale bare shown 

in (E) corresponds to all (C), (D), and (E). See text for details. 
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 The primary input to the NI is from the OT.  Yet the response within the 

OT has a very different time course (Fig. 3.2 A).  The blue section shows the 

response to an OFF step while the tan section shows the response to an ON 

step.  The response to the OFF step is driven by the RGC type IV axons (the 

dimming detectors) and has a longer time course than the response to the ON 

step.  Note that there is no secondary wave of activity within the OT in response 

to either an ON or an OFF step.  Also, note that the response to an OFF step is 

of a longer time course than the isthmic response.  A Fourier transform (FFT) of 

the response in the OT shows a small peak around 3 Hz, some strong peaks 

around 8-11 Hz, 22-25 Hz, and around 28-32 Hz (Fig. 3.2 B).  The higher 

frequency oscillations can be more clearly seen in a detailed in look at the 

response (Figs. 3.2 C-E).  Figure 3.2D shows the high frequency components of 

the response by filtering the raw response between 800 and 4,000 Hz.  Notice 

that the spikes are occurring during clearly defined periods with a bursting period 

of about 30-40 ms, corresponding to the peaks in the FFT centered around 30 

Hz.  Figure 3.2E shows the local field potential in the OT found by filtering the 

raw signal between 10 and 80 Hz.  Note that the spikes in Figure 3.2D all 

occurred during local minima of the local field potential shown in Figure 3.2E. 

Moving Spot  

The response in the NI to moving spots is qualitatively similar regardless of the 

direction of the movement of the spot.  Shown here (Fig. 3.3) is the response to 

a black 15º spot moving in the nasal-temporal direction on a white background.  
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Responses to a white spot on a dark background are qualitatively similar and are 

not shown.  The tan section denotes that the spot has not yet started its 

movement.  When the white section starts, the spot begins to move across the 

center of the multiunit receptive field.  Note the strong initial response to the 

commencement of motion.  The latency in the response to the beginning of 

movement is equal to the latency seen above for the initial response to an ON or 

an OFF step in diffuse illumination, around 80-120 ms.  While there is a large 

difference in the strength of response between the different units, they all 

responds vigorously to the beginning of the movement and their responses to the 

steady movement across the visual field are higher than the spontaneous 

activity.   

Trials were also conducted with a 2º spot.  The only differences between 

the responses to a 15º and a 2º moving spot are the firing rate and the direction 

sensitivity.  The firing rate is higher for the larger spot but the time course of all 

aspects of the response are similar.  The direction sensitivity is higher for the 

larger spot (Fig. 3.4), though direction sensitivity was not seen in all units.  For a 

given electrode placement, if any units had some directional preference, then all 

units had roughly the same level of directional sensitivity.   The directional 

preference observed in Fig. 3.4 is for a stimulus starting in the superior-nasal 

part of the visual field moving inferior-temporally. 

The most interesting part of the NI response to moving spot actually 

occurred after the spot stopped moving (Fig. 3.5).  As before, the white section  
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Figure 3.3: Sample response to the start of a moving spot.  Tan section denotes 

that the spot is stationary.  The stimulus used was a 15º spot moving nasal-

temporally.  White section corresponds to time during spot movement.  Top trace 

is a sample raw voltage trace.  Below that is the multiunit average firing rate.  

Below that are the sorted responses showing the 4 trials in raster plots and their 

respective average firing rates.  All scale bars for individual units correspond to 

50 Hz.  See text for details. 
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denotes the motion of the spot.  The colored section denotes the spot is not 

moving.  The green section represents the usual response latency as determined 

by the responses to the ON and OFF steps and to the start of motion.  Note that 

there is no strong response at the right edge of the green area where it is 

expected.  Rather, the firing rate stays higher than the spontaneous level for all  

   

Figure 3.4: Directional sensitivity to a moving spot.  Polar plots of the relative 

response strengths across all simultaneously recorded units in a given 

penetration.  Note that the sensitivity is slightly higher for the larger spot.  Also 

note that all units have similar sensitivities.  90º corresponds to the superior 

visual field. 180º corresponds to the nasal visual field.  Colors represent different 

units.  All units were recorded simultaneously at one location. 

units for nearly 1,700 ms until there is a sudden rise in activity.  It is important to 

note that nothing occurred during this time.  When the spot stopped moving, it sat 

within the multiunit receptive field.  No immediate response to the cessation of 

movement was observed for any spot size or for any of the eight tested 

movement directions.  Yet, there is this delayed response to the cessation of the  
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Figure 3.5: Delayed response to cessation of movement.  White section denotes 

movement of spot.  Colored section denotes the lack of motion.  Width of the 

green section denotes the expected latency of response given the delay these 

units had when responding to both a screen flash and the commencement of 

motion.  The tan section denotes the continued lack of motion of the spot on the 

screen.  Top trace is a sample raw voltage trace.  Below that is the multiunit 

average firing rate.  Below that are the sorted responses showing the 4 trials in 

raster plots and their respective average firing rates.  All scale bars for individual 

units correspond to 50 Hz.  See text for details. 



97 

motion of the spot which takes nearly 1,700 ms to come about.  Note that not 

every unit responded at this point on every trial (see units 3 and 4 in the fourth 

trial (fourth from the bottom).   

Looming Spot 

The responses of units within the NI to a looming object are more diverse than to 

a moving dot or to a diffuse illumination step (Fig. 3.6).  Some units (units 1, and 

5) produced a significantly large firing rate nearly half a second before the 

collision.  The response of these units then dropped significantly before again 

peaking around the moment of impact.  Recall that units within the NI all have a 

latency of response of between 80-120 ms.  Thus, for the response to peak at 

the time of collision implies that the unit, or the inputs to the unit, had already 

calculated the trajectory of the looming stimuli.  More evidence for this possibility 

is seen in the response of unit 2.  Note that the peak in its response is at or 

slightly after the moment of collision, whereas other units peak before the 

collision time (Fig. 3.7).  It has been shown that the responses of looming 

sensitive neurons may correlate with variety of different aspects of the stimulus 

parameters (Hatsopoulos  et al., 1995; Sun et al., 1998; Gabbiani et al., 2005).  

Some responses correlate with the time to impact, others to the angular size (red 

line in Fig. 3.6) others to the angular velocity (blue line in Fig. 3.6) of the leading 

edge of the spot, and others to non-linear combinations of the angular size and 

the angular velocity.  Time-to-impact neurons will begin their primary response at 

the same moment before the collision is expected regardless of the velocity of  
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Figure 3.6: Timing of the responses to different looming stimuli.  (A) The 

response over the three seconds before collision with the looming object.  (B) 

The response over the final second of approach.  The firing rate is shown in 

black in Hz.  Bin size for firing rate is 30 ms.  Red is the object’s angular size in 

degrees.  Blue is the angular velocity in degrees per second.  All units use the 

same scale to the left.  Time is in seconds. 

the object.  Recall that we used β values equal to 25 ms and 115 ms.  If these 

values are for the same object, then the 25 ms value corresponds to an object 

travelling at 4.6 times faster than the object with β=115.  Thus, if an object is 

responding to a threshold crossing in object size or object angular growth rate, 

then the response should begin earlier for a slower object.  Unit 2 may be a unit 
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whose onset is determined by the time to impact.  Unfortunately, not enough β 

values were tested to test for trends in these data to test for these possibilities.    

Figure 3.7: Timing of peak in response relative to collision time.  Different colors 

refer to different units.  Object diameter over velocity is twice the β value.  See 

text for details. 

Zooming in further (Fig. 3.8), it is apparent that the responses are quite 

complicated in the time domain.  The responses of units 1, 2, 4, and 5 all appear 

to peak nearly 200 ms before impact, drop off severely for nearly 50 ms, only to 

surge back to an overall peak as the object nears collision.  Unit 3 peaks in its 

response 42 ms before collision.  Unit 4 actually peaks after the collision.  The 

responses of units 1 and 5 appear to have three primary lobes of activity.  These 

imply some underlying oscillation in the activity of the inputs as was seen in the 

responses to other stimuli above.  This oscillation may be described by the time 

course of the stimulus.  The frame rate of the looming spot was 15 Hz  
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Figure 3.8: Sample response to the start of a looming spot.  Black vertical bar at 

bottom denotes the time of impact.  Tan section denotes time after impact.  Blue 

section denotes that the spot has stopped enlarging and its extent is greater than 

the extent of the multiunit classical receptive field.  The stimulus had a β-value 

equal to 25.  White section corresponds to time during looming of spot.  Top 

trace is a sample raw voltage trace.  Below that is the multiunit average firing 

rate.  Below that are the sorted responses showing 4of the 10 trials in raster plots 

and their respective average firing rates.  All scale bars for individual units 

correspond to 50 Hz.  See text for details. 
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corresponding to a frame presentation time of 66.66 ms.  This time matches the 

period of oscillations in the responses of these units.  Because of the speed of 

the approaching object, during the last moments of approach the spot size grows 

very fast causing the final frames of approach to look more discontinuous than 

the rest of the stimulus.  Thus, it is highly possible that these oscillations are due 

to the discontinuous nature of the stimulus.  They may be in response to the 

sudden darkening of the screen due to the much larger spot size, or due to jumps 

in the spot size.  A set of control experiments was run in which the whole screen 

illumination magnitude was progressively changed with the same time course of 

the looming spot to test if the response was due to the illumination changes or 

due to the spot size increasing.  The oscillations discussed here were not present 

in the responses to the progressive steps in illumination (data not shown).  Thus, 

it is likely that the oscillations are due to the discontinuous jumps in the size of 

the spot or in the discontinuous location of the edges of the spot. 

