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The capability of controlling light at scales that are much smaller than the operating wave-

length enables new optical functionalities, and opens up a wide range of applications. Such

a capability is out of the realm of conventional optical approaches. This dissertation aims to

explore the light-matter interactions at nanometer scale, and to investigate the novel scien-

tific and industrial applications. In particular, we will explain how to detect nanoparticles

using an ultra-sensitive nano-sensor; we will also describe a photonic diode which gener-

ates a unidirectional flow of single photons; Moreover, in an one-dimensional waveguide

QED system where the fermionic degree of freedom is present, we will show that strong

photon-photon interactions can be generated through scattering means, leading to photonic

bunching and anti-bunching with various applications. Finally, we will introduce a mecha-

nism to achieve super-resolution to discern fine features that are orders of magnitude smaller

than the illuminating wavelength. These research projects incorporate recent advances in

quantum nanophotonics, nanotechnologies, imaging reconstruction techniques, and rigorous

numerical simulations.
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Chapter 1

Introduction

There has been an increasingly interest in nano-photonic systems in recent decades, in which

light is confined at subwavelength scale. This interest stems partly from the recent advent of

the experimental capability and fabrication techniques. For example, by tapering a commer-

cial optical fiber, people are able to generate subwavelength diameter optical fibers. Due to

the extremely thin diameter, when light is propagating along this fiber a significant amount

of light penetrates into the surround medium, enabling applications such as nano-sensors [1]

and fiber couplers [2]. Moreover, those subwavelength diameter optical fibers are demon-

strated with small loss less than 0.1 dB/mm from the visible to near-infrared spectral range,

and are also very flexible to be twisted or bended into different shape for different function-

alities [3]. Another kind of important components to confine light to nanometer scale is the

quantum dot. The Quantum dots, being called “artificial atom”, are nanocrystals typically

made of semiconductor materials. They usually maintain very small sizes ranging from hun-

dreds of nanometers to several nanometers, but can exhibit prominent quantum mechanical

properties with broad applications in quantum computing [4] and in vivo imaging for live

cells [5]. Subwavelenth periodic nanostructures also play important role in nanophotonic

systems. By precisely designing their patterns, these artificially engineered materials can

exhibit superior macroscopic optical properties that have not yet been found in nature. For

example, materials with negative refractive index [6] and ultrahigh refractive index [7] can

1



be generated using Subwavelenth periodic nanostructures. Nowadays, people are capable

of making those periodic nanostructures with various shapes using electron beam lithogra-

phy. With these in mind, controlling light at subwavelength scales in nanophotonic systems

has become a flourishing and active research field, which potentially enables new optical

phenomenon with superior performances and new functionalities in photonic devices.

In Chapter 2, we consider an interesting nanophotnic system, which consists of a whispering-

gallery-mode (WGM) resonator side-coupled to a tapered single-moded optical fiber. This

WGM resonator is known to support a pair of degenerate clockwise (CW) and counter-

clockwise (CCW) propagating modes [8]. When a nanoparticle is adsorbed onto the surface

of the resonator, it strongly interacts with CW and CCW propagating modes in the res-

onator. Such an interaction breaks the mode degeneracy in the resonator and causes mode

splitting. The two main advantages in this sensing mechanism are: (i) the quality factor

of the WGM resonator can be extremely high 108, which significantly intensifies the field

strength and leads to strong light-matter interactions; (ii) the mode splitting in the transmis-

sion spectrum are distinct to be measured. Thus, the system exhibits very high sensitivity

that is able to detect label-free single nanoparticles with sizes down to tens of nanometers.

In particular, we perform a complete and coherent description for the sensing mechanisms

for two most common and important types of nanoparticles, i.e., plasmonic particles and

Rayleigh scatterers, and provide criteria for extracting information from the measurable

transmission spectra [9]. Rigorous numerical simulations are also performed to verify the

analytic results [10]. We also consider the accurate determination of the number particles in

large particle flux in a statistical manner [11].

Another application in nanophotonic system is designing a single-photon optical diode [12],

which is described in Chapter 3. Such an optical diode is accomplished by coupling a

quantum dot to a single-polarization single-mode (SPSM) waveguide, and it can achieve
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optical isolation down to single-photon levels. The time reversal symmetry in this setup is

broken due to the existence of a local external magnetic field.

Strong photon-photon interactions can also be generated in nanophotonic systems. In Chap-

ter 4, we investigate the problem of arbitrary photonic Fock states scattering in a nanopho-

tonic system which consists of an one-dimensional waveguide coupled to a two-level atom [13].

The fermioinc degree of freedom of the two-level atom induces effective photon-photon in-

teractions. Therefore, after scattering, the originally uncorrelated photons become strongly

correlated. By computing their correlation functions, it can be shown that the transmitted

photons are always bunched together while the reflected photons are always anti-bunched,

leading to various possible applications in quantum information processing.

In Chapter 5, we attack one of the most important problems in optics, which is to achieve

deep subwavelengh resolution in optical imaging. Specially, we design a nano-torches lens

(CNT-lens)to achieve 40 nm lateral resolution [14]. The key enabling feature is to create

an array of correlated nano-torches in the subwavlength scale. By properly designing the

parameters of those correlated nanotorches, the CNT-lens can focus light to a deep subwave-

length spot with significantly enhanced intensity, which overcomes the low transmissivity of

optical signals in other near field imaging approaches. Photonic nanojet is another approach

to focus light to a subwavelength spot. It has been demonstrated as a highly focused optical

beam with a subwavelength waist on the shadow side of the sphere [15]. For all possible

applications, it is desired that the nanojets extend as far as possible in the forward direction

to push the operating range away from the near field range. In Chapter 6, we show that

a simple two-layer microsphere can generate ultralong nanojet with extensions of 22 wave-

length [16], by using conventionally available optical materials. This capability will greatly

facilitate successful applications of nanojets.
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Chapter 2

Nanoparticle Sensing

2.1 Introduction

In this Chapter, we start by describing a nanoparticle sensing mechanism in nanophotonic

systems. Nanoparticle sensing and monitoring have become increasingly important in many

fields. For example, atmospheric nanoparticles have crucial effects on climate change [17]

and human health [18]. Nanoparticles also appear as pathogens in bioterrorism [19] and

as contaminants in manufacturing processes. In nanomedicine, metallic nanoparticles have

also been used as cancer-fighting agent [20]. Thus, in many practical situations, especially

in the low-particle-flux or low-particle concentration regimes, it is desired to have a sensing

mechanism that can detect label-free single nanoparticles. Nonetheless, the scattering cross

section of a nanoparticle, which describes the likelihood of light or other radiation being

scattered by a particle, is extremely small under the illumination of visible light. According

to the Rayleigh theory, the scattering cross section for a nanoparticle approaches to zero,

with an asymptotic behaviors proportional to the fourth power of the diameter over wave-

length. Owing to the extremely small scattering cross section, nanoparticles are in general

very difficult to be detected using optical methods. To bypass this fundamental difficulty

and increase the detection limit, instead of measuring the scattering cross section directly,

4



one possibility is to exploit the phase coherence between the probing- and scattered-light

signals by coupling nanoparticles to optical waveguides and resonators [21]. Very recently,

the system consisting of high quality-factor whispering-gallery-mode (WGM) resonators and

tapered fibers has been proposed theoretically [22, 23, 24] and demonstrated experimentally

to achieve single-particle resolution [22, 25, 26]. Despite these accomplishments, critical

questions remain in such a detecting scheme, such as the determination from the transmis-

sion spectrum of the number of the particles adsorbed and their angular positions. In the

following, we will investigate the theoretical aspects of nanoparticle sensing using WGM

resonators and address these issues.

2.2 Schematics of the System and Underlying Physics

Plasmonic

Rayleigh

CCW

CW

Figure 2.1: Schematic representation of the detecting system. The system consists of a
WGM resonator side-coupled to a tapered single-moded optical fiber. The black dots denote
nanoparticles which can be either plasmonic or Rayleigh-type, as shown on the right.

The system of interest is depicted schematically in Fig. 2.1, which consists of a WGM res-

onator side-coupled to a tapered single-moded optical fiber. The nanoparticles are adsorbed

onto the surface of the resonator and sensed by an evanescent field coupling due to the guided

WGM in the resonator. Based upon the nature of the scattering, two types of nanoparti-

cles are of particular interest: (i) a plasmonic particle, such as a metallic particle or an

5



on-resonant molecule that has a sharp resonance peak in the frequency range of interest;

and (ii) a Rayleigh-type particle, such as a polystyrene particle or an off-resonant molecule,

that does not have a distinct resonance peak in the frequency range of interest. In a typical

experimental setup, a weak coherent laser beam is coupled into the fiber; after propagating

around the WGM resonator and interacting with the adsorbed particles, the transmitted

signal in the fiber is measured. The transmission spectrum contains the information of

photon-nanoparticle interactions which characterizes the scattering nature of the particles.

Here, we start by explaining the physics of this system. An ideal WGM resonator supports

a pair of degenerate counter-clockwise (CCW) and clockwise (CW) propagating modes [27].

An adsorbed nanoparticle on the surface backscatters CCW mode into CW mode, and vice

versa. Thus, the nanoparticle effectively acts as a localized surface imperfection that breaks

the mode degeneracy and induces mode splitting [28]. For a single Rayleigh particle, the

mode splitting gives rise to two dips in the transmission spectrum; while for a single plas-

monic particle, the mode splitting results in three dips in the spectrum, due to the additional

resonance [21]. When more than one particle is adsorbed, multiple scatterings between parti-

cles occur. These coherent inter-particle scattering processes depend on the relative angular

positions of the particles, and give rise to an interference term in the transmission amplitude

that modifies the spectral separation between the transmission dips.

2.3 The Model and Theoretical Description

With this physical understanding, we now discuss in more details of each case. For brevity,

unless noted otherwise, all particles are assumed to be identical; the formalism can be

straightforwardly generalized to the case for non-identical particles.

6



2.3.1 Plasmonic Particle

For plasmonic particles, the Hamiltonian is given by:

H/~ =

∫
dxc†R(x)

(
ω0 − ivg

∂

∂x

)
cR(x) +

∫
dxc†L(x)

(
ω0 + ivg

∂

∂x

)
cL(x)

+

(
ωc − i

1

τc

)
a†a+

(
ωc − i

1

τc

)
b†b+

∑
j

[(
Ωe − i

1

τq

)
a†ejaej + Ωga

†
gjagj

]
+

∫
dx δ(x)

[
Vac

†
R(x)a+ V ∗

a a
†cR(x)

]
+

∫
dx δ(x)

[
Vbc

†
L(x)b+ V ∗

b b
†cL(x)

]
+
(
hb†a+ h∗a†b

)
+
∑
j

[
(gbjbσ+j + g∗bjb

†σ−j) + (gajaσ+j + g∗aja
†σ−j)

]
.

(2.1)

c†R/L(x) is a bosonic operator creating a right (R) or left (L) moving photon at position

x along the fiber. ω0 is the reference frequency where the waveguide dispersion relation is

linearized and vg is the group velocity [29]. a† and b† denote the creation operator for the

CCW and CW modes of the WGM resonator, respectively; ωc is the resonant frequency of

the WGM resonator. 1/τc is the intrinsic dissipation rate of each WGM, and 1/τq is the

intrinsic dissipation rate of each particle. ~Ωe is the excitation energy of the particle, while

~Ωg is the ground state energy. Ω ≡ Ωe − Ωg is the resonant frequency of the plasmonic

particle. h is the intermode scattering strength between CCW and CW modes due to the

surface imperfection. σ+j and σ−j are the excitation and deexcitation operator of the j-th

nanoparticle, respectively. Va/b is the waveguide-resonator coupling strength. gaj and gbj

denote the resonator-particle coupling strength between the j-th particle and CCW, or CW

mode, respectively.

The experiments are typically carried out such that the mean photon number in the system is

much smaller than one [30]. The scattering events thus are dominantly one-photon processes.
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The general form of a 1-photon and n-particle quantum state is:

|Φ(t)⟩ =

{∫
dx
[
ϕR(x, t)c

†
R(x) + ϕL(x, t)c

†
L(x)

]
+ ea(t)a

† + eb(t)b
† +

n∑
j=1

eqj(t)σ+j

}
|G⟩,

(2.2)

where ϕR(x, t), ϕL(x, t) are the photonic wave functions in the waveguide; ea(t) and eb(t) are

the excitation amplitudes of a and b WGM, respectively; eqj(t) is the excitation amplitude

of the j-th particle. |G⟩ = |0; 0, 0;−,−, ...,−⟩ denotes the vacuum state (zero photon in the

fiber and WGM resonator, and all the plasmonic particles are in the ground state |−⟩). By

applying the time-dependent Schrödinger equation i~∂/∂t|Φ(t)⟩ = H|Φ(t)⟩, one obtains the

following set of equations of motion:

−ivg
∂

∂x
ϕR(x, t) + δ(x)Vaea(t) + (ω0 + nΩg)ϕR(x, t) = i

∂

∂t
ϕR(x, t), (2.3a)

+ivg
∂

∂x
ϕL(x, t) + δ(x)Vbeb(t) + (ω0 + nΩg)ϕL(x, t) = i

∂

∂t
ϕL(x, t), (2.3b)(

ωc + nΩg − i
1

τc

)
ea(t) + V ∗

a ϕR(0, t) +
∑
j

g∗ajeqj(t) + h∗eb(t) = i
∂

∂t
ea(t), (2.3c)(

ωc + nΩg − i
1

τc

)
eb(t) + V ∗

b ϕL(0, t) +
∑
j

g∗bjeqj(t) + hea(t) = i
∂

∂t
eb(t), (2.3d)(

(n− 1)Ωg + Ωe − i
1

τq

)
eqj(t) + gajea(t) + gbjeb(t) = i

∂

∂t
eqj(t). (2.3e)

For a given initial state, the full spatiotemporal dynamics of the system can be obtained

by numerically solving the above set of equations. Here, we derive the steady state solution

to find the energy eigenstates of the system. For a steady state, one has |Φ(t)⟩ = e−iϵt|ϵ+⟩,

where ϵ = ω + nΩg is the initial energy of the system divided by ~ and ω = ω0 + vgk is

the frequency of the incoming photon (k is the wave vector of the photon). Thus, ϕ(x, t) =

ϕ(x)e−iϵt, and simliar expressions for other terms. To compute the transport properities of

the photon, one takes ϕR(x) = eikx[θ(−x) + tθ(x)], and ϕL(x) = re−ikxθ(−x), where t and r

are transmission and reflection amplitude, respectively. The set of equations, Eqs. (2.3), can
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be solved straightforwardly [29] and yield the solution for the transmission amplitude t(ω):

t =
∆ω̃c

(
∆ω̃c∆ω̃q −G2

+

)
+∆ω̃qΓ

2 − I1 − |h|2∆ω̃q + iG2
−Γ + I2/∆ω̃q

(∆ω̃c + iΓ) [∆ω̃q (∆ω̃c + iΓ)−G2
+]− I1 − |h|2∆ω̃q + I2/∆ω̃q

, (2.4)

where ∆ω̃c = ω − ωc + i(1/τc), ∆ω̃q = ω − Ωc + i(1/τq), G
2
+ =

∑
j(|gaj|2 + |gbj|2) = 2ng2,

G2
− =

∑
j(|gaj|2 − |gbj|2) = 0, Γ = V 2/2vg is the coupling strength between the resonator

and fiber, and

I1 =
∑
j

(g∗ajgbjh+ gajg
∗
bjh

∗) = 2g2|h|
∑
j

cos(2mθj − θh), (2.5a)

I2 =
∑
j,k

[
|gaj|2|gbk|2 − (g∗ajgbj)(gakg

∗
bk)
]
= 2g4

(
n(n− 1)

2
−
∑
j<k

cos 2m(θj − θk)

)
. (2.5b)

In the equalities above, gaj = gae
imθj and gbj = gbe

−imθj are employed with m being the order

of the WGM; also, ga = gb ≡ g is used for induced dipole moment. θj is the angular position

of the j-th particle. The θ = 0 axis is chosen to point perpendicular to the fiber direction

and bisects the resonator so that Va = Vb ≡ V can be taken as real numbers [29]. The

interference term I2 involves the relative angular positions and is due to multiple scattering

between particles.

2.3.2 Rayleigh Scatterer

For a Rayleigh scatterer, the interaction between the particle and the photon is given byHI =

−d⃗ · E⃗, where d⃗ = αE⃗ is the induced dipole moment of the particle, and the polarizability

ᾱ = 4πϵ0a
3(ϵparticle− ϵmedium)/(ϵparticle+2ϵmedium) ≡ ᾱ1+ iᾱ2. ϵparticle is the complex effective

permittivity for the spherical particle and ϵmedium is the permittivity for its surrounding

environment. The electrical field profile of the WGM is expanded as E⃗ = (a + b†)ϕ⃗m +

(a† + b)ϕ⃗∗
m [29], where ϕ⃗m = E⃗0e

imθ is the m-th order WGM, E⃗0 is the radial part of the

electrical field. E0 = |E⃗0| denotes the magnitude of the field. Using these expressions, HI
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now becomes

HI = −2nᾱE2
0(a

†a+ b†b)− 2

(∑
j

e2imθj ᾱE2
0

)
b†a− 2

(∑
k

e−2imθk ᾱE2
0

)
a†b, (2.6)

where the last two terms indicate that all the particles collectively backscatter the WGMs

into each other, effectively acting as an inter-mode coupling. Thus, the Hamiltonian for the

Rayleigh case can be written as:

H/~ =

∫
dxc†R(x)

(
ω0 − ivg

∂

∂x

)
cR(x) +

∫
dxc†L(x)

(
ω0 + ivg

∂

∂x

)
cL(x)

+ (Ωc − iγ) a†a+ (Ωc − iγ) b†b

+

∫
dx δ(x)

[
Vac

†
R(x)a+ V ∗

a a
†cR(x)

]
+

∫
dx δ(x)

[
Vbc

†
L(x)b+ V ∗

b b
†cL(x)

]
+

(
h− 2αE2

0

∑
j

e2imθj

)
b†a+

(
h∗ − 2αE2

0

∑
k

e−2imθk

)
a†b,

(2.7)

where Ωc = ωc− 2nα1E
2
0 and γ = 1

τc
+2nα2E

2
0 (here α ≡ ᾱ/~). In contrast to the plasmonic

case, the notable feature here is that both the WGM resonator frequency ωc and damping

rate 1/τc are renormalized. Specifically, both terms are shifted by an amount proportional

to the number of the particles n. The renormalization predicts a red-shift of the resonance

frequency when the dielectric function of the particle is larger than that of the ambient

surrounding medium (Re[ϵparticle] > Re[ϵmedium], i.e., α1 > 0), and a blue-shift when the

dielectric function of the particle becomes smaller (Re[ϵparticle] < Re[ϵmedium], i.e., α1 < 0).

The latter case describes the situation wherein the nanoparticles are embedded in an aqueous

solution with a higher refractive index. Moreover, for dissipative materials, α2 is positive

and thus the damping rate increases, in accord with physical intuition. On the other hand,

when there is a gain in the particle (e.g., due to external pumping and the nonlinearity in

the particle), α2 ≤ 0, the damping rate can be decreased. The transmission amplitude can
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be computed straightforwardly to yield

t(ω) =
(ω − Ωc + iγ)2 − (h− 2αE2

0

∑
j e

2imθj)(h∗ − 2αE2
0

∑
k e

−2imθk) + Γ2

(ω − Ωc + iγ + iΓ)2 − (h− 2αE2
0

∑
j e

2imθj)(h∗ − 2αE2
0

∑
k e

−2imθk)
. (2.8)

The term in the amplitude that is proportional to
∑

j,k e
2im(θj−θk) is the interference term.

The two amplitudes, Eq. (2.4) and Eq. (2.8) contain all of the information but, in general,

are very complicated. With the advent of micro-fabrication techniques, resonators can be

fabricated with an extremely high quality-factor. Thus, in the following, we will take the

intermode scattering strength h to be 0, which simplifies the expression.

2.4 Analytic Results

2.4.1 Transmission Spectra

0
0

1.0

linewidth
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n

Figure 2.2: Schematic representation of the transmission spectrum for the null case (i.e., no
particle is adsorbed). Tmin = (1/τc −Γ)2/(1/τc +Γ)2. The full linewidth at half minimum is
2(1/τc + Γ).

We now investigate the evolution of the transmission spectra T (ω) = |t(ω)|2 as the number

of the adsorbed particles increases. To begin with, Fig. 2.2 plots a typical transmission
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spectrum for the null case, i.e., the bare system of the resonator and fiber with no particles

adsorbed. For this case, t = (ω − ωc + i/τc − iΓ)/(ω − ωc + i/τc + iΓ), and the relevant

parameters of the setup 1/τc, Γ, and ωc can be extracted from a simple fitting scheme (e.g.

the method of least squares).

Next, we plot the transmission spectra when successive single particles are progressively

adsorbed. The paramters to plot the transmission spectra are chosen as follows: for Rayleigh

scatterers, 1/τc = 0.76 MHz, Γ = 0.44 MHz, α1E
2
0 = 6 MHz, α2E

2
0 = 0.16 MHz; for

plasmonic particles, 1/τc = 0.76 GHz, Γ = 0.44 GHz, g = 6 GHz, 1/τq = 0.16 GHz [31]. We

note here that the quantitative behaviors of the transmission spectra remains the same for

a wide range of parameters.

For the Rayleigh case (left panel of Fig. 2.3), one of the notable features is that all spectra

exhibit only two dips, as the presence of the particles breaks the degeneracy of the two

WGMs by acting as a surface imperfection. We also note that the spectrum is asymmetric

with respect to ωc when α2 is nonzero, and both dips have different linewidths and heights:

when α2 is not zero, such that α is complex, the effective intermode scattering strength

in b†a and a†b in Eq. (2.7) are not complex conjugate to each other, which results in the

asymmetry of the two dips. Moreover, it can be shown that the spectral separation of the two

dips is always Re[2
√
I3], where I3 = 4α2E4

0

(
n+ 2

∑
j<k cos 2m(θj − θk)

)
is the interference

term; the shift of the center of the spectrum (defined as the average of the location of the

two dips) from ωc is given by −2nα1E
2
0 , which is a direct result of the renormalization of

the center frequency. By measuring the shift in one particle-case, α1E
2
0 can be determined.