DISCUSSION: 

I found that the responses of units within the NI have very long time constants in 

comparison to the time course of the stimuli.  This long time course of the 

response is not seen at the level of the superficial OT.  Two of the responses 

stick out as especially surprising: the secondary wave of activity in response to 

an ON step in diffuse illumination which follows a 1,500 ms gap in activity, and 

the 1,700 ms delayed response to the cessation of movement of a moving spot. 
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 While other systems have shown a long and temporally complex response 

to a diffuse illumination step (Lu et al., 1995; Funke et al., 1997; Worgotter et al., 

1999) the nearly two seconds of suppressed response seen here does not 

appear to be described in the literature.  Long delay times have been described 

within the retina of the rabbit and salamander (Roska et al., 2001; Roska et al., 

2006), though these seem to be due to lateral inhibitory interactions.  A long 

delay of a few seconds (Chung et al., 1970) was observed in the dimming 

detectors of the frog, though this was in response to strong drops in luminosity.  

There was no such long term behavior in the NI units in response to the OFF 

step in luminosity.   

 There are two possibilities for the long period of silent activity and the 

secondary wave of activity: intrinsic cellular mechanisms and interactions, or 

network interactions. 

Many neurons display lower activity after a strong burst of spiking activity; 

however, these silent periods are typically around tens to even hundreds of 

milliseconds long.  Periods of quiescence like these are caused by habituation of 

ion channels which usually recover on shorter time scales.  Thus, it seems 

unlikely that the tacit response is due to intrinsic aspects of the cellular 

properties.   

The other possibility is that network activity caused the silent period and 

the sudden resurgence.  After recovering from a period of hyperpolarization, as 
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could be caused by a strong inhibitory input, it is normal for a neuron to fire a few 

spikes.  However, the secondary wave of activity is long lasting, nearly two 

seconds in length.  As shown above, in response to an ON step of illumination, 

there is no secondary activity in the superficial layers of the OT.  Could the 

inhibitory input be arriving from somewhere else?  It is possible that there are 

inputs to the NI which arise from the OT which were not recorded within the 

superficial OT.  Some neurons have been shown to project to the NI which have 

somata in layers 2 or 4 of the OT.  A possible projection from the tegmentum has 

been described (Udin, 1987) which is composed of a small number of neurons 

(40 or so).  The NI has stained positive for GABA (Li et al., 2001) but it appears 

inconclusive as to whether or not these locations are in cell bodies of neurons 

which project to the OT.   

The NI in the turtle and the bird all have multiple nuclei.  One subnucleus, 

the Ipc, projects ACh back to the OT in a topographic manner.  The other 

subnucleus, the Imc, projects GABA non-topographically to the OT as well as the 

Ipc.  Thus, it is reasonable to hypothesize that the neurons which may act as the 

Imc are actually within the NI of the frog along with the neurons which play the 

part of the Ipc.  The NI has already been shown to be cholinergic and it projects 

back to the OT in a topographic manner.  Yet, neither the ipsilateral nor 

contralateral projection of the NI is nontopographic.  There is a possibility that 

there are intra-isthmic connects in the frog, but as of yet, there is no supporting 

evidence of this.  Some studies have demonstrated that there are gap junctions 
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(direct electrical connections) between some isthmic neurons within the frog 

(Wang, 2003; Caudill, personal communication) as there are in the NI of the fish 

(Northmore, 2003).  However, these gap junctions serve to increase the 

likelihood of simultaneous responses in the NI, but do not explain the long time 

behavior seen here. 

The other surprising result is the delayed response to the cessation of 

motion of a moving spot.  Some units have been previously described in the OT 

as ‘newness’ or ‘sameness’ units (Lettvin et al., 1961).  However, the responses 

seen here in the NI were not observed in early trials within the OT (data not 

shown).  In addition, in his seminal papers of the 1970’s (Ingle, 1973; Ingle, 

1975) Ingle notes, respectively, that there are multiple pathways for visual 

information, and that the attention of the frog must be controlled or driven by the 

tectal system or an element within that system.  The units which Lettvin and Ingle 

found all had longer time constants in their responses and their driving stimulus 

were very complex.  It is possible that a small number of units within the OT, 

such as those described within these papers, could be driving the delayed 

responses seen here in response to the stopping of motion.  Even so, the long 

time of the delay is still very puzzling.  Assuming a synaptic delay between any 

two members of a neural circuit of around 10 ms and a conduction time of 100 

ms (a very long conduction delay if the spike is not traversing a long distance), 

there have to be many neurons in the circuit and more than 13 interactions for a 

single circuit to take nearly 1,500 ms to respond.  It is well known that brains 
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have a global connectivity architecture which can be described by small world 

and scale-free models (Watts et al., 1998; Clark et al., 2003). These models 

show that any one neuron is connected to any other neuron in just a few steps, 

far fewer than 13.  Thus, unless a local oscillatory loop is excited by this stimulus, 

stays active for the nearly two seconds during which there is no change in the NI 

response, and then suddenly transmits information to the NI unit that something 

has changed about the stimulus, it is unlikely that the behavior seen here is not 

intrinsic to the OT or NI. 

As for the looming stimuli, there is some evidence that the various 

responses may correlate with different parameters of the approaching object.  

Unfortunately, more work will need to be done over a wider variety of β values to 

be able to determine if within the NI there are units responding to time to impact, 

or the angular size of the object, or the angular velocity, or to combinations of 

these parameters.  Units have been described in other systems (Hastopoulos et 

al., 1995; Sun et al., 1998; Gabbiani et al., 1999; Gabbiani et al., 2005) with 

responses which correlate with a range of parameters of looming stimuli.  The 

results of the present study seem to show that the set of NI responses do appear 

to be correlated with different aspects of the looming stimuli, but more data is 

needed.  Also, it is unclear as to whether they are themselves responding to the 

stimuli, or just being driven by OT units which are responding to the stimuli and 

then sending their output to the NI. 
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 The temporal aspects of a feedback loop profoundly impact the functional 

implications for the feedback loop (Brandt et al., 2007).  This study has shown 

that the temporal aspects of the NI response display very long time constants.  

This is a further step in elucidating how the NI feedback to the visual circuitry 

within the superficial OT affects the processing of visual information.  The 

differing responses to looming stimuli may imply that there is some feature 

extraction occurring within the isthmi which focuses more greatly its affects within 

the OT (Gabbiani et al., 1996).  The NI could be focusing a beam of attention in 

the superficial OT controlling the network (Marin et al., 2007).  This coupled with 

the asymmetries seen in the anatomical feedback connections (Dudkin et al., 

1999) is strong evidence that the NI–OT system is working as a winner-take-all 

mechanism.  The NI projections may not be forming synapses directly onto tectal 

projection neurons, as was implied by some papers (Wang et al., 2003), but 

rather releasing the ACh via a paracrine mechanism in the superficial OT 

(Rybicka et al., 2005).  This affects not only the RGC input to the OT, but also 

affects the responses of the plethora of interneurons within the superficial OT, 

most of which are GABAergic.  Also, ACh has been shown to differentially affect 

the postsynaptic neuron (Antal et al., 1986); the effects may be either inhibitory 

or excitatory depending on the cellular properties of the postsynaptic cell.  This 

leads indirectly to the excitatory as well as inhibitory action of NI stimulation onto 

OT responses as seen previously (Antal et al., 1986; Hoshino et al., 2006).  
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Chapter 4:  

ON RESPONSES DUE TO CONTEXTUAL INTERACTIONS  

 

ABSTRACT: 

Feedback loops have been implicated in affecting contextual interactions in 

visual systems.  The nucleus isthmi is a visual center which shares reciprocal 

direct topographic connections with the optic tectum.  Previous studies have 

shown that in some systems the isthmi mediates novelty detection or a winner-

take-all mechanism, by preferentially selecting new or more salient features of 

the visual scene, respectively.  The winner-take-all mechanism has been shown 

to be asymmetric in the bird, favoring stimuli in the superficial visual field.  Also, 

the frog has been shown to have a directional preference for ground level nasally 

placed prey-type stimuli when presented with multiple options simultaneously.  

Thus, the frog demonstrates a clear asymmetry in its responses to visual stimuli.  

To investigate a possible connection, units within the nucleus isthmi of the frog, 

Rana pipiens, were presented with multiple visual stimuli inside and outside their 

receptive fields.  The responses to stimuli presented simultaneously both inside 

and outside of the receptive field were counter intuitively higher than responses 

to a lone stimulus within the receptive field.  This evidence supports the notion 

that the isthmotectal system of the frog is working as an asymmetric winner-take-
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all system as the feedback loop has been suggested to do in other systems.  In 

addition, the isthmic response contains periodic oscillatory bursts which are not 

of the same frequency components as the stimulus.  A model is presented to 

determine where from these oscillations may be arising. 

INTRODUCTION: 

Visual context shapes perception and behavior.  Attention enhances and 

modulates processing of sensory input to the brain (Posner, 1980; Gilbert et al., 

2007).  In many areas, attending to a location in a region of space suppresses 

responses to stimuli outside of that region while enhancing responses to stimuli 

presented within the attended space (Desimone et al., 1995; Maunsell et al., 

2002; Witten et al., 2006).  This modulation most likely acts on many neuronal 

levels within neural architecture (Deco et al., 2002).   

 It has been shown that the optic tectum (OT) and the nucleus isthmi (NI) 

work together to participate in novelty detection and possibly may work as a 

winner-take-all mechanism (Wang, 2003; Marin et al., 2007; Brandt et al., 2007).  

While much work has been done to characterize the electrophysiological 

responses to visual stimuli within the NI of the frog (Gruberg et al., 1980; 

Winkowski et al., 2002; Wang, 2003), the affects of multiple stimuli have only 

been investigated behaviorally (Stull et al., 1998).   

 Here we present the frog with stimuli within, outside, or both with and 

outside of the receptive field to investigate how the context of a stimulus affects 
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the response.  We recorded extracellularly within the NI and sorted the voltage 

trace to obtain simultaneous recordings of individual NI units to the stimuli.  

Surprisingly, the addition of a stimulus external to the receptive field caused the 

responses to go up in all units studied.  Also, the responses to the stimuli 

contained oscillations in the average firing rates which were in register across all 

units. 

METHODS: 

The surgery and preparation, extracellular recordings, and histology were all 

performed as described in the Chapter 3. 

Visual Stimulation 

The general set-up was that same as described in Chapter 3.  The stimulation 

was composed of a picture of a cricket moving with Brownian motion on a white 

background.  The cricket measured approximately 2º by 10º as seen by the eye 

of the frog.  The Brownian motion was constrained in a circle whose diameter 

was half the screen size of the cricket.  The randomness of the Brownian motion 

was frozen in so that the movements were identical for each trial.  The frame rate 

of the cricket stimuli was 15 Hz; thus each 66.66 ms the cricket assumed a new 

position on the screen.  The optical properties of the movement of the cricket 

made it seem that the cricket was jittering around a small area to the side of the 

frog, matching a stimulus which has been shown to excite large responses by the 

frog (Lettvin et al., 1959; Maturana et al., 1960).   
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 The contextual interaction was tested using three stimulus paradigms 

(Fig. 4.1A).  In the single cricket case, a cricket was placed in the middle of the 

multiunit receptive field (MURF).  The MURF field was mapped out using a laser 

pointer or a 2º white box on a black background or a 2º black box on a white 

background controlled by the stimulating computer.  In a second single cricket 

case, the cricket was placed 30º temporal to the center of the MURF.  The third 

case, the double cricket case, had both crickets moving simultaneously in 

independent random motions.   

Figure 4.1: (A) Stimulus paradigms with (B) multiunit raw voltage responses.  

LEFT: Single cricket within the mapped out MURF (blue circle).  CENTER: Single 

cricket 30º temporal to the middle of the MURF.  RIGHT: “Double cricket” 

stimulus with both crickets presented simultaneously. 

Data Analysis 

Fourier transforms (FFT) were computed with the unsmoothed average firing 

rates with the bin size set to 1 ms.  No qualitative difference was observed when 
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varying the number of trials contributing to the FFT.  Auto- and cross- 

correlations were computed with the unsmoothed average firing rates and a bin 

size of 10 ms, unless stated otherwise.  No significant change was observed in 

the correlations when using a bin size between 4 - 20 ms.  Inter-spike-intervals 

(ISI) are defined such that: 1 nnn ttISI , where nt  is the time of the thn  spike.  

The joint-ISI distribution is a set of pairs,  1, nn ISIISI , plotted here on a log-log 

scale to show the long-time course in the spiking patterns of the units. 

The Model 

We also created a model to try to understand how the population activity within 

the NI can be responding with waves of nearly synchronous firing.  The network 

consists of two layers of neurons, one presenting the OT and the other 

presenting the NI. Each layer has 200 neurons that are modeled as leaky-

integrate-fire neurons with spike rate adaptation. Therefore the membrane 

potentials of the OT neuron Vi and nucleus isthmi (NI) V j  evolve according the 

following equation sets before reaching the spike threshold: 

)( ,,,,, iieiNIisraOTmiOTr
i

OTm IIIRVE
dt

dV
   , 

  )( ,,,, jjOTjsraNImjNIr
j

NIm IIRVE
dt

dV
   , 

where neurons in the OT are referred using subscript i  and neurons in the NI are 

referred using subscript j . Whenever the membrane potential reaches a 
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threshold value V ,OT / NI  it is reset to a value Vreset,OT / NI  and a spike is interpreted. 

Er,OT  and Er,NI  are the resting membrane potentials of OT and NI respectively.  

The membrane time constants are OTm, and NIm, , and the membrane 

resistances are. Rm,OT  and Rm,NI .   

The parameters for the OT are adopted from the chicken layer 10 neurons 

and NI neurons are modified from chicken Ipc neurons with Rm,NI 1007 M and 

m,NI 132  ms (Jing et al. 2009).  All parameters have been determined 

experimentally.  The frog values have been measured intracellularly by Mathew 

Caudill, a member of the group, and are presented in Chapter 5 below.  Layer 10 

shepherd’s crooks neurons from the chicken OT are used for two reasons.  First, 

the OT neurons which project to the NI in frogs have not been fully 

electrophysiologically characterized.  Also, they perform parallel functions within 

the two systems, projecting a narrow dendritic tree into the retino-recipient layers 

of the OT, and projecting an axon off of the dendritic tree to the ipsilateral OT 

(Lazar et al., 1967; Woodson et al., 1991; Wang et al., 2006).   

Neurons in both populations have a spike rate adaptation current Isra (the 

subscriptions are not included for simplicity), which is described by: 

Isra  gsra (V  Esra ) , 

 sra

dgsra

dt
 gsra , 
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where Esra  is the adaptation reversal potential, srag  is the spike rate adaptation 

conductance, and  sra  is the adaptation time constant.  Before a spike occurs, the 

adaptation conductance decays according to the previous equation and when a 

spike happens the adaptation conductance is changed by  

gsra (t )  gsra (t)  gsra  . 

Tectal neurons receive isthmic synaptic feedback INI i  that is described by: 

  
j

OTNIiijijOTNIiNI EVWtPgI )()(  

where gNI OT  is the maximum synaptic conductance and ENI OT  is the synaptic 

reversal potential.  We choose gNI OT  3.12102 nS and ENI OT  5  mV.  The 

open probability of synaptic conductance Pij  has the form: 
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where, OTNIB   is the normalization factor.  To ensure that the peak value of PNI i  

generated by a single spike is equal to 1, a summation is performed over all 

spikes generated by the NI neuron where the variable t j
k  represents the time at 

which the thj  NI neuron generates the thk  spike.  The time constants 1,NI OT  and 

 2,NI OT  (1,NI OT   2,NI OT ) determine the time course of the synaptic 

conductance change.  The synaptic rise time is rise,NI OT 
1,NI OT 2,NI OT

1,NI OT   2,NI OT

, and 

1,NI i  represents the fall time.  We choose a Gaussian function for the weight 

matrix distribution which has the form: 
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Wij  exp 
(i  j)2

2NI OT
2









, NI OT  20 . 

This reflects the fact that the isthmotectal feedback is topographic.  The synaptic 

currents from OT to NI IOT  j  share the same formula as that of INI i  and may be 

acquired by replacing the subscription NI to OT and i  to j  in the above 

equations.   

In addition to the synaptic input from NI, the OT also receive excitatory 

current input Ie,i , mimicking the retinal ganglion cell input, which has form: 

Ie,i  I0H(i  60)H(140  i), 

I0  0.1
(sin(2f1t) 1)(sin(2f2t) 1)

4
, 

where, f1=9 Hz and f2 =0.6 Hz, respectively, and H  is the Heaviside step 

function, expressing that the current between neuron # 60 and neuron # 140 is 

non-zero.  

 To simulate the spontaneous activity, each OT and NI neuron receives 

uncorrelated noise currents i and  j . The noise currents are modeled as 

uncorrelated white noise: 

 i(t) i ( t )  2OT
2 (t  t )i i , 

 j (t) j ( t )  2NI
2 (t  t ) j j , 

with OT 0.1 nA since the OT shows relatively small spontaneous activity (data 

not shown) and NI 0.3 nA so that NI neurons will have 2-5 Hz spontaneous 

activity as observed experimentally and shown in Chapter 3. 
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RESULTS: 

 In response to a single cricket moving within the center of the multiunit 

receptive field, all of the units followed the same time course (Fig. 4.2A).  There 

was periodic oscillatory bursting in which all units fire in a probabilistic phasic 

manner, contributing anywhere from zero to three spikes per burst.   

Figure 4.2: Responses of clustered units to cricket stimuli.  (A) Responses to a 

single cricket within the center of the multiunit receptive field. (B) Responses to 

the same cricket with an additional cricket placed 30º temporal to the receptive 

field.  See text for details. 
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In response to a single cricket positioned 30º temporal to the multiunit 

receptive field, no response was observed (Fig. 4.1B center).  This is expected 

since being outside of the classical receptive field by definition means that the 

stimulus will not elicit a response.  However, it should be noted that the small 

background level of spontaneous activity (2.23   1.28 Hz), present in all units, 

was notably absent during this stimulus. 

  

Figure 4.3:  Bursting period of the responses to a cricket.  Green and tan 

sections denote the different frames of the visual stimuli.  Note that the frequency 

of the stimuli is distinctly different from the frequency of the response. D shows 

the response to 2 crickets. S shows the response to 1 cricket in the receptive 

field. 

In response to both crickets presented simultaneously, the activity of all 

contributing units went up (Fig. 4.2B).  This is in striking contrast to the usual 

effect of additional stimuli presented outside of the classical receptive field.  

Normally, if an additional stimulus is presented outside of the receptive field, the 

response goes down because of the presence of an inhibitory surround.   
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The length of a single burst was between 10-25 ms (Fig. 4.3).  The time 

between the start of two successive bursts was between 110-115 ms.  We 

compared this to the frame time (Fig. 4.3) to ensure that the frame rate was not 

affecting the response and no correlation was observed.  We checked for peaks 

in the FFT of the responses to the single cricket within the receptive field or the 

double cricket stimuli to see if the stimuli frame rate of 15 Hz affected the 

response (Fig. 4.4).  All FFTs for all units in either stimulus paradigm were very 

similar with no qualitative differences.  Peaks are seen at 0.6, 1.2, 9, and 18 Hz.  

There is clearly no peak around 15 Hz.  The peaks at 0.6 and 9 Hz (and their 

multiples) are due to other interactions within the OT, not to the visual stimuli.   