Consequently, the number of the particle adsorbed for any cases can be determined by

measuring the corresponding spectral shift and divided by 2α1E
2
0 .

For identical plasmonic particles (right panel of Fig. 2.3), the spectrum is always symmetric

with respect to the WGM resonance frequency ωc, when the particles are on resonance

(Ω = ωc). For a fixed number of particles, the number of the dips depends on the value of
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Figure 2.3: Transmission spectra for different number of adsorbed nanoparticles. Left:
Rayleigh; Right: plasmonic. The angular positions of the particles are θ = 0, π/8, π/6,
π/4. m = 17 and h = 0 for both cases. For Rayleigh scatterers, 1/τc = 0.76 MHz, Γ = 0.44
MHz, α1E

2
0 = 6 MHz, α2E

2
0 = 0.16 MHz. For plasmonic particles, 1/τc = 0.76 GHz, Γ = 0.44

GHz, g = 6 GHz, 1/τq = 0.16 GHz. All parameters are given in angular frequency.
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the interference term I2. Specifically, when all cosine terms cos 2m(θj −θk) for j < k become

1, I2 reaches its minimum 0, the spectrum has three dips for any number of particles. Also,

for the special case of two particles, when cos 2m(θ1 − θ2) = −1 (which is only possible for

the two-particle case), the spectrum has only two dips. Normally, 0 < I2, and the spectrum

has four dips for any number (≥ 2) of particles, as shown in the right panel of Fig. 2.3. Here,

we summarize the evolution of the structure of the dips: usually there are four dips; as each

cosine term approaches 1, the two middle dips merge; and as each cosine term approaches

−1, the two dips on each side of ω = ωc merge giving the spectrum two dips. In contrast

to the Rayleigh-type case, the number of the particles adsorbed, however, cannot directly

be determined by measuring the spectral shift and requires a numerical fitting from the

transmission spectrum. Also, from the one particle case, τq, ga, and gb can be extracted.

Consequently, further information such as the relative angular positions and the number of

particles can be obtained by numerically fitting with Eq. (2.4) for any number of particles.

2.4.2 Matrix Reprsentation

The exact locations and number of the dips in the transmission spectrum are of particular

interest, as they exhibit eigen-frequencies of the subsystem consisting of the resonator and

the particles. Here, we describe a direct yet simple matrix method to derive these eigen-

frequencies: The matrix essentially represents the Hamiltonian of the subsystem, with the

diagonal terms being the unperturbed frequencies of the WGMs and nanoparticles, while

the non-diagonal terms describing the couplings between the components. The eigenvalues

of this matrix thus indicate the number and positions of dips in the transmission spectrum.
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As a concrete example, we describe the case of Rayleigh scatterer adsorbed to the resonator.

There are only two bases: CCW and CW, so the matrix takes the following form:

 ωc − 2nαE2
0 −2αE2

0

∑
j e

2imθj

−2αE2
0

∑
k e

−2imθk ωc − 2nαE2
0

 (2.9)

The two eigenvalues of the matrix are ω = ωc − 2nαE2
0 ± 2αE2

0

√∑
j,k e

2im(θj−θk). The real

part of the eigenvalues gives exact locations of the two transmission dips. Moreover, the

spectral separation of two dips is given by Re[2
√
I3], which is the same as using the full

Hamiltonian.

As a second example, we describe the case of two identical plasmonic particles adsorbed.

The bases for the matrix are chosen as CCW (|1, 0;−,−⟩), CW (|0, 1;−,−⟩), |0, 0;+,−⟩

and |0, 0;−,+⟩, respectively. Using these bases, the matrix is given by:



ωc 0 gae
imθ1 gae

imθ2

0 ωc gbe
−imθ1 gbe

−imθ2

g∗ae
−imθ1 g∗be

imθ1 ωc 0

g∗ae
−imθ2 g∗be

imθ2 0 ωc


(2.10)

Here, θ = θ1− θ2 is the relative angular position of the two particles. For brevity, we assume

that all the particles are on resonance with WGMs. The four eigenvalues of the matrix in

Eq. (2.10) are ω = ωc ± 2g| cosmθ/2|, ωc ± 2g| sinmθ/2| (g ≡ |ga| = |gb|). Fig. 2.4 plots the

four eigenvalues as a function of mθ. From the plot, it is clear that when mθ = 0, π/4, and

π/2, there are 3, 4 and 2 nondegenerate eigenvalues, respectively. The numerical values and

the number of nondegenerate eigenvalues are in complete agreement with the transmission

spectrum. In particular, when mθ = π/8, which corresponds to the two-particle case in

Fig. 2.3, the eigenvalues give the exact the locations of the dips (note the frequency in

Fig. 2.3 is normalized by Γ).
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Figure 2.4: Eigenvalues as a function of mθ (m is the order of WGM) for the two-plasmonic
particle case. g = 6 GHz.

The matrix method also provides a simple explanation that the transmission spectrum for

the plasmonic case has at most four dips, when n (≥ 2) identical particles are adsorbed.

When n identical plasmonic particles are adsorbed onto the WGM resonator, the dimension

of the Hamiltonian matrix is n+ 2, and is given by:



ωc 0 gae
imθ1 · · · gae

imθn

0 ωc gbe
imθ1 · · · gbe

imθn

g∗ae
−imθ1 g∗be

−imθ1 Ω 0 0

...
... 0

. . . 0

g∗ae
−imθn g∗be

−imθn 0 0 Ω


, (2.11)

where Ω is the excitation frequency of the particles. A direct computation reveals that there

are n−2 degenerate eigenstates with eigenvalue Ω; moreover, these eigenstates do not involve

the CCW and CW states but are only linear superposition of the particle states. Thus,

these eigenstates are decoupled from the resonator and cannot be probed by the probing

beam in the fiber; consequently, the transmission at the dark state resonant frequency Ω

is always 100%, regardless of the particle dissipations. These states are properly named as

the “dark states”. Evidently, the maximum number of dips in the transmission spectrum
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is (n + 2) − (n − 2) = 4. For the case of four identical particles (n = 4), which could be

dissipative, the two dark states are given by (0, 0, sin(θ2 − θ3), sin(θ3 − θ1), sin(θ1 − θ2), 0)

and (0, 0, sin(θ2 − θ4), sin(θ4 − θ1), 0, sin(θ1 − θ2)), respectively. Thus the dark states are

robust against the dissipations. These results can be generalized to the case when there

are several species of plasmonic particles with different excitation frequencies. For example,

when M species of particles are adsorbed, with excitation frequency Ωi, and number ni

(i = 1, · · · ,M), the number of dark states is given by D ≡
∑M

i=1 d(ni), where d(ni) = ni − 2

if ni ≥ 2, and 0 if ni < 2. Consequently, the maximum number of transmission dips

is (2 +
∑M

i=1 ni) − D. Although the simple matrix method gives directly the number and

positions of the transmission dips, these sharp eigenfrequencies however are broadened by the

intrinsic dissipation of the particles, as well as by the resonator-fiber coupling Γ. To obtain

the linewidth of each transmission dip, as well as the numerical value of the transmission, one

must employ the full theory presented above. It can be further shown that the dissipations

and Γ do not affect the locations of the dips. We note that the matrix method could also

deal with the case of higher power of the probing light, by employing bases with multiple

plasmonic excitations. The dimension of the Hamiltonian matrix is accordingly enlarged,

which gives rise to a more complicated transmission spectrum.

Here we describe possible schemes to reveal the signatures of the dark states. As the dark

states are eigenstates formed by identical and independent plasmonic scatterers, the dark

states can be transmuted into detectable bright states by alleviating either of these two

requirements. For example, by imposing a spatially varying magnetic field, each plasmonic

particle would experience different amount of transition frequency shift so as the particles

become non-identical; additional transmission dips will thus emerge in the transmission

spectrum, which provides the information about the number of particles. Alternatively, when

two plasmonic particles are in close proximity to each other so a direct scattering of photons

between the particles becomes possible, additional transmission dips will also emerge in the

transmission spectrum. Mathematically, both approaches modify the lower-right diagonal
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block of the Hamiltonian matrix of Eq. (5.2) so that in the former case, the identical Ω’s

are shifted to different values; while in the latter case, off-diagonal terms become non-zero

due to the direct coupling. In both cases, all eigenstates couple to the WGMs and can be

detected by the probing light.

2.5 Numerical Simulations

In this Section, we perform a rigorous numerical investigation to confirm the theoretical

predictions for the Rayleigh scatterers. The primary predictions from Eq. (2.8) are: (i) The

central spectral shift S(N) ≡ |Ωc − ωc| is exactly proportional to the number of particles

adsorbed, regardless of the imaginary part of the complex polarizability α. For positive (neg-

ative) α1, the spectrum is red(blue)-shifted. (ii) The characteristics (e.g., width, location,

and spectral separation) of the two transmission dips crucially depend on the parameters of

the system, such as the angular positions and the dissipations of the particles; Ωc however

remains to be the center of the two transmission dips, and can be determined by the average

location of the two dips.

2.5.1 Computation Geometry

We simulate the system in two dimensions using a full-vectorial finite element solver [32].

The computational geometry consists of a WGM resonator placed in the x − y plane, with

an inner and an outer radius of 14.0 µm and 15.0 µm, respectively. The resonator is coupled

to a 1.0 µm-wide tapered fiber, with an edge to edge distance of 1.3 µm. Both the resonator

and the fiber are made of silica with a refractive index 1.45. The background is vacuum

or air (refractive index = 1). The nanoparticles are polystyrene particles with a radius

a = 30 nm, and a refractive index 1.57. For two-dimensional structures uniform in the
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z-direction, the eigenmodes can be decomposed into TM and TE polarizations. In TM

mode, the only nonzero electric component is Ez, while in TE mode, the only nonzero

magnetic component is Hz. When no particle is adsorbed, the numerical results show that

the resonator exhibits an extremely high quality factor Q larger than 106 for both TM (WGM

order m = 82) and TE (m = 80) modes at 1.5 µm wavelength of the coupling light. The

system is operated in the under-coupling regime to get a sufficiently high quality factor. The

resonant frequencies between the TM and TE modes differ by 0.63THz, which corresponds

to 4.7 nm. We note here that only the real part of the polarizability α1 is specified via

the refractive index, i.e., no intrinsic dissipation or gain is assumed. The radiation loss

to free space gives rise to an imaginary part of the polarizability, which is automatically

included in the numerical simulations. Likewise, it is also not necessary to specify the

radiation dissipation rate γc of each WGM, which is automatically included in the numerical

simulations. We also note that very efficient fiber-taper coupling to a high-Q resonator has

been experimentally demonstrated [33].

The theoretical analysis presented in previous sections applies to both two- and three-

dimensional geometry. Here, we investigate the more viable two-dimensional case that allows

a quantitatively accurate check. Such a two-dimensional investigation is also relevant to the

three-dimensional scenario. The WGMs can always be classified into modes symmetric (S)

or antisymmetric (N) to a plane of symmetry [34]. These modes on the symmetry plane are

exactly the TE and TM modes, respectively, when the wave vector of the modes does not

have a component in the direction perpendicular to the symmetry plane. Moreover, in prac-

tice, the electromagnetic fields for these modes are in fact well confined and concentrated to

the symmetry plane (or equatorial plane), thus these two WGMs exhibit quasi-TE and quasi-

TM field structures [35, 34], which could be described by an appropriate two-dimensional

structure.
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Figure 2.5: (a) Angular positions of five consecutive particles (radius a = 30 nm, index
n = 1.57) adsorbed onto the resonator. The last two configurations both have five adsorbed
particles but with different angular positions. (b) Transmission spectra versus number of
adsorbed particles N . The center of each spectrum is indicated by arrows of the same color.
(c) Central spectral shift S(N) (black square) and frequency splitting ∆(N) (grey dot) versus
N . The brown dot indicates the value for the last 5-particle configuration in (a). Least square
fitting yields: TM mode: S(N) = 0.7887N GHz, and TE mode: S(N) = 1.058N GHz.

2.5.2 Numerical Results

Having introduced the computational geometry, we now explore the transmission spectra

with different number of adsorbed particles. To ensure the convergency of the solutions,

finer meshes (i.e., more finite elements) are employed until all transmission spectra converge

and stabilize. We first consider the TMmode case, wherein the proximity effect does not exist

(as the electric field is in the z-direction), and thus provide a direct check for the theoretical

prediction. Fig. 2.5b left panel plots the transmission spectra due to the adsorption of

consecutive particles. Numerically, we have observed that the widths of the two transmission
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dips become broadened as the number of particles N increases. We have also observed that

Ωc is red-shifted by an amount S(N) which is precisely proportional to N , as indicated by

the arrow. Also plotted is the frequency separation ∆(N) between the two transmission dips,

which is not proportional to N , as it also depends on the angular positions of the particles.

Ωc however remains the same for the same number of adsorbed particles, regardless of their

angular positions. For example, the last two five-particle cases in Fig. 2.5a have the same

Ωc but different ∆. Next, we investigate the TE mode case. The transmission spectra are

plotted in Fig. 2.5b (right panel). Again, the two transmission dips are broadened and the

center of each spectrum Ωc is red-shifted by an amount S(N) which is precisely proportional

to N (Fig. 2.5c right panel). As a result of the linearity, the number of adsorbed particles N

can be accurately determined by measuring the central spectral shift S(N) and divided by

the slope, which can be determined from either a linear fitting or from a controlled single-

particle measurement. The oscillations in ∆(N) in both cases are due to the dependence on

the angular positions. All these phenomena are in well agreement with the numerical results.

2.5.3 Proximity Effect

When two particles are in proximity, in addition to the external electric field, each particle

experiences an additional field contribution from the nearby particle’s dipole field. Accord-

ingly, the induced dipole moment of each particle is slightly modified, which in turn induces

a small change for the central spectral shift S(N). To quantify the proximity effect between

two particles with an edge to edge separation d, we numerically compute the spectral shift

S(2′). Here the number of particles is primed to indicate that the proximity effect is in-

cluded. When two particles are well separated (d≫ a), the proximity effect diminishes and

one expects that S(2′) approaches S(2) (= 2S(1)). Fig. 2.6 plots the ratio of S(2′)/2S(1).

Numerically we observed that the ratio is essentially 1, when d is larger than 4a. Moreover,

the ratio decreases monotonically as d decreases, but always remain close to 1. When two
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particles touches (d = 0), the deviation is ≃ 1.8%. We conclude that the proximity effect re-

mains small throughout the entire range of d, and the number of particles can be determined

within ≃ 1.8% deviation in general cases.

a d
E

Figure 2.6: S(2′)/2S(1) as a function of d/a. S(2′) is the central spectral shift including the
proximity effect. S(1) is the central spectral shift due to single particle. The direction of the
electric field of the WGM resonator is denoted by the light blue arrows.

To gain a deeper physical understanding about the proximity effect, here we provide a

heuristic description. We first note that for the geometry of interest in practical situations,

the Rayleigh particles are essentially point dipoles. For two particles in proximity (d ≃ 0),

by decomposing the external electric field into a direction parallel (E∥) or perpendicular

(E⊥) to the axis connecting the centers of the two particles, it is straightforward to show

that the effective electric field experienced by each particle increases for the parallel case

(i.e., the dipole field contribution ∆E∥ > 0), while it decreases for the perpendicular case

(i.e., the dipole field contribution ∆E⊥ < 0) [36]. Therefore, the contributions from parallel

and perpendicular components to the induced secondary spectral shift have opposite signs

and tend to partially cancel each other. Specializing to the WGM resonator considered here

22



for TE mode with cylindrical coordinates (ρ, θ, z), E∥ is in the θ̂-direction, and E⊥ is in the

ρ̂-direction. By solving the mode analytically [37] (which was also checked numerically), we

found that Eρ ≃ 1.6Eθ and Ez = 0 at the surface of the WGM resonator (the direction

of the electric field is indicated by the light blue arrows in Fig. 2.6). Thus, the induced

secondary spectral shift from both cases partly cancel each other, yielding an extremely

small secondary spectral shift. We note that the ratio S(2′)/2S(1) when d ≃ 0 can be either

larger or smaller than 1, relying on the precise values of Eρ and Eθ, which in turns depend

on the characteristics of the system such as the dimensions and the materials. For the case

considered here, S(2′)/2S(1) < 1 when d ≃ 0.

For three-dimensional geometry, the contributions from the parallel and the perpendicular

electric field also tend to cancel each other, so the proximity effect remains small. In partic-

ular, when two particles are close to each other, the proximity effect gives rise to a red-shift

for Eθ and blue-shift for Ez and Eρ. As an example, for a three-dimensional WGM resonator

with Ez ≃ Eρ ≃ Eθ, all contributions cancel each other and the net induced additional spec-

tral shift is essentially negligible. The proximity effect has also been studied in Ref. [] for

the special case of a transverse field, which yields similar results.

2.6 Statistical Analysis

In many practical real-world applications, a particle flux that is several orders of magnitude

larger. For example, in arc welding, the concentration of metal oxide is ∼ 106 cm−3 [38]; a

large concentration of particles also exists in the ambient atmosphere [39], combustion [40], or

on-road aerosol due to traffic exhaust emissions [41]. In this Section, we show that a statistical

theory emerge in the large particle-flux regime, which enables accurate determination of the

number of nanoparticles adsorbed onto the resonator by measuring the transmission spectra;

the number of particles is accurately determined by the spectral shift of the center of the
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transmission spectrum, which is experimentally measurable and remarkably independent

of the intrinsic dissipation of the particles as well as the angular positions of the particles.

Specifically, we consider the detection of Rayleigh scatterers, which are nanoparticles that do

not have a distinct resonant peak within the frequency range of interest, such as polystyrene

and off-resonant molecules.

2.6.1 Transmission Spectra and Gedanken Experiments

By following the procedures presented above (describing N identical particles), the trans-

mission spectrum for N non-identical particles adsorbed onto the resonator is given by:

t(ω) =
(ω − Ωc + iγ)2 + Γ2 − |h|2 − I

(ω − Ωc + iγ + iΓ)2 − |h|2 − I
, (2.12)

where the N Rayleigh particles are characterized by the complex polarizabilities and angular

positions {αj, θj}, j = 1, · · · , N . Again, ω is the frequency of the probing light. Γ is the

tunable resonator-fiber coupling. Ωc = ωc − 2Ngαr and γ = γc + 2Ngαi are the normalized

resonance frequency and intrinsic dissipation rate of the WGM resonator. g = ϵ0|E⃗0|2/~,

and has the unit of angular frequency per unit volume. αr and αi, respectively, are the real

and imaginary part of the average polarizability α =
∑N

j=1 αj/N . I = 2g
∑

j αj(e
2imθjh∗ +

e−2imθjh)+4g2
∑

j,k αjαke
2im(θj−θk); the first term describes the scattering processes between

the particles and the surface imperfection h; while the second term describes the inter-particle

scattering. For any given {αj, θj}, the transmission spectrum T (ω) ≡ |t(ω)|2 has a doublet

structure and the qualitative features as discussed above. Requiring dT (ω)/dω = 0, the two

transmission dips are found to be located at Ωc ± Re
√
I + |h|2, which indicates that Ωc is

the center of the dips. Ωc is red-shifted for positive αr, and blue-shifted for negative αr.

Eq. 2.12 is exact for any given set of {αj, θj} for fixed N . In practice, however, one is

interested in the inverse problem: can N be determined from a measured transmission
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spectrum T (ω)? We show that a statistical theory emerges at the large N limit. In the

statistical theory, N is regarded as an unknown, while {αj} is considered as a set of random

variables obeying some given distribution. Our theory indicates that N can be accurately

determined, regardless of the values of {θj}, which in general are unknown. The enabling

feature is that the spectral shift of the resonance frequency of the resonator S(N) = |Ωc −

ωc| = 2Ngαr is proportional to N . Notably, S(N) depends only on αr but not the surface

imperfection, dissipations, and the angular positions of the particles. |E⃗0| can be determined

by either a numerical simulation, or from the measurement of S(N = 1) for the one-particle

case.

As a concrete example, we apply the statistical theory to the case when the sizes d of the

particles are distributed log-normally: d ∼ lnN (ln d0, (lnσg)
2), where d0 is the geometric

mean and σg is the geometric standard deviation; i.e., the logarithm of the size of the

particles is normally distributed. The empirical values of σg ranges from 1.02 to 2.4. Log-

normal distribution is skewed to the larger value, and is frequently adopted in modeling

the size distribution of real-world particles [42]. We emphasize that the statistical theory

described here can be equally applied to other distributions as well. For a spherical particle

with diameter d, the polarizability is given by α(d) = 4π(d/2)3(ϵp − ϵm)/(ϵp + 2ϵm). Here,

ϵp is the permittivity of the particle and ϵm is the permittivity of its surrounding medium.

From the distribution of d, the distribution of the polarizability α(d) can be computed.

We will use µ ≡ µr + iµi to denote the mean complex polarizability; and σr, σi to denote

the standard deviation of the real and imaginary part of {αj}, respectively. µr is given by

µr =
∫∞
0
αr(x)PDF[lnN (ln d0, (lnσg)

2)]dx, where PDF stands for the probability density

function. According to the central limit theorem, the distribution of αr obeys the normal

distribution N (µr, (σr/
√
N)2); thus, the probability that αr is within one standard deviation

of the mean is about 68%, and about 95% within two standard deviations. Accordingly,

S(N) = 2gNαr has a probability of 68% to fall into [2Ngµr − 2
√
Ngσr, 2Ngµr + 2

√
Ngσr].

An estimate of the number of the particle Nm is obtained by requiring S(N) ≡ 2gNmµr,
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Figure 2.7: Normal distribution of S(N). The fitting gray curve is the distribution M ×
N (−2Ngµr, (2

√
Ngσr)

2) =M ×N (−136.310MHz, (5.647MHz)2). The black arrow denotes
one standard deviation. Three representative transmission spectra with varying particle
dissipations with αr(d0)/αi(d0) = 20 (green), 40 (blue), and 60 (red) are plotted. The small
arrow indicates the center of the spectrum.

which yields

Nm =
S(N)

2gµr

∈ [N − σN , N + σN ], (2.13)

where σN ≡
√
Nσr/µr is the standard deviation. Consequently, when N or Nm is large,

Nm/N approaches 1 and one can substitute Nm for N into σN to calculate the error. Eq. 2.13

is the principal result of the statistical theory.