Figure. 4.4:  Fourier transforms of the response to the contextual stimuli.  FFTs 

of responses of all units to either stimulus were all qualitatively similar.  Note the 

strong peaks at 0.6 Hz, 1.2 Hz, 9 Hz, and 18 Hz. 

 The time course of the response can also be explored by looking at the 

joint-interspike interval distribution (Fig. 4.5).  The joint-ISI distribution for two 
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different units to both cricket stimuli shows no clear behavior around 66.6 ms for 

either unit.  Unit 1 had a large average firing rate for all stimulus varieties and unit  

Figure 4.5: Log-log joint-ISI plots of unit 2 and unit 5 in response to either a 

single cricket within the multiunit receptive field or to the double cricket stimulus.  

Notice the bands around 110 ms and 220 ms (yellow lines).  Times is in ms. 

5, in general, had a notably lower average firing rate.  There is a lot less structure 

in the firing pattern of unit 1 than unit 5.  Note, however, that both units (and this 

is true for all units) have bands of activity centered around 110 - 115 ms and 220 

- 230 ms (yellow bars in Fig. 4.5).  This type of joint-ISI pattern can be explained 

by a unit which fires a Poisson distributed spike train and is driven by a 
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sinusoidal input, at a frequency around 9 Hz, which only reaches threshold in the 

top few percent of the duty cycle.  

Figure. 4.6: Cross correlation matrix for responses to the single cricket stimulus.  

Note that the strongest peaks in the autocorrelations (diagonal) are at zero phase 

lag.  Also, note that the cross-correlations, the off-diagonal elements, show 

roughly level peaks at multiples of 110 - 115 ms.  Time axis is in milliseconds. 

We looked for correlations between different units in their responses to 

these varying types of stimuli.  A high correlation could imply that neighboring 

units (as we can assume we are recording) are receiving a very high percentage 

of shared inputs or that the units are driving each other or interacting with each  
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other’s responses (Fig. 4.6).  We calculated the cross correlations at phase lags 

up to 1,000 ms.  Note that there are non-zero correlations at multiples of 110 - 

115 ms between all units.  This simply shows that all units are contributing in a 

phasic manner to most oscillations in the response.  There are no strong peaks  

Figure. 4.7: Cross correlation matrix for responses to diffuse illumination steps.  

Note that the only peaks in the autocorrelations (diagonal) are at zero phase lag.  

Also, note that the cross-correlations, off-diagonal elements, show nearly zero 

cross-correlation.  Time axis is in milliseconds. 

in the cross-correlations (off-diagonal elements) as there are in the auto-

correlations (diagonal elements).  Thus, no pairs of units are firing with a set lag 

relative to each other with a strong probability.  This behavior was compared to 
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that seen in the correlations in the responses to other stimuli (Fig. 4.7).  All other 

stimuli tested (see previous chapter) had qualitatively similar cross- and auto-

correlation matrices as seen here for the diffuse illumination steps.  Note that  

Figure 4.8: Trial-to-trial cross correlations. (A) and (B): Cross correlations of 

three trials of the responses of a unit to double cricket stimuli.  (C) and (D): Cross 

correlations of three trials of the responses of a unit to diffuse illumination steps.  

Lag time in all plots is in milliseconds.  Ordinate scale is normalized to the 

autocorrelation (diagonal) with the maximum equal to one.  Bin size in (A) and 

(C) is 1 ms.  Bin size in (B) and (D) is 10 ms. 

there is a significantly high peak in the auto-correlations which is completely 

absent in all cross-correlations.  The correlations all look qualitatively similar if 
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the bins are set anywhere from 4 - 50 ms.  Note that even though all responses 

are remarkably similar to each other in their time course, there is strikingly little 

correlation in the spike trains.  Calculating the correlations for single trials or for 

all trials averaged together gives qualitatively similar results.  The small non-zero 

values away from zero phase lag in the autocorrelations are due to the fact that 

the mean was not subtracted off of the data vectors used in the correlations.  

 The trial-to-trial variability is very small for all of the responses to the 

cricket stimuli (Fig. 4.8).  The cricket moved to a new random position every 66.6 

ms.  The set of serial movements was frozen in so that every trial was identical.  

The frame rate of the presentation of the cricket was shown above to not be in 

register with the periodicity of the response.  Yet, even across trials the response 

is very regular.  The trial-to-trial cross correlations are so regular that the peaks 

are easily discernable (Fig. 4.8A and Fig 4.8B).  The peaks are even spaced at 

multiples of 110-115 ms.  For comparison, we also show the trial-to-trial cross 

correlations for three trials in response to the diffuse illumination (Fig. 4.8C and 

Fig 4.8D).  In Fig 4.8A and Fig 4.8C, the bin width is 1 ms, and so only one 

spike can possibly be within a bin.  In Fig 4.8B and Fig 4.8D, the bin size is 10 

ms so we can see more clearly the regular pattern of activity.  This temporal 

correlation is very puzzling.   

We created a simple two-level network model to try to reproduce the 

responses of the isthmic neurons to the cricket stimuli.  The salient aspects of the 

response are periodic oscillatory bursts with a 9 Hz inter-burst frequency (Fig.   
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Figure 4.9:  Results of the tecto-isthmic model.  (A) The response of three of the 

200 NI units to the OT input.  Note the 9 Hz periodic oscillatory bursting 

modulated by the slower 0.6 Hz frequency.  (B) A detail of (A) to observe that 

many units fire multiple times per burst.  (C) Joint-interspike interval distributions.  

Scale is a log-log plot in milliseconds.  Note the bands just above 100 ms 

corresponding to the Poisson nature of the intrinsic NI response.  (D) FFT of the 

NI response.  Note the presence of peaks at multiples of 9 Hz as is seen in Fig. 

4.4.  (E) Cross correlations for thee NI units (off-diagonal elements) with 

autocorrelations (diagonal elements).  Lag times are in milliseconds. 
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4.2).  The probability for the bursting to occur is modulated by a slow 0.6 Hz 

frequency.  Also, there is very little correlation among the NI responses, aside 

from small peaks at multiples at the bursting period (Fig. 4.6).  The only way we 

could reproduce these data with a model which reflects the known connectivity 

and known cellular physiology was to have a global modulation of the OT being 

driven by these frequencies (Fig, 4.9).  If the OT receives a constant input or a 

step input, the NI response is non-oscillatory (data not shown) and produces 

Poisson spike trains.  In the presence of uncorrelated spontaneous activity the 

correlation between the NI neurons is small; however, all the neurons still have 

oscillatory components of 9 Hz and 0.6 Hz which is due to the retinal input 

current to the OT.  We were not able to reproduce the odd time course of 

behavior of Chapter 3 with this model.   

DISCUSSION: 

Every unit recorded (N=14) within the NI in response to a cricket presented within 

the receptive field as well as a cricket 30º temporal to the multiunit receptive field 

had a larger response than to a lone cricket within the receptive field.  Data in 

other animals overwhelmingly report the opposite affect: an additional stimulus in 

the surround will suppress responses to a stimulus presented within the classical 

receptive field (Wang et al., 2004; Paffen et al., 2005; Razak et al., 2005; Hopf et 

al., 2006; Maczko et al., 2006; Girman et al., 2007; Marin et al., 2007).  However, 

the surround stimulus was not located all around the receptive field but was 30º 

temporal to it.  It has been shown that the frog prefers stimuli presented in the 
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nasal visual field over stimuli presented in the temporal visual field (Stull et al., 

1998).  Also, the number of feedback connections from the NI to the OT is much 

higher in the regions of the OT corresponding to the nasal visual field than that 

corresponding to the temporal visual field (Dudkin et al., 1999).  Thus, since the 

recording was taken in the visuotopically preferred location, the response went 

up.  Following this logic, if a second cricket is presented 30º nasal to the first, the 

response should go down at the recording site.  Unfortunately, we did not 

systematically vary the location of the second stimulus, so this experiment must 

still be performed.   

An asymmetric response was seen in the pigeon (Marin et al., 2007).  

Their experiment differs from ours in that we presented our stimuli 

simultaneously and they had a time delay between the onset of the two stimuli.  

When they presented a stimulus in the inferior visual field followed by second 

stimulus in the superior field, the response in the NI at the location of the inferior 

field went down drastically.  However, when they first presented the superior 

stimulus followed by the superior stimulus, the response went down at the inferior 

location, but not nearly as strongly.  Thus, there is an inherent asymmetry in the 

pigeon’s NI response as well.  Further experiments will need to be carried out in 

the frog following the paradigm of Marin’s paper to investigate the temporal 

interactions more closely. 

A great surprise in all of the responses to the stimuli present here is the 

omnipresence of the oscillations in the responses of the NI.  Some oscillations 
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were seen in the secondary wave of activity to a diffuse illumination ON step in 

some units.  Also, some oscillations were apparent in some responses to the 

looming stimuli.  However, the oscillations present in the responses presented in 

this chapter were robust and long lasting.  The most apparent is the periodicity of 

the multiunit bursts with a time between the start of the bursts equal to around 

110 - 115 ms.  The robust quality of these oscillations is supported by the peak in 

the FFT at 9 Hz as well as the strong lines in the joint-ISI plots at approximately 

110 - 115 and 220 - 230 ms.  While the joint-ISI pattern can be explained by a 

Poisson distributed process being modulated by a sine wave with a 9 Hz 

frequency, it is not clear from where that modulation is arriving.  All of the 

recorded units had this pattern.  Recordings were taken within three separate 

locations within the NI separated 80 µm dorso-ventrally from each other.  The 

only way for the oscillation to be present in each response is for the 9 Hz 

oscillation to be a characteristic of the whole of the OT.  If there is a local field 

potential (LFP) which is pervasive within the OT which can only drive the units 

close to threshold at the highest part of the duty cycle, then the outputs will all fire 

with the aforementioned pattern.  This rhythm could arise in the retina.  Strong 

oscillations have been observed in the retina of the frog (Lettvin et al., 1959; 

Maturana et al., 1960; Ishikane et al., 1999; Arai et al., 2004; Ishikane et al., 

2005) as well as in the cat (Steinberg, 1965).  The frequencies of oscillation have 

all been stimulus and activity dependent.  Yet it was shown above that the 

frequency components of the stimulus did not drive the frequencies of the 
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responses.  The dimming detectors were shown to have 10 Hz or 20 Hz 

components depending on how strong of an OFF step there were responding to.   

A slower oscillation in the FFT at 0.66 Hz was also present in the 

responses to the crickets.  This can be seen in Fig. 4.1B and Fig. 4.2 as an 

oscillation in the envelope of the response.  This may reflect the coherence of the 

OT input to the NI.  At the antinodes of the oscillation, there is very high 

coherence in the OT output and so there is a high probability for simultaneous 

spiking in the NI, thus the appearance of large voltage deflections in the raw 

traces.  At the nodes of the oscillation, the OT output is relatively decoherent, 

leading to non-simultaneous arrivals of spikes at the dendrites of the NI, thus a 

lower firing probability and therefore a lower probability for overlapping or 

superposed spikes in the raw voltage waveform.  Again, this raises the question: 

from where is the modulation of the tectum arising?  Is there information content 

in the coherence of the tectal population activity?  Strong coupling between 

neural centers which feedback to each other has been shown to affect precision 

and information capacity (Andolina et al., 2007; Litaudon et al., 2008), shaping of 

receptive fields (Schwabe et al., 2006), and behavior (Bair et al., 2001).  More 

work needs to be done in this system to study what effects the isthmotectal 

feedback projection has on oscillations in the isthmotectal system and on the 

coherence of the LFP within the OT. 

A model was created to try to understand from where these frequencies 

were arising.  If we understand the strongest component of the system as the 
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topographic feedforward tecto-isthmic projection, then the only way to reproduce 

the oscillatory nature of the response is to have the OT itself be driven by those 

frequencies.  Unfortunately, this just moves the question back another level: from 

where are the modulations and frequencies present within the LFP of the OT 

arising?  The NI produce Poisson spike trains to steady input which matches 

typical responses (data not shown).  But to complex temporal stimuli, more 

complicated interactions must be taking place within the retina or the superficial 

OT to cause the observed time courses in the responses. 

Another great surprise was the strong temporal correlations exhibited trial-

to-trial.  This implies that the response is driven to be in the same phase at the 

commencement of the trial by the turning on of the stimulation monitor.  There is 

no other salient part of this stimulus paradigm which could cause such a strong 

correlation across trials.  Some of these trials took place as much as 30 minutes 

apart, yet the correlation remains strong.  Strong trial-to-trial correlations have 

been observed in frozen noise experiments within the retina (Chichilnisky, 2001; 

Fellous et al., 2004) and in other sensory areas (Chase et al., 2006).  It should be 

noted that not only the 9 Hz oscillations are in phase trial-to-trial, but also the 0.6 

Hz oscillations exhibited in the frequency of the envelope of the voltage response 

(Fig. 4.2).  Possibly the combination of the moving crickets and the sudden 

illumination caused by the screen turning on led to the coherent waves in the 

local field potential of the OT thus driving the responses further down the 

synaptic chain into the NI.  No oscillation was observed in the last chapter in 
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response to the strong steps in diffuse illumination.  More experiments are 

required to solve this strange puzzle. 

In summary, this chapter has shown that the response in the NI may 

respond more vigorously to an additional stimulus presented within the classical 

surround.  This is quite counter intuitive and may possibly be further evidence for 

an asymmetric winner-take-all mechanism in the frog’s OT-NI system.  More data 

is needed to follow up on this claim.  Also, population-wide simultaneous 

oscillations in the responses of units within the NI may be caused by global 

oscillations within the OT which evolves in and out of coherent epochs.  These 

oscillations are robust even trial-to-trial.  Where this modulation arises from is still 

a mystery. 
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Chapter 5:  

ON THE NUMBER OF ELECTROPHYSIOLOGICAL SUB-

CLASSES OF NEURONS WITHIN THE NUCLEUS ISTHMI 

OF THE FROG, RANA PIPIENS 

 

ABSTRACT: 

The frog nucleus isthmi (parabigeminal nucleus in mammals) is a visually 

responsive midbrain structure that shares reciprocal topographic connections 

with the ipsilateral optic tectum (superior colliculus in mammals). Feedback from 

the nucleus isthmi is bilateral and strongly influences both tectal cells and retino-

tectal transmission. Previous research suggests that the nucleus isthmi of the 

frog may contain electrophysiologically distinct populations. To test this 

hypothesis we have measured the cellular properties and extracellular responses 

of isthmic neurons to current injections and simple visual stimuli. Our results 

show that the neurons of the frog nucleus isthmi have indistinguishable cellular 

properties and respond similarly to visual stimulation.  

INTRODUCTION: 

Despite the prevalence of recurrent connections in vertebrate visual pathways 

(Gruberg et al., 2006; Wang, 2003; Sillito et al., 2006), there is little consensus 
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on the functional role of feedback projections in visual perception (Sillito et al., 

2006). Characterizing the response properties of individual feedback neurons 

represents an important step in understanding how these projections influence 

visual processing. The optic tectum (superior colliculus in mammals) (OT/SC) is 

the primary retino-recipient structure in many vertebrates (Butler et al., 2005). In 

amphibia, teleosts, reptiles, birds and mammals this important structure receives 

feedback projections from the cholinergic nucleus isthmi (parabigeminal nucleus 

in mammals) (NI/PBN), an anatomically well-defined group of neurons in the 

midbrain (Butler et al., 2005) (Fig. 5.1A). Within the bird (Wang et al., 2004) and 

turtle (Sereno et al., 1987) the NI is divided into multiple separate and distinct 

neuron types.  These sub-nuclei have different physiological response properties, 

use different neurotransmitters, and are anatomically separate.  Behavioral 

studies in the frog have shown that the NI is critical for visual processing, as 

lesions of the NI lead to scotomas (functional blind spots) for moving objects 

(Gruberg, 1991). We therefore chose the frog NI to characterize the response 

properties of feedback neurons. 

 The frog retina projects 350,000 retinal ganglion cell (RGC) axons 

(Maturana, 1959) to the contralateral OT where the axon terminals form a precise 

retinotectal map (Gaze, 1958). Four different RGC types terminate in discrete 

lamina of the superficial OT. The targets of the RGC axons include the apical 

dendrites of cholinergic neurons, with somata located in layer 6, which project to 

the ipsilateral NI (Gruberg et al., 1978; Lazar et al., 1985; Gruberg et al., 1994)  



139 

Fig. 5.1. Nucleus isthmi and schematic of retino-isthmo-tectal system. (A) Lateral 

view of the brain. NI is ventral to the caudal pole of the tectum. Rostral is to the 

right. CB, cerebellum; DI, diencephalon; OC, optic chiasm; TEL, telencephalon. 

Transverse section a is shown in Fig. 1 B inset. (B) Acetylcholine transferase-

stain of NI magnified from inset. (C) Diagram of connectivity between retina, 

tectum and NI. Each eye projects a retinotopic map directly to the contralateral 

OT. The OT in turn projects (blue arrow) to cells in the NI. The numbered areas 

in the NI correspond to clusters of cells projecting to numbered areas in the OT. 

Dorsolateral NI cells shown shaded project (red arrow) to the ipsilateral OT. 

Ventromedial NI cells (not shaded) project to the contralateral OT (Figure 

adapted from Dudkin et. al., 2007). (D) Diagram of ipsilateral retino-tecto-isthmal 

system. Four retinal ganglion axon types (black, green, purple and light blue 
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arrows) project to discrete lamina of layer 9 of the OT synapsing onto dendrites 

of neurons whose cell bodies are located in layer 6 (blue) or layer 8 (black). NI 

cells (red) receive inputs from layer 6 axons and project back to the column 

(white box) in the OT from which they received inputs. 

(Fig. 5.1D). The isthmotectal projection is bilateral and topographically arranged 

to be in register with the feedforward retinotopic map (Gruberg et al., 1978; 

Gruberg et al., 1994). Further, within NI, ipsilaterally projecting NI cells are 

located dorso-rostral-laterally to the contralaterally projecting cells and project to 

the column in the OT from which they received inputs (Fig. 5.1 C,D) (Dudkin et 

al., 2007). In addition, the NI possess cholinergic and GABAergic neurons (Fig. 

5.1B) (Wallace et. al., 1990; Marin et. al. 1997; Li et al., 2001). The presence of 

these types of neurotransmitters along with the spatial segregation of the 

ipsilateral and contralateral projections, as well as the distinct populations seen in 

other animals, led us to hypothesize that the 8000 neurons (Gruberg et al., 1978) 

in the frog NI consist of electrophysiologically distinct populations; a diversity that 

is common in many neural systems (Wang et al., 2000; Soltesz, 2006). 

Here, we address whether the NI contains electrophysiologically distinct 

populations in two different ways. First, we characterize the cellular properties of 

the isthmic neurons in response to somatic current injections in-vitro. Second, we 

characterize the visual response properties of simultaneously recorded NI 

neurons within a small volume around the tip of an extracellular recording 

electrode.  
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METHODS: IN-VITRO 

Surgery & Preparation: 

Ten adult Rana pipiens were used in this study. All procedures used in 

this study were approved by the Washington University Institutional Animal Care 

and Use Committee and conform to the guidelines of the National Institutes of 

Health on the Care and Use of Laboratory Animals.  