2.6.2 Discussions on Different Geometric Standard Deviation σg

To validate the statistical theory, in the following, we present the results of M independent

Gedanken experiments. In each experiment, N diameters of the particles d are sampled from

a log-normal distribution lnN (ln d0, (lnσg)
2), and their angular positions {θj} are randomly

distributed in [0, 2π). Without losing generality, we assume d0 = 20 nm. We also assume

Γ = 1MHz, γc = 1MHz, h = 0, and gαr(d0) = 0.1MHz. The particle dissipation is

equivalently specified by the ratio of αr(d0)/αi(d0). The conclusion of the statistical theory

do not depend on the choice of these numbers.
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Figure 2.8: Distribution of S(N) for three different geometric standard deviation: σg = 1.5,
1.3, and 1.1 (from left to the right). Three representative transmission spectra for σg = 1.5
(green), 1.3 (blue), and 1.1 (red) are also drawn.

Fig. 2.7 shows the results for the case of N = 500 particles and σg = 1.3. The histogram

plots the counts versus S(N) forM = 10000 experiments. The distribution of S(N) is in well

agreement with the statistical predicationM×N (2Ngµr, (2
√
Ngσr)

2). Three representative

transmission spectra with different particle dissipations and angular positions are also plotted

(Fig. 2.7 bottom).

We next investigate the effects of different values of σg for fixed N , as shown in Fig. 2.8. Both

µr and the full width at half maximum (FWHM, which represents the standard deviation)

increases as σg becomes larger. Again, the results from the Gedanken experiments agree with

the statistical theory. For each σg, a representative transmission spectrum is also plotted.

When σg is 2.0, the FWHM of the diameter distribution is 22 nm, and d ranges from 6 nm

to 28 nm. Nonetheless, Nm can still be estimated fairly accurately even when σg is large.

Table. 2.1 tabulates the relative error of Nm when σg increases from 1.1 to 2.4; at σg = 1.5,

the relative error is 8%, and becomes slightly less than 40% when σg = 2.0.
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Table 2.1: N = 500, and d0 = 20 nm.

σg σN
σN
N

≈ Nm −N

N
µ/α(d0)

1.1 7 0.01 1.04
1.3 21 0.04 1.36
1.5 41 0.08 2.10
2.0 193 0.39 8.69
2.4 703 1.41 31.47

2.6.3 Discussions on Different Particle Numbers N

Also, we consider the cases of varying the number of particles N . Fig. 2.9a plots the results

for N = 250, 500, and 750. For each case, the distribution of the spectral shift per particle

S(N)/N is plotted. The three histograms are in excellent agreement with the distribu-

tions of N (−273 KHz, (16KHz)2), N (−273KHz, (11KHz)2), and N (−273 KHz, (9KHz)2),

respectively. The standard deviation per particle is suppressed by
√
N . Fig. 2.9b plots

one transmission spectrum for each N . When N increases, the two transmission dips are

broadened, as the total dissipation is proportional to N .

2.6.4 Applicability of the Statistical Theory

Here, we make a few comments on the applicability of the statistical theory. Our statistical

theory assumes that the density coverage of the particles is not very large, i.e., no two

nanoparticles are in close proximity to each other, such that the mutual polarization can be

neglected. For a WGM resonator with diameter D = 30µm, approximately πD/d0 ≈ 4700

particles can be accommodated (d0 = 20 nm). In the Gedanken experiments, the covering

ratio is roughly 500/4700 ≈ 0.1, which justifies the neglect of the mutual polarization. Our

theoretic framework, however, can be extended to a high density scenario by taking into

account the mutual polarization.
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Figure 2.9: (a) The distribution of the spectral shift per particle S(N)/N for N =
250 (green), 500 (blue), and 750 (red). The fitting curve is the normal distribution
N (−2gµr, (2gσr/

√
N)2). (b) Representative transmission spectrum for each N .

2.7 Summary and Expectation

In this Chapter, we have presented the theory of nanoparticle sensing using WMG res-

onators for both plasmonic and Rayleigh scatteres. In particular, we describe how to extract

critical information, such as the number of particles adsorbed, from the transmission spec-

trum. Moreover, a rigorous numerical validation for accurate determination of the number

of Rayleigh scatterers is also performed. Compared with other sensing techniques such as

angle-resolved interferometry and optical coherence tomography, the mechanism described

here is more robust, as it does not require detailed information regarding angular positions

or shapes of each particle. Finally, we comment on some of the important issues in practical

detection. Firstly, we discuss the effects of the presence of the surface imperfections (h ̸= 0).

The sensitivity as well as the accuracy for the estimation of the particle number and lo-

cations of the transmission dips degrade with increasing surface imperfection. The surface
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imperfection breaks the degeneracy of the two WGMs, and splits the single transmission dip

into a doublet in the under-coupling regime [28, 21]. As the adsorbed particles are intrin-

sically (spatially localized) surface imperfections, such a doublet structure from non-zero h

will superimpose upon the induced structures due to the particles in the transmission spec-

tra, and therefore masks the information about the particles. We note that however one

could still obtain the information by numerically fitting the transmission spectrum using

Eqs. (2.4) or (2.8) for the non-zero h case. Secondly, our formalism is capable of describing

the full spatiotemporal dynamics of the system, and applies to other scenarios. For example,

when nanoparticles fly by the resonator slowly and closely but do not get adsorbed (which

is desired when washing off the adsorbed particles is not practical), the dynamics can be

analyzed by the full theory presented here.
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Chapter 3

Single-photon Optical Diode

3.1 Introduction

Another interesting application in nanophotonic system is to achieve optical isolation down to

single-photon levels. Complete optical isolation is critically important for all optical devices.

In view of all practical applications, parasitic reflection between optic devices can have

deleterious effects on the operations, especially for those based on interferometry designs.

To ensure the proper operations of the optical devices, optical diodes are used to prevented

those unwanted feedbacks. The name optical diode is originated from the name of the

electronic diode. An electronic diode allows an electric current to pass in one direction with

a transmission close to unity, while in the other direction, the transmitted current is almost

zero. This unidirectional behavior called rectification can be used to convert alternating

current into direct current. By using a similar definition, an optical diode is a spatially

nonreciprocal device which allows unidirectional propagation of a signal, acting as an optical

isolator at a given wavelength [43]. In an ideal case, its transmission is 100% in the forward

direction (Tf = 1), while it vanishes for the backward direction (Tb = 0), yielding a unitary

contrast number η ≡ |(Tf − Tb)/(Tf + Tb)| = 1. To achieve this optical isolation, various

possible solid-state optical diodes have been proposed or demonstrated before, ranging from
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standard bulk Faraday rotators (due to small Verdet constant, the Faraday rotators are

typically of centimeter size [44, 45]); to thin film devices based on magneto-optic effects in

a Mach-Zehnder geometry at centi-meter scale [46]; use of a graded gain medium with a

10 cm long glass capillary filled with ethanol [47]; and approaches that tailor the nonlinear

responses which require certain optical power so that the nonlinearity manifests [48, 43].

Recent advances in single-photon sources [49, 50, 51, 52] and Nano scale fabrication make on-

chip quantum optics and information processing attainable. Therefore, with the capability

of controlling light-matter interactions in ultra-low power regimes and even down to single-

photon levels [53, 54], it is desirable to achieve optical signal isolation at the single-photon

level within sub-µm chip-scale for integrated nano-photonics. In the following, we show

that near complete optical isolation can be achieved at the single-photon level by coupling

a quantum impurity to a passive, linear waveguide which has a locally planar, circular

polarization. Such a configuration does not rely upon the use of bulk nonlinear materials or

quasi-phase matching, and has a sub-µm footprint that can be conveniently implemented in

various types of waveguides.

3.2 Configurations

We start by describing the configuration of the single-photon diode. The diode is accom-

plished by coupling a quantum impurity to a passive, linear waveguide (Fig. 3.1a). The

waveguide is a single-polarization single-mode (SPSM) waveguide, with a planar and circu-

lar polarization at the location of the impurity at a fixed frequency (the operating frequency).

The circularly polarized state reverses its orientation for opposite wave vectors (Fig. 3.1b),

due to time-reversal symmetry. We will take the polarization plane as the x-y plane. With

an external dc magnetic field B in the z-direction that breaks the time-reversal symmetry,

the energy levels of the impurity are Zeeman-split and each level couples to one circularly

32



a

b c

Figure 3.1: Schematics of the single-photon diode. (a) A quantum impurity (blue dot) is
coupled to a passive, linear SPSM waveguide. (b) At the operating frequency, the waveguide
possesses a locally planar circular polarization. The polarization reverses its orientation
for opposite wave vectors. (c) The energy level diagram with the presence of an external
magnetic field.

polarized state (Fig. 3.1c). The design strategies and rigorous conditions for SPSM waveg-

uides have been discussed before [55]; numerically, we found that a locally planar circular

polarization can be achieved for a variety of waveguides, as will be shown below. The impu-

rity can be a quantum dot [56, 57, 58], or an atom doped in semiconductors [59, 60, 61]. The

transition frequencies of different quantum impurities cover a wide range from microwave to

far-infrared.

We note that in this configuration the wave vector k is perpendicular to the magnetic field

B, which is the same as in the Voigt (transverse) configuration and is different from the

Faraday (longitudinal) configuration [62] wherein k is parallel to B. Moreover, the wave

vector and the polarization lie in the same plane that is perpendicular to the magnetic field.

Such a unique configuration is possible only in a confined geometry, such as a waveguide.

When coupled to a dipole, the interaction between the dipole and the photon field is given
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by

HI = −d · E

= −
(
dx + idy√

2

Ex − iEy√
2

+
dx − idy√

2

Ex + iEy√
2

+ dzEz

)
≡ − (d+E+ + d−E− + dzEz) , (3.1)

where the in-plane electric field is decomposed into a linear combination of left- and right-

hand circular components as Exx̂ + Eyŷ = E+σ̂+ + E−σ̂− (here σ̂± = (x̂± iŷ) /
√
2 corre-

sponds to the left- and right-hand circular polarization unit vectors [63]). In the case of

electric or magnetic ∆m = ±1 dipole transitions, the impurity interacts only with the cir-

cularly polarized photon modes σ± (Fig. 3.1). The selection rules state that the ∆m = 1

transition couples to σ+ polarization and only d+ has non-zero matrix elements, while the

∆m = −1 transition couples to σ− polarization and only d− has non-zero matrix elements.

For dipole transition with transition frequency ωd, the transmission and reflection ampli-

tudes of the photon at frequency ω are given by t(ω) = (ω − ωd + iγ)/(ω − ωd + iΓ + iγ)

and r(ω) = iΓ/(ω − ωd + iΓ + iγ), where Γ is the external linewidth of the dipole due

to waveguide-quantum dot coupling, and γ is the intrinsic dissipation rate of the quantum

dot [64, 65]. The transmission and reflection coefficients are given by T (ω) = |t(ω)|2 and

R(ω) = |r(ω)|2.

We now describe the operating scheme for achieving the photonic rectification: For a photon

entering from the left (the “forward” direction) with frequency ω−, since the photon mode

is σ+ polarized at the location of the impurity, the photon couples only to the m = 1 atomic

state that has a transition frequency ω+; for a large frequency mismatch (ω+ − ω− ≫ the

frequency bandwidth of the pulse), the photon will not interact appreciably with the impurity

and has a perfect transmission (Tf = 1). On the other hand, when the photon enters from the

right (the “backward” direction) with frequency ω−, since the photon mode is σ− polarized

at the location of the impurity, the photon interacts resonantly with the m = −1 atomic

34



state, giving rise to a zero transmission (Tb = 0) [64] and thus yields a unitary contrast. We

emphasize that the polarization of the waveguide mode at frequency ω+ is not important

for the operation. Alternatively, the photonic rectification can be achieved at frequency ω+

when the waveguide is designed to have a locally planar, circular polarization at ω+. In this

case, the forward and backward directions are reversed: photons entering from the right are

now perfectly transmitted, while photons incident from the left are completely reflected.

3.3 Waveguide Designing

Having introduced the device configuration and the basics of the operating scheme, we now

present designs of SPSM waveguides that possess locally planar circular polarization.

3.3.1 Line Defect Waveguide

The first example is a two-dimensional (uniform in the z-direction) line defect waveguide

in silicon (dielectric constant ϵ = 13), formed by removing a row of air columns from an

otherwise-perfect triangular lattice of air columns (Fig. 3.2a). Such a system is known for

having a broad complete photonic band gap for both transverse electric (TE, electric field in

the x-y plane) and transverse magnetic (TM, magnetic field in the x-y plane) modes [35]. In

particular, the ratio between the radius of the air hole r and the lattice constant a is 0.48, a

18.6% complete photonic band gap can be obtained [35]. Fig. 3.2b plots the band structure

of the line defect waveguide along the Γ−K direction, which exhibits a complete band gap

extending from 0.42 (2πc/a) to 0.51 (2πc/a). In particular, from the frequency range 0.45

(2πc/a) to 0.47 (2πc/a), the waveguide is an SPSM waveguide as only TE mode exists.

The line defect waveguide has discrete translational symmetry along the waveguide; the

polarization pattern thus is periodic in the x-direction with a periodicity a. To investigate
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Figure 3.2: Schematics and polarization states of a line defect waveguide. (a) A line defect
waveguide in silicon (ϵ = 13) with triangular lattice of air columns. A unit cell (along
the x-direction) of the waveguide is shown on the right. (b) The band structure of the
waveguide. In the frequency range from 0.45 (2πc/a) to 0.47 (2πc/a), only TE mode exists
and the waveguide is an SPSM waveguide. (c) The polarizations at three representative
points (shown by black dots in (a)) at ω = 0.46 (2πc/a). The polarization can be expressed
in the form ax cos (ωt+ ϕx) x̂ + ay cos (ωt+ ϕy) ŷ. For point 2, the relative deviations for
|∆a/ax| and |∆ϕ/(π/2)| are 1.3% and 1.4%, respectively.

the spatial variation of the polarization within a unit cell (Fig. 3.2a right), we scan through

a horizontal line which locates at a distance 0.546 a from the center of the closest air hole.

Fig. 3.2c plots the polarizations at three representative points within the unit cell which are

located at a distance from the left edge of the unit cell 0.15 a, 0.23 a, and 0.30 a, respectively,

at frequency ω = 0.46 (2πc/a). The polarization at point 2 is found numerically to be

circular. Moreover, we have numerically confirmed that only four points within the unit

cell possess circular polarization: Besides point 2, the other three points (indicated by × in

Fig. 3.2a) are obtained through mirror symmetry with respect to the center of the unit cell.
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3.3.2 Holey-cavity Waveguide

Another example is a 2-dimensional Holey-cavity waveguide [66]: a dielectric waveguide

perforated with a periodic sequence of twelve air holes (Fig. 3.3a). A resonant cavity mode

is introduced by increasing the distance between the two central air holes. The dielectric

material is assumed to be Pyrex glass with ϵ = 5. Such a structure has been used as a filter, as

the resonant mode gives rise to a transmission peak in the middle of the band gap. Fig. 3.3b

plots the transmission spectrum for both TE and TM modes. Within the frequency range

from 0.275 (2πc/a) to 0.296 (2πc/a), only the TE mode exists, and the structure is an SPSM

waveguide. At the point in one of the air holes (Fig. 3.3a), the polarization at frequency

0.293 (2πc/a) is circular (Fig. 3.3c). The point is located in an air hole so that an impurity

can be placed.
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Figure 3.3: Schematics and polarization state of a holey-cavity waveguide. (a) The structure
of the holey-cavity waveguide. The width of the waveguide is 1.2a. The holes have a radius
0.36a, and are separated by a distance a, except for the two center holes that form the cavity
are separated by a distance 1.4a. (b) The transmission spectra for both TE and TM modes.
(c) The circular polarization at the point shown in (a) at frequency ω = 0.293 (2πc/a).
Circular polarization exists at other three points via mirror symmetry.
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3.4 Practical Considerations

A practical diode must be able to operate over a finite frequency bandwidth. For a pho-

ton pulse with a finite frequency bandwidth, at detuned frequencies ω ̸= ω− (the operating

frequency), there are two possible predominant degrading factors to the performance of the

diode: (1) the polarization becomes elliptic; an elliptic polarization is a linear superposition

of both σ+ and σ− states, and thus couples to both transitions ∆m = ±1; and (2) imper-

fect transmissions in both directions [64] (i.e., Tf (ω) ̸= 1 and Tb(ω) ̸= 0) at off-resonant

frequencies ω ̸= ω−. Moreover, the intrinsic dissipation of the quantum dot should also be

considered. Here we examine these issues and show that complete photonic rectification can

still be achieved for a photon pulse.

3.4.1 Dynamics of the Photon Pulse

In general, for an incoming pulse ϕ(x, t) propagating in a waveguide with wave form ϕ(x, t) =∫
dω g(ω)eik(ω)x−iωt, the pulse transmission T and reflection R are generalizations of above

mentioned T (ω) and R(ω); in this case, one needs to take into account the Fourier component

g(ω) of the pulse, as well as the waveguide mode polarization. T and R are given by:

T =

∫
dω {u2(ω)|g(ω)t+(ω)|2 + v2(ω)|g(ω)t−(ω)|2}∫

dω|g(ω)|2
, (3.2)

R =

∫
dω {u2(ω)|g(ω)r+(ω)|2 + v2(ω)|g(ω)r−(ω)|2}∫

dω|g(ω)|2
; (3.3)

where t±(ω) and r±(ω) are the transmission and reflection amplitudes at frequency ω for

the ∆m = ±1 transitions, respectively (i.e., ωa = ω±). u(ω) and v(ω) are real numbers

which describe the ellipticity of the polarization in the waveguide as a function of frequency:

The polarization at frequency ω is decomposed as u(ω)σ̂+ + v(ω)σ̂−. (σ̂± = (x̂± iŷ) /
√
2

corresponds to the left- and right-hand circular polarization unit vectors.) For circular
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polarization, (u, v) = (1, 0) or (0, 1); for elliptic polarization, 0 < u, v < 1. The pulse

transmission and reflection are equal to the area ratios of the transmitted and reflected

pulses, respectively, to the input pulse. Thus, to compute pulse transmission and reflection

numerically, one uses the strategy: (i) compute numerically the polarization throughout the

bandwidth, and compute the ellipticity to obtain u(ω) and v(ω); (ii) for each frequency

within the bandwidth, compute t± and r±; and (iii) use Eqs. (3.2) and (3.3) to compute T

and R for both forward and backward directions.

Fig. 3.4a plots the polarizations over a frequency range of 10GHz, assuming the center

frequency ω− corresponds to 1.55µm wavelength (the lattice constant for the line defect

waveguide a = 0.713µm). The polarizations remain essentially circular throughout the

entire 10GHz frequency bandwidth, which corresponds to a pulse with a temporal width

≃ 0.1 ns. To investigate the effects of imperfect transmissions at detuned frequencies, we

numerically simulated the dynamic process of the propagation of a photon pulse by solving

the following set of equations of motion [64]

i∂tϕR(x, t) = −ivg∂xϕR(x, t) + V δ(x)ea(t), (3.4)

i∂tϕL(x, t) = +ivg∂xϕL(x, t) + V δ(x)ea(t), (3.5)

i∂tea(t) = ω±ea + V (ϕR(0, t) + ϕL(0, t)) , (3.6)

where ϕR(x, t) and ϕL(x, t) are the wave functions of the right-moving and left-moving pho-

tons, respectively; ea(t) is the quantum dot excitation; V is the waveguide-impurity coupling;

vg is the group velocity of the photon in the waveguide; and ω± are the transition frequen-

cies for ∆m = ±1 transitions. The quantum dot is located at x = 0. The above set of

the equations of motion already takes into account that the polarizations remain circular

throughout the frequency bandwidth of the photon pulse. The general case when the polar-

ization becomes non-circular within the pulse bandwidth can be numerically solved in the

same manner and will be presented elsewhere. To solve the equations of motion numerically,
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we use the pseudo-spectral method in coordinate space with a non-uniform grid to evolve

an initial state specified by ϕR(x, 0), ϕL(x, 0), and ea(0). The input pulse enters from the

left (forward direction) or the right (backward direction); in each case, the quantum dot is

initially in the ground state (ea(0) = 0).
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Figure 3.4: Photonic rectification for a pulse with a finite frequency bandwidth. (a) The
polarization remains essentially circular throughout a 10GHz bandwidth, centered at a fre-
quency corresponding to 1.55µm wavelength. (b) Non-reciprocal pulse propagation in the
waveguide at sequential time steps. The transmission in the forward direction is Tf = 97.6%
(upper panel), and is Tb = 0.7% in the backward direction (lower panel). The input pulse is
a 50 ns Gaussian pulse at 1.55 µm wavelength.

The input pulse is a 50 ns Gaussian pulse at 1.55µm wavelength, which corresponds to a

frequency bandwidth ∆B = 0.44/(50×10−9) = 8.8×10−3 GHz ≪ 10GHz. (The rectification

function is independent of the pulse shape.) The impurity is an InAs quantum dot located

at x = 0, with experimental values of radiative lifetime τr = 2.2 ns and non-radiative lifetime

τnr = 24 ns, respectively, at 180K [67]. The external linewidth Γ of the quantum dot due

to waveguide-quantum dot coupling is given by Γ = 2π/τr = 2.86GHz; and the intrinsic
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dissipation rate of the quantum dot is given by γ = 2π/τnr = 0.262GHz. The angular

frequency separation is ∆ω = ω+−ω− = 20GHz (ω− = 1215.26THz, and ω+ = 1215.28THz

at 0.108Tesla). The Zeeman splitting for this frequency separation is calculated using an

effective electron mass of me/2.1 [68]. Both Γ and ∆ω are much larger than the pulse

bandwidth. The group velocity vg can be directly read off from the dispersion diagram of

the waveguide; for the photonic line defect waveguide as shown in Fig. 3.2b, vg = 0.09c (c

is the speed of light in vacuum); V is obtained from Γ = V 2/vg [64]. Fig. 3.4b plots the

non-reciprocal pulse propagation at sequential time steps: The input pulses are indicated

by the thick lines, the transmitted and reflected pulses by dash lines; the gray lines show

the pulse interacting with the quantum dot. In the forward direction, the transmission is

Tf = 97.6% (defined as the area ratio of the transmitted pulse to the input pulse), and

Rf = 2.0% (defined as the area ratio of the reflected pulse to the input pulse); while in

the backward direction, the transmission is Tb = 0.7% and Rb = 83.9%, yielding a contrast

η = 0.986. Note that in the backward direction, the pulse interacts resonantly with the

quantum dot, giving rise to a small time delay ≃ 1.1 ns, approximately 2.2% of the pulse

width. For the case of larger intrinsic dissipation with γ/Γ = 0.25, in the forward operation,

we obtained Tf = 97% and Rf = 2%; while in the backward direction, we obtained Tb = 4%

and Rb = 64%, yielding a contrast of 0.92. The reflected pulse in the backward direction

experiences a time delay of 1.1 ns. The time delay keeps the same in both cases, as in both

cases γ ≫ 2π∆B (the pulse bandwidth). For the cases where 2π∆B ≫ γ, the time delay of

the reflected pulse would be sensitive to the values of γ. The simulation results indicate that

the intrinsic dissipation does not seriously impede the performance of the diode, as in the

forward direction the off-resonant pulse interacts weakly with the quantum dot, and thus is

insensitive to the dissipation; in the backward direction the transmission Tb ≃ ( γ
γ+Γ

)2, and

the reflection Rb ≃ ( Γ
γ+Γ

)2 for a resonant scattering process [64]. As a result, the contrast is

not susceptible to intrinsic dissipation when γ ≪ Γ.
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3.4.2 Displacement Inaccuracy

Another practical concern is the experimental limitation in precisely positioning the quan-

tum dot, which has been a major obstacle in achieving deterministic photon-quantum dot

coupling [69]. The spatial accuracy of placing the quantum dot by electron-beam lithography

is ∼ 25 nm, due to imprecision in the electron-beam registration and writing; comparable

accuracy has been reported in other photonic systems [70, 71, 72]. We have numerically

evaluated the contrast at several sample points which are spatially away from the ideal point

with circular polarization (point 2 in Fig. 3.2a), using Eq. 3.2 (note that in Fig. 3.2a, the

distance between point 1 and point 2 is 57 nm when a = 0.714µm). At the point 30 nm to

the right of point 2, u ≃ 3.5v, while at the point 30 nm to the left of point 2, u ≃ 3.6v; the

contrasts at both points are larger than 0.85, close to that in a periodically poled lithium nio-

bate waveguide [43]. The contrast in fact can be accurately expressed as ∼ (u2−v2)/(u2+v2)

when Γ ≫ γ ≫ ∆B. These results demonstrates the practicality of the proposed device.

3.5 Summary and Expectation

In this Chapter, we design a single-photon optical diode that can operate on the individual

photons. Such a realization is accomplished by coupling a quantum impurity to a SPSM

waveguide at the position that holds a circular polarization. Specifically, two types of two-

dimensional photonic crystal waveguide which holds locally circular polarizations are de-

signed. Numerically, we show that this optical diode yields a contrast number to be 0.986,

and its performance is not sensitive to the intrinsic dissipation of the quantum impurity.

Finally, we briefly discuss the full three-dimensional realizations for the single-photon op-

tical diode. To achieve a full three-dimensional device, we note that if the structure has a

mirror symmetry plane at z = 0, the eigen-modes within the symmetry plane (z = 0) are
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purely TE and TM polarized [35]; moreover, for thin structures with a mirror symmetry,

the modes are essentially TE-like and TM-like, as long as the waveguide thickness is smaller

than the wavelength. Alternatively, to emulate the states of the 2-dimensional structures,

one can sandwich a 3D photonic structure by perfect magnetic conductors [73, 74] to obtain

the TE states equivalent to the model 2-dimensional photonic system. Furthermore, for

3-dimensional waveguides that have continuous translational symmetry along the waveguide

direction such as fibers, the polarization would remain unchanged along a line parallel to

the axis of the waveguide, a feature that could help alleviate the requirement of precise

position of the impurity when the waveguides have only discrete translational symmetry.

3-dimensional SPSM waveguides with continuous translational symmetry have been demon-

strated, for example, by employing the stress-induced birefringence in the core region in

optical fibers [75], or by using different sizes of air holes in photonic crystal fibers [76], where

the mode degeneracy is broken by lifting the rotational symmetry on the cross-section of

the waveguide. Through fine-tuning the characteristics such as the stress, or the size and

arrangement of air holes, a planar circular polarization may be attained.
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Chapter 4

Correlations in Multiphoton

Scattering Processes

4.1 Introduction

Applications discussed in the previous Chapters are dominated by the single-photon scat-

tering process. In those nanophotonic systems, the mean photon number is much smaller

than one [30] and photon correlations are not being taken into considerations. Nonethe-

less, in many situations, there has been greatly growing interest in engineering the photon

correlations and their applications. This interest stems partly from the advent of the experi-

mental capability of controlled generation of multi-photon Fock states in a solid-state system

(the photon number N ≤ 6 in current experiments [77]). When the photonic wavefunction

of the Fock state is not a product state of the wavefunctions of the constituent individual

photons, the photons are correlated. We call such states correlated photonic Fock states.

Correlated photonic Fock states are potentially useful in many applications. For example,

a highly bunched N -photon Fock state, which exhibits an effective wavelength that is N

times smaller than that of individual photons [78], could achieve deep subwavelength optical

lithography [79, 80] and super resolution in optical imaging [81, 82]. On the other hand,
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Fock states which exhibit anti-bunching behavior and sub-Possionian statistics provide ultra

quiet photon sources with sub-shot-noise power level and also make possible single-photon

sources for quantum information processing [83, 84]. Nonetheless, a comprehensive theoret-

ical description in solid-state quantum electrodynamics (QED) systems on how the photon

correlations emerge in photonic Fock states by scattering means has not been presented be-

fore. One of the sources of difficulty is the proper treatment of the boundary conditions for

an infinite system for the optical fields of interests. Conventionally, periodic or hard-wall

boundary condition has been employed to truncate the system size to make the computa-

tion region finite. Although computationally convenient, those boundary conditions do not

describe the correct physical settings in an infinite physical system. Furthermore, due to

the mathematical complexity, the exact solutions of the scattering problems were postulated

using the Bethe ansatz [85], instead of being derived directly. Not until very recently, have

approaches using open boundary conditions been employed to investigate the 2-photon Fock

state scattering problems [86, 87]. These approaches do not assume the Bethe anstaz as a

priori assumption. However, the direct generalizations of these approaches to describe the

N -photon Fock state (N > 2) scattering problems are subtle, mainly due to the emergence

of multiple photonic threshold bound states [88]. In this study, we provide a detailed in-

vestigation for the N -photon Fock state scattering problems in a waveguide QED system

which consists of an one-dimensional waveguide coupled to a two-level atom. Such a system

provides the simplest realization for the photon-atom interactions in waveguide QED sys-

tems. Notably, The fermionic degree of freedom in the atom induces interplay between the

photons, which fundamentally changes the photon correlations. Specifically, without relying

on any ansatz, we employ the open boundary conditions to solve the N -photon Fock state

scattering processes by explicitly constructing a complete set of eigenstates of the system.

The constructed eigenstates contain very rich mathematical structures. For instance, for

the 3-photon Fock state, there are in total three types of eigenstates with different physical

nature: a 3-photon extended state, a 3-photon threshold bound state, and a hybrid state
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that is linear superposition of: a 3-photon bound state and a product state of a 2-pbound

state and an extended state. For the general case of the N -photon Fock state, we show

that the total number of different types of the eigenstates is exactly described by the integer

number partition function Z(N); the set of eigenstates in general includes hybrid states of

multi-photon extended states and multi-photon threshold bound states, formed by all possi-

ble partitions of the photon number N . To construct the scattering matrix, which encodes

all the information of the scattering process, it is vital that the set of the in-states and

out-states that are obtained from the set of eigenstates are complete. For this purpose, we

develop a numerical scheme to check this property. Finally, as a concrete example, we con-

sider the case of the 3-photon Fock state, and compute the third-order correlation function

to demonstrate the bunching and anti-bunching behaviors in the scattered photon states.

Those nontrivial bunching and anti-bunching behaviors are closely related to the existence

of the threshold bound states.

4.2 The Hamiltonian for a Waveguide QED System

Figure 4.1: Schematics of the described system. An one-dimensional waveguide is coupled
to a two-level atom. Multiple photons are incident from the left side and are scattered by
the two-level atom. Each photon can be either reflected or transmitted after scattering.

The system of interest is depicted in Fig. 4.1, which consists of an one-dimensional waveguide

coupled to a two-level system. The two-level system can be a quantum dot [89, 90], a

superconducting qubit [91, 92], a nitrogen vacancy center [93], or an atom [94, 95], and

hereafter is referred to as ‘an atom’; the one-dimensional waveguide, for example, can be

a line-defect waveguide in a photonic crystal [96] or an optical fiber. To have a robust
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realization of such a waveguide QED system, it is required to have a sufficiently large β-

factor [97, 98], which describes the spontaneous emission efficiency into the waveguide. The

Hamiltonian of the entire waveguide QED system is described by

H/~ =

∫
dx(−i)vC†

R(x)
∂

∂x
CR(x) +

∫
dx ivC†

L(x)
∂

∂x
CL(x)

+

∫
dxV̄ δ(x)[C†

R(x)σ− + CR(x)σ+ + C†
L(x)σ− + CL(x)σ+] + ωea

†
eae + ωga

†
gag.

(4.1)

Here, v is the group velocity of the photons in the waveguide. C†
R(x) and CR(x) [C

†
L(x) and

CL(x)] are the operators that create and annihilate a right (left) moving photon at position

x. a†e and ae (a
†
g and ag) are the creation and annihilation operators of the excited (ground)

state of the atom. Thus, σ+ ≡ a†eag and σ− ≡ a†gae are the ladder operators that excite and

deexcite the atom, respectively. ~ωe and ~ωg are the energy levels of the atom in the excited

state and the ground state. V̄ is the coupling constant between the waveguide and the atom

(Γ ≡ 2V̄ 2/v is the spontaneous emission rate in the waveguide and also characterize the

width of the transmission spectrum [64]). Hereafter, the system which is described by such

a Hamiltonian is said to be non-chiral, wherein photons can propagate in both directions.

For an N -photon Fock state scattering process in the non-chiral system, a direct attempt to

solve for the eigenstates is mathematically complicated, as one has to deal with a plethora of

all possible transmitted and reflected states, which involves 2NN ! independent parameters

to be determined. Instead, to ease the calculation complexity, an efficient strategy is to first

solve the n-photon scattering process in the chiral space for n = 1, 2, · · · , N , wherein photons

only propagate in one direction. Then, the solutions in the chiral space with different photon

numbers n are recombined to construct the solutions in the non-chiral space [87]. To go from

the non-chiral Hamiltonian to the chiral ones, we perform the following transformations

C†
e(x) ≡

1√
2
[C†

R(x) + C†
L(−x)],

C†
o(x) ≡

1√
2
[C†

R(x)− C†
L(−x)],

(4.2)
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to decompose the Hamiltonian into two decoupled even and odd parts (H = He +Ho):

He/~ =

∫
dx(−i)vC†

e(x)
∂

∂x
Ce(x) +

∫
dxV δ(x)[C†

e(x)σ− + Ce(x)σ+] + Eea
†
eae + Ega

†
gag,

Ho/~ =

∫
dx(−i)vC†

o(x)
∂

∂x
Co(x),

(4.3)

where [He, Ho] = 0. Here, Ho is an interaction-free Hamiltonian, while He includes the

interaction with an effective coupling strength V ≡
√
2V̄ . The systems described by the

Hamiltonians He and Ho are referred to as the chiral systems with unidirectional propagation

of photons. Mathematically, a complete set of solutions for both chiral systems allows one

to solve the scattering problems in the corresponding non-chiral system. Although the chiral

systems here described by Eq. 4.3 are for mathematical convenience, there are physical

systems which are precisely described by the chiral Hamiltonians, such as the photonic

analog of the quantum Hall effect [99, 100]. In those chiral systems, the backscattered

modes are completely suppressed. Thus, the chiral systems are anticipated to be robust for

structural imperfections and slow light operations. In view of these possibilities, we present

the investigations for the chiral systems in the next section.

4.3 The Solutions for the Chiral System

An N -photon eigenstate |i+⟩ of the chiral system described by He is defined in the Hilbert

space H
⊗

N
e , where He is the one-photon Hilbert space. |i+⟩ has the following general form

|i+⟩ =
∫

· · ·
∫
dx1dx2 · · · dxNf(x1, x2, · · · , xN)

1√
N !
C†

e(x1)C
†
e(x2) · · ·C†

e(xN)|∅,−⟩

+

∫
· · ·
∫
dx1dx2 · · · dxN−1e(x1, x2, · · · , xN−1)

1√
(N − 1)!

C†
e(x1)C

†
e(x2) · · ·C†

e(xN−1)σ+|∅,−⟩,

(4.4)
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where |∅,−⟩ is the vacuum state with zero photon in the waveguide and the atom in

the ground state. The first term corresponds to the situation that the atom is in the

ground state and the N photons are in the waveguide described by an N -photon wave-

function f(x1, x2, · · · , xN). The second term, on the other hand, corresponds to the situ-

ation when one of the N photons is absorbed by the atom and the atom is in the excited

state. The other N − 1 photons in the waveguide are described by an (N − 1)-photon

wavefunction e(x1, x2, · · · , xN−1). The prefactors 1/
√
N ! and 1/

√
(N − 1)! are the normal-

ization constants [101]. Due to the bosonic nature of the photons, photonic wavefunctions

f(x1, x2, · · · , xN) and e(x1, x2, · · · , xN−1) have the exchange symmetric with respect to the

exchange of any two coordinates.

From the Schrödinger equation He|i+⟩ = E|i+⟩, by equating the coefficients for each basis,

we obtain the equations of motion as follows:

[
−iv ∂

∂x1
− iv

∂

∂x2
− · · · − iv

∂

∂xN
− E/~

]
f(x1, x2, · · · , xN)

+
V√
N

[δ(x1)e(x2, x3, · · · , xN) + δ(x2)e(x1, x3, · · · , xN) + · · ·+ δ(xN)e(x1, x2, · · · , xN−1)] = 0,

(4.5)

[
−iv ∂

∂x1
− iv

∂

∂x2
− · · · − iv

∂

∂xN−1

− (E/~− Ω)

]
e(x1, x2, · · · , xN−1)

+
V√
N

[f(0, x1, x2, · · · , xN−1) + f(x1, 0, x2, · · · , xN−1) + · · ·+ f(x1, x2, · · · , xN−1, 0)] = 0,

(4.6)

where Ω ≡ ωe−ωg is the transition frequency of the atom. Form Eqs. 4.5 and 4.6, all the possi-

ble solutions of f(x1, x2, · · · , xN) and e(x1, x2, · · · , xN−1) can be solved for (see Appendix A),

which provide a complete set of eigenstates {|i+⟩}. By using the Lippmann-Schwinger equa-

tion [102], the solved set of eigenstates |i+⟩ can be used to obtain the corresponding in-states

49



|in⟩ and out-states |out⟩:

|in⟩ =
∫

· · ·
∫
dx1dx2 · · · dxNfin(x1, x2, · · · , xN)

1√
N !
C†

e(x1)C
†
e(x2) · · ·C†

e(xN)|∅,−⟩,

|out⟩ =
∫

· · ·
∫
dx1dx2 · · · dxNfout(x1, x2, · · · , xN)

1√
N !
C†

e(x1)C
†
e(x2) · · ·C†

e(xN)|∅,−⟩.

(4.7)

The in-state wavefunction fin(x1, x2, · · · , xN) is the extension of the eigenstate wavefunction,

fin(x1, · · · , xN) = f(x1 < 0, · · · , xN < 0). (4.8)

This equation means that the functional form of fin(x1, · · · , xN) is the same as that of

f(x1, · · · , xN) in the restricted region x1 < 0, · · · , xN < 0, but is extended in the entire space.

Similarly, the out-state wavefunction fout(x1, x2, · · · , xN) is the extension of the eigenstate

wavefunction:

fout(x1, · · · , xN) = f(x1 > 0, · · · , xN > 0). (4.9)

Physically, the in-states and the out-states correspond to the states that are long before and

after the scattering, respectively. That is to say, for each in-state, there exists a causally

related out-state. The in-states and out-states are complete in the in and out spaces. With

the full knowledge of the in-states and out-states, one can construct the scattering matrix

for any states ∈ H
⊗

N
e ,

Se(N) =
∑
{|in⟩}

|out⟩⟨in|, (4.10)

which maps a free N -photon Hilbert space of in-states to another free N -photon Hilbert

space consisting out-states. The summation is taken over for a complete basis {|in⟩}. Once

the scattering matrix is determined, one can calculate the output state of the system for an

arbitrary input state when the atom is initially in the ground state.
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In the following, we show explicitly the form of the complete set of the in-states for different

photon number from N = 1 to 4, as well as the general case N .

4.3.1 1-photon Case

For this simplest case, the class of the in-state wavefunctions can be represented by a plane

wave,

fin(x) = C1e
ikx, (4.11)

which is characterized by a single real parameter k = E/(v~) ∈ R. For different k, these

waves form a complete set. C1 is the normalization constant, which can be determined using

the normalization condition detailed in appendix B.

4.3.2 2-photon Case

The general form of the class of in-state wavefunctions is

fin(x1, x2) = C2

{
[k1 − k2 − iΓsgn(x2 − x1)/v]e

ik1x1+ik2x2 + [k1 − k2 − iΓsgn(x1 − x2)/v]e
ik2x1+ik1x2

}
,

(4.12)

where sgn(·) is the sign function with sgn(x > 0) = 1 and sgn(x < 0) = −1. Γ = 2V̄ 2/v =

V 2/v is the spontaneous emission rate into the waveguide. k1 and k2 are in general two

complex numbers subject to the constraint of k1 + k2 = E/(v~) ∈ R, among others. Such

a constraint imposes that either both k1 and k2 are real (type-1) or their imaginary parts

have an opposite sign (type-2). A full analysis shows that in type-2, k1 and k2 are in fact

complex conjugate to each other (i.e., have the same real part). In general, these two types of

in-states exhibit different forms of wavefunctions, thereby requiring different normalization

constants (appendix B). Tab. 4.1 summarizes the properties of the two types of in-states.
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Table 4.1: 2-photon in-states classifications
Type-1 k1, k2 (real numbers) (1, 1)
Type-2 k1 = k − iΓ/(2v), k2 = k + iΓ/(2v) (2)

In type-1, both k1 and k2 are real, which leads to a 2-photon extended state. In type-2,

k1 = k − iΓ/(2v) and k2 = k + iΓ/(2v) so that the wavefunction can be further reduced to

fin(x1, x2) = C2e
ik(x1+x2)−|x2−x1|Γ/(2v). (4.13)

This wavefunction describes a 2-photon bound state, as the wavefunction approaches to zero

exponentially when the two photons become afar. It has been shown that these two types

of in-states form a complete set in the 2-photon Hilbert space [87]. In the last column of

table, we also list all possible partitions of the photon number N = 2. The assigning rule

is as follows: for unrestricted real number E, if a single variable can specify the values of j

k’s, a number j is assigned in the column. For the present case, in type-1, k1 and k2 need to

be independently specified, so this type is assigned (1, 1). In type-2, a single variable k can

specify the values of both k1 and k2 (Γ and v are given constants), thus (2) is assigned in

the column.

4.3.3 3-photon Case

The general form of the class of in-state wavefunctions is

fin(x1, x2, x3) = C3{[k1 − k2 − iΓsgn(x2 − x1)/v][k2 − k3 − iΓsgn(x3 − x2)/v][k1 − k3 − iΓsgn(x3 − x1)/v]e
i(k1x1+k2x2+k3x3)

+ [k1 − k2 − iΓsgn(x3 − x1)/v][k2 − k3 − iΓsgn(x2 − x3)/v][k1 − k3 − iΓsgn(x2 − x1)/v]e
i(k1x1+k2x3+k3x2)

+ [k1 − k2 − iΓsgn(x1 − x2)/v][k2 − k3 − iΓsgn(x3 − x1)/v][k1 − k3 − iΓsgn(x3 − x2)/v]e
i(k1x2+k2x1+k3x3)

+ [k1 − k2 − iΓsgn(x1 − x3)/v][k2 − k3 − iΓsgn(x2 − x1)/v][k1 − k3 − iΓsgn(x2 − x3)/v]e
i(k1x3+k2x1+k3x2)

+ [k1 − k2 − iΓsgn(x3 − x2)/v][k2 − k3 − iΓsgn(x1 − x3)/v][k1 − k3 − iΓsgn(x1 − x2)/v]e
i(k1x2+k2x3+k3x1)

+ [k1 − k2 − iΓsgn(x2 − x3)/v][k2 − k3 − iΓsgn(x1 − x2)/v][k1 − k3 − iΓsgn(x1 − x3)/v]e
i(k1x3+k2x2+k3x1)},

(4.14)
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where k1, k2, and k3 are in general complex numbers subject to the constraint of k1+k2+k3 =

E/(v~). In such a 3-photon Hilbert space, there are in total three different types of in-states,

illustrated in Tab. 4.2.

Table 4.2: 3-photon in-states classifications
Type-1 k1, k2, k3 (real numbers) (1, 1, 1)
Type-2 k1 = k − iΓ/(2v), k2 = k + iΓ/(2v), k3 (2, 1)
Type-3 k1 = k − iΓ/v, k2 = k, k3 = k + iΓ/v (3)

In type-1, k1, k2, and k3 are three independent real numbers, which leads to a 3-photon

extended state and is assigned (1, 1, 1). In type-2, k1 = k − iΓ/(2v) and k2 = k + iΓ/(2v)

are complex conjugate to each other, while the third number k3 is a real number. This

type is accordingly assigned (2, 1). To gain insights for the mathematical structure of this

wavefunction, we focus on a specific region, e.g. x1 < x2 < x3, to remove all the sign

functions,

fin(x1, x2, x3) = C3{[k − k3 − iΓ/(2v)] [k − k3 − i3Γ/(2v)] eik(x1+x2)+ik3x3−(x2−x1)Γ/(2v)

+ [k − k3 + i3Γ/(2v)] [k − k3 − i3Γ/(2v)] eik(x1+x3)+ik3x2−(x3−x1)Γ/(2v)

+ [k − k3 + i3Γ/(2v)] [k − k3 + iΓ/(2v)] eik(x2+x3)+ik3x1−(x3−x2)Γ/(2v)}.