 Isthmic brain slices were obtained from adult leopard frogs that had been 

anesthetized by submersion in a 0.1% solution of ethyl m-aminobenzoate. After 

decapitation the brains were removed and placed in a Petri dish filled with ice-

cold saline solution (pH=7.4) composed of (in mM): 112 NaCl, 2 KCl, 3 MgCl2, 17 

NaHCO3, 3 CaCl2, 24.2 glucose and saturated with 95% O2 and 5% CO2 (Yu et 

al., 2003). This solution was also used as the bath solution in the recording 

chamber. The brain was then embedded in a 0.4% solution of low-melting-point 

agarose (type VII agarose, Sigma, St. Louis, MO, USA) and cooled until 

hardened. The embedded brain was sectioned at 300 μm on a tissue slicer 

(Vibroslice, Campden or VF-200, Precisionary Instruments) in the transverse 

plane. Sections were collected and placed in the ice-cold saline bubbled 

continuously with 95% O2 and 5% CO2. The slice was then transferred to a 

recording chamber (RC-26G, Warner Instruments) mounted on a fixed-stage 

upright microscope equipped with differential interference contrast optics (BX-

51WI, Olympus). The slice was held gently to the bottom of the chamber with an 
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anchor of parallel nylon threads, and the chamber was perfused continuously 

with oxygenated saline at room temperature.  

Recordings: 

Whole-cell recordings were obtained with glass micropipettes pulled from 

borosilicate glass (1.5 mm OD, 0.86 mm ID, AM Systems) on a horizontal puller 

(P-97, Sutter Instruments) and were filled with a solution containing (in mM) 90 

K-Gluconate, 25 NaCl, 12 mM HEPES, 1 mM CaCl2, 3 MgCl2, 10 EGTA, pH 

adjusted to 7.4 with KOH. Electrodes were advanced through the tissue under 

visual guidance with a motorized micromanipulator (MP-285, Sutter Instruments) 

while constant positive pressure was applied.  The electrode resistance was 

monitored by brief current pulses. Once the electrode had attached to a 

membrane and formed a seal, access to the cytosol was achieved by brief 

suction. Whole-cell recordings were performed with the amplifier (Axoclamp 2B, 

Axon Instruments) in the bridge mode (current clamp). The series resistance was 

estimated by toggling between the bridge and the DCC (discontinuous current 

clamp) mode, and subsequently compensated with the bridge balance. 

Depolarizing and hyperpolarizing currents were injected through intracellular 

electrodes. Analog data were low-pass filtered (4-pole Butterworth) at 1 kHz, 

digitized at 5 kHz, stored, and analyzed on a PC equipped with a PCI-MIO-16E-4 

and LabView software (both National Instruments). 

Data Analysis: 
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Intracellular recordings were obtained for 8 NI cells from 10 animals with 

an average recording time of 19.8 minutes (Range 10.0-30.0 min). After 

obtaining a whole-cell configuration we measured passive, threshold, and above 

threshold membrane responses to 1-second current pulses. Below we provide a 

list of properties determined for each cell in the NI.  

Resting membrane potential. The membrane potential mV  (mV) was measured 

from the voltage trace 1 minute after the whole cell configuration was achieved. 

The liquid junction potential was measured and estimated to be approximately −9 

mV. This correction was ignored, i.e., the real membrane potentials are more 

negative than the stated values. 

Input resistance.  Each cell’s input resistance InR  (M) was calculated from the 

steady state membrane potential responses to a small hyperpolarizing (-5 to -10 

pA) current pulse of 1-second duration. 

Membrane time constant. The time constant of the membrane m  (ms) 

represented the elapsed time for the membrane voltage to reach 63% of the 

steady state value in response to small hyperpolarizing (-5 to -10 pA) current 

pulses of 1-second duration.  This was determined by fitting the response of the 

voltage with a single exponential function. 

Rheobase current. The rheobase current RHI  (pA) was measured as the 

smallest amplitude, 1-second current pulse that elicited a single action potential. 
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Rheobase latency. The rheobase latency RHT  (ms) was measured as the time 

difference between the onset of the rheobase current pulse and the peak voltage 

deflection of the action potential. 

First spike amplitude. The first spike amplitude was measured as the voltage 

(mV) difference between the peak amplitude of the action potential and the peak 

amplitude in the after-hyperpolarization. 

Spike half-width. The spike half-width ( SHW )was the width of the action 

potential (ms) at half-maximum amplitude relative to rheobase voltage which was 

estimated as   mRhIn VIRSHW  . 

 After-hyperpolarization. The after-hyperpolarization time constant AHP  (ms) 

was calculated from a single exponential decay fitting of the voltage trace starting 

from the peak in the AHP to the steady state voltage following a single AP 

elicited at the rheobase current. 

Interspike Interval. The time course of the interspike interval was measured in 

response to a 1-second current pulse with an amplitude of 90 pA.  This current 

was chosen because it was well above the rheobase current for all cells. To 

quantify the spike-rate adaptation, the interspike interval data was fit with an 

exponential decay function and the time constant ISI  (ms) and steady state 

values StateSteadyISI   (ms) were determined. 
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Stimulus current to spike frequency relation. Depolarizing current injections 

between 0 - 100 pA in 10 pA steps were applied in a pseudo-random sequence 

to obtain the current to spike frequency relationship. Data gathered from all cells 

was averaged and is presented with standard deviations. In addition, the 

instantaneous frequency, defined as the inverse of the first interspike interval, 

was also calculated, averaged across cells, and is presented with standard 

deviations (SD). 

All numerical results are presented as means  SD.  

Principal Component Analysis 

 We used a principal component analysis to assess whether the cells could 

be categorized into two or more populations based on their electrophysiological 

characteristics. Briefly, we standardized each of the measurements above by: 

x

xx
x i

i 


 , where 
ix  is a single measurement of one of the properties listed 

above, x  is the average of all cells for a given property and x  is the standard 

deviation. The resultant parameter means are zero and the standard deviation is 

1.0. This normalization allows each parameter to contribute equally to the 

similarities and differences among cells. Each of these values is an element in 

the correlation matrix of the data. We then determined the eigenvalues and 

eigenvectors of this correlation matrix using MATLAB 6.5 (Mathworks, Natick 
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MA, USA) and projected the measured data onto the principal components 

(eigenvectors) with the largest eigenvalues.  

METHODS: IN-VIVO 

The same procedures were followed herein as were described in Chapter 3 

above. 

To analyze the similarities and differences of the responses of the units to 

the various stimuli, we investigated the most salient aspects of the responses.  

The salient aspects include: the strong initial response to the ON illumination 

step, the secondary wave of activity in response to the ON step, the strong 

response to the OFF step (Fig. 3.1), the strong response to the commencement 

of motion of a moving spot (Fig. 3.3), the delayed response to the cessation of a 

moving spot (Fig. 3.5), and the response to a looming stimulus (Fig. 3.6).  The 

responses were quantified by summing the average firing rate of a given unit 

over the epoch of time during which the salient aspect of the response took 

place.  This quantity was then normalized by dividing by the total number of 

spikes a given unit fired during the entire experiment.  This way, the response of 

each unit was calculated in relation to its total response.  This was repeated for 

all stimulus types (each direction of moving spot and each apparent approach 

velocity of looming spot).  Thus, 37 salient aspects of the responses were used in 

the analysis.  Probability distributions were computed for each of the different 

salient responses.  Principle component analysis (PCA) was also performed on 
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the total set of responses for all units in which responses were recorded for the 

whole set of stimuli. 

In total, 48 recording sites in 22 frogs were utilized to obtain the data 

herein presented.  At those sites, 152 units were well isolated from each other 

and the background noise.  Of those, 80 units were tested with the entire set of 

stimulus varieties.  These 80 units are used for the PCA analysis.  Individual 

probability distributions are composed of greater numbers of units, as mentioned 

below. 

RESULTS: IN-VITRO 

 The NI is a structure situated ventral to the caudal pole of the OT (Fig. 

5.1A,B) (Khalil et al., 1976).  Within the structure there is an anatomical division 

between cells projecting to the ipsilateral and contralateral OT (Dudkin et al., 

2007). We performed intracellular recordings (in whole-cell patch mode) from 8 

NI neurons in brain slices of 6 young adult Rana pipiens. Although the locations 

of the recording sites (Fig. 5.2A) were distributed throughout the extent of the NI, 

all recorded neurons displayed similar tonic discharge patterns in response to 1-

second depolarizing current injections. To characterize the passive, threshold 

and above threshold membrane responses of NI neurons we measured 10 

properties listed in the data analysis section of this paper. Below we summarize 

the results of these measurements.  

Passive membrane properties 
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Of the 8 neurons recorded, 2 were spontaneously spiking with mean rate of 2.5 

Hz. Their resting potential was measured to be -60  7 mV and their input 

resistances were very high 1,007  20 M. This result agrees with earlier studies 

that have shown that the neurons of the NI are small with somata diameters 

ranging from 8 to 12 m (Li et al., 2001). In addition we determined the 

membrane time constant for 7 of the cells to be 132  23 ms. This time constant 

along with the input resistance gives a passive membrane capacitance of 136  

35 pF. This data is summarized in Table 5.1 and in Fig. 5.3A. 

Threshold membrane properties 

One result of the high input resistances of the NI cells is that pico-ampere current 

injections bring the cells to threshold for spiking. The rheobase current was 

measured to be 20  4 pA with a first spike latency of 294  178 ms. The high 

variability in the first spike latency is not due to outliers but rather to an even 

distribution of data points between the highest and lowest recorded values (Fig. 