(4.15)

In such a wavefunction, the first term and the third term indicate one 2-photon bound state

and one 1-photon extended state. The second term in the wavefunction, however, describes

the situation that all three photons are bounded, as the coordinates are in the region of x1 <

x2 < x3. The wavefunction in the other five regions can be obtained straightforwardly using

the exchange symmetry with respect to the coordinates. Finally, in type-3, k1 = k − iΓ/v,

k2 = k, and k3 = k + iΓ/v, and the wavefunction is reduced to

fin(x1, x2, x3) = C3e
ik(x1+x2+x3)−(|x3−x1|+|x2−x1|+|x3−x2|)Γ/(2v). (4.16)
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Such a wavefunction describes a 3-photon bound state, as the wavefunction approaches to

zero exponentially when any two of the three photons become afar. For all three types of

in-states, we develop a computational procedure to check the completeness of these three

types of in-states, which is detailed in Appendix C.

4.3.4 4-photon Case

Analogous to the previous case, the complete set of the in-states for N = 4 case can be

classified into five different types, illustrated in Tab. 4.3.

Table 4.3: 4-photon in-states classifications
Type-1 k1, k2, k3, k4 (real numbers) (1, 1, 1, 1)
Type-2 k1 = k − iΓ/(2v), k2 = k + iΓ/(2v),

k3 , k4

(2, 1, 1)

Type-3 k1 = k − iΓ/(2v), k2 = k + iΓ/(2v)
k3 = k′ − iΓ/(2v), k4 = k′ + iΓ/(2v)

(2, 2)

Type-4 k1 = k − iΓ/v, k2 = k, k3 = k + iΓ/v, k4 (3, 1)
Type-5 k1 = k − 3iΓ/(2v), k2 = k − iΓ/(2v),

k3 = k + iΓ/(2v), k4 = k + 3iΓ/(2v)
(4)

4.3.5 N-photon Case

The general form of the class of in-state wavefunctions is

fin(x1, x2, · · · , xN) = CN

∑
P∈SN

{∏
m<n

[km − kn − iΓsgn(xPn − xPm)/v]

}
exp(i

N∑
j=1

kjxPj
),

(4.17)

where SN is the symmetric group on an N -element set {1, 2, · · · , N}, and the summation

P ∈ SN accounts for all the N ! permutations of the labels {1, 2, · · · , N}. k1, k2, · · · , and kN

are in general N complex numbers subject to the constraint of k1 + k2 + · · ·+ kN = E/(v~).

We note that Eq. 4.17 satisfies the form of Bethe ansatz [103]. In the N -photon Hilbert
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space, the total number of the types of the in-states is exactly the partition function Z(N)

for an integer number N . The first 10 values of Z(N) is 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, · · · . For

large values of N , Z(N) increases exponentially with an asymptotic behavior given by [104]

Z(N) ∼ 1

4N
√
3
eπ
√

2N/3. (4.18)

Tab. 4.4 classifies all types of in-states for N -photon case. We note that all the values of k’s

in each type are in agreement with that obtained using the Bethe anstaz approach [85].

Table 4.4: N -photon in-states classifications
Type-1 k1, · · · , kN (real numbers) (1, 1, · · · , 1, 1)
Type-2 k1 = k − iΓ/(2v), k2 = k + iΓ/(2v),

k3, · · · , kN
(2, 1, · · · , 1)

· · · · · · · · ·
Type-Z(N) k1 = k − i(N − 1)Γ/(2v),

k2 = k − i(N − 3)Γ/(2v),
...
kN−1 = k + i(N − 3)Γ/(2v),
kN = k + i(N − 1)Γ/(2v)

(N)

In type-1, all the k1, k2, · · · , and kN are real numbers, which leads to an N -photon extended

state and is assigned (1, 1, · · · , 1, 1). In type-2, k1 = k − iΓ/(2v) and k2 = k + iΓ/(2v)

are complex conjugate to each other, while the remaining N − 2 k’s are independent real

variables. For simplicity, we focus on a specific region x1 < x2 < · · · < xN to remove all

the sign functions. A direct substitution of the k’s into Eq. 4.17 reveals that half of terms

in the wavefunction vanish as their coefficients become zero, and only half of terms remain.

Among the remaining terms, for coordinates xl and xm (l < m) paired with the two complex

conjugate k1 = k − iΓ/(2v) and k2 = k + iΓ/(2v), such term would give rise to a form of

e−(xm−xl)Γ/(2v). As x1 < x2 < · · · < xN , them−l+1 photons with coordinates xl, · · · , xm form

an (m−l+1)-photon bound state. The rest of (N−m+l−1) photons form an (N−m+l−1)-

photon extended state. The type-Z(N) has N complex k’s: kj = k + [2j − (N + 1)]Γ/(2v),
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j = 1, 2, · · · , N . By substituting them into Eq. 4.17, the wavefunction is reduced to

fin(x1, x2, · · · , xN) = CNe
ik(x1+x2+···+xN )−(

∑
m<n |xm−xn|)Γ/(2v), (4.19)

which only contains one term, describing an N -photon bound state, as the wavefunction

approaches zero exponentially when any two of the N photons become afar.

4.3.6 Out-state Wavefunction

Having introduced all possible in-state wavefunctions, the out-state wavefunctions can be

expressed by multiplying an N -photon transmission amplitude to the in-state wavefunctions

(see appendix A):

fout(x1, x2, · · · , xN) = T (k1, k2, · · · , kN)fin(x1, x2, · · · , xN), (4.20)

where

T (k1, k2, · · · , kN) =
∏
kj

tkj , (4.21)

and

tkj ≡
kj − Ω/v − iΓ/(2v)

kj − Ω/v + iΓ/(2v)
(4.22)

is the single-photon transmission amplitude in the chiral system with absolute value equals

to one. With all the in-states and out-states, the scattering matrix for Hamiltonian He is

formed using the definition in Eq. 4.10. The scattering matrix for Hamiltonian Ho, on the

other hand, is simply an identity matrix.
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4.4 The Scattering Matrix for Non-chiral System

Having solved the scattering problems for the chiral case, we now compute the scattered

photon states for the non-chiral systems, wherein the photons can propagate in both direc-

tion. For the non-chiral case, a typical input Fock state |Xin⟩ that containing N right-moving

photons can be written as

|Xin⟩ =
∫

· · ·
∫

dx1dx2 · · · dxNh(x1, x2, · · · , xN )
1√
N !

C†
R(x1)C

†
R(x2) · · ·C†

R(xN )|∅,−⟩,

=

∫
· · ·
∫

dx1dx2 · · · dxNh(x1, x2, · · · , xN )
1√
N !

(
1√
2
)N [C†

e(x1) + C†
o(x1)] · · · [C†

e(xN ) + C†
o(xN )]|∅,−⟩,

=

∫
· · ·
∫

dx1dx2 · · · dxNh(x1, x2, · · · , xN )
1√
N !

(
1√
2
)NC†

e(x1) · · ·C†
e(xN )|∅,−⟩+ · · ·

+

∫
· · ·
∫

dx1dx2 · · · dxNh(x1, x2, · · · , xN )
1√
N !

(
1√
2
)NC†

o(x1) · · ·C†
o(xN )|∅,−⟩,

(4.23)

here, h(x1, x2, · · · , xN) is the N -photon wavefunction. In the second equality, we have used

the inverse relation of Eq. 4.2. For an input Fock state that containing N left-moving

photons, the process will proceed similarly. In the last equality, the direct expansion gives

rise to 2N terms. Since C†
e(x) and C

†
o(x) commute, using the exchange symmetry with respect

to the coordinates in the wavefunction, these 2N terms can be grouped into N+1 orthogonal

terms. Thus, |Xin⟩ can be written as a linear superposition of N + 1 chiral spaces.

|Xin⟩ = |Xin⟩e(N) + |Xin⟩e(N−1)o(1) + · · ·+ |Xin⟩o(N) . (4.24)

Here, |Xin⟩e(j)o(N−j) is given by

|Xin⟩e(j)o(N−j) =

∫
· · ·

∫
dx1dx2 · · · dxNh(x1, x2, · · · , xN )

1
√
N !

(
1
√
2
)N

N !

j!(N − j!)
C†

e(x1) · · ·C†
e(xj)C

†
o(xj+1) · · ·C†

o(xN )|∅,−⟩,

(4.25)

which describes a state in the e(j)o(N−j) space where j photons are in the even mode and

N − j photons are in the odd mode. Consequently, the scattering matrix S in the non-chiral
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case can be decomposed accordingly,

S =
N∑
j=0

Se(j)

⊗
So(N−j) , (4.26)

where Se(j) and So(j) are the scattering matrices for states in H
⊗

j
e and H

⊗
j

o , respectively.

By applying the scattering matrix onto the input state (Eq. 4.24), one can directly compute

the scattered states term by term in each mutually orthogonal subspace,

|Xout⟩ ≡ S|Xin⟩

= Se(N) |Xin⟩e(N) + Se(N−1)

⊗
So(1)|Xin⟩e(N−1)o(1) + · · ·+ So(N) |Xin⟩o(N)

≡ |Xout⟩e(N) + |Xout⟩e(N−1)o(1) + · · ·+ |Xout⟩o(N) .

(4.27)

In the above calculations, the scattering matrices only apply to the states with the same

subscripts. Using Eq. 4.2, each state can be transformed back into the original non-chiral

system in terms of right- and left-moving photons,

|Xout⟩ = |Xout⟩R(N) + |Xout⟩R(N−1)L(1) + · · ·+ |Xout⟩L(N) . (4.28)

Here, |Xout⟩R(j)L(N−j) describes the scattered photon state in the R(j)L(N−j) space where j

photons propagate to the right (i.e., transmitted) and N − j photons propagate to the left

(reflected). Such a procedure facilitates the calculations by allocating the scattering processes

into decoupled chiral systems, each of which involves less computational complexity. In the

following, we demonstrate this computational scheme by calculating the scattered photon

state for a 3-photon Fock state.
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4.5 Example: the Scattering of 3-photon Fock States

in Non-chiral Systems

4.5.1 The Scattered Photon Wavefunctions

Having introduced the general approach to solve the scattering problems in the non-chiral

space, we now calculate the scattered photon states for a concrete example. Consider an

input state of a 3-photon Fock state, formed by three overlapping photons, wherein each

photon is represented by a Gaussian wave packet. Such a state is a product state which has

no correlations. Each photon is on resonant with the atom and has a broad extension in the

real space so that the bandwidth is narrow. The single-photon wavefunction is

ϕi(x) = (2πσ2
x)

−1/4e−x2/4σ2
xei(Ω/v)x. (4.29)

Here, |ϕi(x)|2 is normalized to unity when integrated over x from −∞ to +∞. The standard

deviation σx = 10vτr and σω = 0.2Γ (τr = 1/Γ is the radiation lifetime for the spontaneous

emission). After scattering, the 3-photon Hilbert space is decomposed into four orthogonal

spaces: R(3), R(2)L(1), R(1)L(2), and L(3). A direct calculation using the computational

scheme presented above reveals that all three photons are most likely to be reflected into the

L(3) space, with a probability PL(3) ≡
∫ ∫ ∫

dx1dx2dx3|⟨x1, x2, x3|Xout⟩L(3)|2 ≈ 55%; while the

probability that all three photons are transmitted into the R(3) space is the least: PR(3) ≡∫ ∫ ∫
dx1dx2dx3|⟨x1, x2, x3|Xout⟩R(3) |2 ≈ 2%. The remaining probability is distributed within

the other two possibilities with PR(2)L(1) ≈ 13% and PR(1)L(2) ≈ 29%. Such a probability

distribution is completely beyond the single-photon picture; for a single photon with the

same Gaussian wavefunction form, it is numerically found that the photon is essentially

completely reflected with a reflectivity over 99% and a transmissivity less than 1% [64].

Thus, based upon the single-photon picture, if there is no correlations induced by the atom,
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one would have expected PL(3) > (99%)3 ≈ 97% and PR(3) < (1%)3 = 10−6. Thus, for the

3-photon case, PR(3) is greatly enhanced by the correlations. Such an example demonstrates

that the dynamics in the multiple photon scattering processes are dramatically influenced

by the correlations induced by the atom. Thus, it is of great interest to understand how

the three photons get transmitted in the presence of the atom-induced correlations. For this

purpose, we numerically checked the transmitted 3-photon wavefunction in the R(3) space,

which can be expressed as:

hR(3)(x1, x2, x3) =
1

8
[he(3)(x1, x2, x3)+he(2)o(1)(x1, x2, x3)+he(1)o(2)(x1, x2, x3)+ho(3)(x1, x2, x3)].

(4.30)

Here the functions he(3)(x1, x2, x3), he(2)o(1)(x1, x2, x3), he(1)o(2)(x1, x2, x3), and ho(3)(x1, x2, x3)

are the scattered wavefunctions in the e(3), e(2)o(1), e(1)o(2), and o(3) subspaces, respectively.

It is numerically found that the non-chiral wavefunction hR(3)(x1, x2, x3) is essentially due to

the chiral wavefunction of the 3-photon bound state in he(3)(x1, x2, x3). We emphasize that

he(3)(x1, x2, x3) also contains components other than the 3-photon bound state. Specifically,

it is the second term in the type-2 wavefunction, and the type-3 wavefunction that contribute

to hR(3)(x1, x2, x3) (see section 3). In contrast, wavefunctions he(2)o(1) , he(1)o(2) , ho(3) , and the

rest parts in wavefunctions he(3)(x1, x2, x3) numerically cancel out with each other, thus

do not contribute to the 3-photon transmitted wavefunction hR(3)(x1, x2, x3). Therefore, we

conclude that the incoming three photons, which can not pass through the atom individually,

now are able to pass through the atom as a whole by forming a 3-photon bound state.

We now look into the wavefunctions in more details. To facilitate the visualization of a

wavefunction that contains three spatial coordinates, we transform the wavefunction in terms

of the relative coordinates as follows:

hr(x1 − x3, x2 − x3, x3) ≡ ⟨x1 − x3, x2 − x3, x3|X⟩, (4.31)

60



where |X⟩ is an arbitrary 3-photon state and the subscript ‘r’ denotes the relative coordi-

nates (∆1,∆2, x3) ≡ (x1 − x3, x2 − x3, x3). Such a transformation has a Jacobian J = 1,

and maintains the exchange symmetry of the photonic wavefunction. As the transformed

wavefunction still contains three variables, we eliminate x3 by integrating the probability

density function as follows:

∫
dx3|hr(x1 − x3, x2 − x3, x3)|2 ≡

∫
dx3|hr(∆1,∆2, x3)|2,

≡ p(∆1,∆2).

(4.32)

The relative probability density function p(∆1,∆2) describes the probability density of find-

ing two photons from the viewpoint of the third one. This function also exhibits two in-

teresting symmetries. Firstly, by exchanging the coordinates x1 and x2 in the photonic

wavefunction hr, one can immediately see that the function p(∆1,∆2) is symmetric along

the line ∆1 = ∆2, i.e.,

p(∆1,∆2) = p(∆2,∆1). (4.33)

Secondly, p(∆1,∆2) also exhibits inversion symmetry with respect to the origin of the coor-

dinate system, p(∆1,∆2) = p(−∆1,−∆2). The proof is straightforward:

p(∆1,∆2) ≡
∫ +∞

−∞
dx3|hr(∆1,∆2, x3)|2,

=

∫ +∞

−∞
dx3|hr(x1 − x3, x2 − x3, x3)|2,

=

∫ −∞

+∞
(−dx3)|hr [(−x1)− (−x3), (−x2)− (−x3), (−x3)] |2,

=

∫ −∞

+∞
(−dx3)|hr(x3 − x1, x3 − x2,−x3)|2,

=

∫ −∞

+∞
(−dx3)|hr(−∆1,−∆2,−x3)|2,

=

∫ +∞

−∞
dx3|hr(−∆1,−∆2, x3)|2,

= p(−∆1,−∆2).

(4.34)
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Figure 4.2: Relative probability density function pR(3)(∆1,∆2) for the scattered photon states
in the R(3) space (all three photons are transmitted and propagate to the right). A projection
of the pattern is also plotted underneath to aid visualization.

Now, we plot the relative probability density function pR(3) and pL(3) in the R(3) space and

the L(3) space, respectively. Fig. 4.2 plots pR(3)(∆1,∆2) for the scattered 3-photon state in

the R(3) space. A pronounced single narrow peak at ∆1 = ∆2 = 0 clearly emerges with a full

width at half maximum (FWHM) ≈ 1.2vτr. Thus, we have pR(3)(0,∆2) > pR(3)(∆1,∆2) for

all ∆1 ̸= 0. The emergence of the center peak indicates photonic bunching, as the probability

of finding three photons together is significantly larger than the probability of finding them

apart. Mathematically, pR(3)(∆1,∆2) is related to the second-order correlation function as

follows (the relation can be derived by using Eq. D.12 and Eq. 4.32),

g(2)(τ) =
2

3
PR(3)

∫
d∆2pR(3)(vτ,∆2)∫

dx0|ϕR(3)(x0)|2|ϕR(3)(x0 + vτ)|2
. (4.35)

Here, x0 is the position of the detector, and ϕR(3)(x) is the probability of finding a single

photon at position x in the scattered state in R(3) space regardless of the position of the

other two photons (see Eq. D.8). Numerically, it is found that ϕR(3)(x) has a similar broad

extension as that of ϕi(x). τ is the difference in the arrival times between two photons. Thus,
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when τ is several times of τr, the numerator of g(2)(τ) is much smaller than the numerator

of g(2)(0) due to the pronounced peak at the center; while the denominators of g(2)(τ) and

g(2)(0) are numerically found be roughly the same. Therefore, it is numerically found that

g(2)(0) > g(2)(τ), confirming the photonic bunching [105].
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Figure 4.3: Relative probability density function pL(3)(∆1,∆2) for the scattered wavefunction
in the L(3) space (all three photons get reflected and propagate to the left). A projection of
the pattern is also plotted underneath to aid visualization.

On the other hand, the photon statistics for the reflected photons is fundamentally different

in the L(3) space. Fig. 4.3 plots pL(3)(∆1,∆2) for the scattered 3-photon photon state in the

L(3) space, which shows six broad peaks separated by three boundaries (∆1 = 0, ∆2 = 0,

and ∆1 = ∆2), respectively. The relative probability function is essentially depleted along

the boundaries, signaling the photonic anti-bunching, as the probability of finding any two

photons together (∆1 = 0, ∆2 = 0, or ∆1 = ∆2) is significantly smaller than the probability

of finding them apart (∆1 ̸= 0, ∆2 ̸= 0, and ∆1 ̸= ∆2). Mathematically, such an observation

can be rigorously confirmed by directly computing the second-order correlation function for

the scattered photon state in the L(3) space. The g(2)(τ) can be similarly expressed in terms
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of the relative probability density function, as follows (see Eq. D.12 and Eq. 4.32),

g(2)(τ) =
2

3
PL(3)

∫
d∆2pL(3)(vτ,∆2)∫

dx0|ϕL(3)(x0)|2|ϕL(3)(x0 + vτ)|2
, (4.36)

where ϕL(3)(x) is the probability of finding a single photon at position x in the scattered state

in the L(3) space regardless of the position of the other two photons, which has a similar

broad extension of ϕi(x). By comparing g(2)(0) and g(2)(τ), the prior one has a much smaller

numerator and their denominators are roughly the same. Thus g(2)(0) < g(2)(τ), confirming

photonic anti-bunching. Such a non-classical phenomenon is in contrast to the bunching

effects for the transmission field. Moreover, the photonic bunching and anti-bunching are also

manifest in the states in other orthogonal spaces. For example, the two right moving photons

in the state that belongs to the R(2)L(1) space exhibit bunching behavior, while the two left

moving photons in the state that belongs to R(1)L(2) space exhibit anti-bunching behavior.

We note here that the anti-bunching behavior has also been discussed in Ref. [106, 107] when

the two-level atom is driven by a weak classical driving field.

4.5.2 Third-order Correlation Function

From the wavefunctions of the scattered 3-photon state, the third-order correlation function

in each subspace can be computed (Appendix D). For example, the third-order correlation

function for the scattered photon wavefunction in the L(3) space is

g(3)(τ1, τ2) =
2

9
P 2
L(3)

∫
dx0|hL(3)(x0, x0 + vτ1, x0 + vτ2)|2∫

dx0|ϕL(3)(x0)|2||ϕL(3)(x0 + vτ1)|2||ϕL(3)(x0 + vτ2)|2|
, (4.37)

which is plotted in Fig. 4.4. At the origin of the figure, g(3)(0, 0) is numerically found to 0.09.

We found that this value could be further suppressed when the grid spacing is decreased at

the expense of computational resources. moreover, three lines τ1 = 0, τ2 = 0, and τ1 = τ2

separate g(3)(τ1, τ2) into six regions. The values on the three lines are numerically found to

be essentially zero. We also note that the numerator of the third-order correlation function
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Figure 4.4: Third-order correlation function for the scattered photon wavefunction in L(3)

space.

(Eq. 4.37) has the same functional form as the relative probability density function (Eq. 4.32).

Thus, Fig. 4.4 looks qualitatively the same as that of the projection in Fig. 4.3. Moreover,

second-order correlation function can also be inferred from the third-order correlation as

follows (the relation can be derived using Eq. D.10 and Eq. D.11),

g(2)(τ) =
3

PL(3)

∫
dx3g

(3)(τ,
x3 − x0

v
)|ϕL(3)(x3)|2. (4.38)

Since g(3)(0, τ2) ≈ 0 essentially holds for almost all τ2, g
(2)(0) ≈ 0 is obtained. On the

other hand, third-order correlation function for the scattered photon wavefunction in the

R(3) space can also be plotted, and a bright spot is observed in the origin. Such a pattern

looks qualitative the same as that of the projection in Fig. 4.2, and will not be duplicated

here. The third-order correlation functions for the wavefunctions in R(2)L(1) and R(1)L(2)

spaces are zero, as a fixed detector can never register three photons in the current setup.
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4.6 Summary and Expectation

In this Chapter, we presented a comprehensive study on the analytic approach to solve the

multi-photon scattering problems in a waveguide QED system. The fermionic degree of

freedom due to the atom induces photon-photon correlations through scattering processes.

These photon correlations significantly modify the photon transport properties, which are

completely out of the scope of the single-photon picture. For example, after the uncorrelated

photonic Fock state scattered by the atom, the transmitted photons, due to the induced

correlations, now are bunched, while the reflected photons are anti-bunched. Moreover,

the capability of computing the scattering processes for input Fock states with arbitrary

number of photons enables one to compute the scattered state for an input coherent state.

In principle, one can decompose the coherent state into a linear superposition of all possible

Fock state with photon number N = 1, 2, 3, · · · . Then, the scattered photon states for all

the Fock states can be computed individually. After that, all the computed scattered states

are recombined to obtain the scattered state for the input coherent state. Such a possibility

can be practical implemented when the mean photon number is small.

The above procedures can be further generalized to the cases when the incident photons are in

the superposition state, i.e., entangled or even involving photons incident from both sides of

the atom. For each case, one needs to employ appropriate input state by using corresponding

operators in the first row of Eq. 4.23. The rest steps including the construction of the S

matrix remain the same.
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Chapter 5

Deep Subwavelength Optical Imaging

5.1 Introduction

Investigations of nanophotonic systems also give us the capability to achieve deep subwave-

length optical imaging. Deep subwavelength optical imaging, i.e., which is the capability to

discern details much smaller than the wavelength of the illuminating light, will have a strong

impact in the life science and in a broad range of next-generation scientific and industrial

applications. State-of-the-art approaches to beat the diffraction limit in optical imaging in-

clude using (1) artificially engineered materials (e.g., superlens [108] and hyperlens [109]);

and (2) fluorescent markers, such as photo-activated localization microscopy (PALM) [110]

and stochastic optical reconstruction microscopy (STORM) [111]. Despite demonstrated

superior performance, the implementations of these sophisticated techniques face fundamen-

tal challenges [112], including material losses and as yet unattainable fabrication finesse, or

only work for a narrow class of samples, such as intensely luminescent [113, 114] or sparse

objects [115]. Another approach to achieve deep subwavelength resolution is the near-field

scanning optical microscopy (NSOM) [116, 117]. Still, NSOM suffers from low transmissiv-

ity of optical signals, as the apertures are far smaller than the incident light wavelength. In

practice, even with the enormous advances brought about by electron and scanning probe
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microscopy, about 80% of all microscopy investigations in the life sciences are still carried

out optically [118]. It is thus highly desirable to develop a robust optical imaging technique

that overcomes at least some of the limitations in the current approaches.

In this Chapter, we propose a conceptually new, ultra-high resolution, high-throughput,

and non-destructive optical lens based on artificially engineered materials for optical imag-

ing that beats the resolution limit of conventional optical instruments and of the recently

demonstrated superlens and hyperlens. The key enabling mechanism to achieve ultra-high

resolution is to create an array of correlated nano-torches (CNT) to light up the surrounding

sample: each light torch has a linear dimension that is far smaller than the wavelength, and

contains strong evanescent fields that greatly enhance the light-matter interactions. In such

a mechanism, the resolution is primarily determined by the size of the torch, rather than

the wavelength of the illuminating light. Moreover, the brightness of each torch depends on

the light-matter interactions occurred at its neighboring torches. The correlations between

the torches enable the differentiation of contributions from the scattering and absorption of

the signal, thereby allow the determination for the complex refractive index of the sample.

The mechanism is also potentially scalable to be used at different illuminating wavelengths,

so long as the criteria of correlated nano-torches are satisfied. To demonstrate the supe-

rior performance, we show numerically that the CNT-lens can achieve a resolution of λ/50

(∼ 40 nm at λ = 2.08µm), and has an extraordinarily large signal throughput, even in the

presence of material losses. We further show that near-field information can be encoded into

propagating waves by coupling the CNT-lens to a passive waveguide. Owing to the large

electric field enhancement, the CNT-lens provides a large contrast-to-noise ratio (CNR), and

thus is robust to external noises.
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sample

detector

Figure 5.1: Schematic of the CNT-lens. The dashed circles denote the bright nano-torches.
The downward blue arrow indicates the direction of the incoming light. The background
color indicates the x-component of the electric field profile for a TE incoming plane wave.

5.2 Schematics of the CNT-lens

The simplest realization of the CNT-lens is an one-dimensional subwavelength metallic grat-

ing (Fig. 5.1). The CNT-lens is made of a metallic thin film with periodic cut-through slits,

which can be either empty or filled with transparent dielectric materials. The slit width a

and the grating periodicity d are in the subwavelength regime, i.e. a < d < λ. It has been

shown both theoretically [7] and experimentally [119] that the CNT-lens exhibits artificial

dielectric behaviors, and can be precisely mapped into a homogenous dielectric slab, show-

ing a Fabry-Perot transmission spectrum. The CNT-lens permits a large signal throughput

for a TE incoming wave (transverse electric field pointing in the x-direction) at resonant

frequencies, which could increase the signal-to-noise ratio (SNR) for noises with fixed power

level. The extraordinary transmission is due to the subwavelength periodic structure, and

can not be achieved by using only a single slit. Moreover, the electric fields in the slits
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are greatly enhanced (the enhancement factor is d/a for perfect electric conductor [7]), and

strong evanescent torches are formed at both ends of each slit, which enhance the light-

matter interactions (Fig. 5.1). In the following, we show that the lateral resolution of the

image is determined by the torch size, which can be one or two orders of magnitude smaller

than the wavelength. The size of each torch in the x-direction is defined as the full width at

half maximum (FWHM) of the electric field; numerically it is found to be on the same order

of the slit width.

5.3 Imaging Processes

Here, we describe several steps in the imaging processes in details, including the system

setup, data acquisition, and reconstruction algorithm, as follows.

5.3.1 System Setup

A sample is placed on the same side of the illuminating light to interact with the evanescent

torches (Fig. 5.1). On the other side of the CNT-lens, a detector is placed in the proximity

of one slit (detection slit) to measure from the slit the output optical flux (thus the field

strength). One important feature of the CNT-lens is that the slits are coupled, so that when

one slit is covered by the sample, the field strengths in its neighboring slits are modified

accordingly. Consequently, each measurement includes the information of the local optical

properties of every periodic part of the sample that covers the slits at the same time.
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5.3.2 Data acquisition

Consider a long sample with an unknown refractive index profile n(x) which is to be deter-

mined. n(x) is assumed to be real for now. The following procedures determine n(x) over a

continuous segment with length Nd, where N is an arbitrary integer. The refractive index

of the sample beyond the segment is assumed to be uniform nb.

(i) Select a step size δ, which also specifies the pixel size in the reconstructed image. The

imaging resolution is given by max{a, δ}.

(ii) Divide the segment into N∆ slices, where ∆ = d/δ. Without losing generality, here we

assume δ = a, and the CNT-lens is designed such that d/a is an integer. The index of each

slice is taken as uniform and is denoted by ni, i = 1, 2, · · · , N∆, from right to left.

(iii) Start with i = 1 slice covering the detection slit, and record the measurement E1. Note

that the other slits are covered by the recurrent slices labeled by i = 1+∆, 1 + 2∆, · · · , 1 +

(N − 1)∆. The set of the slices is collectively denoted by S1.

(iv) Shift the sample by δ in the x-direction, so that now i = 2 slice covers the detection

slit. Record the measurement E2. Now the other slits are covered by the recurrent slices

labeled by i = 2+∆, 2 + 2∆, · · · , 2 + (N − 1)∆. The set of the slices is collectively denoted

by S2. S1 and S2 are exclusive. Fig. 5.2 depicts the configurations for the slices comprising

a general set Sj.

(v) Repeat the shift till i = N∆ slice covers the detection slit, and record the measure-

ment EN∆. These N∆ measurements {E1, E2, · · · , EN∆} can be partitioned into ∆ groups,

according to the slice set Sj, j = 1, 2, · · · ,∆. Each group contains N measurements.

To extract the global information of the sample, we develop a highly efficient and accurate

inverse differential algorithm to reconstruct the image from the measurements as follows.

71



Figure 5.2: Data acquisition process. Shown are three non-consecutive configurations of
the slices (highlighted in yellow color) comprising a general set Sj. The measurements
for all configurations for Sj form the j-th group. Coupling constants Ci’s are labeled at
corresponding slits. The red arrow indicates the shifting direction.

5.3.3 Reconstruction Algorithm

All the measurements in the same group are coupled. To extract the information of n(x), we

envision the inhomogeneous sample being imaged is derived from a uniform material with

index nb, and compare the differential between measurements. The total field differential

introduced by the sample is a linear summation of the contributions from all slits, and each

contribution is proportional to the local index variation at every slit. For example, the first

measurement Ej in the j-th group is taken to have the following form:

Ej = Eb + (nj − nb)C0Einc + (n(j+∆) − nb)C1Einc + (n(j+2∆) − nb)C2Einc + · · · , (5.1)

where Einc is the electric field of the incoming light, and Eb is the field strength for a uni-

form sample with index nb, which can be obtained numerically. The dimensionless quantity

Ci, i = 0, 1, 2, · · · describes the self- and mutual-couplings between the detection slit and its

neighboring slits (Fig. 5.2). Ci’s can be either positive or negative, and can be numerically
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determined for specified index variation. Within the j-th group, the N measurements can

be recast into a compact matrix form



C0 C1 C2 · · · CN−1

C1 C0 C1 · · · CN−2

C2 C1 C0 · · · CN−3

...
...

...
...

...

CN−1 CN−2 CN−3 · · · C0


N×N



∆nj

∆n(j+∆)

∆n(j+2∆)

...

∆n(j+(N−1)∆)


N×1

=



∆Ẽj

∆Ẽ(j+∆)

∆Ẽ(j+2∆)

...

∆Ẽ(j+(N−1)∆)


N×1

,

(5.2)

with ∆Ẽj = (Ej −Eb)/Einc and ∆nj = nj −nb. Repeating the process for all groups to solve

for all ∆n provides n(x) for the entire segment being imaged. It is worth mentioning that a

rescaling of all Ci’s does not change the contrast of the reconstructed image. Moreover, in

practice, the CNT-lens can be designed such that only the first few Ci’s make contributions.

Such an approach is validated by numerical simulations; it is numerically found that a good

choice of nb based upon the knowledge of the sample greatly increases the accuracy. The

algorithm is also robust for a fairly wide range of nb. One of the advantages of the differential

algorithm is that, as only the differential of the fields is used, ultra-high resolution can still

be achieved even if fabrication imperfections are present in the grating.

5.4 Numerical Simulations

Having introduced the general scheme, we now demonstrate the superior performance of the

CNT-lens. The CNT-lens is made of silver, which has an index nAg = 0.99886−14.128i [120]

at wavelength λ = 2.08µm (e.g. HO:YAG laser). The grating is designed so that d = 400 nm

and a = 40 nm, with unfilled slits, and the thickness is L = 662 nm such that the grating is

on resonance with the illuminating light. Numerically, the CNT-lens transmits 66% of light

and reflects only 3% (the remaining dissipates).
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5.4.1 Imaging Isolated Defects
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Figure 5.3: (a) Reconstructed images of a small defect in an otherwise uniform silica. The
dashed lines describe the sample index profile, while the black dots connected by solid lines
denote the reconstructed index profile. To aid the visualization, the sample and the recon-
structed images are also plotted using the grey scale color map, with white and black colors
indicating the maximum and minimum values, respectively, in each case. (b) Reconstructed
images of two small defects in proximity, with varying size and separation.

Applying the reconstruction algorithm, Fig. 5.3a shows the reconstructed images of a 40 nm-

thick sample containing a single defect (n = 1.54893, e.g. Barium crown glass, N-BAK1 [121])

in an otherwise uniform silica (n = 1.43689 [122]). nb is chosen to be the index of silica. The

defects with different sizes s = 60 nm, 40 nm, 20 nm, and 10 nm, respectively, are imaged.

The reconstructed images have FWHM 70nm, 62 nm, 58 nm, and 53 nm, respectively. For

even smaller defects, the FWHM is found numerically to approach the size of the light torch

(∼ a), which gives the point spread function (PSF) of the imaging system. That is, for

features that are smaller than the slit width, their images are blurred to be no less than the
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slit width. We note that the two kinks in the two larger samples and the two peaks in the

two smaller samples are due to the strong evanescent electric field in the y-direction right at

the corner of the slits; numerically, we found that they disappear when the sample is slightly

away (say 10 nm) from the CNT-lens.

Next, we investigate the resolving power of the CNT-lens to distinguish a small distance g

between two small defects with size s. The reconstructed images are shown in Fig. 5.3b.

The results indicate that when g ≥ 40 nm (= a), the two defects can always be distinguished

regardless of their size. On the other hand, the results show that a very small distance

(g = 20 nm) between two large defects (s = 80, 60 nm) can be resolved by the CNT-lens.

Such a case, from our algorithm, can be considered as the complementary case wherein a

small defect with size g is embedded in an otherwise homogenous material. The result does

not violate the well known Abbe-Rayleigh criterion, which describes the resolving power

between two point objects.

5.4.2 Imaging Samples with Varying Index Profile

Till now, we assume that the detector placed in the near field does not perturb the mea-

surements significantly. In practice, such a perturbation introduced by a measuring aperture

is always present. Here we show that accurate image reconstruction is still possible in the

presence of the near field perturbation. Consider a slab waveguide permeating through the

light torch of the detection slit (Fig. 5.4a). The waveguide can perturb the strong evanes-

cent field, and excite propagating waves inside the waveguide, which can be propagated afar

to be measured at the other end. Fig. 5.4b shows the reconstructed image for a 1.2µm

long sample, and both the reconstructed images with (red squares) and without (blue dots)

the waveguide are in good agreement with the original index profile. The slab waveguide

is made of silicon (n = 3.44989 [122]), embedded in a silica substrate. The width of the

slab waveguide is ww = 250 nm and the gap between the waveguide and the CNT-lens is
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Figure 5.4: (a) Schematic of a slab waveguide in the proximity of the detection slit. (b)
Index profile of the sample (dashed line), the reconstructed index profile with (red squares)
and without (blue dots) the waveguide. The thick lines in the reconstructed profiles are
obtained by spline interpolation method. (c) Index profile of the sample (dashed line), and
of the reconstructed image with (green triangles) and without (red squares) noises.

gw = 210 nm, determined through an optimization procedure: ww is fixed so that only the

first three coupling constants are significant and |C1/C0| = 0.67, |C2/C0| = 0.29; gw is de-

cided by maximizing |C0| so that the contrast in the image is as large as possible. Another

important issue that degrades the performance of any imaging system is the noise. Here

we demonstrate the robustness of the CNT-lens against external local random noises by

adding the noises to the measurements Ej (Eb is essentially noise-free, either when obtained

numerically, or measured experimentally for an extended period of time). The intensity of

random noises is represented by 0.2%×I×CRand, where I is the incident intensity and CRand

is a random number between [−1, 1]. Fig. 5.4c shows the reconstructed image with (green

triangles) and without (red squares) noises, assuming the presence of the waveguide.

76



5.4.3 Imaging Samples with Complex Index Profile

a b

nm nm

Figure 5.5: Reconstruction of the complex refractive index. (a) The real part. The sample is
denoted by the dashed line and the reconstructed image is denoted by black dots connected
with a solid line. (b) The imaginary part.

In most biological tissues, due to light scattering and absorption, the optical property is

described by a spatially varying complex refractive index: ñ(x) = n(x) + iκ(x). The cor-

relations between the slits allow us to determine ñ(x) in one scanning process by using

two detectors. In such a situation, when one slit is covered by a sample with a complex

index, n(x) and κ(x) contribute independently to the total measured differential field (in

general n(x) and κ(x) give rise to two different set of coupling constants). By measuring

at two neighboring slits (or in general, any two correlated slits), ñ(x) can be determined

by applying the reconstruction algorithm outlined above. Fig. 5.5 shows the reconstructed

complex refractive index profile. Such a capability to reconstruct the complex index based

on correlations is not possible in the single-slit scenario.

5.5 Summary and Expectation

In this Chapter, we propose a conceptually new designs of the CNT-lens, which provides

a promising alternative modality to achieve ultra-high resolution in optical imaging. The

scalability of the CNT-lens, i.e., to work at different optical frequencies by designing the
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lens with different dimensions, provides a unique feature to find broad applications. Also,

the sample may be shifted continuously and steadily, while the detector is timed to take

measurements at fixed time intervals. Together with simultaneous multi-channel detection,

the data acquisition time can be significantly reduced. For samples with exceedingly large

index contrast, the reconstruction algorithm can be generalized to use the nonlinear differ-

ential to accurately reconstruct the images. Finally, we note that a two-dimensional image

can be obtained by applying twice the one-dimensional scanning process in two orthogonal

directions, once in each direction, and does not require a time-consuming exhaustive point-

by-point two-dimensional scanning. These capabilities will likely extend the applicability of

the CNT-lens.
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Chapter 6

Ultralong Nanojet

6.1 Introduction

Another interesting phenomenon that can focus light to a subwavelength spot is photonic

nanojet. The photonic nanojet phenomenon was first numerically discovered in 2004 [15].

When the incident light is scattered by a homogenous single dielectric sphere, a high in-

tensity beam with a subwavelength waist emerges on the shadow-side of the sphere. The

nanojet has potential applications in nanoparticle sensing [123], subwavelength nanopart-

terning and nanolithography [124, 125], and the realizations of low-loss coupled resonator

optical waveguide (CROW) [126, 127]. For all applications, it is desired that the nanojets

extend as far as possible in the forward direction. Using simple ray optics, it can be shown

that the photonic nanojet phenomenon occurs only when the sphere index n is less than 2,

which gives an upper bound of n (hereafter, we assume the background is air). It can fur-

ther be shown that the smaller the index n is, the further the nanojet reaches. Nonetheless,

the lowest available index for conventional optical materials at visible light frequency range

is around 1.37 [128]. The nanojet is only several wavelengths long for a microsphere with

an index roughly equal to 1.37. Such a shortcoming can be understood by looking at the

energy power flow (Poynting vector) around the focal point (Fig. 6.1a). In such a case, a
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rapid convergence near the focal point also unavoidably leads to a fast divergence, thereby

a short nanojet. Consequently, to obtain a long nanojet, the key point is to engineer the

microsphere so that the power flow near the focal point is essentially parallel so as to have

a small angular deviation. Along this direction of reasoning, multilayer microspheres (up to

100 layers) with graded-index between
√
2 and 1 have been proposed and shown to exhibit

elongated nanojets [129]. Although intricate nanorod metamaterials can achieve such a low

index (1.05− 1.28 [130]), the fabrication and integration with desired index profile are still

challenging. In this following, we will show that we design a simple two-layer microsphere

structure with required power flow behavior (Fig. 6.1b), with indices readily available from

conventional optical materials, to achieve an enormously long nanojet. In particular, we

show that for a glass-based two-layer microsphere (e.g., BaF and LaSF), the nanojet has

a remarkable extension of 22 wavelengths long. Such a capability will make the nanojet

applications more viable.

6.2 Geometry and Underlying Physics

We start by describing the two-layer microsphere geometry (Fig. 6.2). The sphere consists of

an inner core of radius Rc and with a refractive index nc, and of a shell with outer radius Rs

and with an index ns. The enabling feature in this design is that the aforementioned power

flow behavior can be accomplished if the core index nc is smaller than the shell index ns (nc <

ns). This scenario is different from the previously proposed multilayer microspheres [129]

wherein the refractive index monotonically decreases from the core (index
√
2) to the outer

shell (index 1). For both multilayer and single microsphere cases, the power flow inside

the sphere always converges, while for the proposed two-layer microsphere structure, the

power flow inside the sphere experiences alternative convergence and divergence, where the

divergence acts to counter-balance and slow down the convergence (Fig. 6.2b). For properly

chosen indices, the counter-balance can be effective so as to minimize the divergence angle
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Figure 6.1: Power flow plots for microspheres. (a) A single microsphere. (b) A two-layer
microsphere. ‘H’ and ‘L’ denote the low index core and high index shell, respectively. The
arrows denote the Poynting vectors at each grid point. The two continuous red lines in each
figure are the streamlines for the Poynting vector fields, assuming the same two fixed starting
points on the incident side for each case.

at the focal point. We emphasize here that the power flow behavior can not be correctly

inferred from the trajectory of the ray optics, as the dimensions of the layers are of the same

orders of magnitude as the wavelength. Full-wave treatment is required to obtain numerically

correct behavior.

6.3 Intensity Distributions

Having introduced the criteria for elongated nanojets, we now plot the intensity distribu-

tions of the nanojets using the exact Mie theory [37] (see Appendix E) to provide a direct

visualization of the nanojets. For an incident plane wave propagating along the z-direction

and linearly polarized in the x-direction (Fig. 6.2), Fig. 6.3 plots the intensity distributions
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Figure 6.2: Schematics of the two-layer microsphere. The sphere consists of an inner core
of radius Rc and with a refractive index nc, and of a shell with outer radius Rs and with an
index ns. The directions of the incident plane wave and the polarization are also denoted.

for the scattering processes. While plotting, we sum up the vector spherical harmonics up

to order n = 45. We have checked the convergence such that, when order n = 46 is added,

the relative electric field change is less than 10−4 at all grid points. Fig. 6.3a plots the

nanojet for a single microsphere case, while Fig. 6.3b plots the nanojet for the case of a

two-layer microsphere. To plot the intensity distributions, we have chosen the wavelength

of the incident light to be λ = 632.8 nm (He-Ne laser); and the radius of the single sphere

is R = 5λ, n = 1.377 (MgF2 [122]); the two-layer microsphere is designed with Rc = 2.5λ,

nc = 1.6028 (BaF [121]), and Rs = 5λ, ns = 1.8445 (LaSF [121]). For different wavelengths,

the same geometry also works as long as the indices are kept the same. The intensity profile

on the z-axis is also plotted for each case. To quantify the extensions of the nanojets, we

define the beam length L as the distance on the z-axis from the edge of the sphere on the

shadow side (z/λ = 5 in the intensity profile plots) to the spatial point where the intensity

drops to twice of that of the incident light (the same definition is also adopted in [129]).