5.3A). The rheobase current elicited an average of 1.8 spikes for the 1-second 

duration pulse. The amplitudes of the first spike measured relative to the trough 

in the after-hyperpolarization was 69  13 mV and the spike half-width at half-

max relative to the rheobase voltage was 1.7  0.4 ms. Following this first spike, 

all cells displayed a monophasic AHP (Fig. 5.2B) with a time constant of 94  46 

ms. Although the variance of AHP is high there is a smooth distribution of data 
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Fig. 5.2. Cellular and electrophysiological properties of frog NI neurons. (A) 

Recording sites of 8 NI neurons. D, dorsal; L, lateral; V, ventral; M, medial. (B) 

Responses of NI neurons to small hyperpolarizing and depolarizing current 

injections. Note monophasic after-hyperpolarization. (C) (i-ii) All cells recorded 

from respond with tonic discharge patterns for currents above rheobase and 

maintain firing for the 1-second duration current pulse. Shown here are the 

responses of two cells.  (D) At low current injections (<60 pA) the interspike 

intervals are constant. (E) Higher current injections show significant spike rate 

adaptation. Grey lines are exponential fits to the data. (F) Current to spike 

frequency relationship is linear (filled black circles) for currents up to 100 pA. The 

instantaneous frequency is (grey boxes) is nonlinear for currents exceeding 60 

pA. 
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points between the highest and lowest values recorded (Fig. 5.3A). A summary 

of this data is presented in Table 5.1 and in Fig 5.3A. 

Above threshold properties 

To current injections above the threshold for spiking, NI neurons 

responded with tonic discharge patterns that lasted the length of the 1-second 

stimulus pulse (Fig 5.2C). To characterize these discharge patterns we 

measured the interspike interval at low currents (Fig. 5.2D) and at high currents 

(Fig. 5.2E). At low currents the ISI remained constant or slightly decreased 

throughout the length of the discharge. At a 90 pA current injection, the isthmic 

cells exhibited spike rate adaptation with time constants of 29  23 ms and 

steady state ISI values of 50  15 ms. The high variability within this dataset is 

attributed to one outlier in the data distribution (Fig. 5.3A).  The short time 

constant for the spike rate adaptation of NI neurons is a feature found in other 

non-mammalian vertebrates including birds (Shao et. al., 2009) and turtles (Saha 

et al., 2008). The tonic responses were further characterized by measuring the 

relationship of the current to the spike frequency. We found a linear F-I curve 

with slope of 0.27 Hz/pA for current intensities below 100 pA.  

Table 5.1. Electrophysiological properties of nucleus isthmi neurons. 

Vm(mV) Rin(M) m(ms)   IRh(pA) TRh(ms) ASpike(mV) Wspike(ms) AHP(ms) ISI(ms) ISIsteady(ms) 

-60  7 100720 13223 20  4 294178 69  13 1.7 0.4 94  46 29 23 50  15 
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Principal Component Analysis: 

 The distribution of data measured across all cells is shown in Fig 5.3A. 

Each column is a different measurement (see data analysis) and each colored 

circle is a cell. Some measurements do not have all 8 cells because two of the 

cell’s responses degraded over the recording time of 20 minutes.  To assess 

whether this data can be categorized into two or more groups based on the 

cellular properties, we performed a principal component analysis (Jolliffe, 1986) 

on 6 of the 8 cells. We could only use 6 cells because 2 had degraded responses 

over time precluding the determination of all ten measurements. Using 

standardized variables we computed the eigenvalues of the correlation matrix 

(Fig. 5.3B inset) and determined how much each eigenvalue accounts for of the 

data’s variance (Fig. 5.3B). We found that the first two eigenvalues account for 

94% of the data’s cumulative variance. This motivated our choice to keep the first 

two principal components thus reducing the parameter space to two dimensions. 

Fig. 5.3C shows the projection of the original data onto these two principal 

components. The six cells are scattered about the mean (zero in standardized 

variables) with no discrete clusters readily apparent. Thus based on the 

distribution in Fig. 5.3A and the principal component projection in Fig. 5.3C  

Our data suggest that the cellular and electrophysiological properties of the NI 

neurons are homogeneously distributed. 
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Fig. 5.3:  Principal component analysis of the cellular properties of NI neurons. 

(A) Ten different measurements taken from each cell are plotted in separate 

columns. Colored circles represent individual cells. Note for some measurements 

only 6 or 7 cells are shown. This is due to deterioration of cellular responses for 

recordings exceeding 20 mins. (B) Eigenvalues determined by a principal 

component analysis of the 6 cells that appear in all 10 columns of A are shown in 

the inset. The larger figure shows that the first two eigenvalues account for >90% 

of the data’s variance. This motivates the choice to keep only two principal 

components (eigenvectors). (C) Projection of standardized measurements in A 

onto the principal components corresponding to the largest two eigenvalues in B 
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is distributed about the mean values (standardized to be 0).  Thus no discrete 

clusters are apparent for these 6 cells in the 2-dimensional principal component 

space. 

 

RESULTS: IN VIVO 

Units were recorded at 48 locations within the NI in vivo in 22 leopard 

frogs.  These locations were distributed throughout the entire NI, sampling 

thoroughly the ipsilaterally-projecting dorso-lateral section of the isthmi as well as 

the contralaterally-projecting ventro-medial section of the NI.  We are presenting 

only well isolated single unit activity which was sorted from multi-unit voltage 

recordings using the spike sorting methods described in Chapter 2.  Fig. 5.4 

shows the results of spike sorting at one specific location.  Note that if no spike 

sorting is done, then the average spike shape of all spikes recorded is clearly a 

combination of different units (top of Fig. 5.4A).  In addition, the interspike 

interval distribution of the unsorted spike shape has no refractory period (top of 

Fig. 5.4B).  The interspike interval distribution displayed here corresponds to the 

diffuse illumination tests shown in Fig. 3.1.  Note that the sorted spikes have well 

defined shapes with no kinks in their standard deviations (red lines, Fig. 5.4A), 

and a clear refractory period at interspike intervals less than 1-2 ms (Fig. 5.4B). 

 The responses of each unit recorded within the NI were very qualitatively 

similar in response to all presented stimulus paradigms.  For example, in 

response to a diffuse illumination step (Fig. 3.1), all units take part in a strong 
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Figure 5.4: Sorted spike shapes and associated ISI distributions.  In this 

penetration, there were 72,563 detected spikes.  (A) Average spike shape of 

whole set of spikes (top) and of each cluster. (B) Associated ISI distributions for 

all of the spikes (top) and for each cluster in response to the diffuse illumination 

steps.  Note the lack of refractory period for the whole group of spikes shown by 

large values at low ISI value.  After clustering, none of the clusters displays ISIs 

under 1ms.    

initial response to the ON step with approximately the same latency of 80-120 

ms.  All recorded units also displayed a sudden and long lasting quiescent period 
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following this strong burst of activity.  All units then responded with a strong 

second wave of resurgent activity after 1,700 ms of the tacit response.  This 

response was very robust and observed in all frogs studied.  Even more peculiar 

responses, such as the delayed response to the cessation of motion of a moving 

spot (regardless of the direction of motion or size of spot) was shared among all 

units in all frogs (Fig. 3.5).  The only apparent difference for any of these salient 

aspects of the response was the firing rates of the units.   

Figure 5.5:  Probability distributions of the normalized responses of all recorded 

units to salient features of the responses to visual stimuli.  (A) Responses to the 

close approach of a looming spot. (B) Responses to the delayed response of the 

cessation of a moving spot moving superior-inferiorly.  (C) Responses to the ON 

step of diffuse illumination.  All abscissa are unit less due to being normalized by 

the total number of spikes fired in response to a given stimulus paradigm by a 

given unit. 

 To quantify the differences of the responses, probability distributions were 

created of the normalized responses of each unit (Fig. 5.5).  All response 

distributions appear to contain a spread of response values without any clear 



156 

separation into distinct clusters.  That is, none of the salient aspects of the 

responses appear to have some units which contribute vigorously with other units 

quiescent.  In summary, there do not appear to be any clear qualitative 

differences in the responses of the NI units. 

 This was further verified by performing PCA on a set of 80 units which 

were presented with all stimulus varieties (Fig. 5.6).  No clear distinction can be 

 

Figure 5.6:  Projection of principle component scores onto the plane of first two 

principle components. Note the lack of any clear distinction between possible 

multiple clusters. 

found in the sets of responses.  If there is a set of NI units which responds 

vigorously to one aspect of a stimulus such as the dimming of light intensity or 

the motion of a spot, and a different set which responds to very different aspects 

of the visual scene, it should be apparent in the PCA.  Yet, no structure is seen.  

There appears to simply be a distribution of excitability of units.   



157 

DISCUSSION: 

 In this study we have used two techniques to characterize the 

electrophysiological properties of frog NI neurons. First, we performed a principal 

component analysis on 10 variables that quantified the responses of NI cells to 

current injections in-vitro. This analysis reduced the number of dimensions of the 

parameter space of isthmic responses and demonstrated that no 

electrophysiological distinction could be made between isthmic cells.  Secondly, 

we performed extracellular recordings in vivo of isthmic cells in response to 

diffuse illumination, moving spots, and looming spots.  The responses of each set 

of simultaneously recorded units to all forms of visual stimuli showed no 

qualitative differences.  Some complex times courses were observed for the 

responses and even these were shared by all recorded units at multiple locations 

throughout the NI.  Together these results indicate that in response to somatic 

current injections and simple visual stimuli, the NI cells are electrophysiologically 

homogeneous. This result is surprising because several lines of evidence 

suggest that the NI may contain multiple populations. These include comparisons 

with isthmotectal systems from other vertebrates, anatomical connections in the 

isthmotectal system and isthmic neurotransmitter types. 