The designed two-layer microsphere has a beam length L ∼ 22λ, which is more than twice

longer than that for the single sphere case (L ∼ 9λ). In Fig. 6.3, the intensity profile in the
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Figure 6.3: Intensity plots of the nanojets. (a) A single microsphere with R = 5λ, n = 1.377
(MgF2). (b) A two-layer microsphere with Rc = 2.5λ, nc = 1.6028, and Rs = 5λ, ns =
1.8445. In each case, the upper panel plots the intensity for the y − z plane; and the lower
panel plots the intensity profile along the z-direction. In the intensity profile, the origin of
coordinate corresponds to the center of the sphere, and the locations of the focal points are
denoted by the dashed lines. Transverse profile at the focal point is also shown in the inset.
To clearly show the details of the nanojets, the maximum value of the colormap is chosen to
be the value at the focal point.
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transverse y-direction (beam waist) at the focal point is also plotted in the inset. Although

the elongated nanojet in the two-layer microsphere case has a broadened transverse profile

compared with that of the single sphere case, its full width at half maximum (FWHM) is

still at subwavelength scale (∼ 0.89λ). We now comment on some properties of the intensity

profiles of the nanojets. Firstly, for the two-layer microsphere case, as the nanojet is much

longer and slightly wider, energy conservation implies that the intensity at the focal point

is accordingly somewhat smaller than that for the single sphere case (46 vs 127 in units of

the intensity of the incoming light). Secondly, due to the multiple scatterings in the outer

shell for the two-layer microsphere case, there exists strong standing-wave-like interferences

in the outer shell. In contrast, the interferences in the single sphere case is much weaker.

More significantly, using the same low-index core high-index shell design strategy, we now

show that long nanojets can be formed by using materials with index larger than 2. Such

a capability opens up a wide range of materials for nanojet generation. To date, materials

with such a large refractive index are excluded from the considerations for nanojet generation

for both single sphere and graded-index multilayer microsphere cases, due to the ray optics

predictions and aforementioned monotonically convergence processes. By introducing the

counter-balance mechanism for alternative convergence and divergence in the two-layer mi-

crosphere structures, our design can accommodate large index materials (≥ 2) to form long

nanojets. Notably, long nanojets at infrared frequency range using semiconductor materials

(doped and undoped) now become readily feasible. Fig. 6.4 shows an elongated nanojet with

L ∼ 15λ formed by a two-layer microsphere (Rc = 2.5λ, nc = 2; Rs = 5λ, ns = 3.85). The

same strong standing-wave-like interferences can also be seen in the outer shell. Here, we

note that using semiconductors to form nanojets has been discussed in [15]. In that case,

however, the background has an index larger than 1, so that the ratio between the refractive

index of the sphere and the background is still less than 2. That is, nanojet generation using

semiconductors in air has not been achieved so far. Moreover, we note that the refractive

index upper bound n = 2 given by the ray optics is overestimated. By applying the full-wave
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analysis, we found that for a single microsphere with R = 5λ, the largest index to form a

nanojet is only around 1.75, which is 12.5% smaller than that given by the ray optics.

Figure 6.4: A long nanojet formed by a two-layer microsphere with high refractive index
materials (nc = 2, ns = 3.85, Rc = 2.5λ, and Rs = 5λ).

6.4 Summary and Expectation

In this Chapter, we designed a simple two-layer microsphere, which can generate an ultralong

nanojet, using conventionally available optical materials. We further show that long nanojets

can be formed using semiconductor materials at infrared frequencies. This capability will

greatly facilitate the successful applications of nanojets.
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Appendix A

N-photon Eigenstates in the Chiral

System

In this Appendix, we show the details of how to construct the eigenstates by solving Eq. 4.5

and Eq. 4.6. To begin with, a direct observation of Eq. 4.5 reveals that in the region wherein

none of the coordinates is zero, Eq. 4.5 describes a free system, and thereby permitting plane

wave solution. Thus, the general form of eigenstate wavefunction in the region x1 < x2 <
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· · · < xN can be parameterized as follows:

f(x1, x2, · · · , xN) =



∑
P∈SN

AN+1(P) exp(i
∑N

j=1 kjxPj
),

in subregion N + 1 (x1 < x2 < · · · < xN < 0),∑
P∈SN

AN(P) exp(i
∑N

j=1 kjxPj
),

in subregion N (x1 < x2 < · · · < xN−1 < 0 < xN),

· · ·

· · ·

· · ·∑
P∈SN

A1(P) exp(i
∑N

j=1 kjxPj
),

in subregion 1 (0 < x1 < x2 < · · · < xN).

(A.1)

In this expression, we restrict to the region of x1 < x2 < · · · < xN , and the expressions of the

wavefunction in other regions can be obtained using the bosonic symmetry. k1, k2, · · · , and

kN are in general N complex numbers subject to the constraint of k1+k2+· · ·+kN = E/(v~),

among others. The orders of the k’s are fixed. The summation P ∈ SN accounts for all the

N ! permutations of the labels {1, 2, · · · , N}, and is assigned to the coordinates x’s. All the

coefficients A’s, in addition to their explicit labels, are in general a function of all the k’s

and the corresponding P. With this wavefunction, one can use the boundary conditions in

Eq. 4.5 and Eq. 4.6 to determine all the constrains regarding to the coefficients A’s and wave

numbers k’s.

A.1 N-photon Extended State

To proceed, the first attempt is to assume all the k’s are real and all the N ! A’s are nonzero.

To investigate those coefficient relations, we focus on two representative terms in the same
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subregion, which are e···+kmxj+···+knxj+1+··· and e···+kmxj+1+···+knxj+··· with 1 ≤ m < n ≤ N and

j = 1, 2, · · · , N − 1. Except for the exchange of xj and xj+1, these two terms have exact the

same orders of the other coordinates. Specifically, we rewrite the wavefunction to explicitly

show the two terms,

f(x1, x2, · · · , xN) =



· · ·+ AN+1(· · · , j, · · · , j + 1, · · · )ei(···+kmxj+···+knxj+1+··· ) + · · ·

· · ·+ AN+1(· · · , j + 1, · · · , j, · · · )ei(···+kmxj+1+···+knxj+··· ) + · · · ,

in subregion N + 1 (x1 < x2 < · · · < xN < 0),

· · ·+ AN(· · · , j, · · · , j + 1, · · · )ei(···+kmxj+···+knxj+1+··· ) + · · ·

· · ·+ AN(· · · , j + 1, · · · , j, · · · )ei(···+kmxj+1+···+knxj+··· ) + · · · ,

in subregion N (x1 < x2 < · · · < xN−1 < 0 < xN),

· · ·

· · ·

· · ·

· · ·+ A1(· · · , j, · · · , j + 1, · · · )ei(···+kmxj+···+knxj+1+··· ) + · · ·

· · ·+ A1(· · · , j + 1, · · · , j, · · · )ei(···+kmxj+1+···+knxj+··· ) + · · · ,

in subregion 1 (0 < x1 < x2 < · · · < xN).

(A.2)
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By investigating the boundary between subregion N + 1 and subregion N where xN crosses

from 0− to 0+, the two equations of motion to be solved now become

−iv
[
f(x1, x2, · · · , xN−1, 0

+)− f(x1, x2, · · · , xN−1, 0
−)
]
+

V√
N
e(x1, x2, · · · , xN−1) = 0,

(A.3)

iv

[
−

∂

∂x1
−

∂

∂x2
− · · · −

∂

∂xN−1
− (E/~− Ω)

]
e(x1, x2, · · · , xN−1)+

√
NV

2
[f(x1, x2, · · · , xN−1, 0

+)+f(x1, x2, · · · , xN−1, 0
−)] = 0.

(A.4)

By substituting Eq. A.2 into the above Eq. A.3 and Eq. A.4, we obtain the following coeffi-

cient relations:

AN (· · · , j, · · · , j + 1, · · · ) = k(xN ) − Ω/v − iΓ/(2v)

k(xN ) − Ω/v + iΓ/(2v)
AN+1(· · · , j, · · · , j + 1, · · · ) = tk(xN )AN+1(· · · , j, · · · , j + 1, · · · ),

AN (· · · , j + 1, · · · , j, · · · ) = k(xN ) − Ω/v − iΓ/(2v)

k(xN ) − Ω/v + iΓ/(2v)
AN+1(· · · , j + 1, · · · , j, · · · ) = tk(xN )AN+1(· · · , j + 1, · · · , j, · · · ),

(A.5)

where k(xN ) is the k that is multiplied with xN in the exponentials. These two equations

indicate that the coefficients between the two neighboring subregions only deviate by a

single-photon transmission amplitude tk(xN ) (see Eq. 4.22). Moreover, by dividing these two

equations, we get

AN(· · · , j, · · · , j + 1, · · · )
AN(· · · , j + 1, · · · , j, · · · )

=
AN+1(· · · , j, · · · , j + 1, · · · )
AN+1(· · · , j + 1, · · · , j, · · · )

. (A.6)

In the following, by repeating the same procedure to other boundaries where xN−1, xN−2,

· · · , and xj+2 cross from 0− to 0+ one by one, we obtain similar relations

Aj+2(· · · , j, · · · , j + 1, · · · )
Aj+2(· · · , j + 1, · · · , j, · · · )

= · · · = AN−1(· · · , j, · · · , j + 1, · · · )
AN−1(· · · , j + 1, · · · , j, · · · )

=
AN(· · · , j, · · · , j + 1, · · · )
AN(· · · , j + 1, · · · , j, · · · )

.

(A.7)

Such a relation is anticipated, as the k’s associated with the coordinates that cross the

boundaries are the same.
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For the next boundary between subregion j+2 and subregion j+1 where xj+1 crosses from

0− to 0+, the coefficient relations between the neighboring subregions can also be computed:

Aj+1(· · · , j, · · · , j + 1, · · · ) = kn − Ω/v − iΓ/(2v)

kn − Ω/v + iΓ/(2v)
Aj+2(· · · , j, · · · , j + 1, · · · ) = tkn

Aj+2(· · · , j, · · · , j + 1, · · · ),

Aj+1(· · · , j + 1, · · · , j, · · · ) = km − Ω/v − iΓ/(2v)

km − Ω/v + iΓ/(2v)
Aj+2(· · · , j + 1, · · · , j, · · · ) = tkmAj+2(· · · , j + 1, · · · , j, · · · ).

(A.8)

We note that different from the previous case, this time, the k’s associated with xj+1 are

different for the two terms. Thus, Eq. A.8 does not yield the same relation that follows the

rule in Eq. A.7. Moreover, the (N − 1)-photon wavefunction with the photon labeled by

j + 1 being absorbed by the atom is also computed,

e(x1, x2, · · · , xj−1, xj , xj+2, · · · , xN )

=
√
N(V/v)[

ei(···+kmxj+··· )

kn − Ω/v + iΓ/(2v)
Aj+2(· · · , j, · · · , j + 1, · · · ) + ei(···+knxj+··· )

km − Ω/v + iΓ/(2v)
Aj+2(· · · , j + 1, · · · , j, · · · )].

(A.9)

For the next boundary between subregion N − 1 and region N − 2 where xj increases from

0− to 0+, we obtain

Aj(· · · , j, · · · , j + 1, · · · ) = km − Ω/v − iΓ/(2v)

km − Ω/v + iΓ/(2v)
Aj+1(· · · , j, · · · , j + 1, · · · ) = tkmAj+1(· · · , j, · · · , j + 1, · · · ),

Aj(· · · , j + 1, · · · , j, · · · ) = kn − Ω/v − iΓ/(2v)

kn − Ω/v + iΓ/(2v)
Aj+1(· · · , j + 1, · · · , j, · · · ) = tknAj+1(· · · , j + 1, · · · , j, · · · ),

(A.10)

and the (N − 1)-photon wavefunction with the photon labeled by j being absorbed is

e(x1, x2, · · · , xj−1, xj+1, xj+2, · · · , xN )

=
√
N(V/v)[

ei(···+knxj+1+··· )

km − Ω/v + iΓ/(2v)
Aj+1(· · · , j, · · · , j + 1, · · · ) + ei(···+kmxj+1+··· )

kn − Ω/v + iΓ/(2v)
Aj+1(· · · , j + 1, · · · , j, · · · )].

(A.11)

Therefore, Eq. A.9 and Eq. A.11 represent the expressions for the (N − 1)-photon wavefunc-

tion in two neighbouring subregions. Since this wavefunction is continuous everywhere in
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the entire space (see Eq. 4.6), the self-consistency of the function requirers

e(x1, x2, · · · , xj−1, 0
−, xj+2, · · · , xN) = e(x1, x2, xj−1, 0

+, xj+2, · · · , xN), (A.12)

which immediately leads to

Aj+2(· · · , j, · · · , j+1, · · · )/Aj+2(· · · , j+1, · · · , j, · · · ) = (km− kn− iΓ/v)/(km− kn+ iΓ/v).

(A.13)

By combining Eq. A.13 with all the previous obtained coefficient relations (Eq. A.6 and

Eq. A.7), we finally get

AN+1(· · · , j, · · · , j+1, · · · )/AN+1(· · · , j+1, · · · , j, · · · ) = (km−kn− iΓ/v)/(km−kn+ iΓ/v).

(A.14)

It is worth mentioning here that the above analysis does not yield any restrictions on the wave

number k’s. Thus, the eigenstate wavefunction f(x1, x2, · · · , xN) is uniquely determined as:

f(x1, x2, · · · , xN) ∝



∑
P∈SN

{
∏

m<n[km − kn − iΓsgn(Pn −Pm)/v]} exp(i
∑N

j=1 kjxPj
),

in subregion N + 1 (x1 < x2 < · · · < xN < 0),

· · ·

· · ·

· · ·

(
∏N

j=1 tkj)
∑

P∈SN
{
∏

m<n[km − kn − iΓsgn(Pn − Pm)/v]} exp(i
∑N

j=1 kjxPj
),

in subregion 1 (0 < x1 < x2 < · · · < xN),

(A.15)

which describes an N -photon extended state, as each exponential term represents a free

plane wave without restriction. The corresponding in-state wavefunction fin(x1, x2, · · · , xN)
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is expressed by extending f(x1, x2, · · · , xN) in subregion N + 1 to the entire space (−∞ <

x1, x2, · · · , xN < +∞),

fin(x1, x2, · · · , xN) = CN

∑
P∈SN

{
∏
m<n

[km−kn− iΓsgn(xPn−xPm)/v]} exp(i
N∑
j=1

kjxPj
), (A.16)

with normalization constant CN to be determined. The corresponding out-state wavefunction

fout(x1, x2, · · · , xN), on the other hand, can be expressed by extending f(x1, x2, · · · , xN) in

subregion 1 to the entire space and is conveniently written as

fout(x1, x2, · · · , xN) = (
N∏
j=1

tkj)fin(x1, x2, · · · , xN). (A.17)

A.2 N-photon Bound State

Till now, we have constructed theN -photon extended states, which are indeed the eigenstates

of the Hamiltonian He. Nonetheless, it turns out that the N -photon extended states do

not form a complete set in the N -photon Hilbert space H
⊗

N
e . To find out those missing

eigenstates, one needs to extend the wave numbers k’s into complex values. As all k’s sum

up to be a real number, to avoid the divergence, some of the coefficients A’s must be zero.

The extreme case is that only one coefficient A is left to be nonzero, and all the k’s are

assumed to be complex numbers {kj = k′j + iκj}, j = 1, · · · , N , where k′j is the real part and

101



κj is the imaginary part.

f(x1, x2, · · · , xN) =



AN+1e
i(k′1+iκ1)x1+i(k′2+iκ2)x2+···+i(k′N+iκN )xN ,

in subregion N + 1 (x1 < x2 < · · · < xN < 0),

ANe
i(k′1+iκ1)x1+i(k′2+iκ2)x2+···+i(k′N+iκN )xN ,

in subregion N (x1 < x2 < · · · < xN−1 < 0 < xN),

· · ·

· · ·

· · ·

A1e
i(k′1+iκ1)x1+i(k′2+iκ2)x2+···+i(k′N+iκN )xN ,

in subregion 1 (0 < x1 < x2 < · · · < xN).

(A.18)

With this wavefuntion, one can apply exactly the same procedures at all the boundaries

to obtain all the constraints regarding to the A’s and k’s. At the first boundary between

subregion N + 1 and subregion N where xN crosses from 0− to 0+, the equations of motion

yield the following coefficient relation

AN =
k′N + iκN − Ω/v − iΓ/(2v)

k′N + iκN − Ω/v + iΓ/(2v)
AN+1 = tkNAN+1, (A.19)

which has exactly the same form as before. Moreover, the (N−1)-photon wavefunction with

the photon labeled by N being absorbed is obtained accordingly:

e(x1, x2, · · · , xN−1) =
√
N(V/v)[

ei(k
′
1+iκ1)x1+i(k′2+iκ2)x2+···+i(k′N−1+iκN−1)xN−1

k′N + iκN − Ω/v + iΓ/(2v)
AN+1]. (A.20)
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At the next boundary between subregion N and subregion N − 1 where xN−1 crosses from

0− to 0+, the equations of motion also yield similar coefficient relation

AN−1 =
k′N−1 + iκN−1 − Ω/v − iΓ/(2v)

k′N−1 + iκN−1 − Ω/v + iΓ/(2v)
AN = tkN−1

AN , (A.21)

and the (N − 1)-photon wavefunction with the photon labeled by N − 1 being absorbed is

given by

e(x1, x2, · · · , xN−2, xN) =
√
N(V/v)[

ei(k
′
1+iκ1)x1+i(k′2+iκ2)x2+···+i(k′N−2+iκN−2)xN−2+i(k′N+iκN )xN

k′N−1 + iκN−1 − Ω/v + iΓ/(2v)
AN ].

(A.22)

Again, by applying the self-consistent condition

e(x1, x2, · · · , xN−2, 0
−) = e(x1, x2, · · · , xN−2, 0

+), (A.23)

we get

k′N−1 = k′N , (A.24)

and

κN = κN−1 + Γ/v. (A.25)

This procedure can be repeated for the rest of the boundaries, and we finally get:

k′N = k′N−1 = · · · = k′1 ≡ k, (A.26)

and

κN = κN−1 + Γ/v = κN−2 + 2Γ/v = · · · = κ1 + (N − 1)Γ/v. (A.27)

As the summation of all the k’s is a real number, κ1 = −(N − 1)Γ/(2v). Thus, the N k’s

are given by

kj = k + [2j − (N + 1)]Γ/(2v), (A.28)
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where j = 1, 2, · · · , N . With those k’s, the eigenstate wavefunction is uniquely determined:

f(x1, x2, · · · , xN) ∝



eik(x1+x2+···+xN )−(N−1)Γ(xN−x1)/(2v)−(N−3)Γ(xN−1−x2)/(2v)−···,

in subregion N + 1 (x1 < x2 < · · · < xN < 0),

· · ·

· · ·

· · ·

(
∏N

j=1 tkj)e
ik(x1+x2+···+xN )−(N−1)Γ(xN−x1)/(2v)−(N−3)Γ(xN−1−x2)/(2v)−···,

in subregion 1 (0 < x1 < x2 < · · · < xN),

(A.29)

which describes an N -photon bound state, as the wavefunction is exponentially suppressed

when the relative distances between any two coordinates increase. The plane wave compo-

nent eik(x1+x2+···+xN ) in the wavefunction, on the other hand, indicates that the N -photon

bound state can propagate in the entire space freely as a whole. Having constructed the

N -photon bound state, its corresponding in-state wavefunction fin(x1, x2, · · · , xN) can then

be obtained by extending f(x1, x2, · · · , xN) in subregion N + 1 to the entire space

fin(x1, x2, · · · , xN) = CNe
ik(x1+x2+···+xN )−(

∑
m<n |xm−xn|)Γ/(2v), (A.30)

where CN is the normalization constant to be determined. The out-state wavefunction

fout(x1, x2, · · · , xN), on the other hand, possesses the same expression as that in Eq. A.17.

A.3 Other Hybrid States

Except for the two types of eigenstates presented above, the rest types of eigenstates can

be constructed in a similar manner by postulating different number of nonzero A’s in the
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wavefunction. Nonetheless, most cases do not yield a solution. For those cases that do permit

a valid eigenstate, the choices of the nonzero A’s are unique. Thus, a unique set of k’s is

obtained, which in turn defines the types of eigenstates. Remarkably, it turns out that there

exists an one-to-one mapping between the types of N -photon eigenstates and the partitions

of the integer number N (shown in Tab. 4.4), which illustrates how many nonzero terms exist

in a certain types of eigenstates. For example, for N = 4, (2, 2) is one of the partitions, and

by assuming 4!/[2!2!] = 3 nonzero terms in the wavefunction, we can construct the type-3

eigenstate in Tab. 4.3. Also, (3, 1) is another partition, and by assuming 4!/[3!1!] = 4 nonzero

terms in the wavefunction, we can construct type-4 eigenstate in Tab. 4.3. In general, to

construct a certain type of eigenstates that corresponds to the partition N = N1+N2+ · · · ,

the number of nonzero terms in the eigenstate wavefunction is given by N !/[N1!N2! · · · ].
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Appendix B

The Normalization Conditions

In this Appendix, we employ the delta normalization condition to normalize the wavefunc-

tions of the in-states in the chiral case, with definitions shown as follows:

B.1 1-photon Case

The in-state wavefunction has only one specific form,

f
(k)
in (x) = C1e

ikx, (B.1)

where we add a superscript k to denote only one real parameter that characterizes this

wavefunction. To normalize this wavefunction, we compute the overlap between two such

kind of wavefunctions with different superscripts,

∫ +∞

−∞
dxf

(k′)∗
in (x)f

(k)
in (x) = |C1|22πδ(k − k′), (B.2)
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where the symbol (∗) represents the complex conjugate of the function. In the integration,

the following identity is used,

∫ +∞

−∞
dx e−ik′xeikx = 2πδ(k − k′). (B.3)

Thus, the normalization constant C1 is set to be 1/
√
2π so that f

(k)
in (x)/

√
2π is normalized

to the delta function.

B.2 2-photon Case

The 2-photon extended state with wavefunction f
(k1,k2)
in (x1, x2) (Eq. 4.12) is characterized by

two real parameters (k1, k2). Similarly, we compute the overlap between the wavefunctions

with different superscripts,

∫ +∞

−∞

∫ +∞

−∞
dx1dx2f

(k′1,k
′
2)∗

in (x1, x2)f
(k1,k2)
in (x1, x2) = |C2|28π2[(k1−k2)2+(Γ/v)2]δ(k1−k′1)δ(k2−k′2).

(B.4)

To avoid double counting, we restrict k1 < k2 and k
′
1 < k′2. Thus, the normalization constant

C2 is set to be [(k1 − k2)
2 + (Γ/v)2]−1/2/(2

√
2π).

Another type of in-states to be normalized is the 2-photon bound state with wavefunction

f
(k)
in (x1, x2) (Eq. 4.13), which is characterized by only one real parameter k. A direct com-

putation reveals that,

∫ +∞

−∞

∫ +∞

−∞
dx1dx2f

(k′)∗
in (x1, x2)f

(k)
in (x1, x2) = |C2|2

2πv

Γ
δ(k − k′). (B.5)

Thus, C2 =
√

Γ/(2πv).
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B.3 3-photon Case

The first type is the 3-photon extended state with wavefunction f
(k1,k2,k3)
in (x1, x2, x3) (Eq. 4.14),

which is characterized by three real parameters (k1, k2, k3). A direct computation reveals

that,

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
dx1dx2dx3f

(k′
1,k

′
2,k

′
3)∗

in (x1, x2, x3)f
(k1,k2,k3)
in (x1, x2, x3)

= |C3|248π3[(k1 − k2)
2 + (Γ/v)2][(k1 − k3)

2 + (Γ/v)2][(k2 − k3)
2 + (Γ/v)2]δ(k1 − k′1)δ(k2 − k′2)δ(k3 − k′3),

(B.6)

where we restrict k1 < k2 < k3 and k′1 < k′2 < k′3 to avoid double counting. Thus, C3 is set

to be {48π3 [(k1 − k2)
2 + (Γ/v)2] [(k2 − k3)

2 + (Γ/v)2] [(k1 − k3)
2 + (Γ/v)2]}−1/2

.

The second type is the hybrid state f
(k,k3)
in (x1, x2, x3), characterized by two real parameters k

and k3, which is obtained by adding other 15 terms by permuting x1, x2, and x3 in Eq. 4.15

. Similarly, we compute the overlap between the wavefunctions with different superscripts

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
dx1dx2dx3f

(k′,k′3)∗
in (x1, x2, x3)f

(k,k3)
in (x1, x2, x3)

= |C3|2(12π2v/Γ)
[
(k − k3)

2 + [Γ/(2v)]2
] [
(k − k3)

2 + [3Γ/(2v)]2
]
δ(k − k′)δ(k3 − k′3) + · · · ,

(B.7)

where ‘· · · ’ denotes terms that containing less than two delta functions. For the normalization

purpose, only the most singular term is kept. Thus, C3 is set to be√
Γ/(12π2v) {[(k − k3)

2 + [Γ/(2v)]2] [(k − k3)
2 + [3Γ/(2v)]2]}−1/2

.

The third type is the 3-photon bound state with wavefunction f
(k)
in (x1, x2, x3) (Eq. 4.16),

which is characterized by only one real parameter k. A direct computation reveals that,

∫ +∞

−∞

∫ +∞

−∞
dx1dx2dx3f

(k′)∗
in (x1, x2, x3)f

(k)
in (x1, x2, x3) = |C3|2

πv2

Γ2
δ(k − k′). (B.8)

Thus, C3 = Γ/(v
√
π).
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B.4 N-photon Case

The wavefunction of the N -photon extended state is f
(k1,k2,··· ,kN )
in (x1, x2, · · · , xN) (Eq. 4.17),

which is characterized by N real parameters (k1, k2, · · · , kN). A direct computation reveals

that (k1 < k2 < · · · < kN and k′1 < k′2 < · · · < k′N are restricted to avoid double counting),

∫ +∞

−∞
· · ·
∫ +∞

−∞
dx1dx2 · · · dxNf

(k′1,k
′
2,··· ,k′N )∗

in (x1, x2, · · · , xN)f (k1,k2,··· ,kN )
in (x1, x2, · · · , xN)

= |CN |2{
∏
m<n

[(km − kn)
2 + (Γ/v)2]}N !(2π)Nδ(k1 − k′1)δ(k2 − k′2) · · · δ(kN − k′N).

(B.9)

Thus, CN = {
∏

m<n[(km − kn)
2 + (Γ/v)2]}−1/2/(

√
N !(2π)N . In contrast, the wavefunction

of the N -photon bound state f
(k)
in (x1, x2, · · · , xN) (Eq. 4.19), which is characterized by only

one real parameter k. A direct computation reveals that,

∫ +∞

−∞
· · ·
∫ +∞

−∞
dx1dx2 · · · dxNf (k′)∗

in (x1, x2, · · · , xN)f (k)
in (x1, x2, · · · , xN)

= |CN |2
2π

(N − 1)!(Γ/v)N−1
δ(k − k′).

(B.10)

Thus, CN =
√

(N − 1)!(Γ/v)N−1/(2π). The normalization constants for other hybrid states

can be determined through a similar procedure.
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Appendix C

Completeness Check

The construction of the scattering matrix relies on the the completeness of the set of in-states

{|in⟩} in the chiral space. In the chiral space, the completeness condition is expressed as the

following identity, ∑
j

∑
{k}

|in{k}
j ⟩⟨in{k}

j | = I, (C.1)

where the subscript j = 1, 2, · · · , Z(N) accounts for all the types of the in-states and the

set {k} is for all the possible k’s in a given type. In this appendix, we provide a numerical

check for the completeness for the chiral case, that is we will check if the equality in Eq. C.1

holds. This procedure can be straightforwardly generalized to the non-chiral case without

further conceptual difficulties.

As all the in-states are given in real-space forms, we first project an arbitrary N -photon

state |X⟩ into the real space, which is also chosen to be normalized as

∫
· · ·
∫
dx1 · · · dxN |⟨x1, · · · , xN |X⟩|2 = 1. (C.2)

Then, by inserting the to-be-checked Eq. C.1 into Eq. C.2, we get

∑
j

Pj
?
= 1, (C.3)
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where

Pj ≡
∑
{k}

∫
· · ·
∫
dx1 · · · dxN

∣∣∣⟨x1, · · · , xN |in{k}
j ⟩⟨in{k}

j |X⟩
∣∣∣2 , (C.4)

describing the weight of |X⟩ in the j-th type in-states. When writing down Eq. C.3 and

Eq. C.4, we have used the fact that the in-states with different j and set {k} are orthogonal

with each other. The orthogonality can either be proved by standard procedures or directly

be checked numerically.

As a concrete example, we numerically check the in-states in H
⊗

3
e . The incoming 3-photon

Fock state |X⟩ is assumed to be three identical and overlapping gaussian wave packets,

characterized by standard deviation σx. Tab. C.1 lists all the Pj’s for varying σx. As we

can see from the table that, for all σx investigated, the summations of all the Pj’s are very

close to unity, with relative error less than 1%. Such a result numerically confirms both the

completeness and orthogonality of the 3-photon in-states in H
⊗

3
e .

Table C.1: Completeness check for in-states in H
⊗

3
e . To ease the computational burden,

for the purpose of checking completeness, σx is smaller than that used in previous section,
where a much larger σx is required for near single frequency condition.

σx/vτr P1 P2 P3 summation
0.5 0.008 0.052 0.941 1.001
1 0.017 0.163 0.821 1.001
2 0.033 0.566 0.393 0.992
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Appendix D

Photon Correlation Functions to

Arbitrary Order

In this Appendix, we give a complete derivations to the photon correlation functions to

arbitrary order. We start by describing the second-order correlation function, which is

commonly used in many research papers. The second-order correlation function, which is

the primary quantity to describe the statistical properties of a stream of photons, is defined

as [131]:

g(2)(x0, t, t+ τ) =
⟨E−(x0, t)E

−(x0, t+ τ)E+(x0, t+ τ)E+(x0, t)⟩
⟨E−(x0, t)E+(x0, t)⟩⟨E−(x0, t+ τ)E+(x0, t+ τ)⟩

, (D.1)

where ⟨·⟩ is the expectation value of a normalized state, and E−(x0, t) and E
+(x0, t) are the

positive and negative frequency components, respectively, of the electric field operators. t

and t+ τ are the two times to make the measurements and x0 is the position of the detector.

By using the real-space approach presented above, it can be shown that the second-order

correlation function can be reduced to [132]:

g
(2)
i (τ) =

⟨C†
i (x0)C

†
i (x0 + vτ)Ci(x0 + vτ)Ci(x0)⟩

⟨C†
i (x0)Ci(x0)⟩⟨C†

i (x0 + vτ)Ci(x0 + vτ)⟩
, (D.2)
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where i = R or L represents the measurements for the right moving photons or the left moving

photons, respectively. For incoming photons from the left, if x0 > 0, the detector is placed

on the transmitted side, which only registers the right moving photons in the transmitted

scattered state; on the other hand, if x0 < 0, the detector is placed on the reflected side,

which register the right moving photons in the input state and the left moving photons in

the reflected scattered state. In principle, the correlation function does not depend on the

placement of the detector, i.e., x0. Analytically, we found out it is indeed so; numerically,

we found there exists very minute difference. For brevity, hereafter, we drop the subscript

‘i’ in the correlation function.

Eq. D.2 can be further expressed in terms of the wavefunction transmitted or reflected part

of the scattered state. For example, the second-order correlation function for a 2-photon

state, now takes the following form:

g(2)(τ) =
1

2

[∫∫
dx1dx2|h(x1, x2)|2

]
|h(x0, x0 + vτ)|2[∫

dx2|h(x0, x2)|2
] [∫

dx1|h(x1, x0 + vτ)|2
] , (D.3)

where h(x1, x2) is the 2-photon wavefunction of the relevant state. Using a similar approach,

the second-order correlation function for a 3-photon state can also be written as:

g(2)(τ) =
2

3

[∫∫∫
dx1dx2dx3|h(x1, x2, x3)|2

] ∫
dx3|h(x0, x0 + vτ, x3)|2[∫ ∫

dx2dx3|h(x0, x2, x3)|2
] [∫ ∫

dx1dx3|h(x1, x0 + vτ, x3)|2
] ,

(D.4)

where h(x1, x2, x3) is the 3-photon wavefunction of the relevant state. Such a procedure can

be further generalized to the N -photon state, and its second-order correlation function is

g(2)(τ) =
N − 1

N

[∫
· · ·
∫
dx1 · · · dxN |h(x1, x2, · · · , xN)|2

]
×∫

· · ·
∫
dx3 · · · dxN |h(x0, x0 + vτ, x3, · · · , xN)|2[∫

· · ·
∫
dx2 · · · dxN |h(x0, x2, · · · , xN)|2

] [∫
· · ·
∫
dx1dx3 · · · dxN |h(x1, x0 + vτ, x3, · · · , xN)|2

] ,
(D.5)

where h(x1, x2, · · · , xN) is the N -photon wavefunction of the relevant state.
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Moreover, the higher-order correlation functions can also be obtained in a similar manner.

For example, the third-order correlation function for a 3-photon state is

g(3)(τ1, τ2) =
2

9

[∫∫∫
dx1dx2dx3|h(x1, x2, x3)|2

]2
×

|h(x0, x0 + vτ1, x0 + vτ2)|2[∫∫
dx2dx3|h(x0, x2, x3)|2

] [∫∫
dx1dx3|hi(x1, x0 + vτ1, x3)|2

] [∫∫
dx1dx2|h(x1, x2, x0 + vτ2)|2

] ,
(D.6)

where τ1 and τ2 are the differences of the three arrival times of the photons. Similarly, the

m-th order correlation function for an N -photon state (m ≤ N) is

g(m)(τ1, · · · , τm−1) =
N !

(N −m)!Nm

[∫
· · ·

∫
dx1 · · · dxN |h(x1, x2, · · · , xN )|2

]m−1

×∫
· · ·

∫
dxm+1 · · · dxN |h(x0, x0 + vτ1, x0 + vτ2, · · · , x0 + vτm−1, xm+1, · · · , xN )|2[∫

· · ·
∫
dx2 · · · dxN |h(x0, x2, · · · , xN )|2

]
· · ·

[∫
· · ·

∫
dx1 · · · dxm−1dxm+1 · · · dxN |h(x1, · · · , xm−1, x0 + vτm−1, xm+1, · · · , xN )|2

] ,
(D.7)

where τ1, τ2, · · · , τm−1 are differences of the m arrival times of the photons.

Among all the correlation functions presented above, the second- and third-order correlation

functions for the 3-photon state are of particular interests and discussed in section 5. To

simplify the expressions, one can define

|ϕ(x)|2 ≡
∫∫

dx2dx3|h(x, x2, x3)|2, (D.8)

and

P ≡
∫∫∫

dx1dx2dx3|h(x1, x2, x3)|2 =
∫
dx1|ϕ(x1)|2. (D.9)

The first quantity |ϕ(x)|2 describes the probability of finding one photon at position x regard-

less of the positions of the other two photons. The second quantity P is the total probability

of the 3-photon state in the entire space. Thus, the correlation functions can be further

simplified as

g(2)(τ) =
2

3
P

∫
dx3|h(x0, x0 + vτ, x3)|2

|ϕ(x0)|2|ϕ(x0 + vτ)|2
, (D.10)
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and

g(3)(τ1, τ2) =
2

9
P 2 |h(x0, x0 + vτ1, x0 + vτ2)|2

|ϕ(x0)|2||ϕ(x0 + vτ1)|2||ϕ(x0 + vτ2)|2|
. (D.11)

Numerically, we found that the above exact expressions can be computational extensive when

small denominators are present, which occur when |ϕ(x)|2 is small (e.g. at the edge of the

wavepacket). To ease the computational expense, we perform the following trick by integra-

tion over x0 for both numerators and denominators independently (note the analytic result

is independent of x0). Such a procedure numerically gets away with the small denominator

problem, and results in the following expressions used in the article:

g(2)(τ) =
2

3
P

∫∫
dx0dx3|h(x0, x0 + vτ, x3)|2∫
dx0|ϕ(x0)|2|ϕ(x0 + vτ)|2

, (D.12)

and

g(3)(τ1, τ2) =
2

9
P 2

∫
dx0|h(x0, x0 + vτ1, x0 + vτ2)|2∫

dx0|ϕ(x0)|2|ϕ(x0 + vτ1)|2|ϕ(x0 + vτ2)|2
. (D.13)
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Appendix E

Extended Mie Theory for the

Two-layer Microsphere

In this Appendix, we provide sufficient mathematical details for an extended Mie theory for

two-layer microsphere. We assume that the incident light is an x-polarized plane wave with

an amplitude E0 propagating along the z-direction, and can be written as

Ei = E0e
ikr cos θex, (E.1)

where

ex = sin θ cosϕ er + cos θ cosϕ eθ − sinϕ eϕ. (E.2)

Such a incident field can also be expanded using the vector spherical harmonics M and N

(each of which is a function of the spherical coordinates r, θ, ϕ) [37] as follows:

Ei =
∞∑
n=1

(M
(1)
o1n − iN

(1)
e1n)En. (E.3)

where r is the radial coordinate and En = inE0(2n + 1)/n(n + 1). In the vector spherical

harmonics, the subscripts e and o denote even and odd modes, respectively; 1 is the azimuthal
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order, and n is the order of vector spherical harmonics. Each of the superscripts from (1)−(3)

corresponds to the appropriate choice of one of the four kinds of spherical Bessel functions.

On the other hand, the scattered electric field Es in the region r > Rs can also be described

as linear combinations of vector spherical harmonics, as follows

Es =
∞∑
n=1

(ianN
(3)
e1n − bnM

(3)
o1n)En. (E.4)

Similarly, we can write out the electric field inside the two-layer microsphere using the vector

spherical harmonics accordingly. For example, the electric field for the core part (r < Rc) is:

E1 =
∞∑
n=1

(cnM
(1)
o1n − idnN

(1)
e1n)En, (E.5)

while the electric field for the shell part is:

E2 =
∞∑
n=1

(fnM
(1)
o1n − ignN

(1)
e1n + vnM

(2)
o1n − iwnN

(2)
e1n)En. (E.6)

With the field expressions, the boundary conditions at r = Rc and r = Rs require the

tangential components (eθ and eϕ of both the electric field and magnetic field to be contin-

uous. Therefore, eight equations that connects the coefficients {an, bn, cn, dn, fn, gn, vn, wn}
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are obtained as follows:

fnm1ψn(m2x)− vnm1χn(m2x)− cnm2ψn(m1x) = 0,

wnm1χ
′
n(m2x)− gnm1ψ

′
n(m2x) + dnm2ψ

′
n(m1x) = 0,

vnχ
′
n(m2x)− fnψ

′
n(m2x) + dnm2ψ

′
n(m1x) = 0,

gnψn(m2x)− wnχn(m2x)− dnψn(m1x) = 0,

m2ψ
′
n(y)− anm2ξ

′
n(y)− gnψ

′
n(m2y) + wnχ

′
n(m2y) = 0,

m2bnξn(y)−m2ψn(y) + fnψn(m2y)− vnχn(m2y) = 0,

ψn(y)− anξn(y)− gnψn(m2y) + wnχn(m2y) = 0,

bnξ
′
n(y)− ψ′

n(y) + fnψ
′
n(m2y)− vnχ

′
n(m2y) = 0.

(E.7)

Here, m1 and m2 are ratios of the refractive indices of the core and shell relative to the

background medium, respectively. The dimensionless quantities x and y are set to be kRc

and kRs, respectively. ψn(x), ξn(x), and χn(x) are the Riccati-Bessel functions. Here, the

usage is so as to keep the notations to be the same as those used in Ref. [37]. By solving

these eight equations, the set of coefficients can be obtained. For example, an and bn are

given by

an =
ψn(y)[ψ

′
n(m2y)− Anχ

′
n(m2y)]−m2ψ

′
n(y)[ψn(m2y)− Anχn(m2y)]

ξn(y)[ψ′
n(m2y)− Anχ′

n(m2y)]−m2ξ′n(y)[ψn(m2y)− Anχn(m2y)]
,

bn =
m2ψn(y)[ψ

′
n(m2y)−Bnχ

′
n(m2y)]− ψ′

n(y)[ψn(m2y)−Bnχn(m2y)]

m2ξn(y)[ψ′
n(m2y)−Bnχ′

n(m2y)]− ξ′n(y)[ψn(m2y)−Bnχn(m2y)]
,

(E.8)

where An and Bn are

An =
m2ψn(m2x)ψ

′
n(m1x)−m1ψ

′
n(m2x)ψn(m1x)

m2χn(m2x)ψ′
n(m1x)−m1χ′

n(m2x)ψn(m1x)
,

Bn =
m1ψn(m2x)ψ

′
n(m1x)−m2ψ

′
n(m2x)ψn(m1x)

m1χn(m2x)ψ′
n(m1x)−m2χ′

n(m2x)ψn(m1x)
.

(E.9)

Similar expressions for other coefficients are also obtained as follows:
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cn = m1m2[ψn(m2x)χ
′
n(m2x)− χn(m2x)ψ

′
n(m2x)][ξn(y)ψ

′
n(y)− ψn(y)ξ

′
n(y)]/

{[m2ξn(y)χ
′
n(m2y)− χn(m2y)ξ

′
n(y)][m1ψn(m2x)ψ

′
n(m1x)−m2ψn(x1)ψ

′
n(m2x)]

+ [m2ξn(y)ψ
′
n(m2y)− ψn(m2y)ξ

′
n(y)][m2ψn(m1x)χ

′
n(m2x)−m1χn(m2x)ψ

′
n(m1x)]},

(E.10)

dn = m1m2[ψn(m2x)χ
′
n(m2x)− χn(m2x)ψ

′
n(m2x)][ξn(y)ψ

′
n(y)− ψn(y)ξ

′
n(y)]/

{[ξn(y)χ′
n(m2y)−m2χn(m2y)ξ

′
n(y)][m2ψn(m2x)ψ

′
n(m1x)−m1ψn(x1)ψ

′
n(m2x)]

+ [ξn(y)ψ
′
n(m2y)−m2ψn(m2y)ξ

′
n(y)][m1ψn(m1x)χ

′
n(m2x)−m2χn(m2x)ψ

′
n(m1x)]},

(E.11)

fn = m2[m2ψn(m1x)χ
′
n(m2x)−m1χn(m2x)ψ

′
n(m1x)][ξn(y)ψ

′
n(y)− ψn(y)ξ

′
n(y)]/

{[m2ξn(y)χ
′
n(m2y)− χn(m2y)ξ

′
n(y)][m1ψn(m2x)ψ

′
n(m1x)−m2ψn(x1)ψ

′
n(m2x)]

+ [m2ξn(y)ψ
′
n(m2y)− ψn(m2y)ξ

′
n(y)][m2ψn(m1x)χ

′
n(m2x)−m1χn(m2x)ψ

′
n(m1x)]},

(E.12)

gn = m2[m1ψn(m1x)χ
′
n(m2x)−m2χn(m2x)ψ

′
n(m1x)][ξn(y)ψ

′
n(y)− ψn(y)ξ

′
n(y)]/

{[ξn(y)χ′
n(m2y)−m2χn(m2y)ξ

′
n(y)][m2ψn(m2x)ψ

′
n(m1x)−m1ψn(x1)ψ

′
n(m2x)]

+ [ξn(y)ψ
′
n(m2y)−m2ψn(m2y)ξ

′
n(y)][m1ψn(m1x)χ

′
n(m2x)−m2χn(m2x)ψ

′
n(m1x)]},

(E.13)
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vn = m2[m2ψn(m1x)ψ
′
n(m2x)−m1ψn(m2x)ψ

′
n(m1x)][ξn(y)ψ

′
n(y)− ψn(y)ξ

′
n(y)]/

{[m2ξn(y)χ
′
n(m2y)− χn(m2y)ξ

′
n(y)][m1ψn(m2x)ψ

′
n(m1x)−m2ψn(x1)ψ

′
n(m2x)]

+ [m2ξn(y)ψ
′
n(m2y)− ψn(m2y)ξ

′
n(y)][m2ψn(m1x)χ

′
n(m2x)−m1χn(m2x)ψ

′
n(m1x)]},

(E.14)

wn = m2[m2ψn(m2x)ψ
′
n(m1x)−m1ψn(m1x)ψ

′
n(m2x)][ξn(y)ψ

′
n(y)− ψn(y)ξ

′
n(y)]/

{[ξn(y)χ′
n(m2y)−m2χn(m2y)ξ

′
n(y)][m1ψn(m1x)ψ

′
n(m2x)−m2ψn(x2)ψ

′
n(m1x)]

+ [ξn(y)ψ
′
n(m2y)−m2ψn(m2y)ξ

′
n(y)][m2χn(m2x)ψ

′
n(m1x)−m1ψn(m1x)χ

′
n(m2x)]}.

(E.15)
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