 The frog NI is similar to other vertebrates such as bony fish, reptiles and 

birds in that it makes reciprocal topographic projections with the ipsilateral OT 

(Gruberg et. al., 2006). However, in birds and reptiles the NI consists of two or 

three sub-nuclei with electrophysiologically distinct populations of neurons. In 
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birds, the isthmi pars parvocellularis (Ipc) and the isthmi pars magnocellularis 

(Imc) subnuclei differentially modulate tectal cell activity.  The cholinergic Ipc 

projects in a narrow dorsoventral column in the OT while the GABAergic Imc 

projects feedback widely to the OT heterotopically (Wang et al., 2004; Wang et 

al., 2006). This spatial distribution allows the Imc and Ipc sub-nuclei to influence 

the responsiveness of tectal cells and draw attention to salient visual targets 

(Wang et al., 2000; Gruberg et. al., 2006). In the frog, differential responses have 

been extracellularly recorded throughout the OT layers in response to NI 

stimulation (Xiao et al., 1999). The latency of responses indicates that some of 

the connections between the NI and OT were monosynaptic while others were 

polysynaptic. Recent ultrastructural studies have shown that many contralaterally 

projecting isthmotectal axons terminate on GABA-immunoreactive dendrites in 

the OT (Rybicka et al., 2005). Thus it seems plausible that visual attention 

mechanisms may be mediated through inhibitory tectal interactions in the frog. 

 Anatomically, neurons of the frog NI are segregated into two spatially 

distinct groups; neurons in the dorsolateral half of the isthmi project to the 

ipsilateral OT and neurons in the ventromedial half project to the contralateral OT 

with no single cell projecting to both tectal lobes (Dudkin et. al., 2007). A similar 

bilateral connectivity pattern is found in the parabigeminocollicular pathway of 

mammals such as cats, rodents and primates (Wilson et al., 1970; Cynader et 

al., 1972; Graybiel, 1978; Cusick et al., 1982; Stevenson et al., 1982; Künzle et 

al., 1984; Mufson et al., 1986; Petry et al., 1989; Binns et al.,2000; Wu et al., 
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2000; Major et al., 2003).  For instance in rats, the PBN (homolog of the NI) is 

divided into a dorsal, middle and ventral division (Tokunaga et al., 1978; Jen et. 

al., 1984).  The dorsal and ventral divisions project to the ipsilateral tectum and 

the middle division projects to the contralateral tectum (Jen et. al., 1984). We 

recorded from sites in both the dorsolateral and ventromedial frog NI and found 

no electrophysiological distinctions between the cells projecting ipsilaterally and 

contralaterally. 

 Neurons in the NI of amphibians, reptiles and birds as well as those of the 

PBN of mammals all stain for acetylcholinesterase (AChE) and acetyltransferase 

(ChAT) (Wang, 2002). In frogs, this cholinergic pathway can influence tectal cells 

and even retinal inputs (Dudkin et al., 2003). In addition, the NI has been shown 

to possess a population of GABA containing neurons that project to the OT (Li et 

al., 2001). This may account for the dual modulation of tectal cells observed 

when the NI is electrically stimulated (Hoshina et al., 2006; Xiao et al., 1999). Our 

recordings from the NI did not discern any electrophysiological distinctions 

between the cholinergic and GABAergic populations. It is possible that both 

populations possess similar electrophysiological properties or that one population 

greatly outnumbers the other so that the probability of having recorded from the 

minority population was low.  

 To summarize we have characterized the cellular and visual response 

properties of NI neurons. We examined cells in the dorsolateral half of the isthmi 

that contains neurons projecting to the ipsilateral OT and cells in the 
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ventromedial half of the NI projecting to the contralateral OT. We found no 

electrophysiolgical distinctions between the cells in response to either current 

injections in-vitro or simple visual stimuli in-vivo. 
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Chapter 6:  

CONCLUSIONS AND FUTURE DIRECTIONS  

 

This dissertation addresses the mechanisms of a feedback loop in the visual 

system.  As a model system, we used the leopard frog, Rana pipiens, due to the 

accessibility of the OT and the NI and because the loop of interest is well isolated 

from the rest of the neural architecture.  Because this system had not been 

previously characterized in the time domain, and because timing is of critical 

importance when considering not only what effects a feedback loop has on the 

information processing of the neural system, but also in what ways the feedback 

loop can interact to bring about those effects, we set out to characterize the 

responses of the NI to visual stimuli with a focus on the time courses of the 

responses.   

 In Chapter 2, the spike sorting procedure used throughout the 

extracellular recordings was explained.  We developed a novel threshold to use 

on the filtered voltage waveform. This threshold is robust down to a low signal-to-

noise level and the algorithm it uses may be completely unsupervised allowing 

for a fast and efficient implementation.  The fact that the threshold works well in a 

low signal-to-noise environment makes it ideally suited for use in the frog’s NI 

because of the small and densely packed cell bodies from which we recorded.  
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Also, the complete spike sorting procedure was detailed to show how the false-

positives detected by the threshold can be clustered out of the set of actual spike 

shapes with a high confidence level.  In addition, this chapter details how, with 

one extracellular electrode placement, we can actually record simultaneously the 

activity of 1-7 well separated units within the neural tissue. 

 This threshold and spike sorting procedure were utilized in Chapter 3 

where the temporal aspects of the frog’s NI responses to dynamic visual stimuli 

were first observed.  The responses display surprisingly long time courses which 

are explainable neither by the time course of the visual stimuli nor by the activity 

within the OT to the same classes of stimuli.  Specifically, following an ON step in 

diffuse illumination, all NI units respond with a strong initial response, followed by 

over a second of suppressed response.  The units then display a strong second 

wave of activity which lasts well over one second.  These long time courses are 

unexpected given known normal cellular process time constants as well as the 

known network architecture.  Also, in response to the cessation of a moving spot, 

there is a significant response in all units which is delayed by over two seconds.  

While this may reflect a tectal input from a small population of neurons, the 

specific cause for the long time delay remains a mystery. 

 The time course of the responses within the NI to visual stimuli was further 

explored in Chapter 4, this time to visual stimuli which incorporates contextual 

interactions.  In response to a stimulus presented simultaneously outside of the 

receptive field as well as inside the receptive field led to a larger response from 
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all units than to a stimulus presented within the receptive field alone.  While this 

response appears counterintuitive, it may be evidence for an asymmetric winner-

take-all mechanism within the tectoisthmic system.  This winner-take-all system 

may be constructed out of the asymmetric levels of cholinergic feedback from the 

NI onto topographic and visuotopic locations within the superficial layers of the 

OT.  This cholinergic feedback may use a paracrine mechanism of 

neurotransmitter release which causes the acetylcholine to affect the axon 

terminals of the RGCs in a way which increases their likelihood of synaptic 

transmission.  At the same time, either the acetylcholine or the choline left after 

the acetylcholinestherase breaks down the acetylcholine may act preferentially 

as either an excitatory or inhibitory agent on the GABAergic interneurons found 

throughout the superficial OT.   

 Oscillations in the population response of the NI units were also observed 

in response to the contextual stimuli.  These may be caused by a global local 

field potential within the OT which drives the excitability of the neurons as is seen 

in the thalamus of mammals.  The tectal local field potential displays an 

oscillation of its coherence which may be moderated by retinal inputs.  We 

created a model based on the known connectivity of the tectoisthmic system with 

biologically constrained parameters.  We found that the oscillations seen in the 

isthmic response must indeed be driven by a global modulation of the OT.  This 

oscillation must arise within the retina or may possibly be due to non-trivial 

interactions with the tectal circuitry.  The model was able to reproduce the 
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oscillatory aspect of the isthmic response seen in Chapter 4 but not the non-

trivial responses seen over longer time courses seen in Chapter 3. 

 In Chapter 5, intracellular data from current injections was combined with 

a comparative analysis of the extracellular responses to visual stimuli.  Principal 

component analysis was performed on the set of variables extracted from the 

intracellular data.  No clear distinctions in the electrophysiological properties of 

the NI neurons have been found.  PCA analysis was also performed on the set of 

normalized responses of 80 neurons within all regions of the NI.  Here also we 

failed to separate possible clusters within the data.  This is a surprise given that 

in other systems there is a clear heterogeneity in the population of isthmic 

neurons.  In addition, the NI of the frog displays multiple neurotransmitter types, 

and contains separate sets of neurons which project either ipsilaterally or 

contralaterally 

 Many questions remain to be answered so that a fuller picture of the role 

of the NI in the tectoisthmic feedback loop can be understood.  There is still no 

data supporting or disproving intra-isthmic connections, aside from a small 

number of gap junctions.  It is unclear how many isthmic cells contain GABA and 

whether or not this neurotransmitter is used in an isthmotectal projection.  It is not 

known what types of GABA receptors are present on isthmic neurons.  A 

systematic study of intracellular fills of isthmic cells would illuminate the 

morphology of the isthmic neurons.  This may help answer questions about the 



168 

extent of intra-isthmic connections as well as the level of convergence in the 

tectoisthmic projection.   

 The results herein raise further questions.  Can isthmic units respond 

during the suppressed activity following an ON step?  If not, is this caused by a 

synaptic depression or by a strong inhibition?  If the latter, then GABA blockers 

may be useful in finding the receptors present in the isthmi.  If it is GABA, then 

from where is the GABAergic projection?  Is the delayed response to the 

cessation of motion caused or affected by the feedback from the isthmi to the 

tectum?  Acetylcholine blockers may be able to block the feedback without 

affecting the rest of the neural circuit.  If the NI feedback does not affect this, 

what functional use does the feedback serve?  Is it contributing to predictive 

responses as evidenced by the fact that the isthmic units peak in firing to the 

looming stimuli is, in many cases, at the moment of collision even though there is 

an 80-120 ms latency in response? 

 While many questions remain unanswered, this project has served to 

uncover the temporal aspects of the responses of units within the NI to dynamic 

visual stimuli.  This provides a necessary further step in unraveling the role of 

isthmo-tectal feedback in the processing of visual information. 
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